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Abstract. We show that any concurrent zero-knowledge protocol for a nontrivial language
(i.e., for a language outside BPP), whose security is proven via black-box simulation, must use at
least Ω̃(logn) rounds of interaction. This result achieves a substantial improvement over previous
lower bounds and is the first bound to rule out the possibility of constant-round concurrent zero-
knowledge when proven via black-box simulation. Furthermore, the bound is polynomially related
to the number of rounds in the best known concurrent zero-knowledge protocol for languages in NP
(which is established via black-box simulation).
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1. Introduction. Zero-knowledge proof-systems, introduced by Goldwasser, Mi-
cali, and Rackoff [21], are efficient interactive proofs that have the remarkable property
of yielding nothing beyond the validity of the assertion being proved. The generality
of zero-knowledge proofs has been demonstrated by Goldreich, Micali, and Wigder-
son [19], who showed that every NP-statement can be proved in zero-knowledge pro-
vided that one-way functions exist [23, 27]. Since then, zero-knowledge proofs have
turned out to be an extremely useful tool in the design of various cryptographic pro-
tocols.

The original setting in which zero-knowledge proofs were investigated consisted
of a single prover and a verifier that executed only one instance of the protocol at a
time. A more realistic setting, especially in the age of the internet, is one that allows
the concurrent execution of zero-knowledge protocols. In the concurrent setting (see
Feige [14] and the more extensive treatment by Dwork, Naor, and Sahai [12]), many
protocols (sessions) are executed at the same time, involving many verifiers which may
be talking with the same (or many) provers simultaneously. (The so-called parallel
composition considered in [18, 15, 17, 6, 4] is merely a special case.) This setting
presents the new risk of a coordinated attack in which an adversary controls many
verifiers, interleaving the executions of the protocols and choosing verifiers’ messages
based on other partial executions of the protocol. Since it seems unrealistic (and
certainly undesirable) for honest provers to coordinate their actions so that zero-
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knowledge is preserved, we must assume that, in each prover-verifier pair, the prover
acts independently.

Loosely speaking, a zero-knowledge proof is said to be concurrent zero-knowledge
if it remains zero-knowledge even when executed in the concurrent setting. Recall
that, in order to demonstrate that a certain protocol is zero-knowledge, it is required
to demonstrate that the view of every probabilistic polynomial-time adversary inter-
acting with the prover can be simulated by a probabilistic polynomial-time machine
(also known as the simulator). In the concurrent setting, the verifiers’ view may
include multiple sessions running at the same time. Furthermore, the verifiers may
have control over the scheduling of the messages in these sessions (i.e., the order in
which the interleaved execution of these sessions should be conducted). As a con-
sequence, the simulator’s task in the concurrent setting becomes considerably more
complicated. In particular, standard techniques, based on “rewinding the adversary,”
run into trouble.

1.1. Previous work. Constructing a “round-efficient” concurrent zero-knowl-
edge protocol for all languages in NP or even nontrivial languages (outside of BPP)
seems to be a challenging task. Intuition on the difficulty of this problem is given
in [12], where it was argued that, for a specific 4-round zero-knowledge protocol and
a specific recursive scheduling of n sessions, the straightforward adaptation of the
simulator to the concurrent setting requires time exponential in n. The first lower
bound demonstrating the difficulty of concurrent zero-knowledge was given by Kil-
ian, Petrank, and Rackoff [26], who showed, building on the techniques of Goldreich
and Krawczyk [18], that, for every language outside BPP, there is no 4-round pro-
tocol whose concurrent execution is simulatable in polynomial time by a black-box
simulator. (A black-box simulator is a simulator that has only black-box access to
the adversarial verifier. Essentially all previously known proofs of security of zero-
knowledge protocols use black-box simulators. An exception is the protocol of [22],
which uses a nonstandard assumption of a “non black-box” nature.) This lower bound
was later improved by Rosen to seven rounds [29].

Indeed, even ignoring issues of round efficiency, it was not clear whether there ex-
ists a concurrent zero-knowledge protocol for nontrivial languages without modifying
the underlying model. Richardson and Kilian [28] exhibited a family of concurrent
zero-knowledge protocols (parameterized by the number of rounds) for all languages
in NP. Their original analysis showed how to simulate in polynomial time nO(1)

concurrent sessions only when the number of rounds in the protocol is at least nε (for
some arbitrary ε > 0). This result has recently been substantially improved by Kilian
and Petrank [25], who show that the Richardson–Kilian protocol remains concurrent
zero-knowledge even if it has O(g(n) · log2 n) rounds, where g(·) is any nonconstant
function (e.g., g(n) = log logn).

We note that previously there was a considerable gap between the known upper
and lower bounds on the round complexity of concurrent zero-knowledge (i.e., [25, 29]):
the best known protocol has Õ(log2 n) rounds, whereas the lower bound necessitates 7
rounds (via black-box simulation).1 In particular, the question consisting of whether
constant-round concurrent zero-knowledge protocols exist has been open.

1.2. Our result. We substantially narrow the above gap by presenting a lower
bound on the number of rounds required by concurrent zero-knowledge. We show that,

1f(n) = Õ(h(n)) if there exist constants c1, c2 > 0 so that, for all sufficiently large n, f(n) ≤
c1 · (log h(n))c2 · h(n).
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in the context of black-box concurrent zero-knowledge, Ω̃(log n) rounds of interaction
are essential for nontrivial proof-systems.2 This bound is the first to rule out the
possibility of constant-round concurrent zero-knowledge, when proven via black-box
simulation. Furthermore, the bound is polynomially related to the number of rounds
in the best-known concurrent zero-knowledge protocol for languages outside BPP
[25]. Our main result is stated in the following theorem.

Theorem 1.1. Let r : N → N be a function so that r(n) = o( logn
log log n ). Suppose

that 〈P, V 〉 is an r(·)-round proof-system for a language L (i.e., on input x, the number
of messages exchanged is at most r(|x|)) and that concurrent executions of P can
be simulated in polynomial time using black-box simulation. Then L ∈ BPP. The
theorem holds even if the proof-system is only computationally sound (with negligible
soundness error) and the simulation is only computationally indistinguishable (from
the actual executions).

1.3. Techniques. The proof of Theorem 1.1 builds on the works of Goldreich
and Krawczyk [18], Kilian, Petrank, and Rackoff [26], and Rosen [29]. On a very high
level, the proof proceeds by constructing a specific concurrent schedule of sessions and
demonstrating that a black-box simulator cannot successfully generate a simulated
accepting transcript for this schedule unless it “rewinds” the verifier many times.
The work spent on these rewindings will be superpolynomial unless the number of
rounds used by the protocol obeys the bound, or L ∈ BPP. While the general outline
of the proof remains roughly the same as in [18, 26, 29], the actual schedule of sessions
and its analysis are new. One main idea that, together with other ideas, enables the
proof of the bound is to have the verifier abort sessions depending on the history of
the interaction. A more detailed outline, presenting both the general structure and
the new ideas in the proof, appears in section 3.

Remark. The concurrent schedule in our proof is fixed and known to everybody.
As a consequence, Theorem 1.1 is actually stronger than stated. It will hold even
if the simulator knows the schedule in advance (in particular, it knows the number
of concurrent sessions) and even if the schedule of the messages does not change
dynamically (as a function of the history of the interaction).

1.4. Conclusions and open problems.

1.4.1. Alternative models. The lower bound presented here draws severe lim-
itations on the ability of black-box simulators to cope with the standard concurrent
zero-knowledge setting and provides motivation to consider relaxations of and aug-
mentations to the standard model. Indeed, several works have managed to “bypass”
the difficulty in constructing concurrent zero-knowledge protocols by modifying the
standard model in a number of ways. Dwork, Naor, and Sahai augment the communi-
cation model with assumptions on the maximum delay of messages and skews of local
clocks of parties [12, 13]. Damg̊ard uses a common random string [11], and Canetti
et al. use a public registry file [7].

A different approach would be to try to achieve security properties that are weaker
than zero-knowledge but are still useful. For example, Feige and Shamir consider the
notion of witness indistinguishability [14, 15], which is preserved under concurrent
composition.

2f(n) = Ω̃(h(n)) if there exist constants c1, c2 > 0 so that, for all sufficiently large n, f(n) ≥
c1 · h(n)/(log h(n))c2 .
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1.4.2. Alternative simulation techniques. Loosely speaking, the only ad-
vantage that a black-box simulator may have over the honest prover is the ability to
“rewind” the interaction and explore different execution paths before proceeding with
the simulation (as its access to the verifier’s strategy is restricted to the examination
of input/output behavior). As we show in our proof, such a mode of operation (i.e.,
the necessity to rewind every session) is a major contributor to the hardness of sim-
ulating many concurrent sessions. It is thus natural to think that a simulator that
deviates from this paradigm (i.e., is non black-box in the sense that it does not have
to rewind the adversary in order to obtain a faithful simulation of the conversation)
would essentially bypass the main problem that arises while trying to simulate many
concurrent sessions.

Hada and Tanaka [22] have considered some weaker variants of zero-knowledge
and have exhibited a three-round protocol forNP (whereas only BPP has three-round
black-box zero-knowledge [18]). Their protocol was an example for a zero-knowledge
protocol not proven secure via black-box simulation. Alas, their analysis was based
in an essential way on a strong and highly nonstandard hardness assumption.

In a recent breakthrough result, Barak [2] constructs a constant-round protocol
for all languages in NP whose zero-knowledge property is proved using a non black-
box simulator. Such a method of simulation enables him to bypass our impossiblity
result (as well as [18, 26, 29]) and to perform cryptographic tasks otherwise considered
unachievable. In particular, for every (predetermined) polynomial p(·), there exists a
version of Barak’s protocol that preserves its zero-knowledge property even when it
is executed p(n) times concurrently (where n denotes the size of the common input).
As we show in our work, this task is unachievable via black-box simulation (unless
NP ⊆ BPP).

1.4.3. Open problems. At first glance, it seems that Barak’s protocol com-
pletely resolves the question of whether constant-round concurrent zero-knowledge
protocols exist. Taking a closer look, however, one notices that the (polynomial)
number of concurrent sessions relative to which the protocol should be secure is de-
termined before the protocol is specified. Moreover, it turns out that the messages
in the protocol are required to be longer than the number of concurrent sessions.
Thus, from both a theoretical and a practical point of view, Barak’s protocol is still
not satisfactory. What we would like to have is a single protocol that preserves its
zero-knowledge property even when it is executed concurrently for any (not prede-
termined) polynomial number of times. Such a property is indeed satisfied by the
protocols of [28, 25] (alas, these protocols are not constant-round). This leaves open
the question of whether constant-round concurrent zero-knowledge protocols indeed
exist for all languages in NP.

2. Preliminaries.

2.1. Probabilistic notation. Denote by x
r← X the process of uniformly choos-

ing an element x in a set X. If B(·) is an event depending on the choice of x r← X,
then Prx←X [B(x)] (alternatively, Prx[B(x)]) denotes the probability that B(x) holds
when x is chosen with probability 1/|X|. Namely,

Prx←X [B(x)] =
∑
x

1

|X| · χ(B(x)),

where χ is an indicator function so that χ(B) = 1 if event B holds and equals zero
otherwise. This notation extends in the natural way for events B(·, . . . , ·) that depend
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on k variables x1, x2, . . . , xk that are uniformly chosen in k (possibly different) sets
X1, X2, . . . , Xk. That is, we denote by Prx1,x2,...,xk [B(x1, x2, . . . , xk)] the probability
that B(x1, x2, . . . , xk) holds when x1, x2, . . . , xk are chosen with probability 1/(|X1| ·
|X2| · · · |Xk|).

2.2. Interactive proofs. We use the standard definitions of interactive proofs
(interactive Turing machines) [21, 16] and arguments (also known as computationally
sound proofs) [5]. Given a pair of interactive Turing machines, P and V , we denote by
〈P, V 〉(x) the random variable representing the (local) output of V when interacting
with machine P on common input x, when the random input to each machine is
uniformly and independently chosen. We consider interactive proof-systems in which
the soundness error is negligible. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a
function ν(·) from nonnegative integers to reals is called negligible if, for every constant
c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

Definition 2.1 (interactive proof-system). A pair of interactive machines 〈P, V 〉
is called an interactive proof-system for a language L if machine V is polynomial-time
and the following two conditions hold with respect to some negligible function ν(·):

• Completeness. For every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ 1− ν(|x|).

• Soundness. For every x �∈ L and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|).

Definition 2.1 can be relaxed to require only the soundness error that is bounded
away from 1 − ν(|x|). This is so since the soundness error can always be made
negligible by sufficiently many parallel repetitions of the protocol (as such may occur
anyhow in the concurrent model). However, we do not know whether this condition
can be relaxed in the case of computationally sound proofs (i.e., when the soundness
condition is required to hold only for machines B that are implementable by polysize
circuits). In particular, in this case, parallel repetitions do not necessarily reduce the
soundness error (cf. [3]).

2.3. Concurrent zero-knowledge. Let 〈P, V 〉 be an interactive proof for a lan-
guage L, and consider a concurrent adversary (verifier) V ∗ that, given input x ∈ L,
interacts with an unbounded number of independent copies of P (all on common in-
put x). The concurrent adversary V ∗ is allowed to interact with the various copies
of P concurrently, without any restrictions over the scheduling of the messages in the
different interactions with P . (In particular, V ∗ has control over the scheduling of
the messages in these interactions.) The transcript of a concurrent interaction con-
sists of the common input x followed by the sequence of prover and verifier messages
exchanged during the interaction. We denote by viewPV ∗(x) a random variable de-
scribing the content of the random tape of V ∗ and the transcript of the concurrent
interaction between P and V ∗ (that is, all messages that V ∗ sends and receives during
the concurrent interactions with P , on common input x).

Remark. The actual definition of concurrent zero-knowledge requires that the con-
current adversary V ∗ explicitly specifies to which session the next scheduled message
belongs. However, in the proof of Theorem 1.1, we consider a “weaker” concurrent
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adversary V ∗ that is running only a fixed scheduling of sessions (and so does not
determine the schedule dynamically). In particular, there will be no need to use a
formalism for specifying to which session the next scheduled message belongs.

Definition 2.2 (concurrent zero-knowledge). Let 〈P, V 〉 be an interactive proof-
system for a language L. We say that 〈P, V 〉 is concurrent zero-knowledge if, for every
polynomial-time concurrent adversary V ∗, there exists a probabilistic polynomial-time
algorithm SV ∗ such that the ensembles {viewPV ∗(x)}x∈L and {SV ∗(x)}x∈L are compu-
tationally indistinguishable.

2.4. Black-box concurrent zero-knowledge. Loosely speaking, the defini-
tion of black-box zero-knowledge requires that there exists a “universal” simulator,
S, so that, for every x ∈ L and every probabilistic polynomial-time adversary V ∗, the
simulator S produces a distribution that is indistinguishable from viewPV ∗(x) while
using V ∗ as an oracle (i.e., in a “black-box” manner). We assume concurrent ad-
versaries V ∗ are modeled by polysized circuits (capturing nonuniform, deterministic
verifiers viewed as an oracle; cf. [18, 16, 26]).

Before we proceed with the formal definition, we will have to overcome a technical
difficulty arising from an inherent difference between the concurrent setting and the
“stand-alone” setting. In “stand-alone” zero-knowledge, the length of the output of
the simulator depends only on the protocol and the size of the common input x. It
is thus reasonable to require that the simulator run in time that depends only on
the size of x, regardless of the running time of its black-box. However, in black-box
concurrent zero-knowledge, the output of the simulator is an entire schedule, and its
length depends on the running time of the concurrent adversary. Therefore, if we
naively require that the running time of the simulator be a fixed polynomial in the
size of x, then we end up with an unsatisfiable definition. (As for any simulator S,
there is an adversary V ∗ that generates a transcript that is longer than the running
time of S.)

One way to solve the above problem is to have for each fixed polynomial q(·)
a simulator Sq that simulates “only” all q(·)-sized circuits V ∗. Clearly, the running
time of the simulator now depends on the running time of V ∗ (which is an upper
bound on the size of the schedule), and the above problem does not occur anymore.
Another (more restrictive) way to overcome the above problem would be to consider
a simulator Sq that simulates “only” all adversaries V

∗ which run at most q(|x|)
sessions during their execution. (We stress that q(·) is chosen after the protocol is
determined.) Such simulators should run in worst-case time that is a fixed polynomial
in q(|x|) and in the size of the common input x. (Note that by letting Sq “know” q(·)
in advance, we actually strengthen the lower bound.) In what follows, we choose to
adopt the latter formalization. We stress that both formalizations are general enough
to include all known black-box zero-knowledge proofs.

Definition 2.3 (black-box concurrent zero-knowledge). Let 〈P, V 〉 be an in-
teractive proof-system for a language L. We say that 〈P, V 〉 is black-box concurrent
zero-knowledge if, for every polynomial q(·), there exists a probabilistic polynomial-
time3 algorithm Sq so that, for every concurrent adversary circuit V

∗ that runs at
most q(|x|) concurrent sessions, Sq(x) runs in time polynomial in q(|x|) and |x| and
satisfies that the ensembles {viewPV ∗(x)}x∈L and {Sq(x)}x∈L are computationally in-
distinguishable.

3See below for a discussion on expected versus strict probabilistic polynomial time.
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2.5. Additional conventions.
Deviation gap and expected polynomial-time simulators. The deviation gap of a

simulator S for a proof-system 〈P, V 〉 is defined, somewhat informally, as follows.
Consider a distinguisher D that is required to decide whether its input consists of
viewPV ∗(x) or the transcript that was produced by S. The deviation gap of D is
the difference between the probability that D outputs 1 given an output of S and the
probability that D outputs 1 given viewPV ∗(x). The deviation gap of S is the deviation
gap of the best polynomial-time distinguisher D. In our definitions of concurrent zero-
knowledge (Definitions 2.2 and 2.3), the deviation gap of the simulator is required to
be negligible in |x|.

For our lower bound, we allow simulators that run in strict (worst-case) polyno-
mial time and have a deviation gap of at most 1/4. As for expected polynomial-time
simulators, one can use a standard argument to show that any simulator running in
expected polynomial time and having a deviation gap of at most 1/8 can be trans-
formed into a simulator that runs in strict (worst-case) polynomial time and has a
deviation gap of at most 1/4. In particular, our lower bound (on simulators that run
in strict polynomial time and have a deviation gap of at most 1/4) extends to a lower
bound on simulators running in expected polynomial time (and having a deviation
gap of as large as 1/8).

Query conventions. By k-round protocols, we mean protocols in which 2k + 2
messages are exchanged subject to the following conventions. The first message is
a fixed initiation message by the verifier, denoted by v1, which is answered by the
prover’s first message, denoted by p1. The following verifier and prover messages are
denoted by v2, p2, . . . , vk+1, pk+1, where vk+1 is an ACCEPT/REJECTmessage indicating
whether the verifier has accepted its input, and the last message (i.e., pk+1) is a fixed
acknowledgment message sent by the prover.4 Clearly, any protocol in which 2k
messages are exchanged can be modified to fit this form (by adding at most two
messages).

We impose the following technical restrictions on the simulator (but claim that
each of these restrictions can be easily satisfied): As in [18], the queries of the simulator
are prefixes of possible execution transcripts (in the concurrent setting).5 Such a prefix
is a sequence of alternating prover and verifier messages (which may belong to different
sessions as determined by the fixed schedule) that ends with a prover message. The
answer to the queries made by the simulator consists of a single verifier message
(which belongs to the next scheduled session). We assume that the simulator never
repeats the same query twice. In addition, we assume that, before making a query q =
(b1, a1, . . . , bt, at), where the a’s are prover messages, the simulator has made queries
to all relevant prefixes (i.e., (b1, a1, . . . , bi, ai) for every i < t) and has obtained the
bi’s as answers. Finally, we assume that, before producing output (b1, a1, . . . , bT , aT ),
the simulator makes the query (b1, a1, . . . , bT , aT ).

3. Proof outline. This section contains an outline of the proof of Theorem 1.1.
The actual proof will be given in sections 4 and 5. To facilitate reading, we partition
the outline into two parts: The first part reviews the general framework. (This part
mainly follows previous works, namely, [17, 26, 29].) The second part concentrates on
the actual schedule and the specifics of our lower bound argument.

4The pk+1 message is an artificial message included in order to “streamline” the description of
the adversarial schedule. (The schedule will be defined in section 4.1.1.)

5For the sake of simplicity, we choose to omit the input x from the transcript’s representation
(as it is implicit in the description of the verifier anyway).
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3.1. The high-level framework. Consider a k-round concurrent zero knowl-
edge proof-system 〈P, V 〉 for language L, and let S be a black-box simulator for 〈P, V 〉.
We use S to construct a BPP decision procedure for L. For this purpose, we construct
a family {Vh} of “cheating verifiers.” To decide on an input x, run S with a cheating
verifier Vh that was chosen at random from the constructed family, and decide that
x ∈ L iff S outputs an accepting transcript of Vh.

The general structure of the family {Vh} is roughly as follows. A member Vh in
the family is identified via a hash function h taken from a hash-function family H
having “much randomness” (or high independence). Specifically, the independence of
H will be larger than the running time of S. This guarantees that, for our purposes,
a function drawn randomly from H behaves like a random function. We define some
fixed concurrent schedule of a number of sessions between Vh and the prover. In each
session, Vh runs the code of the honest verifier V on input x and random input h(a),
where a is the current history of the (multisession) interaction at the point where the
session starts. Vh accepts if all of the copies of V accept.

The proof of validity of the decision procedure is structured as follows. Say that
S succeeds if it outputs an accepting transcript of Vh. It is first claimed that, if x ∈ L,
then a valid simulator S must succeed with high probability. Roughly speaking, this
is so because each session behaves like the original proof-system 〈P, V 〉, and 〈P, V 〉
accepts x with high probability, demonstrating that the simulator almost never suc-
ceeds when x /∈ L is much more involved. Given S, we construct a “cheating prover”
P ∗ that makes the honest verifier V accept x with probability that is polynomially
related to the success probability of S. The soundness of 〈P, V 〉 now implies that, in
this case, S succeeds only with negligible probability. See the details below.

3.1.1. Session-prefixes and useful session-prefixes. In order to complete
the high-level description of the proof, we must first define the following notions
that play a central role in the analysis. Consider the conversation between Vh and
a prover. A session-prefix a is a prefix of this conversation that ends at the point
where some new session starts (including the first verifier message in that session).
(Recall that V ’s random input for that new session is set to h(a).) Next, consider
the conversation between S and Vh in some run of S. (Such a conversation may
contain many interleaved and incomplete conversations of Vh with a prover.) Roughly
speaking, a message sent by S to the simulated Vh is said to have a session-prefix a
if it relates to the session where the verifier randomness is h(a). A session-prefix a is
called useful in a run of S if the following hold.

1. It was accepted (i.e., Vh sent an ACCEPT message for session-prefix a).
2. Vh has sent exactly k + 1 messages for session-prefix a.

Loosely speaking, condition 2 implies that S did not rewind the relevant session-prefix,
where “rewind session-prefix a” is an informal term meaning that S rewinds Vh to
a point where Vh provides a second continuation for session-prefix a. By rewinding
session-prefix a, the simulator is able to obtain more than k + 1 verifier messages for
session-prefix a. This is in contrast to an actual execution of the protocol 〈P, V 〉, in
which V sends exactly k + 1 messages.

3.1.2. The construction of the cheating prover. Using the above terms,
we sketch the construction of the cheating prover P ∗. It first randomly chooses a
function h

r← H and an index (of a session-prefix) i. It then emulates an interaction
between S and Vh, with the exception that P

∗ uses the messages sent by S that have
the ith session-prefix as the messages that P ∗ sends to the actual verifier it interacts
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S Vh

Emulated interaction
between S and Vh

(Multiple sessions)
P ∗

Actual interaction
between P ∗ and V

(Single session)

V

Fig. 3.1. The above describes the strategy of the cheating prover P ∗. The box on the left-
hand side represents the (multiple session) emulation of the interaction between S and Vh (executed
“internally” by P ∗). The box on the right-hand side represents the actual execution of a single
session between P ∗ and V . (Recall that P ∗ relays some of the actual interaction messages to its
internal emulation.)

with; similarly, it uses the messages received from the actual verifier V instead of Vh’s
messages in the ith session-prefix. The strategy of the cheating prover is depicted in
Figure 3.1.

3.1.3. The success probability of the cheating prover. We next claim that,
if the session-prefix chosen by P ∗ is useful, then 〈P ∗, V 〉(x) accepts. The key point
is that, whenever P ∗ chooses a useful session-prefix, the following two conditions
(corresponding to the two conditions in the definition of a useful session-prefix) are
satisfied:

1. The session corresponding to the ith session-prefix is accepted by Vh (and so
by V ).

2. P ∗ manages to reach the end of the 〈P ∗, V 〉 interaction without “getting into
trouble.”6

Loosely speaking, item 1 is implied by condition 1 in the definition of a useful session-
prefix. As for item 2, this just follows from the fact that S does not rewind the ith
session-prefix (as implied by condition 2 in the definition of a useful session-prefix).
In particular, P ∗ (playing the role of Vh) will not have to send the jth verifier message
with the ith session-prefix more than once to S (since the number of messages sent
by Vh for that session-prefix is exactly k + 1).

Since the number of session-prefixes in an execution of S is bounded by a polyno-
mial, it follows that, if the conversation between S and Vh contains a useful session-
prefix with nonnegligible probability, then 〈P ∗, V 〉(x) accepts with nonnegligible prob-
ability.

3.2. The schedule and additional ideas. Using the above framework, the
crux of the lower bound is to come up with a schedule and Vh’s that allow us to
demonstrate that, whenever S succeeds, the conversation between S and Vh contains

6The problem is that P ∗ does not know V ’s random coins, and so it cannot compute the verifier’s
answers by himself. Thus, whenever P ∗ is required in the emulation to send the jth verifier message
in the protocol more than once to S, it might get into trouble (since it gets the jth verifier message
only once from V ).



10 R. CANETTI, J. KILIAN, E. PETRANK, AND A. ROSEN

(a) (b)

1 2 m

v1
p1

⇐⇒ ⇐⇒ .
.
. ⇐⇒⇐⇒

.
.
.

⇐⇒
v2
p2

⇐⇒

1 2 m

v1
p1

⇐⇒

Rm−1

v2
p2

⇐⇒

Fig. 3.2. The “telescopic” schedule used by [26] to demonstrate the impossibility of black-box
concurrent zero-knowledge in 2 rounds. Columns correspond to n individual sessions, and rows
correspond to the time progression. (a) depicts the schedule explicitly. (b) depicts the schedule in a
recursive manner. (Rm denotes the recursive schedule for m sessions.)

a useful session-prefix. (As we have argued above, it is in fact sufficient that the
conversation between S and Vh contains a useful session-prefix with nonnegligible
probability.) This is done next.

3.2.1. The 2-round case. Our starting point is the schedule used in [26] to
demonstrate the impossibility of black-box concurrent zero-knowledge with protocols
in which 4 messages are exchanged (i.e., v1, p1, v2, p2). The schedule is recursive
and consists of n concurrent sessions. (n is polynomially related to the security
parameter.) Given parameter m ≤ n, the scheduling on m sessions (denoted Rm)
proceeds as follows (see Figure 3.2 for a graphical description):

1. If m = 1, the relevant session exchanges all of its messages (i.e., v1, p1, v2, p2).
2. Otherwise (i.e., if m > 1):
Initial message exchange. The first session (out of m sessions) exchanges 2

messages (i.e., messages v1, p1);
Recursive call. The schedule is applied recursively on the remaining m − 1

sessions;
Final message exchange. The first session (out of m sessions) exchanges 2

messages (i.e., messages v2, p2).
At the end of each session, Vh continues in the interaction iff the transcript of the
session that has just terminated would have been accepted by the prescribed verifier
V . This means that, in order to proceed beyond the ending point of the #th session,
the simulator must make the honest verifier accept the sth session for all s > #.

Suppose now that S succeeds in simulating the above Vh, but the conversation
between S and Vh does not contain a useful session-prefix. Since Vh proceeds beyond
the ending point of a session only if this session is accepted, then the only reason for
which the corresponding session-prefix can be nonuseful is because S has rewound
that session-prefix. In other words, a session-prefix becomes nonuseful iff S resends
the first prover message in the protocol (i.e., p1).

7 This should cause Vh to resend
the second verifier message (i.e., v2), thus violating condition 2 in the definition of a
useful session-prefix (see section 3.1.1).

7Notice that the first prover message in the protocol (i.e., p1) is the only place in which rewinding
the interaction may cause a session-prefix to be nonuseful. The reason for this is that the first verifier
message in the protocol (i.e., v1) is part of the session-prefix. Rewinding past this message (i.e., v1)
would modify the session-prefix itself. As for p2, it is clear that rewinding this message would not
cause any change in verifier messages that correspond to the relevant session-prefix (since v1 and v2
occur before p2 anyway).
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The key observation is that, whenever the first prover message in the #th session
is modified, so is the session-prefix of the sth session for all s > #. Thus, whenever
S resends the first prover message in the #th session, it must do so also in the sth
session for all s > # (since otherwise the “fresh” session-prefix of the sth session that
is induced by resending the above message will be useful). However, this means that
the work W (m), invested in the simulation of a schedule with m levels, must satisfy
W (m) ≥ 2 ·W (m − 1) for all m. Thus either the conversation between Vh and S
contains a useful session-prefix (in which case we are done), or the simulation requires
exponential time (since W (m) ≥ 2 ·W (m− 1) solves to W (n) ≥ 2n−1).

3.2.2. The k-round case—first attempt. The case of k rounds may proceed
as follows. Given the parameter m ≤ n (denoting the number of sessions in Rm), do:

1. If m = 1, the relevant session exchanges all of its messages (i.e., messages
v1, p1, . . . , vk+1, pk+1).

2. Otherwise, for j = 1, . . . , k + 1:
Message exchange. The first session (out of m sessions) exchanges two mes-

sages (i.e., vj , pj);

Recursive call. If j < k + 1, the scheduling is applied recursively on �m−1
k �

new sessions.
(This is done using the next �m−1

k � remaining sessions out of 2, . . . ,m.)
As before, at the end of each session, Vh continues in the interaction iff the transcript
of the session that has just terminated would have been accepted by the prescribed
verifier V . The schedule is depicted in Figure 3.3.

The crucial problem of the above schedule is that one can come up with a k-round
protocol and a corresponding simulator that manages to successfully simulate Vh and

1 2 m

v1
p1

⇐⇒

Rm−1
k

v2
p2

⇐⇒

. .

. .

. .

vj−1
pj−1

⇐⇒

Rm−1
k

vj
pj

⇐⇒

. .

. .

. .

vk
pk

⇐⇒

Rm−1
k

vk+1
pk+1

⇐⇒

Fig. 3.3. First attempt to generalize the recursive schedule (Rm with m sessions) for k-round
protocols. Columns correspond to m individual sessions, and rows correspond to the time progres-
sion.
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cause all session-prefixes in its conversation with Vh to be nonuseful. Specifically, there
exist protocols (cf. [28]) in which the simulator is required to successfully rewind an
honestly behaving verifier exactly once for every session. Whereas, in the case of
2 rounds, this could have had devastating consequences (since, in the case of the
previous schedule, it would have implied W (m) ≥ (k+1) ·W (m− 1) = 2 ·W (m− 1),
which solves to W (n) ≥ 2n−1) in the general case (i.e., when k + 1 > 2) when any
rewinding of the schedule that we have suggested would have forced the simulator to
reinvest simulation “work” only for m−1

k sessions. Note that such a simulator satisfies

W (m) = (k + 1) · W (m−1
k ), which solves to kO(logk n) = nO(1). In particular, by

investing a polynomial amount of work, the simulator is able to make all session-
prefixes not useful while successfully simulating all sessions.

3.2.3. The k-round case—second attempt. One method of circumventing
this difficulty was used in [29]. However, that method extends the lower bound only
up to 3 rounds (more precisely, 7 messages). Here we use a different method. What
we do is let the cheating verifier abort (i.e., refuse to answer) every message in the
schedule with some predetermined probability (independently of other messages). To
do this, we first add another, binary hash function, g, to the specification of Vh. This
hash function is taken from a family G with sufficient independence so that it looks
like a random binary function. Now, before generating the next message in some
session, Vg,h first applies g to some predetermined part of the conversation so far. If
g returns 0, then Vg,h aborts the session by sending an ABORT message. If g returns
1, then Vg,h is run as usual.

The rationale behind the use of aborts can be explained as follows. Recall that a
session-prefix a stops being useful only when Vg,h sends more than k messages whose
session-prefix is a. This means that a stops being useful only if S rewinds the session-
prefix a and, in addition, g returns 1 in at least two of the continuations of a. This
means that S is expected to rewind session-prefix a several times before it stops being
useful. Since each rewinding of a involves extra work of S on higher-level sessions,
this may force S to invest considerably more work before a session stops being useful.

A bit more specifically, let p denote the probability, taken over the choice of
g, that g returns 1 on a given input. In each attempt, the session is not aborted
with probability p. Thus S is expected to rewind a session prefix 1/p times before it
becomes nonuseful. This gives us hope that, in order to make sure that no session-
prefix is useful, S must do work that satisfies a condition of the following sort:

W (m) ≥ Ω(1/p) ·W (
m−1
k

)
.(3.1)

This would mean that the work required to successfully simulate n sessions and make
all session-prefixes nonuseful is at least Ω(p− logk n). Consequently, when the expres-
sion p− logk n is superpolynomial, there is hope that the conversation between S and
Vh contains a useful session-prefix with nonnegligible probability.

3.2.4. The k-round case—final version. However, demonstrating (3.1) brings
up the following difficulty. Once the verifier starts aborting sessions, the probability
that a session is ever completed may become too small. As a consequence, it is not
clear anymore that the simulator must invest simulation “work” for all sessions in the
schedule. It may very well be the case that the simulator will go about the simulation
task while “avoiding” part of the simulation “work” in some recursive invocations (as
some of these invocations may be aborted anyway during the simulation). In other
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words, there is no guarantee that the recursive “work” invested by the simulator
behaves like (3.1).8

To overcome this problem, we replace each session in the above schedule with a
“block” of, say, n sessions (see Figure 4.1). We now have n2 sessions in a schedule.
(This choice of parameters is arbitrary and is made for convenience of presentation.)
The modified Vg,h accepts a block of n sessions if at least 1/2 of the nonaborted
sessions in this block were accepted and not too many of the sessions in this block
were aborted. Once a block is rejected, Vg,h halts. At the end of the execution, Vg,h
accepts if all blocks were accepted. The above modification guarantees that, with a
careful setting of the parameters, the simulator’s recursive “work” must satisfy (3.1)
at least with overwhelming probability.

3.2.5. Setting the value of p. It now remains to set the value of p so that the
simuatior’s work behaves as in (3.1). Clearly, the smaller p is chosen to be, the larger
p− logk n is. However, p cannot be too small, or else the probability that a session
will ever be completed will be too small, and condition 1 in the definition of a useful
session-prefix (section 3.1.1) will not be satisfied. Specifically, a k-round protocol is
completed with probability pk. We thus have to make sure that pk is not negligible
(and, furthermore, that pk · n� 1).

In the proof, we set p = n−1/2k. This will guarantee that a session is completed
with probability pk = n−1/2. (Thus condition 1 will hopefully be satisfied.) Fur-
thermore, since p− logk n is superpolynomial whenever k = o(log n/ log log n), there is
hope that condition 2 in the definition of a useful session-prefix (section 3.1.1) will be
satisfied for k = o(log n/ log log n).

3.3. The actual analysis. Demonstrating that there exist many accepted
session-prefixes is straightforward. Demonstrating that one of these session-prefixes
is useful requires arguing on the dependency between the expected work done by the
simulator and its success probability. This is a tricky business since the choices made
by the simulator (and, in particular, the amount of effort spent on making each session
nonuseful) may depend on past events.

We go about this task by pinpointing a special (combinatorial) property that holds
for any successful run of the simulator, unless the simulator runs in superpolynomial
time (Lemma 5.9). Essentially, this property states that there exists a block of sessions
such that none of the session-prefixes in this block were rewound too many times.
Using this property, we show (in Lemma 5.7) that the probability (over the choices of
Vg,h and the simulator) that a run of the simulator contains no useful session-prefix
is negligible.

4. The actual proof (of Theorem 1.1). Assuming toward the contradiction
that a black-box simulator, denoted S, contradicting Theorem 1.1 exists, we will
describe a probabilistic polynomial-time decision procedure for L based on S. The
first step toward describing the decision procedure for L involves the construction of
an adversarial verifier in the concurrent model. This is done next.

4.1. The concurrent adversarial verifier. The description of the adversarial
strategy proceeds in several steps. We start by describing the underlying fixed sched-

8To see this, imagine that the value of p is set to some negligible function (in n). In such a case,
with overwhelming probability, all sessions in the schedule are aborted by Vg,h. However, this means
that the distribution of interactions of P with Vg,h can be easily simulated by a simulator that “does
nothing.” All that it has to do in order to produce a faithful simulation (at least with overwhelming
probability) is output a transcript in which all sessions in the schedule are aborted.



14 R. CANETTI, J. KILIAN, E. PETRANK, AND A. ROSEN

ule of messages. Once the schedule is presented, we describe the adversary’s strategy
regarding the contents of the verifier messages.

4.1.1. The schedule. For each x ∈ {0, 1}n, we consider the following concur-
rent scheduling of n2 sessions, all run on common input x.9 The scheduling is defined
recursively, where the scheduling of m ≤ n2 sessions (denoted Rm) proceeds as fol-
lows:10

1. If m ≤ n, sessions 1, . . . ,m are executed sequentially until they are all com-
pleted;

2. Otherwise, for j = 1, . . . , k + 1:
Message exchange. Each of the first n sessions exchanges two messages (i.e.,

vj , pj);
(These first n sessions out of {1, . . . ,m} will be referred to as the main
sessions of Rm.)

Recursive call. If j < k + 1, the scheduling is applied recursively on �m−nk �
new sessions.
(This is done using the next �m−nk � remaining sessions out of 1, . . . ,m.)

The schedule is depicted in Figure 4.1. We stress that the verifier typically postpones
its answer (i.e., vj) to the last prover’s message (i.e., pj−1) until after a recursive

subschedule is executed and that, in the jth iteration of step 2, �m−nk � new sessions
are initiated (with the exception of the first iteration, in which the first n (main)
sessions are initiated as well). The order in which the messages of various sessions
are exchanged (in the first part of step 2) is fixed but immaterial. Say that we let
the first session proceed, and then the second, and so on. That is, we have the order

v
(1)
j , p

(1)
j , . . . , v

(n)
j , p

(n)
j , where v

(i)
j (resp., p

(i)
j ) denotes the verifier’s (resp., prover’s)

jth message in the ith session.
The set of n sessions that are explicitly executed during the message exchange

phase of the recursive invocation (i.e., the main sessions) is called a recursive block.
(Notice that each recursive block corresponds to exactly one recursive invocation of
the schedule.) Taking a closer look at the schedule, we observe that every session in
the schedule is explicitly executed in exactly one recursive invocation (that is, belongs
to exactly one recursive block). Since the total number of sessions in the schedule
is n2, and since the message exchange phase in each recursive invocation involves
the explicit execution of n sessions (in other words, the size of each recursive block
is n), we have that the total number of recursive blocks in the schedule equals n.
Since each recursive invocation of the schedule involves the invocation of k additional
subschedules, the recursion actually corresponds to a k-ary tree with n nodes. The
depth of the recursion is thus �logk((k− 1)n+1)�, and the number of “leaves” in the
recursion (i.e., subschedules of size at most n) is at least � (k−1)n+1

k �.
Identifying sessions according to their recursive block. To simplify the exposition

of the proof, it will be convenient to associate every session appearing in the schedule
with a pair of indices (#, i) ∈ {1, . . . , n} × {1, . . . , n} rather than with a single index
s ∈ {1, . . . , n2}. The value of # = #(s) ∈ {1, . . . , n} will represent the index of the
recursive block to which session s belongs (according to some canonical enumeration
of the n invocations in the recursive schedule, say, according to the order in which

9Recall that each session consists of 2k + 2 messages, where k
def
= k(n) = o(logn/ log logn).

10In general, we may want to define a recursive scheduling for sessions i1, . . . , im and denote it
by Ri1,...,im (see Appendix A for a more formal description of the schedule). We choose to simplify
the exposition by renaming these sessions as 1, . . . ,m, and we denote the scheduling by Rm.
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1 2 n n + 1 m
v1
p1

⇐⇒ ⇐⇒ . . . ⇐⇒

Rm−n
k

v2
p2

⇐⇒ ⇐⇒ . . . ⇐⇒

. .

. .

. .

vj−1
pj−1

⇐⇒
⇐⇒ . . . ⇐⇒

Rm−n
k

vj
pj

⇐⇒
⇐⇒ . . . ⇐⇒

. .

. .

. .

vk
pk

⇐⇒ ⇐⇒ . . . ⇐⇒

Rm−n
k

vk+1
pk+1

⇐⇒
⇐⇒ . . . ⇐⇒

Fig. 4.1. The recursive schedule Rm for m sessions. Columns correspond to m individual
sessions, and rows correspond to the time progression.

they are invoked), whereas the value of i = i(s) ∈ {1, . . . , n} will represent the index
of session s within the n sessions that belong to the #th recursive block. (In other
words, session (#, i) is the ith main session of the #th recursive invocation in the
schedule.) Typically, when we explicitly refer to messages of session (#, i), the index
of the corresponding recursive block (i.e., #) is easily deducible from the context. In

such cases, we will sometimes omit the index # from the “natural” notation v
(�,i)
j

(resp., p
(�,i)
j ) and stick to the notation v

(i)
j (resp., p

(i)
j ). Note that the values of (#, i)

and the session index s are completely interchangeable (in particular, # = s div n and
i = s mod n).

Definition 4.1 (identifiers of the next message). The schedule defines a mapping
from partial execution transcripts ending with a prover message to the identifiers of
the next verifier message—that is, the session and round number to which the next
verifier message belongs. (Recall that such partial execution transcripts correspond
to queries of a black-box simulator, and so the mapping defines the identifier of the
answer.) For such a query q = (b1, a1, . . . , bt, at), we denote by πsn(q) = (#, i) ∈
{1, . . . , n} × {1, . . . , n} the session to which the next verifier message belongs and by
πmsg(q) = j ∈ {1, . . . , k + 1} its index within the verifier’s messages in this session.

We stress that the identifiers of the next message are uniquely determined by the
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number of messages appearing in the query (and are not affected by the contents of
these messages).

4.1.2. Toward constructing an adversarial verifier. Once the identifiers of
the next verifier message are deduced from the query’s length, one has to specify a
strategy according to which the contents of the next verifier message will be deter-
mined. Loosely speaking, our adversary verifier has two options: Either it will send
the answer that would have been sent by an honest verifier (given the messages in
the query that are relevant to the current session), or it will choose to deviate from
the honest verifier strategy and abort the interaction in the current session. (This
will be done by answering with a special ABORT message.) Since, in a nontrivial
zero-knowledge proof-system, the honest verifier is always probabilistic (cf. [20]), and
since the “abort behavior” of the adversary verifier should be “unpredictable” for the
simulator, we have that both options require a source of randomness (either for com-
puting the contents of the honest verifier answer or for deciding whether to abort the
conversation). As is already customary in works of this sort [18, 26, 29], we let the
source of randomness be a hash function with sufficiently high independence (which
is “hard-wired” into the verifier’s description), and we consider the execution of a
black-box simulator that is given access to such a random verifier. (Recall that the
simulator’s queries correspond to partial execution transcripts and thus contain the
whole history of the interaction so far.)

Determining the randomness for a session. Focusing (first) on the randomness
required to compute the honest verifier’s answers, we ask what the input of the above
hash function should be. A naive solution would be to let the randomness for a
session depend on the session’s index. That is, to obtain randomness for session
(#, i) = πsn(q), apply the hash function on the value (#, i). This solution will indeed
imply that every two sessions have independent randomness (as the hash function will
have different inputs). However, the solution seems to fail to capture the difficulty
arising in the simulation (of multiple concurrent sessions). What we would like to have
is a situation in which, whenever the simulator rewinds a session (that is, feeds the
adversary verifier with a different query of the same length), it causes the randomness
of some other session (say, one level down in the recursive schedule) to be completely
modified. To achieve this, we must cause the randomness of a session to depend also
on the history of the entire interaction. Changing even a single message in this history
would immediately result in an unrelated instance of the current session and would
thus force the simulator to redo the simulation work on this session.

So where in the schedule should the randomness of session (#, i) be determined?
On the one hand, we would like to determine the randomness of a session as late as
possible (in order to maximize the effect of changes in the history of the interaction
on the randomness of the session). On the other hand, we cannot afford to determine
the randomness after the session’s initiating message is scheduled (since the protocol’s
specification may require that the verifier’s randomness be completely determined
before the first verifier message is sent). For technical reasons, the point at which we
choose to determine the randomness of session (#, i) is the point at which recursive
block number # is invoked. That is, to obtain the randomness of session (#, i) = πsn(q),
we feed the hash function with the prefix of query q that ends just before the first
message in block number #. (This prefix is called the block-prefix of query q and
is defined below.) In order to achieve independence with other sessions in block
number #, we will also feed the hash function with the value of i. This (together
with the above choice) guarantees us the following properties: (1) The input to the
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hash function (and thus the randomness for session (#, i)) does not change once the
interaction in the session begins (that is, once the first verifier message is sent). (2)
For every pair of different sessions, the input to the hash function is different (and
thus the randomness for each session is independent). (3) Even a single modification
in the prefix of the interaction up to the first message in block number # induces fresh
randomness for all sessions in block number #.

Definition 4.2 (block-prefix). The block-prefix of a query q satisfying πsn(q) =
(#, i) is the prefix of q that is answered with the first verifier message of session
(#, 1) (that is, the first main session in block number #). More formally, bp(q) =
(b1, a1, . . . , bγ , aγ) is the block-prefix of q = (b1, a1, . . . , bt, at) if πsn(bp(q)) = (#, 1)
and πmsg(bp(q)) = 1. The block-prefix will be said to correspond to recursive block
number #.11 (Note that i may be any index in {1, . . . , n} and that at need not belong
to session (#, i).)

Determining whether and when to abort sessions. Whereas the randomness that
is used to compute the honest verifier’s answers in each session is determined before
a session begins, the randomness that is used in order to decide whether to abort a
session is chosen independently every time the execution of the schedule reaches the
next verifier message in this session. As before, the required randomness is obtained
by applying a hash function on the suitable prefix of the execution transcript. This
time, however, the length of the prefix increases each time the execution of the session
reaches the next verifier message (rather than being fixed for the whole execution of
the session). This way, the decision of whether to abort a session also depends on
the contents of messages that were exchanged after the initiation of the session has
occurred. Specifically, in order to decide whether to abort session (#, i) = πsn(q) at the
jth message (where j = πmsg(q)), we feed the hash function with the prefix (of query
q) that ends with the (j−1)st prover message in the nth main session of block number
#. (As before, the hash function is also fed with the value of i in order to achieve
independence from other sessions in the block.) This prefix is called the iteration-
prefix of query q and is defined next. (See Figure 4.2 for a graphical description of
the block-prefix and iteration-prefix of a query.)

Definition 4.3 (iteration-prefix). The iteration-prefix of a query q satisfying
πsn(q) = (#, i) and πmsg(q) = j > 1 is the prefix of q that ends with the (j−1)st prover
message in session (#, n) (that is, the nth main session in block number #). More
formally, ip(q) = (b1, a1, . . . , bδ, aδ) is the iteration-prefix of q = (b1, a1, . . . , bt, at) if

aδ is of the form p
(n)
j−1 (where p

(n)
j−1 denotes the (j − 1)st prover message in the nth

main session of block number #). This iteration-prefix is said to correspond to the
block-prefix of q. (Again, note that i may be any index in {1, . . . , n} and that at
need not belong to session (#, i). Also note that the iteration-prefix is defined only for
πmsg(q) > 1.)

We stress that two queries q1, q2 may have the same iteration-prefix even if they
do not correspond to the same session. This could happen whenever bp(q1) = bp(q2)
and πmsg(q1) = πmsg(q2) (which is possible even if πsn(q1) �= πsn(q2)).

Motivating Definitions 4.2 and 4.3. The choices made in Definitions 4.2 and 4.3
are designed to capture the difficulties encountered whenever many sessions are to
be simulated concurrently. As was previously mentioned, we would like to create a
situation in which every attempt of the simulator to rewind a specific session will
result in a loss of work done for other sessions (and so will cause the simulator to do

11In the special case that � = 1 (that is, we are in the first block of the schedule), we define
bp(q) =⊥.
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Fig. 4.2. Determining the prefixes of query q (in this example, query q ends with a p
(1)
j message

and is to be answered by v
(2)
j , represented by the marked arrow): (a) indicates the block-prefix of

q (i.e., messages up to this point are used by Vg,h to determine the randomness to be used for

computing message v
(2)
j ). (b) indicates the iteration-prefix of q (i.e., messages up to this point are

used by Vg,h to determine whether or not message v
(2)
j will be set to ABORT).

the same amount of work all over again). In order to force the simulator to repeat
each such rewinding attempt many times, we make each rewinding attempt fail with
some predetermined probability (by letting the verifier send an ABORT message instead
of a legal answer).12

To see that Definitions 4.2 and 4.3 indeed lead to the fulfillment of the above
requirements, we consider the following example. Suppose that, at some point during
the simulation, the adversary verifier aborts session (#, i) at the jth message (while
answering query q). Further suppose that (for some unspecified reason) the simulator
wants to get a “second chance” in receiving a legal answer to the jth message in
session (#, i) (hoping that it will not receive the ABORT message again). Recall that
the decision of whether to abort a session depends on the outcome of a hash function
when applied to the iteration-prefix ip(q) of query q. In particular, to obtain a “second
chance,” the black-box simulator has no choice but to change at least one prover
message in the above iteration-prefix. (In other words, the simulator must rewind
the interaction to some message occurring in iteration-prefix ip(q).) At first glance, it
may seem that the effect of changes in the iteration-prefix of query q is confined to the
messages that belong to session (#, i) = πsn(q) (or at most to messages that belong
to other sessions in block number #). However, taking a closer look at the schedule,
we observe that every iteration-prefix (and, in particular, ip(q)) can also be viewed
as the block-prefix of a recursive block one level down in the recursive construction.
Viewed this way, it is clear that the effect of changes in ip(q) is not confined only
to messages that correspond to recursive block number # but rather extends also to
sessions at lower levels in the recursive schedule. By changing even a single message

12Recall that all of the above is required in order to make the simulator’s work accumulate too
much and eventually cause its running time to be superpolynomial.
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in iteration-prefix ip(q), the simulator is actually modifying the block-prefix of all
recursive blocks in a subschedule one level down in the recursive construction. This
means that the randomness for all sessions in these blocks is completely modified
(recall that the randomness of a session is determined by applying a hash function
on the corresponding block-prefix) and that all the simulation work done for these
sessions is lost. In particular, by changing even a single message in iteration-prefix
ip(q), the simulator will find himself doing the simulation work for these lower-level
sessions all over again.

Having established the effect of changes in iteration-prefix ip(q) on sessions at
lower levels in the recursive schedule, we now turn to examine the actual effect on
session (#, i) = πsn(q) itself. One possible consequence of changes in iteration-prefix
ip(q) is that they may also affect the contents of the block-prefix bp(q) of query
q. (Notice that, by definition, the block-prefix bp(q) of query q is contained in the
iteration-prefix ip(q) of query q.) Whenever this happens, the randomness used for
session (#, i) is completely modified, and all simulation work done for this session will
be lost. A more interesting consequence of a change in the contents of iteration-prefix
ip(q) is that it will result in a completely independent decision of whether session
(#, i) is to be aborted at the jth message. (The decision of whether to abort is taken
whenever the simulator makes a query q satisfying πsn(q) = (#, i) and πmsg(q) = j.) In
other words, each time the simulator attempts to get a “second chance” in receiving
a legal answer to the jth message in session (#, i) (by rewinding the interaction to
a message that belongs to iteration-prefix ip(q)), it faces the risk of being answered
with an ABORT message independently of all previous rewinding attempts.

4.1.3. The actual verifier strategy Vg,h. We consider what happens when a
simulator S (for the above schedule) is given oracle access to a verifier strategy Vg,h
defined as follows (depending on hash functions g, h and the input x). Recall that we
may assume that S runs in strict polynomial time: we denote such time bound by
tS(·). Let G denote a small family of tS(n)-wise independent hash functions mapping
poly(n)-bit long sequences into a single bit of output so that, for every α, we have
Prg←G[g(α) = 1] = n

−1/2k. Let H denote a small family of tS(n)-wise independent
hash functions mapping poly(n)-bit long sequences to ρV (n)-bit sequences so that, for
every α, we have Prh←H [h(α) = 1] = 2

−ρV (n) (where ρV (n) is the number of random
bits used by an honest verifier V on an input x ∈ {0, 1}n).13 We describe a family
{Vg,h}g∈G,h∈H of adversarial verifier strategies (where x is implicit in Vg,h). On query
q = (b1, a1, . . . , at−1, bt, at), the verifier acts as follows:

1. First, Vg,h checks whether the execution transcript given by the query is
legal (i.e., corresponds to a possible execution prefix) and halts with a special
ERROR message if the query is not legal.14

2. Next, Vg,h determines the block-prefix, bp(q) = (b1, a1, . . . , bγ , aγ), of query q.
It also determines the identifiers of the next message (#, i) = πsn(q) and j =

πmsg(q), the iteration-prefix ip(q) = (b1, a1, . . . , bδ, p
(n)
j−1), and the j−1 prover

messages of session i appearing in query q (which we denote by p
(i)
1 , . . . , p

(i)
j−1).

13We stress that functions in such families can be described by strings of polynomial length in a
way that enables polynomial-time evaluation (cf. [24, 9, 10, 1]).

14In particular, Vg,h checks whether the query is of the prescribed format (as described in sec-
tion 2.5 and as determined by the schedule) and whether the content of its messages is consis-
tent with Vg,h’s prior answers. (That is, for every proper prefix q′ = (b1, a1, . . . , bu, au) of query
q = (b1, a1, . . . , bt, at), the verifier checks whether the value of bu+1 (as it appears in q) is indeed
equal to the value of Vg,h(q′).)
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(Motivating discussion. The next message is the jth verifier message in the
ith session of block #. The value of the block-prefix, bp(q), is used in order to
determine the randomness of session (#, i), whereas the value of the iteration-
prefix, ip(q), is used in order to determine whether session (#, i) is about to be
aborted at this point (i.e., jth message) in the schedule (by answering with
a special ABORT message).)

3. If j = 1, then Vg,h answers with the verifier’s fixed initiation message for

session i (i.e., v
(i)
1 ).

4. If j > 1, then Vg,h determines bi,j = g(i, ip(q)) (i.e., a bit deciding whether
to abort session i):

(a) If bi,j = 0, then Vg,h sets v
(i)
j = ABORT (indicating that Vg,h aborts

session i).
(b) If bi,j = 1, then Vg,h determines ri = h(i, bp(q)) (as coins to be used by

V ) and computes the message v
(i)
j = V (x, ri; p

(i)
1 , . . . , p

(i)
j−1) that would

have been sent by the honest verifier on common input x, random-pad

ri, and prover’s messages p
(i)
1 , . . . , p

(i)
j−1.

(c) Finally, Vg,h answers with v
(i)
j .

Dealing with ABORT messages. Note that, once Vg,h has aborted a session, the
interaction in this session essentially stops, and there is no need to continue exchanging
messages in this session. However, for simplicity of exposition, we assume that the
verifier and prover stick to the fixed schedule of section 4.1.1 and exchange ABORT

messages whenever an aborted session is scheduled. Specifically, if the jth verifier
message in session i is ABORT, then all subsequent prover and verifier messages in that
session will also equal ABORT.

On the arguments to g and h. The hash function h, which determines the random
input for V in a session, is applied both on i (the identifier of the relevant session within
the current block) and on the entire block-prefix of the query q. This means that,
even though all sessions in a specific block have the same block-prefix, for every pair
of two different sessions, the corresponding random inputs of V will be independent of
each other (as long as the number of applications of h does not exceed tS(n), which is
indeed the case in our application). The hash function g, which determines whether
and when the verifier aborts sessions, is applied both on i and on the entire iteration-
prefix of the query q. As in the case of h, the decision whether to abort a session
is independent from the same decision for other sessions (again, as long as g is not
applied more than tS(n) times). However, there is a significant difference between
the inputs of h and g: Whereas the input of h is fixed once i and the block-prefix
are fixed (and is unaffected by mesages that belong to that session), the input of g
varies depending on previous messages sent in that session. In particular, whereas
the randomness of a session is completely determined once the session begins, the
decision of whether to abort a session is taken independently each time that the
schedule reaches the next verifier message of this session.

On the number of different prefixes that occur in interactions with Vg,h. Since the
number of recursive blocks in the schedule is equal to n, and since there is a one-
to-one correspondence between recursive blocks and block-prefixes, we have that the
number of different block-prefixes that occur during an interaction between an honest
prover P and the verifier Vg,h is always equal to n. Since the number of iterations
in the message exchange phase of a recursive invocation of the schedule equals k + 1,
and since there is a one-to-one correspondence between such iterations and iteration-
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prefixes,15 we have that the number of different iteration-prefixes that occur during
an interaction between an honest prover P and the verifier Vg,h is always equal to k ·n
(that is, k different iteration-prefixes for each one of the n recursive invocations of the
schedule). In contrast, the number of different block-prefixes (resp., iteration-prefixes)
that occur during an execution of a black-box simulator S that is given oracle access
to Vg,h may be considerably larger than n (resp., k · n). The reason for this is that
there is nothing that prevents the simulator from feeding Vg,h with different queries
of the same length. (This corresponds to the so-called rewinding of an interaction.)
Still, the number of different prefixes in an execution of S is always upper bounded
by the running time of S; that is, tS(n).

On the probability that a session is never aborted. A typical interaction between
an honest prover P and the verifier Vg,h will contain sessions whose execution has been
aborted prior to completion. Recall that, at each point in the schedule, the decision
of whether or not to abort the next scheduled session depends on the outcome of
g. Since the function g returns 1 with probability n−1/2k, a specific session is never
aborted with probability (n−1/2k)k = n−1/2. Using the fact that, whenever a session
is not aborted, Vg,h operates as the honest verifier, we infer that the probability that
a specific session is eventually accepted by Vg,h is at least 1/2 times the probability
that the very same session is never aborted (where 1/2 is an arbitrary lower bound on
the completeness probability of the protocol). In other words, the probability that a

session is accepted by Vg,h is at least
n−1/2

2 . In particular, for every set of n sessions,
the expected number of sessions that are eventually accepted by Vg,h (when interacting

with the honest prover P ) is at least n · n−1/2

2 = n1/2

2 , and, with overwhelming high

probability, at least n1/2

4 sessions are accepted by Vg,h.
A slight modification of the verifier strategy. To facilitate the analysis, we slightly

modify the verifier strategy Vg,h so that it does not allow the number of accepted ses-
sions in the history of the interaction to deviate much from its “expected behavior.”
Loosely speaking, given a prefix of the execution transcript (ending with a prover mes-
sage), the verifier will check whether the recursive block that has just been completed

contains at least n1/2

4 accepted sessions. (To this end, it will be sufficient to inspect
the history of the interaction only when the execution of the schedule reaches the end
of a recursive block—that is, whenever the schedule reaches the last prover message in

the last session of a recursive block (i.e., some p
(n)
k+1 message).) The modified verifier

strategy (which we continue to denote by Vg,h) is obtained by adding to the original
strategy an additional step 1’ (to be executed after step 1 of Vg,h):

1’. If at is of the form p
(n)
k+1 (i.e., in case query q = (b1, a1, . . . , bt, at) ends with

the last prover message of the nth main session of a recursive block), Vg,h

checks whether the transcript q = (b1, a1, . . . , bt, p
(n)
k+1) contains the accepting

conversations of at least n1/2

4 main sessions in the block that has just been
completed. In case it does not, Vg,h halts with a special DEVIATION message
(indicating that the number of accepted sessions in the block that has just
been completed deviates from its expected value).

Motivating discussion. Since the expected number of accepted sessions in a spe-

cific block is at least n1/2

2 , the probability that the block contains less than n1/2

4

15The only exception is the first iteration in the message exchange phase. Since only queries q
that satisfy πmsg(q) > 1 have an iteration-prefix, the first iteration will never have a corresponding
iteration-prefix.
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accepted sessions is negligible. Still, the above modification is not superfluous (even
though it refers to events that occur only with negligible probability); it allows us to
assume that every recursive block that is completed during the simulation (including

those that do not appear in the simulator’s output) contains at least n1/2

4 accepted
sessions. In particular, whenever the simulator feeds Vg,h with a partial execution
transcript (i.e., a query), we are guaranteed that, for every completed block in this

transcript, the simulator has indeed “invested work” to simulate the at least n1/2

4
accepted sessions in the block.

A slight modification of the simulator. Before presenting the decision procedure,
we slightly modify the simulator so that it never makes a query that is answered
with either the ERROR or the DEVIATION messages by the verifier Vg,h. Note that
the corresponding condition can be easily checked by the simulator (which can easily
produce this special message by itself)16 and that the modification does not affect
the simulator’s output. From this point on, when we talk of the simulator (which we
continue to denote by S), we mean the modified one.

4.2. The decision procedure for L. We are now ready to describe a proba-
bilistic polynomial-time decision procedure for L, based on the black-box simulator
S and the verifier strategies Vg,h. On input x ∈ {0, 1}n, the procedure operates as
follows:

1. Uniformly select hash functions g
r← G and h r← H.

2. Invoke S on input x, providing it with black-box access to Vg,h (as defined
above). That is, the procedure emulates the execution of the oracle machine
S on input x along with emulating the answers of Vg,h, where g and h are as
determined in step 1.

3. Accept iff S outputs a legal transcript (as determined by steps 1 and 1’ of
Vg,h).

17

By our hypothesis, the above procedure runs in probabilistic polynomial time. We
next analyze its performance.

Lemma 4.4 (performance on yes-instances). For all but finitely many x ∈ L, the
above procedure accepts x with probability at least 2/3.

Proof sketch. Let x ∈ L, g r← G, and h
r← H, and consider the honest prover

P . We show below that, except for negligible probability (where the probability is
taken over the random choices of g, h, and P ’s coin tosses), when Vg,h interacts with
P , all recursive blocks in the resulting transcript contain the accepting conversations

of at least n1/2

4 main sessions. Since, for every g and h, the simulator SVg,h(x) must
generate a transcript whose deviation gap from 〈P, Vg,h〉(x) is at most 1/4, it follows
that SVg,h(x) has deviation gap at most 1/4 from 〈P, Vg,h〉(x) when g r← G and

h
r← H also. Consequently, when S is run by the decision procedure for L, the

transcript SVg,h(x) will not be legal with probability at most 1/3. Details follow.

16We stress that, as opposed to the ERROR and DEVIATION messages, the simulator cannot predict
whether its query is about to be answered with the ABORT message.

17Recall that we are assuming that the simulator never makes a query that is ruled out by steps 1
and 1’ of Vg,h. Since, before producing output (b1, a1, . . . , bT , aT ), the simulator makes the query
(b1, a1, . . . , bT , aT ), checking the legality of the transcript in step 3 is not really necessary (as, in
case that the modified simulator indeed reaches the output stage “safely,” we are guaranteed that
it will produce a legal output). In particular, we are always guaranteed that the simulator either
produces execution transcripts in which every recursive block contains at least n1/2/4 sessions that
were accepted by Vg,h or does not produce any output at all.
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Let τ denote the random variable describing the transcript of the interaction
between the honest prover P and Vg,h, where the probability is taken over the choices
of g, h, and P . Let s ∈ {1, . . . , n2}. We first calculate the probability that the sth
session in τ is completed and accepted (i.e., Vg,h sends the message v

(s)
k+1 = ACCEPT),

conditioned on the event that Vg,h did not abandon the interaction beforehand (i.e.,

Vg,h did not send the DEVIATION message before).
18 For uniformly selected g

r← G,
the probability that Vg,h does not abort the session in each of the k rounds, given that
it has not already aborted, is n−1/2k. Thus, conditioned on the event that Vg,h did
not output DEVIATION beforehand, the session is completed (without being aborted)

with probability (n−1/2k)
k
= n−1/2.

The key observation is that, if h is uniformly chosen from H, then, conditioned
on the event that Vg,h did not output DEVIATION beforehand and the current session
is not aborted, the conversation between Vg,h and P is distributed identically to the
conversation between the honest verifier V and P on input x. By the completeness
requirement for zero-knowledge protocols, we have that V accepts in such an interac-
tion with probability at least 1/2. (This probability is actually higher, but 1/2 is more
than enough for our purposes.) Consequently, for uniformly selected g and h, condi-
tioned on the event that Vg,h did not output DEVIATION beforehand, the probability

that a session is accepted by Vg,h is at least
n−1/2

2 .

We calculate the probability that τ contains a block such that less than n1/2

4 of
its sessions are accepted. Say that a block B in a transcript has been completed if all
the messages of sessions in B have been sent during the interaction. Say that B is
admissible if the number of accepted sessions that belong to block B in the transcript

is at least n1/2

4 . Enumerating blocks in the order in which they are completed (that
is, when we refer to the #th block in τ , we mean the #th block that is completed in
τ), we denote by γ� the event that all of the blocks up to and including the #th block
are admissible in τ .

For i ∈ {1, . . . , n}, define a boolean indicator α�i to be 1 iff the ith session in the
#th block is accepted by Vg,h. We have seen that, conditioned on the event γ�−1, each

α�i is 1 with probability at least
n−1/2

2 . As a consequence, for every #, the expectation
of
∑n

i=1 α
�
i (i.e., the number of accepted main sessions in block number #) is at least

n1/2

2 . Since, conditioned on γ�−1, the α
�
i ’s are independent of each other, we can apply

the Chernoff bound and infer that Pr [γ�|γ�−1] > 1 − e−Ω(n1/2). Furthermore, since
no session belongs to more than one block, we have Pr [γ�] ≥ Pr [γl|γ�−1] · Pr [γl−1].
It follows (by induction on the number of completed blocks in a transcript) that all

blocks in τ are admissible with probability at least (1−e−Ω(n1/2))n > 1−n ·e−Ω(n1/2).
The lemma follows.

Lemma 4.5 (performance on no-instances). For all but finitely many x �∈ L, the
above procedure rejects x with probability at least 2/3.

We can actually prove that, for every positive polynomial p(·) and for all but
finitely many x �∈ L, the above procedure accepts x with probability at most 1/p(|x|).
Assuming toward contradiction that this is not the case, we will construct a (proba-
bilistic polynomial-time) strategy for a cheating prover that fools the honest verifier
V with success probability at least 1/poly(n) in contradiction to the soundness (and

18Note that, since we are dealing with the honest prover P , there is no need to consider the ERROR

message at all (since, in an interaction with the honest prover P , the adversary verifier Vg,h will
never output ERROR anyway).
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even computational soundness) of the proof-system.

5. Proof of Lemma 4.5 (performance on NO-instances). Let us fix an
x ∈ {0, 1}n \ L as above.19 Denote by AC = ACx the set of triplets (σ, g, h) so that,
on input x, internal coins σ, and oracle access to Vg,h, the simulator outputs a legal

transcript (which we denote by S
Vg,h
σ (x)). Recall that our contradiction assumption

is that Prσ,g,h[(σ, g, h) ∈ AC] > 1/p(n) for some fixed positive polynomial p(·). Before
proceeding with the proof of Lemma 4.5, we formalize what we mean by referring to
the “execution of the simulator.”

Definition 5.1 (execution of the simulator). Let x, σ ∈ {0, 1}∗, g ∈ G, and
h ∈ H. The execution of simulator S, denoted execx(σ, g, h), is the sequence of
queries made by S, given input x, random coins σ, and oracle access to Vg,h(x).

Since the simulator has the ability to “rewind” the verifier Vg,h and explore Vg,h’s
output on various execution prefixes (i.e., queries) of the same length, the number
of distinct block-prefixes that appear in execx(σ, g, h) may be strictly larger than n.
(Recall that the schedule consists of n invocations to recursive blocks and that, in an
interaction between the honest prover P and Vg,h, there is a one-to-one correspondence
between recursive blocks and block-prefixes.) As a consequence, the #th distinct
block-prefix appearing in execx(σ, g, h) does not necessarily correspond to the #th
recursive block in the schedule. Nevertheless, given execx(σ, g, h) and #, one can
easily determine for the #th distinct block-prefix in the execution of the simulator the
index of its corresponding block in the schedule (say, by extracting the #th distinct
block-prefix in execx(σ, g, h) and then analyzing its length).

In what follows, given a specific block-prefix bp, we let #(bp) ∈ {1, . . . , n} denote
the index of its corresponding block in the schedule (as determined by bp’s length).

Note that two different block-prefixes bp1 and bp2 in execx(σ, g, h) may satisfy #
(bp1) =

#(bp2) (as they may correspond to two different instances of the same recursive block).

In particular, session (#(bp1), i) may have more than a single occurrence during the
execution of the simulator (whereas, in an interaction of the honest prover P with
Vg,h, each session index will occur exactly once). This means that, whenever we refer
to an instance of session (#, i) in the simulation, we will also have to explicitly specify
to which block-prefix this instance corresponds.

In order to avoid cumbersome statements, we will abuse the notation #(bp) and
also use it in order to specify to which instance the recursive block #(bp) corresponds.
That is, whenever we refer to recursive block number #(bp), we will actually mean
“the specific instance of recursive block number # (= #(bp)) that corresponds to block-

prefix bp in execx(σ, g, h).” Viewed this way, for #
(bp1) = #(bp2), sessions (#(bp1), i)

and (#(bp2), i) actually correspond to two different instances of the same session in the
schedule.

5.1. The cheating prover. The cheating prover (denoted by P ∗) starts by
uniformly selecting a triplet (σ, g, h) while hoping that (σ, g, h) ∈ AC. It next uniformly
selects a pair (ξ, η) ∈ {1, . . . , tS(n)}× {1, . . . , n}, where the simulator’s running time,
tS(n), acts as a bound on the number of (different block-prefixes induced by the)

19Actually, we need to consider infinitely many such x’s.
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queries made by S on input x ∈ {0, 1}n. The prover next emulates an execution of
S
V
g,h(r)

σ (x) (where h(r), which is essentially equivalent to h, will be defined below) while
interacting with V (x, r) (that is, the honest verifier, running on input x and using
coins r). The prover handles the simulator’s queries as well as the communication with
the verifier as follows: Suppose that the simulator makes query q = (b1, a1, . . . , bt, at),
where the a’s are prover messages.

1. Operating as Vg,h, the cheating prover determines the block-prefix bp(q) =
(b1, a1, . . . , bγ , aγ). It also determines (#, i) = πsn(q), j = πmsg(q), the

iteration-prefix ip(q) = (b1, a1, . . . , bδ, p
(n)
j−1), and the j − 1 prover messages

p
(i)
1 , . . . , p

(i)
j−1 appearing in the query q (as done by Vg,h in step 2). (Note

that, by the modification of S, there is no need to perform steps 1 and 1’ of
Vg,h.)

2. If j = 1, the cheating prover answers the simulator with the verifier’s fixed
initiation message for session i (as done by Vg,h in step 3).

3. If j > 1, the cheating prover determines bi,j = g(i, ip(q)) (as done by Vg,h in
step 4).

4. If bp(q) is the ξth distinct block-prefix resulting from the simulator’s queries
so far and if, in addition, i equals η, then the cheating prover operates as
follows:
(a) If bi,j = 0, then the cheating prover answers the simulator with ABORT.

Motivating discussion for substeps b and c. The cheating prover has
now reached a point in the schedule at which it is supposed to feed the

simulator with v
(i)
j . To do so, it first forwards p

(i)
j−1 to the honest verifier

V (x, r) and only then feeds the simulator with the verifier’s answer v
(i)
j

(as if it were the answer given by Vg,h(r)). We stress the following two

points: (1) The cheating prover cannot forward more than one p
(i)
j−1

message to V (since P ∗ and V engage in an actual execution of the

protocol 〈P, V 〉). (2) The cheating prover will wait and forward p
(i)
j−1 to

the verifier only when v
(i)
j is the next scheduled message.

(b) If bi,j = 1 and the cheating prover has sent only j − 2 messages to
the actual verifier, the cheating prover forwards p

(i)
j−1 to the verifier and

feeds the simulator with the verifier’s response (i.e., which is of the form

v
(i)
j ).

20

(We comment that, by our conventions regarding the simulator, it cannot
be the case that the cheating prover has sent less than j − 2 prover
messages to the actual verifier. The prefixes of the current query dictate
j − 2 sequences of prover messages with distinct lengths so that none of
these sequences was answered with ABORT. In particular, the last message
of each one of these sequences was already forwarded to the verifier.)

(c) If bi,j = 1 and the cheating prover has already sent j − 1 messages (or
more) to the actual verifier, then it retrieves the (j − 1)st answer it has
received and feeds it to the simulator.

20Note that, in the special case that j = 1 (i.e., when the verifier’s response is the fixed initiation

message v
(i)
1 ), the cheating prover cannot really forward p

(i)
j−1 to the honest verifier (since no such

message exists). Still, since v
(i)
1 is a fixed initiation message, the cheating prover can produce v

(i)
1

without actually having to interact with the honest verifier (as it indeed does in step 2 of the cheating
prover strategy).
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(We comment that this makes sense provided that the simulator never
makes two queries with the same block-prefix and the same number of
prover messages but with a different sequence of such messages. How-
ever, for j ≥ 2, it may be the case that a previous query regarding the
same block-prefix had a different p

(i)
j−1 message. This is the case in which

the cheating prover may fail to conduct step 4c (see further discussion
below).)

5. If either bp(q) is NOT the ξth distinct block-prefix resulting from the queries
so far, or if i is NOT equal to η, the prover emulates Vg,h in the obvious
manner (i.e., as in step 4 of Vg,h):
(a) If bi,j = 0, then the cheating prover answers the simulator with ABORT.
(b) If bi,j = 1, then the cheating prover determines ri = h(i, bp(q)) and then

answers the simulator with V (x, ri; p
(i)
1 , . . . , p

(i)
j−1), where all notation is

as above.
On the efficiency of the cheating prover. Notice that the strategy of the cheating

prover can be implemented in polynomial time (that is, given that the simulator’s
running time, tS(·), is polynomial as well). Thus Lemma 4.5 (and so Theorem 1.1)
will also hold if 〈P, V 〉 is an argument system (since, in the case of argument systems,
the existence of an efficient P ∗ leads to a contradiction of the computational soundness
of 〈P, V 〉).

The cheating prover may “do nonsense” in step 4c. The cheating prover is hoping
to convince an honest verifier by focusing on the ηth session in recursive block number

#(bpξ), where bpξ denotes the ξth distinct block-prefix in the simulator’s execution.

Prover messages in session (#(bpξ), η) are received from the (multisession) simulator
and are forwarded to the (single-session) verifier. The honest verifier’s answers are
then fed back to the simulator as if they were answers given by Vg,h(r) (defined below).
For the cheating prover to succeed in convincing the honest verifier, the following two

conditions must be satisfied: (1) Session (#(bpξ), η) is eventually accepted by Vg,h(r) .
(2) The cheating prover never “does nonsense” in step 4c during its execution. Let
us clarify the meaning of this “nonsense.”

One main problem that the cheating prover is facing while conducting step 4c
emerges from the following fact: Whereas the black-box simulator is allowed to
“rewind” Vg,h(r) (impersonated by the cheating prover) and attempt different exe-
cution prefixes before proceeding with the interaction of a session, the prover cannot
do so while interacting with the actual verifier. In particular, the cheating prover

may reach step 4c with a p
(η)
j−1 message that is different from the p

(η)
j−1 message that

was previously forwarded to the honest verifier (in step 4b). Given that the verifier’s

answer to the current p
(η)
j−1 message is most likely to be different from the answer

which was given to the “previous” p
(η)
j−1 message, by answering (in step 4c) in the

same way as before, the prover action “makes no sense.”21

We stress that, at this point in its execution, the cheating prover might as well
have stopped with some predetermined “failure” message (rather than “doing non-

21We stress that the cheating prover does not know the random coins of the honest verifier, and
so it cannot compute the verifier’s answers by itself. In addition, since P ∗ and V are engaging in an
actual execution of the specified protocol 〈P, V 〉 (in which every message is sent exactly once), the

cheating prover cannot forward the “recent” p
(η)
j−1 message to the honest verifier in order to obtain

the corresponding answer (because it has already forwarded the previous p
(η)
j−1 message to the honest

verifier).
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sense”). However, for simplicity of presentation, it is more convenient for us to let
the cheating prover “do nonsense.”

The punchline of the analysis is that, with noticeable probability (over choices
of (σ, g, h)), there exists a choice of (ξ, η) so that the above “bad” event will not

occur for session (#(bpξ), η). That is, using the fact that the success of a “rewinding”
also depends on the output of g (which determines whether and when sessions are
aborted), we show that, with nonnegligible probability, step 4c is never reached with

two different p
(η)
j−1 messages. Specifically, for every j ∈ {2, . . . , k + 1}, once a p

(η)
j−1

message is forwarded to the verifier (in step 4b), all subsequent p
(η)
j−1 messages either

are equal to the forwarded message or are answered with ABORT. (Here we assume

that session (#(bpξ), η) is eventually accepted by Vg,h(r) , and every p
(η)
j−1 message is

forwarded to the verifier at least once.)
Defining h(r) (mentioned above). Let (σ, g, h) and (ξ, η) be the initial choices

made by the cheating prover, let bpξ be the ξth block-prefix appearing in execx(σ, g, h),

and suppose that the honest verifier uses coins r. Then the function h(r) = h(r,σ,g,h,ξ,η)

is defined to be uniformly distributed among the functions h′, which satisfy the fol-
lowing conditions: The value of h′, when applied on (η, bpξ), equals r, whereas, for
(η′, ξ′) �= (η, ξ), the value of h′, when applied on (η′, bpξ′), equals the value of h on
this prefix. (The set of such functions h′ is not empty due to the hypothesis that
the functions are selected in a family of tS(n)-wise independent hash functions.) We
note that replacing h by h(r) does not affect step 5 of the cheating prover and that
the cheating prover does not know h(r). In particular, whenever the honest verifier V
uses coins r, one may think of the cheating prover as if it is answering the simulator’s
queries with the answers that would have been given by Vg,h(r) .

Claim 5.2. For every value of σ, g, ξ, and η, if h and r are uniformly distributed,
then so is h(r).

Proof sketch. Fix some simulator coins σ ∈ {0, 1}∗ and g ∈ G, block-prefix index
ξ ∈ {1, . . . , tS(n)}, and session index η ∈ {1, . . . , n}. The key for proving Claim 5.2 is
to view the process of picking a function h ∈ H as consisting of two stages. The first
stage is an iterative process in which up to tS(n) different arguments are adversarially
chosen, and, for each such argument, the value of h on this argument is uniformly
selected in its range. In the second stage, a function h is chosen uniformly from all
h’s in H under the constraints that are introduced in the first stage. The iterative
process in which the arguments are chosen (that is, the first stage above) corresponds
to the simulator’s choice of the various block-prefixes bp (along with the indices i), on
which h is applied.

At first glance, it seems obvious that the function h(r), which is uniformly dis-
tributed amongst all functions that are defined to be equal to h on all inputs (except
for the input (η, bpξ), on which it equals r), is uniformly distributed in H. Taking a
closer look, however, one realizes that a rigorous proof for the above claim is more
complex than one may initially think, since it is not even clear that an h that is
defined by the above process actually belongs to the family H.

The main difficulty in proving the above lies in the fact that the simulator’s queries
may “adaptively” depend on previous answers it has received (which, in turn, may
depend on previous outcomes of h). The key observation used in order to overcome this
difficulty is that, for every family of tS(n)-wise independent functions and for every
sequence of at most tS(n) arguments (and, in particular, for an adaptively chosen
sequence), the values of a uniformly chosen function when applied to the arguments
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in the sequence are uniformly and independently distributed. Thus, as long as the
values assigned to the function in the first stage of the above process are uniformly
and independently distributed (which is indeed the case, even if we constrain one
output to be equal to r), the process will yield a uniformly distributed function from
H.

5.2. The success probability of the cheating prover. We start by introduc-
ing two important notions that will play a central role in the analysis of the success
probability of the cheating prover.

5.2.1. Grouping queries according to their iteration-prefixes. In what
follows, it will be convenient to group the queries of the simulator into different
classes based on different iteration-prefixes. (Recall that the iteration-prefix of a
query q (satisfying πsn(q) = (#, i) and πmsg(q) = j > 1) is the prefix of q that ends
with the (j − 1)st prover message in session (#, n).) Grouping by iteration-prefixes
particularly makes sense in the case in which two queries are of the same length (see
discussion below). Nevertheless, by Definition 4.3, two queries may have the same
iteration-prefix even if they are of different lengths (see below).

Definition 5.3 (ip-different queries). Two queries, q1 and q2 (of possibly differ-
ent lengths), are said to be ip-different iff they have different iteration-prefixes (that
is, ip(q1) �= ip(q2)).

By Definition 4.3, if two queries, q1 and q2, satisfy ip(q1) = ip(q2), then the
following two conditions must hold: (1) πsn(q1) = (#, i1), πsn(q2) = (#, i2), and (2)
πmsg(q1) = πmsg(q2). However, it is not necessarily true that i1 = i2. In particular,
it may very well be the case that q1, q2 have different lengths (i.e., i1 �= i2) but are
not ip-different. (Note that, if i1 = i2, then q1 and q2 are of equal length.) Still,
even if two queries are of the same length and have the same iteration-prefix, it is not
necessarily true that they are equal, as they may be different at some message which
occurs after their iteration-prefixes.

Motivating Definition 5.3. Recall that a necessary condition for the success of

the cheating prover is that, for every j, once a p
(η)
j−1 message has been forwarded to

the verifier (in step 4b), all subsequent p
(η)
j−1 messages (that are not answered with

ABORT) are equal to the forwarded message. In order to satisfy the above condition, it
is sufficient to require that the cheating prover never reach steps 4b and 4c with two
ip-different queries of equal length. The reason for this is that, if two queries of the
same length have the same iteration-prefix, then they contain the same sequence of
prover messages for the corresponding session (since all such messages are contained

in the iteration-prefix), and so they agree on their p
(η)
j−1 message. In particular, once

a p
(η)
j−1 message has been forwarded to the verifier (in step 4b), all subsequent queries

that reach step 4c and are of the same length will have the same p
(η)
j−1 messages as

the first such query (since they have the same iteration-prefix).
In light of the above discussion, it is only natural to require that the number of

ip-different queries that reach step 4c of the cheating prover be exactly one (as, in
such a case, the above necessary condition is indeed satisfied).22 Jumping ahead, we
comment that the smaller the number of ip-different queries that correspond to block-

22In order to ensure the cheating prover’s success, the above requirement should be augmented

by the condition that session (�(bpξ), η) is accepted by Vg,h(r) .
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prefix bpξ is the smaller the probability that more than one ip-different query reaches
step 4c is. The reason for this lies in the fact that the number of ip-different queries
that correspond to block-prefix bpξ is equal to the number of different iteration-prefixes

that correspond to bpξ. In particular, the smaller the number of such iteration-prefixes
is the smaller the probability that g will evaluate to 1 on more than a single iteration-
prefix is (thus reaching step 4c with more than one ip-different query).

5.2.2. Useful block-prefixes. The probability that the cheating prover makes
the honest verifier accept will be lower bounded by the probability that the ξth distinct
block-prefix in execx(σ, g, h) is η-useful (in the sense hinted above and defined next).

Definition 5.4 (useful block-prefix). A specific block-prefix bp = (b1, a1, . . . , bγ ,
aγ), appearing in execx(σ, g, h), is called i-useful if it satisfies the following two
conditions:

1. For every j ∈ {2, . . . , k+1}, the number of ip-different queries q in execx(σ, g, h)
that correspond to block-prefix bp and satisfy πsn(q) = (#

(bp), i), πmsg(q) = j,
and g(i, ip(q)) = 1 is exactly one.

2. The (only) query q in execx(σ, g, h) that corresponds to block-prefix bp and

that satisfies πsn(q) = (#
(bp), i), πmsg(q) = k + 1, and g(i, ip(q)) = 1 is an-

swered with ACCEPT by Vg,h.
If there exists an i ∈ {1, . . . , n} so that a block-prefix is i-useful, then this block-prefix
is called useful.

Condition 1 in Definition 5.4 states that, for every fixed value of j, there exists
exactly one iteration-prefix, ip, that corresponds to queries of the block-prefix bp and
the jth message so that g(i, ip) evaluates to 1. Condition 2 asserts that the last

verifier message in the ith main session of recursive block number # = #(bp) is equal to
ACCEPT. It follows that, if the cheating prover happens to select (σ, g, h, ξ, η) so that
block-prefix bpξ (i.e., the ξth distinct block-prefix in execx(σ, g, h

(r))) is η-useful,
then it convinces V (x, r). The reason is that (by condition 2) the last message in

session (#(bpξ), η) is answered with ACCEPT23 and that (by condition 1) the emulation
does not get into trouble in step 4c of the cheating prover. (To see this, notice that

each prover message in session (#(bpξ), η) will end up reaching step 4c only once.)
Let 〈P ∗, V 〉(x) = 〈P ∗(σ, g, h, ξ, η), V (r)〉(x) denote the random variable repre-

senting the (local) output of the honest verifier V when interacting with the cheating
prover P ∗ on common input x, where σ, g, h, ξ, η are the initial random choices made
by the cheating prover P ∗ and r is the randomness used by the honest verifier V .
Adopting this notation, we will say that the cheating prover P ∗ = P ∗(x, σ, g, h, ξ, η)
has convinced the honest verifier V = V (x, r) if 〈P ∗, V 〉(x) = ACCEPT. With this
notation, we are ready to formalize the above discussion.

Claim 5.5. If the cheating prover happens to select (σ, g, h, ξ, η) so that the ξth
distinct block-prefix in execx(σ, g, h

(r)) is η-useful, then the cheating prover convinces
V (x, r) (i.e., 〈P ∗, V 〉(x) = ACCEPT).

Proof. Let us fix x ∈ {0, 1}n, σ ∈ {0, 1}∗, g ∈ G, h ∈ H, r ∈ {1, . . . , ρV (n)},
η ∈ {1, . . . , n}, and ξ ∈ {1, . . . , tS(n)}. We show that, if the ξth distinct block-prefix
in execx(σ, g, h

(r)) is η-useful, then the cheating prover P ∗(x, σ, g, h, ξ, η) convinces
the honest verifier V (x, r).

23Notice that V (x, r) behaves exactly as Vg,h(r) behaves on queries that correspond to the ξth

distinct iteration-prefix in execx(σ, g, h(r)).
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By the definition of the cheating prover, the prover messages that are actually for-

warded to the honest verifier (in step 4b) correspond to session (#(bpξ), η). Specifically,

messages that are forwarded by the cheating prover are of the form p
(η)
j−1 and corre-

spond to queries q that satisfy πsn(q) = (#
(bpξ), η), πmsg(q) = j, and g(η, ip(q)) = 1.

Since the ξth distinct block-prefix in execx(σ, g, h
(r)) is η-useful, we have that, for ev-

ery j ∈ {2, . . . , k+1}, there is exactly one query q that satisfies the above conditions.
Thus, for every j ∈ {2, . . . , k+1}, the cheating prover never reaches step 4c with two
different p

(η)
j−1 messages. Here we use the fact that, if two queries of the same length

are not ip-different (i.e., have the same iteration-prefix), then the answers given by
Vg,h(r) to these queries are identical (see the discussion above). This, in particular,
means that P ∗ is answering the simulator’s queries with the answers that would have
been given by V g,h(r)

itself. (In other words, whenever the ξth distinct block-prefix
in execx(σ, g, h

(r)) is η-useful, the emulation does not “get into trouble” in step 4c
of the cheating prover.)

At this point, we have that the cheating prover never fails to perform step 4c,
and so the interaction that it is conducting with V (x, r) “safely” reaches the (k+1)st
verifier message in the protocol. To complete the proof, we have to show that, at the
end of the interaction with the cheating-prover, V (x, r) outputs ACCEPT. This is true
since, by condition 2 of Definition 5.4, the query q that corresponds to block-prefix

bpξ and satisfies πsn(q) = (#
(bpξ), η), πmsg(q) = j, and g(η, ip(q)) = 1, is answered

with ACCEPT. Here we use the fact that V (x, r) behaves exactly as Vg,h(r) behaves on

queries that correspond to the ξth distinct block-prefix in execx(σ, g, h
(r)).

5.2.3. Reduction to rareness of legal transcripts without useful block-
prefixes. Lemma 5.6 establishes the connection between the success probability of
the simulator and the success probability of the cheating prover. Loosely speaking, the
lemma asserts that, if S outputs a legal transcript with nonnegligible probability, then
the cheating prover will succeed in convincing the honest verifier with nonnegligible
probability. Since this is in contradiction to the computational soundness of the
proof-system, we have that Lemma 5.6 actually implies the correctness of Lemma 4.5.
(Recall that the contradiction hypothesis of Lemma 4.5 is that the probability that
the simulator outputs a legal transcript is nonnegligible.)

Lemma 5.6. Suppose that Prσ,g,h[(σ, g, h) ∈ AC] > 1/p(n) for some fixed polyno-
mial p(·). Then the probability (taken over σ, g, h, ξ, η, r) that 〈P ∗, V 〉(x) = ACCEPT is
at least 1

2·p(n)·tS(n)·n .
Proof. Define usefulξ,η(σ, g, h) to be true iff the ξth distinct block-prefix in

execx(σ, g, h) is η-useful. Using Claim 5.5, we have

Prσ,g,h,ξ,η,r [〈P ∗, V 〉(x) = ACCEPT] ≥ Prσ,g,h,ξ,η,r[usefulξ,η(σ, g, h
(r))],(5.1)

where the second probability refers to an interaction between S and Vg,h(r) . Since, for

every value of σ, g, η, and ξ, when h and r are uniformly selected, the function h(r) is
uniformly distributed (see Claim 5.2), we infer that

Prσ,g,h,ξ,η,r[usefulξ,η(σ, g, h
(r))] = Prσ,g,h′,ξ,η[usefulξ,η(σ, g, h

′)].(5.2)
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On the other hand, since ξ and η are distributed independently of (σ, g, h), we have

Prσ,g,h,ξ,η [usefulξ,η(σ, g, h)] =

tS(n)∑
d=1

n∑
i=1

Prσ,g,h,ξ,η [usefuld,i(σ, g, h) & (ξ = d & η = i)]

=

tS(n)∑
d=1

n∑
i=1

Prσ,g,h [usefuld,i(σ, g, h)] · Prξ,η [ξ = d & η = i]

=

tS(n)∑
d=1

n∑
i=1

Prσ,g,h [usefuld,i(σ, g, h)] · 1

tS(n) · n

≥ Prσ,g,h [∃d, i s.t. usefuld,i(σ, g, h)] · 1

tS(n) · n,(5.3)

where tS(n) is the bound used by the cheating prover (for the number of distinct
block-prefixes in execx(σ, g, h)). Combining (5.1), (5.2), and (5.3), we get

Prσ,g,h,ξ,η,r [〈P ∗, V 〉(x) = ACCEPT]

≥ Prσ,g,h [∃d, i s.t. usefuld,i(σ, g, h)] · 1

tS(n) · n.(5.4)

Recall that, by our hypothesis, Pr[(σ, g, h) ∈ AC] > 1/p(n) for some fixed polynomial
p(·). We can thus rewrite and lower bound the value of Prσ,g,h [∃d, i s.t. usefuld,i(σ, g, h)]
in the following way:

Pr[∃d, i s.t. usefuld,i(σ, g, h)]

= 1− Pr[∀d, i ¬usefuld,i(σ, g, h)]

= 1− Pr[(∀d, i ¬usefuld,i(σ, g, h))& ((σ, g, h) �∈ AC)]

− Pr[(∀d, i ¬usefuld,i(σ, g, h))& ((σ, g, h) ∈ AC)]

≥ 1− Pr[(σ, g, h) �∈ AC]− Pr[(∀d, i ¬usefuld,i(σ, g, h)) & (σ, g, h) ∈ AC]

> 1/p(n)− Pr[(∀d, i ¬usefuld,i(σ, g, h)) & (σ, g, h) ∈ AC],

where all of the above probabilities are taken over (σ, g, h). It follows that, in order
to show that Prσ,g,h,ξ,η,r [〈P ∗, V 〉(x) = ACCEPT] > 1

2·p(n)·tS(n)·n , it will be sufficient to
prove that, for every fixed polynomial p′(·), it holds that

Prσ,g,h [(∀d, i ¬usefuld,i(σ, g, h)) & (σ, g, h) ∈ AC] < 1/p′(n).

Thus Lemma 5.6 is satisfied provided that Prσ,g,h [∀d, i ¬usefuld,i(σ, g, h) & (σ, g, h) ∈ AC]
is negligible. Consequently, Lemma 5.6 will follow by establishing Lemma 5.7.

Lemma 5.7. The probability (taken over σ, g, h) that, for all pairs (d, i), usefuld,i
(σ, g, h) does not hold and that (σ, g, h) ∈ AC is negligible. That is, the probability that
execx(σ, g, h) does not contain a useful block-prefix and S outputs a legal transcript
is negligible.

This completes the proof of Lemma 5.6. The rest of this section is devoted to
proving Lemma 5.7.
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5.3. Proof of Lemma 5.7 (existence of useful block-prefixes in legal
transcripts). The proof of Lemma 5.7 will proceed as follows. We first define a
special kind of block-prefixes called potentially useful block-prefixes. Loosely speaking,
these are block-prefixes in which the simulator does not make too many “rewinding”
attempts. (Each “rewinding” corresponds to a different iteration-prefix.) Intuitively,
the larger the number of “rewindings” is, the smaller the probability that a specific
block-prefix is useful is. A block-prefix with a small number of “rewindings” is thus
more likely to cause its block-prefix to be useful. Thus our basic approach will be to
show the following.

1. In every “successful” execution (i.e., producing a legal transcript), the sim-
ulator generates a potentially useful block-prefix. This is proved by demon-
strating, based on the structure of the schedule, that if no potentially useful
block-prefix exists, then the simulation must take superpolynomial time.

2. Any potentially useful block-prefix is in fact useful with considerable prob-
ability. The argument that demonstrates this claim proceeds basically as
follows. Consider a specific block-prefix bp, let # = #(bp), and focus on a spe-
cific instance of session (#, i) (that is, the specific instance of session (#, i) that
corresponds to block-prefix bp). Suppose that block-prefix bp is potentially
useful and that the above instance of session (#, i) happens to be accepted
by Vg,h. This means that there exist k queries with block-prefix bp that con-
sist of the “main thread” that leads to acceptance (i.e., all queries that were
not answered with ABORT). Recall that the decision to abort a session (#, i)
is made by applying the function g to i and the iteration-prefix of the cor-
responding query. Thus, if there are only a few different iteration-prefixes
that correspond to block-prefix bp (which, as we said, is potentially useful),
then there is considerable probability that all the queries having block-prefix
bp, but which do not belong to that “main thread,” will be answered with
ABORT. (That is, g will evaluate to 0 on the corresponding input.) If this lucky
event occurs, then block-prefix bp will indeed be useful. (Recall that, for a
block-prefix to be useful, we require that there exist a corresponding session
that is accepted by Vg,h and satisfies that for every j ∈ {2, . . . , k + 1} there
is a single iteration-prefix that makes g evaluate to 1 at the jth message of
this session.)

Returning to the actual proof, we start by introducing the necessary definition (of
a potentially useful block-prefix). Recall that, for any g ∈ G and h ∈ H, the running
time of the simulator S with oracle access to Vg,h is bounded by tS(n). Let c be a
constant such that tS(n) ≤ nc for all sufficiently large n.

Definition 5.8 (potentially useful block-prefix). A specific block-prefix bp =
(b1, a1, . . . , bγ , aγ), appearing in execx(σ, g, h), is called potentially useful if it satis-
fies the following two conditions:

1. The number of ip-different queries that correspond to block-prefix bp is at most
kc+1.

2. The execution of the simulator reaches the end of the block that corresponds
to block-prefix bp. That is, execx(σ, g, h) contains a query q that ends with
the (k+1)st prover message in the nth main session of recursive block number

#(bp) (i.e., some p
(�(bp),n)
k+1 message).

We stress that the bound kc+1 in condition 1 above refers to the same constant
c > 0 that is used in the time bound tS(n) ≤ nc. Using Definition 5.3 (of ip-different
queries), we have that a bound of kc+1 on the number of ip-different queries that cor-
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respond to block-prefix bp induces an upper bound on the total number of iteration-
prefixes that correspond to block-prefix bp. Note that this is in contrast to the def-
inition of a useful block-prefix (Definition 5.4), in which we have a bound only on
the number of ip-different queries of a specific length (i.e., the number of ip-different
queries that correspond to a specific message in a specific session).

Turning to condition 2 of Definition 5.8, we recall that the query q ends with a

p
(�(bp),n)
k+1 message (i.e., the last prover message of recursive block number #(bp)). Tech-

nically speaking, this means that q does not actually correspond to block-prefix bp
(since, by definition of the recursive schedule, the answer to query q is a message that

does not belong to recursive block number #(bp)). Nevertheless, since, before making
query q, the simulator has made queries to all prefixes of q, we are guaranteed that,
for every i ∈ {1, . . . , n} and j ∈ {1, . . . , k + 1}, the simulator has made a query qi,j
that is a prefix of q, corresponds to block-prefix bp, and satisfies πsn(q) = (#

(bp), i)
and πmsg(q) = j. (In other words, all messages of all sessions in recursive block num-

ber #(bp) have occurred during the execution of the simulator.) Furthermore, since
the (modified) simulator does not make a query that is answered with a DEVIATION

message (in step 1’ of Vg,h) and it does make the query q, we are guaranteed that the
partial execution transcript induced by the query q contains the accepting conversa-

tions of at least n1/2

4 sessions in recursive block number #(bp). (The latter observation
will be used only at a later stage (while proving Lemma 5.7).)

It is worth noting that, whereas the definition of a useful block-prefix refers to the
contents of iteration-prefixes (induced by the queries) that are sent by the simulator,
the definition of a potentially useful block-prefix refers only to their quantity (and
neither to their contents nor to the effect of the application of g on them).24 It is
thus natural that statements referring to potentially useful block-prefixes tend to have
a combinatorial flavor. The following lemma is no exception. It asserts that every
“successful” execution of the simulator must contain a potentially useful block-prefix
(or, otherwise, the simulator will run in superpolynomial time).

Lemma 5.9. For any (σ, g, h) ∈ ACx, execx(σ, g, h) contains a potentially useful
block-prefix.

5.3.1. Proof of Lemma 5.9 (existence of potentially useful block-prefixes).
The proof of Lemma 5.9 is by contradiction. We assume the existence of a triplet
(σ, g, h) ∈ AC so that every block-prefix in execx(σ, g, h) is not potentially useful,
and we show that this implies that SVhσ (x) made strictly more than n

c queries (which
contradicts the explicit hypothesis that the running time of S is bounded by nc).

The query-and-answer tree. Throughout the proof of Lemma 5.9, we will fix an
arbitrary (σ, g, h) ∈ AC as above and study the corresponding execx(σ, g, h). A key
vehicle in this study is the notion of a query-and-answer tree introduced in [26] (and
also used in [29]).25 This is a rooted tree (corresponding to execx(σ, g, h)) in which
vertices are labeled with verifier messages and edges are labeled with prover messages.
The root is labeled with the fixed verifier message initializing the first session and has
outgoing edges corresponding to the prover’s messages initializing this session. In

24In particular, whereas the definition of a useful block-prefix refers to the outcome of g on
iteration-prefixes that correspond to the relevant block-prefix, the definition of a potentially useful
block-prefix refers only to the number of ip-different queries that correspond to the block-prefix
(ignoring the outcomes of g on the relevant iteration-prefixes).

25The query-and-answer tree should not be confused with the tree that is induced by the recursive
schedule.
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general, paths down the tree (i.e., from the root to some vertices) correspond to
queries. The query associated with such a path is obtained by concatenating the
labeling of the vertices and edges along the path in the order traversed. We stress
that each vertex in the query-and-answer tree corresponds to a query actually made
by the simulator.

The index of the verifier (resp., prover) message labeling a specific vertex (resp.,
edge) in the tree is completely determined by the level in which the vertex (resp.,
edge) lies. That is, all vertices (resp., edges) in the ωth level of the tree are labeled
with the ωth verifier (resp., prover) message in the schedule (out of a total of n2 ·(k+1)
scheduled messages). For example, if ω = n2 · (k+1), all vertices (resp., edges) at the
ωth level (which is the lowest possible level in the tree) are labeled with v

(n,n)
k+1 (resp.,

p
(n,n)
k+1 ). The difference between “sibling” vertices in the same level of the tree lies
in the difference in the labels of their incoming edges (as induced by the simulator’s
“rewindings”). Specifically, whenever the simulator “rewinds” the interaction to the
ωth verifier message in the schedule (i.e., makes a new query that is answered with
the ωth verifier message), the corresponding vertex in the tree (which lies at the ωth
level) will have multiple descendants one level down in the tree (i.e., at the (ω + 1)st
level). The edges to each one of these descendants will be labeled with a different
prover message.26 We stress that the difference between these prover messages lies in
the contents of the corresponding message (and not in its index).

By the above discussion, the outdegree of every vertex in the query-and-answer
tree corresponds to the number of “rewindings” that the simulator has made to the
relevant point in the schedule. (The order in which the outgoing edges appear in the
tree does not necessarily correspond to the order in which the “rewindings” were ac-
tually performed by the simulator.) Vertices in which the simulator does not perform
a “rewinding” will thus have a single outgoing edge. In particular, in case that the
simulator follows the prescribed prover strategy P (sending each scheduled message
exactly once), all vertices in the tree will have outdegree one, and the tree will actually
consist of a single path of total length n2 · (k+1) (ending with an edge that is labeled
with a p

(n,n)
k+1 message).

Recall that, by our conventions regarding the simulator, before making a query q,
the simulator has made queries to all prefixes of q. Since every query corresponds to
a path down the tree, we have that every particular path down the query-and-answer
tree is developed from the root downward. (That is, within a specific path, a level
ω < ω′ vertex is always visited before a level ω′ vertex.) However, we cannot say
anything about the order in which different paths in the tree are developed. (For
example, we cannot assume that the simulator has made all queries that end at a
level ω vertex before making any other query that ends at a level ω′ > ω vertex
or that it has visited all vertices of level ω in some specific order.) To summarize,
the only guarantee that we have about the order in which the query-and-answer tree
is developed is implied by the convention that, before making a specific query, the
simulator has made queries to all relevant prefixes.

Satisfied path. A path from one node in the tree to some of its descendants is
said to satisfy session i if the path contains edges (resp., vertices) for each of the
messages sent by the prover (resp., verifier) in session i. A path is called satisfied if

26In particular, the shape of the query-and-answer tree is completely determined by the contents
of prover messages in execx(σ, g, h) (whereas the contents of verifier answers given by Vg,h have no
effect on the shape of the tree).
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it satisfies all sessions for which the verifier’s first message appears along the path.
One important example for a satisfied path is the path that starts at the root of the

query-and-answer tree and ends with an edge that is labeled with a p
(n,n)
k+1 message.

This path contains all n2 · (k + 1) messages in the schedule (and so satisfies all n2

sessions in the schedule). We stress that the contents of messages (occurring as labels)
along a path are completely irrelevant to the question of whether the path is satisfied
or not. In particular, a path may be satisfied even if some (or even all) of the vertices
along it are labeled with ABORT.

Recall that, by our conventions, the simulator never makes a query that is an-
swered with the DEVIATION message. We are thus guaranteed that, for every com-

pleted block along a path in the tree, at least n1/2

4 sessions are accepted by Vg,h. In
particular, the vertices corresponding to messages of these accepted sessions cannot
be labeled with ABORT.

Good subtree. Consider an arbitrary subtree (of the query-and-answer tree) that
satisfies the following two conditions:

1. The subtree is rooted at a vertex corresponding to the first message of some
session so that this session is the first main session of some recursive invocation
of the schedule.

2. Each path in the subtree is truncated at the last message of the relevant
recursive invocation.

The full tree (i.e., the tree rooted at the vertex labeled with the first message in
the schedule) is indeed such a tree, but we will need to consider subtrees which
correspond to m sessions in the recursive schedule construction (i.e., correspond to
Rm). We call such a subtree m-good if it contains a satisfied path starting at the root
of the subtree. Since (σ, g, h) ∈ AC, we have that the simulator has indeed produced
a “legal” transcript as output. It follows that the full tree contains a path from the
root to a leaf that contains vertices (resp., edges) for each of the messages sent by the
verifier (resp., prover) in all n2 sessions of the schedule (as otherwise the transcript

S
Vg,h
σ (x) would not have been legal). In other words, the full tree contains a satisfied
path and is thus n2-good.

Note that, by the definition of the recursive schedule, two m-good subtrees are
always disjoint. On the other hand, if m′ < m, it may be the case that an m′-good
subtree is contained in another m-good subtree. As a matter of fact, since an m-good
subtree contains all messages of all sessions in a recursive block corresponding to Rm,
then it must contain at least k disjoint m−n

k -good subtrees (i.e., that correspond to
the k recursive invocations of Rm−n

k
made by Rm).

The next lemma (which can be viewed as the crux of the proof) states that, if
the contradiction hypothesis of Lemma 5.9 is satisfied, then the number of disjoint
m−n
k -good subtrees that are contained in an m-good subtree is actually considerably
larger than k.

Lemma 5.10. Suppose that every block-prefix that appears in execx(σ, g, h) is
not potentially useful. Then, for every m ≥ n, every m-good subtree contains at least
kc+1 disjoint m−n

k -good subtrees.
Denote by W (m) the size of an m-good subtree. (That is, W (m) actually rep-

resents the work performed by the simulator on m concurrent sessions in our fixed
scheduling.) It follows (from Lemma 5.10) that any m-good subtree must satisfy

W (m) ≥
{
1 if m ≤ n,
kc+1 ·W (

m−n
k

)
if m > n.

(5.5)
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Since, for all but finitely many n, (5.5) solves to W (n2) > nc (see Appendix B), and
since every vertex in the query-and-answer tree corresponds to a query actually made
by the simulator, it follows that the hypothesis that the simulator runs in time that
is bounded by nc (and hence the full n2-good tree must have been of size at most nc)
is contradicted. Thus Lemma 5.9 will actually follow from Lemma 5.10.

Proof of Lemma 5.10. Let T be an arbitrary m-good subtree of the query-and-
answer tree. Considering them sessions corresponding to anm-good subtree, we focus
on the n main sessions of this level of the recursive construction. Let BT denote the
recursive block to which the indices of these n sessions belong. A T -query is a query
q whose corresponding path down the query-and-answer tree ends with a node that
belongs to T (recall that every query q appearing in execx(σ, g, h) corresponds to a
path down the full tree) and that satisfies πsn(q) ∈ BT .

27 We first claim that all T -
queries q in execx(σ, g, h) have the same block-prefix. This block-prefix corresponds
to the path from the root of the full tree to the root of T and is denoted by bpT .

Fact 5.11. All T -queries in execx(σ, g, h) have the same block-prefix (denoted
by bpT ).

Proof. Assume, toward contradiction, that there exist two different T -queries
q1, q2 so that bp(q1) �= bp(q2). In particular, bp(q1) and bp(q2) must differ in a
message that precedes the first message of the first main session in BT . (Note that,
if two block-prefixes are equal in all messages preceding the first message of the first
session of the relevant block, then, by definition, they are equal.28) This means that
the paths that correspond to q1 and q2 split from each other before they reach the
root of T . (Remember that T is rooted at a node corresponding to the first main
session of recursive block BT .) However, this contradicts the fact that both paths
that correspond to these queries end with a node in T , and the fact follows.

Using the hypothesis that no block-prefix in execx(σ, g, h) is potentially useful,
we prove the following claim.

Claim 5.12. Let T be an m-good subtree. Then the number of ip-different queries
that correspond to block-prefix bpT is at least k

c+1.
Proof. Since all block-prefixes that appear in execx(σ, g, h) are not potentially

useful (by the hypothesis of Lemma 5.10), this holds as a special case for block-prefix

bpT . Let # = #
(bpT ) be the index of the recursive block that corresponds to block-prefix

bpT in execx(σ, g, h). Since block-prefix bpT is not potentially useful, at least one of
the two conditions of Definition 5.8 is violated. In other words, one of the following
two conditions is satisfied:

1. The number of ip-different queries that correspond to block-prefix bpT is at
least kc+1.

2. The execution of the simulator does not reach the end of the block that
corresponds to block-prefix bpT (i.e., there is no query in execx(σ, g, h) that

ends with a p
(�,n)
k+1 message that corresponds to block-prefix bpT ).

Now, since T is an m-good subtree, it must contain a satisfied path. Such a path
starts at the root of T and satisfies all sessions whose first verifier message appears

27Note that queries q that satisfy πsn(q) ∈ BT do not necessarily correspond to a path that ends
with a node in T (as execx(σ, g, h) may contain a different subtree T ′ that satisfies BT = BT ′ ). Also
note that there exist queries q whose corresponding path ends with a node that belongs to T but
that satisfy πsn(q) �∈ BT . This is so since T may also contain vertices that correspond to messages in
sessions which are not main sessions of BT (in particular, all sessions that belong to the lower-level
recursive blocks that are invoked by block BT ).

28Recall that the index of the relevant block is determined by the length of the corresponding
block-prefix.
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along the path. The key observation is that every satisfied path that starts at the root
of subtree T must satisfy all of the main sessions in BT (to see this, notice that the
first message of all main sessions in BT will always appear along such a path), and so
it contains all messages of all main sessions in recursive block BT . In particular, the
subtree T contains a path that starts at the root of T and ends with an edge that is

labeled with the last prover message in session number (#, n) (i.e., a p
(�,n)
k+1 message).

In other words, the execution of the simulator does reach the end of the block that
corresponds to block-prefix bpT (since, for the above path to exist, the simulator

must have made a query that ends with a p
(�,n)
k+1 message that corresponds to block-

prefix bpT ), and so condition 2 does not apply. Thus the only reason that may cause
block-prefix bpT not to be potentially useful is condition 1. We conclude that the
number of ip-different queries that correspond to block-prefix bpT is at least k

c+1, as
required.

The following claim establishes the connection between the number of ip-different
queries that correspond to block-prefix bpT and the number of

m−n
k -good subtrees

contained in T . Loosely speaking, this is achieved based on the following three ob-
servations: (1) Two queries are said to be ip-different iff they have different iteration-
prefixes. (2) Every iteration-prefix is a block-prefix of some subschedule one level
down in the recursive construction (consisting of m−n

k sessions). (3) Every such dis-
tinct block-prefix yields a distinct m−n

k -good subtree.
Claim 5.13. Let T be an m-good subtree. Then, for every pair of ip-different

queries that correspond to block-prefix bpT , the subtree T contains two disjoint
m−n
k -

good subtrees.
Once Claim 5.13 is proved, we can use it in conjunction with Claim 5.12 to infer

that T contains at least kc+1 disjoint m−n
k -good subtrees.

Proof. Before we proceed with the proof of Claim 5.13, we introduce the notion of
an iteration-suffix of a query q. This is the suffix of q that starts at the ending point
of the query’s iteration-prefix. A key feature satisfied by an iteration-suffix of a query
is that it contains all of the messages of all sessions belonging to some invocation of
the schedule one level down in the recursive construction. (This follows directly from
the structure of our fixed schedule.)

Definition 5.14 (iteration-suffix). The iteration-suffix of a query q (satisfying
j = πmsg(q) > 1), denoted by is(q), is the suffix of q that begins at the ending point
of the iteration-prefix of query q. That is, for q = (b1, a1, . . . , at, bt), if ip(q) =
(b1, a1, . . . , bδ−1, aδ), then is(q) = (aδ, bδ+1, . . . , at, bt).

29

Let q be a query, and let (#, i) = πsn(q), j = πmsg(q). Let P(q) denote the
path corresponding to query q in the query-and-answer tree. Let Pip(q) denote the
subpath of P(q) that corresponds to the iteration-prefix ip(q) of q, and let Pis(q)
denote the subpath of P(q) that corresponds to the iteration-suffix is(q) of q. That
is, the subpath Pip(q) starts at the root of the full tree and ends at a p(�,n)

j−1 message,

whereas the subpath Pis(q) starts at a p
(�,n)
j−1 message and ends at a v

(�,i)
j message.

(In particular, path P(q) can be obtained by concatenating Pip(q) with Pis(q).30)

29This means that aδ is of the form p
(�,n)
j−1 , where (�, i) = πsn(q) and j = πmsg(q).

30To be precise, one should delete from the resulting concatenation one of the two consecutive

edges which are labeled with aδ = p
(�,n)
j−1 . (One edge is the last in Pip(q), and the other edge is the

first in Pis(q).)
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Fact 5.15. For every query q ∈ execx(σ, g, h), the subpath Pis(q) is satisfied.
Moreover,

1. the subpath Pis(q) satisfies all m−n
k sessions of a recursive invocation one

level down in the recursive construction (i.e., corresponding to Rm−n
k
);

2. if q corresponds to block-prefix bpT , then the subpath Pis(q) is contained in
T .

Proof. Let (#, i) = πsn(q) and j = πmsg(q). By the nature of our fixed scheduling,
the vertex in which subpath Pis(q) begins precedes the first message of all (nested)
sessions in the (j − 1)st recursive invocation made by recursive block number # (i.e.,
an instance of Rm−n

k
which is invoked by Rm). Since query q is answered with a

v
(�,i)
j message, we have that the subpath Pis(q) eventually reaches a vertex labeled
with v

(�,i)
j . In particular, the subpath Pis(q) (starting at a p

(�,n)
j−1 edge and ending

at a v
(�,i)
j vertex) contains the first and last messages of each of the above (nested)

sessions and so contains edges (resp., vertices) for each prover (resp., verifier) message
in these sessions. By definition, this means that all of these (nested) sessions are
satisfied by Pis(q). Since the above (nested) sessions are the only sessions whose first
message appears along the subpath Pis(q), we have that Pis(q) is satisfied. To see
that whenever q corresponds to block-prefix bpT the subpath Pis(q) is contained in
the subtree T , we observe that both its starting point (i.e., a p

(�,n)
j−1 edge) and its

ending point (i.e., a v
(�,i)
j vertex) are contained in T .

Fact 5.16. Let q1, q2 be two ip-different queries. Then Pis(q1) and Pis(q2) are
disjoint.

Proof. Let q1 and q2 be two ip-different queries, let (#1, i1) = πsn(q1), (#2, i2) =
πsn(q2), and let j1 = πmsg(q1), j2 = πmsg(q2). Recall that queries q1 and q2 are said
to be ip-different iff they have different iteration-prefixes. Since q1 and q2 are assumed
to be ip-different, so are iteration-prefixes ip(q1) and ip(q2). In particular, the paths
Pip(q1) and Pip(q2) are different. We distinguish between the following two cases:

1. Path Pip(q1) splits from Pip(q2). In such a case, the ending points of paths
Pip(q1) and Pip(q2) must belong to different subtrees of the query-and-answer
tree. Since the starting point of an iteration-suffix is the ending point of the
corresponding iteration-prefix, we must have that paths Pis(q1) and Pis(q2)
are disjoint.

2. Path Pip(q1) is a prefix of path Pip(q2). That is, both Pip(q1) and Pip(q2)
reach a v

(�1,n)
j1−1 vertex, while path Pip(q2) continues down the tree and reaches

a v
(�2,n)
j2−1 vertex. The key observation in this case is that either #1 is strictly

smaller than #2 or j1 is strictly smaller than j2. The reason for this is that, in
the case that both #1 = #2 and j1 = j2 hold, iteration-prefix ip(q1) must be
equal to iteration-prefix ip(q2),

31 in contradiction to our hypothesis. Since

path Pis(q1) starts at a p
(�1,n)
j1−1 vertex and ends with a v

(�1,i1)
j1

vertex, and

since path Pis(q2) starts with a p(�2,n)
j2−1 vertex, we have that the ending point

of path Pis(q1) precedes the starting point of path Pis(q2). (This is so since,
if j1 < j2, the p

(�1,i1)
j1

message will always precede/equal the p
(�2,n)
j2−1 message.)

In particular, paths Pis(q1) and Pis(q2) are disjoint.

31That is, unless bp(q1) �= bp(q2). However, in such a case, paths Pip(q1) and Pip(q2) must split
from each other (since they differ in some message that belongs to their block-prefix), and we are
back to case 1.
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It follows that, for every two ip-different queries, q1 and q2, subpaths Pis(q1) and
Pis(q2) are disjoint, as required.

Returning to the proof of Claim 5.13, let q1 and q2 be two ip-different queries
that correspond to block-prefix bpT (as guaranteed by the hypothesis of Claim 5.13),
and let Pis(q1) and Pis(q2) be as above. Consider the two subtrees, T1 and T2, of
T that are rooted at the starting point of subpaths Pis(q1) and Pis(q2), respectively.
(Note that, by Fact 5.15, T1 and T2 are indeed subtrees of T .) By definition of
our recursive schedule, T1 and T2 correspond to

m−n
k sessions one level down in the

recursive construction (i.e., to an instance of Rm−n
k
). Using Fact 5.15, we infer that

subpath Pis(q1) (resp., Pis(q2)) contains all messages of all sessions in T1 (resp., T2),
and so the subtree T1 (resp., T2) is

m−n
k -good. In addition, since subpaths Pis(q1)

and Pis(q2) are disjoint (by Fact 5.16) and since, by definition of an m−n
k -good tree,

two different m−n
k -good trees are always disjoint, then T1 and T2 (which, being rooted

at different vertices, must be different) are also disjoint. It follows that, for every pair
of different queries that correspond to block-prefix bpT , the subtree T contains two
disjoint m−n

k -good subtrees.
We are finally ready to establish Lemma 5.10 (using Claims 5.12 and 5.13). By

Claim 5.12, we have that the number of different queries that correspond to block-
prefix bpT is at least k

c+1. Since (by Claim 5.13), for every pair of different queries
that correspond to block-prefix bpT , the subtree T contains two disjoint

m−n
k -good

subtrees, we infer that T contains a total of at least kc+1 disjoint m−n
k -good subtrees

(corresponding to the (at least) kc+1 different queries mentioned above). Lemma 5.10
follows.

5.3.2. Back to the proof of Lemma 5.7 (existence of useful block-
prefixes). Once the correctness of Lemma 5.9 is established, we may proceed with
the proof of Lemma 5.7. Let x ∈ {0, 1}n. We bound from above the probability,

taken over the choices of σ ∈ {0, 1}∗, g r← G, and h
r← H, that (σ, g, h) ∈ AC and

that, for all d ∈ {1, . . . , tS(n)} and all i ∈ {1, . . . , n}, the dth distinct block-prefix in
execx(σ, g, h) is not i-useful. Specifically, we would like to show that

Prσ,g,h[(∀d, i ¬usefuld,i(σ, g, h)) & ((σ, g, h) ∈ AC)](5.6)

is negligible. Define a boolean indicator pot− used(σ, g, h) to be true iff the dth
distinct block-prefix in execx(σ, g, h) is potentially useful. As proved in Lemma 5.9,
for any (σ, g, h) ∈ AC, there exists an index d ∈ {1, . . . , tS(n)} so that the dth block-
prefix in execx(σ, g, h) is potentially useful. In other words, for every (σ, g, h) ∈ AC,
pot− used(σ, g, h) holds for some value of d. Thus (5.6) is upper bounded by

Prσ,g,h


tS(n)∨

d=1

pot− used(σ, g, h) & (∀i ∈ {1, . . . , n} ¬usefuld,i(σ, g, h))


 .(5.7)

Consider a specific d ∈ {1, . . . , tS(n)} so that pot− used(σ, g, h) is satisfied (i.e., the
dth block prefix in execx(σ, g, h) is potentially useful). By condition 2 in the definition
of a potentially useful block-prefix (Definition 5.8), the execution of the simulator
reaches the end of the corresponding block in the schedule. In other words, there
exists a query q ∈ execx(σ, g, h) that ends with the (k + 1)st prover message in the

nth main session of recursive block number #(bpd), where bpd denotes the dth distinct

block-prefix in execx(σ, g, h) and #
(bpd) denotes the index of the recursive block that

corresponds to block-prefix bpd in execx(σ, g, h). Since, by our convention and the
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modification of the simulator, S never generates a query that is answered with a
DEVIATION message, we have that the partial execution transcript induced by query

q must contain the accepting conversations of at least n1/2

4 main sessions in block

number #(bpd) (as otherwise query q would have been answered with the DEVIATION
message in step 1’ of Vg,h).

Let q(bpd) = q(bpd)(σ, g, h) denote the first query in execx(σ, g, h) that is as above
(i.e., that ends with the (k + 1)st prover message in the nth main session of re-

cursive block number #(bpd), where bpd denotes the dth block-prefix appearing in
execx(σ, g, h)).

32 Define an additional boolean indicator acceptd,i(σ, g, h) to be true

iff query q(bpd) contains an accepting conversation for session (#(bpd), i). (That is, no

prover message in session (#(bpd), i) is answered with ABORT, and the last verifier mes-
sage of this session equals ACCEPT.33) It follows that, for every d ∈ {1, . . . , tS(n)} that
satisfies pot− used(σ, g, h) (as above), there exists a set S ⊂ {1, . . . , n} of size n1/2

4
such that acceptd,i(σ, g, h) holds for every i ∈ S. Thus (5.7) is upper bounded by

Prσ,g,h



tS(n)∨
d=1

∨
S⊂{1,...,n}
|S|=n1/2

4

(
pot− used(σ, g, h) &

(∀i ∈ S, ¬usefuld,i(σ, g, h)

& acceptd,i(σ, g, h)
))

 .(5.8)

Using the union bound, we upper bound (5.8) by

tS(n)∑
d=1

∑
S⊂{1,...,n}
|S|=n1/2

4

Prσ,g,h
[
pot− used(σ, g, h)&

(∀i ∈ S, ¬usefuld,i(σ, g, h)

& acceptd,i(σ, g, h)
)]
.(5.9)

The last expression is upper bounded using the following lemma, which bounds the
probability that a specific set of different sessions corresponding to the same (in index)
potentially useful block-prefix are accepted (at the first time that the recursive block
to which they belong is completed) but still do not turn it into a useful block-prefix.
In fact, we prove something stronger.

32Since the simulator is allowed to feed Vg,h with different queries of the same length, we have
that the execution of the simulator may reach the end of the corresponding block more than once
(and thus execx(σ, g, h) may contain more than a single query that ends with the (k + 1)st prover

message in the nth main session of block number �(bpd)). Since each time that the simulator reaches
the end of the corresponding block the above set of accepted sessions may be different, we are not
able to pinpoint a specific set of accepted sessions without explicitly specifying to which one of the
above queries we are referring. We solve this problem by explicitly referring to the first query that
satisfies the above conditions. (Note that, in our case, such a query is always guaranteed to exist.)

33Note that the second condition implies the first one. Namely, if the last verifier message of

session (�(bpd), i) equals ACCEPT, then no prover message in this session could have been answered
with ABORT.
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Lemma 5.17. For every σ ∈ {0, 1}∗, every h ∈ H, every d ∈ {1, . . . , tS(n)}, and
every set of indices S ⊂ {1, . . . , n} so that |S| > k,

Prg
[
pot− used(σ, g, h) &

(∀i ∈ S, ¬usefuld,i(σ, g, h) & acceptd,i(σ, g, h)
)]

< (n−(
1
2+ 1

4k ))|S|.

Proof. Let x ∈ {0, 1}∗. Fix some σ ∈ {0, 1}∗, h ∈ H, d ∈ {1, . . . , tS(n)}, and a set
S ⊂ {1, . . . , n}. Denote by bpd = bpd(g) the dth distinct block-prefix in execx(σ, h, g)
and by #(bpd) the index of its corresponding recursive block in the schedule. We bound

the probability, taken over the choice of g
r← G, that, for all i ∈ S, block-prefix bpd

is not i-useful even though it is potentially useful, and, for all i ∈ S, the query q(bpd)
contains an accepting conversation for session (#(bpd), i).

A technical problem resolved. In order to prove Lemma 5.17, we need to focus
on the dth distinct block-prefix in execx(σ, h, g) (denoted by bpd) and analyze the
behavior of a uniformly chosen g when applied to the various iteration-prefixes that
correspond to bpd. However, in trying to do so we encounter a technical problem. This
problem is caused by the fact that the contents of block-prefix bpd depend on g.

34 In
particular, it does not make sense to analyze the behavior of a uniformly chosen
g on iteration-prefixes that correspond to an “undetermined” block-prefix (since it
is not possible to determine the iteration-prefixes that correspond to bpd when bpd
itself is not determined). To overcome the above problem, we rely on the following
observations:

1. Whenever σ, h, and d are fixed, the content of block-prefix bpd is completely
determined by the output of g on inputs that have occurred before bpd has
been reached (i.e., has appeared as a block-prefix of some query) for the first
time.

2. All iteration-prefixes that correspond to block-prefix bpd occur after bpd has
been reached for the first time.

It is thus possible to carry out the analysis by considering the output of g only on
inputs that have occurred after bpd has been determined. That is, fixing σ, h, and
d, we distinguish between: (a) the outputs of g that have occurred before the dth
distinct block-prefix in execx(σ, g, h) (i.e., bpd) has been reached and (b) the outputs
of g that have occurred after bpd has been reached. For every possible outcome of (a),
we will analyze the (probabilistic) behavior of g only over the outcomes of (b). (Recall
that once (a)’s outcome has been determined, the identities (but not the contents)
of all relevant prefixes are well defined.) Since for every possible outcome of (a) the
analysis will hold, it will particularly hold over all choices of g.

More formally, consider the following (alternative) way of describing a uniformly
chosen g ∈ G (at least as far as execx(σ, g, h) is concerned). Let g1, g2 be two tS(n)-
wise independent hash functions uniformly chosen from G, and let σ, h, d be as above.
We define g(g1,g2) = g(σ,h,d,g1,g2) to be uniformly distributed among the functions g′

that satisfy the following conditions: the value of g′, when applied to an input α
that has occurred before bpd has been reached (in execx(σ, g, h)), is equal to g1(α),
whereas the value of g′, when applied to an input α that has occurred after bpd has
been reached, is equal to g2(α).

34Clearly, the contents of queries that appear in execx(σ, g, h) may depend on the choice of the
hash function g. (This is because the simulator may dynamically adapt its queries depending on the
outcome of g on iteration-prefixes of past queries.) As a consequence, the contents of bpd = bpd(g)
may vary together with the choice of g.
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Similarly to the proof of Claim 5.2, it can be shown that, for every σ, h, d as
above, if g1 and g2 are uniformly distributed, then so is g

(g1,g2). In particular,

Prg
[
pot− used(σ, g, h) &

(∀i ∈ S, ¬usefuld,i(σ, g, h) & acceptd,i(σ, g, h)
)]

= Prg1,g2
[
pot− used(σ, g

(g1,g2), h) &
(∀i ∈ S, ¬usefuld,i(σ, g

(g1,g2), h)

& acceptd,i(σ, g
(g1,g2), h)

)]
.

By fixing g1 and then analyzing the behavior of a uniformly chosen g2 on the relevant
iteration-prefixes, we resolve the above technical problem. This is due to the following
two reasons: (1) For every choice of σ, h, d and for every fixed value of g1, the block-
prefix bpd is completely determined (and the corresponding iteration-prefixes are well
defined). (2) Once bpd has been reached, the outcome of g

(g1,g2), when applied to
the relevant iteration-prefixes, is completely determined by the choice of g2. Thus all
we need to show in order to prove Lemma 5.17 is that, for every choice of g1, the
value of

Prg2
[
pot− used(σ, g

(g1,g2), h)&
(∀i ∈ S, ¬usefuld,i(σ, g

(g1,g2), h)

& acceptd,i(σ, g
(g1,g2), h)

)]
(5.10)

is upper bounded by (n−(1/2+1/4k))|S|.
Back to the actual proof of Lemma 5.17. Consider the block-prefix bpd, as de-

termined by the choices of σ, h, d, and g1, and focus on the iteration-prefixes that
correspond to bpd in execx(σ, g, h). We next analyze the implications of bpd being

not i-useful, even though it is potentially useful, and, for all i ∈ S, query q(bpd)
contains an accepting conversation for session (#(bpd), i).

Claim 5.18. Let σ ∈ {0, 1}∗, g ∈ G, h ∈ H, d ∈ {1, . . . , tS(n)}, and S ⊂
{1, . . . , n}. Suppose that the indicator

(
pot− used(σ, g, h) & (∀i ∈ S,¬usefuld,i(σ, g, h) & acceptd,i(σ, g, h))

)

is true. Then the following hold.
1. The number of different iteration-prefixes that correspond to block-prefix bpd
is at most kc+1.

2. For every j ∈ {2, . . . , k+1}, there exists an iteration-prefix ipj (corresponding
to block-prefix bpd) so that, for every i ∈ S, we have g(i, ipj) = 1.

3. For every i ∈ S, there exists an (additional) iteration-prefix ip(i) (correspond-
ing to block-prefix bpd) so that, for every j ∈ {2, . . . , k+1}, we have ip(i) �= ipj,
and g(i, ip

(i)
) = 1.

In accordance with the discussion above, Claim 5.18 will be invoked with g =
g(g1,g2).

Proof. Loosely speaking, item 1 follows directly from the hypothesis that block-
prefix bpd is potentially useful. In order to prove item 2, we also use the hypothesis

that, for all i ∈ S, query q(bpd) contains an accepting conversation for session (#(bpd), i),
and, in order to prove item 3, we additionally use the hypothesis that, for all i ∈ S,
block-prefix bpd is not i-useful. Details follow.
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Proof of Item 1. The hypothesis that block-prefix bpd is potentially useful (i.e.,
pot− used(σ, g, h) holds) implies that the number of iteration-prefixes that
correspond to block-prefix bpd is at most k

c+1 (as otherwise, the number
of ip-different queries that correspond to bpd would have been greater than
kc+1).

Proof of Item 2. Let i ∈ S, and recall that acceptd,i(σ, g, h) holds. In particular,

we have that query q(bpd) (i.e., the first query in execx(σ, g, h) that ends
with the (k + 1)st prover message in the nth main session of recursive block

number #(bpd)) contains an accepting conversation for session (#(bpd), i). That

is, no prover message in session (#(bpd), i) is answered with ABORT, and the
last verifier message of this session equals ACCEPT. Since, by our conventions

regarding the simulator, before making query q(bpd), the simulator has made
queries to all relevant prefixes, then it must be the case that all prefixes of

query q(bpd) have previously occurred as queries in execx(σ, g, h). In partic-
ular, for every i ∈ S and for every j ∈ {2, . . . , k + 1}, the execution of the
simulator must contain a query qi,j that is a prefix of q

(bpd) and that satisfies

bp(qi,j) = bpd, πsn(qi,j) = (#
(bpd), i), πmsg(qi,j) = j, and g(i, ip(qi,j)) = 1. (If

g(i, ip(qi,j)) would have been equal to 0, query q
(bpd) would have contained a

prover message in session (#(bpd), i) that is answered with ABORT, in contradic-
tion to the fact that acceptd,i(σ, g, h) holds.) Since, for every j ∈ {2, . . . , k+1}
and for every i1, i2 ∈ S, we have that ip(qi1,j) = ip(qi2,j) (as queries qi,j are
all prefixes of q� and |ip(qi1,j)| = |ip(qi2,j)|), we can set ipj = ip(qi,j). It
follows that, for every j ∈ {2, . . . , k + 1}, iteration-prefix ipj corresponds to
block-prefix bpd (as queries qi,j all have block-prefix bpd), and, for every i ∈ S,
we have that g(i, ipj) = 1.

Proof of Item 3. Let i ∈ S, and recall that, in addition to the fact that acceptd,i(σ, g, h)
holds, we have that usefuld,i(σ, g, h) does not hold. Notice that the only rea-
son for which usefuld,i(σ, g, h) can be false (i.e., the dth block-prefix is not
i-useful), is that condition 1 in Definition 5.4 is violated by execx(σ, g, h).
(Recall that acceptd,i(σ, g, h) holds, and so condition 2 in Definition 5.4 is
indeed satisfied by query qi,k+1 (as defined above). This query corresponds

to block-prefix bpd, satisfies πsn(qi,k+1) = (#
(bpd), i), πmsg(qi,k+1) = k+1, and

g(i, ip(qi,k+1)) = 1, and is answered with ACCEPT.)
For condition 1 in Definition 5.4 to be violated, there must exist a j ∈

{2, . . . , k + 1}, with two ip-different queries, q1 and q2, that correspond

to block-prefix bpd and satisfy πsn(q1) = πsn(q2) = (#(bpd), i), πmsg(q1) =
πmsg(q2) = j, and g(i, ip(q1)) = g(i, ip(q2)) = 1. Since, by definition,
two queries are considered ip-different only if they differ in their iteration-
prefixes, we have that there exist two different iteration-prefixes ip(q1) and
ip(q2) (of the same length) that correspond to block-prefix bpd and satisfy
g(i, ip(q1)) = g(i, ip(q2)) = 1. Since iteration-prefixes ip2, . . . , ipk+1 (from
item 2 above) are all of distinct length, and since the only iteration-prefix in
ip2, . . . , ipk+1 that can be equal to either ip(q1) or ip(q2) is ipj (note that

this is the only iteration-prefix having the same length as ip(q1) and ip(q2)),
then it must be the case that at least one of ip(q1), ip(q2) is different from all
of ip2, . . . , ipk+1. (Recall that ip(q1) and ip(q2) are different, which means
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that they cannot both be equal to ipj .) In particular, for every i ∈ S (that
satisfies usefuld,i(σ, g, h) & acceptd,i(σ, g, h)), there exists at least one (extra)

iteration-prefix, ip
(i) ∈ {ip(q1), ip(q2)} that corresponds to block-prefix bpd,

differs from ipj for every j ∈ {2, . . . , k + 1}, and satisfies g2(i, ip(i)) = 1.
This completes the proof of Claim 5.18.

Recall that the hash function g2 is chosen at random from a tS(n)-wise inde-
pendent family. Since, for every pair of different iteration-prefixes, the function g2
will have different inputs, g2 will have independent outputs when applied to differ-
ent iteration-prefixes (since no more than tS(n) queries are made by the simulator).
Similarly, for every pair of different i, i′ ∈ S, g2 will have different input and thus
independent output. In other words, all outcomes of g2 that are relevant to block-
prefix bpd are independent of each other. Since a uniformly chosen g2 will output
1 with probability n−1/2k, we may view every application of g2 on iteration-prefixes
that correspond to bpd as an independently executed experiment that succeeds with
probability n−1/2k.35

Using item 1 of Claim 5.18, the applications of g2 which are relevant to sessions
{(#(bpd), i)}i∈S can be viewed as a sequence of at most kc+1 experiments (correspond-
ing to at most kc+1 different iteration-prefixes). Each of these experiments consists
of |S| independent subexperiments (corresponding to the different i ∈ S), and each
subexperiment succeeds with probability n−1/2k. Item 2 of Claim 5.18 now implies
that at least k of the above experiments will fully succeed (that is, all of their subex-
periments will succeed), while item 3 implies that, for every i ∈ S, there exists an
additional successful subexperiment (that is, a subexperiment of one of the kc+1 − k
remaining experiments). Using the fact that the probability that a subexperiment
succeeds is n−1/2k, we infer that the probability that an experiment fully succeeds is
equal to (n−1/2k)|S|. In particular, the probability in (5.10) is upper bounded by the
probability that the following two events occur (these events correspond to items 2
and 3 of Claims 5.18, respectively):

Event 1. In a sequence of (at most kc+1) experiments, each succeeding with proba-
bility (n−1/2k)|S|, there exist k successful experiments. (The success probabil-
ity corresponds to the probability that, for every i ∈ S, we have g2(i, ipj) = 1
(see item 2 of Claim 5.18).)

Event 2. For every one out of |S| sequences of the remaining (at most kc+1 − k)
subexperiments, each succeeding with probability n−1/2k, there exists at least
one successful experiment. (In this case, the success probability corresponds

to the probability that iteration-prefix ip
(i)
satisfies g2(i, ip

(i)
) = 1 (see item 3

of Claim 5.18).)
For i ∈ |S| and j ∈ [kc+1], let us denote the success of the ith subexperiment in the
jth experiment by χi,j . By the above discussion for every i, j, the probability that
χi,j holds is n

−1/2k (independently of other χi,j ’s). We now have that, for Event 1
to succeed, there must exist a set of k experiments, K ⊆ [kc+1], so that, for all
(i, j) ∈ S ×K, the event χi,j holds. For Event 2 to succeed, it must be the case that,
for every i ∈ S, there exists one additional experiment (i.e., some j ∈ [kc+1] \K) so

35We may describe the process of picking g2
r← G as the process of independently letting the

output of g2 be equal to 1 with probability n−1/2k (each time a new input is introduced). Note
that we will be doing so only for inputs that occur after block-prefix bpd has been determined (as, in
the above case, all inputs for g2 are iteration-prefixes that correspond to block-prefix bpd, and such
iteration-prefixes will occur only after bpd has already been determined).
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that χi,j holds. It follows that (5.10) is upper bounded by

∑
K⊆[kc+1]
|K|=k

Pr

[
∀j ∈ K, ∀i ∈ S s.t. χi,j

]
· Pr

[
∀i ∈ S, ∃j ∈ [kc+1] \K s.t. χi,j

]

=

(
kc+1

k

)
·
((
n−

1
2k

)|S|)k

·
(
1−

(
1− n− 1

2k

)kc+1−k)|S|

<
(
kc+1

)k ·
((
n−

1
2k

)|S|)k

·
(
kc+1 · n− 1

2k

)|S|
(5.11)

=
(
kc+1

)k+|S| ·
(
n−

1
2k

)k·|S|+|S|

=
(
kc+1

)k+|S| ·
(
n−

1
4k

)|S| (
n−(

1
2+ 1

4k )
)|S|

<
(
n−(

1
2+ 1

4k )
)|S|

,(5.12)

where (5.11) holds whenever kc+1− k = o(n1/2k) (which is satisfied if k = o( logn
log log n ))

and (5.12) holds whenever (kc+1)k+|S| ·(n−1/4k)|S| < 1 (which is satisfied if both |S| >
k and k = o( logn

log log n )). This means that (5.10) is upper bounded by (n
−(1/2+1/4k))|S|,

and the proof of Lemma 5.17 is complete.
Using Lemma 5.17, we upper bound (5.9) by

tS(n) ·
(
n

n1/2

4

)
·
(
n−(

1
2+ 1

4k )
)n1/2

4

< tS(n) ·
(
4 · e · n
n1/2

)n1/2

4

·
(
n−(

1
2+ 1

4k )
)n1/2

4

= tS(n) ·
(
4 · e
n1/4k

)n1/2

4

< tS(n) · 2−n
1/2

4 ,(5.13)

where inequality (5.13) holds whenever 8 · e < n1/4k (which holds for k < logn
4·(3+log e) ).

This completes the proof of Lemma 5.7 (since poly(n) · 2−Ω(n1/2) is negligible).

Appendix A. Alternative description of the recursive schedule. The
schedule consists of n2 sessions. (Each session consists of k + 1 prover messages and
k+1 verifier messages.) It is defined recursively, where, for each m ≤ n2, the schedule
for sessions i1, . . . , im (denoted Ri1,...,im) proceeds as follows:

1. If m ≤ n, execute sessions i1, . . . , im sequentially until they are all completed;
2. otherwise, for j = 1, . . . , k + 1:

(a) for # = 1, . . . , n:

i. send the jth verifier message in session i� (i.e., v
(i�)
j );

ii. send the jth prover message in session i� (i.e., p
(i�)
j );

(b) if j < k + 1, invoke a recursive copy of Ri(n+(j−1)·t+1),...,i(n+j·t) (where

t
def
= �m−nk �);
(sessions i(n+(j−1)·t+1), . . . , i(n+j·t) are the next t remaining sessions out
of i1, . . . , im).
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Appendix B. Solving the recursion.
Claim B.1. Suppose that (5.5) holds. Then, for all sufficiently large n, W (n2) >

nc.
Proof. By applying (5.5) iteratively logk(n− 1) times, we get

W (n2) ≥ (kc+1
)logk(n−1) ·W (n)

≥ (kc+1
)logk(n−1) · 1

= (n− 1)c+1

> nc,(B.1)

where (B.1) holds for all sufficiently large n.
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Abstract. In the multiarmed bandit problem, a gambler must decide which arm of K non-
identical slot machines to play in a sequence of trials so as to maximize his reward. This classical
problem has received much attention because of the simple model it provides of the trade-off between
exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to
give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions
about the statistics of the slot machines.

In this work, we make no statistical assumptions whatsoever about the nature of the process
generating the payoffs of the slot machines. We give a solution to the bandit problem in which an
adversary, rather than a well-behaved stochastic process, has complete control over the payoffs. In
a sequence of T plays, we prove that the per-round payoff of our algorithm approaches that of the
best arm at the rate O(T−1/2). We show by a matching lower bound that this is the best possible.

We also prove that our algorithm approaches the per-round payoff of any set of strategies at a
similar rate: if the best strategy is chosen from a pool of N strategies, then our algorithm approaches
the per-round payoff of the strategy at the rate O((logN)1/2T−1/2). Finally, we apply our results to
the problem of playing an unknown repeated matrix game. We show that our algorithm approaches
the minimax payoff of the unknown game at the rate O(T−1/2).

Key words. adversarial bandit problem, unknown matrix games
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1. Introduction. In the multiarmed bandit problem, originally proposed by
Robbins [17], a gambler must choose which of K slot machines to play. At each time
step, he pulls the arm of one of the machines and receives a reward or payoff (possibly
zero or negative). The gambler’s purpose is to maximize his return, i.e., the sum of
the rewards he receives over a sequence of pulls. In this model, each arm is assumed to
deliver rewards that are independently drawn from a fixed and unknown distribution.
As reward distributions differ from arm to arm, the goal is to find the arm with the
highest expected payoff as early as possible and then to keep gambling using that best
arm.

The problem is a paradigmatic example of the trade-off between exploration and
exploitation. On the one hand, if the gambler plays exclusively on the machine that
he thinks is best (“exploitation”), he may fail to discover that one of the other arms
actually has a higher expected payoff. On the other hand, if he spends too much time
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trying out all the machines and gathering statistics (“exploration”), he may fail to
play the best arm often enough to get a high return.

The gambler’s performance is typically measured in terms of “regret.” This is the
difference between the expected return of the optimal strategy (pulling consistently
the best arm) and the gambler’s expected return. Lai and Robbins proved that
the gambler’s regret over T pulls can be made, for T → ∞, as small as O(lnT ).
Furthermore, they prove that this bound is optimal in the following sense: there is
no strategy for the gambler with a better asymptotic performance.

Though this formulation of the bandit problem allows an elegant statistical treat-
ment of the exploration-exploitation trade-off, it may not be adequate to model certain
environments. As a motivating example, consider the task of repeatedly choosing a
route for transmitting packets between two points in a communication network. To
cast this scenario within the bandit problem, suppose there is a only a fixed number
of possible routes and the transmission cost is reported back to the sender. Now, it
is likely that the costs associated with each route cannot be modeled by a stationary
distribution, so a more sophisticated set of statistical assumptions would be required.
In general, it may be difficult or impossible to determine the right statistical assump-
tions for a given domain, and some domains may exhibit dependencies to an extent
that no such assumptions are appropriate.

To provide a framework where one could model scenarios like the one sketched
above, we present the adversarial bandit problem, a variant of the bandit problem
in which no statistical assumptions are made about the generation of rewards. We
assume only that each slot machine is initially assigned an arbitrary and unknown
sequence of rewards, one for each time step, chosen from a bounded real interval.
Each time the gambler pulls the arm of a slot machine, he receives the corresponding
reward from the sequence assigned to that slot machine. To measure the gambler’s
performance in this setting we replace the notion of (statistical) regret with that
of worst-case regret. Given any sequence (j1, . . . , jT ) of pulls, where T > 0 is an
arbitrary time horizon and each jt is the index of an arm, the worst-case regret of
a gambler for this sequence of pulls is the difference between the return the gambler
would have had by pulling arms j1, . . . , jT and the actual gambler’s return, where
both returns are determined by the initial assignment of rewards. It is easy to see
that, in this model, the gambler cannot keep his regret small (say, sublinear in T )
for all sequences of pulls and with respect to the worst-case assignment of rewards to
the arms. Thus, to make the problem feasible, we allow the regret to depend on the
“hardness” of the sequence of pulls for which it is measured, where the hardness of a
sequence is roughly the number of times one has to change the slot machine currently
being played in order to pull the arms in the order given by the sequence. This trick
allows us to effectively control the worst-case regret simultaneously for all sequences
of pulls, even though (as one should expect) our regret bounds become trivial when
the hardness of the sequence (j1, . . . , jT ) we compete against gets too close to T .

As a remark, note that a deterministic bandit problem was also considered by
Gittins [9] and Ishikida and Varaiya [13]. However, their version of the bandit problem
is very different from ours: they assume that the player can compute ahead of time
exactly what payoffs will be received from each arm, and their problem is thus one of
optimization, rather than exploration and exploitation.

Our most general result is a very efficient, randomized player algorithm whose ex-
pected regret for any sequence of pulls is1 O(S

√
KT ln(KT )), where S is the hardness

1Though in this introduction we use the compact asymptotic notation, our bounds are proven
for each finite T and almost always with explicit constants.
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of the sequence (see Theorem 8.1 and Corollaries 8.2, 8.4). Note that this bound holds
simultaneously for all sequences of pulls, for any assignments of rewards to the arms,
and uniformly over the time horizon T . If the gambler is willing to impose an upper
bound S on the hardness of the sequences of pulls for which he wants to measure
his regret, an improved bound O(

√
SKT ln(KT )) on the expected regret for these

sequences can be proven (see Corollaries 8.3 and 8.5).
With the purpose of establishing connections with certain results in game theory,

we also look at a special case of the worst-case regret, which we call “weak regret.”
Given a time horizon T , call “best arm” the arm that has the highest return (sum of
assigned rewards) up to time T with respect to the initial assignment of rewards. The
gambler’s weak regret is the difference between the return of this best arm and the
actual gambler’s return. In the paper we introduce a randomized player algorithm,
tailored to this notion of regret, whose expected weak regret is O(

√
KGmax lnK),

where Gmax is the return of the best arm—see Theorem 4.1 in section 4. As before,
this bound holds for any assignments of rewards to the arms and uniformly over the
choice of the time horizon T . Using a more complex player algorithm, we also prove
that the weak regret is O(

√
KT ln(KT/δ)) with probability at least 1 − δ over the

algorithm’s randomization, for any fixed δ > 0; see Theorems 6.3 and 6.4 in section 6.
This also implies that, asymptotically for T →∞ and K constant, the weak regret is
O(
√

T (lnT )1+ε) with probability 1 for any fixed ε > 0; see Corollary 6.5.
Our worst-case bounds may appear weaker than the bounds proved using statis-

tical assumptions, such as those shown by Lai and Robbins [14] of the form O(lnT ).
However, when comparing our results to those in the statistics literature, it is im-
portant to point out an important difference in the asymptotic quantification. In the
work of Lai and Robbins, the assumption is that the distribution of rewards that is
associated with each arm is fixed as the total number of iterations T increases to
infinity. In contrast, our bounds hold for any finite T , and, by the generality of our
model, these bounds are applicable when the payoffs are randomly (or adversarially)
chosen in a manner that does depend on T . It is this quantification order, and not
the adversarial nature of our framework, which is the cause for the apparent gap. We
prove this point in Theorem 5.1, where we show that, for any player algorithm for the
K-armed bandit problem and for any T , there exists a set of K reward distributions
such that the expected weak regret of the algorithm when playing on these arms for
T time steps is Ω(

√
KT ).

So far we have considered notions of regret that compare the return of the gambler
to the return of a sequence of pulls or to the return of the best arm. A further
notion of regret which we explore is the regret for the best strategy in a given set
of strategies that are available to the gambler. The notion of “strategy” generalizes
that of “sequence of pulls”: at each time step a strategy gives a recommendation, in
the form of a probability distribution over the K arms, as to which arm to play next.
Given an assignment of rewards to the arms and a set of N strategies for the gambler,
call “best strategy” the strategy that yields the highest return with respect to this
assignment. Then the regret for the best strategy is the difference between the return
of this best strategy and the actual gambler’s return. Using a randomized player
that combines the choices of the N strategies (in the same vein as the algorithms for
“prediction with expert advice” from [3]), we show that the expected regret for the
best strategy is O(

√
KT lnN)—see Theorem 7.1. Note that the dependence on the

number of strategies is only logarithmic, and therefore the bound is quite reasonable
even when the player is combining a very large number of strategies.

The adversarial bandit problem is closely related to the problem of learning to
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play an unknown N -person finite game, where the same game is played repeatedly by
N players. A desirable property for a player is Hannan-consistency, which is similar
to saying (in our bandit framework) that the weak regret per time step of the player
converges to 0 with probability 1. Examples of Hannan-consistent player strategies
have been provided by several authors in the past (see [5] for a survey of these results).
By applying (slight extensions of) Theorems 6.3 and 6.4, we can provide an example of
a simple Hannan-consistent player whose convergence rate is optimal up to logarithmic
factors.

Our player algorithms are based in part on an algorithm presented by Freund and
Schapire [6, 7], which in turn is a variant of Littlestone and Warmuth’s [15] weighted
majority algorithm and Vovk’s [18] aggregating strategies. In the setting analyzed by
Freund and Schapire, the player scores on each pull the reward of the chosen arm but
gains access to the rewards associated with all of the arms (not just the one that was
chosen).

2. Notation and terminology. An adversarial bandit problem is specified by
the number K of possible actions, where each action is denoted by an integer 1 ≤
i ≤ K, and by an assignment of rewards, i.e., an infinite sequence x(1),x(2), . . . of
vectors x(t) = (x1(t), . . . , xK(t)), where xi(t) ∈ [0, 1] denotes the reward obtained if
action i is chosen at time step (also called “trial”) t. (Even though throughout the
paper we will assume that all rewards belong to the [0, 1] interval, the generalization
of our results to rewards in [a, b] for arbitrary a < b is straightforward.) We assume
that the player knows the number K of actions. Furthermore, after each trial t, we
assume the player knows only the rewards xi1(1), . . . , xit(t) of the previously chosen
actions i1, . . . , it. In this respect, we can view the player algorithm as a sequence
I1, I2, . . . , where each It is a mapping from the set ({1, . . . ,K} × [0, 1])t−1 of action
indices and previous rewards to the set of action indices.

For any reward assignment and for any T > 0, let

GA(T )
def
=

T∑
t=1

xit(t)

be the return at time horizon T of algorithm A choosing actions i1, i2, . . . . In what
follows, we will write GA instead of GA(T ) whenever the value of T is clear from the
context.

Our measure of performance for a player algorithm is the worst-case regret, and in
this paper we explore variants of the notion of regret. Given any time horizon T > 0
and any sequence of actions (j1, . . . , jT ), the (worst-case) regret of algorithm A for
(j1, . . . , jT ) is the difference

G(j1,...,jT ) −GA(T ),(1)

where

G(j1,...,jT )
def
=

T∑
t=1

xjt(t)

is the return, at time horizon T , obtained by choosing actions j1, . . . , jT . Hence, the
regret (1) measures how much the player lost (or gained, depending on the sign of the
difference) by following strategy A instead of choosing actions j1, . . . , jT . A special
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case of this is the regret of A for the best single action (which we will call weak regret
for short), defined by

Gmax(T )−GA(T ),

where

Gmax(T )
def
= max

j

T∑
t=1

xj(t)

is the return of the single globally best action at time horizon T . As before, we will
write Gmax instead of Gmax(T ) whenever the value of T is clear from the context.

As our player algorithms will be randomized, fixing a player algorithm defines
a probability distribution over the set of all sequences of actions. All the probabili-
ties P{·} and expectations E[·] considered in this paper will be taken with respect to
this distribution.

In what follows, we will prove two kinds of bounds on the performance of a
(randomized) player A. The first is a bound on the expected regret

G(j1,...,jT ) −E [GA(T )]

of A for an arbitrary sequence (j1, . . . , jT ) of actions. The second is a confidence
bound on the weak regret. This has the form

P {Gmax(T ) > GA(T ) + ε} ≤ δ

and states that, with high probability, the return of A up to time T is not much
smaller than that of the globally best action.

Finally, we remark that all of our bounds hold for any sequence x(1),x(2), . . . of
reward assignments, and most of them hold uniformly over the time horizon T (i.e.,
they hold for all T without requiring T as input parameter).

3. Upper bounds on the weak regret. In this section we present and analyze
our simplest player algorithm, Exp3 (which stands for “exponential-weight algorithm
for exploration and exploitation”). We will show a bound on the expected regret of
Exp3 with respect to the single best action. In the next sections, we will greatly
strengthen this result.

The algorithm Exp3, described in Figure 1, is a variant of the algorithm Hedge
introduced by Freund and Schapire [6] for solving a different worst-case sequential
allocation problem. On each time step t, Exp3 draws an action it according to the
distribution p1(t), . . . , pK(t). This distribution is a mixture of the uniform distribution
and a distribution which assigns to each action a probability mass exponential in
the estimated cumulative reward for that action. Intuitively, mixing in the uniform
distribution is done to make sure that the algorithm tries out all K actions and gets
good estimates of the rewards for each. Otherwise, the algorithm might miss a good
action because the initial rewards it observes for this action are low and large rewards
that occur later are not observed because the action is not selected.

For the drawn action it, Exp3 sets the estimated reward x̂it(t) to xit(t)/pit(t).
Dividing the actual gain by the probability that the action was chosen compensates
the reward of actions that are unlikely to be chosen. This choice of estimated rewards
guarantees that their expectations are equal to the actual rewards for each action;
that is, E[x̂j(t) | i1, . . . , it−1] = xj(t), where the expectation is taken with respect to
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Algorithm Exp3
Parameters: Real γ ∈ (0, 1].
Initialization: wi(1) = 1 for i = 1, . . . ,K.

For each t = 1, 2, . . .
1. Set

pi(t) = (1− γ)
wi(t)∑K
j=1 wj(t)

+
γ

K
i = 1, . . . ,K.

2. Draw it randomly accordingly to the probabilities p1(t), . . . , pK(t).
3. Receive reward xit(t) ∈ [0, 1].
4. For j = 1, . . . ,K set

x̂j(t) =

{
xj(t)/pj(t) if j = it,

0 otherwise,

wj(t + 1) = wj(t) exp (γx̂j(t)/K) .

Fig. 1. Pseudocode of algorithm Exp3 for the weak regret.

the random choice of it at trial t given the choices i1, . . . , it−1 in the previous t − 1
trials.

We now give the first main theorem of this paper, which bounds the expected
weak regret of algorithm Exp3.

Theorem 3.1. For any K > 0 and for any γ ∈ (0, 1],

Gmax −E[GExp3] ≤ (e− 1)γGmax +
K lnK

γ

holds for any assignment of rewards and for any T > 0.
To understand this theorem, it is helpful to consider a simpler bound which can

be obtained by an appropriate choice of the parameter γ.
Corollary 3.2. For any T > 0, assume that g ≥ Gmax and that algorithm Exp3

is run with input parameter

γ = min

{
1,

√
K lnK

(e− 1)g

}
.

Then

Gmax −E[GExp3] ≤ 2
√
e− 1

√
gK lnK ≤ 2.63

√
gK lnK

holds for any assignment of rewards.
Proof. If g ≤ (K lnK)/(e− 1), then the bound is trivial since the expected regret

cannot be more than g. Otherwise, by Theorem 3.1, the expected regret is at most

(e− 1)γGmax +
K lnK

γ
≤ 2
√
e− 1

√
gK lnK,
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as desired.
To apply Corollary 3.2, it is necessary that an upper bound g on Gmax(T ) be

available for tuning γ. For example, if the time horizon T is known, then, since no
action can have payoff greater than 1 on any trial, we can use g = T as an upper
bound. In section 4, we give a technique that does not require prior knowledge of
such an upper bound, yielding a result which uniformly holds over T .

If the rewards xi(t) are in the range [a, b], a < b, then Exp3 can be used after the
rewards have been translated and rescaled to the range [0, 1]. Applying Corollary 3.2
with g = T gives the bound (b−a)2

√
e− 1

√
TK lnK on the regret. For instance, this

is applicable to a standard loss model where the “rewards” fall in the range [−1, 0].
Proof of Theorem 3.1. The theorem is clearly true for γ = 1, so assume 0 < γ < 1.

Here (and also throughout the paper without explicit mention) we use the following
simple facts, which are immediately derived from the definitions:

x̂i(t) ≤ 1/pi(t) ≤ K/γ,(2)
K∑
i=1

pi(t)x̂i(t) = pit(t)
xit(t)

pit(t)
= xit(t),(3)

K∑
i=1

pi(t)x̂i(t)
2 = pit(t)

xit(t)

pit(t)
x̂it(t) ≤ x̂it(t) =

K∑
i=1

x̂i(t).(4)

Let Wt = w1(t)+ · · ·+wK(t). For all sequences i1, . . . , iT of actions drawn by Exp3,

Wt+1

Wt
=

K∑
i=1

wi(t + 1)

Wt

=

K∑
i=1

wi(t)

Wt
exp

( γ

K
x̂i(t)

)

=

K∑
i=1

pi(t)− γ
K

1− γ
exp

( γ

K
x̂i(t)

)
(5)

≤
K∑
i=1

pi(t)− γ
K

1− γ

[
1 +

γ

K
x̂i(t) + (e− 2)

( γ

K
x̂i(t)

)2
]

(6)

≤ 1 +
γ
K

1− γ

K∑
i=1

pi(t)x̂i(t) +
(e− 2)( γK )2

1− γ

K∑
i=1

pi(t)x̂i(t)
2(7)

≤ 1 +
γ
K

1− γ
xit(t) +

(e− 2)( γK )2

1− γ

K∑
i=1

x̂i(t).(8)

Equation (5) uses the definition of pi(t) in Figure 1. Equation (6) uses the fact that
ex ≤ 1 + x + (e − 2)x2 for x ≤ 1; the expression in the preceding line is at most 1
by (2). Equation (8) uses (3) and (4). Taking logarithms and using 1 + x ≤ ex gives

ln
Wt+1

Wt
≤

γ
K

1− γ
xit(t) +

(e− 2)( γK )2

1− γ

K∑
i=1

x̂i(t).

Summing over t we then get

ln
WT+1

W1
≤

γ
K

1− γ
GExp3 +

(e− 2)( γK )2

1− γ

T∑
t=1

K∑
i=1

x̂i(t) .(9)
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For any action j,

ln
WT+1

W1
≥ ln

wj(T + 1)

W1
=

γ

K

T∑
t=1

x̂j(t)− lnK.

Combining this with (9), we get

GExp3 ≥ (1− γ)

T∑
t=1

x̂j(t)− K lnK

γ
− (e− 2)

γ

K

T∑
t=1

K∑
i=1

x̂i(t) .(10)

We next take the expectation of both sides of (10) with respect to the distribution of
〈i1, . . . , iT 〉. For the expected value of each x̂i(t), we have

E[x̂i(t) | i1, . . . , it−1] = E

[
pi(t) · xi(t)

pi(t)
+ (1− pi(t)) · 0

]
= xi(t) .(11)

Combining (10) and (11), we find that

E[GExp3] ≥ (1− γ)

T∑
t=1

xj(t)− K lnK

γ
− (e− 2)

γ

K

T∑
t=1

K∑
i=1

xi(t) .

Since j was chosen arbitrarily and

T∑
t=1

K∑
i=1

xi(t) ≤ K Gmax,

we obtain the inequality in the statement of the theorem.
Additional notation. As our other player algorithms will be variants of Exp3,

we find it convenient to define some further notation based on the quantities used in
the analysis of Exp3.

For each 1 ≤ i ≤ K and for each t ≥ 1, define

Gi(t + 1)
def
=

t∑
s=1

xi(s),

Ĝi(t + 1)
def
=

t∑
s=1

x̂i(s),

Ĝmax(t + 1)
def
= max

1≤i≤K
Ĝi(t + 1).

4. Bounds on the weak regret that uniformly hold over time. In sec-
tion 3, we showed that Exp3 yields an expected regret of O(

√
Kg lnK) whenever an

upper bound g on the return Gmax of the best action is known in advance. A bound of
O(
√
KT lnK), which holds uniformly over T , could be easily proven via the “guess-

ing techniques” which will be used to prove Corollaries 8.4 and 8.5 in section 8. In
this section, instead, we describe an algorithm, called Exp3.1, whose expected weak
regret is O(

√
KGmax lnK) uniformly over T . As Gmax = Gmax(T ) ≤ T , this bound

is never worse than O(
√
KT lnK) and is substantially better whenever the return of

the best arm is small compared to T .
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Algorithm Exp3.1
Initialization: Let t = 1, and Ĝi(1) = 0 for i = 1, . . . ,K.

Repeat for r = 0, 1, 2, . . .
1. Let gr = (K lnK)/(e− 1) 4r.

2. Restart Exp3 choosing γr = min

{
1,

√
K lnK

(e− 1)gr

}
.

3. While maxi Ĝi(t) ≤ gr −K/γr do:
(a) Let it be the random action chosen by Exp3 and xit(t) the corre-

sponding reward.
(b) Ĝi(t + 1) = Ĝi(t) + x̂i(t) for i = 1, . . . ,K.
(c) t := t + 1.

Fig. 2. Pseudocode of algorithm Exp3.1 to control the weak regret uniformly over time.

Our algorithm Exp3.1, described in Figure 2, proceeds in epochs, where each
epoch consists of a sequence of trials. We use r = 0, 1, 2, . . . to index the epochs. On
epoch r, the algorithm “guesses” a bound gr for the return of the best action. It then
uses this guess to tune the parameter γ of Exp3, restarting Exp3 at the beginning of
each epoch. As usual, we use t to denote the current time step.2 Exp3.1 maintains an
estimate Ĝi(t+1) of the return of each action i. Since E[x̂i(t)] = xi(t), this estimate
will be unbiased in the sense that E[Ĝi(t + 1)] = Gi(t + 1) for all i and t. Using
these estimates, the algorithm detects (approximately) when the actual gain of some
action has advanced beyond gr. When this happens, the algorithm goes on to the
next epoch, restarting Exp3 with a larger bound on the maximal gain.

The performance of the algorithm is characterized by the following theorem which
is the main result of this section.

Theorem 4.1. For any K > 0,

Gmax −E[GExp3.1] ≤ 8
√
e− 1

√
GmaxK lnK + 8(e− 1)K + 2K lnK

≤ 10.5
√

GmaxK lnK + 13.8 K + 2K lnK

holds for any assignment of rewards and for any T > 0.
The proof of the theorem is divided into two lemmas. The first bounds the regret

suffered on each epoch, and the second bounds the total number of epochs.
Fix T arbitrarily and define the following random variables: Let R be the total

number of epochs (i.e., the final value of r). Let Sr and Tr be the first and last
time steps completed on epoch r (where, for convenience, we define TR = T ). Thus,
epoch r consists of trials Sr, Sr + 1, . . . , Tr. Note that, in degenerate cases, some
epochs may be empty in which case Sr = Tr + 1. Let Ĝmax = Ĝmax(T + 1).

Lemma 4.2. For any action j and for every epoch r,

Tr∑
t=Sr

xit(t) ≥
Tr∑
t=Sr

x̂j(t)− 2
√
e− 1

√
grK lnK .

2Note that, in general, this t may differ from the “local variable” t used by Exp3 which we now
regard as a subroutine. Throughout this section, we will only use t to refer to the total number of
trials as in Figure 2.
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Proof. If Sr > Tr (so that no trials occur on epoch r), then the lemma holds
trivially since both summations will be equal to zero. Assume then that Sr ≤ Tr. Let
g = gr and γ = γr. We use (10) from the proof of Theorem 3.1:

Tr∑
t=Sr

xit(t) ≥
Tr∑
t=Sr

x̂j(t)− γ

Tr∑
t=1

x̂j(t)− K lnK

γ
− (e− 2)

γ

K

Tr∑
t=Sr

K∑
i=1

x̂i(t) .

From the definition of the termination condition we know that Ĝi(Tr) ≤ g − K/γ.
Using (2), we get x̂i(t) ≤ K/γ. This implies that Ĝi(Tr + 1) ≤ g for all i. Thus,

Tr∑
t=Sr

xit(t) ≥
Tr∑
t=Sr

x̂j(t)− g (γ + γ(e− 2))− K lnK

γ
.

By our choice for γ, we get the statement of the lemma.
The next lemma gives an implicit upper bound on the number of epochs R. Let

c = (K lnK)/(e− 1).
Lemma 4.3. The number of epochs R satisfies

2R−1 ≤ K

c
+

√
Ĝmax

c
+

1

2
.

Proof. If R = 0, then the bound holds trivially. So assume R ≥ 1. Let z = 2R−1.
Because epoch R− 1 was completed, by the termination condition,

Ĝmax ≥ Ĝmax(TR−1 + 1) > gR−1 − K

γR−1
= c 4R−1 −K 2R−1 = cz2 −Kz .(12)

Suppose the claim of the lemma is false. Then z > K/c +

√
Ĝmax/c. Since the

function cx2 −Kx is increasing for x > K/(2c), this implies that

cz2 −Kz > c


K

c
+

√
Ĝmax

c




2

−K


K

c
+

√
Ĝmax

c


 = K

√
Ĝmax

c
+ Ĝmax ,

contradicting (12).
Proof of Theorem 4.1. Using the lemmas, we have that

GExp3.1 =

T∑
t=1

xit(t) =

R∑
r=0

Tr∑
t=Sr

xit(t)

≥ max
j

R∑
r=0

(
Tr∑
t=Sr

x̂j(t)− 2
√
e− 1

√
grK lnK

)

= max
j

Ĝj(T + 1)− 2K lnK

R∑
r=0

2r

= Ĝmax − 2K lnK(2R+1 − 1)

≥ Ĝmax + 2K lnK − 8K lnK


K

c
+

√
Ĝmax

c
+

1

2




= Ĝmax − 2K lnK − 8(e− 1)K − 8
√
e− 1

√
ĜmaxK lnK .(13)
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Here, we used Lemma 4.2 for the first inequality and Lemma 4.3 for the second
inequality. The other steps follow from definitions and simple algebra.

Let f(x) = x−a
√
x− b for x ≥ 0, where a = 8

√
e− 1

√
K lnK and b = 2K lnK+

8(e− 1)K. Taking expectations of both sides of (13) gives

E[GExp3.1] ≥ E[f(Ĝmax)] .(14)

Since the second derivative of f is positive for x > 0, f is convex so that, by Jensen’s
inequality,

E[f(Ĝmax)] ≥ f(E[Ĝmax]) .(15)

Note that

E[Ĝmax] = E

[
max
j

Ĝj(T + 1)

]
≥ max

j
E[Ĝj(T + 1)] = max

j

T∑
t=1

xj(t) = Gmax .

The function f is increasing if and only if x > a2/4. Therefore, if Gmax > a2/4, then
f(E[Ĝmax]) ≥ f(Gmax). Combined with (14) and (15), this gives that E[GExp3.1] ≥
f(Gmax), which is equivalent to the statement of the theorem. On the other hand, if
Gmax ≤ a2/4, then, because f is nonincreasing on [0, a2/4],

f(Gmax) ≤ f(0) = −b ≤ 0 ≤ E[GExp3.1],

so the theorem trivially follows in this case as well.

5. Lower bounds on the weak regret. In this section, we state a lower bound
on the expected weak regret of any player. More precisely, for any choice of the time
horizon T we show that there exists a strategy for assigning the rewards to the actions
such that the expected weak regret of any player algorithm is Ω(

√
KT ). Observe that

this does not match the upper bound for our algorithms Exp3 and Exp3.1 (see
Corollary 3.2 and Theorem 4.1); it is an open problem to close this gap.

Our lower bound is proven using the classical (statistical) bandit model with a
crucial difference: the reward distribution depends on the number K of actions and
on the time horizon T . This dependence is the reason why our lower bound does not
contradict the upper bounds of the form O(lnT ) for the classical bandit model [14].
There, the distribution over the rewards is fixed as T →∞.

Note that our lower bound has a considerably stronger dependence on the num-
ber K of action than the lower bound Θ(

√
T lnK), which could have been directly

proven from the results in [3, 6]. Specifically, our lower bound implies that no upper
bound is possible of the form O(Tα(lnK)β), where 0 ≤ α < 1, β > 0.

Theorem 5.1. For any number of actions K ≥ 2 and for any time horizon T ,
there exists a distribution over the assignment of rewards such that the expected weak
regret of any algorithm (where the expectation is taken with respect to both the ran-
domization over rewards and the algorithm’s internal randomization) is at least

1

20
min{

√
KT, T}.

The proof is given in Appendix A.
The lower bound implies, of course, that for any algorithm there is a particular

choice of rewards that will cause the expected weak regret (where the expectation is
now with respect to the algorithm’s internal randomization only) to be larger than
this value.
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Algorithm Exp3.P
Parameters: Reals α > 0 and γ ∈ (0, 1].
Initialization: For i = 1, . . . ,K

wi(1) = exp

(
αγ

3

√
T

K

)
.

For each t = 1, 2, . . . , T
1. For i = 1, . . . ,K set

pi(t) = (1− γ)
wi(t)∑K
j=1 wj(t)

+
γ

K
.

2. Choose it randomly according to the distribution p1(t), . . . , pK(t).
3. Receive reward xit(t) ∈ [0, 1].
4. For j = 1, . . . ,K set

x̂j(t) =

{
xj(t)/pj(t) if j = it,

0 otherwise,

wj(t + 1) = wj(t) exp

(
γ

3K

(
x̂j(t) +

α

pj(t)
√
KT

))
.

Fig. 3. Pseudocode of algorithm Exp3.P achieving small weak regret with high probability.

6. Bounds on the weak regret that hold with probability 1. In section 4
we showed that the expected weak regret of algorithm Exp3.1 is O(

√
KT lnK).

In this section we show that a modification of Exp3 achieves a weak regret of
O(
√

KT ln(KT/δ)) with probability at least 1 − δ, for any fixed δ and uniformly
over T . From this, a bound on the weak regret that holds with probability 1 easily
follows.

The modification of Exp3 is necessary since the variance of the regret achieved
by this algorithm is large—so large that an interesting high probability bound may
not hold. The large variance of the regret comes from the large variance of the esti-
mates x̂i(t) for the payoffs xi(t). In fact, the variance of x̂i(t) can be close to 1/pi(t),
which, for γ in our range of interest, is (ignoring the dependence of K) of magni-
tude

√
T . Summing over trials, the variance of the return of Exp3 is about T 3/2, so

that the regret might be as large as T 3/4.
To control the variance we modify algorithm Exp3 so that it uses estimates

which are based on upper confidence bounds instead of estimates with the correct
expectation. The modified algorithm Exp3.P is given in Figure 3. Let

σ̂i(t + 1)
def
=
√
KT +

t∑
s=1

1

pi(t)
√
KT

.

Whereas algorithm Exp3 directly uses the estimates Ĝi(t) when choosing it at ran-
dom, algorithm Exp3.P uses the upper confidence bounds Ĝi(t) + ασ̂i(t). The next
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lemma shows that, for appropriate α, these are indeed upper confidence bounds. Fix
some time horizon T . In what follows, we will use σ̂i to denote σ̂i(T + 1) and Ĝi to
denote Ĝi(T + 1).

Lemma 6.1. If 2
√

ln(KT/δ) ≤ α ≤ 2
√
KT , then

P
{
∃i : Ĝi + ασ̂i < Gi

}
≤ δ.

Proof. Fix some i and set

st
def
=

α

2σ̂i(t + 1)
.

Since α ≤ 2
√
KT and σ̂i(t + 1) ≥ √KT , we have st ≤ 1. Now

P
{
Ĝi + ασ̂i < Gi

}

= P

{
T∑
t=1

(xi(t)− x̂i(t))− α

2
σ̂i >

α

2
σ̂i

}

≤ P

{
sT

T∑
t=1

(
xi(t)− x̂i(t)− α

2pi(t)
√
KT

)
>

α2

4

}
(16)

= P

{
exp

(
sT

T∑
t=1

(
xi(t)− x̂i(t)− α

2pi(t)
√
KT

))
> exp

(
α2

4

)}

≤ e−α
2/4E

[
exp

(
sT

T∑
t=1

(
xi(t)− x̂i(t)− α

2pi(t)
√
KT

))]
,(17)

where in step (16) we multiplied both sides by sT and used σ̂i ≥
∑T
t=1 1/(pi(t)

√
KT ),

while in step (17) we used Markov’s inequality. For t = 1, . . . , T set

Zt
def
= exp

(
st

t∑
τ=1

(
xi(τ)− x̂i(τ)− α

2pi(τ)
√
KT

))
.

Then, for t = 2, . . . , T

Zt = exp

(
st

(
xi(t)− x̂i(t)− α

2pi(t)
√
KT

))
· (Zt−1)

st
st−1 .

Denote by Et [Zt] = E [Zt | i1, . . . , it−1] the expectation of Zt with respect to the
random choice in trial t and conditioned on the past t− 1 trials. Note that when the
past t− 1 trials are fixed the only random quantities in Zt are the x̂i(t)’s. Note also
that xi(t)− x̂i(t) ≤ 1 and that

Et
[
(xi(t)− x̂i(t))

2
]
= Et

[
x̂i(t)

2
]− xi(t)

2

≤ Et
[
x̂i(t)

2
]

=
xi(t)

2

pi(t)
≤ 1

pi(t)
.(18)
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Hence, for each t = 2, . . . , T

Et [Zt] ≤ Et

[
exp st

(
xi(t)− x̂i(t)− st

pi(t)

)]
(Zt−1)

st
st−1(19)

≤ Et
[
1 + st(xi(t)− x̂i(t)) + s2

t (xi(t)− x̂i(t))
2
]
exp

(
− s2

t

pi(t)

)
(Zt−1)

st
st−1(20)

≤ (1 + s2
t/pi(t)

)
exp

(
− s2

t

pi(t)

)
(Zt−1)

st
st−1(21)

≤ (Zt−1)
st
st−1(22)

≤ 1 + Zt−1.(23)

Equation (19) uses

α

2pi(t)
√
KT

≥ α

2pi(t)σ̂i(t + 1)
=

st
pi(t)

since σ̂i(t + 1) ≥ √KT . Equation (20) uses ea ≤ 1 + a + a2 for a ≤ 1. Equation (21)
uses Et [x̂i(t)] = xi(t). Equation (22) uses 1 + x ≤ ex for any real x. Equation (23)
uses st ≤ st−1 and zu ≤ 1+ z for any z > 0 and u ∈ [0, 1]. Observing that E [Z1] ≤ 1,
we get by induction that E[ZT ] ≤ T , and the lemma follows by our choice of α.

The next lemma shows that the return achieved by algorithm Exp3.P is close to
its upper confidence bounds. Let

Û
def
= max

1≤i≤K

(
Ĝi + ασ̂i

)
.

Lemma 6.2. If α ≤ 2
√
KT , then

GExp3.P ≥
(
1− 5γ

3

)
Û − 3

γ
K lnK − 2α

√
KT − 2α2 .

Proof. We proceed as in the analysis of algorithm Exp3. Set η = γ/(3K) and
consider any sequence i1, . . . , iT of actions chosen by Exp3.P. As x̂i(t) ≤ K/γ,
pi(t) ≥ γ/K, and α ≤ 2

√
KT , we have

ηx̂i(t) +
αη

pi(t)
√
KT

≤ 1 .

Therefore,

Wt+1

Wt
=

K∑
i=1

wi(t + 1)

Wt

=

K∑
i=1

wi(t)

Wt
exp

(
ηx̂i(t) +

αη

pi(t)
√
KT

)

=
K∑
i=1

pi(t)− γ/K

1− γ
exp

(
ηx̂i(t) +

αη

pi(t)
√
KT

)

≤
K∑
i=1

pi(t)− γ/K

1− γ

[
1 + ηx̂i(t) +

αη

pi(t)
√
KT

+ 2η2x̂i(t)
2 +

2α2η2

pi(t)2KT

]
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≤ 1 +
η

1− γ

K∑
i=1

pi(t)x̂i(t) +
αη

1− γ

K∑
i=1

1√
KT

+
2η2

1− γ

K∑
i=1

pi(t)x̂i(t)
2 +

2α2η2

1− γ

K∑
i=1

1

pi(t)KT

≤ 1 +
η

1− γ
xit(t) +

αη

1− γ

√
K

T
+

2η2

1− γ

K∑
i=1

x̂i(t) +
2α2η

1− γ

1

T
.

The second inequality uses ea ≤ 1+a+a2 for a ≤ 1, and (a+ b)2 ≤ 2(a2 + b2) for any
a, b. The last inequality uses (2), (3), and (4). Taking logarithms, using ln(1+x) ≤ x,
and summing over t = 1, . . . , T , we get

ln
WT+1

W1
≤ η

1− γ
GExp3.P +

αη

1− γ

√
KT +

2η2

1− γ

K∑
i=1

Ĝi +
2α2η

1− γ
.

Since

lnW1 = αη
√
KT + lnK

and for any j

lnWT+1 ≥ lnwj(T + 1) ≥ ηĜj + αησ̂j ,

this implies

GExp3.P ≥ (1− γ)
(
Ĝj + ασ̂j

)
− 1

η
lnK − 2α

√
KT − 2η

K∑
i=1

Ĝi − 2α2

for any j. Finally, using η = γ/(3K) and

K∑
i=1

Ĝi ≤ KÛ

yields the lemma.
Combining Lemmas 6.1 and 6.2 gives the main result of this section.
Theorem 6.3. For any fixed T > 0, for all K ≥ 2 and for all δ > 0, if

γ = min

{
3

5
, 2

√
3

5

K lnK

T

}
and α = 2

√
ln(KT/δ) ,

then

Gmax −GExp3.P ≤ 4

√
KT ln

KT

δ
+ 4

√
5

3
KT lnK + 8 ln

KT

δ

holds for any assignment of rewards with probability at least 1− δ.
Proof. We assume without loss of generality that T ≥ (20/3)K lnK and that

δ ≥ KTe−KT . If either of these conditions do not hold, then the theorem holds
trivially. Note that T ≥ (20/3)K lnK ensures γ ≤ 3/5. Note also that δ ≥ KTe−KT
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Algorithm Exp3.P.1
Parameters: Real 0 < δ < 1.
Initialization: For each r ≥ 1 let Tr = 2r, δr = δ

(r+1)(r+2) , and set

r∗ = min{r ∈ N : δr ≥ KTre
−KTr}.(24)

Repeat for r = r∗, r∗ + 1, . . .
Run Exp3.P for Tr trials choosing α and γ as in Theorem 6.3 with T = Tr and

δ = δr.

Fig. 4. Pseudocode of algorithm Exp3.P.1 (see Theorem 6.4).

implies α ≤ 2
√
KT for our choice of α. So we can apply Lemmas 6.1 and 6.2. By

Lemma 6.2 we have

GExp3.P ≥
(
1− 5γ

3

)
Û − 3

γ
K lnK − 2α

√
KT − 2α2 .

By Lemma 6.1 we have Û ≥ Gmax with probability at least 1 − δ. Collecting terms
and using Gmax ≤ T gives the theorem.

It is not difficult to obtain an algorithm that does not need the time horizon T
as input parameter and whose regret is only slightly worse than that proven for the
algorithm Exp3.P in Theorem 6.3. This new algorithm, called Exp3.P.1 and shown
in Figure 4, simply restarts Exp3.P doubling its guess for T each time. The only
crucial issue is the choice of the confidence parameter δ and of the minimum length
of the runs to ensure that Lemma 6.1 holds for all the runs of Exp3.P.

Theorem 6.4. Let r∗ be as in (24). Let K ≥ 2, δ ∈ (0, 1), and T ≥ 2r
∗
. Let

cT = 2 ln(2 + log2 T ). Then

Gmax −GExp3.P.1 ≤ 10√
2− 1

√
2KT

(
ln

KT

δ
+ cT

)
+ 10(1 + log2 T )

(
ln

KT

δ
+ cT

)

holds with probability at least 1− δ.
Proof. Choose the time horizon T arbitrarily and call epoch the sequence of trials

between two successive restarts of algorithm Exp3.P.
For each r > r∗, where r∗ is defined in (24), let

Gi(r)
def
=

2r+1∑
t=2r+1

xi(t) , Ĝi(r)
def
=

2r+1∑
t=2r+1

x̂i(t) , σ̂i(r)
def
=
√

KTr+

2r+1∑
t=2r+1

1

pi(t)
√
KTr

and similarly define the quantities Gi(r
∗) and Ĝi(r

∗) with sums that go from t = 1
to t = 2r

∗+1.
For each r ≥ r∗, we have δr ≥ KTre

−KTr . Thus we can find numbers αr such
that, by Lemma 6.1,

P
{
(∃r ≥ r∗)(∃i) : Ĝi(r) + αrσ̂i(r) < Gi(r)

}
≤
∞∑
r=r∗

P
{
∃i : Ĝi(r) + αrσ̂i(r) < Gi(r)

}
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≤
∞∑
r=0

δ

(r + 1)(r + 2)

= δ .

We now apply Theorem 6.3 to each epoch. Since T ≥ 2r
∗
, there is an * ≥ 1 such that

2r
∗+�−1 ≤ T =

�−1∑
r=0

2r
∗+r < 2r

∗+� .

With probability at least 1−δ over the random draw of Exp3.P.1’s actions i1, . . . , iT ,

Gmax −GExp3.P.1

≤
�−1∑
r=0

10

[√
KTr∗+r ln

KTr∗+r
δr∗+r

+ ln
KTr∗+r
δr∗+r

]

≤ 10

[√
K ln

KTr∗+�−1

δr∗+�−1

�−1∑
r=0

√
Tr∗+r + * ln

KTr∗+�−1

δr∗+�−1

]

≤ 10

[√
K ln

KTr∗+�−1

δr∗+�−1

(
2(r∗+�)/2
√

2− 1

)
+ * ln

KTr∗+�−1

δr∗+�−1

]

≤ 10√
2− 1

√
2KT

(
ln

KT

δ
+ cT

)
+ 10(1 + log2 T )

(
ln

KT

δ
+ cT

)
,

where cT = 2 ln(2 + log2 T ).
From the above theorem we get, as a simple corollary, a statement about the

almost sure convergence of the return of algorithm Exp3.P. The rate of convergence
is almost optimal, as one can see from our lower bound in section 5.

Corollary 6.5. For any K ≥ 2 and for any function f : R → R with
limT→∞ f(T ) =∞,

lim
T→∞

Gmax −GExp3.P.1√
T (lnT )f(T )

= 0

holds for any assignment of rewards with probability 1.
Proof. Let δ = 1/T 2. Then, by Theorem 6.4, there exists a constant C such that

for all T large enough

Gmax −GExp3.P.1 ≤ C
√
KT lnT

with probability at least 1− 1/T 2. This implies that

P

{
Gmax −GExp3.P.1√

(T lnT )f(T )
> C

√
K

f(T )

}
≤ 1

T 2
,

and the theorem follows from the Borel–Cantelli lemma.

7. The regret against the best strategy from a pool. Consider a setting
where the player has preliminarily fixed a set of strategies that could be used for
choosing actions. These strategies might select different actions at different itera-
tions. The strategies can be computations performed by the player or they can be
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external advice given to the player by “experts.” We will use the more general term
“expert” (borrowed from Cesa-Bianchi et al. [3]) because we place no restrictions on
the generation of the advice. The player’s goal in this case is to combine the advice
of the experts in such a way that its return is close to that of the best expert.

Formally, an expert i is an infinite sequence ξi(1), ξi(2), . . . ∈ [0, 1]K of prob-
ability vectors, where the jth component ξij(t) of ξi(t) represents the recommended
probability of playing action j at time t. An adversarial bandit problem with N experts
is thus specified by both an assignment of rewards to actions and by an assignment
of probability vectors to each expert. We assume that the player, prior to choosing
an action at time t, is provided with the set ξ1(t), . . . , ξN (t) ∈ [0, 1]K . (As a spe-
cial case, the distribution can be concentrated on a single action, which represents a
deterministic recommendation.) If the vector of rewards at time t is x(t), then the
expected reward for expert i, with respect to the chosen probability vector ξi(t), is
simply ξi(t) · x(t). In analogy of Gmax, we define

G̃max
def
= max

1≤i≤N

T∑
t=1

ξi(t) · x(t)

measuring the expected return of the best strategy. Then the regret for the best
strategy at time horizon T , defined by G̃max(T ) − GA(T ), measures the difference
between the return of the best expert and player’s A return up to time T .

We could at this point view each expert as a “meta-action” in a higher-level
bandit problem with payoff vector defined at trial t as (ξ1(t) · x(t), . . . , ξN (t) · x(t)).
We could then immediately apply Corollary 3.2 to obtain a bound of O(

√
gN logN)

on the player’s regret relative to the best expert (where g is an upper bound on G̃max).
However, this bound is quite weak if the player is combining many experts (i.e., if N is
very large). We show below that the algorithm Exp3 from section 3 can be modified
yielding a regret term of the form O(

√
gK logN). This bound is very reasonable

when the number of actions is small, but the number of experts is quite large (even
exponential).

Our algorithm Exp4 is shown in Figure 5, and is only a slightly modified ver-
sion of Exp3. (Exp4 stands for “exponential-weight algorithm for exploration and
exploitation using expert advice.”) Let us define y(t) ∈ [0, 1]N to be the vector with
components corresponding to the gains of the experts: yi(t) = ξi(t) · x(t).

The simplest possible expert is one which always assigns uniform weight to all
actions so that ξj(t) = 1/K on each round t. We call this the uniform expert. To
prove our results, we need to assume that the uniform expert is included in the family
of experts.3 Clearly, the uniform expert can always be added to any given family of
experts at the very small expense of increasing N by one.

Theorem 7.1. For any K,T > 0, for any γ ∈ (0, 1], and for any family of
experts which includes the uniform expert,

G̃max −E[GExp4] ≤ (e− 1)γG̃max +
K lnN

γ

holds for any assignment of rewards.

3In fact, we can use a slightly weaker sufficient condition, namely, that the uniform expert is
included in the convex hull of the family of experts, i.e., that there exists nonnegative numbers

α1, . . . , αN with
∑N

j=1
αj = 1 such that, for all t and all i,

∑N

j=1
αjξ

j
i (t) = 1/K.
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Algorithm Exp4
Parameters: Real γ ∈ (0, 1].
Initialization: wi(1) = 1 for i = 1, . . . , N .

For each t = 1, 2, . . .
1. Get advice vectors ξ1(t), . . . , ξN (t).

2. Set Wt =
∑N
i=1 wi(t) and for j = 1, . . . ,K set

pj(t) = (1− γ)

N∑
i=1

wi(t)ξ
i
j(t)

Wt
+

γ

K
.

3. Draw action it randomly according to the probabilities p1(t), . . . , pK(t).
4. Receive reward xit(t) ∈ [0, 1].
5. For j = 1, . . . ,K set

x̂j(t) =

{
xj(t)/pj(t) if j = it,

0 otherwise.

6. For i = 1, . . . , N set

ŷi(t) = ξi(t) · x̂(t),

wi(t + 1) = wi(t) exp (γŷi(t)/K) .

Fig. 5. Pseudocode of algorithm Exp4 for using expert advice.

Proof. We prove this theorem along the lines of the proof of Theorem 3.1. Let
qi(t) = wi(t)/Wt. Then

Wt+1

Wt
=

N∑
i=1

wi(t + 1)

Wt

=

N∑
i=1

qi(t) exp
( γ

K
ŷi(t)

)

≤
N∑
i=1

qi(t)

[
1 +

γ

K
ŷi(t) + (e− 2)

( γ

K
ŷi(t)

)2
]

= 1 +
( γ

K

) N∑
i=1

qi(t)ŷi(t) + (e− 2)
( γ

K

)2 N∑
i=1

qi(t)ŷi(t)
2 .

Taking logarithms and summing over t we get

ln
WT+1

W1
≤
( γ

K

) T∑
t=1

N∑
i=1

qi(t)ŷi(t) + (e− 2)
( γ

K

)2 T∑
t=1

N∑
i=1

qi(t)ŷi(t)
2 .
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Since, for any expert k,

ln
WT+1

W1
≥ ln

wk(T + 1)

W1
=

γ

K

T∑
t=1

ŷk(t)− lnN,

we get

T∑
t=1

N∑
i=1

qi(t)ŷi(t) ≥
T∑
t=1

ŷk(t)− K lnN

γ
− (e− 2)

γ

K

T∑
t=1

N∑
i=1

qi(t)ŷi(t)
2 .

Note that

N∑
i=1

qi(t)ŷi(t) =

N∑
i=1

qi(t)


 K∑
j=1

ξij(t)x̂j(t)




=
K∑
j=1

(
N∑
i=1

qi(t)ξ
i
j(t)

)
x̂j(t)

=

K∑
j=1

(
pj(t)− γ

K

1− γ

)
x̂j(t) ≤ xj(t)

1− γ
.

Also,

N∑
i=1

qi(t)ŷi(t)
2 =

N∑
i=1

qi(t)(ξ
i
it(t)x̂it(t))

2

≤ x̂it(t)
2 pit(t)

1− γ

≤ x̂it(t)

1− γ
.

Therefore, for all experts k,

GExp4 =

T∑
t=1

x̂it(t) ≥ (1− γ)

T∑
t=1

ŷk(t)− K lnN

γ
− (e− 2)

γ

K

T∑
t=1

K∑
j=1

x̂j(t) .

We now take expectations of both sides of this inequality. Note that

E[ŷk(t)] = E


 K∑
j=1

ξkj (t)x̂j(t)


 =

K∑
j=1

ξkj (t)xj(t) = yk(t) .

Further,

1

K
E


 T∑
t=1

K∑
j=1

x̂j(t)


 =

T∑
t=1

1

K

K∑
j=1

xj(t) ≤ max
1≤i≤N

T∑
t=1

yi(t) = G̃max

since we have assumed that the uniform expert is included in the family of experts.
Combining these facts immediately implies the statement of the theorem.
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Algorithm Exp3.S
Parameters: Reals γ ∈ (0, 1] and α > 0.
Initialization: wi(1) = 1 for i = 1, . . . ,K.

For each t = 1, 2, . . .
1. Set

pi(t) = (1− γ)
wi(t)∑K
j=1 wj(t)

+
γ

K
, i = 1, . . . ,K.

2. Draw it according to the probabilities p1(t), . . . , pK(t).
3. Receive reward xit(t) ∈ [0, 1].
4. For j = 1, . . . ,K set

x̂j(t) =

{
xj(t)/pj(t) if j = it,

0 otherwise,

wj(t + 1) = wj(t) exp (γx̂j(t)/K) +
eα

K

K∑
i=1

wi(t) .

Fig. 6. Pseudocode of algorithm Exp3.S to control the expected regret.

8. The regret against arbitrary strategies. In this section we present a
variant of algorithm Exp3 and prove a bound on its expected regret for any sequence
(j1, . . . , jT ) of actions. To prove this result, we rank all sequences of actions according
to their “hardness.” The hardness of a sequence (j1, . . . , jT ) is defined by

h(j1, . . . , jT )
def
= 1 + |{1 ≤ * < T : j� �= j�+1}| .

So, h(1, . . . , 1) = 1 and h(1, 1, 3, 2, 2) = 3. The bound on the regret which we will
prove grows with the hardness of the sequence for which we are measuring the regret.
In particular, we will show that the player algorithm Exp3.S described in Figure 6
has an expected regret of O(h(jT )

√
KT ln(KT )) for any sequence jT = (j1, . . . , jT )

of actions. On the other hand, if the regret is measured for any sequence jT of actions
of hardness h(jT ) ≤ S, then the expected regret of Exp3.S (with parameters tuned
to this S) reduces to O(

√
SKT ln(KT )). In what follows, we will use GjT to denote

the return xj1(1) + · · ·+ xjT (T ) of a sequence jT = (j1, . . . , jT ) of actions.
Theorem 8.1. For any K > 0, for any γ ∈ (0, 1], and for any α > 0,

GjT −E [GExp3.S] ≤ K(h(jT ) ln(K/α) + eαT )

γ
+ (e− 1)γT

holds for any assignment of rewards, for any T > 0, and for any sequence jT =
(j1, . . . , jT ) of actions.

Corollary 8.2. Assume that algorithm Exp3.S is run with input parameters
α = 1/T and

γ = min

{
1,

√
K ln(KT )

T

}
.
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Then

GjT −E [GExp3.S] ≤ h(jT )
√

KT ln(KT ) + 2e

√
KT

ln(KT )

holds for any sequence jT = (j1, . . . , jT ) of actions.
Note that the statement of Corollary 8.2 can be equivalently written as

E [GExp3.S] ≥ max
jT

(
GjT − h(jT )

√
KT ln(KT )

)

− 2e

√
KT

ln(KT )
,

revealing that algorithm Exp3.S is able to automatically trade-off between the re-
turn GjT of a sequence jT and its hardness h(jT ).

Corollary 8.3. Assume that algorithm Exp3.S is run with input parameters
α = 1/T and

γ = min

{
1,

√
K(S ln(KT ) + e)

(e− 1)T

}
.

Then

GjT −E [GExp3.S] ≤ 2
√
e− 1

√
KT (S ln(KT ) + e)

holds for any sequence jT = (j1, . . . , jT ) of actions such that h(jT ) ≤ S.
Proof of Theorem 8.1. Fix any sequence jT = (j1, . . . , jT ) of actions. With a

technique that closely follows the proof of Theorem 3.1, we can prove that for all
sequences i1, . . . , iT of actions drawn by Exp3.S,

Wt+1

Wt
≤ 1 +

γ/K

1− γ
xit(t) +

(e− 2)(γ/K)2

1− γ

K∑
i=1

x̂i(t) + eα,(25)

where, as usual, Wt = w1(t)+ · · ·+wK(t). Now let S = h(jT ) and partition (1, . . . , T )
in segments

[T1, . . . , T2), [T2, . . . , T3), . . . , [TS , . . . , TS+1),

where T1 = 1, TS+1 = T + 1, and jTs = jTs+1 = · · · = jTs+1−1 for each segment s =
1, . . . , S. Fix an arbitrary segment [Ts, Ts+1) and let ∆s = Ts+1 − Ts. Furthermore,
let

GExp3.S(s)
def
=

Ts+1−1∑
t=Ts

xit(t) .

Taking logarithms on both sides of (25) and summing over t = Ts, . . . , Ts+1 − 1, we
get

ln
WTs+1

WTs

≤ γ/K

1− γ
GExp3.S(s) +

(e− 2)(γ/K)2

1− γ

Ts+1−1∑
t=Ts

K∑
i=1

x̂i(t) + eα∆s .(26)
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Now let j be the action such that jTs = · · · = jTs+1−1 = j. Since

wj(Ts+1) ≥ wj(Ts + 1) exp


 γ

K

Ts+1−1∑
t=Ts+1

x̂j(t)




≥ eα

K
WTs exp


 γ

K

Ts+1−1∑
t=Ts+1

x̂j(t)




≥ α

K
WTs exp


 γ

K

Ts+1−1∑
t=Ts

x̂j(t)


 ,

where the last step uses γx̂j(t)/K ≤ 1, we have

ln
WTs+1

WTs

≥ ln
wj(Ts+1)

WTs

≥ ln
( α

K

)
+

γ

K

Ts+1−1∑
t=Ts

x̂j(t) .(27)

Piecing together (26) and (27) we get

GExp3.S(s) ≥ (1− γ)

Ts+1−1∑
t=Ts

x̂j(t)−
K ln(Kα )

γ
− (e− 2)

γ

K

Ts+1−1∑
t=Ts

K∑
i=1

x̂i(t)− eαK∆s

γ
.

Summing over all segments s = 1, . . . , S, taking expectation with respect to the
random choices of algorithm Exp3.S, and using

G(j1,...,jT ) ≤ T and

T∑
t=1

K∑
i=1

xi(t) ≤ KT

yields the inequality in the statement of the theorem.
If the time horizon T is not known, we can apply techniques similar to those

applied for proving Theorem 6.4 in section 6. More specifically, we introduce a new
algorithm, Exp3.S.1, that runs Exp3.S as a subroutine. Suppose that at each new
run (or epoch) r = 0, 1, . . . , Exp3.S is started with its parameters set as prescribed in
Corollary 8.2, where T is set to Tr = 2r, and then stopped after Tr iterations. Clearly,
for any fixed sequence jT = (j1, . . . , jT ) of actions, the number of segments (see proof
of Theorem 8.1 for a definition of segment) within each epoch r is at most h(jT ).
Hence the expected regret of Exp3.S.1 for epoch r is certainly not more than

(h(jT ) + 2e)
√

KTr ln(KTr) .

Let * be such that 2� ≤ T < 2�+1. Then the last epoch is * ≤ log2 T and the overall
regret (over the * + 1 epochs) is at most

(h(jT ) + 2e)

�∑
r=0

√
KTr ln(KTr) ≤ (h(jT ) + 2e)

√
K ln(KT�)

�∑
r=0

√
Tr .

Finishing up the calculations proves the following.
Corollary 8.4.

GjT −E [GExp3.S.1] ≤ h(jT ) + 2e√
2− 1

√
2KT ln(KT )
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for any T > 0 and for any sequence jT = (j1, . . . , jT ) of actions.
On the other hand, if Exp3.S.1 runs Exp3.S with parameters set as prescribed

in Corollary 8.3, with a reasoning similar to the one above we conclude the following.
Corollary 8.5.

GjT −E [GExp3.S.1] ≤ 2
√
e− 1√
2− 1

√
2KT (S ln(KT ) + e)

for any T > 0 and for any sequence jT = (j1, . . . , jT ) of actions such that h(jT ) ≤ S.

9. Applications to game theory. The adversarial bandit problem can be eas-
ily related to the problem of playing repeated games. For N > 1 integer, an N -person
finite game is defined by N finite sets S1, . . . , SN of pure strategies, one set for each
player, and by N functions u1, . . . , uN , where function ui : S1 × · · · × SN → R is
player’s i payoff function. Note the each player’s payoff depends both on the pure
strategy chosen by the player and on the pure strategies chosen by the other players.
Let S = S1 × · · · × SN , and let S−i = S1 × · · · × Si−1 × Si+1 × · · · × SN . We use s
and s−i to denote typical members of, respectively, S and S−i. Given s ∈ S, we will
often write (j, s−i) to denote (s1, . . . , si−1, j, si+1, . . . , sN ), where j ∈ Si. Suppose
that the game is repeatedly played through time. Assume for now that each player
knows all payoff functions and, after each repetition (or round) t, also knows the
vector s(t) = (s1(t), . . . , sN (t)) of pure strategies chosen by the players. Hence, the
pure strategy si(t) chosen by player i at round t may depend on what player i and
the other players chose in the past rounds. The average regret of player i for the pure
strategy j after T rounds is defined by

R
(j)
i (T ) =

1

T

T∑
t=1

[ui(j, s−i(t))− ui(s(t))] .

This is how much player i lost on average for not playing the pure strategy j on all
rounds, given that all the other players kept their choices fixed.

A desirable property for a player is Hannan-consistency [8], defined as follows.
Player i is Hannan-consistent if

lim sup
T→∞

max
j∈Si

R
(j)
i (T ) = 0 with probability 1.

The existence and properties of Hannan-consistent players have been first investigated
by Hannan [10] and Blackwell [2] and later by many others (see [5] for a nice survey).

Hannan-consistency can be also studied in the so-called unknown game setup,
where it is further assumed that (1) each player knows neither the total number of
players nor the payoff function of any player (including itself), (2) after each round
each player sees its own payoffs but it sees neither the choices of the other players nor
the resulting payoffs. This setup was previously studied by Baños [1], Megiddo [16],
and by Hart and Mas-Colell [11, 12].

We can apply the results of section 6 to prove that a player using algorithm
Exp3.P.1 as mixed strategy is Hannan-consistent in the unknown game setup when-
ever the payoffs obtained by the player belong to a known bounded real interval. To
do that, we must first extend our results to the case when the assignment of rewards
can be chosen adaptively. More precisely, we can view the payoff xit(t), received
by the gambler at trial t of the bandit problem, as the payoff ui(it, s−i(t)) received
by player i at the tth round of the game. However, unlike our adversarial bandit
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framework where all the rewards were assigned to each arm at the beginning, here
the payoff ui(it, s−i(t)) depends on the (possibly randomized) choices of all players,
which, in turn, are functions of their realized payoffs. In our bandit terminology, this
corresponds to assuming that the vector (x1(t), . . . , xK(t)) of rewards for each trial t
is chosen by an adversary who knows the gambler’s strategy and the outcome of the
gambler’s random draws up to time t− 1. We leave to the interested reader the easy
but lengthy task of checking that all of our results (including those of section 6) hold
under this additional assumption.

Using Theorem 6.4 we then get the following.
Theorem 9.1. If player i has K ≥ 2 pure strategies and plays in the unknown

game setup (with payoffs in [0, 1]) using the mixed strategy Exp3.P.1, then

max
j∈Si

R
(j)
i (T ) ≤ 10√

2− 1

√
2K

T

(
ln

KT

δ
+ cT

)
+

10(1 + log2 T )

T

(
ln

KT

δ
+ cT

)
,

where cT = 2 ln(2 + log2 T ), holds with probability at least 1 − δ, for all 0 < δ < 1
and for all T ≥ (ln(K/δ))1/(K−1).

The constraint on T in the statement of Theorem 9.1 is derived from the condition
T ≥ 2r

∗
in Theorem 6.4. Note that, according to Theorem 5.1, the rate of convergence

is optimal both in T and K up to logarithmic factors.
Theorem 9.1, along with Corollary 6.5, immediately implies the result below.
Corollary 9.2. Player’s strategy Exp3.P.1 is Hannan-consistent in the un-

known game setup.
As pointed out in [5], Hannan-consistency has an interesting consequence for

repeated zero-sum games. These games are defined by an n×m matrix M. On each
round t, the row player chooses a row i of the matrix. At the same time, the column
player chooses a column j. The row player then gains the quantity Mij , while the
column player loses the same quantity. In repeated play, the row player’s goal is to
maximize its expected total gain over a sequence of plays, while the column player’s
goal is to minimize its expected total loss.

Suppose in some round the row player chooses its next move i randomly according
to a probability distribution on rows represented by a (column) vector p ∈ [0, 1]n, and
the column player similarly chooses according to a probability vector q ∈ [0, 1]m. Then
the expected payoff is pTMq. Von Neumann’s minimax theorem states that

max
p

min
q

pTMq = min
q

max
p

pTMq ,

where maximum and minimum are taken over the (compact) set of all distribution
vectors p and q. The quantity v defined by the above equation is called the value
of the zero-sum game with matrix M. In words, this says that there exists a mixed
(randomized) strategy p for the row player that guarantees expected payoff at least v,
regardless of the column player’s action. Moreover, this payoff is optimal in the sense
that the column player can choose a mixed strategy whose expected payoff is at most v,
regardless of the row player’s action. Thus, if the row player knows the matrix M,
it can compute a strategy (for instance, using linear programming) that is certain to
bring an expected optimal payoff not smaller than v on each round.

Suppose now that the game M is entirely unknown to the row player. To be
precise, assume the row player knows only the number of rows of the matrix and a
bound on the magnitude of the entries of M. Then, using the results of section 4, we
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can show that the row player can play in such a manner that its payoff per round will
rapidly converge to the optimal maximin payoff v.

Theorem 9.3. Let M be an unknown game matrix in [a, b]n×m with value v.
Suppose the row player, knowing only a, b, and n, uses the mixed strategy Exp3.1.
Then the row player’s expected payoff per round is at least

v − 8(b− a)

(
√
e− 1

√
n lnn

T
− 8(e− 1)

n

T
− 2

n lnn

T

)
.

Proof. We assume that [a, b] = [0, 1]; the extension to the general case is straight-
forward. By Theorem 4.1, we have

E

[
T∑
t=1

Mitjt

]
= E

[
T∑
t=1

xit(t)

]

≥ max
i

E

[
T∑
t=1

xi(t)

]
− 8
√
e− 1

√
Tn lnn− 8(e− 1)n− 2n lnn .

Let p be a maxmin strategy for the row player such that

v = max
p

min
q

pTMq = min
q

pTMq ,

and let q(t) be a distribution vector whose jtth component is 1. Then

max
i

E

[
T∑
t=1

xi(t)

]
≥

n∑
i=1

piE

[
T∑
t=1

xi(t)

]
= E

[
T∑
t=1

p · x(t)

]
= E

[
T∑
t=1

pTMq(t)

]
≥ vT

since pTMq ≥ v for all q.
Thus, the row player’s expected payoff is at least

vT − 8
√
e− 1

√
Tn lnn− 8(e− 1)n− 2n lnn .

Dividing by T to get the average per-round payoff gives the result.
Note that the theorem is independent of the number of columns of M and, with

appropriate assumptions, the theorem can be easily generalized to column players
with an infinite number of strategies. If the matrix M is very large and all entries
are small, then, even if M is known to the player, our algorithm may be an efficient
alternative to linear programming.

Appendix A. Proof of Theorem 5.1. We construct the random distribution
of rewards as follows. First, before play begins, one action I is chosen uniformly
at random to be the “good” action. The T rewards xI(t) associated with the good
action are chosen independently at random to be 1 with probability 1/2 + ε and
0 otherwise for some small, fixed constant ε ∈ (0, 1/2] to be chosen later in the proof.
The rewards xj(t) associated with the other actions j �= I are chosen independently
at random to be 0 or 1 with equal odds. Then the expected reward of the best action
is at least (1/2 + ε)T . The main part of the proof below is a derivation of an upper
bound on the expected gain of any algorithm for this distribution of rewards.

We write P∗{·} to denote probability with respect to this random choice of re-
wards, and we also write Pi{·} to denote probability conditioned on i being the good
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action: Pi{·} = P∗{· | I = i}. Finally, we write Punif {·} to denote probability with
respect to a uniformly random choice of rewards for all actions (including the good
action). Analogous expectation notation E∗ [·], Ei [·], and Eunif [·] will also be used.

Let A be the player strategy. Let rt = xit(t) be a random variable denoting
the reward received at time t, and let rt denote the sequence of rewards received up
through trial t: rt = 〈r1, . . . , rt〉. For shorthand, r = rT is the entire sequence of
rewards.

Any randomized playing strategy is equivalent to an a priori random choice from
the set of all deterministic strategies. Thus, because the adversary strategy we have
defined is oblivious to the actions of the player, it suffices to prove an upper bound on
the expected gain of any deterministic strategy (this is not crucial for the proof but
simplifies the notation). Therefore, we can formally regard the algorithm A as a fixed
function which, at each step t, maps the reward history rt−1 to its next action it.

As usual, GA =
∑T
t=1 rt denotes the return of the algorithm, and Gmax =

maxj
∑T
t=1 xj(t) is the return of the best action.

Let Ni be a random variable denoting the number of times action i is chosen
by A. Our first lemma bounds the difference between expectations when measured
using Ei [·] or Eunif [·].

Lemma A.1. Let f : {0, 1}T → [0,M ] be any function defined on reward se-
quences r. Then for any action i,

Ei [f(r)] ≤ Eunif [f(r)] +
M

2

√
−Eunif [Ni] ln(1− 4ε2).

Proof. We apply standard methods that can be found, for instance, in Cover and
Thomas [4]. For any distributions P and Q, let

‖P−Q‖1 .
=

∑
r∈{0,1}T

|P{r} −Q{r}|

be the variational distance, and let

KL (P ‖ Q)
.
=

∑
r∈{0,1}T

P{r} lg
(
P{r}
Q{r}

)

be the Kullback–Liebler divergence or relative entropy between the two distributions.
(We use lg to denote log2.) We also use the notation

KL
(
P{rt | rt−1} ‖ Q{rt | rt−1}) .

=
∑

rt∈{0,1}t
P{rt} lg

(
P{rt | rt−1}
Q{rt | rt−1}

)

for the conditional relative entropy of rt given rt−1. Finally, for p, q ∈ [0, 1], we use

KL (p ‖ q)
.
= p lg

(
p

q

)
+ (1− p) lg

(
1− p

1− q

)

as shorthand for the relative entropy between two Bernoulli random variables with
parameters p and q.
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We have that

Ei [f(r)]−Eunif [f(r)] =
∑
r

f(r)(Pi{r} −Punif {r})

≤
∑

r:Pi{r}≥Punif {r}
f(r)(Pi{r} −Punif {r})

≤M
∑

r:Pi{r}≥Punif {r}
(Pi{r} −Punif {r})

=
M

2
‖Pi −Punif ‖1.(28)

Also, Cover and Thomas’s Lemma 12.6.1 states that

‖Punif −Pi‖21 ≤ (2 ln 2)KL (Punif ‖ Pi).(29)

The “chain rule for relative entropy” (Cover and Thomas’s Theorem 2.5.3) gives that

KL (Punif ‖ Pi) =

T∑
t=1

KL
(
Punif {rt | rt−1} ‖ Pi{rt | rt−1})

=

T∑
t=1

(
Punif {it �= i} KL

(
1
2 ‖ 1

2

)
+Punif {it = i} KL

(
1
2 ‖ 1

2 + ε
))

=

T∑
t=1

Punif {it = i} (− 1
2 lg(1− 4ε2)

)

= Eunif [Ni]
(− 1

2 lg(1− 4ε2)
)
.(30)

The second equality can be seen as follows: Regardless of the past history of re-
wards rt−1, the conditional probability distribution Punif {rt | rt−1} on the next
reward rt is uniform on {0, 1}. The conditional distribution Pi{rt | rt−1} is also
easily computed: Given rt−1, the next action it is fixed by A. If this action is not
the good action i, then the conditional distribution is uniform on {0, 1}; otherwise, if
it = i, then rt is 1 with probability 1/2 + ε and 0 otherwise.

The lemma now follows by combining (28), (29), and (30).
We are now ready to prove the theorem. Specifically, we show the following.
Theorem A.2. For any player strategy A, and for the distribution on rewards

described above, the expected regret of algorithm A is lower bounded by

E∗ [Gmax −GA] ≥ ε

(
T − T

K
− T

2

√
− T

K
ln(1− 4ε2)

)
.

Proof. If action i is chosen to be the good action, then clearly the expected payoff
at time t is 1/2 + ε if it = i and 1/2 if it �= i:

Ei [rt] =
(

1
2 + ε

)
Pi{it = i}+ 1

2Pi{it �= i}
= 1

2 + ε Pi{it = i}.
Thus, the expected gain of algorithm A is

Ei [GA] =

T∑
t=1

Ei [rt] =
T

2
+ ε Ei [Ni] .(31)



76 AUER, CESA-BIANCHI, FREUND, AND SCHAPIRE

Next, we apply Lemma A.1 to Ni, which is a function of the reward sequence r
since the actions of player strategy A are determined by the past rewards. Clearly,
Ni ∈ [0, T ]. Thus,

Ei [Ni] ≤ Eunif [Ni] +
T

2

√
−Eunif [Ni] ln(1− 4ε2),

and so

K∑
i=1

Ei [Ni] ≤
K∑
i=1

(
Eunif [Ni] +

T

2

√
−Eunif [Ni] ln(1− 4ε2)

)

≤ T +
T

2

√
−TK ln(1− 4ε2)

using the fact that
∑K
i=1 Eunif [Ni] = T , which implies that

∑K
i=1

√
Eunif [Ni] ≤√

TK. Therefore, combining with (31),

E∗ [GA] =
1

K

K∑
i=1

Ei [GA] ≤ T

2
+ ε

(
T

K
+

T

2

√
− T

K
ln(1− 4ε2)

)
.

The expected gain of the best action is at least the expected gain of the good action,
so E∗ [Gmax] ≥ T (1/2 + ε). Thus, we get that the regret is lower bounded by the
bound given in the statement of the theorem.

For small ε, the bound given in Theorem A.2 is of the order

Θ

(
Tε− Tε2

√
T

K

)
.

Choosing ε = c
√

K/T for some small constant c gives a lower bound of Ω(
√
KT ).

Specifically, the lower bound given in Theorem 5.1 is obtained from Theorem A.2 by
choosing ε = (1/4)min{√K/T , 1} and using the inequality − ln(1−x) ≤ (4 ln(4/3))x
for x ∈ [0, 1/4].
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Abstract. This paper presents a formal design for a novel group communication service tar-
geted for wide-area networks (WANs). The service provides virtual synchrony semantics. Such
semantics facilitate the design of fault tolerant distributed applications. The presented design is
more suitable for WANs than previously suggested ones. In particular, it features the first algorithm
to achieve virtual synchrony semantics in a single communication round. The design also employs
a scalable WAN-oriented architecture: it effectively decouples the main two components of virtually
synchronous group communication—group membership and reliable group multicast. The design is
carried out formally and rigorously. This paper includes formal specifications of both safety and
liveness properties. The algorithm is formally modeled and assertionally verified.
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1. Introduction. Group communication services (GCSs) [1, 10] are powerful
middleware systems that facilitate the development of fault tolerant distributed appli-
cations. These services provide a notion of group abstraction, which allows application
processes to easily organize themselves into multicast groups. Application processes
can communicate with the members of a group by addressing messages to the group.
Most GCSs strive to present different members of the same group with mutually con-
sistent perceptions of the communication done in the group. This perception is known
as virtual synchrony (VS) semantics [12].

Traditionally, GCSs were designed for deployment in local-area networks (LANs).
Efficient GCSs that operate in wide-area networks (WANs) is still an open area of
research. Designing such GCSs is challenging because in WANs communication is
more expensive and connectivity is less stable than in LANs.

In this paper we present a novel algorithm for a GCS targeted for WANs. The
service provided by our GCS satisfies a variant of the VS semantics that has been
shown to be useful for facilitating the design of distributed applications [16, 10]. Our
algorithm for implementing this semantics is more appropriate for WANs than the
existing solutions: it requires fewer rounds of communication and is designed for the
scalable WAN-oriented architecture of [6, 31]. Our design is carried out at a very
high level of formality and rigor, much higher than that of most previous designs of
virtually synchronous GCSs. It includes formal and precise specifications, algorithms,

∗Received by the editors September 27, 2000; accepted for publication (in revised form) June 25,
2002; published electronically November 19, 2002. This paper is an extended version of A client-server
approach to virtually synchronous group multicast: Specifications and algorithms, 20th International
Conference on Distributed Computing Systems (ICDCS), 2000, IEEE, pp. 344–355. This work was
supported by Air Force Aerospace Research (OSR) grants F49620-00-1-0097 and F49620-00-1-0327,
Nippon Telegraph and Telephone (NTT) grant MIT9904-12, and NSF grants CCR-9909114 and EIA-
9901592.

http://www.siam.org/journals/sicomp/32-1/37875.html
†Laboratory for Computer Science, Massachusetts Institute of Technology, 200 Technology Square,

Cambridge, MA 02139. Current address: Department of Electrical Engineering, Technion - Israel
Institute of Technology, Technion City, Haifa, 32000 Israel (idish@ee.technion.ac.il).
‡Laboratory for Computer Science, Massachusetts Institute of Technology, 200 Technology Square,

Cambridge, MA 02139 (roger@lcs.mit.edu).

78



VS GROUP MULTICAST FOR WANS: FORMAL APPROACH 79

and proofs.
The rest of this section is organized as follows: In section 1.1 we present some

basic background on GCSs and VS. Section 1.2 summarizes the contributions made
by our work, and section 1.3 gives a roadmap to the rest of the paper.

1.1. Background. Modern distributed applications often involve large groups
of geographically distributed processes that interact by sending messages over an
asynchronous fault-prone network. Many of these applications maintain a replicated
state of some sort. In order for these applications to be correct, the replicas must
remain mutually consistent throughout the execution of the application. For example,
in an online game, the states of the game maintained by different players must be
mutually consistent in order for the game to be meaningful to the players. Designing
algorithms that maintain state consistency is difficult however: different application
processes may perceive the execution of the application inconsistently because of
asynchrony and failures. For example, if Alice, Bob, and Carol are playing an online
game, the following asymmetric scenario is possible: Alice and Bob perceive each
other as alive and well, but they differ in the way they perceive Carol; one sees Carol
as crashed or disconnected, while the other sees her as alive and well. Middleware
systems that hide from the application some of the underlying inconsistencies and
instead present them with a more consistent picture of the distributed execution
facilitate development of distributed applications.

GCSs, such as [3, 5, 44, 12], are examples of such middleware systems. They
are particularly useful for building applications that require reliable multipoint to
multipoint communication among a group (or groups) of processes. Examples of such
applications are data replication (for example, [29, 4, 22, 33, 24]), highly available
servers (for example, [8]), and online games. GCSs allow application processes to
organize themselves easily into groups and to communicate with all the members of a
group by addressing messages to the group. The semantics of this abstraction are such
that different members of the group have consistent perceptions of the communication
done in the group. The abstraction is typically implemented through the integration
of two types of services: membership and reliable multicast.

Membership services maintain information about membership of groups. The
membership of a group can change dynamically due to new processes joining and
current members departing, failing, or disconnecting. The membership service tracks
these changes and reports them to group members. The report given by the mem-
bership service to a member is called a view. It includes a unique identifier and a
list of currently active and mutually connected members. Failures can partition a
group into disconnected components of mutually connected members. Membership
services strive to form and deliver the same views to all mutually connected members
of the group.1 While this is not always possible, they typically succeed once network
connectivity more or less stabilizes (see, for example, [31, 16]).

In addition, GCSs provide reliable multicast services that allow application pro-
cesses to send messages to the entire membership of a group. GCSs guarantee that
message delivery satisfies certain properties. For example, one property can be that
messages sent by the same sender are delivered in the order in which they were sent;
another property can ensure that all processes receive all messages in the same total
order. Different GCSs differ in the specific message delivery properties they provide,

1In this paper, we consider partitionable membership services, which may deliver concurrent,
disjoint views of the same group to disconnected members.
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but most of them provide some variant of VS semantics. We refer to a GCS providing
such semantics as a virtually synchronous GCS, and to an algorithm implementing
this semantics as a VS algorithm.

VS semantics specifies how message deliveries are synchronized with view deliv-
eries. This synchronization is done in a way that simulates a “benign” world in which
message delivery is reliable within each view. Many variants of VS have been sug-
gested (for example, [38, 23, 16, 12, 40, 9]). Nearly all of them include a key property,
called virtually synchronous delivery, which guarantees that processes that receive the
same pair of views from the GCS receive the same sets of messages in between receiv-
ing the views. Henceforth, when we refer to VS, we assume the semantics includes
virtually synchronous delivery.

Example 1.1. Assume Alice, Bob, and Carol are playing an online game. As-
sume they communicate using totally ordered messages and modify their game states
when they receive messages. Each of them is initially given a view 〈{Alice, Bob,
Carol}, 1〉, where {Alice, Bob, Carol} is a set of members and 1 is a view identifier.
Then Carol disconnects, and Alice and Bob are given a new view 〈{Alice, Bob}, 2〉.
The virtually synchronous delivery property guarantees that both Alice and Bob receive
the same messages before receiving the new view. In particular, if Bob receives a mes-
sage from Carol before it receives the new view, then Alice also receives this message
before the new view. Therefore, Alice and Bob remain in consistent states and can
safely continue playing the game after they receive the new view.

In general, virtually synchronous GCSs are especially useful for building applica-
tions that maintain a replicated state of some sort using a variant of the well-known
state-machine/active replication approach [34, 41] and [32, Chapter 10]. With such an
approach, processes that maintain state replicas are organized into multicast groups.
Actions that update the state are sent using a multicast primitive that delivers mes-
sages to different processes in the same order. When processes receive these actions,
they apply them to their local replicas. VS guarantees that processes that remain
connected receive the same messages. This implies that processes that remain con-
nected apply the same sequences of actions to their replicas. Hence, their replicas
remain mutually consistent. Examples of GCS applications that use this technique
are [2, 4, 29, 42, 24, 8].

Let us consider what is involved in implementing the virtually synchronous deliv-
ery property. Imagine that GCS processes are forming a new view because someone
has disconnected from their current view. The GCS processes must make sure that
they deliver the same messages to their application clients before delivering to them
the new view. However, it may be the case that some of these GCS processes re-
ceived messages that others did not. In the scenario illustrated in Example 1.1, the
last messages from Carol may have reached the GCS process of only Bob, and not of
Alice; Bob and Alice need to agree on whether or not to deliver these messages. To
ensure such agreement, GCS processes invoke a synchronization protocol whenever a
new view is forming.

Designing correct and efficient algorithms that implement VS is not trivial. Differ-
ent GCS processes may perceive connectivity changes inconsistently. Since the desired
synchronization depends on who the members of the new view are, the algorithm has
to tolerate transient inconsistent views and cascading connectivity changes.

In particular, a VS algorithm needs to know which synchronization messages
sent by different processes pertain to the same view formation attempt. Existing
algorithms, such as [23, 3, 40, 9, 26, 5], identify such synchronization messages by
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tagging them with a common identifier. Some initial communication is performed
first, before synchronization messages are communicated, in order to agree upon a
common identifier and to distribute it to the members of the forming view.

While a view is forming and a synchronization protocol is executing, there may
be changes in connectivity that call for views with altogether different memberships.
When such situations happen, existing VS algorithms, for example [23, 26, 40, 9, 5],
continue executing their current synchronization protocol to termination and then
deliver to the application a view that does not reflect the already detected changes
in connectivity; we refer to such views as obsolete [31]. Afterwards, the algorithm is
invoked anew to incorporate the new changes. Obsolete views cause an overhead not
just for the GCS but also for applications. Since application processes do not know
when the views delivered to them are obsolete, they handle such views just as they do
any other view, for example, by running state synchronization protocols [29, 22, 33].

1.2. Our contributions. In this paper, we present a novel design for a virtually
synchronous GCS targeted for WANs. We make the following contributions:

1. We present a new algorithm for implementing VS. Our algorithm neither pro-
cesses nor delivers views with obsolete memberships. Moreover, the synchronization
protocol run by our algorithm involves just a single message exchange round among
members of the new view. We are not aware of any other algorithm for implementing
VS that has these two features.

2. Our design demonstrates how to effectively decouple the algorithm for achiev-
ing VS from the algorithm for maintaining membership. As suggested in [6, 31], such
effective decoupling is important for providing scalable GCSs in WANs.

We define a membership service interface that allows the VS algorithm to exe-
cute in parallel with the membership algorithm. In contrast to previous designs, for
example, [40, 11], we allow the membership algorithm to freely change memberships
of forming views at any time. Moreover, the interaction between the membership and
VS algorithms is only in one direction, from the former to the latter. Our interface
was adopted by the Moshe [31] membership algorithm; other existing membership
algorithms (for example, [20, 5]) can also be easily extended to provide the required
interface and semantics.

3. Our design is carried out much more rigorously and formally than most
previous designs of virtually synchronous GCSs. The presented specifications of our
GCS and its environment, description of the algorithm, and proof of correctness are
all precise and formal. Our project is the first to use formal methods for modeling a
virtually synchronous GCS and to provide an assertional proof of its correctness.

Our algorithm has been implemented [43] (in C++) as part of a novel architecture
for scalable group communication in WANs using the datagram service of [7] and the
Moshe membership algorithm [31].

1.3. Roadmap. The rest of this paper is organized as follows. Section 2 gives
an overview of our algorithm and overall design. Section 3 reviews the formal model
and notation. In section 4 we present the client-server architecture of our GCS and
formally specify the assumptions we make on the membership service and the un-
derlying communication substrate. Section 5 contains precise specifications of the
safety and liveness properties satisfied by our GCS. The algorithm is then given in
section 6 and is accompanied by informal correctness arguments. Section 7 concludes
the paper. A formal correctness proof that the algorithm of section 6 satisfies the
specifications of section 5 is given in the appendixes: safety properties are given in
Appendix B, and liveness properties are given in Appendix C. Appendix A reviews
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the proof techniques used in Appendixes B and C.

2. Design overview. The novelty of our algorithm for achieving VS is concen-
trated in its synchronization protocol. Recall that this protocol is run among GCS
processes in order for those that remain connected to agree upon a common set of
messages each of them must deliver before moving into the new view. The protocol de-
pends on a simple yet powerful idea. Instead of using common identifiers to designate
which synchronization messages pertain to the same view formation attempt, we use
locally generated identifiers. These identifiers are then included as part of the formed
views.2 Once a view formation completes at a GCS process, the process knows which
synchronization messages of other members to consider for the view—the messages
tagged with the identifiers that are included in the view.

Example 2.1. View 〈 8, {Alice,Bob, Carol}, [4, 3, 7]} 〉 has membership {Alice,
Bob,Carol}, vector of local identifiers [4, 3, 7], and view identifier 8. When a GCS
process forms this view, it uses the synchronization messages from Alice, Bob, and
Carol tagged, respectively, with 4, 3, and 7 to decide on the set of messages it must
deliver before delivering this view to its application. Thus, if Alice, Bob, and Carol
form the same view, they use the same synchronization messages, and thus agree on
which application messages each of them needs to deliver.

The use of local identifiers eliminates the need to preagree on common identifiers
and allows the synchronization protocol to complete in a single message exchange
round. It also allows the algorithm to promptly react to connectivity changes without
wasting resources on obsolete views. The protocol works correctly even if, because
of network instability, GCS processes send multiple synchronization messages during
the same synchronization protocol.

2.1. Architecture for WAN. Our design decouples the algorithm for imple-
menting virtually synchronous multicast from the algorithm for maintaining member-
ship. The membership algorithm handles generation of local identifiers and formation
of views. The algorithm for implementing virtually synchronous multicast synchro-
nizes views and application messages to implement the VS semantics. In particular,
it handles multicast requests submitted by the application, delivers application mes-
sages and views back to the application, and runs the synchronization protocol to
synchronize processes that transition together into new views. The decoupling in-
volves low-cost, one-directional communication from the membership to the virtually
synchronous multicast algorithm. It also allows the synchronization protocol to exe-
cute in parallel with the membership algorithm forming views.

Efficient decoupling of membership and virtually synchronous multicast algo-
rithms allows for an architecture in which the membership service is implemented
by a small set of dedicated membership servers maintaining the membership infor-
mation on behalf of a large set of clients. This architecture was proposed in [6, 31]
for supporting scalable membership services in WANs. Our work extends this ar-
chitecture by specifying how it can be used as a base for a virtually synchronous
GCS. In particular, we present precise specifications of the interface and semantics
that a membership service has to provide in order to be decoupled from the virtually
synchronous multicast algorithm.

The interface consists of two types of messages, start and view, sent from mem-
bership servers to the processes executing the virtually synchronous multicast algo-

2A similar view structure is suggested in [40] for the purpose of not having concurrent views
intersect.
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rithm; we call these processes the gcs end-points. A start message is sent when a
membership server starts forming a new view or adds new members to an already
forming view. Each start message contains a prospective membership set and an
identifier, which is not globally agreed upon; that is, different processes can be given
different identifiers. A view message is sent when a server succeeds in forming a new
view. The view message contains information that maps gcs end-points to the last
start identifiers they were given prior to this view. The servers do not need to hear
back from the end-points in order to complete the membership algorithm, and the
end-points do not impose any restrictions on the servers’ choices of views. These two
features are in contrast with previously suggested external membership services, such
as, for example, Maestro [11] and the service of [40], in which membership servers
are not allowed to add new members once view formation begins and, furthermore,
have to synchronize with the processes executing the virtually synchronous multicast
algorithm before they can produce new views.

2.2. Algorithm for virtual synchrony. When the membership service starts
forming a view, it sends a start notification with a prospective membership set and
a new local identifier to each end-point p executing the virtually synchronous multi-
cast algorithm. Upon receiving this notification, p sends a synchronization message
tagged with this identifier to the end-points in the prospective membership set. In
the synchronization message, p specifies its current view and the set of application
messages that p commits to deliver in its current view before delivering the new view.
If an end-point q joins the membership while a view formation is in progress, p will
receive a new start notification and will then forward to q the same synchronization
messages it sent when the view formation started.

When p receives a view message from its membership server, the local identi-
fiers included in the view tell p which synchronization messages to consider—those
messages that are tagged with the local identifiers included in the new view. Using
the information contained in these messages, p computes two things: (a) the set of
end-points, called the transitional set [16], containing those members of the new view
that would transition into the new view together with p directly from p’s current
view; and (b) the set of application messages that p must deliver in its current view
before transitioning into the new view. End-point p computes the transitional set
to include every end-point q that is a member of both p’s current view and the new
view, and whose synchronization message was sent in the same view as p’s current
view. As far as the set of application messages, end-point p decides on delivering the
maximal set of messages identified by the synchronization messages of the transitional
set members. Since the same views formed by different end-points contain the same
local identifiers, the end-points use the same synchronization messages to compute the
transitional set and the message set. After delivering the decided set of application
messages, p delivers the new view and the transitional set to its application client.
The transitional set tells the client about the members of the new view with whom
the client is already synchronized.

Unlike previous algorithms, for example, those in [5, 26, 9, 40], our algorithm
allows the membership service to change the membership of a forming view while the
synchronization protocol is running; the protocol responds immediately to such mem-
bership changes. The following example demonstrates the benefits of this approach.

Example 2.2. Figure 2.1 presents a sample execution involving two clients,
a and b. Vertical arrows represent the time passage at each client, empty circles
represent gcs-level events, and gray circles represent memb-level events. In order
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Application clients do not need to synchronize their states after new views are delivered

synch msgs

gcs.viewa(v, T)

gcs.viewa(v
′, T′)

memb.viewb(3, {a, b}, [a : 2, b : 2])

memb.starta(2, {a, b})

Client a 1Client b

gcs.viewb(v, T)

gcs.viewb(v
′, T′)

memb.viewb(3, {a, b}, [a : 2, b : 2])

memb.startb(2, {a, b})
memb.startb(2, {b})

Fig. 2.1. Handling membership changes while synchronization protocol is running.

to disambiguate these events, we prefix events generated at the membership server by
memb and events generated by the virtually synchronous multicast algorithm by gcs.

First, both clients receive the same view v = 〈2, {a, b}, [a : 1, b : 1])〉 from their
gcs end-points, gcsa and gcsb; the ellipse around these view events highlights that
the delivered views are the same. At some point, the memb service notifies gcsb that
it is starting to form a view without a. While doing so, it detects that a is connected to
b after all, so it changes the membership of the forming view to {a, b}. gcsb forwards
to gcsa its latest synchronization message; synchronization messages are denoted by
dashed lines. gcsa is also notified by memb of its attempt to form a new view with b;
this causes gcsa to send a synchronization message to gcsb. When memb completes
its view formation, it delivers the new view v′ = 〈3, {a, b}, [a : 2, b : 2]〉 to both gcs
end-points. After the gcs end-points receive each others’ synchronization messages,
they compute their transitional sets to be T′ = {a, b}, decide on which application
messages they need to deliver, deliver these messages, and then deliver v′ and T′ to
their clients. From T′, a and b can deduce that, due to virtually synchronous delivery,
they received the same messages while in v, and therefore do not need to synchronize
their states.

Example 2.2 demonstrates two additional advantages of our algorithm: (a) the
algorithm does not waste resources on synchronizing end-points in order to deliver
views that are known to be obsolete; and (b) the application benefits from not seeing
obsolete views, as it has to do fewer state synchronizations (or other view processing
activity). Responding promptly to connectivity changes is therefore especially im-
portant in WANs, where transient connectivity changes may occur frequently due to
variability of message latency and less reliable connectivity. In contrast to our algo-
rithm, algorithms that do not allow new members to be added to the membership of
an already forming view (such as [5, 26, 9, 40]) lack these advantages, as illustrated
by the following example.

Example 2.3. When executed in the scenario of Example 2.2, algorithms that
do not allow new members to be added to the membership of an already forming view
would deliver an obsolete view vmid with membership {b} to client b and then restart
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the view formation and synchronization protocols anew in order to deliver to a and b

a new view with membership {a, b}. As part of the synchronization protocol, a and
b would first exchange messages to agree upon a common identifier before actually
exchanging synchronization messages. The synchronization protocol would not syn-
chronize end-points a and b because they would be transitioning into the new view from
different views, a from v and b from vmid. As a result, after the clients get the new
view from gcs, they would have to run an additional state synchronization protocol.

2.3. Formal methodology. Our design has been carried out and is presented
at a level more formal and rigorous than that of most previous designs of virtually
synchronous GCSs. We precisely specify the properties satisfied by our virtually syn-
chronous multicast algorithm, the external membership service, and the underlying
communication substrate. We then give a formal description of the virtually syn-
chronous multicast algorithm. The algorithm is accompanied by a careful formal
correctness proof. The safety properties are proved by using invariant assertions and
simulation mappings; the liveness properties are proved by using invariant assertions
and careful operational arguments. We found this level of rigor to be important: in
the process of specifying and verifying the algorithm, we uncovered several ambiguities
and errors.

Previously, formal approaches were used to specify the semantics of virtually syn-
chronous GCSs and to model and verify their applications, for example, in [15, 22, 18,
33, 27]. Existing algorithms implementing VS are modeled in pseudocode and proven
correct operationally. However, due to their size and complexity, such algorithms were
not previously modeled using formal methods nor were they assertionally verified.

To manage the complexity of this project we have developed a formal inheritance-
based methodology [30] for incrementally constructing specifications, algorithms, and
proofs. In addition to making the project tractable, the use of this construct makes
clear which parts of the algorithm implement which property. The modularity of this
approach facilitates further modifications and alterations of the design. Our project
and the inheritance-based construct are both developed in the framework of the I/O
automaton formalism (see [37] and [36], Chap. 8).

3. Formal model and notation. In the I/O automaton model ([37] and [36],
Chap. 8), a system component is described as a state-machine, called an I/O automa-
ton. The transitions of this state-machine are associated with named actions, which
are classified as either input, output, or internal. Input and output actions model the
component’s interaction with other components, while internal actions are externally
unobservable.

Formally, an I/O automaton is defined as the following five-tuple: a signature
(input, output, and internal actions), a set of states, a set of start states, a state-
transition relation (a cross-product between states, actions, and states), and a par-
tition of output and internal actions into tasks. Tasks are used for defining fairness
conditions.

An action π is said to be enabled in a state s if the automaton has a transition
of the form (s, π, s′); input actions are enabled in every state. An execution of an
automaton is an alternating sequence of states and actions that begins with its start
state and in which every action is enabled in the preceding state. An infinite execution
is fair if, for each task, it contains either infinitely many actions from this task or
infinitely many occurrences of states in which no action from this task is enabled; a
finite execution is fair if no action is enabled in its final state. A trace is a subsequence
of an execution solely consisting of the automaton’s external actions. A fair trace is
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a trace of a fair execution.
When reasoning about an automaton, we are interested in only its externally ob-

servable behavior as reflected in its traces. There are two types of trace properties:
safety and liveness. Safety properties usually specify that some particular bad thing
never happens. In this paper we specify safety properties using centralized, global,
I/O automata that generate the legal sets of traces; for such automata we do not spec-
ify task partitions. Each external action in such a centralized automaton is tagged
with a subscript which denotes the process at which this action occurs. An algorithm
automaton satisfies a specification if all of its traces are also traces of the specifica-
tion automaton. Refinement mappings are a commonly used technique for proving
trace inclusion, in which one automaton (the algorithm) simulates the behavior of
another automaton (the specification). Refinement mappings and other related proof
techniques are reviewed in Appendix A. Liveness properties usually specify that some
good thing eventually happens. An algorithm automaton satisfies a liveness property
if the property holds in all of its fair traces.

The composition operation defines how automata interact via their input and
output actions: It matches output and input actions with the same name in different
component automata; when a component automaton performs a step involving an
output action, so do all components that have this action as an input one. When
reasoning about a certain system component, we compose it with abstract specification
automata that specify the behavior of its environment.

I/O automata are conveniently presented using the precondition-effect style: In
this style, typed state variables with initial values specify the set of states and the start
states. A variable type is a set; if S is a set, the notation S⊥ refers to the set S∪{⊥}.
Transitions are grouped by action name and are specified as a list of triples consisting
of an action name possibly with parameters, a pre : block with preconditions on the
states in which the action is enabled, and an eff : block which specifies how the pre-
state is modified atomically to yield the poststate. The precondition-effect style is
also known as a guarded command style: events have guards, or preconditions, and
are triggered when the preconditions are enabled.

We have developed a novel formal notion of inheritance for automata [30]. A
child automaton is specified as a modification of the parent automaton’s code. When
presenting a child we first specify a signature extension which consists of new actions,
labeled new, and modified actions. A modified action is labeled with the name of
the action which it modifies as follows: modifies parent.action(parameters). We
next specify the state extension consisting of new state variables added by the child.
Finally, we describe the transition restriction which consists of new preconditions and
effects added by the child to both new and modified actions. For modified actions, the
preconditions and effects of the parent are appended to those added by the child. New
effects added by the child are performed before the effects of the parent, all of them
in a single atomic step. The child’s effects are not allowed to modify state variables
of the parent. This ensures that the set of traces of the child, when projected onto
the parent’s signature, is a subset of the parent’s set of traces [30].

Inheritance allows us to reuse code and avoid redundancies. It also allows us to
reuse proofs: Assume that an algorithm automaton A can simulate a specification
automaton S, and let A′ and S′ be child automata of A and S, respectively. Then the
proof extension theorem of [30] asserts that in order to prove that A′ can simulate
S′, it is sufficient to show that the restrictions added by A′ are consistent with the
restrictions S′ places on S and that the new functionality of A′ can simulate new
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Application Application

GCS End−pointGCS End−point

Group Membership Service

Reliable FIFO Multicast Service

Fig. 4.1. The client-server architecture: GCS end-points using an external membership service.
Arrows represent interaction between GCS end-points and underlying services.

functionality of S′. Appendix A contains more details.

4. Client-server architecture and environment specification. Our service
is designed to operate in an asynchronous message-passing environment. Processes
and communication links may fail and may later recover, possibly causing network
partitions and merges. For simplicity, we assume that processes recover with their
running state intact; this is a plausible assumption as processes can keep their running
state on stable storage. We do not explicitly model process crashes and recoveries
because under this assumption a crashed process is indistinguishable from a slow one.
In section 6.4, we argue that our algorithm also provides meaningful semantics when
group communication processes lose their entire state upon a crash and recover with
their state reset to an initial value.

Our GCS is implemented by a collection of GCS end-points, which are the GCS
processes that run at the application clients’ locations. GCS end-points handle clients’
multicast requests and inform their clients of view changes.

The GCS architecture is depicted in Figure 4.1. All GCS end-points run the
same algorithm. The algorithm relies on the underlying membership and multicast
services to handle, respectively, formation of views and transmission of messages. The
algorithm’s task is to synchronize output of the two underlying services to implement
the VS semantics.

Sections 4.1 and 4.2 below give precise specifications of the interface and semantics
that the underlying membership and multicast services have to provide in order to be
suitable for our algorithm. Services that satisfy these (or very similar) requirements
have been previously used for GCSs, and efficient implementations of these services
for WANs exist; see, for example, [31, 7].

4.1. The membership service specification. This section presents a formal
specification of the membership services that are appropriate for our GCS design. For
simplicity, here and in the rest of the paper, we assume that there is a single process
group; multiple groups can be supported by treating each independently. We also
omit part of the interface that handles processes’ requests to join and leave groups.

Figure 4.2 contains an I/O automaton, called memb, that defines the interface
and the safety properties of the membership service. The service interface is given
by the automaton’s signature.3 Informally, it consists of the following two output

3When specifying a distributed system as a centralized automaton, we subscript each external
action of the specification automaton with the location (or process) in the distributed system at
which the action occurs.
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automaton memb

Type:
Proc: Set of end-points.
StartId: Total-order; cid0 is smallest.
ViewId: Partial-order; vid0 is smallest.
View: ViewId × SetOf(Proc) × (Proc → StartId).

Def: vp = 〈vid0, {p}, {(p →cid0)}〉.

Signature:
Output: startp(cid, set), Proc p, StartId cid, SetOf(Proc) set

viewp(v), Proc p, View v

State:
For all Proc p: View memb view[p], initially vp
For all Proc p: (StartId × SetOf(Proc)) start[p], initially 〈cid0, {}〉

Transitions:
OUTPUT startp(cid, set)

pre: cid > memb view[p].startId(p)
cid ≥ start[p].id
p ∈ set

eff: start[p] ← 〈cid, set〉

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > memb view[p].id
v.set ⊆ start[p].set
v.startId(p) = start[p].id
v.startId(p) > memb view[p].startId(p)

eff: memb view[p] ← v

Fig. 4.2. Membership service interface and safety specification.

actions:

startp(cid, set) notifies process p that the membership service is attempting to form
a view with the members of set; cid is a local start identifier;

viewp(v) notifies process p that the membership service has succeeded in forming
view v. A view v is a triple consisting of an identifier v.id, a set of members
v.set, and a function v.startId that maps members of v to start identifiers.
Two views are the same if they consist of identical triples.

Automaton memb maintains two state variables, memb view[p] and start[p], for
each client p. These variables contain, respectively, the last view and the last start
message issued to client p; the variables are updated in the effects of the transitions.
The safety properties satisfied by the memb automaton include two basic properties,
which are provided by virtually all group membership services (for example, [13, 20,
5, 23, 9, 31, 40, 3]), as well as some new properties concerning the start notifications.

The two basic properties are self-inclusion and local monotonicity. Self-inclusion
requires every view issued to a client p to include p as a member; this property is
enforced with a precondition p ∈ v.set on the viewp(v) action. Local monotonicity
requires that view identifiers delivered to p be monotonically increasing; this property
is enforced with a precondition v.id > memb view[p] on the viewp(v) action. Local
monotonicity has two important consequences: the same view is not delivered more
than once to the same client, and clients that receive the same two views receive them
in the same order [16].

In addition, the memb automaton specifies that the membership service must
issue at least one start notification to client p before issuing a new view v to p. Also,
the start identifier v.startId(p) contained in the new view v must be the same as
the identifier of the latest preceding start issued to p. These two requirements are
enforced by the last two preconditions on viewp(v). In particular, the former one is
achieved by requiring that a bigger start identifier than the one associated with p in
the last view has been issued to p.

The memb specification allows the membership service to react to connectivity
changes happening during view formation. Whenever the service wants to add new



VS GROUP MULTICAST FOR WANS: FORMAL APPROACH 89

Proc a 1Proc b

v

v′

vmid

starta(2, {a, b})

viewa(2, {a, b}, [a : 1, b : 1])

starta(2, {a})

viewa(4, {a, b}, [a : 2, b : 3])
viewb(4, {a, b}, [a : 2, b : 3])

startb(3, {a, b})

viewb(3, {b}, [b : 2])

startb(2, {b})

viewb(2, {a, b}, [a : 1, b : 1])

Fig. 4.3. A sample execution of memb.

members to the membership, it has to issue a new start notification to the clients:
the second precondition on viewp(v) actions requires the membership v.set to be a
subset of the tentative membership set included in the last start notification. In
order to remove members from a forming view, the service does not need to issue a
new start notification.

The first start notification issued to p after a view marks the beginning of a new
view formation period. It includes a new local identifier cid, different from the ones
that were previously sent to p: the first precondition on startp(cid, set) requires cid
to be strictly greater than memb view[p].startId(p). Subsequent start notifications
sent during an ongoing view formation may either reuse the last start identifier or
issue a new one, as specified by the second precondition on start actions. We ensure
uniqueness of local start identifiers by generating them in increasing order.

Notice that the memb automaton does not specify any relationship between views
issued to different clients.

Example 4.1. Figure 4.3 presents a sample execution that shows the memb
service delivering different sequences of views to two different clients, a and b. Arrows
represent time passage at each client; gray dots represent events. First, both clients
receive the same view v = 〈2, {a, b}, [a : 1, b : 1]〉; we illustrate this with a circle around
the view events at both clients. Then, client b receives a view vmid = 〈3, {b}, [b : 2]〉
by itself. Then, both clients receive another common view v′ = 〈4, {a, b}, [a : 2, b : 3]〉.
Notice how the start identifiers included in the views correspond to the last start
identifiers issued to the clients.

We do not specify liveness properties for membership services. Instead, when we
specify the liveness properties of our GCS in section 5.2, we condition them on the
behavior of the membership service. For example, we state that if the same view is
delivered to all the members and the members do not receive any subsequent member-
ship events, then they eventually deliver this view to their application clients. Exist-
ing membership services do satisfy meaningful liveness properties. For example, [31]
guarantees that, when the network stabilizes, all members receive the “correct” view
and no other views thereafter. By combining our GCS liveness properties with such
membership liveness properties, we can restate the liveness properties of our GCS
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automaton co rfifo

Signature:
Input:

sendp(set,m), Proc p, SetOf(Proc) set, Msg m

reliablep(set), Proc p, SetOf(Proc) set

livep(set), Proc p, SetOf(Proc) set

Output: deliverp,q(m), Proc p, Proc q, Msg m

Internal: lose(p,q), Proc p, Proc q
skip task(p,q), Proc p, Proc q

State:
For all Proc p, Proc q: SequenceOf(Msg) channel[p][q], initially empty
For all Proc p: SetOf(Proc) reliable set[p], initially {p}
For all Proc p: SetOf(Proc) live set[p], initially {p}

Transitions:
INPUT sendp(set, m)

eff: (∀ q ∈ set) append m to channel[p][q]

OUTPUT deliverp,q(m)

pre: m = first(channel[p][q])
eff: dequeue m from channel[p][q]

INPUT reliablep(set)

eff: reliable set[p] ← set

INTERNAL lose(p, q)
pre: q �∈ reliable set[p]
eff: dequeue last message from channel[p][q]

INPUT livep(set)

eff: live set[p] ← set

INTERNAL skip task(p, q)
pre: q �∈ live set[p]

Tasks:
For each Proc p, Proq q: Cp,q = ({deliverp,q(m) | m ∈ Msg} ∪ {skip task(p,q)} ∪ {lose(p,q)})

Fig. 4.4. Reliable fifo multicast service specification. Liveness-related code is italicized.

conditionally on the network behavior.
The memb specification allows for simple and efficient distributed implementa-

tions that also satisfy meaningful liveness properties. The membership service of [31] is
an example of such an implementation; our design was implemented by Tarashchan-
skiy [43] using this membership service. In this service, a small number of servers
support a large number of clients, communicating with them asynchronously via fifo
ordered channels (TCP sockets). In case a server fails, clients can migrate to another
server. Other existing membership algorithms (for example, [20, 5]) could also be
easily extended to provide the interface and semantics specified here.

4.2. The reliable FIFO multicast service specification. The group com-
munication end-points communicate with each other using an underlying multicast
service that provides reliable fifo communication between every pair of connected
processes. Many existing group communication systems (for example, [26, 9, 20, 3])
implement VS over similar communication substrates. In our implementation [43], we
use the service of [7].

Figure 4.4 presents an I/O automaton, co rfifo, that specifies a multicast service
appropriate for our GCS design. Portions of the code that define liveness properties
are italicized.

Automaton co rfifo maintains a fifo queue channel[p][q] for every pair of end-
points. An input action sendp(set, m) models a multicast of message m from end-point
p to the end-points listed in the set by appending m to the channel[p][q] queues for
every end-point q in set. The deliverp,q(m) action removes the first message from
channel[p][q] and delivers it to q.

In addition, the interface of co rfifo includes input actions of the type
reliablep(set); end-point p may use such actions to command the multicast service
to maintain a reliable (gap-free) fifo connection to the end-points listed in set.
Whenever this action occurs, set is stored in a special variable reliable set[p]. For
every process q not in reliable set[p], the multicast service may lose an arbitrary
suffix of the messages sent from p to q, as modeled by an internal action lose(p, q).
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In order for the multicast service to be considered live, messages sent to live
and connected processes must eventually reach their destinations. The co rfifo
specification enforces this property in the italicized portion of its code.

Recall from section 3 that an infinite fair execution of an automaton must contain
either infinitely many events from each task C or infinitely many occurrences of states
in which no action in C is enabled. Automaton co rfifo defines the set Cp,q =
({deliverp,q | m ∈ Msg} ∪ skip task(p, q) ∪ lose(p, q)) to be a task for each pair
of end-points p and q. This definition implies that deliverp,q actions must occur in
an infinite fair execution of co rfifo, provided the following three conditions hold:
there are messages sent from p to q—hence, deliverp,q is enabled; the client at p is
interested in maintaining reliable connection to q—hence, lose(p, q) is disabled; and
q is believed to have a live connection to p—hence, a special action skip task(p, q)
is disabled, as explained below.

Action skip task(p, q) is defined only to provide an alternative to deliverp,q
actions so that deliverp,q actions are not required to happen when q is believed to
be disconnected from p. skip task(p, q) is an internal action that has no effect on
the state of co rfifo and is enabled when q is believed to be disconnected from p.
Such belief is modeled using special livep(set) input actions. The set argument is
assumed to represent a set of processes that are alive and connected to p; when such
an input happens, set is stored in a state variable live set[p]. The precondition on
the skip task(p, q) action is q 	∈ live set[p].

An important implication of how tasks are defined in co rfifo is that, if q re-
mains in both live set[p] and reliable set[p] from some point on in a fair execution
of co rfifo, then all the messages that p sends to q from that point on are eventually
delivered to q.

5. Specifications of the group communication service. The next two sub-
sections contain specifications of the safety and liveness properties satisfied by our
GCS. The specifications capture a core set of properties that is commonly provided
by GCSs and that have been shown to be useful for facilitating implementations of
many distributed applications and other, stronger, group communication properties
(see [16]). For example, [32, Chapter 10] illustrates the utility of our GCS system by
describing a simple application that can be effectively built using GCS. The applica-
tion implements a variant of a data service that allows a dynamic group of clients to
access and modify a replicated data object.

5.1. Safety properties. We present the safety specification of our GCS incre-
mentally as four automata: In section 5.1.1 we specify a simple GCS that synchronizes
delivery of views and application messages to require within-view delivery of messages.
In section 5.1.2 we extend the specification of section 5.1.1 to also require virtually
synchronous delivery, the key property of VS (see section 1.1). In section 5.1.3 we
specify the transitional set property, which complements virtually synchronous deliv-
ery. Finally, in section 5.1.4, we specify the self-delivery property, which requires
the GCS to deliver to each client the client’s own messages.

The incremental development of the safety specification is matched later when we
develop the algorithm and its correctness proof in section 6 and Appendix B.

5.1.1. Within-view reliable FIFO multicast. In this section we specify a
GCS that captures the following properties:

1. Views delivered to the application satisfy the self-inclusion and local mono-
tonicity properties of the memb service; see section 4.1.
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automaton wv rfifo : spec

Signature:
Input: sendp(m), Proc p, AppMsg m

Output: deliverp(q, m), Proc p, Proc q, AppMsg m

viewp(v), Proc p, View v

State:
For all Proc p, View v: SequenceOf(AppMsg) msgs[p][v], initially empty
For all Proc p, Proc q: Int last dlvrd[p][q], initially 0
For all Proc p: View current view[p], initially vp

Transitions:
INPUT sendp(m)

eff: append m to msgs[p][current view[p ]]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view[p ]] [last dlvrd[q][p]+1]
eff: last dlvrd[q][p] ← last dlvrd[q][p]+1

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > current view[p].id
eff: (∀ q) last dlvrd[q][p] ← 0

current view[p] ← v

Fig. 5.1. wv rfifo service specification.

2. Messages are delivered in the same view in which they were sent. This
property is useful for many applications (see [23, 16, 42]) and appears in several
systems and specifications (for example, [13, 44, 5, 38, 22, 28, 18]). A weaker property
that requires each message to be delivered in the same view at every process that
delivers it, but not necessarily the view in which it was sent, is typically implemented
on top of an implementation of within-view delivery (see [16]).

3. Messages are delivered in gap-free fifo order (within views). This is a basic
property upon which one can build services with stronger ordering guarantees, such
as causal order or total order. The totally ordered multicast algorithm of [14] is
implemented atop a service with a similar specification.

Figure 5.1 presents automaton wv rfifo : spec that models this specification.
The automaton uses centralized queues msgs[p][v] of application messages for each
sender p and view v. It also maintains a variable current view[p] that contains the
last view delivered to each process p and a variable last dlvrd[q][p], for every pair
of processes q and p, containing the index in the msgs[q][current view[p]] queue of
the last message from q delivered to p in p’s current view.

Action viewp(v) models the delivery of view v to process p; the precondition on
this action enforces self-inclusion and local monotonicity. Action sendp(m) models
the multicast of message m from process p to the members of p’s current view by
appending m to msgs[p][current view[p]]. Action deliverp(q, m) models the delivery
to process p of message m sent by process q. The gap-free fifo ordered delivery of
messages within-views is enforced by its precondition, which allows delivery of only
the message indexed by last dlvrd[q][p] + 1 in the msgs[q][current view[p]] queue.

5.1.2. Virtually synchronous delivery. In this section we use the inheritance-
based methodology to modify the wv rfifo : spec automaton to also enforce the
virtually synchronous delivery property. The modified automaton, vsrfifo : spec, is
defined by the code contained in both Figures 5.1 and 5.2.

Figure 5.2 contains the code that enforces the virtually synchronous delivery prop-
erty. Recall from section 1.1 that this property requires processes moving together
from view v to view v′ to deliver same set of messages while in view v. Since the
parent specification, wv rfifo : spec, imposes gap-free fifo delivery of messages, a
message set can be represented by a set of indices, each pointing to the last message
from each member of v; such representation of a set is called a cut.
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automaton vs rfifo : spec modifies wv rfifo : spec

Signature Extension:
Output: viewp(v) modifies wv rfifo.viewp(v)

Internal: set cut(v, v ′ , c), View v, View v ′ , (Proc → Int)⊥ c new

State Extension:
For all View v, v ′ : (Proc→Int)⊥ cut[v][v ′ ], initially ⊥

Transition Restriction:
OUTPUT viewp(v)

pre: cut[current view[p ]] [v] �= ⊥
(∀ q) last dlvrd[q][p]=cut[current view[p ]] [v](q)

INTERNAL set cut(v, v ′ , c)

pre: cut[v][v ′ ] = ⊥
eff: cut[v][v ′ ] ← c

Fig. 5.2. vs rfifo service specification.

The wv rfifo : spec automaton fixes a cut for processes that wish to move from
some view v to some view v′: A new internal action set cut(v, v′, c) sets a new
variable cut[v][v′] to a cut mapping c. For a given pair of views, v and v′, the
cut is chosen only once, nondeterministically. Delivery of a view v to process p is
allowed only if a cut for moving from p’s current view into v has been set and if p has
delivered all the messages identified in this cut. These conditions are enforced by the
two new preconditions of the viewp(v) action (see Figure 5.2). Since vsrfifo : spec
is a modification of wv rfifo : spec, the new preconditions work in conjunction with
the preconditions in viewp(v) of wv rfifo : spec.

The vsrfifo : spec automaton, being a safety specification, does not require live-
ness properties to hold, for instance, that processes actually deliver messages specified
by the cuts and hence are able to satisfy conditions for delivering new views. Such
liveness specifications are stated in section 5.2.

5.1.3. Transitional set. While virtually synchronous delivery is a useful prop-
erty, a process that moves from view v to view v′ cannot tell locally which of the
processes in v.set ∩ v′.set move to view v′ directly from view v and which move to
v′ from some other view. In order for the application to be able to exploit the virtu-
ally synchronous delivery property, application processes need to be informed which
other processes move together with them from their current view into their new view.
The set of processes that transition together from one view into the next is called a
transitional set [16].

Definition 5.1. A transitional set from view v to view v′ is a subset of v.set∩
v′.set that includes (a) all processes that receive view v′ while in view v and (b) no
process that receive view v′ while in a view other than v.

Note that the transitional set is not uniquely defined by Definition 5.1. If a process
p in v.set ∩ v′.set does not receive view v′, Definition 5.1 does not specify whether
or not p is included in the transitional sets of other processes that do receive view v′.

The notion of a transitional set was first introduced as part of a special transitional
view in the EVS [38] model. In our formulation (as in [16]), transitional sets are
delivered to the application along with views as an additional parameter T.

Example 5.1. Assume that Alice and Bob are using a virtually synchronous
GCS that eventually reports the views produced by the memb service to Alice and
Bob. Consider the scenario described in Example 4.1: both Alice and Bob receive
views v and v′ with the membership {Alice, Bob}. Just from these views, Alice does
not know whether Bob receives view v′ while in view v or while in some other view
vmid with the membership {Bob}. If the former holds, then Alice does not need to
synchronize with Bob because virtually synchronous delivery guarantees that they have
received the same messages while in view v; otherwise, she does. The transitional set
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automaton trans set : spec

Signature:
Output: viewp(v,T), Proc p, View v, SetOf(Proc) T

Internal: set prev viewp(v), Proc p, View v

State:
For all Proc p: View current view[p], initially vp
For all Proc p, View v: View⊥ prev view[p][v], initially ⊥
Transitions:
OUTPUT viewp(v, T)

pre: prev view[p][v] = current view[p]
(∀ q ∈ v.set ∩ current view[p].set)

prev view[q][v] �= ⊥
T = {q ∈ v.set ∩ current view[p].set |

prev view[q][v] = current view[p]}
eff: current view[p] ← v

INTERNAL set prev viewp(v)

pre: p ∈ v.set
prev view[p][v] = ⊥

eff: prev view[p][v] ← current view[p]

Fig. 5.3. Transitional set specification.

automaton wv rfifo+self : spec modifies wv rfifo : spec

Signature Extension:
Output: viewp(v) modifies wv rfifo.viewp(v)

Transition Restriction:
OUTPUT viewp(v)

pre: last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p ]] )

Fig. 5.4. wv rfifo+self service specification.

given to Alice together with view v′ provides this information.
Figure 5.3 presents an automaton ts : spec that specifies delivery of transitional

sets (Definition 5.1). There are two types of actions: output actions viewp(v, T) deliver
view v and transitional set T to process p; and internal actions set prev viewp(v)
declare that q intends to deliver view v while in its current view. The intentions are
recorded in the variable prev view[p][v], and the current views are recorded in the
variable current view[p].

Before process p can deliver a view v, each member q in the intersection of these
views must execute set prev viewq(v), as enforced by the second precondition. The
transitional set T delivered by p with v is then computed to consist of those processes q
in the intersection current view[p].set ∩ v.set for which prev view[q][v] is the same
as current view[p]; this is specified by the third precondition on viewp(v, T).

5.1.4. Self-delivery. We now specify the self-delivery property, which requires
that each client receives all the messages it sent in a given view before receiving a
new view. We specify this property as a simple modification of the wv rfifo : spec
automaton presented in section 5.1.1; the modified automaton is defined by the code
contained in both Figures 5.1 and 5.4.

In order to enforce self-delivery, a new precondition on the viewp(v) action re-
quires the last dlvrd[p][p] index to point to the last message sent by client p in its
current view. Since the parent automaton, wv rfifo : spec, guarantees within-view
gap-free fifo delivery, this precondition implies that all of p’s messages have in fact
been delivered back to p.

In order for a GCS to be live and satisfy within-view delivery, self-delivery, and
virtually synchronous delivery, the GCS must block its application from sending new
messages during view formation periods; this is proved in [23]. Therefore, we introduce
a block/block ok synchronization when we extend our algorithm to support the self-
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delivery property in section 6.3.
Our formulation of self-delivery as a safety property, when combined with the

liveness property of section 5.2, implies the formulations in [16] and [38] of self-delivery
as a liveness property. These formulations require a GCS to eventually deliver to each
process its own messages.

5.2. Liveness property. In a fault-prone asynchronous model, it is not feasible
to require that a GCS be live in every execution. The only way to specify useful
liveness properties without strengthening the communication model is to make these
properties conditional on the underlying network behavior (as specified, for example,
in [22, 17, 16]). Since our GCS uses an external membership service, we condition the
GCS liveness on the behavior of the membership service.

We define the liveness property for a restricted set of executions in which a com-
ponent stabilizes from some point on forever thereafter.

Property 5.1 (view stability). Let GCS be a group communication service
whose interface with its clients consists of send, deliver, and view events as defined
in the automaton signature in Figure 5.1. Furthermore, assume that the gcs uses a
membership service memb described in section 4.

A view v eventually becomes stable in a given timed execution α = s0, π1, s1, π2, . . .
of the gcs service, in the sense that a memb.viewp(v) event occurs in α for every p

∈ v.set and is followed by neither memb.viewp nor memb.startp events.
Given an execution that satisfies Property 5.1, the liveness property requires each

end-point in the stable view to eventually deliver this last view and all the messages
sent in this view to its client. Formally, we have the following property.

Property 5.2 (liveness). Let gcs be a group communication service whose
interface with its clients consists of send, deliver, and view events as defined in
the automaton signature in Figure 5.1. Furthermore, assume that the gcs uses a
membership service memb described in section 4.

Let α be a fair execution of gcs in which view v eventually becomes stable (Prop-
erty 5.1). Then, at each p ∈ v.set, gcs.viewp(v) eventually occurs. Moreover,
for every gcs.sendp(m) that occurs after gcs.viewp(v), and for every q ∈ v.set,
gcs.deliverq(p, m) also occurs.

It is important to note that although our liveness property requires the GCS to be
live only in certain executions, any implementation that satisfies this property has to
attempt to be live in every execution because it cannot test the external condition of
the membership becoming stable. Also note that, even though membership stability is
formally required to last forever, in practice it only has to hold “long enough” for the
GCS to reconfigure, as explained in [21, 25]. However, we cannot explicitly introduce
the bound on this time period in a fully asynchronous model, since it depends on
external conditions such as message latency, process scheduling, and processing time.

6. The virtually synchronous group multicast algorithm. In this section
we present an algorithm for a group communication service, gcs, that satisfies the
specifications in section 5. The GCS is implemented by a collection of gcs end-
points, each running the same algorithm. Figure 6.1(a) shows the interaction of a
gcs end-point with its environment: a membership service memb and a reliable fifo
multicast service co rfifo; these services are assumed to satisfy the specifications of
section 4. The end-point interacts with its application client by accepting the client’s
send requests and by delivering application messages and views to the client. The
end-point uses the co rfifo service to send messages to other gcs end-points and to
receive messages sent by other gcs end-points. When necessary, the end-point uses
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Fig. 6.1. A GCS end-point and its environment.

the reliable action to inform co rfifo of the set of end-points to which co rfifo
must maintain reliable (gap-free) fifo connections. The gcs end-point also receives
start and view notifications from the membership service.

The algorithm running at each gcs end-point is constructed incrementally using
the inheritance-based methodology of [30]. We proceed in three steps, at each step
adding support for a new property (see Figure 6.1(b)):

1. In section 6.1, we present an algorithm wv rfifop for an end-point of the
within-view reliable fifo multicast service specified in section 5.1.1 and argue that
this service satisfies safety specification wv rfifo : spec and liveness Property 5.2.

2. In section 6.2, we add support for the virtually synchronous delivery and
transitional set properties specified in sections 5.1.2 and 5.1.3. We present a child
vs rfifo+tsp of wv rfifop and argue that the service built from vs rfifo+tsp end-
points satisfies safety specifications vsrfifo : spec and ts : spec and liveness Prop-
erty 5.2.

3. In section 6.3, we add support for the self-delivery property specified in sec-
tion 5.1.4. The resulting automaton vs rfifo+ts+sdp models a complete gcs end-
point. Due to the use of inheritance, the service built from these end-points automat-
ically satisfies safety specifications wv rfifo : spec, vsrfifo : spec, and ts : spec.
We argue that it also satisfies safety specification self : spec and liveness Prop-
erty 5.2.

In the presented automata, each locally controlled action is defined to be a task by
itself, which means that, if it becomes and stays enabled, it eventually gets executed.

When composing automata into a service, actions of the memb.startp(id, set)
type are linked with co rfifo.livep(set), and actions of the memb.viewp(v) type are
linked with co rfifo.livep(v.set); the “link” operation can be formally expressed us-
ing the signature extension construct. When memb and co rfifo actions are linked
this way, the live set[p] variable of co rfifo matches the memb’s perception of
which end-points are alive and connected to p. (We assume that every permanently
disconnected end-point is eventually excluded by either a start or a view notifica-
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tion.) In the composed system, all output actions except the application interface are
reclassified as internal.

For simplicity of the code, the presented automata do not include certain practical
optimizations such as, for example, garbage collection; we point out some of the
important ones in section 6.4.

6.1. Within-view reliable FIFO multicast algorithm. In this section we
present thewv rfifop algorithm running at an end-point p of a basic GCS,wv rfifo.
The end-point algorithm is quite simple: It relies on the memb service to form and
deliver views involving end-point p; the end-point forwards these views to its client.
The algorithm also relies on the co rfifo service to provide reliable gap-free fifo
multicast communication. When the end-point receives a message-send request from
its client, it uses co rfifo to send the message to other end-points in the client’s
current view. The end-point delivers to its client the messages received from other
end-points via co rfifo, provided the client’s current view matches the views in
which the messages were sent. The algorithm keeps track of the views in which mes-
sages are sent using the following technique: each time the end-point delivers a view v

to its client, it sends a special view msg message to the end-points in v.set informing
them that the end-point’s future messages will be sent in view v. Reliable delivery
of messages is ensured by having co rfifo maintain a reliable connection to every
member of the end-point’s view.

Figure 6.2 models the wv rfifop algorithm as an automaton. The signature
defines the interface through which end-point p interacts with its client and with the
memb and co rfifo services.

When a view v is received from memb via action memb.viewp(v), end-point
p saves it in a variable memb view and then delivers v to its client by executing
action viewp(v). Variable current view contains the last view delivered to the
client. The precondition, v = memb view 	= current view, on the viewp(v) action
ensures that v is indeed the last view received from memb and that it has not al-
ready been delivered to the client. After end-point p delivers view v to its client,
it sends a view msg containing v to the rest of the members of current view.set
by using action co rfifo.sendp(set, 〈‘view msg’, v〉) with set = current view.set
− {p} and v = current view. Variable view msg[p] contains the last view sent
as a view msg. The first precondition on co rfifo.sendp(set, 〈‘view msg’, v〉),
view msg[p] 	= current view, ensures that each view msg is sent only once, and the
second precondition, current view.set ⊆ reliable set, ensures that, prior to send-
ing the view msg, end-point p has requested co rfifo to maintain reliable connection
to every member of the client’s view by executing action co rfifo.reliablep(set),
which sets variable reliable set to the value of set. When end-point p receives a
view msg from some end-point q via the co rfifo.deliverq,p(〈‘view msg’, v〉) ac-
tion, it stores v in a variable view msg[q].

End-point p maintains a queue msgs[q][v] per each end-point q and view v; these
queues are used for storing application messages received from other end-points via
co rfifo.deliverq,p and from the end-point’s own client via sendp. When action
sendp(m) occurs, message m is appended to msgs[p][current view]. The end-point
maintains the following indices that enforce message handling in the order of their
appearances in the msgs queues:

• last sent points to the last application message m on msgs[p][current view]
that was sent using co rfifo.sendp(set, 〈‘app msg’, m〉);
• last rcvd[q], for each end-point q, points to the last message m on queue
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automaton wv rfifop

Type:
ViewMsg = View
FwdMsg = Proc × View × AppMsg × Int

Signature:
Input: sendp(m), AppMsg m

co rfifo.deliverq,p(m), Proc q,

(AppMsg + ViewMsg + FwdMsg) m
memb.viewp(v), View v

Output: deliverp(q, m), Proc q, AppMsg m

co rfifo.sendp(set, m), SetOf(Proc) set,

(AppMsg + ViewMsg + FwdMsg) m
co rfifo.reliablep(set), SetOf(Proc) set

viewp(v), View v

State:
// Variables for handling application messages
For all Proc q, View v: SequenceOf(AppMsg⊥)

msgs[q][v], initially empty
Int last sent, initially 0
For all Proc q: Int last rcvd[q], initially 0
For all Proc q: Int last dlvrd[q], initially 0

// Variables for handling views and view
messages

View current view, initially vp
View memb view, initially vp
For all Proc q: View view msg[q], initially vq

SetOf(Proc) reliable set, initially vp.set

Transitions:
INPUT memb.viewp(v)

eff: memb view ← v

OUTPUT viewp(v)

pre: v = memb view �= current view
eff: current view ← v

last sent ← 0
(∀ q) last dlvrd[q] ← 0

OUTPUT co rfifo.reliablep(set)

pre: current view.set ⊆ set
reliable set �= set

eff: reliable set ← set

OUTPUT co rfifo.sendp(set, 〈‘view msg’, v〉)
pre: view msg[p] �= current view

current view.set ⊆ reliable set
set = current view.set - {p}
v = current view

eff: view msg[p] ← current view

INPUT co rfifo.deliverq, p(〈‘view msg’, v〉)
eff: view msg[q] ← v

last rcvd[q] ← 0

INPUT sendp(m)

eff: append m to msgs[p][current view]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view][last dlvrd[q]+1]
eff: last dlvrd[q] ← last dlvrd[q] + 1

OUTPUT co rfifo.sendp(set, 〈‘app msg’, m〉)
pre: view msg[p] = current view

set = current view.set - {p}
m = msgs[p][current view][last sent + 1]

eff: last sent ← last sent + 1

INPUT co rfifo.deliverq,p(〈‘app msg’, m〉)
eff: msgs[q][view msg[q ]] [last rcvd[q]+1]←m

last rcvd[q] ← last rcvd[q] + 1

OUTPUT co rfifo.sendp(set,〈‘fwd msg’,r,v,m,i〉)
pre: (p �∈ set) ∧ (m = msgs[r][v][i])

INPUT co rfifo.deliverq,p(〈‘fwd msg’,r,v,m,i〉)
eff: msgs[r][v][i] ← m

Fig. 6.2. Within-view reliable fifo multicast end-point automaton.

msgs[q][view msg[q]] that was delivered to p by
co rfifo.deliverq,p(〈‘app msg’, m〉);
• last dlvrd[q], for each end-point q, points to the last message m on queue
msgs[q][current view] that was delivered to p’s client using
co rfifo.deliverp(q, m).

The first precondition of co rfifo.sendp(set, 〈‘app msg’, m〉) ensures that a view msg

containing current view has been already sent to everybody in set = current view

− {p}. The preconditions on sending view msgs ensure that co rfifo maintains a re-
liable connection to everyone in set at the time co rfifo.sendp(set, 〈‘app msg’, m〉)
occurs.

Automaton wv rfifop also implements auxiliary functionality that allows end-
point p to forward an application message received from some end-point to some other
end-points. Specifically, using co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉), end-point
p can forward to some set of end-points the ith message, m, sent by the client at r in
view v. In turn, when end-point p receives co rfifo.deliverq,p(〈‘fwd msg’, r, v, m, i〉),
it stores the forwarded message m in the ith location of the msgs[r][v] queue. The
code of wv rfifop does not specify a particular strategy for forwarding messages; the
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strategy can be chosen nondeterministically. Such a strategy can be specified by more
refined versions of the algorithm and/or by modifications of wv rfifop, as we do in
the vs rfifo+tsp modification of the wv rfifop automaton in section 6.2 below.

Leaving a certain level of nondeterminism at the parent automaton, with the
intention of resolving it later at the child automaton, is a technique similar to the use
of abstract methods or pure virtual methods in object-oriented methodology. We use
the same technique in the co rfifo.reliablep(set) action when we require set to be
a nondeterministic superset of current view.set. The vs rfifo+tsp modification of
wv rfifop places additional preconditions on this action, thereby specifying precise
values for the set argument.

The wv rfifo automaton resulting from the composition of all the end-point au-
tomata and the memb and co rfifo automata models thewv rfifo service. The au-
tomaton satisfies the safety properties specified by wv rfifo : spec: it preserves the
local monotonicity and self-inclusion properties of view deliveries guaranteed by the
memb service; it also extends the gap-free fifo ordered message delivery of co rfifo
with the within-view delivery property. The within-view delivery is achieved by deliv-
ering messages to the clients only if the views in which the messages were sent match
the clients’ current views.

Appendix B.1 contains a simulation from wv rfifo to wv rfifo : spec: Actions
of automaton wv rfifo : spec involving viewp(v), sendp(m), and deliverp(q, m) are
simulated when wv rfifo takes the corresponding viewp(v), sendp(m), and
deliverp(q, m) actions. The steps of wv rfifo involving other actions correspond
to empty steps of wv rfifo : spec. We define the following function R that maps
every reachable state s of wv rfifo to a reachable state of wv rfifo : spec, where
s[p].var denotes an instance of a variable var of end-point p in a state s:

R(s∈ReachableStates(wv rfifo)) = t∈ReachableStates(wv rfifo : spec), where

for each Proc p, View v: t.msgs[p][v] = s[p].msgs[p][v],

for each Proc p, Proc q: t.last dlvrd[p][q] = s[q].last dlvrd[p],

for each Proc p: t.current view[p] = s[p].current view.

Lemma B.1 states that R is a refinement mapping from automaton wv rfifo
to automaton wv rfifo : spec; the proof relies on a number of invariant assertions,
stated and proved in Appendix B.1 as well.

The wv rfifo automaton also satisfies liveness (Property 5.2). Consider a fair
execution in which each end-point p in v.set receives the same view v from the mem-
bership and no view events afterwards. Starting from the time the memb.viewp(v)
action occurs, the viewp(v) action stays enabled; therefore it eventually happens due
to the fairness of the execution. After view v is delivered to the clients, all messages
sent in view v are also eventually delivered to the clients. This is due to the liveness
property of co rfifo, which guarantees that messages sent between live and con-
nected end-points (as perceived by the membership service) are eventually delivered
to their destinations. We prove these claims formally for the complete gcs algorithm
in Appendix C.

6.2. Adding support for virtually synchronous delivery and transitional
sets. The wv rfifo service of the previous section guarantees that each member p

of a view v receives some prefix of the fifo ordered stream of messages sent by every
member q in v. In this section, we modify the wv rfifop algorithm to yield an
end-point vs rfifo+tsp of a service, vs rfifo+ts, that, in addition to the semantics
provided by wv rfifo, guarantees that those members that transition from v into
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automaton vs rfifo+tsp modifies wv rfifop

Type: SyncMsg = StartId × View × (Proc→Int)

Signature Extension:
Input: memb.startp(id, set), StartId id, SetOf(Proc) set new

co rfifo.deliverq,p(m), Proc q, SyncMsg m new

Output: deliverp(q, m) modifies wv rfifo.deliverp(q, m)

viewp(v, T), SetOf(Proc) T modifies wv rfifo.viewp(v)

co rfifo.reliablep(set), SetOf(Proc) set modifies wv rfifo.co rfifo.reliablep(set)

co rfifo.sendp(set, m), SetOf(Proc) set, SyncMsg m new

co rfifo.sendp(set, m) modifies wv rfifo.co rfifo.sendp(set, m), FwdMsg m

Internal: set cutp() new

Fig. 6.3. Virtually synchronous reliable fifo multicast: signature extension.

the same view v′ receive not just some but the same prefix of the message stream sent
by each member q in v. This is the virtually synchronous delivery property, the key
property of VS semantics (see section 5.1.2). Overall, the vs rfifo+ts service satisfies
the vsrfifo : spec and ts : spec safety specifications, as well as liveness Property 5.2;
we prove these claims, respectively, in Appendixes B.2, B.3, and C.

In a nutshell, here is how vs rfifo+tsp computes transitional sets and enforces
virtually synchronous delivery: When end-point p is notified via startp(cid, set) of
the memb’s attempt to form a new view, p sends via co rfifo a synchronization
message tagged with cid to every end-point in set. The synchronization message
includes p’s current view v and a mapping cut, such that cut(q) is the index of the
last message from each q in v.set that p commits to deliver in view v.

End-point p may receive subsequent startp(cid, set) notifications from memb.
When such a notification includes a new cid, p sends a new synchronization message,
with a freshly made cut, to the proposed set; otherwise, when the cid is the same
as the last one, p simply forwards the last synchronization message to the joining
end-points, that is, to the end-points of the current set that were not listed in the
previously proposed membership.

Once p receives via viewp(v
′) a new view v′ from memb and a synchronization

message tagged with v′.startId(q) from each end-point q in v.set ∩ v′.set, p com-
putes a transitional set from v to v′ and decides on which messages it needs to deliver
to its client in view v before delivering view v′. A transitional set T from v to v′ is
computed to include every client q in v.set ∩ v′.set whose synchronization message
tagged with v′.startId(q) contains p’s current view v. For each client r in v.set,
end-point p decides to deliver all the messages of r that appear in the cut of the
synchronization message of any member q of T. Section 6.2.1 describes two message-
forwarding strategies that ensure p’s ability to actually deliver all the messages it
decides to deliver. After p delivers all these messages to its client, it then delivers to
its client the new view v′ along with the transitional set T.

Virtually synchronous delivery follows from the fact that all end-points transi-
tioning from view v to v′ consider the same synchronization messages, compute the
same set T, and hence use the same data to decide which messages to deliver in view
v before delivering view v′. Set T satisfies Definition 5.1 of a transitional set from
v to v′ because (a) every end-point that computes T is itself included in T, and (b)
no end-point q in T is allowed to deliver v′ while in some view other than v because
v′.startId(q) is linked through q’s synchronization message to v.



VS GROUP MULTICAST FOR WANS: FORMAL APPROACH 101

automaton vs rfifo+tsp modifies wv rfifop

State Extension:
(StartId × SetOf(Proc))⊥ start, initially ⊥
For all Proc q, StartId id: (View v, (Proc→Int) cut)⊥ sync msg[q][id], initially ⊥
SetOf(Proc) sync set, initially empty
SetOf((Proc × Proc × View × Int)) forwarded set, initially empty

Transition Restriction:
INPUT memb.startp(cid, set)

eff: if start �= ⊥ ∧ start.id = cid
then sync set ← sync set ∩ set
else sync set ← ∅

start ← 〈cid, set〉

OUTPUT co rfifo.reliablep(set)

pre: start = ⊥ ⇒ set = current view.set
start �= ⊥ ⇒ set = current view.set ∪ start.set

INTERNAL set cutp()

pre: start �= ⊥ ∧ sync msg[p][start.id] = ⊥
eff: Let cut = {〈q, LongestPrefixOf(msgs[q][current view])〉 | q ∈ current view.set}

sync msg[p][start.id] ← 〈current view, cut〉
sync set ← {p}

OUTPUT co rfifo.sendp(set, 〈‘sync msg’, cid, v, cut〉)
pre: start �= ⊥ ∧ sync msg[p][start.id] �= ⊥

set = (start.set - sync set) �= ∅
set ⊆ reliable set
cid = start.id ∧ 〈v, cut〉 = sync msg[p][cid]

eff: sync set ← start.set

INPUT co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉)
eff: sync msg[q][cid] ← 〈v, cut〉

OUTPUT deliverp(q, m)

pre: if (start �= ⊥ ∧ sync msg[p][start.id] �= ⊥) then
if start.id �= memb view.startId(p) then

last dlvrd[q]+1 ≤ sync msg[p][start.id].cut(q)
else let S = {r ∈ memb view.set ∩ current view.set |

sync msg[r][memb view.startId(r)].view = current view}
last dlvrd[q]+1 ≤ maxr ∈ S sync msg[r][memb view.startId(r)].cut(q)

OUTPUT viewp(v, T)

pre: v.startId(p) = start.id // to prevent delivery of obsolete views
v.set - sync set = ∅ // all sync msgs are sent
last sent ≥ sync msg[p][v.startId(p)].cut(p) // sent out your own msgs
(∀ q ∈ v.set ∩ current view.set) sync msg[q][v.startId(q)] �= ⊥
T = {q ∈ v.set ∩ current view.set | sync msg[q][v.startId(q)].view = current view}
(∀ q ∈ current view.set) last dlvrd[q] = maxr ∈ T sync msg[r][v.startId(r)].cut(q)

eff: start ← ⊥
sync set ← ∅

OUTPUT co rfifo.sendp(set,〈‘fwd msg’,r,v,m,i〉)
pre: (∀ q ∈ set) (〈q, r, v, i〉 �∈ forwarded set) ∧ ForwardStrategyPredicate(set, r, v, i)
eff: (∀ q ∈ set) add 〈q, r, v, i〉 to forwarded set

Fig. 6.4. Virtually synchronous reliable fifo multicast: state extension and transition restriction.

Figures 6.2, 6.3, and 6.4, together, contain the code of the vs rfifo+tsp au-
tomaton that models end-point p of the vs rfifo+ts service. Figures 6.3 and 6.4
specify how the wv rfifop automaton of Figure 6.2 is modified to support virtually
synchronous delivery and transitional sets. Figure 6.3 contains signature extension
that defines the signatures of new and modified actions; Figure 6.4 contains the state
extension and transition restriction defining, respectively, new state variables and new
precondition/effect code. We now describe automaton vs rfifo+tsp in detail.

Upon receiving memb.startp(cid, set), vs rfifo+tsp stores the cid and set
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parameters in the id and set fields of a variable start. When start 	= ⊥, it indicates
that vs rfifo+tsp is engaged in a synchronization protocol, during which it exchanges
synchronization messages tagged with start.id with the end-points in start.set;
after vs rfifo+tsp delivers a view to its client it resets start to ⊥.

Variable sync set indicates the set of end-points to which a synchronization
message tagged with the latest start.id has already been sent. When end-point
p receives startp(cid, set) with a new cid, sync set is reset to ∅ to indicate that a
new synchronization message needs to be sent to every end-point in set. However,
if the cid is the same as the last one, sync set is set to sync set ∩ set. This way,
the end-point will send its last synchronization message only to the joining end-points
(i.e., those in set − sync set), and not to those to which the message was already
sent. Notice that the disconnected end-points (i.e., those that are not in set) are
removed from sync set.

After vs rfifo+tsp receives a startp(cid, set) input from memb, it executes
an internal action, set cutp(). This action commits p to deliver to its client all
the messages it has so far received from the members of its current view. For each
member q of current view.set, cut(q) is set to the length of the longest continuous
prefix of messages in msgs[q][current view].4 Action set cutp() results in p’s current
view being stored in sync msg[p][start.id].view, the committed cut being stored in
sync msg[p][start.id].cut, and sync set being set to {p}.

vs rfifo+tsp specifies precise preconditions on the co rfifo.reliablep(set)
actions. When vs rfifo+tsp is not engaged in a synchronization protocol (i.e., when
start = ⊥), co rfifo is asked to maintain reliable connection just to the end-
points in p’s current view, current view.set. When vs rfifo+tsp is engaged in
a synchronization protocol, it requires co rfifo to maintain reliable connection to
the members of a forming view, start.set, as well as to those in current view.set.
Thus, co rfifo avoids loss of messages sent to the disconnected end-points in case
these end-points are later added to the forming view.

After setting the cut and telling co rfifo to maintain reliable connection to
everyone in current view.set ∪ start.set, vs rfifo+tsp uses co rfifo.sendp to
send the synchronization message sync msg[p][start.id] tagged with start.id to the
end-points in start.set − sync set, that is, to all those end-points in the proposed
membership to which this synchronization message has not already been sent. After-
wards, sync set is adjusted to start.set.

When end-point p receives synchronization messages from other end-points, via
co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉), p saves 〈v, cut〉 in sync msg[q][cid].

vs rfifo+tsp restricts delivery of application messages while it is engaged in a
synchronization protocol (i.e., when start 	= ⊥ and sync msg[p][start.id] 	= ⊥):
Prior to receiving a new view from memb, only the messages identified in the cut
of its own latest synchronization message, sync msg[p][start.id].cut, can be de-
livered to the client. After memb.viewp(v) occurs, vs rfifo+tsp is allowed to de-
liver messages identified in the cut sync msg[q][v.startId(q)].cut received from q,
provided q is a member of the transitional set from current view to v. An end-
point q ∈ current view.set ∩ v.set is considered to be in the transitional set from
current view to v if sync msg[q][v.startId(q)].view is the same as p’s current view.

vs rfifo+tsp delivers a view v received from memb and a transitional set T to
its client when p has received a synchronization message sync msg[q][v.startId(q)]

4The longest continuous prefix can be different from the length of msgs[q][current view] because
forwarded messages may arrive out of order and introduce gaps in the msgs queues.
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from every q in current view.set ∩ v.set, has computed T, and has delivered all the
application messages identified in the cuts of the members of T, as specified by the last
three preconditions on viewp(v, T). The first two preconditions ensure, respectively,
that no new memb.startp notification was issued after memb.viewp(v) and that p

has sent its synchronization message to everybody in v.set. The third precondition
specifies that p has sent to others all of its own messages indicated in its own cut. All
these preconditions work in conjunction with those in wv rfifo.viewp(v).

Recall from section 6.1 that wv rfifop allows for nondeterministic forwarding of
other end-points’ application mesages. vs rfifo+tsp resolves this nondeterminism by
placing two additional preconditions on co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉):
The first checks a variable forwarded set to make sure that message m was not pre-
viously forwarded to anyone in set. The second tests that a certain predicate, called
ForwardingStrategyPredicate(set, r, v, i), holds. This predicate is designed to en-
sure that all end-points in the transitional set T are able to deliver all the messages that
each has committed to deliver in its synchronization message, in particular those sent
by disconnected clients. End-points test ForwardingStrategyPredicate to decide
whether they need to forward any messages to others.

6.2.1. Forwarding strategy predicate. We now provide two examples of
ForwardingStrategyPredicates. With the first, multiple copies of the same message
may be forwarded by different end-points. The second strategy reduces the number of
forwarded copies of a message. Many other possible strategies exist. For example, a
strategy can employ randomization to decide whether an end-point should forward a
message in a certain time slice, and suppress forwarding of messages that have already
been forwarded by others.

A simple strategy. With our first strategy, end-point p forwards message m

only if p has committed to deliver m. In addition, if m was originally sent in view v,
p forwards m to an end-point q only if p does not know of any view of q later than
v and if the latest sync msg from q sent in view v indicates that q has not received
message m.

ForwardingStrategyPredicate(set, r, v, i) ≡
(∃ cid) (sync msg[p][cid].view = v ∧ i ≤ sync msg[p][cid].cut(r))

∧ set = { q | view msg[q] ≤ v ∧ (∃ cid ′ ) (sync msg[q][cid ′ ].view = v

∧ ( �∃ cid ′ ′ > cid ′ ) sync msg[q][cid ′ ′ ].view = v

∧ sync msg[q][cid ′ ].cut(r) < i) }.

If some end-point q is missing a certain message m, then m will be forwarded
to q by some end-point p that has committed to deliver m, when p learns from q’s
synchronization message that q misses m.

Reducing the number of forwarded copies of a message. The second
strategy relies on the computed transitional set T from view v to v′ to decide which
message should be forwarded by which member of the transitional set. Assume that
a member u of T misses a message m that was originally sent in v by a nonmember r

of T, but that was committed to delivery by some other members of T. Among these
members, ForwardingStrategyPredicate selects the one with the minimal process
identifier to forward m to u; variations of this predicate may use a different determin-
istic rule for selecting a member, for example, accounting for network topology or
communication costs. The selected end-point, p, forwards the message to u only if
view v′ is the latest view known to p, as specified by the first conjunct below. Oth-
erwise, v′ is an obsolete view, so there is no need to help u transition in to v′. The
described strategy does not forward to u ∈ T messages from the members of T because
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u is guaranteed to receive these messages directly from their original senders (unless
v′ becomes obsolete because further view changes occur).

ForwardingStrategyPredicate(set, r, v, i) ≡
Let v ′ = memb view ∧ // latest view known to {p}
sync msg[p][v ′ .startId(p)] �= ⊥ ∧ // already sent own sync msg
Let v = sync msg[p][v ′ .startId(p)].view ∧
(for all q ∈ v.set ∩ v ′ .set) sync msg[q][v ′ .startId(q)] �= ⊥ ∧ // received right sync msgs
Let T = {q ∈ v.set ∩ v ′ .set | sync msg[q][v ′ .startId(q)].view = v} ∧
r �∈ T ∧ // only forward messages from end--point not in T
set = {u ∈ T | sync msg[u][v ′ .startId(u)].cut(r) < i } ∧
p = min{u ∈ T | sync msg[u][v ′ .startId(u)].cut(r) ≥ i }.

If all end-points receive the same view from memb, only one copy of m will be
forwarded to each u. In rare cases, however, when memb delivers different views to
different end-points, more than one end-point may forward the same message m to the
same end-point u.

Each end-point waits to receive a new view from memb and all the right synchro-
nization messages before it forwards messages to others. Thus, compared to the first
strategy, this strategy reduces the communication traffic at the cost of slower recovery
of lost messages.

6.2.2. Correctness argument. The vs rfifo+ts automaton, resulting from
the composition of all end-point automata and the memb and co rfifo automata,
satisfies the vsrfifo : spec and ts : spec safety specifications, as well as liveness
(Property 5.2), as we formally prove in Appendixes B.2, B.3, and C, respectively.
Below we give highlights of these proofs.

vsrfifo : spec is a modification ofwv rfifo : spec. The proof that vs rfifo+ts
satisfies vsrfifo : spec reuses the proof that wv rfifo satisfies wv rfifo : spec and
involves reasoning about only how vsrfifo : spec modifies wv rfifo : spec. The
proof extends refinement mapping R between wv rfifo and wv rfifo : spec with a
mapping Rn. Rn maps the cut used by the end-points of vs rfifo+ts to move from a
view v to a view v′ to the cut[v][v′] variable of vsrfifo : spec. The proof depends on
Invariant B.9 and Corollary B.1, which state that all end-points that move from a view
v to a view v′ use the same synchronization messages, compute the same transitional
set T, and therefore use the same cut.

The proof in Appendix B.3 shows that vs rfifo+ts satisfies ts : spec. The proof
augments vs rfifo+tsp with a prophecy variable that guesses, at the time end-point
p receives a startp(cid, set) notification from memb, possible future views that may
contain cid in their startId(p) mappings. For each of these views v′, vs rfifo+ts
simulates a set prev viewp(v

′) action of ts : spec, thereby fixing the previous view
of v′ to be p’s current view v.

In a fair execution of vs rfifo+ts in which the same last view v′ is delivered to
all its members and no start events subsequently occur, the three preconditions on
the viewp(v

′, Tp) delivery are eventually satisfied for every p ∈ v′.set:
1. Condition v′.startId(p) = start.id remains true since the execution has no

subsequent start events at p.
2. End-point p eventually receives synchronization messages tagged with the

“right” cid from every member of v.set ∩ v′.set because they keep taking steps
towards reliably sending these synchronization messages to p (by low-level fairness
of the code) and because co rfifo eventually delivers these messages to p (by the
liveness assumption on co rfifo).

3. End-point p eventually receives and delivers all the messages committed to
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automaton gcsp = vs rfifo+ts+sdp modifies vs rfifo+tsp

Signature Extension:
Input: block okp() new

Internal: set cutp() modifies set cutp()

Output: blockp() new

viewp(v,T) modifies vs rfifo+ts.viewp(v,T)

State Extension:
block status ∈ {unblocked, requested, blocked}, initially unblocked

Transition Restriction:
INTERNAL set cutp()

pre: block status = blocked

OUTPUT viewp(v,T)

eff: block status ← unblocked

OUTPUT blockp()

pre: start �= ⊥
block status = unblocked

eff: block status ← requested

INPUT block okp()

eff: block status ← blocked

Fig. 6.5. GCSp end-point automaton.

in the cuts of the members of the transitional set Tp because for each such message
there is at least one end-point in Tp that has the message in its msgs buffer and
that will reliably forward it to p (according to the ForwardingStrategyPredicate)
if necessary. Also, p never delivers any messages beyond those committed to in the
cuts of the members of Tp because of the precondition on application message delivery.

6.3. Adding support for self-delivery. As a final step in constructing the
automaton that models an end-point of our group communication service, gcsp, we
add support for self-delivery to the vs rfifo+tsp automaton presented above. Self-
delivery requires each end-point to deliver to its client all the messages the client sends
in a view, before moving on to the next view.

In order to implement self-delivery, virtually synchronous delivery, and within-
view delivery together in a live manner, each end-point must block its client from
sending new messages while a view change is taking place (as proven in [23]). There-
fore, we add to vs rfifo+tsp an output action block and an input action block ok.
We assume that the client at end-point p has the matching actions and that it even-
tually responds to every block request with a block ok response and subsequently
refrains from sending messages until a view is delivered to it. In section B.4, we
formalize this requirement as an abstract client automaton.

The gcsp automaton appears in Figure 6.5. After receiving the first start no-
tification in a given view, end-point p issues a block request to its client and awaits
receiving a block ok response before executing set cutp(). As a result of set cutp(),
p commits to deliver all the messages its client has sent in the current view. Therefore,
p has to deliver all these messages before moving on to a new view, and self-delivery
is satisfied. Due to the use of inheritance, the gcs automaton preserves all the safety
properties satisfied by its parent. Since end-point p has its own messages on the
msgs[p][p] queue and can deliver them to its client, liveness is also preserved. Thus,
gcs satisfies all the properties we have specified in section 5.

6.4. Optimizations and extensions. Having formally presented the basic al-
gorithm for an end-point of our virtually synchronous GCS, we now discuss several
optimizations and extensions that can be added to the algorithm to make its imple-
mentation more practical. Specifically, we discuss ways to reduce the size and number
of synchronization messages. (In general, the number of synchronization messages and
the size of each message sent during a synchronization protocol can be linear in the
number of members.) We also discuss garbage collection and ways to avoid the use
of nonvolatile storage.
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The first optimization that reduces the size of synchronization messages relies on
the following observation: An end-point p does not need to send its current view and
its cut to end-points that are not in current view.set because p cannot be included
in their transitional sets. However, these end-points still need to hear from p if p is
in their current views. Therefore, end-point p could send a smaller synchronization
message to the end-points in start.set − current view.set, containing its start.id
only (but neither a view nor a cut). This message would be interpreted as saying “I
am not in your transitional set,” and the recipients of this message would know not
to include p in their transitional sets for views v′ with v′.startId(p) = p’s start.id.
When using this optimization, p also does not need to include its current view in
the synchronization messages sent to current view.set− start.set, since the view
information can be deduced from p’s view msg.

An additional optimization can be used if we strengthen the membership speci-
fication to require a memb.start with a new identifier to be sent every time memb
changes its mind about the membership of a forming view. In this case, the lat-
est memb.start has the same membership as the delivered memb.view. Therefore,
the synchronization messages can be shortened to not include information about ap-
plication messages delivered from end-points in start.set ∩ current view.set: for
an end-point p, end-points that have p in their transitional sets will deliver all the
application messages that p sent before its synchronization message.

Other optimizations can reduce the total number of messages sent during syn-
chronization protocol by all end-points. A simple way to do this is to transform
the algorithm into a leader-based one, as in [44, 40]. A more scalable approach was
suggested by Guo, Vogels, and van Renesse [26]. Their algorithm uses a two-level
hierarchy for message dissemination in order to implement VS: end-points send syn-
chronization messages to their designated leaders, which in turn exchange only the
cumulative information among themselves. Also, the number of messages exchanged
to synchronize multiple groups can be reduced, as suggested in [11, 39], by aggregating
information pertaining to multiple groups into a single message.

Another optimization addresses the use of stable storage. Recall that in sec-
tion 4 we assumed that end-points keep their running states on stable storage, and
therefore, recover with their state intact. However, our group multicast service does
provide meaningful semantics even when gcs end-points maintain their running state
on volatile storage. When an end-point p recovers after a crash, it can start executing
with its state reset to an initial value with current view being the singleton view
vp. It needs to contact the memb service to be readmitted to its groups. The client
would refrain from sending any messages in its recovered view until it receives a new
view from its end-point. This view would satisfy local monotonicity and self-inclusion
because these are the properties guaranteed by the memb service. The specification
of virtually synchronous delivery should be changed so that recovery is interpreted
as delivering a singleton view. The remaining safety properties are also preserved
because they involve message delivery within a single view.

In a practical implementation of our service, some sort of garbage collection mech-
anism is required in order to keep the buffer sizes finite. The implementation of [43]
discards messages from older views when moving to a new view and also when learn-
ing that they were already delivered to every client in the view. This implementation
also discards older synchronization messages: an end-point holds on to only the latest
synchronization message it has received from each end-point. This optimization does
not violate liveness since discarded synchronization messages necessarily pertain to
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obsolete views.

7. Conclusions. We have designed a novel group multicast service targeted for
WANs. Our service implements a variant of the VS semantics that includes a collection
of properties that have been shown useful for many distributed applications (see [16]).
Many GCSs, for example, [44, 40, 9, 5, 19], support these and similar properties.
Our design has been implemented [43] (in C++) as part of a novel architecture for
scalable group communication in WANs using the datagram service of [7] and the
Moshe membership algorithm [31].

The main contribution of this paper is a VS algorithm run by gcs end-points,
in particular, its synchronization protocol, which enforces virtually synchronous de-
livery. This protocol is invoked when the underlying membership service begins to
form a new view, and is run while the view is forming. The protocol involves a single
message-exchange round during which members of the forming view send synchro-
nization messages to each other. In contrast to previously suggested VS algorithms
(e.g., [23, 5, 26, 3, 9]), our algorithm does not require end-points to preagree upon a
globally unique identifier before sending synchronization messages and thus involves
less communication. Performing less communication is especially important in WANs,
where message latency tends to be high.

Furthermore, unlike the algorithms in [5, 26, 9, 40], our algorithm allows the
membership service to change the membership of a forming view while the synchro-
nization protocol is running; the protocol responds immediately to such membership
changes.

We are not aware of any other algorithm for VS that does not preagree on com-
mon identifiers before sending synchronization messages and that always allows new
members to join a forming view while the synchronization protocol is running. Our al-
gorithm achieves these two features by virtue of a simple yet powerful idea: End-points
tag their synchronization messages with start identifiers that are locally generated by
the membership service; when the membership service forms a view and delivers it
to the end-points, the view includes information about which start identifiers were
given to which member. This information communicates to the end-points which
synchronization messages they need to consider from each member. Since no prea-
greement upon a common identifier takes place, there is nothing that would inhibit
the membership service and the VS algorithm from allowing new members to join the
forming view; end-points just have to forward their last synchronization messages to
the joiners.

As a second contribution of this paper, our design has demonstrated how to ef-
fectively decouple the algorithm for achieving VS from the algorithm for maintaining
membership. As argued in [6, 31], such decoupling is important for providing effi-
cient and scalable group communication services in WANs. In previous designs that
implement VS atop an external membership service [11, 40], the membership service
is not allowed to add new members to an already forming view, and the membership
service waits to synchronize with all end-points of the formed view before delivering
the view to any of the clients.

A distinct and important characteristic of our design is the high level of for-
mality and rigor at which it has been carried out. This paper has provided precise
descriptions of the gcs algorithm and the semantics it provides, as well as a formal
proof of the algorithm’s correctness—both safety and liveness. Previously, formal ap-
proaches based on I/O automata were used to specify the semantics of VS GCSs and
to model and verify their applications, for example, in [15, 22, 18, 33, 27]. However,
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due to their size and complexity, VS algorithms were not previously modeled using
formal methods, nor were they assertionally verified. Our experience has taught us
the importance of careful modeling and verification: in the process of proving our
algorithm’s correctness we have often uncovered subtleties and ambiguities that had
to be resolved.

In order to manage the complexity of our design, we developed a new formal
inheritance-based methodology [30]. The incremental way in which we constructed
our algorithms and specifications also allowed us to construct the simulation proof in-
crementally. For example, in order to prove that vs rfifo+ts simulates vs rfifo+ts
: spec, we extended the simulation relation from wv rfifo to wv rfifo : spec
and reasoned solely about the extension, without repeating the reasoning about the
parent components (see Appendix B.2). This reuse was justified by the proof exten-
sion theorem of [30] (see Appendix A.3). The use of incremental construction was the
key to our success in formally modeling and reasoning about such a complex and so-
phisticated service. We hope that the methodology employed in this paper shall also
be helpful to other researchers working on formal modeling of complex distributed
systems.

Appendix A. Review of proof techniques. In this section we describe the
main techniques used to prove correctness of I/O automata: invariant assertions,
hierarchical proofs, refinement mappings, and history and prophecy variables. The
material in this section is closely based on [36, pp. 216–228] and [35, pp. 3, 4, and 13].
In section A.3 we present a proof extension theorem of [30] that provides a formal
framework for the reuse of simulation proofs based on refinement mappings.

A.1. Invariants. The most fundamental type of property to be proved about
an automaton is an invariant assertion, or just invariant for short. An invariant
assertion of an automaton A is defined as any property that is true in every single
reachable state of A.

Invariants are typically proved by induction on the number of steps in an execution
leading to the state in question. While proving an inductive step, we consider only
critical actions, which affect the state variables appearing in the invariant.

A.2. Hierarchical proofs. One of the important proof strategies is based on a
hierarchy of automata. This hierarchy represents a series of descriptions of a system
or algorithm at different levels of abstraction. The process of moving through the
series of abstractions, from the highest level to the lowest level, is known as successive
refinement. The top level may be nothing more than a problem specification written in
the form of an automaton. The next level is typically a very abstract representation
of the system: it may be centralized rather than distributed, or have actions with
large granularity, or have simple but inefficient data structures. Lower levels in the
hierarchy look more and more like the actual system or algorithm that will be used
in practice: they may be more distributed, have actions with small granularity, and
contain optimizations. Because of all this extra detail, lower levels in the hierarchy are
usually harder to understand than the higher levels. The best way to prove properties
of the lower-level automata is by relating these automata to automata at higher levels
in the hierarchy, rather than by carrying out direct proofs from scratch.

A.2.1. Refinement mappings. The simplest way to relate two automata, say
A and S, is to present a refinement mapping R from the reachable states of A to the
reachable state of S such that it satisfies the following two conditions:

1. If t0 is an initial state of A, then R(s0) is an initial state of S.
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2. If t and R(t) are reachable states of A and S, respectively, and (t, π, t′) is a
step of A, then there exists an execution fragment of S beginning at state
R(t) and ending at state R(t)′, with its trace being the same as the trace of
π and its final state R(t)′ being the same as R(t′).

The first condition asserts that any initial state of A has some corresponding
initial state of S. The second condition asserts that any step of A has a corresponding
sequence of steps of S. This corresponding sequence can consist of one step, many
steps, or even no steps, as long as the correspondence between the states is preserved
and the external behavior is the same.

The following theorem gives the key property of refinement mappings.
Theorem A.1. If there is a refinement mapping from A to S, then traces(A)

⊆ traces(S).
If automata A and S have the same external signature and the traces of A are the

traces of S, then we say that A implements S in the sense of trace inclusion, which
means that A never does anything that S couldn’t do. Theorem A.1 implies that, in
order to prove that one automaton implements another in the sense of trace inclusion,
it is enough to produce a refinement mapping from the former to the latter.

A.2.2. History and prophecy variables. Sometimes, however, even when the
traces of A are the traces of S, it is not possible to give a refinement mapping from
A to S. This may happen due to the following two generic reasons:

1. The states of S may contain more information than the states of A.
2. S may make some premature choices, which A makes later.

The situation when A has been optimized not to retain certain information that S
maintains can be resolved by augmenting the state of A with additional components,
called history variables (because they keep track of additional information about the
history of execution), subject to the following constraints:

1. Every initial state has at least one value for the history variables.
2. No existing step is disabled by the addition of predicates involving history

variables.
3. A value assigned to an existing state component must not depend on the

value of a history variable.
These constraints guarantee that the history variables simply record additional state
information and do not otherwise affect the behavior exhibited by the automaton. If
the automaton AHV augmented with history variables can be shown to implement S
by presenting a refinement mapping, it follows that the original automaton A without
the history variables also implements S because they have the same traces.

The situation when S is making a premature choice, which A makes later, can
be resolved by augmenting A with a different sort of auxiliary variable, prophecy
variable, which can look into the future just as history variable looks into the past. A
prophecy variable guesses in advance some nondeterministic choice that A is going to
make later. The guess gives enough information to construct a refinement mapping
to S (which is making the premature choice). For an added variable to be a prophecy
variable, it must satisfy the following conditions:

1. Every state has at least one value for the prophecy variable.
2. No existing step is disabled in the backward direction by the new preconditions

involving a prophecy variable. More precisely, for each step (t, π, t′) there
must be a state (t, p) and a p such that there is a step ((t, p), π, (t′, p′)).

3. A value assigned to an existing state component must not depend on the
value of the prophecy variable.
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Fig. A.1. Algorithm A simulates specification S with R. Can R be reused for building a refinement
R′ from a child A′ of A to a child S′ of S?

4. If t is an initial state of A and (t, p) is a state of the A augmented with the
prophecy variable, then it must be its initial state.

If these conditions are satisfied, the automaton augmented with the prophecy variable
will have the same (finite) traces as the automaton without it. Therefore, if we can
exhibit a refinement mapping from APV to S, we know that the A implements S.

A.3. Inheritance and proof extension theorem. We now present a theorem
from [30] which lays the foundation for incremental proof construction. Consider the
example illustrated in Figure A.1, where a refinement mapping R from an algorithm A

to a specification S is given, and we want to construct a refinement mapping R′ from
a child A′ of an automaton A to a child S′ of a specification automaton S.

Theorem A.2 below implies that such a refinement R′ can be constructed by sup-
plementing R with a mapping Rn from the states of A′ to the state extension introduced
by S′. Mapping Rn has to map every initial state of A′ to some initial state extension
of A′ and it has to satisfy a step condition similar to the one for refinement mapping
(section A.2.1), but only involving the transition restriction of S′.

Theorem A.2. Let automaton A′ be a child of automaton A. Let automaton S′

be a child of automaton S. Let mapping R be a refinement from A to S.
Let Rn be a mapping from the states of A′ to the state extension introduced by S′.
A mapping R′ from the states of A′ to the states of S′, defined in terms of R and

Rn as

R′(〈t, tn〉) = 〈R(t), Rn(〈t, tn〉)〉,
is a refinement from A′ to S′ if R′ satisfies the following two conditions:

1. If t is an initial state of A′, then Rn(t) is an initial state extension of S′.
2. If 〈t, tn〉 is a reachable state of A′, s = 〈R(t), Rn(〈t, tn〉)〉 is a reachable state

of S′, and (〈t, tn〉, π, 〈t′, t′n〉) is a step of A′, then there exists a finite sequence α of
alternating states and actions of S′, beginning from s and ending at some state s′,
satisfying the following conditions:

1. α projected onto states of S is an execution sequence of S.
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2. Every step (si, σ, si+1)∈ α is consistent with the transition restriction placed on
S by S′.

3. The parent component of the final state s′ is R(t′).
4. The child component of the final state s′ is Rn(〈t′, t′n〉).
5. α has the same trace as π.

In practice, one would exploit this theorem as follows: The simulation proof
between the parent automata already provides a corresponding execution sequence of
the parent specification for every step of the parent algorithm. It is typically the case
that the same execution sequence, padded with new state variables, corresponds to
the same step at the child algorithm. Thus, conditions 1, 3, and 5 of Theorem A.2
hold for this sequence. The only conditions that have to be checked are 2, and 4,
that is, that every step of this execution sequence is consistent with the transition
restriction placed on S by S′ and that the values of the new state variables of S′ in the
final state of this execution match those obtained when Rn is applied to the poststate
of the child algorithm.

A.4. Safety versus liveness. Proving that one automaton implements another
in the sense of trace inclusion constitutes only partial correctness, as it implies safety
but not liveness. In other words, partial correctness ensures than “bad” things never
happen, but it does not say anything about whether some “good” thing eventually
happens.

In this paper, we use invariant assertions and simulation techniques to prove
that our algorithms satisfy safety properties, which are stated as I/O automata. For
liveness proofs, we use a combination of invariant assertions and carefully proven
operational arguments.

Appendix B. Correctness proof: Safety properties. We now formally
prove, using invariant assertions and simulations, that our algorithms satisfy the safety
properties of section 5.1. Proofs done with invariant assertions and simulations are
verifiable (even by a computer) because they involve reasoning only about single
steps of the algorithm. A review of the proof techniques used in this section appears
in Appendix A.

The safety proof is modular: we exploit the inheritance-based structure of our
specifications and algorithms to reuse proofs. In section B.1 we prove correctness of
the within-view reliable fifo multicast service by showing a refinement mapping from
wv rfifo to wv rfifo : spec. In section B.2 we extend this refinement mapping to
map the new state added in vs rfifo+ts to that in vsrfifo : spec. In section B.3
we prove that vs rfifo+ts also simulates ts : spec. Finally, in section B.4 we ex-
tend the refinement above to map the new state of gcs to that of self : spec. The
proof extension theorem of [30] (also reviewed in Appendix A) implies that the gcs
automaton satisfies wv rfifo : spec, vsrfifo : spec, ts : spec, and self : spec.

B.1. Within-view reliable FIFO multicast. Intuitively, in order to simu-
late wv rfifo : spec with wv rfifo, we need to show that wv rfifo satisfies self-
inclusion and local monotonicity for delivered views, and we need to show that the
ith message delivered by q from p in view v is the ith message sent in view v by
the client at p. In order to prove this, we need to show that the algorithm correctly
associates messages with the views in which they were sent and with their indices in
the sequences of messages sent in these views. We split the proof into three parts:
section B.1.1 states key invariants but defers the proof of one of them to section B.1.3;
section B.1.2 contains the simulation proof.
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B.1.1. Key invariants. The following invariant captures the self-inclusion prop-
erty.

Invariant B.1 (self-inclusion). In every reachable state s of wv rfifo, for all
Proc p, p ∈ s[p].memb view.set and p ∈ s[p].current view.set.

Proof of Invariant B.1. The proof immediately follows from the memb specifica-
tion.

The local monotonicity property follows directly from the precondition, v.id >
memb view, of the memb.viewp(v) actions.

The following invariant relates application messages at different end-points’ queues
to the corresponding messages on the original senders’ queues.

Invariant B.2 (message consistency). In every reachable state s of wv rfifo,
for all Proc p and Proc q, if s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.

This proposition is vacuously true in the initial state because all message queues
are empty. For the inductive step, we have to consider the co rfifo.deliverq,p
(〈‘app msg’, m〉) and co rfifo.deliverq,p(〈‘fwd msg’, r, v, m, i〉) actions and have
to argue that the message m that these actions deliver is placed in the right place in q’s
msgs buffer. The proof of this invariant appears in section B.1.3 after the simulation
proof.

B.1.2. Simulation.
Lemma B.1. The following function R is a refinement mapping from automaton

wv rfifo to automaton wv rfifo : spec with respect to their reachable states.

R(s∈ReachableStates(wv rfifo)) = t∈ReachableStates(wv rfifo : spec), where

For each Proc p, View v: t.msgs[p][v] = s[p].msgs[p][v]

For each Proc p, Proc q: t.last dlvrd[p][q] = s[q].last dlvrd[p]

For each Proc p: t.current view[p] = s[p].current view

Proof of Lemma B.1.
Action correspondence. Automaton wv rfifo : spec has three types of ac-

tions. Actions viewp(v), sendp(m), and deliverp(q, m) are simulated when wv rfifo
takes the corresponding viewp(v), sendp(m), and deliverp(q, m) actions. Steps of
wv rfifo involving other actions correspond to empty steps of wv rfifo : spec.

Simulation proof. For the most part, the simulation proof is straightforward.
Here, we present only the interesting steps.

The fact that the corresponding step ofwv rfifo : spec is enabled whenwv rfifo
takes a step involving viewp(v) relies on p ∈ memb view.set (Invariant B.1).

For the steps involving the deliverp(q, m) action, in order to deduce that the
corresponding step of wv rfifo : spec is enabled, we need to know that the message
located at index s[p].last dlvrd[q] + 1 on the s[p].msgs[q][s[p].current view] queue
is the same message that end-point q has on its corresponding queue at the same
index. This property is implied by Invariant B.2.

Steps that involve receiving original and forwarded application messages from
the network simulate empty steps of wv rfifo : spec. Among these steps the only
critical ones are those that deliver a message from p to p because they may affect
s[p].msgs[p][p] queue. Since end-points do not send messages to themselves, such
steps may not happen. Indeed, action co rfifo.sendp(set, 〈‘app msg’, m〉) has a
precondition set = s[p].current view.set − {p}, and action
co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉) has a precondition p 	∈ set.

From Lemma B.1 and Theorem A.1 we conclude the following.
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Theorem B.1. wv rfifo implements wv rfifo : spec in the sense of trace
inclusion.

B.1.3. Auxiliary invariants. We now state and prove a number of auxiliary
invariants necessary for the proof of the key message consistency invariant (Invari-
ant B.2).

In any view, before an end-point sends a view msg to others (and hence before
it sends any application message to others), it tells co rfifo to maintain reliable
connection to every member of its current view. The following invariant captures this
property.

Invariant B.3 (connection reliability). In every reachable state s of wv rfifo,
for all Proc p, if s[p].current view = s[p].view msg[p], then s[p].current view.set
⊆ s[p].reliable set.

Proof of Invariant B.3. By induction on the length of the execution sequence, the
proof follows directly from the code.

After an end-point delivers a new view to its client, it sends a view msg to other
members of the view. The stream of view msgs that an end-point sends to others
is monotonic because the delivered views satisfy local monotonicity. The following
invariant captures this property. It states that the subsequence of messages in transit
from end-point p to end-point q solely consisting of the view msgs is monotonically
increasing. It also relates the current view of an end-point p to the view contained in
the p’s latest view msg to q.

Invariant B.4 (monotonicity of view messages). Let s be a reachable state of
wv rfifo. Consider the subsequence of messages in s.channel[p][q] of the ViewMsg

type. Examine the sequence of views included in these view messages, and con-
struct a new sequence seq of views by prepending this view sequence with the element
s[q].view msg[p]. For all Proc p, Proc q, the following propositions are true:

1. The sequence seq is (strictly) monotonically increasing.
2. If s[p].current view 	= s[p].view msg[p], then s[p].current view is strictly
greater then the last (largest) element of seq.

3. If s[p].current view = s[p].view msg[p], and if q ∈ s[p].current view.set,
then s[p].current view is equal to the last (largest) element of seq.

Proof of Invariant B.4. All three propositions are true in the initial state. We
now consider steps involving the critical actions.

co rfifo.lose(p, q). The first two propositions remain true because this action
throws away only the last message from the co rfifo s.channel[p][q]. The third
proposition is vacuously true because q 	∈ s[p].current view.set. If it were, the
co rfifo.lose(p, q) action would not be enabled because Invariant B.3 would imply
that s[p].current view.set is a subset of s[p].reliable set, which would then imply
that q ∈ s.reliable set[p] (because s[p].reliable set = s.reliable set[p], as can
be shown by straightforward induction).

viewp(v). The first proposition is unaffected. The second proposition follows
from the inductive hypothesis and the precondition v.id > s[p].current view.id.
The third proposition is vacuously true because s[p].current view 	= s[p].view msg[p]
as follows from the precondition v.id > s[p].current view.id and the fact that, in
every reachable state s, s[p].current view ≥ s[p].view msg[p] (as can be proved by
straightforward induction).

co rfifo.sendp(set, 〈‘view msg’, v〉). The first proposition is true in the post-
state because of the inductive hypothesis of the second proposition. The second
proposition is vacuously true in the poststate. The third proposition is true in the
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poststate because of the effect of this action.
co rfifo.deliverp,q(〈‘view msg’, v〉). It is straightforward to see that all three

propositions remain true in the poststate.
History tags. In order to reason about original application messages traveling

on co rfifo channels, we need a way to reference, for each of these messages, the
view in which it was originally sent and its index in the fifo ordered sequence of
messages sent in that view. To this end, we augment each original application message
〈‘app msg’, m〉 with two history tags, Hv and Hi, that are set to current view and
last sent + 1, respectively, when co rfifo.sendp(set, 〈‘app msg’, m〉) occurs. (See
Appendix A for details on history variables.)

OUTPUT co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉)
pre: ...

Hv = current view

Hi = last sent + 1

eff: ...

With the history tags, the interface betweenwv rfifo and co rfifo for handling
original application messages becomes co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉)
and co rfifo.deliverp,q(〈‘app msg’, m, Hv, Hi〉).

The goal of the next three invariants is to show that, when end-point q receives
an application message m tagged with a history view Hv and a history index Hi, the
current value of q’s view msg[p] equals Hv and that of last rcvd[p] + 1 equals Hi.

Invariant B.5 (history view consistency). In every reachable state s of wv rfifo,
for all Procp, Procq, the following holds. For all messages 〈‘app msg’, m, Hv, Hi〉 on
the co rfifo s.channel[p][q], view Hv equals either the view of the closest preceding
view message on s.channel[p][q] if there is such, or s[q].view msg[p] otherwise.

Proof of Invariant B.5. The proof follows by induction. A step involving
co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉) directly follows from part 3 of Invari-
ant B.4. The proposition is not affected by steps involving co rfifo.lose(p, q) be-
cause those may only remove the last messages from the co rfifo s.channel[p][q].
The other steps are straightforward.

The following invariant states that the value of s[p].last sent equals the number
of application messages that p sent in its current view and that are either still in
transit on the co rfifo s.channel[p][q] or are already received by q.

Invariant B.6. In every reachable state s of wv rfifo, for all Procp and for
all Procq ∈ s[p].current view.set − {p}, the following is true.

s[p].last sent

=
∣∣{msg ∈ s.channel[p][q] : msg ∈ AppMsg and msg.Hv = s[p].current view}∣∣

+

{
s[q].last rcvd[p] if s[q].view msg[p] = s[p].current view,
0 otherwise.

Proof of Invariant B.6. The proof follows by induction. Consider steps involving
the following critical actions.

co rfifo.lose(p, q). Assume that the last message on queue s.channel[p][q]
is an application message msg with msg.Hv = s[p].current view. If a step involving
co rfifo.lose(p, q) action could occur, then the proposition would be false. However,
as we are going to argue now, q ∈ s.reliable set[p], so such a step cannot occur.

We can prove by induction that msg ∈ s.channel[p][q] implies s[p].view msg[p] =
s[p].current view. By Invariant B.3, s[p].current view.set ⊆ s[p].reliable set.
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Since q ∈ s[p].current view.set and s[p].reliable set = s.reliable set[p], it fol-
lows that q ∈ s.reliable set[p].

viewp(v). The proposition remains true for steps involving viewp(v) action be-
cause its effect sets s′[p].last sent to 0 and because both summands of the right-
hand side of the equation also become 0. Indeed, the first summand becomes 0

because co rfifo channels never have messages tagged with views that are larger
than the current views of the messages’ senders (as can be shown by a simple induc-
tive proof); the second summand becomes 0 because part 2 of Invariant B.4 implies
that s′[q].view msg[p] 	= s′[p].current view.

co rfifo.deliverp,q(〈‘view msg’, v〉). The proposition remains true for steps
involving this action because s[q].view msg[p] 	= s[p].current view, as follows imme-
diately from Invariant B.4.

co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉) and co rfifo.deliverp,q
(〈‘app msg’, m, Hv, Hi〉). For steps involving these actions the truth of the proposition
immediately follows from the effects of these actions, the inductive hypotheses, and
Invariant B.5.

The history index attached to an original application message m sent in a view
Hv that is in transit on a co rfifo channel to end-point q is equal to the number of
such messages (including m) that precede m on that channel plus those (if any) that q
has already received.

Invariant B.7 (history indices consistency). In every reachable state s of
wv rfifo, for all Proc p and Proc q, if 〈‘app msg’, m, Hv, Hi〉 = s.channel[p][q][j]
for some index j, then

Hi =
∣∣{msg ∈ s.channel[p][q][..j] : msg ∈ AppMsg and msg.Hv = Hv}∣∣
+

{
s[q].last rcvd[p] if s[q].view msg[p] = Hv,
0 otherwise.

Proof of Invariant B.7. In the initial state s.channel[p][q] is empty. For the
inductive step, we consider steps involving the following critical actions.

co rfifo.lose(p, q). The proposition remains true since co rfifo.lose(p, q)
discards only the last messages from the co rfifo s.channel[p][q].

co rfifo.deliverp,q(〈‘view msg’, v〉). We have to consider the effects on two
types of application messages: those associated with view s[q].view msg[p] and those
associated with view Hv. Part 1 of Invariant B.4 and Invariant B.5 imply that
there are no application messages with msg.Hv = s[q].view msg[p] on the co rfifo
channel[p][q]. Thus, the proposition does not apply for such messages. For those mes-
sages that have msg.Hv = Hv, the proposition remains true because s′[q].last rcvd[p]
is set to 0 as a result of this action.

co rfifo.deliverp,q(〈‘app msg’, m, Hv, Hi〉). This immediately follows from the
effect of this action, the inductive hypothesis, and Invariant B.5.

co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉). The inductive step immediately fol-
lows from the inductive hypothesis and Invariant B.6.

We now prove a generalization of Invariant B.2 which relates application mes-
sages either in transit on the co rfifo channels or at end-points’ queues to their
corresponding messages on the senders’ queues.

Invariant B.8 (general message consistency). In every reachable state s of
wv rfifo, for all Procp and Procq, the following are true.

1. If 〈‘app msg’, m, Hv, Hi〉 ∈ s.channel[p][q], then s[p].msgs[p][Hv][Hi] = m.
2. If 〈‘fwd msg’, r, m, v, i〉 ∈ s.channel[p][q], then s[r].msgs[r][v][i] = m.
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3. If s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.
Proof of Invariant B.8. Basis. In the initial state all message queues are empty.
Inductive step. The following are the critical actions:

sendp(m),

co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉),
co rfifo.deliverq,p(〈‘app msg’, m, Hv, Hi〉),
co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉),
co rfifo.deliverq,p(〈‘fwd msg’, r, v, m, i〉).

For steps involving co rfifo.deliverq,p(〈‘app msg’, m, Hv, Hi〉), we use Invariant B.5
and Invariant B.7, which, respectively, imply that history view Hv equals s[p].view msg[q]
and that history index Hi equals s[p].last rcvd[q] + 1. Inductive steps involving each
of the other actions are straightforward.

Invariant B.2 is a private case of this invariant.

B.2. Virtual synchrony. We now show that automaton vs rfifo+ts simulates
vsrfifo : spec. We prove this by extending the refinement above using the proof
extension theorem of [30] (see Appendix A for details).

B.2.1. Invariants. We prove that end-points that move together from one view
to the next consider the same synchronization messages and thus compute the same
transitional sets and use the same cuts from the members of the transitional set.

Invariant B.9. In every reachable state s of vs rfifo+ts, for all Procp, Procq,
and for every StartIdcid, if s[q].sync msg[p][cid] 	= ⊥, then s[q].sync msg[p][cid]
= s[p].sync msg[p][cid].

Proof of Invariant B.9. The proposition is true in the initial state s0 as all
s0[q].sync msg[p][cid] = ⊥. The inductive step involving a set cutp() action is triv-
ial, for it only affects the case q = p. The inductive step involving a co rfifo.deliverp,q
(〈‘sync msg’, cid, v, cut〉) action follows immediately from the following proposition:

〈‘sync msg’, cid, v, cut〉 ∈ s.channel[p][q]⇒ s[p].sync msg[p][cid] = 〈v, cut〉,
which can be proved by straightforward induction. Indeed, there are two critical ac-
tions: co rfifo.sendp(set, 〈‘sync msg’, cid, v, cut〉)—immediate from the code—
and co rfifo.deliverp,p(〈‘sync msg’, cid, v, cut〉)—this may not occur because end-
points do not send synchronization messages to themselves.

Corollary B.1. End-points that move together from one view to the next use
the same sets of synchronization messages to calculate transitional sets and message
cuts.

Proof. Consider two end-points that deliver view v′ while in view v. At the time
of delivering view v′, each of these end-points has synchronization messages from all
end-points in the intersection of these views (second precondition), and these synchro-
nization messages are the same as those at their original end-points (Invariant B.9).
Thus, the two end-points calculate the same transitional sets and use the same cuts
from the members of this transitional set.

B.2.2. Simulation. We augment vs rfifo+ts with a global history variable
H cut that keeps track of the cuts used for moving between views.

For each View v, v ′: (Proc → Int)⊥ H cut[v][v ′], initially ⊥
OUTPUT viewp(v, T) modifies wv rfifo.viewp(v)

pre: ...
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eff: ...

(∀ q ∈ Proc)

H cut[current view][v](q) ← maxr∈T (sync msg[r][v.startId(r)].cut(q)).

Variable H cut[v][v′] is updated every time any end-point is delivering view v′ while
in view v. Corollary B.1 implies that whenever this happens after H cut[v][v′] is set
for the first time the value of H cut[v][v′] remains unchanged.

We now extend the refinement mapping R() of Lemma B.1 with the new mapping
Rn():

For each View v, View v′ : Rn(s.H cut[v][v′]) = cut[v][v′].

We call the resulting mapping R′(). We exploit the proof extension theorem
of [30] (see Appendix A) in order to prove that R′() is a refinement mapping from
vs rfifo+ts to vsrfifo : spec.

Lemma B.2. Function R′() defined above is a refinement mapping from automa-
ton vs rfifo+ts to automaton vsrfifo : spec.

Proof of Lemma B.2. Action correspondence. The action correspondence is the
same as that of wv rfifo, except for the steps of the type (s, viewp(v

′, T), s′) which
involve vs rfifo+ts delivering views to the application clients. Among these steps,
those that are the first to set variable H cut[v][v′] (when s.H cut[v][v′] = ⊥) simulate
two steps of vsrfifo : spec: set cut(v, v′, s′.H cut[v][v′]) followed by viewp(v

′). The
rest (when s.H cut[v][v′] 	= ⊥) simulate single steps that involve just viewp(v

′).
Simulation proof. First, we show that the refinement mapping of wv rfifo

(presented in Lemma B.1) is still preserved after the modifications introduced by
vsrfifo : spec to wv rfifo : spec. Automaton vsrfifo : spec adds the following
preconditions to the viewp(v) actions of wv rfifo : spec:

cut[current view[p]][v] �= ⊥,

(∀ q) last dlvrd[q][p] = cut[current view[p]][v](q).

Since set cut(current view[p], v, s′.H cut[current view[p]][v]) is simulated before
action viewp(v), the first precondition holds. The second one follows immediately
from the precondition on vs rfifo+ts.viewp(v, T) and the extended mapping R′().

Second, we show that the mapping Rn() used to extend R() to R′() is also a refine-
ment. For those steps (s, viewp(v

′, T), s′) that are the first to set variable H cut[v][v′],
the action correspondence implies that the mapping is preserved. For those steps
that are not the first to set variable H cut[v][v′], the mapping is preserved because
s′.H cut[v][v′] = s.H cut[v][v′], by Corollary B.1.

From Lemmas B.1 and B.2 and from Theorem A.1, we conclude the following.
Theorem B.2. vs rfifo+ts implements vsrfifo : spec in the sense of trace

inclusion.

B.3. Transitional set. We now show that vs rfifo+ts simulates ts : spec.
The proofs makes use of prophecy variables. A simulation proof that uses prophecy
variables implies only finite trace inclusion, but this is sufficient for proving safety
properties (see Appendix A).

B.3.1. Invariants.
Invariant B.10. In every reachable state s of vs rfifo+ts, for all Proc p and

for all StartId id, if id > s[memb].start[p].id, then s[p].sync msg[p][id] = ⊥.
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Proof of Invariant B.10. The proposition is true in the initial state. It remains true
for the inductive step involving memb.startp(id, set) because s[memb].start[p].id is
increased as a result of this action. For the step involving set cutp(), the proposi-
tion remains true because s[p].start.id = s[memb].start[p].id, as implied by the
following invariant, which can be proved by straightforward induction.

In every reachable state s of vs rfifo+ts, for all Procp, if s[p].start.id 	= ⊥,
then s[memb].start[p].id = s[p].start.id. This invariant holds in the initial state.
Critical action memb.startp(id, set) makes it true; critical action viewp(v, T) makes
it vacuously true.

Finally, a step involving co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉) does not
affect the proposition because the case q = p cannot happen since end-points do not
send synchronization messages to themselves.

Lemma B.3. For any step (s,memb.startp(id, set), s′) of vs rfifo+ts,

s[p].sync msg[p][start.id] = ⊥.

Proof of Lemma B.3. The proof follows from the precondition id> s[memb].start[p].
id and Invariant B.10.

Invariant B.11. In every reachable state s of vs rfifo+ts, for all Procp, if
s[p].start 	= ⊥ and s[p].sync msg[p][s[p].start.id] 	= ⊥, then

s[p].sync msg[p][s[p].start.id].view = s[p].current view.

Proof of Invariant B.11. The proposition is vacuously true in the initial state.
For the inductive step, consider the following critical actions:

memb.startp(id, set). The proposition remains vacuously true because
s′[p].sync msg[p][start.id] = s[p].sync msg[p][start.id] = ⊥ (Lemma B.3).

set cutp(). This follows immediately from the code.
co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉). The proposition is unaffected

because the case q = p cannot happen since end-points do not send synchronization
messages to themselves.

viewp(v). The proposition becomes vacuously true because s′[p].start = ⊥.

B.3.2. Simulation. We augment automaton vs rfifo+ts with a prophecy vari-
able P legal views(p)(id) for each Procp and each StartId id. At the time a start
id is delivered to an end-point p, this variable is set to a predicted finite set of future
views that are allowed to contain id as p’s start id.

Prophecy Variable:

For each Proc p, StartId id: SetOf(View) P legal views(p)(id),

initially arbitrary

INTERNAL memb.startp(id, set) hidden parameter V, a finite set of views

pre: ...

choose V such that for all v ∈ V: (p ∈ v.set) ∧ (v.startId(p) = id)

eff: ...

P legal views(p)(id) ← V

OUTPUT gcs.viewp(v, T)

pre: ...

(for all q ∈ v.set) v ∈ P legal views(q)(v.startId(q))

eff: ...
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The vs rfifo+ts automaton augmented with the prophecy variable has the same
traces as those of the original automaton because it is straightforward to show that
the following conditions required for adding a prophecy variable hold:

1. Every state has at least one value for P legal views(p)(id).
2. No step is disabled in the backward direction by new preconditions involving

P legal views.
3. Values assigned to state variables do not depend on the values of P legal views.
4. If s0 is an initial state of vs rfifo+ts, and 〈s0, P legal views〉 is a state

of the automaton vs rfifo+ts augmented with the prophecy variable, then
this state is an initial state.

Invariant B.12. In every reachable state s of vs rfifo+ts, for all Proc p, if
s[p].start 	= ⊥, then, for all View v ∈ P legal views(p)(s[p].start.id), it follows
that p ∈ v.set and v.startId(p) = s[p].start.id.

Proof of Invariant B.12. The proof follows by induction. The only critical actions
are memb.startp(id, set) and viewp(v, T). The proposition is true after the former
and is vacuously true after the latter.

Lemma B.4. The following function TS() is a refinement mapping from automa-
ton vs rfifo+ts to automaton ts : spec with respect to their reachable states.

TS(s ∈ ReachableStates(vs rfifo+ts)) = t ∈ ReachableStates(ts : spec), where

For eachProcp : t.current view[p] = s[p].current view

For eachProcp, Viewv : t.prev view[p][v]

=

{ ⊥ if v 	∈ s.P legal views[p][v.startId(p)],
s[p].sync msg[p][v.startId(p)].view otherwise

Proof of Lemma B.4. Action correspondence. A step (s, set cutp(), s′) of
vs rfifo+ts simulates a sequence of steps of ts : spec. The sequence consists of
steps that involve one set prev viewp(v

′) action for each v′ ∈ s.P legal views(p)
(s[p].start.id). A step (s, viewp(v, T), s′) of vs rfifo+ts simulates (TS(s), viewp(v, T),
TS(s′)) of ts : spec.

Simulation proof. Consider the following critical actions:
memb.startp(id, set). A step involving this action simulates an empty step of

ts : spec. The simulation holds because s′[p].sync msg[p][id] = s[p].sync msg[p][id]
= ⊥ (Lemma B.3).

set cutp(). This simulates a sequence of steps of ts : spec involving one
set prev viewp(v

′) for each v′ ∈ s.P legal views(p)(cid), where cid = s[p].start.id.
Each such step is enabled, as can be seen from the following derivation:

TS(s).prev view[p][v′]
= s[p].sync msg[p][v′.startId(p)].view (Refinement mapping)

= s[p].sync msg[p][cid].view (Invariant B.12)

= ⊥ (precondition of set cutp()).

In the poststate, s′[p].sync msg[p][cid].view and all TS(s′).prev view[p][v′] are equal
to s[p].current view; thus the simulation step holds.

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉). A step involving this action does
not affect any of the variables of the refinement mapping and thus simulates an empty
step of ts : spec. In particular, note that the case of q = p may not happen because
end-points do not send synchronization messages to themselves.
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automaton clientp : spec

Signature:
Input: deliverp(q, m), Proc q, AppMsg m

viewp(v), View v

blockp()

Output: sendp(m), AppMsg m

block okp()

State: block status ∈ {unblocked, requested, blocked}, initially unblocked

Transitions:
INPUT blockp()

eff: block status ← requested

OUTPUT block okp()

pre: block status = requested
eff: block status ← blocked

OUTPUT sendp(m)

pre: block status �= blocked
eff: none

INPUT deliverp(q, m)

eff: none

INPUT viewp(v)

eff: block status ← unblocked

Fig. B.1. Abstract specification of a blocking client at end-point p.

viewp(v, T). A step involving this action simulates a step of ts : spec that involves
viewp(v, T). The key thing is to show that it is enabled (since it is straightforward
to see that, if it is, the refinement is preserved). Action viewp(v, T) of ts : spec has
three preconditions. The fact that they are enabled directly follows from the inductive
hypothesis, the code, the refinement mapping, and Invariants B.11 and B.12.

From Lemma B.4 and Theorem A.1 we conclude the following.
Theorem B.3. vs rfifo+ts implements ts : spec in the sense of finite trace

inclusion.

B.4. Self-delivery. We now prove that the complete gcs end-point automaton
simulates self : spec. In order to prove this, we need to formalize our assumptions
about the behavior of the clients of a gcs end-point: we assume that a client eventually
responds to every block request with a block ok response and subsequently refrains
from sending messages until a view is delivered to it. We formalize this requirement
by specifying an abstract client automaton in Figure B.1. In this automaton, each
locally controlled action is defined to be a task by itself, which means that it eventually
happens if it becomes enabled unless it is subsequently disabled by another action.

B.4.1. Invariants. The following invariant states that gcs end-points and their
clients have the same perception of what their block status is.

Invariant B.13. In every reachable state s of gcs, for all Proc p,
s[gcsp].block status = s[clientp].block status.

Proof of Invariant B.13. The proof follows by trivial induction.
Invariant B.14. In every reachable state s of gcs, for all Procp, if s[p].start

	= ⊥ and s[p].block status 	= blocked, then s[p].sync msg[p][s[p].start.id] = ⊥.
Proof of Invariant B.14. In the initial state s0, s0[p].start = ⊥; so the proposition

is vacuously true. For the inductive step, consider the following critical actions:
memb.startp(id, set). The proposition remains true because of Lemma B.3.
blockp(). The proposition is true in the poststate if it is true in the prestate.
block okp(). The proposition becomes vacuously true because s′[p].block status

= blocked.
set cutp(). The proposition remains vacuously true because s[p].block status

= s′[p].block status = blocked.
co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉). The proposition is unaffected

because the case q = p cannot happen since end-points do not send synchronization
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messages to themselves.
viewp(v, T). The proposition becomes vacuously true because s′[p].start

= ⊥.
Invariant B.15. In every reachable state s of gcs, for all Procp, if s[p].start 	=

⊥ and s[p].sync msg[p][s[p].start.id] 	= ⊥, then s[p].sync msg[p][s[p].start.id].cut[p]
= LastIndexOf(s[p].msgs[p][s[p].current view]).

Proof of Invariant B.15. In the initial state s0, s0[p].start = ⊥, so the proposition
is vacuously true. For the inductive step, consider the following critical actions:

sendp(m). The proposition is vacuously true because s′[p].sync msg[p][s[p].start.id]
= ⊥, as follows from the precondition s[clientp].block status 	= blocked on this
action at clientp, and from Invariants B.13 and B.14.

memb.startp(id, set). The proposition is vacuously true because s′[p].sync msg[p][id]
= s[p].sync msg[p][id], which by Lemma B.3 is ⊥.

set cutp(). This follows from p ∈ current view.set (Invariant B.1) and the
precondition (forallq ∈ current view.set) cut(q) = LongestPrefixOf(msgs[q][v]).

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉). The proposition is unaffected
because the case q = p cannot happen since, as can be proved by straightforward
induction, end-points do not send synchronization messages to themselves.

viewp(v, T). The proposition becomes vacuously true because s′[p].start
= ⊥.

B.4.2. Simulation. Lemma B.2 in section B.2 on page 117 establishes function
R′() as a refinement mapping from automaton vs rfifo+ts to automaton vsrfifo : spec.
We now argue that R′() is also a refinement mapping from automaton gcs to automa-
ton self : spec.

Lemma B.5. Refinement mapping R′() from automaton vs rfifo+ts to automa-
ton vsrfifo : spec (given in Lemma B.2) is also a refinement mapping from automa-
ton gcs to automaton self : spec, under the assumption that clients at each end-point
p satisfy the clientp : spec specification for blocking clients.

Proof. Automaton self : spec modifies automaton wv rfifo : spec by adding
a precondition, last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p]]), to the
steps involving viewp() actions. We have to show that this precondition is enabled
when a step of gcs involving viewp(v, T) attempts to simulate a step of self : spec
involving viewp(v). Indeed,

s[p].last dlvrd[p] = maxr∈Tsync msg[r][v.startId(r)].cut[p] (a precondition)

= s[p].sync msg[p][v.startId(p)].cut[p] (Invariant B.9.)

= s[p].sync msg[p][s[p].start.id].cut[p] (a precondition)

= LastIndexOf(s[p].msgs[p][s[p].current view]) (Invariant B.15).

Thus, R′(s).last dlvrd[p][p] = LastIndexOf(R′(s).msgs[p][R′(s).current view[p]]) and
the precondition is satisfied.

From Lemmas B.1, B.2, and B.5 and Theorem A.1 we conclude the following.
Theorem B.4. Automaton gcs implements automaton self : spec in the sense

of trace inclusion, under the assumption that clients at each end-point p satisfy the
clientp : spec specification for blocking clients.

As a child of vs rfifo+ts, gcs also satisfies all the safety properties that vs rfifo+ts
does, in particular ts : spec. Thus, from Theorems B.3 and B.4 we conclude the fol-
lowing.

Theorem B.5. Automaton gcs implements each of the wv rfifo : spec,



122 IDIT KEIDAR AND ROGER KHAZAN

vsrfifo : spec, ts : spec, and self : spec automata in the sense of trace inclusion,
under the assumption that clients at each end-point p satisfy the clientp : spec spec-
ification for blocking clients.

Appendix C. Correctness proof: Liveness property. In this section we
prove that fair executions of our group communication service gcs satisfy liveness
property 5.2 of section 5.2. In order to show that a certain action eventually happens,
we argue that the preconditions on this action eventually become and stay satisfied,
and thus the action eventually occurs, by fairness of the execution. Subsection C.1
below presents a number of invariant that are used in the proof of liveness property 5.2
in subsection C.2.

C.1. Invariants. The following invariant captures the fact that, before an end-
point computes who the members of its transitional set are, it does not deliver to its
client application messages other than those committed by its own synchronization
message. Afterwards, the end-point delivers only the messages committed to delivery
by the members of the transitional set.

Invariant C.1. In every reachable state s of gcs, for all Proc p, if s[p].start 	=
⊥ and s[p].sync msg[p][s[p].start.id] 	= ⊥, then for all Proc q ∈ s[p].current view.set,

1. if s[p].start.id 	= s[p].memb view.startId(p), then s[p].last dlvrd[q] ≤
s[p].sync msg[p][s[p].start.id].cut[q];

2. otherwise, let v = s[p].current view, v′ = s[p].memb view, and let T = {q ∈
v′.set ∩ v.set | sync msg[q][v′.startId(q)].view = v}; then s[p].last dlvrd[q]
≤ maxr∈T s[p].sync msg[r][v′.startId(r)].cut[q].

Proof of Invariant C.1. The proposition is true in the initial state s0, since
s0[p].start = ⊥. For the inductive step, consider the following critical actions:

deliverp(q, m). The proposition remains true because the precondition on this
action mimics the statement of this proposition.

memb.startp(id, set). The proposition is vacuously true because s′[p].sync msg[p][id]
= s[p].sync msg[p][id], which by Lemma B.3 is equal to ⊥.

memb.viewp(v). In the poststate, s[p].start.id = s[p].memb view.startId(p),
so we must consider the second proposition. Its truth follows from the inductive
hypothesis and the fact that p ∈ T, as implied by Invariant B.1.

set cutp(). The proposition holds since index s[p].last dlvrd[q] is bounded
by LongestPrefixOf(s[p].msgs[q][s[p].current view]) in every reachable state of the
system for any Proc q ∈ s[p].current view.set (this fact can be straightforwardly
proved by induction) and from the precondition (for all q ∈ s[p].current view.set)
cut(q) = LongestPrefixOf(s[p].msgs[q][s[p].current view]).

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉). The proposition is unaffected
because the case q = p is impossible since end-points do not send cuts to themselves.

viewp(v, T). The proposition becomes vacuously true because s′[p].start
= ⊥.

The following invariant states that if an end-point p has end-point q’s cut com-
mitting certain messages sent by end-point r in view v, then end-point q has those
messages buffered.

Invariant C.2. In every reachable state s of gcs, for all Proc p, Proc q, Proc
r, and StartId cid, if s[p].sync msg[q][cid] 	= ⊥, then, for every integer i between
1 and s[p].sync msg[q][cid].cut[r], s[q].msgs[r][s[p].sync msg[q][cid].view][i] 	= ⊥.

Proof of Invariant C.2. The truth of the invariant follows from Invariant B.9 if
we can prove that an end-point’s cut commits the end-point to deliver only those
messages that it already has on its msgs queue. Formally, this proposition means
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that, in every reachable state s of gcs, for all Proc q, if s[q].start 	= ⊥ and
s[q].sync msg[q][s[q].start.id] 	= ⊥, then, for all Proc r and all Int i such that 1

≤ i ≤ s[q].sync msg[q][s[q].start.id].cut[r], s[q].msgs[r][s[q].current view][i] 	= ⊥.
This proposition can be straightforwardly proved by induction: The only interesting
action is set cutq(). The truth of the proposition after this action is taken fol-
lows immediately from the precondition (for all r ∈ s[q].current view.set) cut(r) =
LongestPrefixOf(s[q].msgs[r][s[q].current view]).

Invariant C.3. In every reachable state s of gcs, for all Proc p and Proc q, if
q ∈ s[p].sync set, then (a) q ∈ s[p].start.set and (b) q ∈ s[p].reliable set.

Proof of Invariant C.3. The proposition is vacuously true in the initial state, where
s[p].sync set is empty. The inductive steps for the critical actionsmemb.startp(id, set),
gcs.viewp(v, T), and co rfifo.sendp(set, 〈‘sync msg’, cid, v, cut〉) follow immedi-
ately from their code in Figure 6.4. The inductive step for the action co rfifo.
reliable setp(set) straightforwardly follows from the precondition-effect code in
Figures 6.2 and 6.4. The inductive step for the critical action gcs.set cutp() follows
from the code, which sets sync set to {p}, and from the fact that p is always in its own
reliable set and start.set (provided start 	= ⊥), which can be straightforwardly
proved by induction.

C.2. Liveness proof. The following lemma states that, in any execution of
gcs, every gcs.viewp event is preceded by the right memb.viewp event, which itself
is preceded by the right memb.startp event.

Lemma C.1. In every execution sequence α of gcs, the following are true:
1. For every gcs.viewp(v, T) event, there is a preceding memb.viewp(v) event.
Moreover, neither a memb.startp nor a memb.viewp event occurs between
memb.viewp(v) and gcs.viewp(v, T).

2. For every memb.viewp(v) event, there is a preceding memb.startp(id, set)
event with id = v.startId(p) and set ⊇ v.set such that neither a
memb.startp, nor a memb.viewp nor a gcs.viewp event occurs in α between
memb.startp(id, set) and memb.viewp(v).

Proof of Lemma C.1.
1. Assume that gcs.viewp(v, T) occurs in α. Two of the preconditions on
gcs.viewp(v, T) are v = p.memb view and v.startId(p) = p.start.id, which
can only become satisfied as a result of a preceding memb.viewp(v) event,
followed by no memb.startp and memb.viewp events.

2. Assume that memb.viewp(v) occurs in α. Then a memb.startp(id, set)
event with id = v.startId(p) and set ⊇ v.set must precede memb.viewp(v)
because, by the memb specification, it is the only possible event that can
cause the preconditions for memb.viewp(v) to become true, and because these
preconditions do not hold in the initial state of memb.
There may be several memb.startp(id, set) events with the same id and
different set arguments. After the last such event, an occurrence of a dif-
ferent memb.startp event or a memb.viewp event would violate one of the
preconditions of memb.viewp(v); thus, such events may not happen. As a
corollary from this and part 1 of this lemma, a gcs.viewp(v

′, T′) event cannot
occur between the last memb.startp(id, set) and memb.viewp(v).

Lemma C.2 (liveness). Let α be a fair execution of a group communication
service gcs in which view v becomes eventually stable as defined by Property 5.1.
Then at each end-point p ∈ v.set, gcs.viewp(v, T), with some T, eventually occurs.
Furthermore, for every gcs.sendp(m) that occurs after gcs.viewp(v, T) and for every
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q ∈ v.set, gcs.deliverq(p, m) also occurs.
Proof of Lemma C.2. Part I. We first prove that gcs.viewp(v, T) eventually occurs.

Our task is to show that, for each p ∈ v.set and some transitional set T, action
gcs.viewp(v, T) becomes enabled at some point after p receives memb.viewp(v) and
that it stays enabled forever thereafter unless it is executed. The fact that α is a fair
execution of gcs then implies that gcs.viewp(v, T) is in fact executed.

In order for gcs.viewp(v, T) to become enabled, its preconditions (see Figures 6.2
and 6.4) must eventually become and stay satisfied until gcs.viewp(v, T) is executed.
We now consider each of these preconditions:

v = p.memb view 	= current view. This precondition ensures that view v that is
attempted to be delivered to the client at p is the latest view produced by memb and
has not yet been delivered to the client. The precondition becomes satisfied as a re-
sult of memb.viewp(v). Since in any reachable state of the system memb.memb view =
p.memb view ≥ p.current view (local monotonicity), this precondition remains satis-
fied forever, unless gcs.viewp(v, T) is executed. This is because, by our assumption, α
does not contain any subsequent memb.viewp(v

′), and, hence, by the contrapositive
of part 1 of Lemma C.1, it also does not contain any subsequent gcs.viewp(v

′, T′)
with v′ 	= v.

v.startId(p) = p.start.id. This precondition prevents delivery of obsolete views:
it ensures that the memb service has not issued a new start notification since the
time it produced view v. If this condition is not already satisfied before the last
memb.startp(id, set) event with id = v.startId(p) and set ⊇ v.set, then it be-
comes satisfied as a result of this event, which, by part 1 of Lemma C.1, must precede
memb.viewp(v) in α.

This condition stays satisfied from the time of the last memb.startp(id, set) at
least until gcs.viewp(v, T) occurs because the only two types of actions,
memb.startp(id

′, set′) and gcs.viewp(v
′, T′) with v′ 	= v, that may affect the value of

p.start cannot occur in α after memb.startp(id, set), as implied by the assumption
on this lemma and Lemma C.1.

v.set− sync set = ∅. This precondition ensures that prior to delivering view v,
end-point p sends out its synchronization message to every member of v.

Notice that if this precondition becomes satisfied any time after the occurrence of
the last memb.startp(id, set) event with id = v.startId(p) and set ⊇ v.set, then it
stays satisfied from then on until gcs.viewp(v, T) is executed. If the precondition is not
already satisfied right after the memb.startp action, it becomes satisfied as a result
of co rfifo.sendp(set, 〈‘sync msg’, v.startId(p), v, cut〉) with set = p.start.set
− p.sync set. This co rfifo.sendp action must eventually occur in α because its
two preconditions, (p.sync msg[p][id] 	= ⊥) and (set ⊆ reliable set), eventually
become satisfied, for the following reasons.

1. If the first precondition holds any time after the last memb.startp(id, set)
event with id = v.startId(p) and set ⊇ v.set occurs, then it stays satisfied from
that point on. If it is not already satisfied right after the memb.startp action, it
becomes satisfied as a result of set cutp(). In order for set cutp() to occur, its pre-
condition, block status = blocked, has to becomes satisfied (see Figure 6.5). This
occurs as a result of a block okq() input from the client at q. If block status equals
blocked at anytime after memb.startq(v.startId(q), set), then it remains such un-
til gcs.viewq(v) happens because blockq() is not enabled after that, and because
gcs.viewq(v) is the only possible gcs view event (by the contrapositive of part 1 of
Lemma C.1). To see that block status does in fact become blocked, consider the
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three possible values of block status right after memb.startq(v.startId(q), set)
occurs:

1. block status = blocked: We are done.
2. block status = requested: By Invariant B.13, client.block okq() is enabled.

It stays enabled until it is executed because the actions, blockq() and gcs.viewq(),
which would disable it, cannot occur. When it is executed, the precondition be-
comes satisfied.

3. block status = unblocked: When memb.startq(v.startId(q), set) occurs,
blockq() becomes and stays enabled until it is executed. After that, block status

becomes requested and the same reasoning as in the previous case applies.
2. The second precondition, set ⊆ reliable set, becomes satisfied as a re-

sult of action co rfifo.reliableq(set) with set = current view.set ∪ start.set.
This action becomes enabled when q receives memb.startq(v.startId(q), set), and
therefore it eventually occurs. Afterwards, reliable set remains unchanged be-
cause co rfifo.reliableq(set) remains disabled; this is because of the precondi-
tion reliable set 	= set and the fact that q’s current view and start remain
unchanged.

When co rfifo.sendp(set, 〈‘sync msg’, v.startId(p), v, cut〉) occurs, p.sync
set is set to p.start.set. Since v.set is a subset of p.start.set, this implies that
v.set − p.sync set eventually becomes and stays ∅.

(for all q ∈ v.set ∩ p.current view.set) p.sync msg[q][v.startId(q)] 	= ⊥. This
precondition ensures that p has received the right synchronization message from ev-
ery q in v.set ∩ p.current view.set. The argument above implies that q eventually
sends to p a synchronization message tagged with v.startId(q) and, at the same time,
adds p to q.sync set, where p remains forever, unless gcs.viewp(v, T) with some T

occurs. In order to conclude that co rfifo eventually delivers this synchronization
message to p, we argue that, from the time the last synchronization message from q

to p is placed on co rfifo.channel[q][p] and at least until it is delivered to p, end-
point p is in both co rfifo.reliable set[q] and co rfifo.live set[q]. The former
implies that co rfifo does not lose any messages (in particular, this synchronization
message) from q to p. In conjunction with α being a fair execution, the latter implies
that co rfifo eventually delivers every message (in particular, this synchronization
message) on the channel from q to p.

1. From the time q sends to p the last synchronization message tagged with
v.startId(q) until gcs.viewq(v, T) occurs, p is included in q.sync set. Invariant C.3
implies that in that period p is included in co rfifo.reliable set[q]. After
gcs.viewq(v, T) occurs, p is still included in co rfifo.reliable set[q], since p ∈
v.set.

2. End-point p becomes a member of co rfifo.live set[q] at the time of
memb.viewq(v), because memb.viewq(v) is linked to co rfifo.live setq(v.set) and
because p ∈ v.set. This property remains true afterward because α does not contain
any subsequent memb events at end-point q.

Thus, end-point p eventually receives the right synchronization messages from
every q in v.set ∩ p.current view.set.

last sent ≥ sync msg[p][v.startId(p)].cut(p). This precondition ensures that
before delivering view v, p sends to others all of its own messages indicated in its own
cut. This precondition eventually becomes satisfied because sending of application
messages via co rfifo.sendp, which increments p.last sent, is enabled at least until
p.last sent reaches sync msg[p][v.startId(p)].cut(p), as implied by Invariant C.2.
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(for all q∈current view.set) p.last dlvrd[q]=maxr∈T p.sync msg[r][v.startId
(r)].cut[q]. This precondition verifies that p has delivered to its client exactly the
application messages that it needs to deliver in order for virtually synchronous de-
livery to be satisfied. By Invariant C.1, the value of p.last dlvrd[q] never exceeds
maxr∈T {p.sync msg[r][v.startId(r)].cut[q]} for any q. It is therefore left to show
that p.last dlvrd[q] does not remain smaller than maxr∈T.

We have shown above that all the other preconditions for delivering view v by p

eventually become and remain satisfied until the view is delivered. Consider the part
of α after all of these preconditions hold. Let q be an end-point in current view.set
such that p.last dlvrd[q] < maxr∈Tp.sync msg[r][v.startId(r)].cut[q], and let i be
p.last dlvrd[q] + 1. We now argue that p.last dlvrd[q] eventually becomes i,
that is, that p eventually delivers the next message from q. An inductive applica-
tion of this argument would imply that p.last dlvrd[q] eventually reaches maxr∈T
{p.sync msg[r][v.startId(r)].cut[q]}.

All the preconditions (except perhaps p.msgs[q][p.current view][i] 	= ⊥) for de-
livering the ith message from q are eventually satisfied because they are the same as
the preconditions for p delivering view v, which we have shown to be satisfied. Thus,
if the ith message is already on p.msgs[q][p.current view][i], then delivery of this
message eventually occurs by fairness, resulting in p.last dlvrd[q] being incremented;
in this case, we are done.

Therefore, consider the case when p lacks the ith message, m, from q. There are
two possibilities:

1. If end-point q is in p’s transitional set T for view v, then we know the follow-
ing:

1. q’s view prior to installing view v is the same as p’s current view (by definition
of T and Invariant B.11).

2. q’s reliable set contains p starting before q sent any messages in that view
and continuing for the rest of α.

3. Invariant C.2 implies that q has this message and all the messages that precede
it in q.msgs[q][p.current view].

4. End-point q is enabled to send these messages to p in fifo order. The only event
that could prevent q from sending these messages is gcs.viewq(v), as it would
change the value of q.current view. However, as we argued above, q must send
all of the messages it committed in its cut before delivering view gcs.viewq(v).
Self-delivery (Invariant B.15) implies that q’s cut includes all of the messages q

sent while in v. Thus, q would eventually send m to p.
5. The fact that the connection between end-points q and p is live at least after
memb.viewq(v) occurs implies that co rfifo eventually delivers this message to
p.
2. Otherwise, if end-point q is not in p’s transitional set T for view v, we know by

the fact that i is ≤ maxr∈T {p.sync msg[r][v.startId(r)].cut[q]} that there exist some
end-points in T whose synchronization messages commit to deliver the ith message
from q in view p.current view. Let r be an end-point with a smallest identifier
among these end-points. Here is what we know:

1. Invariant C.2 implies that r has this message on its r.msgs[r][p.current view]
queue.

2. r’s reliable set contains p starting before r sent any messages in that view
and continuing for the rest of α.

3. Upon examination of each of the ForwardingStrategyPredicates in section 6.2.1,
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we see that the preconditions for r forwarding the i’th message of q to a set in-
cluding p eventually become and stay satisfied.

4. Since in both forwarding strategies there is only a finite number of messages from
q sent in this view that can be forwarded, fairness implies that the i’s message
is eventually forwarded to p.

5. The fact that the connection between r and p is live at least after memb.viewq(v)
occurs implies that co rfifo eventually delivers this message to p.

Therefore, the ith message from q is eventually delivered to end-point p, and
since, as a result of this, the preconditions on delivering this message to the client at
p are satisfied, this delivery eventually occurs, and p.last dlvrd[q] is incremented.
By applying this argument inductively, we conclude that p.last dlvrd[q] eventually
reaches maxr∈T p.sync msg[r][v.startId(r)].cut[q] for every q in current view.set.

We have shown that each precondition on p delivering gcs.viewp(v, T) eventually
becomes and stays satisfied. Fairness implies that gcs.viewp(v, T) eventually occurs.

Part II. We now consider the second part of the lemma. The following argument
proves that, after gcs.viewp(v, T) occurs at p, for every subsequent gcs.sendp(m)
event at p, there is a corresponding gcs.deliverq(p, m) event that occurs at every q

∈ v.set:
1. For the rest of α, after gcs.viewp(v, T) occurs, co rfifo.live set[p] is equal

to v.set. This is true because co rfifo.live set[p] is set to v.set when
memb.viewp(v) occurs and remains unchanged thereafter because of the as-
sumption that α does not contain any subsequent memb events at end-point
p.

2. After gcs.viewp(v, T) occurs and before any co rfifo.sendp event involving a
ViewMsg or an AppMsg occurs, p eventually executes co rfifo.reliablep(v.set).
Moreover, after that and forever thereafter, both p.reliable set and
co rfifo.reliable set[p] equal v.set. This is true because gcs.viewp(v, T)
sets p.start to ⊥ and p.current view.set to v.set, thus enabling
co rfifo.reliablep(v.set). This action eventually happens because α is a
fair execution and because for the rest of α there are no subsequentmemb.startp
and gcs.viewp(v

′, T′) events. Because of the latter reason, p.start and
p.current view.set remain unchanged. Therefore, co rfifo.reliablep re-
mains disabled and both variables co rfifo.reliable set[p] and p.reliable set

remain equal to v.set.
From the above argument and from fairness, it follows that any kind of mes-
sage that end-point p sends subsequently to q via co rfifo will eventually
reach end-point q.

3. Action co rfifo.sendp(v.set− {p}, 〈‘view msg’, v〉) eventually occurs af-
ter action co rfifo.reliablep(v.set) occurs, as follows from the code in
Figure 6.4. By the reasoning above, co rfifo delivers this ViewMsg to every
end-point q ∈ v.set − {p}, resulting in q.view msg[p] being set to v for the
remainder of α (Invariant B.4).

4. When gcs.sendp(m) event occurs at p, m is appended to p.msgs[p][v].
5. After sending the ViewMsg, for the rest of α, if p.msgs[p][v][p.last sent + 1]

contains a message (say m′), action co rfifo.sendp(v.set− {p}, 〈‘app msg’, m′〉)
is enabled, and hence eventually occurs by fairness. Since p.last sent is
incremented after each application message is sent using co rfifo.sendp,
any message on p.msgs[p][v] is eventually sent to v.set − {p}. As was ar-
gued above, these messages are eventually delivered to every end-point q ∈
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v.set− {p}. Since q.view msg[p] = v at the time q receives m′, q puts m′

in q.msgs[p][v][q.last rcvd + 1] (Invariant B.5) and increments q.last rcvd.
Therefore, all messages that end-point p sends in view v are eventually in-
serted with no gaps in the end-point q’s queue, q.msgs[p][v], for every q ∈
v.set − {p}.

6. Once gcs.viewq(v, T) happens (by part I of the proof of the lemma), end-
point q ∈ v.set is continuously enabled to deliver a message, m′, from
q.msgs[p][v][q.last dlvrd + 1]; by fairness, such delivery eventually occurs,
resulting in q.last dlvrd[p] being incremented. Therefore, every messages
on q.msgs[p][v] is eventually delivered to the client at p, including the case of
q = p.

It follows from this argument that every gcs.sendp(m) event at end-point p that occurs
after gcs.viewp(v, T) in α is eventually followed by a gcs.deliverq(p, m) at every q

∈ v.set.
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Abstract. Massive data sets are increasingly important in a wide range of applications, includ-
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operations facility. The enormous scale, distributed nature, and one-pass process-
ing requirement on the data sets of interest must be addressed with new algorithmic
techniques.

We present one fundamental new technique here: a space-efficient, one-pass algo-
rithm for approximating the L1-difference

∑
i |ai − bi| between two functions, when

the function values ai and bi are given as data streams, and their order is chosen by an
adversary. This algorithm fits naturally into a toolkit for Internet-traffic monitoring.
For example, Cisco routers can now be instrumented with the NetFlow feature [CN98].
As packets travel through the router, the NetFlow software produces summary statis-
tics on each flow.1 Three of the fields in the flow records are source IP-address,
destination IP-address, and total number of bytes of data in the flow. At the end of a
day (or a week, or an hour, depending on what the appropriate monitoring interval is
and how much local storage is available), the router (or, more accurately, a computer
that has been “hooked up” to the router for monitoring purposes) can assemble a
set of values (x, ft(x)), where x is a source-destination pair, and ft(x) is the total
number of bytes sent from the source to the destination during a time interval t. The
L1-difference between two such functions assembled during different intervals or at
different routers is a good indication of the extent to which traffic patterns differ.

Our algorithm allows the routers and a central control and storage facility to
compute L1-differences efficiently under a variety of constraints. First, a router may
want the L1-difference between ft and ft+1. The router can store a small “sketch”
of ft, throw out all other information about ft, and still be able to approximate
‖ft − ft+1‖1 from the sketch of ft and (a sketch of) ft+1.

The functions f
(i)
t assembled at each of several remote routers Ri at time t may be

sent to a central tape-storage facility C. As the data are written to tape, C may want

to compute the L1-difference between f
(1)
t and f

(2)
t , but this computation presents

several challenges. First, each router Ri should transmit its statistical data when Ri’s
load is low and the Ri-C paths have extra capacity; therefore, the data may arrive
at C from the Ri’s in an arbitrarily interleaved manner. Also, typically the x’s for
which f(x) �= 0 constitute a small fraction of all x’s; thus, Ri should only transmit

(x, f
(i)
t (x)) when f

(i)
t (x) �= 0. The set of transmitted x’s is not predictable by C.

Finally, because of the huge size of these streams,2 the central facility will not want
to buffer them in the course of writing them to tape (and cannot read from one part
of the tape while writing to another), and telling Ri to pause is not always possible.

Nevertheless, our algorithm supports approximating the L1-difference between f
(1)
t

and f
(2)
t at C, because it requires little work space, requires little time to process

each incoming item, and can process in one pass all the values of both functions

{(x, f (1)
t (x))} ∪ {(x, f (2)

t (x))} in any permutation.

Our L1-difference algorithm achieves the following performance:

Consider two data streams of length at most n, each represent-
ing the nonzero points on the graph of an integer-valued function
on a domain of size n. Assume that the maximum value of either

1Roughly speaking, a “flow” is a semantically coherent sequence of packets sent by the source
and reassembled and interpreted at the destination. Any precise definition of “flow” would have to
depend on the application(s) that the source and destination processes were using to produce and
interpret the packets. From the router’s point of view, a flow is just a set of packets with the same
source and destination IP-addresses whose arrival times at the routers are close enough, for a tunable
definition of “close.”

2In 1999, a WorldNet gateway router generated more that 10Gb of NetFlow data each day.
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function on this domain is M . Then a one-pass streaming algorithm
can compute with probability 1 − δ an approximation A to the L1-
difference B of the two functions such that |A−B| ≤ εB, using total

space O(log(Mn) log(1/δ)/ε2) and O(logO(1)(Mn) log(1/δ)/ε2) time
to process each item. The data streams may be interleaved in an ar-
bitrary (adversarial) order. Here space usage is measured in number
of bits and time in number of bit operations.

The main technical innovation used in this algorithm is a limited-independence
random-variable construction that may prove useful in other contexts:

A family {Vj(s)} of uniform ±1-valued random variables is called

range-summable if
∑c−1

j=0 Vj(s) can be computed in time polylog(c)
for all seeds s. We construct range-summable families of random
variables that are n2-bad 4-wise independent.3

The property of n2-bad 4-wise independence suffices for the time- and space-
bounds on our algorithm. One can construct a truly 4-wise (in fact, 7-wise) indepen-
dent range-summable family of random variables based on second-order Reed–Muller
codes ([RS99]; for details about second-order Reed–Muller codes, see [MS77]), but
the efficiency of the range summation seems to be significantly worse than it is in our
construction.

The rest of this paper is organized as follows. In section 2, we give precise state-
ments of our “streaming” model of computation and complexity measures for stream-
ing and sketching algorithms. In section 3, we present our main technical results.
Section 4 explains the relationship of our algorithm to other recent work, including
that of Broder et al. [BCFM00] on sketching and that of Alon, Matias, and Szegedy
[AMS99] and Alon et al. [AGMS99] on frequency moments.

2. Models of computation. Our model is closely related to that of Henzinger,
Raghavan, and Rajagopalan [HRR98]. We also describe a related sketch model that
has been used, e.g., in [BCFM00].

2.1. The streaming model. As in [HRR98], a data stream is a sequence of
data items σ1, σ2, . . . , σn such that, on each pass through the stream, the items are
read once in increasing order of their indices. We assume the items σi come from
a set of size M , so that each σi has size logM . In our computational model, we
assume that the input stream consists of one or more data streams. We focus on two
resources—the work space required in bits and the time to process each item in the
stream. An algorithm will typically also require pre- and postprocessing time, but
usually applications can afford more time for these tasks. For the algorithms in this
paper, the pre- and postprocessing time is comparable to the per-item time and is not
considered further.

Definition 1. The complexity class PASST(s(δ, ε, n,M), t(δ, ε, n,M)) (to be read
as “probably approximately correct streaming space complexity O(s(δ, ε, n,M)) and
time complexity O(t(δ, ε, n,M))”) contains those functions f on domain Xn, where
|X| =M , for which one can output a random variable R such that |R− f | < εf with
probability at least 1− δ, and computation of R can be done by making a single pass
over an instance x ∈ Xn, presented in a stream, using total workspace O(s(δ, ε, n,M))
and taking time O(t(δ, ε, n,M)) to process each item.

If s = t, we also write PASST(s) for PASST(s, t).

3The property of n2-bad 4-wise independence is defined precisely in section 3 below.
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We will also abuse notation and write A ∈ PASST(s, t) to indicate that an algo-
rithm A for f witnesses that f ∈ PASST(s, t).

Thus f is a function of a single input that has n elements or components. We
allow the input elements of f to be presented in any order in the stream; thus, an
input item will be of the form “the jth input element value is aj .” For example, a
fragment of the stream representing f might look like · · · (5, 2)(3, 7)(7, 4)(2, 6) · · · , and
this is interpreted as f(5) = 2, f(3) = 7, etc. Note that the input to f is considered
to be static—in a properly formed input stream, at most one item specifies the value
of aj . Thus the length of the input stream is n (items) for our algorithms.4 Other
variants of input streams are possible, in which input values may change (repeatedly)
throughout the stream, or in which the input comes in a nonarbitrary order (e.g., in
sorted order or random order). We do not consider these variations in this paper.

2.2. The sketch model. Sketches were used in [BCFM00] to check whether
two documents are nearly duplicates. A sketch can also be regarded as a synopsis
data structure [GM99].

Definition 2. Let X be a set containing at most M items. The complexity class
PAS(s(δ, ε, n,M)) (to be read as “probably approximately correct sketch complexity
s(δ, ε, n,M)”) contains those functions f : Xn × Xn → Z of two inputs for which
there exists a set S of size 2O(s), a randomized sketch function h : Xn → S, and a
randomized reconstruction function ρ : S×S → Z such that, for all x1, x2 ∈ Xn, with
probability at least 1− δ, |ρ(h(x1), h(x2))− f(x1, x2)| < εf(x1, x2).

By “randomized function” of k inputs, we mean a function of k+1 variables. The
first input is distinguished as the source of randomness. It is not necessary that, for
all settings of the last k inputs and for most settings of the first input, the function
outputs the same value.

Note that we can also define the sketch complexity of a function f : X × Y → Z
for X �= Y . There may be two different sketch functions involved.

There are connections between the sketch model and the streaming model. Let
XY denote the set of concatenations of x ∈ X with y ∈ Y . It has been noted in
[KN97] and elsewhere that a function on XY with low streaming complexity also
has low one-round communication complexity (regarded as a function on X × Y ),
because it suffices to communicate the memory contents of the hypothesized streaming
algorithm after reading the X part of the input. Sometimes one can also produce a
low-sketch-complexity algorithm from an algorithm with low streaming complexity.
Our main result is an example.

Also, in practice, it may be useful for the sketch function h to have low streaming
complexity. If the setX is large enough to warrant sketching, then it may also warrant
processing by an efficient streaming algorithm.

Formally, we have the following.
Theorem 3. If f ∈ PAS(s(δ, ε, n,M)) via sketch function

h ∈ PASST(s(δ, ε, n,M), t(δ, ε, n,M)),

then f ∈ PASST(2s(δ, ε, 2n,M), t(δ, ε, 2n,M)), where we identify f : Xn ×Xn → Z
with f : X2n → Z in the natural way.

4It turns out, however, that our algorithms will work if, by convention, we define aj to be zero if
no stream item specifies the value of aj . Thus the length of the input stream may be considerably
less than n. Our streaming algorithm for the L1-distance between two vectors actually, at each point
during the stream, can approximate the L1-distance between the vectors seen thus far, regarding
unseen inputs as zero.
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We will state our time bounds in terms of field(D), the time necessary to perform
a single arithmetic operation in a field of size 2D. Näıve field-arithmetic algorithms
guarantee that field(D) = O(D2).

3. The L1-difference of functions.

3.1. Our approach. We consider the following problem. The input stream is
a sequence of tuples of the form (i, ai,+1) or (i, bi,−1) such that, for each i in the
universe [n], there is at most one tuple of the form (i, ai,+1) and at most one tuple
of the form (i, bi,−1), and ai and bi are nonnegative integers. If there is no tuple
of the form (i, ai,+1), then define ai to be zero for our analysis, and similarly for
bi. Also note that, in general, a small-space streaming algorithm cannot know for
which i’s the tuple (i, ai,+1) does not appear. The goal is to approximate the value
of F1 =

∑ |ai − bi| to within ±εF1, with probability at least 1− δ.
Let M be an upper bound on ai and bi. We assume that n and M are known in

advance; in section 3.7, we discuss small modifications that can be made when either
of these is not known in advance.

We first present an intuitive exposition of the algorithm. Suppose that, for
each type i, we can define a family of M ±1-valued random variables Ri,j , j =
0, 1, . . . , (M − 1), with independence properties to be specified later. When we en-

counter a tuple of the form (i, ai,+1), we add
∑ai−1

j=0 Ri,j to a running sum z, and

when we encounter a tuple of the form (i, bi,−1), we subtract
∑bi−1

j=0 Ri,j from z. The
overall effect on z is to cancel the first min(ai, bi) random variables leaving the sum
of the remaining |ai − bi| random variables. Finally, consider z2. There are exactly∑n

i=1 |ai− bi| terms that are squares of random variables, and these terms contribute
exactly the desired quantity F1 to z

2. If the cross terms Ri,jRk,l with {i, j} �= {k, l}
contribute very little, then z2 is a good approximation to F1.

Pairwise independence of the random variables in question will ensure that the
expected contribution from these cross terms is 0, and 4-wise independence will ensure
that the variance is small, thus ensuring that the cross terms contribute very little
with high probability. Therefore, we would ideally like our random variables to be
4-wise independent. In addition, as seen above, we want to be able to compute sums
of the form

∑c
j=0Ri,j efficiently. In order to compute these sums very efficiently,

our construction produces random-variable families that deviate slightly from 4-wise
independence.

We now develop a more formal treatment of the above. We start with the defini-
tion that captures the properties desired of the family of random variables correspond-
ing to one type i. We will show how to construct random variables that satisfy this
definition. Later, we extend this to show how to construct random-variable families
to handle more than one type.

3.2. Construction of random variable families.
Definition 4. A family {Vj(s)} of uniform ±1-valued random variables with

seed s (chosen at random from some set S of seeds) is called range-summable, n2-bad
4-wise independent if the following properties are satisfied:

1. The family {Vj(s)} is 3-wise independent, i.e., for all distinct j1, j2, j3, for
all a, b, c ∈ {+1,−1},

Pr
s
[Vj1(s) = a|Vj2(s) = b ∧ Vj3(s) = c] = Pr

s
[Vj1(s) = a].

2. For all s,
∑c−1

j=0 Vj(s) can be computed in time polylogarithmic in c.



136 FEIGENBAUM, KANNAN, STRAUSS, AND VISWANATHAN

3. For all a < b,

E




b−1∑
j=a

Vj(s)




4

 = O((b− a)2).

In property 3 and in similar expressions throughout the rest of this paper, the expec-
tation is computed over s.

Note that even for 4-wise independent random variables, the sum in property 3
is Θ((b − a)2) because of terms of the form V 2

j (s)V
2
k (s). Thus, property 3 does not

represent a significant weakening of 4-wise independence. On the other hand, we do
not know of a construction using 4-wise independent random variables that matches
ours in efficiency with regard to property 2.

We now describe our construction. This is the main technical innovation of our
paper. It is also a significant point of departure from the work on frequency moments
by Alon et al. [AMS99]. The relationship between our algorithm and the frequency-
moment algorithms is explained in section 4.

We will construct a single family of M random variables Vj(s), 0 ≤ j < M , such

that, for all c ≤ M , one can compute
∑c−1

j=0 Vj(s) quickly. In the discussion that
follows, ⊕ represents boolean exclusive-or, and ∨ represents boolean or. Logarithms
in this paper are always to the base 2.

Suppose, without much loss of generality, thatM is a power of 2. Let H(logM) be
the matrix with M columns and logM rows such that the jth column is the binary
expansion of j. For example,

H(3) =


 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 .

Let Ĥ(logM) be formed from H(logM) by adding a row of 1’s at the top.

Ĥ(3) =




1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 .

We will index the logM + 1 rows of Ĥ starting with −1 for the row of all 1’s,
then 0 for the row consisting of the 20-bits of the binary expansions, and continue
consecutively up to the (log(M) − 1)st row. We will left multiply Ĥ by a seed s of
length logM + 1 and use the same indexing scheme for bits of s as for rows of Ĥ.
We will also refer to the last bit of s and the last row of Ĥ, where “last” means
(logM − 1)st, as the “most significant.”

Given a seed s ∈ {0, 1}logM+1, let s · Ĥj denote the inner product over Z2 of s

with the jth column of Ĥ. Let ik denote the coefficient of 2
k in the binary expansion

of i. Define f(i) by5

f(i) = (i0 ∨ i1)⊕ (i2 ∨ i3)⊕ · · · ⊕ (ilogM−2 ∨ ilogM−1).(3.1)

5Here and henceforth, we will actually assume that M is a power of 4 to simplify the exposition.
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Thus, the sequence p of values f(i), i = 0, 1, 2, . . . , is

0111 1000 1000 1000 1000 0111 0111 0111 1000 0111 0111 0111 1000 0111 0111 0111 . . .

and can be obtained as the string plogM by starting with p0 = 0 and putting pk+2 =
pk pk pk pk, where π denotes the bitwise negation of the pattern π. Finally, put Vj(s) =

(−1)(s·Ĥj)+f(j).

Proposition 5. The quantity
∑c−1

j=0 Vj(s) can be computed in time O(log(c)).
Proof. First assume that c is a power of 4. If c < M , then the first c columns

of ĤlogM have the form
(
Ĥlog c

0

)
, and we can reduce our problem to one in which we

truncate s to include only the first 1 + log c bits. We may thus assume that c = M .
Then Ĥ(logM) is given recursively by

Ĥ(logM) =




1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1
H(logM−2) H(logM−2) H(logM−2) H(logM−2)

0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1
0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1


 .

Also, note that the first M bits of p have the form

plogM = plogM−2plogM−2plogM−2plogM−2.

Let s′ be a string of length logM−2 that is equal to s without the−1st bit and without
the two most significant bits, and let f ′ denote the fraction of 1’s in s′ · H(logM−2).
Also, for bits b1, b2, let fb1b2 denote the fraction of 1’s in

s ·




1 · · · 1
H(logM−2)

b1 · · · b1
b2 · · · b2


 .

Then fb1b2 = f ′ or fb1b2 = 1−f ′, depending on b1, b2, and the three bits of s dropped
from s′ (namely, −1, logM − 2, and logM − 1). Recursively compute f ′, and use

the value to compute all the fb1b2 ’s and, from that, the number of 1’s in
∑c−1

j=0 Vj(s).
This procedure requires recursive calls of depth that is logarithmic in c.

Similarly, one can compute
∑(q+1)4r−1

j=q4r Vj(s).
Finally, if c is not a power of 4, write the interval {0, . . . , (c− 1)} = [0, c) as the

disjoint union of at most O(log(c)) intervals, each of the form [q4r, (q + 1)4r). Use
the above technique to compute the fraction of V ’s equal to 1 over each subinterval,
and then combine. If one is careful to perform the procedure bottom up, the entire
procedure requires just log(c) recursive calls, not log2(c) calls. For example, suppose
c = 22. Write [0, 22) as [0, 16) ∪ [16, 20) ∪ [20, 21) ∪ [21, 22). A näıve way to proceed

would be to perform recursive calls 3 deep to compute
∑15

j=0 Vj(s), then calls 2 deep

for
∑19

j=16 Vj(s), then 1 deep for each of V20(s) and V21(s). It is better to proceed as
follows: compute V20(s) directly (by taking the dot product of the first O(log(c)) bits
of s with the first O(log(c)) rows of column 20 in Ĥlog(M), then adding f(20)); use
this value to compute V21(s) and V16(s) (each of these computations requires looking
at just O(1) bits of s—in this case, V21(s) is the sum of V20(s) and the 20 bit of
s, and V16(s) is the sum of V20(s) and the 22 bit of s); then use V16(s) to compute∑19

j=16 Vj(s); and finally use
∑19

j=16 Vj(s) to compute
∑3

j=0 Vj(s) and, from that,
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∑15
j=0 Vj(s). For j < c, computing the value of a single Vj(s) takes time O(log(c)), and

the overhead in each recursive call takes constant time. Thus, altogether, computing
a range sum of V ’s requires time O(log(c)).

We now show that this construction yields a family of random variables that is
n2-bad 4-wise independent. The fact that {Vj(s)} is three-wise independent is shown
in [AS92].

Proposition 6. For all a < b, we have

E




b−1∑
j=a

Vj(s)




4

 ≤ 5(b− a)2.

Proof. First, note that, for some tuples (j1, j2, j3, j4), columns j1, j2, j3, and j4
of Ĥ are independent. These tuples do not contribute to the expectation on the left
of the inequality, because for each desired outcome (v1, v2, v3, v4), the sets

S(v1,v2,v3,v4) = {s : (Vj1(s), Vj2(s), Vj3(s), Vj4(s)) = (v1, v2, v3, v4)}
have the same size by linear algebra.

Second, observe that, because any three columns of Ĥ are independent, if the
columns Ĥj1 , Ĥj2 , Ĥj3 , and Ĥj4 are dependent, then their mod 2 sum is zero. Thus a
dependent tuple has one of 3 basic forms—all four columns are identical; there are two
pairs of distinct columns; or all four columns are distinct. In the case of dependent
tuples, the seed s is irrelevant to the product Vj1(s)Vj2(s)Vj3(s)Vj4(s) because

Vj1(s)Vj2(s)Vj3(s)Vj4(s)(3.2)

= (−1)(s·Ĥj1 )+f(j1) · (−1)(s·Ĥj2 )+f(j2) · (−1)(s·Ĥj3 )+f(j3) · (−1)(s·Ĥj4 )+f(j4)

= (−1)f(j1)+f(j2)+f(j3)+f(j4).(3.3)

Line (3.3) follows from the fact that the columns Ĥj1 , Ĥj2 , Ĥj3 , and Ĥj4 sum to zero.
Thus it is sufficient to show that

U(a, b)
∆
=

∑
a≤j1,j2,j3,j4<b
j1⊕j2⊕j3⊕j4=0

(−1)f(j1)+f(j2)+f(j3)+f(j4) ≤ K(b− a)2

for some constant K. From Theorem 9 below, we can see that K ≤ 5, and thus the
proposition holds.

We shall now provide upper bounds for the quantity U(a, b) defined in the proof
of Proposition 6. We will give two bounds for U(a, b)—a simply derived though
poor bound (Theorem 8) and a more tediously obtained but much tighter bound
(Theorem 9). Before presenting these bounds, we first prove a lemma that is used
later in the proofs.

Lemma 7. U(4a, 4b) ≤ 16U(a, b).
Proof. Let (j1, j2, j3, j4) be a dependent tuple in [4a, 4b)

4. Consider the two least
significant bits of the j’s. We will say that the tuple is odd if no two of its members
have the same pair of least significant bits; otherwise, we will say that the tuple is even.
There are 64 possibilities making the columns dependent, because we can choose two
bits from each of the first three columns arbitrarily, and this forces a unique choice
of the bits from the last column. Of these, 24 = 4! are odd and 40 are even. (The 40
even tuples arise from 4 tuples in which all columns have identical bits and 36 tuples
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in which the 4 columns are paired in one of 6 ways, and the two pairs are given two
distinct values out of the 4 possible in one of 6 ways.)

Note that a dependent tuple is odd if and only if there are an odd number of
i’s for which (ji)0 ∨ (ji)1 = 1. Thus, if (j1, j2, j3, j4) is an odd dependent tuple and
(j′1, j

′
2, j
′
3, j
′
4) is an even dependent tuple where j

′
i agrees with ji on all bits except possi-

bly the two least significant, then the contributions of these two tuples to the U(4a, 4b)
cancel out. Therefore, given an odd tuple (j1, j2, j3, j4), pair it with (j′1, j

′
2, j
′
3, j
′
4) as

above. Because 4a and 4b are multiples of 4, (j′1, j
′
2, j
′
3, j
′
4) will be in the correct range.

If (j1, j2, j3, j4) is a tuple having one of the 16 other (even) configurations of the two
least significant bits, attempt to pair it inductively with (j′1, j

′
2, j
′
3, j
′
4) such that ji

and j′i have the same two least significant bits. Thus U(4a, 4b) ≤ 16U(a, b).
We now give a simple argument that U(a, b) ≤ 27(b− a)2.
Theorem 8. U(a, b) ≤ 27(b− a)2.
Proof. Given a and b, find r with a, b ≤ 4r. Let α be the smallest multiple of

4 that is at least a and let β be the largest multiple of 4 that is at most b. Then
U(a, b) is at most U(α, β) plus the number of tuples having at least one column in
[a, α) ∪ [β, b). We will handle the first term inductively; we now count the number of
tuples having at least one column in [a, α) ∪ [β, b). First, there are 4 ways to choose
one of j1, j2, j3, and j4 to be in [a, α) ∪ [β, b). (Having paid the factor 4, we now call
this column j1.) There are at most 6 ways to choose j1 ∈ [a, α) ∪ [β, b). There are at
most (b− a)2 ways to choose j2 and j3 in [a, b). Finally, once j1, j2, and j3 are fixed,
there is at most one way to choose j4 to make (j1, j2, j3, j4) dependent. (Note that
j2, j3, and j4 play symmetric roles.) This gives 24(b− a)2 tuples altogether. Thus we
conclude that

U(a, b) ≤ U(4 �a/4� , 4 �b/4�) + 24(b− a)2
= 16U(�a/4� , �b/4�) + 24(b− a)2
≤ 16U(4 ��a/4� /4� , 4 ��b/4� /4�) + 24(�b/4� − �a/4�)2 + 24(b− a)2
= 162U(��a/4� /4� , ��b/4� /4�) + 24(�b/4� − �a/4�)2 + 24(b− a)2
...

≤ 16�log4(b−a)� + 24(b− a)2 [1 + 1/16 + 1/162 · · · ]
≤ (b− a)2 + 24(b− a)2(16/15)
≤ 27(b− a)2,

as desired.
We now give a more involved analysis that lets us improve the bound.
Theorem 9. U(a, b) ≤ 5(b− a)2.
Proof. Define A(a, b) to be U(a,b)

(b−a)2 . Note that it is sufficient to show that

supa,bA(a, b) ≤ 5. We will give a recurrence for A(a, b) and discuss a computer search
over a, b with b− a small that yields a bound better than immediately available from
the recurrence.

We first assume that b − a ≥ 16. Let a′ be the smallest multiple of 4 that is at
least a, and let b′ be the greatest multiple of 4 that is at most b. (Because b− a ≥ 16,
it follows that a ≤ a′ < b′ ≤ b.) The number of unpaired tuples in [a, b)4 is at most
the number of unpaired tuples in [a′, b′)4 plus the number of unpaired tuples having
at least one column in [a, a′) ∪ [b′, b). The number of unpaired tuples in [a′, b′)4 is
U(a′, b′) ≤ 16U(a′/4, b′/4) = A(a′/4, b′/4)(b′ − a′)2. We now count the number of
unpaired tuples having at least one column in [a, a′) ∪ [b′, b).
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There are at most 36(b−a) tuples such that two of the columns are identical and
in [a, a′)∪ [b′, b), and the two other columns are identical. (The four columns may or
may not all be equal. Note that a factor max

((
4
1

)
,
(
4
2

))
= 6 is needed to assign the

four columns to the one or two values.) We now count the tuples whose columns are
all different. Pick an assignment of roles for the columns, which contributes a factor
24. There are at most 6 ways to pick j1 in [a, a′) ∪ [b′, b). Next we will consider the
choices of the pair j2 and j3, which in turn will determine j4 uniquely. We will argue
that, for most pairs (j2, j3), by making local changes to j2 and j3, we can produce
another tuple of columns (j1, j

′
2, j
′
3, j4) that cancels out with (j1, j2, j3, j4). The main

difficulty will be to ensure that the columns j′2 and j
′
3 are in the correct range.

The local change strategy is as follows: Let k be the index of the least significant
bit on which j2 and j3 disagree. Let k′ be the index of the “mate” of k, i.e., the bit
that is “or”ed with the kth bit in the computation of f(j2) or f(j3). The columns j

′
2

and j′3 will be obtained by toggling the k′th bit of j2 and j3, respectively. We have
to check that the tuples (j1, j2, j3, j4) and (j1, j

′
2, j
′
3, j4) have opposite parity. To see

this, assume without loss of generality that the kth bits of j2 and j3 are 0 and 1,
respectively. Then the disjunction in expansion (3.1) corresponding to bits k and k′

for each of f(j′3) and f(j3) is 1, because of the 1 in bit k, but the k-k
′ disjunction for

f(j′2) and f(j2) differ, because the kth bits are zero, but the k′th bits differ. All the
other disjunctions are the same in f(j2) as f(j

′
2) and in f(j3) as f(j

′
3). Note also that

(j1, j
′
2, j
′
3, j4) is a dependent tuple whenever (j1, j2, j3, j4) is a dependent tuple.

Next we have to determine the conditions for j′2 and j′3 to be between a and b.
We will consider the situation in which one of these columns falls below the lower
bound a and appeal to symmetry for the situation in which one column is at least b.

For two columns x, y, let eq(x, y) = 4 if the most significant bit in which they
differ has index 4.

Because we have already paid a factor of 24 for the assignment of roles, choose
roles such that eq(a, j2) ≥ eq(a, j3). Suppose all columns are r bits long. There are
at most 2r−� vectors j2 for which eq(a, j2) is 4. For each such vector j2, there are at
most

⌈
(b− a)/2r−�−1

⌉−1 ≤ (b−a)/2r−�−1 vectors j3 distinct from j2 that agree with
j2 on the least significant r− 4− 1 bits. (Such (j2, j3) pairs may require a toggling of
the first 4 bits that could cause j′2 or j′3 to drop below a.) Thus the total number of
problem pairs with respect to the lower bound is at most 2(b − a) for each choice of
4. Over all choices of 4 this number is at most 2(b− a) log(b− a). By symmetry, the
number of problem pairs with respect to b is also at most 2(b − a) log(b − a). Thus
there are at most 4(b − a) log(b − a) ways to pick pairs j2 and j3 that do not cancel
out. Combining with the 24 ways of assigning roles and the 6 ways of picking j1 we
find that there are at most 576(b−a) log(b−a) tuples that do not get canceled. Thus,
including the dependent tuples with repeated columns (at most 36(b− a)), we get

U(a, b) ≤ U(a′, b′) + 576(b− a) log(b− a) + 36(b− a)
≤ U(a′, b′) + 585(b− a) log(b− a)
≤ 16U(a′/4, b′/4) + 585(b− a) log(b− a)
= 16A(a′/4, b′/4)(b′/4− a′/4)2 + 585(b− a) log(b− a)
= A(a′/4, b′/4)(b′ − a′)2 + 585(b− a) log(b− a)
≤ A(a′/4, b′/4)(b− a)2 + 585(b− a) log(b− a),

and so

A(a, b) ≤ A(�a/4� , �b/4�) + 585
log(b− a)
(b− a) .
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Let

Di = sup
4i<(b−a)≤4i+1

A(a, b).

For each C ≥ 2, we have the recurrence

Di ≤
{

Di−1 + 585 · 2i
4i , i ≥ C,

MC , i < C,
(3.4)

where MC = max(D0, . . . , DC−1) is a bound on A(a, b) over 4i < b − a ≤ 4i+1 for
i < C, i.e., b − a ≤ 4C . We want to find a minimal solution. We will discuss below
how we establish MC precisely using an exhaustive computer search.

Recurrence (3.4) has a solution

Di =MC + 585

i∑
j=C

2j

4j

≤MC + 2 · 585C + 1/3

3 · 4C−1
,

where the empty sum is taken to be zero. If we put C = 6, we get

Di ≤M6 + 2.413,

whence, for all a, b, A(a, b) ≤M6 + 2.413.

It remains to evaluate M6. We first show that it is sufficient to consider a finite
number of pairs {a, b} even though the definition of M6 requires it to be a supremum
over an infinite number of pairs. We then use a computer search to find M6.

Claim 10. The value MC = maxb−a≤4C=22C A(a, b) is at most

M ′C = max
a≤22C−1

b≤a+22C

A(a, b).

Proof. Suppose (a, b) is a pair with b− a ≤ 22C but a > 22C−1. We produce a′, b′

with a′ < a and b′ < b such that b′ − a′ = b − a and A(a′, b′) = A(a, b). The claim
follows.

First, we show that if a, b ≤ 2r, then U(a, b) = U(2r − b, 2r − a). Given a
tuple (j1, j2, j3, j4) ∈ [a, b)4, write each j with r bits, padding with leading zeros if
necessary. Form j′i = 2r − 1− ji by negating all the bits in ji. This procedure toggles
the parity of the k-k′ disjunct in the expansion of f(j) when the k-k′ bits are 00 or
11; for each k, in a dependent tuple, there are an even number of columns that are
00 or 11 in bits k and k′ and an even number of columns that are 01 or 10 there. It
follows that (j1, j2, j3, j4) and (j′1, j

′
2, j
′
3, j
′
4) have the same parity. Note also that this

mapping is a bijection from [a, b) to [2r − b, 2r − a). From this we can conclude that
U(a, b) = U(2r−b, 2r−a). Similarly, if a, b ≤ 3·2r, then U(a, b) = U(3·2r−b, 3·2r−a).

Finally:

• if 22C−1 < a ≤ 22C , then
– if 22C−1 < b ≤ 22C , then put (a′, b′) = (22C − b, 22C − a);
– if 22C < b ≤ 3 · 22C−1, then put (a′, b′) = (3 · 22C−1 − b, 3 · 22C−1 − a);
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– if 3 · 22C−1 < b, then note that b < a + 22C ≤ 22C+1. Put (a′, b′) =
(22C+1 − b, 22C+1 − a).

• if 22C < a, then find q > 2C with 2q < a ≤ 2q+1;
– if b ≤ 2q+1, then 2q < a < b ≤ 2q+1. Put (a′, b′) = (2q+1 − b, 2q+1 − a);
– otherwise, 2q+1 < b ≤ a + 22C ≤ 2q+1 + 2q = 3 · 2q. Put (a′, b′) =
(3 · 2q − b, 3 · 2q − a).

In all cases, a′ < a, b′ < b, and b′ − a′ = b− a.
Thus, if we are interested in M6, i.e., (a, b) with b − a ≤ 4096, we need only

consider a ≤ 2048. A computer search was done for A(a, b) over a ≤ 2048 and
b ≤ a+ 4096, and the maximum is 2.55334. Thus A(a, b) ≤ 2.56 + 2.413 < 5.

3.3. The algorithm. Recall that for the overall algorithm, we will need to
generate a family of random variables for each of the different types. It would be ideal
to make these families n-wise independent, but that would require storing a seed for
each of the n types, which is infeasible. Therefore, we will use short master seeds to
generate n different seeds that are 4-wise independent and, from these, compute the
n families of random variables that we will use to get an estimate of F1. It will be
necessary to repeat this process to achieve the specified values of ε and δ.

For each k, 1 ≤ k ≤ 3 log(1/δ) and for each 4, 1 ≤ 4 ≤ 8A/ε2 (where A = 10 will be
justified later), choose a master seed Sk,� and use Sk,� to define a 4-wise independent
family {si,k,�} of n seeds, each of length logM + 1. Each seed si,k,� in turn defines a
range-summable, n2-bad 4-wise independent family {Vi,j,k,�} ofM uniform ±1-valued
random variables, where Vi,j,k,�

∆
= Vj(si,k,�).

We can use any standard construction to define a family of seeds from a master
seed. For example, we can use the construction based on BCH codes in [AS92].
Another construction is one in which the master seed is used to define the coefficients
of a random degree-3 univariate polynomial over a sufficiently large finite field. We
will describe and use this more elementary construction.

Let D = max(logM + 1, log n). Choose F = GF2D as the finite field. Fix a
representation for the elements of F as bit strings of length D. Choose a master
seed Sk,� of length 4D bits uniformly at random, and view these bits as coefficients
a3, a2, a1, a0 of a degree-3 polynomial a(x) ∈ F [x]. Now define the ith seed, si,k,� =
a(i). It is immediate from basic algebra that these seeds are 4-wise independent and
that the individual seeds can be computed in a constant number of field operations
over the field F .

A final point of concern is whether the use of a master seed to generate individual
seeds impacts the analysis of the last subsection. There we assumed that the seed for
a single family of random variables was chosen uniformly at random among strings of
a fixed length. In our construction here, when the master seed is chosen uniformly at
random from strings of the correct length, each seed is also distributed uniformly at
random, and hence the analysis of the previous subsection still applies.

A more formal, high-level description of the algorithm is given in Figure 1.

3.4. Correctness. The proof in this section that the algorithm described in
Figure 1 is correct closely follows the one given in [AMS99] for the correctness of their
algorithm (see section 4.3).

Theorem 11. The algorithm described in Figure 1 outputs a random variable
W = mediankavg�Z

2
k,� such that |W − F1| < εF1 with probability at least 1− δ.



AN APPROXIMATE L1-DIFFERENCE ALGORITHM 143

Algorithm L1(〈(i, ci, θi)〉).

Initialize:
For k = 1 to 3 log(1/δ) do

For � = 1 to (8 ·A)/ε2 do
//For any A ≥ 10 —see (3.8) and the end of section 3.2
{ Zk,� = 0
pick a master seed Sk,� from the (k, �)th sample space }
// This implicitly defines si,k,� for 0 ≤ i < n and
// in turn implicitly defines Vi,j,k,� for 0 ≤ i < n and 0 ≤ j < M .

For each tuple (i, ci, θi) in the input stream do
For k = 1 to 3 log(1/δ) do

For � = 1 to (8 ·A)/ε2 do
Zk,� += θi

∑ci−1
j=0

Vi,j,k,�

Output mediankavg�Z
2
k,�.

Fig. 1. High level L1 algorithm.

Proof. Note that for each j < min(ai, bi), both Vi,j,k,� and −Vi,j,k,� are added to
Zk�, and for j ≥ max(ai, bi), neither Vi,j,k,� nor −Vi,j,k,� is added. Thus

Zk� =
∑
i

∑
min(ai,bi)≤j<max(ai,bi)

±Vi,j,k,�.

We shall now compute E[Z2
k�] and E[Z

4
k�] for each k, 4. We shall use the convention

that
∑

a≤i<b = −
∑

b≤i<a if b < a. For notational convenience, we let Vi,j denote
Vi,j,k,� in the analysis below.

E[Z2
k,�] = E




∑

i

bi−1∑
j=ai

Vi,j




2



= E



(

F1∑
m=1

±Vm
)2

(3.5)

=

F1∑
m=1

E[(±Vm)2] + 2
∑

1≤m<m′<F1

E[(±Vm)(±Vm′)]

=

F1∑
m=1

1(3.6)

= F1,

where, in line (3.5), we have relabeled the indices of V , and, in line (3.6), we have
used the pairwise independence of Vm and Vm′ and the fact that the expectation of
each of these random variables is 0.
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Next, consider

E[Z4
k,�] = E




∑
0≤i1,i2,i3,i4<n

∑
ai1≤j1<bi1
ai2≤j2<bi2
ai3≤j3<bi3
ai4≤j4<bi4

Vi1,j1Vi2,j2Vi3,j3Vi4,j4



.

By 3-wise independence and the fact that E[V t] = 0 for odd t, the only terms with
nonvanishing expectation are of the form V 4

i,j (of which there are F1 terms), V
2
i,jV

2
i′,j′

for (i, j) �= (i′j′) (of which there are
(
4
2

)
F1(F1−1) terms), and Vi1,j1Vi2,j2Vi3,j3Vi4,j4 for

(i1, j1), (i2, j2), (i3, j3), (i4, j4) all different. Suppose, in the third case, that i1, i2, i3, i4
are not all the same. Let X =

∏
im=i1

Vim,jm and Y =
∏

im 	=i1 Vim,jm . Then E[X] = 0
by 3-wise independence of the V ’s, and X and Y are independent by 4-wise indepen-
dence of the seeds si,k,�. Therefore, if (i1, j1), (i2, j2), (i3, j3), (i4, j4) are all different
and i1, i2, i3, i4 are not all the same,

E[Vi1,j1Vi2,j2Vi3,j3Vi4,j4 ] = E[XY ] = 0.

Thus we have

E[Z4
k,�] ≤ F1 + 6F1(F1 − 1) +

∑
i

E




bi−1∑
j=ai

Vi,j




4



≤ 6F 2
1 +

∑
i

5(bi − ai)2(3.7)

≤ 11F 2
1 .

In line (3.7), we used Proposition 6, which shows that our construction of random
variables is n2-bad 4-wise independent, with constant 5.

Thus

Var(Z2
k,�) = E[Z4

k,�]− E2[Z2
k,�] ≤ A · F 2

1(3.8)

for A = 10. Now, put Yk = ε2

8·A
∑

1≤�≤(8·A)/ε2 Z
2
k,�. Then Var(Yk) ≤ ε2

8 F
2
1 . By

Chebyshev’s inequality,

Pr(|Yk − F1| > εF1) ≤ Var(Yk)

ε2F 2
1

≤ 1/8.

Put W = mediankYk. Then |W − F1| > εF1 only if we have |Yk − F1| > εF1 for
at least half of the k’s. Let Ak = 1 if |Yk − F1| > εF1 and Ak = 0 otherwise; so, for
all k, E[Ak] ≤ 1/8. Put m = 3 log(1/δ) and A =

∑m
k=1Ak; then E[A] ≤ m/8. By

Chernoff’s inequality, the probability that A ≥ m/2 ≥ (1 + 3)E[A] is at most

[
e3

(1 + 3)(1+3)

]m/8

≈ 1.374−m

≤ 2−m/3

≤ δ.
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The result follows.

3.5. Cost.
Theorem 12. There is an implementation of Algorithm L1 (in Figure 1) that is

in

PASST
(
log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2

)
.

Proof. The algorithm stores
• log(1/δ)/ε2 random variables Zk,� (called counters) whose values are at most
Mn;
• master seeds, specifying the seeds and, through the seeds, the values of the
±1-valued random variables Vi,j,k,�.

The space to store the counters is O(log(Mn) log(1/δ)/ε2). By our construction,
for each k, 4, we need O(max(logM, log n)) = O(D) bits of master seed, and so we
would need O(D log(1/δ)/ε2) bits of storage to store all the master seeds. This is
asymptotically the same as the space requirement for storing the counters.

We now consider the cost of processing a single item (i, ci,±1). First, one has to
produce the seeds si,k,� from the master seeds Sk,�. For each i, this involves computing
a degree-3 polynomial over GF (2D), which takes time O(field(D)). From si,k,�, we

need to compute a range sum
∑b−1

j=0 Vj(si,k,�), which can be computed in O(logM).

Thus, the overall time complexity is O((field(D) + log(M)) log(1/δ)/ε2). Under the
reasonable assumption that field arithmetic takes at least linear time, the first term
dominates, and the complexity is as claimed above.

3.6. Optimality. Our algorithm is quite efficient in the parameters n,M , and δ,
but it requires space quadratic in 1/ε. We now show that for some nontrivial settings
ofM , for all large settings of n, and for all small settings of δ, any sketching algorithm
that approximates the L1-difference to within ε requires space close to 1/ε. Thus, our
algorithm uses space within a polynomial of optimal.

Theorem 13. Fix M = 2. For sufficiently small δ, and for any (large) α and
any (small) β > 0, the L1-difference problem is not in PAS(logα(n)/ε1−β).

A similar result holds in the streaming model.
Proof. We reduce the set-disjointness problem to the L1-difference problem.
Recall the set-disjointness problem of communication complexity [KN97]. Alice

has a string x, |x| = n, and Bob has a string y, |y| = n, and they want to determine
whether there exists a position i such that the ith bit of x and the ith bit of y are
both 1. Any protocol for this problem, even a randomized protocol, requires Ω(n)
bits of communication, even under the restriction that there is at most one bit i with
xi = yi = 1. Finally, note that an efficient sketching or streaming algorithm directly
yields a protocol with low communication complexity.

Suppose L1 ∈ PAS(logα(n)/ε1−β). Put ε = 1/(3n). Let (a, b) be an instance of
set disjointness; so, for all i, ai, bi ≤M = 2. Note that the symmetric difference of a
and b as sets is the L1-difference of a and b as functions. By hypothesis one can, with
high probability, approximate the symmetric difference |a∆b| to within ε|a∆b| < 1/2
(whence one can, with high probability, compute |a∆b| exactly) using space at most

logα(n)/ε1−β = logα(n)(3n)1−β ,

i.e., at most o(n). From the exact symmetric difference, one can compute the set
intersection size as (|a| + |b| − |a∆b|)/2 with high probability. This is a contradic-
tion.
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3.7. Algorithm for unknown parameters. IfM is not known in advance, we
won’t know in advance how many random variables to construct (or, equivalently, how
many bits are needed for each seed). Note that, because of the recursive construction
of H and p, this is not a problem. If at any point we encounter a tuple (i0, c, θ) with
c bigger than the maximum C encountered before, we simply do the following. For
each k, 4, we pick (log c− logC) new random bits, which we associate with the master
seed Sk,�. Use the new random bits to extend randomly (when needed) each of the n

seeds si,k,� to length �log c�+1. We also virtually form larger matrices Ĥ and pattern
p without actually instantiating them.

It is also possible to run the algorithm with a constant factor space penalty if n
is not known in advance. Initialize n to 2. Pick a field size appropriate for this n and
for the known (or so far encountered) value of M . Let F1 be this field and f1 be its
size. Start reading the stream, performing calculation in F1. At an arbitrary point in
the stream, suppose we are using a field Fc of size fc.

If we now read a tuple (i, ci, θ) where i is too big to handle in Fc, we compute the
smallest q such that a degree q extension of Fc is sufficient to handle i, and for each
k, 4, we prepare a new master seed in this extension which we denote by Fc+1. Note
that fc+1 = fqc . In other words, for each k, 4, we generate at random the coefficients
of a degree-3 polynomial in Fc+1. The new master seeds and field are to be used for
all types which could not be handled in Fc but can be handled in Fc+1.

By keeping track of all field sizes we use and all master seeds for each of these
field sizes, when we encounter a new type we can easily figure out the field size needed
to handle this type using the correct seeds. The union of all seeds is still 4-wise inde-
pendent. At the end, we will have a final value of n (the maximum type), and, along
the way, in the worst case, we will have constructed master seeds for families of size
ν, ν1/2, ν1/4, ν1/8, . . . , where ν1/2 < n ≤ ν. For each k, 4, storing these master seeds
and successive fields requires storage space log(ν), 1

2 log(ν),
1
4 log(ν) . . . , and, thus,

the storage for the master seeds is O(max(logM, log ν)) = O(max(logM, log n)). The
total space for all the master seeds and fields is O((max(logM, log n)) log(1/δ)/ε2).
The space required for storing the counters remains O(log(Mn) log(1/δ)/ε2), and so
the overall space is O(log(Mn) log(1/δ)/ε2). The average processing time per item
increases by o(1) · field(log(Mn)), but preparing the last new collection of master
seeds takes time log(ν) log(1/δ)/ε2, and this time represents an (acceptable) additive
increase in the maximum per-item time. Note that the amortized per-item time is
asymptotically the same as for the case when n is known in advance.

4. Related work.

4.1. Relationship with sketch algorithms. In [BCFM00], the authors con-
sider the problem of detecting near-duplicate web pages. For their purpose and ours,
a web page is a subset of a large universe, and two web pages A and B are near-

duplicates if r(A,B) = |A∩B|
|A∪B| is large. They present an algorithm that computes a

small fixed-size “sketch” of each web page such that, with high probability, r(A,B)
can be approximated to within additive error given the two sketches. A central tech-
nique is based on the observation that, under a random injection h of the universe
into the integers, the probability that the minimal element of h(A∪B) is in h(A∩B)
is exactly r(A,B). (In practice, the injections come from a small sample space; for
the purpose of our comparison, we can consider truly random injections.) Some of
the relevant techniques in [BCFM00] were used earlier in [C97, BGMZ97].

Our results on computing the L1-difference between two functions can be viewed
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Table 1
Relative-error approximability via sketches.

|A|, |B| |A ∩B| |A ∪B| |A∆B|
Here trivial iff large yes yes
[BCFM00] trivial iff large yes iff large

as a sketch algorithm. The sketch function h takes as input the graph of a single
function and performs the algorithm of section 3, getting a set {Zk,�} of random
variables. (Note that the same master seeds must be used for all sketches.) To recon-
struct the L1-difference from two sketches {Zk,�}, {Z ′k,�}, compute ρ({Zk,�}, {Z ′k,�}) =
mediankavg�(Zk,� − Z ′k,�)2.

Theorem 14. The L1-difference of two functions from {0, . . . , n − 1} to
{0, . . . ,M − 1} is in

PAS(log(Mn) log(1/δ)/ε2).

In particular, the L1-difference (or L2-difference) of two characteristic functions
χA and χB is the size of the symmetric difference |A∆B|; we’ve shown how to approx-
imate it to within small relative error with high probability. The size of the sketch is
O(log(Mn) log(1/δ)/ε2), the space bound of the streaming algorithm. Finally, note
that computation of these sketches can be performed in the streaming model, which
is sometimes an advantage both theoretically and in practice.

Corollary 15. The symmetric difference between two sets from a universe of
size n is in

PAS(log(n) log(1/δ)/ε2).

One can now ask which cells of the A-B Venn diagram can be approximated as
functions of (A,B) in the sketch model using our techniques and using the techniques
of [BCFM00]. First note that |A|, |B|, and |A|+ |B| are trivial in the sketch model.
Next, an additive approximation of r = r(A,B) yields an approximation of (1+r) and,
thus, of 1/(1 + r) with small relative error; thus, |A∪B| = (|A|+ |B|)/(1 + r) can be
approximated with small relative error using the techniques of [BCFM00] or with small
relative error as (|A|+ |B|+ |A∆B|)/2 using our techniques. In general, one cannot
approximate |A∩B| with small relative error, even using randomness [KN97], but, if
|A∩B| is sufficiently large compared with |A∪B|, the intersection can be approximated
as |A∩B| = (|A|+|B|)r/(1+r) by [BCFM00] and as |A∩B| = (|A|+|B|−|A∆B|)/2 by
our methods. Finally, the techniques of [BCFM00] only approximate 1− r additively,
and, if 1−r is smaller than the error ε of approximation (i.e., if |A∆B| < ε|A∪B|), then
the techniques of [BCFM00], which approximate |A∆B| as |A∆B| = (|A|+ |B|) 1−r

1+r ,

do not perform well,6 but our technique approximates |A∆B| with small relative error
regardless of the size of |A∆B|.

This information is summarized in Table 1. Other cells in the Venn diagram re-
duce to these results, e.g., by complementing A or B. (Note that A and A-complement
may have different sizes.)

6The results of [BCFM00] are the best possible in their original context, which is somewhat
different from our context.
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4.2. Approximating sizes of supports and the zeroth frequency mo-
ment. In this section, we briefly consider three variants.

Let

F 	=0 = |{i : ai �= bi}| ,
F 	=0

0 = |{i : (ai = 0 ∧ bi �= 0) ∨ (ai �= 0 ∧ bi = 0)}| ,
F 20%

0 = |{i : (ai > 1.2bi) ∨ (bi > 1.2ai)}| .

Note that these are all generalizations of F0 = |{i : ai �= 0}|, which was studied

in [AMS99]. We will show that F 	=0 and F 	=0
0 can be approximated, but F 20%

0 cannot
be approximated. We do this by using reductions under which

PASST(log(M) log(n) log(1/δ)/ε2)

is closed.
To approximate F 	=0 , put

Ai,x =

{
1 ai = x,
0 otherwise

and

Bi,x =

{
1 bi = x,
0 otherwise.

Then 1
2

∑
i,x |Ai,x−Bi,x| = F 	=0 , where the sum is over 0 ≤ i < n and 0 ≤ x < M .

We can approximate this L1-difference.
To approximate F 	=0

0 , put

Ai =

{
1 ai > 0,
0 otherwise

and

Bi =

{
1 bi > 0,
0 otherwise.

Then
∑

i |Ai −Bi| = F 	=0
0 . This is used in section 4.1.

Finally, consider F 20%
0 . We reduce the set-disjointness problem (restricted to

inputs with intersection size at most one) to that of approximating F 20%
0 .

Let (x, y) be an instance of set disjointness, and put

ai =

{
11 xi = 1,
13 otherwise

and

bi =

{
15 yi = 1,
13 otherwise.

Then ai and bi differ by at least 20% exactly in the 11-15 case, i.e., exactly when
xi = yi = 1.



AN APPROXIMATE L1-DIFFERENCE ALGORITHM 149

If we could output a number X such that |X − F 20%
0 | ≤ εF 20%

0 for ε < 1 with
probability 1− δ, then we would be able to distinguish the situation F 20%

0 = 0 from
F 20%

0 = 1 and in turn distinguish |xi ∩ yi| = 0 from |xi ∩ yi| = 1, a contradiction.
Note that we cannot even output a random variable X satisfying the following

apparently (but not actually) weaker condition:

F 21%
0 (1− ε) ≤ X ≤ F 20%

0 (1 + ε),

with F 21%
0 = |{i : (ai > 1.21bi) ∨ (bi > 1.21ai)}|, because, in fact,

{i : (ai > 1.21bi) ∨ (bi > 1.21ai)} = {i : (ai > 1.20bi) ∨ (bi > 1.20ai)},

so that F 21%
0 = F 20%

0 .
In summary, putting F τ

0 = |{i : (ai > (1 + τ)bi) ∨ (bi > (1 + τ)ai)}|, we obtain
the following.

Theorem 16. We have
1. F 	=0 ∈ PASST(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2);

2. F 	=0
0 ∈ PASST(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2);

3. for all τ ∈ (0, 1), all fixed ε < 1, δ < 1/4, and M > 1/τ + 2, and, for any
f = o(n), F τ

0 �∈ PASST(f(n)).
Also,

1. F 	=0 ∈ PAS(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2);

2. F 	=0
0 ∈ PAS(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2);

3. for all τ ∈ (0, 1), all fixed ε < 1, δ < 1/4, and M > 1/τ + 2, and, for any
f = o(n), F τ

0 �∈ PAS(f(n)).
4.3. Approximating the L2-difference and the second frequency mo-

ment. In [AMS99], the authors consider the following problem. The input is a se-
quence of elements from [n] = {0, . . . , n − 1}. An element i ∈ [n] may occur many
times. We let ai denote the number of times i occurs. As above, assume that, for all
i, |ai| ≤M .

The kth frequency moment Fk of the sequence is defined to be
∑
aki . Note that

the first frequency moment F1 =
∑
ai is just the length of the stream and is therefore

trivial to compute, but other frequency moments are nontrivial. Alon, Matias, and
Szegedy [AMS99] give a variety of upper and lower bounds for frequency moments.
In particular, for F2 =

∑
a2
i , they show the following.

Theorem 17 (see [AMS99]).

F2 ∈ PASST((log(Mn)) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

We sketch the algorithm, without proof, in order to illustrate the previous work
that is our point of departure. A full treatment of the correctness and work space of
the algorithm of Theorem 17 may be found in [AMS99].

Proof (sketch). For each k, 1 ≤ k ≤ Θ(log(1/δ)), and for each 4, 1 ≤ 4 ≤ Θ(1/ε2),
let {vk�[i]}i be a set of 4-wise independent ±1-valued random variables. Output

mediankavg�

(∑
aivk�[i]

)2

.

Consider now a generalization of the input allowing signed examples, which were
also considered by Alon et al. in [AGMS99]. That is, each item in the sequence
consists of a type i ∈ [n] and a sign ±, and there may be many items of type i of each
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sign. Denote by ai the number of positive occurrences of i and by bi the number of
negative occurrences of i, and let Lk denote

∑ |ai − bi|k.
The following corollary was obtained independently by Alon et al. [AGMS99].
Corollary 18. L2 ∈ PASST(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).
Proof (sketch). With k, 4, and vk�[i] as above, output

mediankavg�

(∑
(ai − bi)vk�[i]

)2

.

The algorithm of Corollary 18 can be used to approximate the L2-difference be-
tween the two functions a and b.

Note that for signed input examples, computing the frequency moment L1 is
nontrivial, modulo the special case of when ai ≥ bi for all i.

For any p, the problem of computing the pth frequency moment and that of com-
puting the corresponding Lp-difference of functions differs only in the representation
of the input stream. Given an Lp-instance stream 〈(i, ci, θi)〉, one can expand each
item (i, ci, θi) into ci occurrences of (θ, i) to get a frequency moment instance. There-
fore a frequency moment algorithm for signed examples can be used to compute the
Lp-difference of functions, but note that, in general, one pays a high cost in process-
ing time, even just to read the input—the input has been expanded exponentially.
The algorithm of Corollary 18 avoids this cost, because it is efficient in both input
representations. Thus, the L2-difference is in

PASST((log(Mn)) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

4.4. Earlier work on probabilistic counting. In [FM83], the authors give a
small-space randomized algorithm that approximates the number of distinct elements
in a stream. Their algorithm assumed the existence of certain ideal hash functions.
Later, [AMS99] improved this result by substituting a practically available family of
hash functions. [AMS99] also gives a variety of other results on approximating the
frequency moments. Many results of this kind, some old and some new, are described
in [GM99].

Acknowledgments. We thank S. Muthukrishnan for helpful discussions. We
also thank an anonymous referee for a very careful reading of the paper.
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Abstract. We consider sums of functions of subtrees of a random binary search tree and
obtain general laws of large numbers and central limit theorems. These sums correspond to random

recurrences of the quicksort type, Xn
L
= XIn + X′n−1−In + Yn, n ≥ 1, where In is uniformly

distributed on {0, 1, . . . , n − 1}, Yn is a given random variable, Xk
L
= X′k for all k, and, given In,

XIn and X′n−1−In are independent. Conditions are derived such that (Xn − µn)/σ
√
n
L→ N (0, 1),

the normal distribution, for some finite constants µ and σ.

Key words. binary search tree, data structures, probabilistic analysis, limit law, convergence,
toll functions, Stein’s method, random trees
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1. Introduction. In this note, we consider a random binary search tree with n
nodes obtained by inserting, in the standard manner, the values σ1, . . . , σn of a random
permutation of {1, . . . , n} into an initially empty tree. Equivalently, the search tree
is obtained by inserting n independently and identically distributed (i.i.d.) uniform
[0, 1] random variables X1, . . . , Xn. Most shape-related quantities of the tree have
been well studied, including the expected depth and the exact distribution of the
depth of Xn (Knuth (1973), Lynch (1965)), the limit theory for the depth (Mahmoud
and Pittel (1984), Devroye (1988)), the first two moments of the internal path length
(Sedgewick (1983)), the limit theory for the height of the tree (Pittel (1984), Devroye
(1986), (1987)), and various connections with the theory of random permutations
(Sedgewick (1983)) and the theory of records (Devroye (1988)). Surveys of known
results can be found in Vitter and Flajolet (1990), Mahmoud (1992), and Gonnet
(1984). Search trees are also useful in the analysis of quicksort. For recurrences of

the quicksort type, we have Xn
L
= XIn +X ′n−1−In + f(n), n ≥ 1, f(n) > 0 for some

n > 0, f(0) = 0, where In is uniformly distributed on {0, 1, . . . , n− 1}. Xn represents
the number of comparisons in quicksort, and f(n) = n− 1. Other choices for f(.) are
of importance elsewhere. It is not hard to see that Xn is identical to the sum over
all nodes u in a random binary search tree of f(N(u)), where N(u) is the size of the
subtree at u. The purpose of this note is to obtain central limit theorems for this class
of random variables, regardless of the choice of f within a large class of functions.

In general, one might study the following class of tree parameters for random
binary search trees: Let f be a mapping from the space of all permutations to the
real line, and set

Xn =
∑
u

f(S(u)),
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where S(u) is the random permutation associated with the subtree rooted at node
u in the random binary search tree. More precisely, model a random binary search
tree as follows. We let U1, . . . , Un be i.i.d. uniform [0, 1]-valued random variables, and
construct the unique binary search tree for (1, U1), . . . , (n,Un) with the property that

(i) it is a random binary search tree with respect to the first coordinates in the
pairs, and

(ii) it is a heap with respect to the second coordinates, which can be regarded
as time stamps, with increasing values as one travels from the root down any
path.

A permutation is clearly described by any subset of (1, U1), . . . , (n,Un). It is this
unique description we follow. For example, the root of the binary search tree contains
that pair (i, Ui) with the smallest Ui value, the left subtree contains all pairs (j, Uj)
with j < i, and the right subtree contains those pairs with j > i. Each node u can
thus (recursively) be associated with a subset S(u) of (1, U1), . . . , (n,Un). The pair
that sticks with u is that with the smallest second component in S(u).

With this embedding and representation, Xn is a sum over all nodes of a certain
function of the permutation associated with each node. This definition is very broad.
As each permutation uniquely determines subtree shape, a special case includes the
functions of subtree shapes.

Example 1 (the toll functions). In the first class of applications, we let N(u)
be the size of the subtree rooted at u (thus, if u is the overall root, N(u) = n) and set
f(S(u)) = g(|S(u)|). Define

Xn =
∑
u

g(N(u)) .

Examples of such tree parameters abound:
A. If g(n) ≡ 1 for n > 0, then Xn = n.
B. If g(n) = 1l[n=k] for fixed k > 0, then Xn counts the number of subtrees of

size k.
C. If g(n) = 1l[n=1], then Xn counts the number of leaves.
D. If g(n) = n − 1 for n > 1, then Xn counts the number of comparisons in

classical quicksort. Note, however, that g(n) grows too rapidly for us to be
able to apply the theorem below.

E. If g(n) = log2 n for n > 0, then Xn is the logarithm base two of the product
of all subtree sizes.

F. If g(n) = 1l[n=1] − 1l[n=2] for n > 0, then Xn counts the number of nodes in
the tree that have two children, one of which is a leaf.

Example 2 (tree patterns). Fix a tree T . We write S(u) ≈ T if the subtree at u
defined by the permutation S(u) is equal to T , where equality of trees refers to shape
only, not node labeling. Note that at least one, and possibly many permutations with
|S(u)| = |T |, may give rise to T . If we set

Xn =
∑
u

1l[S(u)≈T ],

then Xn counts the number of subtrees precisely equal to T . Note that these subtrees
are necessarily disjoint. We are tempted to call them suffix tree patterns, as they hug
the bottom of the binary search tree.

Example 3 (prefix tree patterns). Fix a tree T . We write S(u) ⊃ T if the subtree
at u defined by the permutation S(u) consists of T (rooted now at u) and possibly other
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nodes obtained by replacing all external nodes of T by new subtrees. Define

Xn =
∑
u

1l[S(u)⊃T ].

For example, if T is a single node, then Xn counts the number of nodes, n. If T
is a complete subtree of size 2k+1 − 1 and height k, then Xn counts the number
of occurrences of this complete subtree pattern (as if we try to count by sliding the
complete tree to all nodes in turn to find a match). Matching complete subtrees can
possibly overlap. If T consists of a single node and a right child, then Xn counts the
number of nodes in the tree with just one right child.

Example 4 (imbalance parameters). If we set f(S(u)) equal to 1 if and only if
the sizes of the left and right subtrees of u are equal, then Xn counts the number of
nodes at which we achieve a complete balance.

Example 5 (local counters). Following notation introduced by Devroye (1991),
we may just elect to study indicator functions f with f(S(u)) = 0 if |S(u))| > k for a
fixed given k. In fact, the setting in Devroye (1991) is more general, as permutations
are not necessarily restricted to those that correspond to nodes in the binary search
tree.

In this paper, we studyXn. First we derive its mean and variance. This is followed
by a weak law of large numbers for Xn/n. Several interesting examples illustrate this
universal law. A general central limit theorem with normal limit is obtained for Xn
using Stein’s method. Several specific laws are obtained for particular choices of f .
For example, for toll functions g as in Example 1, with g(n) growing at a rate inferior
to n1/3, a universal central limit theorem is established in Theorem 6.

2. Another representation of binary search trees. We replace the sum over
all nodes u in a random tree in the definition of Xn by a sum over a deterministic set
of index pairs, thereby greatly facilitating systematic analysis. We denote by σ(i, k)
to subset (i, Ui), . . . , (i + k − 1, Ui+k−1), so that |σ(i, k)| = k. We define σ∗(i, k) =
σ(i−1, k+1), with the convention that (0, U0) = (0, 0) and (n+1, Un+1) = (n+1, 0).
Define the event

Ai,k = [σ(i, k) defines a subtree] .

This event depends only on σ∗(i, k), as Ai,k happens if and only if among Ui−1, . . . ,
Ui+k, Ui−1 and Ui+k are the two smallest values. We set Yi,k = 1l[Ai,k] and note that
it is a function of Ui−1, . . . , Ui+k. Rewrite our tree parameter as follows:

Xn =
∑
u

f(S(u)) =

n∑
i=1

n−i+1∑
k=1

Yi,kf(σ(i, k)) .

For example, in the toll function example with toll function g, this yields

Xn =
∑
u

g(|S(u)|) =

n∑
i=1

n−i+1∑
k=1

Yi,kg(k) .

3. Mean and variance for toll functions. Let σ be a uniform random per-
mutation of size k. Then define

µk = E{f(σ)} ,
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τ2
k = E{f2(σ)} ,

and

Mk = sup
σ:|σ|=k

|f(σ)| .

Note that |µk| ≤ τk ≤ Mk. In the toll function example, we have µk = g(k) and
τk = Mk = |g(k)|. We opt to develop the theory below in terms of these parameters.
For some parts, such as the law of large numbers, the second moment approach may
be avoided, but this comes at the expense of considerably more intricate computations
and proofs.

Lemma 1. Assume |µk| <∞ for all k, µk = o(k), and

∞∑
k=1

|µk|
k2

<∞ .

Define

µ =
∞∑
k=1

2µk
(k + 2)(k + 1)

.

Then

lim
n→∞

E{Xn}
n

= µ .

If also |µk| = O(
√
k/ log k), then E{Xn} − µn = o(

√
n).

Proof. We have

E{Xn} =

n∑
i=1

n−i+1∑
k=1

E{Yi,k}µk

=

n∑
i=2

n−i∑
k=1

2

(k + 2)(k + 1)
µk +

n−1∑
k=1

1

k + 1
µk +

n∑
i=1

1

n− i+ 2
µn−i+1 + µn,

since

E{Yi,k} =




1 if i = 1 and i+ k = n+ 1;
1/(k + 1) if i = 1 or i+ k = n+ 1 but not both;
2/(k + 2)(k + 1) otherwise.

It is trivial to conclude the first part of Lemma 1. For the last part, we have

|E{Xn − µn}|

≤
∞∑
k=1

2

(k + 2)(k + 1)
|µk|+

n∑
i=2

∞∑
k=n−i+1

2

(k + 2)(k + 1)
|µk|+ 2

n∑
k=1

|µk|
k + 1

+ |µn|

≤ O(1) +

∞∑
k=1

2 min(k, n)|µk|
(k + 2)(k + 1)

+ 2
n∑
k=1

|µk|
k + 1

+ |µn|

≤ O(1) + 4

n∑
k=1

|µk|
k + 1

+ n

∞∑
k=n+1

|µk|
(k + 2)(k + 1)

+ |µn| .
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Lemma 2. Assume that Mn <∞ for all n and that f ≥ 0. Assume that for some
b ≥ c ≥ a > 0, we have µn = O(na), τn = O(nc), and Mn = O(nb). If a + b < 2,
c < 1, then V{Xn} = o(n2). If a + b < 1, c < 1/2, then V{Xn} = O(n). If f is a
toll function and Mn = O(nb), then V{Xn} = o(n2) if b < 1 and V{Xn} = O(n) if
b < 1/2.

Proof. Let Zα, α ∈ A, be a finite collection of random variables with finite second
moments. Let E denote the collection of all pairs (α, β) from A2 with α = β and Zα
not independent of Zβ . If S =

∑
α∈A Zα, then

V{S} =
∑
α∈A

V{Zα}+
∑

(α,β)∈E
(E{ZαZβ} − E{Zα}E{Zβ}) .

We apply this fact with A being the collection of all pairs (i, k), with 1 ≤ i ≤ n and
1 ≤ k ≤ n−i+1. Let our collection of random variables be the products Yi,kf(σ(i, k)),
(i, k) ∈ V . Note that E consists only of pairs ((i, k), (j, #)) from A2 with i+ k ≥ j− 1
and j + # ≥ i. This means that the intervals [i, i+ k− 1] and [j, j + #− 1] correspond
to an element of E if and only if they overlap or are disjoint and separated by exactly
zero or one integer m. But to bound V{Xn} from above, since f ≥ 0, we have

V{Xn} ≤
∑

(i,k)∈A
V{Yi,kf(σ(i, k))}+

∑
((i,k),(j,�))∈E

E{Yi,kf(σ(i, k))Yj,�f(σ(j, #))} = I+II.

By the independence of Yi,k and f(σ(i, k)), we have

V{Yi,kf(σ(i, k))} = V{Yi,k}E{f2(σ(i, k))}+ (E{Yi,k})2V{f(σ(i, k))}
= V{Yi,k}τ2

k + (E{Yi,k})2(τ2
k − µ2

k)

≤ E{Yi,k}τ2
k ,

and thus I = O(n) if τ2
n = O(n),

∑n
k=1 τ

2
k/k = O(n), and

∑
k τ

2
k/k

2 < ∞. These
conditions hold if c < 1/2. We have I = o(n2) if c < 1.

In II, we have Yi,kYj,� = 0 unless the intervals [i, i + k − 1] and [j, j + # − 1] are
disjoint and precisely one integer apart or nested. For disjoint intervals, we note the
independence of Yi,kYj,�, f(σ(i, k)), and f(σ(j, #)), so that

E{Yi,kf(σ(i, k))Yj,�f(σ(j, #))} = E{Yi,kYj,�}µkµ� .

If none of the intervals contains 1 or n, then a brief argument shows that

E{Yi,kYj,�} ≤ 4

(k + #+ 3)(k + 1)(#+ 1)
.

If one interval covers 1 and the other n, then k + # = n − 1, and E{Yi,kYj,�} =
1/n. In the other cases, the expected value is bounded by 2/(k + # + 2)(k + 1) or
2/(k + #+ 2)(#+ 1), depending upon which interval covers 1 or n. Thus, the sum in
II limited to disjoint intervals is bounded by

n
n∑
k=1

n∑
�=1

4µkµ�
(k + #+ 3)(k + 1)(#+ 1)

+ 1 +
n∑
k=1

n∑
�=1

4µkµ�
(k + #+ 2)(k + 1)

≤ 2n
n∑
k=1

k∑
�=1

4µkµ�
(k + 3)(k + 1)(#+ 1)

+ 1 + 2

n∑
k=1

k∑
�=1

4µkµ�
(k + 2)(k + 1)

.



LIMIT LAWS FOR SUMS OF FUNCTIONS OF SUBTREES 157

If µn = O(na) for a > 0, then it is easy to see that the three sums taken together are
O(n2a).

We next consider nested intervals. For properly nested intervals, with [i, i+k−1]
being the bigger one, we have

E{Yi,kf(σ(i, k))Yj,�f(σ(j, #))} = E{Yi,k}E{f(σ(i, k))Yj,�f(σ(j, #))}
≤ 2MkE{Yi,k}µ�

(#+ 2)(#+ 1)
.

Summed over all allowable pairs (i, k), (j, #) with the outer interval not covering 1 or
n, and noting that in all cases considered, a < 1, this yields a quantity not exceeding

n

n∑
k=1

k

k∑
�=1

4Mkµ�
(#+ 2)(#+ 1)(k + 2)(k + 1)

≤ n
n∑
k=1

MkO(ka−2)

=

{
O(nb+a) if b+ a = 1 ,
O(n log n) if b+ a = 1.

The contribution of the border effect is of the same order. This is o(n2) if a+ b < 2.
It is O(n) if a+ b ≤ 1.

Finally, we consider nested intervals with i = j and # < k. Then

E{Yi,kf(σ(i, k))Yj,�f(σ(j, #))} ≤ E{Yi,k}Mk µ�
#+ 1

.

Summed over all appropriate (i, k, #) such that the outer interval does not cover 1 or
n, we obtain a bound of

n

n∑
k=1

k∑
�=1

2Mkµ�
(k + 2)(k + 1)(#+ 1)

= O(na+b + 1l[a+b=1]n log n) .

The border cases do not alter this bound. Thus, the contribution to II for these nested
intervals is o(n2) if a+ b < 2 and is O(n) if a+ b < 1.

4. A law of large numbers. The estimates of the previous section permit us
to obtain a law of large numbers.

Theorem 1. Assume that Mn < ∞ for all n and that f ≥ 0. Assume that for
some b ≥ c ≥ a > 0, we have µn = O(na), τn = O(nc), and Mn = O(nb). If a+b < 2,
c < 1, then

Xn
n
→ µ

in probability. If f is a toll function and Mn = O(nb), then Xn/n→ µ in probability
when b < 1.

Proof. Note that a < 1. By Lemma 1, we have E{Xn}/n→ µ. Choose ε > 0. By
Chebyshev’s inequality and Lemma 2,

P{|Xn − E{Xn}| > εn} ≤ V{Xn}
ε2n2

= o(1) .

Thus, Xn/n− E{Xn}/n→ 0 in probability.
Four examples will illustrate this result.
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Example 6. We let f be the indicator function of anything, and note that the
law of large numbers holds. For example, let T be a possibly infinite collection of
possible tree patterns, and let Xn count the number of subtrees in a random binary
search tree that match a tree from T . Then, as shown below, the law of large numbers
holds. There is inherent limitation to T , which, in fact, might be the collection of all
trees whose size is a perfect square and whose height is a prime number at the same
time. Let Xn be the number of subtrees in a random binary search tree that match a
given prefix tree pattern T , with |T | = k fixed.

Theorem 2. For any nonempty tree pattern collection T , we have

Xn
n
→ µ

in probability, and E{Xn}/n→ µ, where

µ =

∞∑
n=1

2µn
(n+ 2)(n+ 1)

and µn is the probability that a random binary search tree of size n matches an element
of T .

Proof. Theorem 1 applies since f is an indicator function. By Lemma 1, we
obtain the limit µ for E{Xn}/n.

Note that Theorem 2 remains valid if we replace the phrase “matches an element
of T ” by the phrase “matches an element of T at its root,” so that T is a collection
of what we called earlier prefix tree patterns.

Example 7. Perhaps more instructive is the example of the sumheight Sn, the
sum of the heights of all subtrees in a random binary search tree on n nodes.

Theorem 3. For a random binary search tree, the sumheight satisfies

Sn
E{Sn} → 1

in probability. Here

E{Sn} ∼ n
∞∑
k=1

2hk
(k + 2)(k + 1)

,

where hk is the expected height of a random binary search tree on k nodes.
Proof. The statement about the expected height follows from Lemma 1 without

work. As the height of a subtree of size k is at most k− 1, we see that we may apply
Theorem 1 with Mk = k − 1. By well-known results (Robson (1979), Pittel (1984),
Devroye (1986), (1987)), we have E{H2

n} = O(log2 n), where Hn is the height of a
random binary search tree. Thus, we may formally take a and c arbitrarily small but
positive, and b = 1.

Example 8. Define L(u) to be the largest number of full levels below u, and let
C(u) = 2L(u)+1 − 1 be the size of that largest full subtree rooted at u. Define

Xn =
∑
u

C(u) .

This parameter measures to some extent the amount of balance in the tree.
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Theorem 4. For a random binary search tree,

Xn
n
→ µ

in probability, and E{Xn}/n→ µ, where

µ =
∞∑
n=1

2µn
(n+ 2)(n+ 1)

and µn is the expected size of the largest complete subtree rooted at the root of a
random binary search tree of size n.

Proof. We verify that Theorem 1 and Lemma 1 may be applied with a = 0.35,
b = 1, and c = 0.35. Indeed, if Hn is the number of full levels starting at a level
below the root in a random binary search tree on n nodes, we know from Devroye
(1986) that Ln/ log n → γ = 0.3711 · · · in probability and in the mean. This result
does not suffice, as we need to show that E{2Ln} = O(na) with a = 0.35. But using a
representation for tree sizes in terms of products of independent uniform [0, 1] random
variables U1, . . . , Un (Devroye (1986)) (the tree size for any node at distance k from
the root is distributed as �· · · ��nU1�U2� · · ·Uk�), we see that

P{Ln ≥ k} ≤ (P{nU1 · · ·Uk ≥ 1})2k

≤ exp
(−2kP{ne−Gk < 1})

≤ exp
(−2kP{Gk > log n})

≤ exp

(
−2k

∫ ∞
logn

yk−1/(k − 1)!e−ydy
)

≤ exp
(−2k(log n)k−1/(k − 1)!n

)
≤ exp

(
−2k(log n)k−1

√
k/(k/e)ke

√
2πn

)
(by Stirling’s approximation)

≤ exp
(
−(2e log n/k)k

√
k/e
√

2πn log n
)

= exp
(
−(2e1−1/c/c)c logn

√
c/e
√

2π log n
)

(after setting k = c log n)

≤ exp
(
−nlog

√
4/e/e

√
4π log n

)
(by the choice c = 1/2).

Clearly, then,

E{2Ln} ≤ nP{Ln ≥ (1/2) log n}+ 2(1/2) log n = o(1) + nlog
√

2 = o(n0.35) .

We also have E{22Ln} = o(n0.7) by the same argument. Thus, both the conditions of
Lemma 1 and Theorem 1 are satisfied and the law of large numbers follows.

Example 9. Consider Xn =
∑
u(N(u))0.999. Recall that

∑
uN(u) is the number

of comparisons in quicksort, plus n. Thus, Xn is a discounted parameter with respect
to the number of quicksort comparisons. Clearly, Theorem 1 applies with a = b = c =
0.999, and thus Xn/n→ µ in probability, and E{Xn}/n tends to the same constant µ.
In a sense, this application is near the limit of the range for Theorem 1. For example,
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it is known that with Xn =
∑
u(N(u))1+ε, there is no asymptotic concentration, and

thus, Xn/g(n) does not converge to a constant for any choice of g(n). Also, for
Xn =

∑
u(N(u))1, the quicksort example, we have Xn/2n log n → 1 in probability

(Sedgewick (1983)), so that once again Theorem 1 is not applicable. Therefore, in
a vague sense, the conditions of Theorem 1 are nearly best possible, as the theorem
applies to Xn =

∑
u(N(u))1−ε with ε ∈ (0, 1].

5. Dependency graph. We will require the notion of a dependency graph for
a collection of random variables (Zα)α∈V , where V is a set of vertices. Let the edge
set E be such that for all disjoint subsets A and B of V , either there is an edge
of E between A and B or there is no edge, and in the latter case, (Zα)α∈A and
(Zα)α∈B are mutually independent. Clearly, the complete graph is a dependency
graph for any set of random variables, but this is useless. One usually takes the
minimal graph (V,E) that has the above property, or one tries to keep |E| as small as
possible. Note that, necessarily, Zα and Zβ are independent if (α, β) ∈ E, but to have
a dependency graph requires much more than just checking pairwise independence.
We call the neighborhood of N(α) of vertex α ∈ V the collection of vertices β such
that (α, β) ∈ E or α = β. We define the neighborhood N(α1, . . . , αr) as ∪rj=1N(αj).

A. Now consider for V the pairs (i, k) with 1 ≤ i ≤ n and 1 ≤ k ≤ n − i + 1.
Let our collection of random variables be the permutations σ(i, k), (i, k) ∈ V .
Let us connect (i, k) to (j, #) when i + k ≥ j − 1 and j + # ≥ i. This means
that the intervals (i, i+ k − 1) and (j, j + #− 1) correspond to an edge in E
if and only if they overlap or are disjoint and separated by exactly zero or
one integer m. We claim that (V,E) is a dependency graph. Indeed, if we
consider disjoint subsets A and B of vertices with no edges between them,
then these vertices correspond to intervals that are pairwise separated by at
least two integers, and thus (σ(i, k))(i,k)∈A and (σ(j, #))(j,�)∈B are mutually
independent.

B. Consider next the collection of random variables Yi,kg(k). For this collection,
we can make a smaller dependency graph. Eliminate all edges from the
graph of the previous paragraph if the intervals defined by the endpoints
of the edges are properly nested. For example, if i < j < j + # − 1 <
i + k, then the edge between (i, k) and (j, #) is removed. The graph thus
obtained is still a dependency graph. This observation repeatedly uses the
fact that if one considers a sequence Z1, . . . , Zn of i.i.d. random variables with
a uniform [0, 1] distribution, then Z1, Zn and the permutation of Z2, . . . , Zn−1

are all independent. Thus, for properly nested intervals as above, Yi,kg(k) is
independent of Yj,�g(#).

C. A third dependency graph that will be useful is constructed as above when
V is restricted to those pairs (i, k) with 1 ≤ i ≤ n, 1 ≤ k ≤ n − i + 1, and,
additionally, k ≤ K. Typically, K = o(n), so this will restrict the degree of
each vertex in the dependency graph. For example, given any vertex (i, k) in
this graph, its neighborhood N((i, k)) has cardinality bounded by (2K+2)K,
because the starting point for a connected interval has at most 2K+2 choices
and the length at most K.

6. Stein’s method. Stein’s method (Stein (1972)) allows one to deduce a nor-
mal limit law for certain sums of random variables while computing only first and
second order moments and verifying a certain dependence condition. Many variants
have seen the light of day in recent years, and we will simply employ the following
version derived in Janson, KLuczak, and Ruciński (2000, Theorem 6.33).
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Lemma 3. Suppose that (Sn)∞1 is a sequence of random variables such that
Sn =

∑
α∈Vn Znα, where for each n, {Znα}α is a family of random variables with

dependency graph (Vn, En). Let N(.) denote the neighborhood of a vertex or vertices.
Further suppose that there exist numbers Mn and Qn such that

∑
α∈Vn

E{|Znα|} ≤Mn

and for every α, α′ ∈ Vn
∑

β∈N(α,α′)

E{|Znβ ||Znα, Znα′} ≤ Qn .

Let σ2
n = V{Sn}. Then

Sn − E{Sn}√
V{Sn}

L→ N (0, 1)

if

lim
n→∞

MnQ
2
n

σ3
n

= 0 .

Proof. We apply Lemma 3 with the basic collection of random variables
Yi,kf(σ(i, k)), (i, k) ∈ Vn, where Vn is the collection {(i, k) : 1 ≤ i ≤ n, 1 ≤ k ≤
min(K,n − i + 1)}. Let En be the edges in the dependency graph Ln defined by
connecting (i, k) to (j, #) if the respective intervals are overlapping or if the respective
intervals are disjoint with zero or one integer separating them. We note that

∑
(i,k)∈Vn

E{Yi,kg(k)} ≤ (ν + o(1))n

by computations not unlike those for the mean done earlier, where

ν =
∞∑
n=1

2g(n)

(n+ 2)(n+ 1)
.

To apply Lemma 3, we note that we may thus take Mn = O(n). We also note that
σ2
n = Ω(n) by assumption. Define

Qn = sup
(i,k),(j,�)∈Vn

∑
(p,r)∈N((i,k),(j,�))

E{Yp,rg(r)|Yi,kf(σ(i, k)), Yj,�f(σ(j, #))} .

Indeed, as g bounds |f |, this is all we need to bound. The technical condition in
Lemma 3 is satisfied if Qn = o(n1/4). To compute an upper bound for Qn, we bound
as follows:

Qn ≤ sup
(i,k),(j,�)∈Vn

|N((i, k), (j, #))|g(K).

Each of the intervals represented by (i, k) and (j, #) has length at most K. Clearly,
(p, r) ∈ N((i, k), (j, #)) means that both p and p+ r − 1 must be in these intervals or
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within the K+1 neighbors of them. Each of p and r has thus at most 3K+2 choices,
so that |N((i, k), (j, #))| ≤ (3K + 2)2. Thus,

Qn ≤ (3K + 2)2g(K)

from which Lemma 3 follows without further work.
A simple example counts the number of subtrees in a random binary search tree

that match one of a given collection of tree patterns (these are “terminal matches”
at the bottom of the tree), where each pattern is of size ≤ K, where K may depend
upon n. As f is an indicator function, we may take g ≡ 1. Let Xn denote the number
of matches.

Lemma 4. Let Xn be the number of matches of a tree pattern in a collection of
tree patterns depending arbitrarily on n, as long as, within the collection, the maximal
tree size is K = K(n). If

lim
n→∞

E{Xn}K2

(V{Xn})3/2
= 0 ,

then

Xn − E{Xn}√
V{Xn}

L→ N (0, 1) .

Proof. Follow the proof of Lemma 3, but do not use the estimate σ2
n =

Ω(n).
Note that the above result remains true even if the collection of patterns itself

is a function of n, changing in cardinality and in membership with n, within the
condition imposed on K. This result extends the central limit laws of Devroye (1991),
where K had to remain fixed. Indeed, the technical condition of Lemma 4 becomes
V{Xn}/E2/3{Xn} → ∞. Note in this respect that for K fixed, and the collection of
tree patterns nonempty for all n, we have V{Xn} = Θ(n) and E{Xn} = Θ(n), facts
that are easy to verify.

7. Sums of indicator functions. In this section, we take a simple example in
which

Xn =
∑
u

1l[S(u)∈An] ,

where An is a nonempty collection of permutations of length k, with k possibly de-
pending upon n. We denote pn,k = |An|/k!, the probability that a randomly picked
permutation of length k is in the collection An. Particular examples include sets An
that correspond to a particular tree pattern, in which case Xn counts the number
of occurrences of a given tree pattern of size k (a “terminal pattern”) in a random
binary search tree. The interest here is in the case of varying k. As we will see below,
for a central limit law, k has to be severely restricted.

Our main result is the following theorem.
Theorem 5. We have

E{Xn} =
2npn,k

(k + 2)(k + 1)
+O(1)



LIMIT LAWS FOR SUMS OF FUNCTIONS OF SUBTREES 163

regardless of how k varies with n. If k = o(log n/ log log n), then E{Xn} → ∞,
Xn/E{Xn} → 1 in probability, and

Xn − E{Xn}√
V{Xn}

L→ N (0, 1) .

Proof. Observe that

Xn =

n−k+1∑
i=1

Yi,kZi ,

where Zi = 1l[σ(i,k)∈An]. Thus,

E{Xn} =

n−k∑
i=2

2

(k + 2)(k + 1)
E{Z1}+ 2× 1

k + 1
E{Z1} =

2(n− k − 1)pn,k
(k + 2)(k + 1)

+
2pn,k
k + 1

.

This proves the first part of the theorem.
The computation of the variance is slightly more involved. However, it is simpli-

fied by considering the variance of

Yn =

n−k∑
i=2

Yi,kZi

and noting that |Xn − Yn| ≤ 2. This eliminates the border effect. We note that
Yi,kYj,k = 0 if i < j ≤ i+ k. Thus,

E{Y 2
n } =

n−k∑
i=2

E{Yi,kZi}+ 2
∑

2≤i<j≤n−k
E{Yi,kZiYj,kZj}

= E{Yn}+ 2
∑

2≤i,i+k+1≤n−k
E{Yi,kZiYi+k+1,kZi+k+1}

+ 2
∑

2≤i,i+k+1<j≤n−k
E{Yi,kZi}E{Yj,kZj}

= (n− k − 1)β + 2(n− 2k − 2)α+ (n− 2k)2β2 + (10k + 6− 5n)β2,

where α = E{Y2,kZ2Y3+k,kZ3+k} and β = E{Y2,kZ2}. Also,

(E{Yn})2 = ((n− k − 1)β)
2
.

Thus,

V{Yn} = 2(n− 2k − 2)α+ (n− k − 1)β

+
(
(n− 2k)2 − (n− k − 1)2 + (10k + 6− 5n)

)
β2

= n
(
2α+ β − (2k + 3)β2

)
+O(kα+ kβ + k2β2) .

We note that β = 2pn,k/(k + 2)(k + 1). To compute α, let A,B,C be the minimal
values among U1, . . . , Uk+1, Uk+2, and Uk+3, . . . , U2k+3, respectively. Clearly,

α = p2n,kE{Y2,kY3+k,k}.
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Considering all six permutations of A,B,C separately, one may compute the latter
expected value as

2

2k + 3

1

2k + 2

1

k + 1
+

1

2k + 3

1

k + 1

1

k + 1
+

2

2k + 3

1

2k + 2

1

2k + 1

=
5k + 3

(2k + 3)(2k + 1)(k + 1)2
.

Thus,

α =
(5k + 3)p2n,k

(2k + 3)(2k + 1)(k + 1)2
.

We have

V{Yn}
= n

(
p2n,k

10k + 6

(2k + 3)(2k + 1)(k + 1)2
− p2n,k

8k + 12

(k + 2)2(k + 1)2
+ pn,k

2

(k + 2)(k + 1)

)

+ O(pn,k/k).

Note that regardless of the value of pn,k, the coefficient of n is strictly positive. Indeed,
the coefficient is at least

p2n,k

(
(10k + 6)(k + 2)2 − (8k − 8)(2k + 3)(2k + 1) + 2(2k + 3)(2k + 1)(k + 2)(k + 1)

(k + 2)2(k + 1)2(2k + 3)(2k + 1)

)

= p2n,k

(
8k4 + 18k3 + 4k2 − 6k

(k + 2)2(k + 1)2(2k + 3)(2k + 1)

)
.

Thus, there exist universal constants c1, c2, c3 > 0 such that

V{Yn} ≥ c1np2n,k/k2 − c2pn,k/k
and

V{Yn} ≤ c3npn,k/k2 .

We have Yn/E{Yn} → 1 in probability if V{Yn} = o(E2{Yn}), i.e., if k = o(
√
npn,k).

Using pn,k ≥ 1/k!, we note that this condition holds if k = o(log n/ log log n).
Finally, we turn to the normal limit law and note that

Yn − E{Yn}√
V{Yn}

L→ N (0, 1)

if (see Lemma 4)

lim
n→∞

k2
E{Yn}

(V{Yn})3/2 = 0 .

This holds if

lim
n→∞

npn,k
n3/2p3n,k/k

3
= 0

and npn,k/k →∞. Both conditions are satisfied if k = o(log n/ log log n).
The limitation on k in Theorem 5 cannot be lifted without further conditions:

indeed, if we consider as a tree pattern the tree that consists of a right branch of
length k only, then E{Xn} → 0 if k > (1 + ε) log n/ log log n for any given fixed ε > 0.
As Xn is integer-valued, no meaningul limit laws can exist in such cases.
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8. Notes on the variance. For toll functions, that is, functions f such that
f(σ) = g(|σ|) for some function g, we need the following lemma.

Lemma 5. Define Xn =
∑
u g(|S(u)|) and Xn,K =

∑
u g(|S(u)|)1l[|S(u)|≤K] for a

random binary search tree. The following statements are equivalent:
A. V{Xn,K} = Ω(n) for any K with K →∞ as n→∞.
B. V{Xn} = Ω(n).
C. V{Xk} > 0 for some k > 0.
D. The function g is not constant on {1, 2, . . .}.
Proof. D implies C. Indeed, let k be the first integer at least equal to 2 such that

g(k) = g(k − 1) = · · · = g(1) .

For the integers up to k, we have the representation g(x) = c+d1l[x=k] with d = 0. We
have Xi = ic, i < k, Xk = kc+ d, and Xk+1 = f(k + 1) + kc+ dNk, where Nk is the
number of nodes for which |S(u)| = k. Note that Nk = 1 with probability 2/(k + 1)
and 0 otherwise. Thus,

V{Xk+1} = d2 × 2(k − 1)

(k + 1)2
> 0 .

C implies A. For two random variables W,Y , we have V{W} = E{V{W |Y }} +
V{E{W |Y }}. Thus,

V{Xn,K} ≥ E{V{Xn,K |Fk}},
where Fk is defined as follows. Identify in the permutation that defines the tree all
nodes u for which |S(u)| = k. By construction, each S(u) corresponds to an interval
of the original random permutation (of length n). Let Fk be all elements of the
original random permutation except those corresponding to the intervals representing
S(u) with |S(u)| = k. By the conditional independence of the various S(u)’s of size
k (none can overlap), and defining Nk =

∑
u 1l[|S(u)|=k], we have for n so large that

K ≥ k,

V{Xn,K} ≥ E




∑
u:|S(u)|=k

V{Xk,K |Fk}



= E {NkV{Xk,K}}
= E{Nk}V{Xk,K}
= E{Nk}V{Xk}
∼ 2nV{Xk}

(k + 2)(k + 1)
.

Thus, the lower bound follows if V{Xk} > 0 for some k.
A implies B. Just take K = n.
B implies D. If g is constant on the positive integers, then V{Xk} = 0 for

all k.
For general functions f on the set of all permutations, it is always possible to

have Xn = 0 (and thus V{Xn} = 0) along a subsequence for n. Assume that all
values for f(σ) are given, with |σ| < n. Let σ be of size n. Define f(σ) such that
Xn =

∑
u f(S(u)) = 0. One can even construct examples in which f is integer-valued

and f(σ) = |σ| = n while, for smaller permutations σ′, the values f(σ′) are quite
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arbitrary as long as they are taken from {0, 1, 2, . . . , |σ′|}. In the latter case, we have
Xn ≡ n for that particular n. So, faced with these pesky examples, we will develop
the sequel with the condition V{Xn} = Ω(n) thrown in. The reader should be warned
that this condition needs rigorous verification in each application that does not deal
with a toll function.

9. Sums of functions of sizes of subtrees. In this section, we consider two
types of random variables,

Xn =
∑
u

g(|S(u)|)

and

Xn,K =
∑

u:|S(u)|≤K
g(|S(u)|) ,

whereK = K(n) ≤ n is a sequence of positive numbers. DefineG(n) = max1≤i≤n |g(i)|.
Lemma 6. Assume that g is not constant on {1, 2, . . .}. If K → ∞, and

G(K) log2K = o(n1/4), then

Xn,K − E{Xn,K}√
V{Xn,K}

L→ N (0, 1) .

Proof of Lemma 6. We apply Lemma 3 with the basic collection of random
variables Yi,kg(k), (i, k) ∈ Vn, where Vn is the collection {(i, k) : 1 ≤ i ≤ n, 1 ≤
k ≤ min(K,n − i + 1)}. Let En be the edges in the dependency graph Ln defined
by connecting (i, k) to (j, #) if the respective intervals are overlapping without being
properly nested, or if the respective intervals are disjoint with zero or one integers
separating them. (Note that the dependency graph is thus considerably smaller than
in the proof of Theorem 5.) We note that

∑
(i,k)∈Vn

E{Yi,k|g(k)|} ≤ (ν + o(1))n

by computations not unlike those for the mean done earlier, where

ν =

∞∑
n=1

2|g(n)|
(n+ 2)(n+ 1)

.

To apply Lemma 3, we note that we may thus take Mn = O(n). We also note that
σ2
n = Ω(n), by Lemma 5, since K → ∞ and g is not constant on {1, 2, . . .}. It thus

suffices to show that Qn = o(n1/4). Note that conditioning on Yi,kg(k) is equivalent
to conditioning on Yi,k. Thus, we may bound Qn by

Qn ≤ G(K) sup
(i,k),(j,�)∈Vn

∑
(p,r)∈N((i,k),(j,�))

E{Yp,r|Yi,k, Yj,�} .

We show that sum above is uniformly bounded over all choices of (i, k), (j, #) by
O(log2K).

Consider the set S = {0, 1, . . . , n, n+ 1} and mark 0, n+ 1, i− 1, i+ k, j − 1, j +
# (where duplications may occur). The last four marked points are neighbors of
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the intervals represented by (i, k) and (j, #). Also mark all integers in S that are
neighbors of these marked numbers. The total number of marked places does not
exceed 3 × 4 + 2 × 2 = 16. The set S, when traversed from small to large, can be
described by consecutive intervals of marked and unmarked integers. The number of
unmarked integer intervals is at most five. We call these intervals H1, . . . , H5, from
left to right, with some of these possibly empty. Set H = ∪iHi. Define Hc = S −H.
Consider Yp,r for r ≤ K fixed. Let s = p + r − 1 be the endpoint of the interval on
which Yp,r sits. Note that Yp,r depends upon {Ui}p−1≤i≤s+1. We note four situations:

A. If p, s ∈ Hi for a given i, then Yp,r clearly is independent of Yi,k, Yj,�. In fact,
then, (p, r) ∈ N((i, k), (j, #)).

B. If p, s ∈ Hc, then we bound E{Yp,r|Yi,k, Yj,�} by one.
C. If p or s is in Hc and the other endpoint is in Hi, then we bound as follows:

E{Yp,r|Yi,k, Yj,�} ≤ 1

1 + |Hi ∩ {p, . . . , s}|
because we can only be sure about the i.i.d. nature of the Ui’s inHi∩{p, . . . , s}
together with the two immediate neighbors of this set.

D. If p ∈ Hi, s ∈ Hj , i < j, then we argue as in case C twice, and obtain the
following bound:

E{Yp,r|Yi,k, Yj,�} ≤ 1

1 + |Hi ∩ {p, . . . , s}| ×
1

1 + |Hj ∩ {p, . . . , s}| .

The above considerations permit us to obtain a bound for Qn by summing over all
(p, r) ∈ N((i, k), (j, #)). The sum for all cases A is zero. The sum for case B is at
most 162 = 256. The sum over all (p, r) as in C is at most

2× 16× 5×
K∑
r=1

1

r + 1
≤ 160 log(K + 1) .

Finally, the sum over all (p, r) described by D is at most

(
5

2

)( K∑
r=1

1

r + 1

)2

≤ 10 log2(K + 1) .

The grand total is O(log2K), as required. This concludes the proof of Lemma
6.

Corollary 1. As K ≤ n, we deduce that for G(n) = o(n1/4/ log2 n),

Xn − E{Xn}√
V{Xn}

L→ N (0, 1) .

This result will be slightly improved in Theorem 6 below.
Corollary 2. A sufficient condition for Lemma 6 is K = O(na) for some

0 ≤ a ≤ 1, and G(n) = o(n1/4a/ log2 n). Other sufficient conditions include either
K = O(1) or K = O(log n), G(n) = O(exp(εn)) for all ε > 0.

Theorem 6. Assume that g is not constant on {1, 2, . . .}. If G(n) = o(n1/3/ log2 n),
then

Xn − E{Xn}√
V{Xn}

L→ N (0, 1) .
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Proof. Theorem 6 follows directly from Lemma 6 if we can prove the following
facts with K = �n3/4�:

A. For all ε > 0, limn→∞ P{Xn − Xn,K ≥ ε
√
n} = 0. A sufficient condition is

E{Xn −Xn,K} = o(
√
n).

B. lim infn→∞V{Xn}/n > 0.
C. V{Xn,K} ∼ V{Xn}.

For part A, note the following:

|E{Xn −Xn,K}| =
∣∣∣∣∣∣

∑
(i,k):1≤i≤n,K<k≤n−i+1

E{Yi,k}g(k)

∣∣∣∣∣∣
≤ G(n) + 2

∑
K<k≤n−1

E{Y1,k}G(k) +
∑

(i,k):2≤i≤n,K<k≤n−i
E{Yi,k}G(k)

≤ G(n) + 2
∑

K<k≤n−1

G(k)

k + 1
+

∑
(i,k):2≤i≤n,K<k≤n−i

2G(k)

(k + 2)(k + 1)

≤ o(n1/3) +

n∑
k=K+1

n−k∑
i=2

2G(k)

(k + 2)(k + 1)

≤ o(n1/3) + n

n∑
k=K+1

2G(k)

(k + 2)(k + 1)

= o(n1/2)

by our choice of K.
Part B is immediate from Lemma 5.
For part C, set

Xn = Xn,K +Wn,K

and note that

V{Xn} = V{Xn,K}+ V{Wn,K}+ 2E{(Xn,K − E{Xn,K})(Wn,K − E{Wn,K})} .
We have from Lemmas 5 and 2, V{Xn,K} = Θ(n). We will show that V{Wn,K} =
o(n). By the Cauchy–Schwarz inequality,

E{(Xn,K − E{Xn,K})(Wn,K − E{Wn,K})} = o

(√
n
√

V{Xn,K}
)

so that

V{Xn}
V{Xn,K} = 1 + o(1) + o

( √
n√

V{Xn,K}

)
= 1 + o(1) .

We now show V{Wn,K} = o(n). Let Vn = {(i, k) : 1 ≤ i ≤ n, 1 ≤ k ≤ min(K,n −
i + 1)} be the vertex set and let En be the edge set for the dependency graph for
the random variables Yi,kg(k). That is, two pairs are connected by an edge if their
intervals are not properly nested and are either overlapping or disjoint with at most
one integer between them. Then

V{Wn,K} =
∑

(i,k)∈Vn
V{Yi,kg(k)}+

∑
((i,k),(j,�))∈En

g(k)g(#) (E{Yi,kYj,�} − E{Yi,k}E{Yj,�}) .
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The first sum on the right-hand side is bounded by

∑
(i,k)∈Vn

g2(k)E{Yi,k} = o(n2/3)+n

∞∑
k=K

g2(k)/k2 = o(n2/3)+n×o(K−1/3) = o(n3/4) .

Consider a fixed edge ((i, k), (j, #)) ∈ En. Note that if the intervals for (i, k) and (j, #)
properly overlap without being nested, then Yi,kYj,� = 0. The same is true if they
are directly adjacent. So, if ((i, k), (j, #)) ∈ En, the product Yi,kYj,� is nonzero only
if they are nested and have one coinciding endpoint or if the intervals are separated
by precisely one integer. Thus, for the latter intervals with, say, 1 < i ≤ i+ k − 1 =
j − 2 < j ≤ j + #− 1 < n,

E{Yi,kYj,�} ≤ 2

(#+ 2)(#+ 1)
× 1

k + 1
.

For the intervals aligned at i with, say, 1 < i = j ≤ i+ k− 1 < j+ #− 1 < n, we have

E{Yi,kYj,�} ≤ 2

(#+ 2)(#+ 1)
× 1

k + 1
.

The last two bounds are also valid with # and k interchanged. Thus,∑
((i,k),(j,�))∈En

g(k)g(#)E{Yi,kYj,�}

≤ 4G(n)
∑

(j,�)∈Vn
G(#)E{Yj,�}+

∑
((i,k),(j,�))∈En

2G(k)G(#)

#2k

≤ o(n1/3)
∑

(j,�)∈Vn
G(#)E{Yj,�}+

∑
((i,k),(i,�))∈En

2G(k)G(#)

#2k

+
∑

((i,k),(i+k+1,�))∈En

2G(k)G(#)

#2k
+

∑
((j+�+1,k),(j,�))∈En

2G(k)G(#)

#2k

= I + II + III + IV.

First of all,

I ≤ o(n1/3)n

n∑
�=K

2G(#)

(#+ 2)(#+ 1)
+ o(n1/3)

n∑
�=K

G(#)

#+ 1

≤ o(n4/3G(n))

K + 1
+ o(n2/3)

= o(n11/12).

Now,
∑
k≤�G(k)/k = o(#1/3). Thus, using a symmetry argument,

II = 2
∑

((i,k),(i,�))∈En,k<�

2G(k)G(#)

#2k
≤ O(n)

n∑
�=K

o(#1/3)G(#)

#2

= O(n)× o(K−1/3) = o(n3/4).

Also,

III ≤ O(n)

n∑
k=K

G(k)/k ×
n∑
�=K

G(#)/#2 = O(n)o(n1/3)o(K−2/3) = o(n5/6).
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Similarly, IV = o(n5/6). We conclude that V{Wn,K} = o(n11/12), which is more than
was needed. This concludes the proof of Theorem 6.

Remark. Using the contraction method and the method of moments, Hwang and
Neininger (2001) showed that the central limit result of Theorem 6 holds with G(n) =
O(na), a ≤ 1/2. Our result is weaker, but requires fewer analytic computations.

10. Bibliographic remarks. Central limit theorems for slightly dependent ran-
dom variables have been obtained by Brown (1971), Dvoretzky (1972), McLeish
(1974), Ibragimov (1975), Chen (1978), Hall and Heyde (1980), and Bradley (1981),
to name just a few. Stein’s method (our Lemma 3, essentially) is one of the central
limit theorems that is better equipped to deal with cases of considerable dependence.

Stein’s method offers short and intuitive proofs, but other methods may offer
attractive alternatives. Hwang and Neininger (2001) are tackling the analysis of ran-
dom variables of our type by the moment and contraction methods. The ranges of
application of the results are not nested; in some situations, Stein’s method is more
useful, while in others the moment and contraction methods are preferable.

The limit law for Ln, the number of leaves in a random binary search tree, was
obtained by Devroye (1991) (see also Mahmoud (1986)):

Ln − E{Ln}√
V{Ln}

L→ N (0, 1) .

Equivalently, (Ln − n/3)/
√
n
L→ N (0, 2/45). That paper deals with general sums∑

i f(σ(i, k)) for k fixed and finite, without regarding the fact that permutations
correspond to subtrees of the random binary search tree. As Ln corresponds in our
setting to the toll function 1l[|σ|=1], the above limit law follows easily from Lemma 4,
Theorem 5, or Theorem 6. If Wn is the number of nodes with just a right subtree
(which occurs at the ith node if and only if Ui < Ui+1), then it is easy to see that
f(σ(i, k)) = 1l[Ui<Ui+1] for all values of k, and this is clearly not covered by Lemma
4. A relatively easy extension would handle it, but we will not be concerned with

that here. The result (Wn − n/2)/
√
n
L→ N (0, 1/12) (Devroye (1991)) is thus not an

immediate corollary of the present results.
Aldous (1991) showed that the number Vk,n of subtrees of size precisely k in a

random binary search tree is in probability asymptotic to 2/(k + 2)(k + 1). Devroye
showed that (Vk,n − 2n/(k + 2)(k + 1))/

√
n tends in law to a normal (0, ck) random

variable where ck is explicitly defined. The latter result also follows from the present
paper if we take as toll function f(σ) = 1l[|σ|=k].

Recently, there has been some interest in the logarithmic toll function f(σ) =

log |σ| (Grabner and Prodinger (2001)) and the harmonic toll function f(σ) =
∑|σ|
i=1 1/i

(Panholzer and Prodinger (2001)). The authors in these papers are mainly concerned
with precise first and second moment asymptotics. Fill (1996) obtained the central
limit theorem for the case f(σ) = log |σ|. Clearly, these examples fall entirely within
the conditions of Lemma 4 or Theorem 6, with some room to spare.

Flajolet, Gourdon, and Martinez (1997) obtained a normal limit law for the num-
ber of subtrees in a random binary search tree with fixed finite tree pattern. Clearly,
this is a case in which (the indicator function) f(σ) depends on σ in an intricate way,
but f = 0 unless |σ| equals the size of the tree pattern. The situation is covered by
the law of large numbers of Theorem 2 and the central limit result of Theorem 5.
Theorem 5 even allows tree patterns that change with n.
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APPROXIMATING THE DOMATIC NUMBER∗
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Abstract. A set of vertices in a graph is a dominating set if every vertex outside the set has
a neighbor in the set. The domatic number problem is that of partitioning the vertices of a graph
into the maximum number of disjoint dominating sets. Let n denote the number of vertices, δ the
minimum degree, and ∆ the maximum degree.

We show that every graph has a domatic partition with (1 − o(1))(δ + 1)/ lnn dominating sets
and, moreover, that such a domatic partition can be found in polynomial-time. This implies a (1 +
o(1)) lnn-approximation algorithm for domatic number, since the domatic number is always at most
δ+1. We also show this to be essentially best possible. Namely, extending the approximation hardness
of set cover by combining multiprover protocols with zero-knowledge techniques, we show that for
every ε > 0, a (1 − ε) lnn-approximation implies that NP ⊆ DTIME(nO(log logn)). This makes
domatic number the first natural maximization problem (known to the authors) that is provably
approximable to within polylogarithmic factors but no better.

We also show that every graph has a domatic partition with (1 − o(1))(δ + 1)/ ln∆ dominating
sets, where the “o(1)” term goes to zero as ∆ increases. This can be turned into an efficient algorithm
that produces a domatic partition of Ω(δ/ ln∆) sets.

Key words. domatic number, domination, approximation algorithms, probabilistic analysis
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1. Introduction. A dominating set in a graph is a set of vertices such that
every vertex in the graph either is in the set or has a neighbor in the set. A domatic
partition is a partition of the vertices so that each part is a dominating set of the
graph. The domatic number of a graph is the maximum number of dominating sets
in a domatic partition of the graph or, equivalently, the maximum number of disjoint
dominating sets.

The domatic partition problem is one of the classical NP-hard problems. It is
also one of the few graph problems in Garey and Johnson [14] whose approximability
status on general graphs has until now been a blank page, with no published upper
or lower bounds found in a literature search. The purpose of this paper is to mend
that situation and derive the optimal approximability within a lower order term.

The domatic partition problem arises in various situations of locating facilities
in a network. Assume that a node in a network can access only resources located at

∗Received by the editors November 13, 2000; accepted for publication (in revised form) March
13, 2002; published electronically December 11, 2002. This work appears in preliminary form in
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000, pp. 134–143 and
Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 922–923.

http://www.siam.org/journals/sicomp/32-1/38075.html
†Department of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot,

Israel (feige@wisdom.weizmann.ac.il). This author’s research was supported in part by a Minerva
grant.
‡Department of Computer Science, University of Iceland, IS-107 Reykjav́ık, Iceland (mmh@hi.is).

Part of this author’s work was done while visiting the School of Informatics, Kyoto University, Japan.
§Department of Computer Science, Rutgers University, Camden, NJ (guyk@crab.rutgers.edu).
¶Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (srin@cs.umd.edu). Part of this author’s work was done while
at Bell Laboratories, Lucent Technologies, 600–700 Mountain Avenue, Murray Hill, NJ 07974-0636.
This author’s research was supported in part by NSF award CCR-0208005.

172



APPROXIMATING THE DOMATIC NUMBER 173

neighboring nodes (or at itself). Then if there is an essential type of resource that
must be accessible from every node (a hospital, a printer, a file, etc.), copies of the
resource need to be distributed over a dominating set of the network. If there are
several essential types of resources, each one of them occupies a dominating set. If
each node has bounded capacity, there is a limit to the number of resources that can be
supported. In particular, if each node can only serve a single resource, the maximum
number of resources supportable equals the domatic number of the graph [13]. We can
show how the general case of larger, possibly nonuniform, capacities can be reduced
to the unit case.

We review some elementary facts about dominating sets and domatic partitions
in light of the novelty of the problem to many readers. Dominating sets satisfy a
monotonicity property with regards to vertex additions: if D is a dominating set and
D′ ⊃ D, then D′ is also a dominating set. This implies that if a graph contains
k disjoint dominating sets, then its domatic number is at most k; those nodes not
belonging to any of the k sets can be arbitrarily added to the sets to form a proper
partition of the vertex-set. The domatic number can then be alternatively defined as
the maximum number of disjoint dominating sets. Every graph G satisfies D(G) ≥ 1,
and unless G contains an isolated node, D(G) ≥ 2. On the other hand, D(G) ≤ δ+1,
where δ is the minimum degree; the reason being that a node of minimum degree
must have some neighbor (or itself) in each of the disjoint dominating sets.

Fujita [12] has studied several greedy algorithms and shown that their perfor-
mance ratio is no better than (δ + 1)/2 for values of δ up to O(

√
n). The only other

lower bound on D(G) given in a recent encyclopedic treatment of domination prob-
lems [17, 16] is D(G) ≥ �n/(n− δ(G))� [37], where n is the number of vertices. This
lower bound is relevant only in very dense graphs, since it degenerates to D(G) ≥ 2
when δ(G) ≤ n/2.

A number of results are known for special classes of graphs. A graph G is said
to be domatically full if D(G) = δ(G) + 1, the maximum possible. Determining if a
d-regular graph is domatically full is NP-complete, for any d ≥ 3 [32, 21]. Farber [8]
showed nonconstructively that strongly chordal graphs are domatically full. This class
contains the classes of interval graphs and path graphs. Rao and Rangan [35] then
gave a linear-time algorithm for interval graphs, and Peng and Chang [30] for strongly
chordal graphs. Farber’s theorem turned out to be a special case of a result of Berge [5]
for balanced hypergraphs, and Kaplan and Shamir [19] presented a simple algorithm.
They also showed split graphs and bipartite graphs to be NP-hard. Efficient algo-
rithms are known for partial k-trees, using generic methods [2]. Bonucelli [6] showed
that circular-arc graphs are NP-hard, while Marathe, Hunt, and Ravi [26] gave a
4-approximation algorithm.

Let ∆ denote the maximum degree of a given graph. Our main result is a tight
bound on the approximability of the domatic number problem in general graphs. In
particular, we give

(A) an algorithm that finds a domatic partition of size (1 − o(1))(δ + 1)/ lnn,
where the “o(1)” term goes to zero as n increases;

(B) an algorithm that finds a domatic partition of size at least δ/c ln∆, for some
constant c;

(C) a nonconstructive argument showing that the domatic number is at least
(1 − o(1))(δ + 1)/ ln∆, where the “o(1)” term goes to zero as ∆ increases.
This shows that the value of the domatic number can be approximated within
a factor of nearly ln∆;
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(D) a bound on the domatic number of random graphs, showing that for most
graphs, the domatic number is at most (1 + o(1))(δ + 1)/ ln∆, where the
“o(1)” term goes to zero as n increases;

(E) a construction showing that for every ε > 0, no polynomial-time algorithm can
approximate the domatic number problem within a (1− ε) lnn factor, unless
NP has slightly superpolynomial-time algorithms (NP ⊆ DTIME(nlog log n)).
It also yields a (1− o(1)) ln∆-hardness. These results hold even for bipartite
graphs and split graphs.

The (1 + o(1)) lnn-approximation algorithm is a simple randomized assignment
(though care is needed not to lose a factor of two in the analysis) and is derandomized
using the method of conditional probabilities. The results (B) and (C) above use the
Lovász local lemma (LLL) [7] as their basic tool. Suitable application of the LLL
to our randomized assignment algorithm above shows that the domatic number is at
least (1/3− o(1))(δ+1)/ ln∆; we then refine this using a “slow partitioning” scheme,
leading to our result that the domatic number is at least (1− o(1))(δ+1)/ ln∆. The
O(ln∆)-approximation algorithm is a constructive version of the LLL, following an
approach of Beck [4].

The hardness construction builds on the proof of Feige [9] of similar hardness for
the set cover and dominating set problems. In fact, the construction here generalizes
the result of [9] in that it shows that it is hard to distinguish between the following
two cases: when the minimum dominating set is large (and thus the domatic number
small) or when there are many small disjoint dominating sets. This parallels the
situation with the archetypical minimum partitioning problem, graph coloring, where
Feige and Kilian [11] showed that it is hard to distinguish between the case when the
maximum independent set is small and when the chromatic number is small. The
construction of the current paper, in fact, draws additionally on the zero-knowledge
techniques used in [11].

It is instructive to view our results in a larger context—that of the study of
approximation algorithms in general. It has been empirically observed and further
supported by classification of constraint satisfaction problems [20] that there seem to
be no “natural” maximization problems approximable within polylogarithmic factors
but no better. Our results provide (to the best of our knowledge) the first maximiza-
tion problem with such a behavior, as the domatic number is a maximization problem
approximable within logarithmic factors but no better.

Our algorithmic results give absolute ratios, namely bounds in terms of some basic
parameters of the graph (minimum degree, number of vertices) rather than in terms
of the size of the optimal solution. These are, in fact, the first nontrivial lower bounds
on the size of an optimal domatic partition for arbitrary δ,∆ such that δ ≥ ln∆:

D(G) ≥ (1− o(1)) · δ + 1
ln∆

.(1)

As shown in section 2.5, this bound is best possible up to lower order terms, for a
large range of values of δ = δ(n) and ∆ = ∆(n).

In the past, most absolute ratios have been obtained by fairly simple greedy
algorithms. Our algorithms are derandomizations of simple randomized algorithms,
but their derandomized versions are not particularly natural, and natural greedy
algorithms for the problem attain much worse results. It is also interesting that the
hardness result gives a “gap location at 1”: namely, it is equally hard to approximately
partition graphs that are domatically full.
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The rest of the paper is divided into positive results—algorithmic and existential—
on domatic partitions in section 2 and hardness results in section 3.

2. Approximation algorithms and existential results. This section is de-
voted to positive results for domatic partitions. In section 2.1, we give an algorith-
mic proof of the bound D(G) ≥ (1 − o(1))(δ + 1)/ lnn and also show that D(G) ≥
(1/3− o(1))(δ + 1)/ ln∆. (The two usages of “o(1)” here, respectively, correspond to
n → ∞ and ∆ → ∞.) This second result is made algorithmic in section 2.2, with a
loss in the constant factor. The existential result that D(G) ≥ (1− o(1))(δ+1)/ ln∆
is then shown in section 2.3 and shown to be tight on random graphs in section 2.5.
Section 2.4 is devoted to a short analysis of the natural greedy algorithm for domatic
partition.

Notation. Let N(v) denote the set of neighbors of a vertex v in the given graph
G, and let N+(v) = {v} ∪ N(v). Let d(v) = |N(v)| denote the degree of v, and let
d+(v) = |N+(v)| = 1 + d(v). A partial coloring of G is an arbitrary coloring of an
arbitrary subset of the vertices. Given a current partial coloring, define a Boolean
variable Av,c to be true if there is no vertex of color c in N+(v) and to be false
otherwise. Note that the events Av,c are “bad events” for us: if Av,c holds for some
pair (v, c), then the coloring is not a domatic partition; conversely, if none of the
events Av,c hold, then every vertex v “sees” every color in N

+(v), and we will have a
domatic partition. Thus, our focus will be on avoiding all of these bad events.

Define [�] to be the set {1, 2, . . . , �}. For an event X, P[X] denotes its probability
and E[X] its expectation. Finally, let e denote the base of the natural logarithm.

2.1. Logarithmic bounds.
Theorem 1. Any graph admits a (polynomial-time constructible) domatic parti-

tion of size (δ + 1)(1−O(log log n/ log n))/ lnn.
Proof. Independently give each vertex one of � = (δ + 1)/ ln(n lnn) colors at

random. For any vertex-color pair (v, c), P[Av,c] = (1 − 1/�)d+(v) ≤ e−d
+(v)/� ≤

1/(n lnn). Thus, summing over all (v, c) pairs, the expected total number of bad
events Av,c is at most �/ lnn. Hence, the expected number of colors that form domi-
nating sets is at least

�− �

lnn
=
δ + 1

lnn

(
1− ln lnn+ 1

ln(n lnn)

)
.(2)

The color-classes that do not form dominating sets can all be merged into any one
color-class that is a dominating set; thus, we get a domatic partition whose expected
number of sets is at least as large as the right-hand side of (2).

This randomized argument can be derandomized using the method of conditional
probabilities (cf. [1]). Arbitrarily number the vertices as v1, v2, . . . , vn, and color
the vertices in this order (never recoloring a vertex) as follows. Color v1 arbitrarily.
Suppose the first j ≥ 1 vertices have been colored with respective colors c1, c2, . . . , cj ;
vertex vj+1 is colored as follows. Let dj+1(v) = |N+(v)∩{vj+1, vj+2, . . . , vn}|. Then,
the conditional probability of the bad event Av,c is given by

P[Av,c|c1, c2, . . . , cj ] =
{
0 if ∃vz ≤ j such that vz ∈ N+(v) and cz = c,
(1− 1/�)dj+1(v) otherwise.

The weight of the current coloring is given by

g(c1, c2, . . . , cj)
.
=
∑
v∈V

∑
c

P[Av,c|c1, c2, . . . , cj ];
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this is precisely the expected number of (v, c) pairs for which Av,c will hold after
coloring all vertices, given the current coloring c1, . . . , cj . In each step j+1, we choose a
color for vj+1 so that the weight of the coloring does not increase. Such a color exists,
since g(c1, c2, . . . , cj) is a convex combination of the values {g(c1, c2, . . . , cj , cj+1) :
cj+1 ∈ [�]}:

g(c1, c2, . . . , cj) = (1/�) ·
∑

cj+1∈[�]

g(c1, c2, . . . , cj , cj+1).

Then, the total number of colors that are not dominating sets is at most the weight
of the final coloring, which we ensure is at most the expected number at the outset,
or �/ lnn.

We now refine this argument using the LLL to get better bounds when ∆ ≤ n1/3.
We state the symmetric, simpler version of the LLL.

Lemma 2 (LLL [7]). Let p < 1, and let Ei, 1 ≤ i ≤ k, be k events such that
P[Ei] ≤ p for all i. Suppose there is an integer d such that e · p · (d + 1) ≤ 1,
and each event is independent of all but at most d other events. (More precisely,
for each Ei, there is a set Ti of at least k − d − 1 other events Ej, such that the
conditional probability of Ei given any Boolean combination of the events in Ti equals
the unconditional probability of Ei.) Then, P[

∧
i Ēi] > 0.

Independently color each vertex randomly with one of � = �(δ+1)/(3·ln(31/3 ·∆))�
colors. For each (v, c) pair, P[Av,c] ≤ (1− 1/�)d+(v) ≤ 1/(3 ·∆3). We note that each
event Av,c is independent of all but at most �(1 + d(v) + d(v) · (∆ − 1)) other such
events, since vertices of distance at least 3 from v are completely irrelevant for v. More
precisely, in the notation of Lemma 2, we can take Tv,c to be the set of all events of
the form (w, c′), where w is a vertex at a distance of at least 3 from v, and where
c′ is any color from [�]: conditioning on any Boolean combination of the events in
Tv,c does not influence the colors chosen by vertices in N

+(v). The following lemma
now directly follows from the LLL, using the fact that � < ∆ and d(v) ≤ ∆: we set
d = ∆3 − 1 and p = 1/(3 ·∆3) in using the LLL.

Lemma 3. Any graph admits a domatic partition of size (1/3 − o(1))δ/ ln∆,
where the “o(1)” term tends to zero as ∆→∞.

In section 2.3, we will refine the above approach by conducting a two-stage par-
titioning that attains the tight value of 1 − o(1) instead of the value 1/3 − o(1) of
Lemma 3. However, the above direct approach will help us develop a simple algorith-
mic version of Lemma 3 in section 2.2. It also motivates the reason for developing the
approach of section 2.3.

Remark. It is interesting to note that the ∆ in the bound of Lemma 3 cannot be
replaced by δ nor by d, the average degree. Consider, for example, the bipartite graph
with 3 · δ vertices on the left side and (3·δδ ) vertices on the right side, with each vertex
on the right side connected to a particular subset of δ vertices in the left side. The
domatic number of this graph is two. Indeed, say that there are 3 disjoint dominating
sets. One of these sets, S, contains at least δ-vertices on the left side. There exists a
vertex v on the right side all of whose neighbors are in S. Hence, the two remaining
sets must both contain the vertex v, a contradiction.

A parameter that is intermediate between average and maximum degree is the
inductiveness ∆∗(G) = maxH⊆G δ(H). It is most notable for giving a tighter upper
bound on the chromatic number than the maximum degree, as χ(G) ≤ ∆∗(G) + 1 ≤
∆(G) + 1. The above construction shows, however, that ∆∗ cannot replace ∆ in the
bound of Lemma 3 on the domatic number.
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2.2. O(log ∆)-approximation algorithm. We use an algorithmic version of
the LLL due to Beck [4] that derandomizes the probabilistic argument with some loss
in the constants. We may assume without loss of generality that G is connected, since
we can treat the connected components separately. Our algorithm has three phases
assigning colors to successively larger fractions of the vertices. After the first phase,
each vertex is either fully satisfied, seeing all colors within its neighborhood, or has
at most one third of its neighbors colored. We show that the subgraph induced by
nodes that are still active, i.e., either unsatisfied or not yet colored, consists with high
probability of only small connected components of O(∆6 log n) vertices each. After
the second phase, more vertices are colored, with at most two thirds of the neighbors
of yet unsatisfied vertices being colored. The connected components induced by active
vertices are now of only O(∆7 log log n) size. Then, depending on the value of ∆, we
can either solve each component by exhaustive search or apply Theorem 1 to obtain
a full coloring where each vertex is satisfied.

2.2.1. The algorithm. The first phase proceeds as follows. Given a coloring of
some of the vertices, call a vertex v dangerous iff

1. at least δ/3 neighbors of v have been colored, and
2. not all the � colors appear in the neighborhood of v.

Let � = δ/(c ln∆) for a suitably large constant c. Order the vertices arbitrarily as
v1, v2, . . . , vn and process them in this order. When processing vi, we do the following.
If vi or one of its neighbors is dangerous now, we freeze vi; otherwise we independently
assign it one of � colors at random.

When the process ends, some vertices are colored and some are frozen, and some
are dangerous and some are not. The vertices that are not dangerous belong to one
of two categories:

Good : A good vertex sees all colors in its neighborhood.
Neutral : A neutral vertex v does not see all colors in its neighborhood but is not

dangerous. This can happen only if more than 2/3 of v’s neighbors were
frozen.

Thus, we have two orthogonal partitions: colored/frozen and good/neutral/dangerous.

Vertices that are both good and colored do not need to be considered further in
the later phases. Call the other vertices saved, i.e., those that are dangerous, frozen,
or neutral. As in [4], we are interested in the maximum size of a connected component
of the subgraph induced by saved vertices, as this bounds the size of the independent
subproblems in the next phase. We show in section 2.2.2 that with probability at
least 1/2, the largest connected component in the saved graph has size O(∆6 log n);
let us assume that this size bound holds.

Phase two of the algorithm is run separately on each connected component in-
duced by the saved vertices. Note that each dangerous or neutral vertex v has at least
d(v) − δ/3 frozen (i.e., uncolored) neighbors in its connected component. Phase two
differs from phase one in that some of the vertices are colored before we begin. We
leave these colors untouched, because they may be useful for the vertices that were
not saved. We only color the frozen vertices, and again define the notion of phase two
dangerous, frozen, and neutral vertices. Since the number of vertices we are dealing
with now in any connected component is O(∆6 log n), we have essentially replaced n
by O(∆6 log n). Thus, analysis similar to that of phase one shows that the connected
components of the newly saved vertices has size at most N = O(∆6(log∆+log log n))
with probability at least 1/2.
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In phase three, each dangerous/neutral vertex has at least d(v)−2δ/3 ≥ δ/3 frozen
neighbors in its connected component. If ∆ > log log n, we have a domatic partition
of the frozen vertices to roughly δ/(3 lnN) parts via Theorem 1. As lnN = O(log∆),
this is good enough. If ∆ ≤ log log n, then we can find a domatic partition of size
Ω(δ/ ln∆) whose existence is guaranteed by Theorem 3, using an exhaustive search.
Since ∆ ≤ log log n, this only takes time

NO(δ/ ln ∆) ≤ (log log n)O((log log n)) ≤ poly(n).

This completes the description of the algorithm.

2.2.2. Analysis of the algorithm. We now show that with probability at least
1/2, the largest connected component in the saved graph in the first phase has size
O(∆6 log n). This will yield a proof of correctness of our algorithm.

Let X(u) be the indicator random variable for vertex u becoming dangerous, and
let q = �(1− 1/�)δ/3.

Lemma 4. Let U = {u1, u2, . . . , uk} be any set of vertices with pairwise distance
at least 3. Then, Pr[X(u1) = X(u2) = · · · = X(uk) = 1] ≤ qk.

Proof. If a vertex v is a neighbor of the set U , then it has a unique neighbor in U
since the elements of U have pairwise distance at least 3. Let (a = (a1, a2, . . . , ak) be
any sequence of k colors, and let Si be the random variable denoting the set of the
first i nonfrozen neighbors of U . Let Di((a) be the event that “for all j = 1, 2, . . . , k,
all neighbors of uj in Si avoid color aj .” Thus, Di((a) is the event that even after
processing the first i nonfrozen neighbors of U , each uj in U was missing a particular
color aj . We may assume without loss of generality that sets Si exist for every i up to
δk/3, because otherwise some vertex u in U does not have δ/3 nonfrozen neighbors,
and then u cannot be dangerous. Hence, Di((a) is defined for all i ≤ δk/3. We have
Pr[D0((a)] = 1. Now for every i < δk/3, Pr[Di+1((a)] = Pr[Di((a)] · (1− 1/�), because
the color of the (i + 1)st nonfrozen neighbor of U is chosen at random independent
of the previous colors and independent of which vertex it happens to be. Hence,
Pr[Di((a)] = (1− 1/�)i; so, Pr[∃(a : Dδk/3((a)] ≤ �k(1− 1/�)δk/3 = qk.

If all the uj are dangerous, then there is some (a for which Dδk/3((a) is true; this
completes the proof.

To prove that the largest connected component in the saved graph is “small
enough” with reasonable probability, we now show that with reasonable probability
the maximum number of vertices in a spanning tree of such a component is “small.”
This is done as follows. By a standard argument, a large connected component con-
tains many vertices with a particular minimum pairwise distance. We first prove
that the number of vertices with large pairwise mutual distance which are all saved
is “small.” This indirectly bounds the maximum number of vertices in a connected
component as a function of ∆, which is enough for our purposes.

A set of vertices is said to be 7-separated if it is of mutual distance at least 7.
A 7-separated set of k vertices is said to be a bad k-set if, additionally, it becomes
connected if we connect all vertices of distance exactly 7. As shown next, the number
of such sets in G is at most

n(4∆7)k.(3)

Consider a spanning tree on the set where vertices of distance exactly 7 are connected.
The number of distinct shapes of trees on k vertices is at most 4k−1. Namely, such a
tree can be uniquely represented by ordering the vertices in a lexicographic breadth-
first order and attaching two flag bits to each nonroot vertex, whether it has the same
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parent as the previous vertex in the order, and whether it has a child or not. For each
shape of a tree, there are n possibilities of choosing the root and thereafter at most
∆7 possibilities of choosing each new vertex since we already chose its parent in the
tree.

Let Y (u) be the indicator random variable for vertex u becoming saved. To
complete our argument that no connected component of the saved vertices is “large,”
we show the following lemma.

Lemma 5. For any 7-separated set of vertices v1, v2, . . . , vk,

Pr[Y (v1) = Y (v2) = · · · = Y (vk) = 1] ≤ (2.5∆q)k,

where q is as defined prior to Lemma 4.
Proof. The following definition will be useful for this proof:

Z(u)
.
= X(u) +


 ∑

v∈N(u)

X(v)


+

∑
v∈N(u)

∑
w∈N(v)X(w)

2d(u)/3
.

If vertex u is saved, then we have one of three cases: (i) u is dangerous and thus
X(u) = 1; (ii) u has a dangerous neighbor and so

∑
v∈N(u)X(v) ≥ 1; or (iii) u is

neutral, so at least 2d(u)/3 of its neighbors are frozen, and by the preceding argument
it holds for each frozen neighbor v of u that

∑
w∈N(v)X(w) ≥ 1. Therefore, we have

the simple but useful observation that if Y (u) = 1, then Z(u) ≥ 1.
By Markov’s inequality,

Pr[Y (v1) = Y (v2) = · · · = Y (vk) = 1] ≤ Pr
[

k∏
i=1

Z(vi) ≥ 1
]
≤ E

[
k∏

i=1

Z(vi)

]
.(4)

Now, because Z(·) is linear in the X(·) and using the linearity of expectation, we can
expand E[

∏
i Z(vi)] as a linear combination of the terms Pr[X(w1) = X(w2) = · · · =

X(wk) = 1]. The main observation is that since the vi have pairwise distance at least
7, the wi have pairwise distance at least 3. Thus, by Lemma 4, any such term has
probability at most qk. Thus we get

E

[∏
i

Z(vi)

]
≤
(
q +∆q +

d(u)(∆− 1)q
2d(u)/3

)k

≤ (2.5∆q)k

by first replacing the probability of intersection of events by the product of probabil-
ities and then unfolding and reversing the above expansion.

Consider now a connected component in the subgraph of G of saved vertices. If its
size is k∆6 or more, then it must contain a bad k-set (which is obtained by repeating
the procedure of putting a vertex in the bad k-set and removing all vertices of distance
at most 6). Setting the constant c in the expression � = δ/(c ln∆) large enough, we
get that q ≤ ∆−9/10. Set k = log(2n)/ log∆, and recall (3) and Lemma 5. We get
that the probability of existence of a connected component of the saved vertices with
cardinality at least k∆6 is at most (2.5q∆)kn(4∆7)k ≤ 1/2.

Finally, the above Las Vegas algorithm can be derandomized by the approach
of pessimistic estimators [33], which is a generalization of the method of conditional
probabilities. Briefly, we proceed as follows. As before, we process the vertices one-
by-one. Suppose it is currently the turn of vertex v. If v is frozen, we skip over it.
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Otherwise, we deterministically choose a color for it that minimizes the probability
of emergence of a large connected component of the saved vertices using our bounds
derived above. Since k = log(2n)/ log∆, we see from (3) that the number of possible
bad k-sets to be considered in our analysis above is bounded by a polynomial in
n. Hence, we can write down a pessimistic estimator and choose, in deterministic
polynomial-time, a color for vertex v that minimizes the pessimistic estimator.

2.3. Getting the right constant. Our next result improves the value 1/3−o(1)
of Lemma 3 to the existentially best possible value of 1− o(1).

Theorem 6. There is a constant a > 0 such that for large enough ∆0, for every
graph G with ∆ ≥ ∆0, D(G) ≥ � δ

ln ∆+a ln ln ∆�.
We remark that if ∆ < ∆0, the theorem holds by setting a large enough. For

the special case of ∆ ≤ 2, the value of D(G) is well known via a simple case analysis;
there is also a linear-time algorithm for the domatic partition problem if ∆ ≤ 2.

Proof. For the rest of section 2.3, any “o(1)” term will denote a function of ∆
alone that goes to zero as ∆ increases. We prove the theorem for a being any constant
greater than 7, for all large enough ∆; this choice of a can be further improved, but
we do not attempt this optimization here.

Preprocessing. We preprocess the graph as follows. As long as there is an
edge that has both end-points with degree more than δ, remove such an edge from
the graph. At the end of this process, the minimum degree remains at δ, and the
maximum degree is at most ∆. We will now show a lower bound on the domatic
number of this preprocessed version, which clearly will yield the same lower bound
on the domatic number of the given graph. (This is because the preprocessing only
removes edges from the given graph.) The useful property that now holds is that for
each vertex u, either d(u) = δ, or for all neighbors v of u, d(v) = δ.

There are two cases, the first one being simpler.
Case I: δ ≤ ln4 ∆. We assume that δ > ln∆ + a ln ln∆, since the theorem is

trivially true otherwise. Define

� =

⌊
δ

ln∆ + a ln ln∆

⌋
.

Color each vertex with a random color from [�], independent of all other vertices. We
will now use the LLL to show that P[∧u,c Āu,c] > 0 in the same way as we did for
Lemma 3. For each (u, c), we have

Pr[Au,c] =

(
1− 1

�

)d+(u)

≤ e− ln(∆(ln ∆)a)·d+(u)/δ ≤ (∆(ln∆)a)−1.(5)

Let N2(u) denote the set of vertices at a distance of 0, 1, or 2 from u in G.
As in our proof of Lemma 3, each event Au,c depends only on events Av,c′ with
v ∈ N2(u); so, it depends on at most |N2(u)| · � other such events. Our preprocessing
step above helps bound |N2(u)| for all u. If d(u) = δ, then |N2(u)| ≤ 1+ δ+ δ(∆−1).
If d(u) > δ, our preprocessing ensures that d(v) = δ for all neighbors v of u; so,
|N2(u)| ≤ 1 + ∆ + ∆(δ − 1). Thus, |N2(u)| ≤ δ∆ + 1 ≤ ∆ ln4∆ + 1 for all u, since
δ ≤ ln4∆. So, each Au,c depends on at most O(�∆ ln

4∆) = O(∆ ln7∆) other such
events. Recalling the LLL and (5), we see that P[∧u,c Āu,c] > 0 as required, since
a > 7.

Case II: δ > ln4 ∆. Let ε = 1/(ln∆); define �1 = �ε3δ� and �2 = �ln2∆/(1 +
b(ln ln∆)/ ln∆)�, where b is any constant larger than 5. We will show the existence
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of a domatic partition of size �1�2, i.e., a coloring of V using �1�2 colors, in such
a way that for every vertex u there is at least one vertex of each color in N+(u).
(Recall that δ > ln4∆. By choosing b < 6, for instance, we can ensure that �1�2 ≥
δ/(ln∆+6 ln ln∆) for all large enough ∆.) It will be convenient to view the colors as
elements of [�1]×[�2]. We will apply a two-stage coloring: the first coloring determines
the first components of the vertex-colors, and the second coloring is for the second
components. We can view the first coloring as a coarse partition, which the second
coloring turns into a fine partition. The primary purpose of the first coloring is to
reduce the dependencies sufficiently for our analysis of the second coloring.

The first partitioning is as follows. Color each vertex with a random color from
[�1], independent of all other vertices. For each vertex u and each color c, define X

+
u,c

to be the subset of N+(u) that receives color c. We have E[|X+
u,c|] = d+(u)/�1. Let

Bu,c be the “bad” event that | |X+
u,c| − d+(u)/�1 | ≥ 3εd+(u)/�1. A Chernoff bound

shows that

Pr[Bu,c] ≤ 2 · exp(−(9/2− o(1)) · d+(u)ε2/�1) ≤ exp(−(9/2− o(1)) ln∆).(6)

Once again, Bu,c is independent of any Boolean combination of events of the form
Bv,c′ for vertices v at a distance of 3 or more from u. Thus, each Bu,c “depends” on
o(∆3) other such events. Recalling (6), the LLL shows that Pr[

∧
u,cBu,c] > 0.

Fix a coloring χ1 : V → [�1] which avoids all the events Bu,c. Choose a random
color χ2(u) ∈ [�2] for each u, independent of all other vertices; the final color of u is
the pair (χ1(u), χ2(u)). Let Bu,c1,c2 be the bad event that there is no vertex of color
(c1, c2) in N+(u). We now use the LLL to show that all these bad events can be
avoided with positive probability.

For each vertex u and each c ∈ [�1], let N+
u,c = {v ∈ N+(u) : χ1(u) = c}, and

define d+
u,c = |N+

u,c|. Since χ1 avoids all the events Bu,c, we have

∀(u, c), (1− 3ε)d+(u)/�1 ≤ d+
u,c ≤ (1 + 3ε)d+(u)/�1.(7)

Fix an event Bu,c1,c2 . First,

Pr[Bu,c1,c2 ] =
(
1− 1

�2

)d+
u,c1 ≤ e−(1−3ε)d+(u)/(�1�2)(8)

≤ (∆(ln∆)b)−(1−3ε) ≤ O((∆(ln∆)b)−1);

the first inequality here follows from (7). Next, which other events does Bu,c1,c2
depend on? Given S ⊆ V , let N+(S)

.
=
⋃

v∈S N
+(v). Note that Bu,c1,c2 simply says

that all elements of N+
u,c1 got a χ2(·) value different from c2. Thus, we can check that

Bu,c1,c2 depends only on the events in
S(u, c1, c2) = {Bv,c′1,c′2 : v ∈ N+(N+

u,c1) and c
′
1 = c1}.(9)

More precisely, we claim that Bu,c1,c2 is independent of any Boolean function of the
events lying outside S(u, c1, c2); this can be verified by seeing that

N+
u,c1 ∩

( ⋃
(v,c′1,c

′
2): Bv,c′

1
,c′

2
	∈S(u,c1,c2)

N+
v,c′1

)
= ∅.

We now bound |S(u, c1, c2)| in order to apply the LLL; once again, our prepro-
cessing step will be of help. If d(u) = δ, then |N+(N+

u,c1)| ≤ ∆|N+
u,c1 |; this is at most
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O(δ∆/�1), by (7). If d(u) > δ, our preprocessing ensures that |N+(N+
u,c1)| ≤ δ|N+

u,c1 |;
so, from (7), we again get that |N+(N+

u,c1)| ≤ O(δ∆/�1). Thus, |S(u, c1, c2)| ≤
O(δ∆�2/�1) = O(∆ ln5∆). We can now apply the LLL, using (8) and the facts that
(i) b > 5 and (ii) each bad event Bu,c1,c2 depends on at most |S(u, c1, c2)| others. This
completes the proof.

To see why our two-stage coloring helps, note that the “dependence” |S(u, c1, c2)|
in the second coloring above is only ∆1+o(1), as compared to the dependence of ∆3+o(1)

that we could get in the direct coloring approach underlying Lemma 3. The constraint
“v ∈ N+(N+

u,c1)” in (9) saves us a factor of ∆
1−o(1), and the constraint “c′1 = c1” saves

another factor of ∆1−o(1). That the first-stage coloring eliminates many dependencies
in this fashion is the main idea motivating this approach.

It is an open question if a domatic partition of the size guaranteed by Theorem 6
can be found in polynomial-time.

2.4. Greedy algorithm. One natural approach to the domatic partition prob-
lem is to try to greedily choose small dominating sets. The greedy algorithm iteratively
pulls out dominating sets from the graph until the remainder is no longer dominating.
The dominating sets are found by a standard O(log n)-approximate greedy algorithm
[18, 22].

Lemma 7. Suppose D(G) = n/k. Then, the greedy algorithm finds a domatic
partition of Ω(n/(k2 log n)) sets.

Proof. We count how many disjoint dominating sets our algorithm finds before
the set of vertices in them intersects at least half of the n/k vertex-disjoint dominating
sets in the graph. During this period, there are at least n/(2k) disjoint dominating
sets; thus in each step there exists a dominating set of size at most 2k, and we find
one of size at most 2k lnn. Hence, in each step, a vertex from at most 2k lnn different
dominating sets is removed. It then requires at least (n/2k)/(2k lnn) steps to halve
the original number of dominating sets in the graph.

Since D(G) ≤ n, the approximation ratio is maximized when k ≈√n/(4 lnn).

Corollary 8. The performance ratio of the greedy domatic partition algorithm
is O(

√
n lnn).

Fujita [12] has shown examples where the performance of this and some other
greedy algorithms is Ω(

√
n).

2.5. The domatic number of random graphs. We now show that the bound
(1) is tight for a large range of values of δ = δ(n), by studying D(G) for suitable
random graphs G. Suppose G is drawn from the random graph model G(n, p); i.e.,
we take n labeled vertices, and put an edge with probability p independently between
each pair of vertices. We will show that with probability 1 − o(1), D(G) ≤ (1 +
o(1))δ(G)/ ln∆(G). (Throughout this section, the “o()” and “ω()” notation refers to
n getting large.)

Choose any p = p(n) such that np = (lnn)ω(1) and p = o(1). It is easy to
check via a Chernoff bound that with probability 1 − o(1), both δ and ∆ will lie in
the range (1 ± o(1))np for our random graph G. Fix any constant ε > 0, and let
s = �(1− ε) ln(np)/p�. We will show that with probability 1− o(1), any dominating
set in G will have size more than s. (Thus, with probability 1 − o(1), we will have
D(G) ≤ n/(s+1), completing the proof.) For any given subset of the vertices S with
|S| = s,

Pr[S is a dominating set] = (1− (1− p)s)n−s
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≤ (1− e−(1+Θ(p))sp)n−s

≤ (1− (np)ε−1−Θ(p))n−s

≤ e−(n−s)·(np)ε−1−Θ(p)

≤ es−(1/p)·(np)ε−Θ(p)

= es−(1/p)·(np)ε−o(1) .

Thus, the probability of existence of a dominating set of size s is at most(
n

s

)
· es−(1/p)·(np)ε−o(1) ≤ (ns/s!) · es−(1/p)·(np)ε−o(1) = (es/s!) · es lnn−(1/p)·(np)ε−o(1)

= o(1);

the bound s lnn = o((1/p) · (np)ε−o(1)) follows from the definition of s and from the
fact that np = (lnn)ω(1).

3. Hardness of approximating the domatic number. We say that a prob-
lem is hard to approximate within ratio ρ if having a polynomial-time (randomized)
ρ-approximation algorithm for it would violate some standard hardness assumption,
such as P �= NP. The hardness assumption that we use in this paper is that NP does
not have (randomized) algorithms that run in time nO(log log n); for brevity we shall
just use the term hard to approximate.

We shall prove the following theorem.
Theorem 9. For every fixed ε > 0, it is hard to approximate the domatic number

within a ratio of (1− ε) ln |V |.
For this purpose, it is helpful to work with a related but different problem.
Definition 1. A one-sided dominating set in a bipartite graph G(V1, V2, E) is a

set of vertices U ⊆ V1 such that for every v ∈ V2 there is some u ∈ U with (u, v) ∈ E.
Here it is assumed that the intended bipartition (V1, V2) is given explicitly as part of
the input and that every vertex in V2 has some neighbor in V1. Observe that this
problem merely is a reformulation of the well-known set cover problem.

The one-sided domatic number of a bipartite graph is the maximum number of
mutually disjoint one-sided dominating sets that the graph contains.

Observe that the dominating set and domatic number problems have a relation
similar to the one of the coloring versus maximum independent problem. A coloring
is a packing of independent sets while a domatic partition is a packing of dominating
sets.

A related problem is the set cover problem, where a collection of subsets S of
a base set U is given, and we are to find a minimum cardinality subcollection that
contains all elements of U . The set cover packing number is then the maximum
number of mutually disjoint set covers. It is well known that minimum dominating
set, minimum one-sided dominating set, and minimum set cover are strongly related,
and that lnn is the best approximation ratio for all of them within lower order terms
(details in section 3.2). The one-sided domatic number problem can be shown to
be equivalent to the set cover packing problem in terms of optimization. We are
not aware of a similar relationship between one-sided domatic number and domatic
number. However, we can give a reduction that yields the necessary result.

Proposition 10. Let c > 1 and consider bipartite graphs G(V1, V2, E) with |V1|
large enough (e.g., |V1| ≥ 4c), |V2| > |V1|c, and the following promise: for some
0 ≤ ε ≤ 1−1/c and for r and q satisfying rq > (1− ε)|V1| ln |V2| (r and q may depend
on the size of G), either



184 FEIGE, HALLDÓRSSON, KORTSARZ, AND SRINIVASAN

• the size of the smallest one-sided dominating set in G is at least r, or
• the one-sided domatic number of G is at least q.

Note that the two cases for the promise cannot both hold. If it is hard to distinguish
which of the two cases holds, then it is hard to approximate the domatic number within
a ratio of (1− 1/c− ε) ln |V |.

The proof of Proposition 10 is given in section 3.2. The main result of the section
is the following theorem, proved in section 3.5.

Theorem 11. For every ε > 0 and every integer c > 1 the two cases of Propo-
sition 10 cannot be distinguished in (random) polynomial-time unless NP has (ran-
domized) algorithms that run in time nO(log log n).

Theorem 9 now follows from Theorem 11 and Proposition 10.
Remark. Theorem 9 implies a ln∆ hardness of approximation result, for ∆  nψ

for some 0 < ψ < 1 which is close to 1. To obtain ln∆ hardness of approximation
results when ∆ is much smaller compared to n, simply make many disjoint copies of
the graph, increasing n without changing ∆ or the domatic number.

3.1. Overview and intuition. Before presenting the proof of Theorem 11, let
us provide some background on proving hardness of approximation results in gen-
eral and how hardness of approximation results were proved for problems related to
domatic number.

A convenient starting point for proving hardness of approximation results is the
problem of Max 3SAT. The input to this problem is a 3CNF formula and the desired
output is an assignment to the variables that satisfies as many clauses as possible. The
well known PCP theorem of [3] implies (or in fact, is equivalent to) the following gap:
for some ε > 0 it is NP-hard to distinguish between 3CNF formulas that are satisfiable
(which we call yes instances) and 3CNF formulas in which every assignment satisfies
at most a (1− ε)-fraction of the clauses (which we call no instances). This hardness
result can be extended to a restricted version of Max 3SAT in which the input 3CNF
formula has the property that each variable appears in exactly 5 clauses. (The choice
of 5 is arbitrary here. Any other constant greater than 5 would do as well.) We call
this restricted version Max 3SAT-5.

As noted above, the set cover problem is strongly related to the dominating set
problem, which in turn is related to the domatic number problem. Moreover, the one-
sided domatic number problem is equivalent to the set cover packing problem. Hence
our plan for proving Theorem 11 is to take known results regarding the hardness
of approximation of set cover and modify their proof so that it shows hardness of
approximation for the set cover packing problem as well (and hence also for one-sided
domatic number). To see more explicitly what needs to be done, let us first review at
a very high level the known result [9] that set cover (and one-sided dominating set)
is hard to approximate within a factor of (1− ε) lnn.

The proof in [9] reduces instances of Max 3SAT-5 to instances of one-sided domi-
nating set. The reduction is slightly super polynomial (instances of size n are mapped
to instances of size nO(log log n)) and is a gap reduction in the following sense: yes
instances give bipartite graphs that have small one-sided dominating sets and no in-
stances give graphs all of whose one-sided dominating sets are much larger. To prove
hardness of approximation for one-sided domatic number, the requirement for no in-
stances does not change, as it already implies a small one-sided domatic number.
However, we would like yes instances to give bipartite graphs that have not just one
small one-sided dominating set but many disjoint small one-sided dominating sets,
and hence a large one-sided domatic number.
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To achieve this extra property, we invoke an idea used in [11] when proving hard-
ness of approximation for the chromatic number problem. In our context, it suffices
to change the starting point of the reduction from the problem Max 3SAT-5 to the
problem Max-3-colorability-5. This is the problem of coloring a 5-regular graph with
3 colors so as to maximize the number of edges legally colored (see section 3.3). It
also has a gap similar to that of Max 3SAT-5. The important property of Max 3-
colorability-5 is that yes instances of it necessarily have many “disjoint” solutions.
When these instances are reduced to instances of one-sided dominating set, the result-
ing bipartite graph has many disjoint small one-sided dominating sets. This implies
a large one-sided domatic number, as required by Theorem 11.

Hence, to complete the proof of Theorem 11, we need to accomplish three things.

1. Introduce the problem of Max 3-colorability-5 and its properties. This is
done in section 3.3.

2. Give the reduction from Max 3-colorability-5 to one-sided dominating set.
This reduction closely follows the reduction of [9] from Max 3SAT-5 to set cover,
except for one small extra step (vertices on one side of the bipartite graph are dupli-
cated many times, an operation that was not performed in the reduction to set cover).
This reduction is fairly complicated, but essentially all complications come from the
reduction in [9].

3. Prove the properties of the reduction. This has two parts. One is to show
that yes instances of Max 3-colorability-5 are reduced to bipartite graphs with high
one-sided domatic number, which is done in Lemma 17. The other is to show that no
instances are reduced to bipartite graphs with only large one-sided dominating sets.
This part is not proved in this paper, because the proof in [9] that no instances of
Max 3SAT-5 give instances with a large set cover, extends virtually without change
to our adaptation of the reduction of [9].

Appendix B reviews some of the ingredients of the reduction used in [9] from
Max 3SAT-5 to set cover and explains some modifications used in our context. Some
of these ingredients are only used in the analysis of what happens on no instances,
and hence do not come into any of the proofs in this paper. They are included only
in the overview so as to give some indication of what led to the construction of the
reduction. For more details, see [9].

3.2. Domination and one-sided domination. The three problems, minimum
dominating set, one-sided dominating set, and set cover, are equivalent in the following
sense (see e.g., [29]).

Proposition 12 (see [29]). There is a polynomial-time reduction between any
of the three problems, dominating set, one-sided dominating set, and set cover, that
preserves the value of the minimum solution.

Proof. To reduce dominating set to set cover, let V (the set of vertices) become U
(the ground set) and let the collection S include the sets N+(v) for every v ∈ V . To
reduce set cover to one-sided dominating set, construct a bipartite graph G(V1, V2, E)
in which V2 is the ground set U and the vertices of V1 each represent a set in S.
Put an edge (u, v) ∈ E if v ∈ V2 corresponds to an item that is contained in the set
that corresponds to the vertex u ∈ V1. Finally, to reduce one-sided dominating set to
dominating set make a clique out of all vertices of V1 and let V = V1

⋃
V2; it is not

hard to see that these reductions reserve feasibility of solutions, and in addition it is
not hard to see that the size of the minimum dominating set is preserved.

For set cover, let n = |U |. It is known that minimum set cover can be approx-
imated within a ratio of lnn [18, 22] and that, for every fixed ε > 0, it is hard to
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approximate it within a ratio of (1 − ε) lnn [9]. By Proposition 12, this implies a
similar result for one-sided dominating set, with n = |V2|. For dominating set, it is
natural to take n = |V |. Then the approximation ratio of lnn trivially applies, but
in order to transfer the (1− ε) lnn hardness result from one-sided dominating set to
dominating set using the reduction of Proposition 12 we also need that ln |V |  ln |V2|,
which holds whenever |V1| ≤ |V2|1+ε. It turns out that this is indeed the case in the
construction of [9]. Hence it is known that up to low order terms, lnn is the best
possible approximation ratio for all three problems.

A proof similar to that of Proposition 12 shows that there is a polynomial-time re-
duction from domatic number (whether one-sided or not) to set cover packing number
that preserves the value of the maximum solution. Likewise, there is a polynomial-
time reduction from set cover packing number to one-sided domatic number that
preserves the value of the maximum solution. However, we are not aware of such a
reduction from one-sided domatic number to domatic number. Instead, we use the
following proposition.

Proposition 13. For every integer k > 0 (where k may be an arbitrary function
bounded by a polynomial in the size of the input) there is a polynomial-time trans-
formation mapping a bipartite graph (V1, V2, E) to a graph (V,E

′) with the following
properties:

• |V | = |V2|+ k|V1|.
• For the original graph, let q and r, respectively, denote the one-sided domatic
number and the minimum cardinality of a one-sided dominating set; hence
q ≤ |V1|/r. Let p denote the domatic number of the new graph. Then kq ≤
p ≤ min[|V |/r, 1 + 2k|V1|/r].

Proof. Let G = (V1, V2, E) be a bipartite graph for which we are interested in
computing the one-sided domatic number. Construct a graph G′(V,E′) as follows.
V ′1 =

⋃k
i=1 V

i
1 , where for every i, V i

1 is a copy of V1. V = V ′1
⋃
V2, which gives

|V | = |V2|+ k|V1|. For every v ∈ V2, 1 ≤ i ≤ k, and u ∈ V i
1 , place an edge (u, v) ∈ E′

iff there is an edge (u, v) ∈ E. In addition, all vertices of V ′1 form a clique.

Observe that every one-sided dominating set in G corresponds in a natural way to
k mutually disjoint dominating sets in G′, one on each copy of V i

1 . Hence the optimal
solution for G can be copied k times on G′, giving p ≥ kq. (If, in addition, V1 has no
isolated vertices, then V2 can serve as one more dominating set disjoint from all the
others, giving p ≥ kq + 1.)

To upper bound p, let D1, . . . , Dp be a maximum cardinality collection of disjoint
dominating sets in G′. Similar to the proof of Proposition 12, we can see that we
can change maximum dominating set Dj to maximum dominating set D′j of no larger
size, fully contained in V ′1 . As D

′
j must dominate V2, we get that |Dj | ≥ |D′j | ≥ r for

all j. Hence p ≤ |V |/r.
We now turn to proving the second part of the upper bound, namely, p ≤ 1 +

2k|V1|/r. This gives a tighter bound when |V2| ! k|V1|. Observe that (Di

⋃
Dj)

⋂
V ′1

is a dominating set contained in V ′1 . So suppose we pair up any 2�p/2� of the Di’s
into �p/2� pairs, each of which forms a dominating set of size at least r. Then,
r�p/2� ≤ k|V1|; so, p ≤ 1 + 2k|V1|/r.

We are now ready to prove Proposition 10.

Proof. Perform the reduction of Proposition 13 with k = |V2|. If the first case
holds, then the domatic number of G′ is at most |V |/r. If the second case holds,
then the domatic number is at least q|V2|. The ratio between these two values is
q|V2|/(|V |/r) = qr|V2|/|V |. We use |V2|/|V | = 1/(|V1|+1) and qr ≥ (1− ε)|V1| ln |V2|
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to obtain that the ratio is at least (1 − ε − 1/|V1|) ln |V2|. Using |V2| > |V1|c and
|V1| ≥ 4c, we obtain that ln |V2| ≥ (1−1/(c+1/2)) ln |V |. Now Proposition 10 follows
assuming that |V1| ≥ 2(c+ 1)2.

Remark. The graphs G′ formed in the above reduction are split graphs, which
are graphs whose vertex-set can be partitioned into a clique and an independent set.
These graphs are both chordal and complements of chordal graphs, where a graph
is chordal if it contains no cycle with four or more vertices as an induced subgraph.
Thus, a (1 − o(1)) lnn hardness for domatic number holds also for split (and thus
chordal and cochordal) graphs. Furthermore, one can get a similar result for bipartite
graphs by the following modification. Instead of making a clique out of V1, we add
(δ+1) vertices and connect them to every node in V1. This affects the domatic number
by at most 1, and the approximability hardness follows.

3.3. The problem Max 3-colorability-5. We now introduce the NP-language
that serves as the basis to our reduction.

Definition 2. Max 3-colorability is the problem of coloring the vertices of a
graph with three colors so as to maximize the number of legally colored edges (edges
whose endpoints are colored differently).

An NP-witness for 3-colorability is an assignment of colors to the vertices such
that each edge is legally colored. The witness can be checked in a probabilistic sense
by sampling an edge at random and checking whether the colors of its two endpoints
disagree. The actual names of the colors of the vertices play no role because the names
of the three colors can be arbitrarily permuted without changing the legality of the
3-coloring. Hence every NP-witness gives rise to six different witnesses (depending on
the permutation used for the names of the colors), and cycling over the six witnesses,
every edge gets its six legal colorings. In our reductions to one-sided dominating set,
we shall use this structure of the set of witnesses for 3-colorability in order to show
that if the resulting bipartite graph has a small one-sided dominating set, then in fact
it has many disjoint one-sided dominating sets. We note that the same structure was
used in [15] to construct a zero-knowledge proof system for NP.

In order to prove a hardness result for Max 3-colorability-5, we rely on the hard-
ness of Max 3-colorability and the use of expanders. Call a graph H with h vertices
a (γ, κ)-expander if for any subset S of the vertices of H with |S| ≤ γh, the number
of edges leaving S is at least κ|S|. For some constant κ > 0 and for any ε > 0,
there is an h0 such that for all h ≥ h0, there is an explicitly constructible (1/2, κ)-
expander with maximum degree at most 6 and with the number of vertices lying in the
range [h, h(1 + ε)] [23]. Note that a (1/2, κ)-expander is necessarily also a (2/3, κ/2)-
expander. In particular, this implies that for any given integer h, we can construct a
(2/3, κ′)-expander with maximum degree at most 6 and with the number of vertices
being some F (h) that satisfies h ≤ F (h) ≤ 2h for some absolute constant κ′ > 0.
(We can proceed as follows. If h ≤ h0, where h0 is a sufficiently large constant, just
construct any connected h-vertex graph of maximum degree 6. If h > h0, construct
a (1/2, κ)-expander with maximum degree at most 6 and with the number of vertices
lying in the range [h, 2h], using [23].)

We will also need the following theorem of [31].
Theorem 14 (see [31]). For some explicit constant ψ < 1, it is NP-hard to

distinguish between graphs that have a legal 3-coloring (that colors all edges legally),
and graphs for which every 3-coloring legally colors at most a ψ-fraction of the edges.

Proposition 15. For some explicit constant ψ < 1, it is NP-hard to distinguish
between 5-regular graphs that have a legal 3-coloring, and 5-regular graphs for which
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v2

v1

Fig. 1. Equality gadget.

every 3-coloring legally colors at most a ψ-fraction of the edges.
Proof. Given a graph G(V,E), we show that it can be modified in polynomial-time

to a graph G′(V ′, E′) such that (i) G′ is 5-regular; (ii) |E′| = O(|E|); (iii) G′ is legally
3-colorable iff G is; and (iv) for some constant c > 0 and every 1 ≤ k ≤ |E′|, every
3-coloring of G′ that leaves k edges illegally colored can be transformed in polynomial-
time to a 3-coloring of G that leaves at most ck illegally colored edges. We can then
invoke Theorem 14.

First, we may assume that every vertex in G has degree at least three. Indeed,
suppose we repeatedly remove any vertex of degree at most 2 until the remaining
graph G′′ has minimum degree at least 3. It is easy to see that, given any 3-coloring
of the vertices of G′′, we can add back the deleted vertices of G and color these added-
back vertices in such a way that all the edges incident with them are legally colored.
So, we assume that G has minimum degree at least 3.

Assume first that all vertices in G have degree at most 13. Then we replace each
vertex v by a cluster of d(v) vertices,1 where each vertex handles one outgoing edge.
(That is, if (v, u) is an edge in G, then the vertex representing u in v’s cluster is made
adjacent to the vertex representing v in u’s cluster.) These d(v) vertices are connected
in a cycle by equality gadgets, shown in Figure 1. These equality gadgets are subgraphs
that contain twelve vertices. Two of the vertices are special and have degree two, and
all the rest have degree five. The equality gadget has the property that it is legally 3-
colorable iff the special vertices receive the same color. The two cluster vertices serve
as the special vertices. As each cluster vertex participates in two gadgets and also
has one outgoing edge, its degree is 5. Hence G′ is 5-regular. The number of edges
added is at most 27

∑
v d(v) ≤ 54|E|, and hence, |E′| ≤ 55|E|. Every legal 3-coloring

of G′ colors all cluster vertices with the same color and hence naturally gives a legal
3-coloring of G. Similarly, a legal 3-coloring of G can be extended to a legal 3-coloring
of G′. Any 3-coloring of G′ in which cluster vertices receive different colors causes
at least two edges of G′ to be miscolored. Coloring the vertex corresponding to the
cluster with an arbitrary color in G causes at most d(v) ≤ 13 edges to be miscolored.
Hence the number of illegally colored edges in G′ is smaller than that of G by a factor
of at most 13/2.

If G has a vertex of degree more than 13, we create a new graph G1 as follows.

1Recall that d(v) denotes the degree of vertex v [36].



APPROXIMATING THE DOMATIC NUMBER 189

Let F (·) and κ′ be as in our discussion on expanders above. Similarly as [28], G1

is the same as the G′ constructed in the previous paragraph, except that for each
vertex v, we create a (2/3, κ′)-expander with F (d(v)) vertices and maximum degree
at most 6 (instead of a cycle with d(v) vertices) and do the above-seen operation of
replacing the expander edges by equality gadgets. (Of the F (d(v)) vertices, d(v) are
“real” and represent the neighbors of v, and F (d(v))− d(v) are dummy vertices. As
in the previous paragraph, if (v, u) is an edge in G, then the vertex representing u in
v’s cluster is made adjacent to the vertex representing v in u’s cluster.) Note that G1

has maximum degree at most 2 × 6 + 1 = 13 and has O(
∑

v d(v)) = O(|E|) edges.
Once again, a 3-coloring of G can be efficiently transformed into one for G1 in which
the number of miscolored edges remains the same. Conversely, suppose we have a
3-coloring χ1 of G1. Let X1 be the number of original edges of G that are miscolored
by χ1 and let Y1 be the number of edges in the equality gadgets miscolored by χ1.
We will produce the following coloring χ of G and then analyze χ. For each vertex v,
choose a largest subcluster C(v) of vertices (from its cluster of F (d(v)) vertices) that
receive the same color in χ1 and define χ(v) to be the color assigned to the vertices
in C(v) by χ1. Call an edge (u, v) of G bad if it was properly colored by χ1 in G1

and was miscolored by χ in G. Let X be the number of bad edges. Then the number
of edges miscolored by χ is at most X1 +X. An edge (u, v) is bad only if “u �∈ C(v)
or v �∈ C(u)” holds. Thus, letting x(v) = F (d(v)) − |C(v)| ≤ 2F (d(v))/3, we see
that X ≤ ∑v x(v). Since x(v) ≤ 2F (d(v))/3 and recalling the property of (2/3, κ′)-
expansion, we can check that the number of edges in all the equality gadgets of v that
are miscolored in χ1 is Ω(x(v)). Hence Y1 = Ω(X). Armed with this property and
the fact that G1 has O(|E|) edges and maximum degree 13, we transform G1 into G

′

as described in the previous paragraph.

3.4. Preliminaries. Our reduction closely follows that of [9]. The main differ-
ences are as follows: (i) The outcome of the reduction is one-sided dominating set,
rather than set cover (which is the same thing termed differently). (ii) The starting
point of the reduction is Max 3-colorability rather than Max 3SAT. As mentioned
earlier, the purpose of this change is to have the reduction apply to one-sided domatic
number rather than just one-sided dominating set. (iii) Every vertex in the V1 side
of the bipartite graph will be duplicated 2l/2 times, where l is a parameter of the
reduction. This is a technical condition that seems to be required when we reason
about the one-sided domatic number.

To describe the reduction, we recall two notions used in [9].
Definition 3. A (k, l)-Hadamard code is a set of k binary words of length l,

where every codeword has Hamming weight l/2 and the Hamming distance between
every two codewords is l/2.

There is a simple construction of Hadamard codes when l is a power of 2 and
k ≤ l (see, e.g., [25]).

Definition 4. A partition system B(m,L, k, d) has the following properties:
• There is a ground set B of m points.
• There is a collection of L distinct partitions p1, . . . , pL.
• For 1 ≤ i ≤ L, partition pi is a collection of k disjoint subsets whose union
is B.

• Any cover of the m points by subsets that appear in pairwise different parti-
tions requires at least d subsets.

The following lemma is proved in [9].
Lemma 16. For every c ≥ 0 and m sufficiently large there is a partition system
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B(m,L, k, d) whose parameters satisfy the following:

• L  (logm)c.
• k can be chosen arbitrarily as long as k < lnm

3 ln lnm .• d = (1− f(k))k lnm, where f(k)→ 0 as k →∞.
Moreover, a random collection of L partitions into k subsets with parameters

chosen as above gives with high probability a partition system with f(k) = 2/k.

The randomized construction can be replaced by a deterministic construction
(with a somewhat larger value for f(k)) using techniques developed in [27].

3.5. The construction. The input to the reduction is a 5-regular graphG(V,E)
for which we want to determine whether it is legally 3-colorable, or whether every 3-
coloring of its vertices legally colors at most ψ|E| edges. As noted in Proposition 15,
for some explicit ψ < 1 this problem is NP-hard. The reduction uses the following
parameters, which are chosen so that (k, l)-Hadamard codes exist and Lemma 16
holds:

• k = l = c log log |V | for some sufficiently large constant c. We assume that l
is a power of 2.

• L = 3l, and m = |V |Θ(l).

The output of the reduction is a bipartite graph G′(V1, V2, E
′); when we say

“color” below, we refer to a color-set of 3 colors. The left-hand side vertex-set V2 is
composed of (2|E|)l clusters of vertices, where each cluster contains m vertices. Each
left-hand side cluster is labeled by a sequence of l edges in G and a sequence of l bits;
for each i, the ith bit in the bit-sequence denotes one endpoint (vertex) of the ith edge
in the edge-sequence. Hence, this sequence of bits can also be viewed as a sequence
of vertices. The right-hand side vertex-set V1 is composed of k disjoint rays, and each
ray is labeled by a codeword of the (k, l)-Hadamard code. Each ray is composed of
|V |l/2|E|l/2 clusters, where each cluster contains 6l vertices. Each right-hand side
cluster is labeled by a sequence of l/2 vertices in G and a sequence of l/2 edges in G.
Equivalently, we may merge these two sequences to one sequence of length l, where
the codeword of the ray containing the cluster is used as a selector function specifying
the order in which vertices and edges are merged (a vertex when the corresponding
bit in the codeword is 0, and an edge when the corresponding bit in the codeword
is 1). This is called the merged label of a right-hand side cluster. Individual vertices of
right-hand side clusters are further labeled by a sequence of l/2 colors (i.e., a ternary
sequence), a sequence of l/2 pairs of distinct colors (i.e., a sequence in base 6), and
a number between 1 and 2l/2. Simple counting shows that for each of the labeling
schemes that we defined, the number of available labels is exactly equal to the number
of objects that need to be labeled.

We say that a left-hand side cluster and a right-hand side cluster are compatible
if their labels agree coordinate-wise in the following sense: for coordinate i, if the
merged label of the right-hand side cluster has an edge, then this is the ith edge in
the sequence of edges labeling the left-hand side cluster, and if the merged label has
a vertex, then this is the ith vertex in the sequence of vertices labeling the left-hand
side cluster. Edges in G′ only connect compatible clusters (compatibility is necessary
but not sufficient, as will be seen shortly). Note that each left-hand side cluster
is compatible with exactly one cluster in each ray. Each right-hand side cluster is
compatible with 5l/22l/2 left-hand side clusters; the term “5” here arises from the fact
that G is 5-regular, and the term “2” follows from the fact that every edge has two
end-points.
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In order to describe the edge set E′, we use the notion of a partition system.
For each left-hand side cluster C�, we have L = 3l partitions with properties as in
Definition 4. (Recall that C� has m elements as required by Definition 4.) Each
partition is labeled by a sequence of l colors. This sequence of colors is interpreted
as a sequence of colors for the sequence of vertices that label C�. Note that the same
vertex of G may appear several times in the sequence of vertices that labels C�; we
do not require the colors given to this vertex to be the same.

Consider an arbitrary vertex v in a cluster Cr that belongs to ray i. We now
describe the set of neighbors that it has in a compatible left-hand side cluster C�.
Recall that v is labeled by a sequence of l/2 colors and a sequence of l/2 pairs of
distinct colors. These colors give in a natural way a coloring for the merged sequence
of vertices and edges labeling Cr. The vertex v was also labeled by a number between
1 and 2l/2; this label is ignored when determining the set of neighbors of v (that is,
Cr has 2

l/2 identical copies of v).

The coloring of the merged sequence of Cr induces in a natural way a coloring
for the sequence of vertices labeling C�. This coloring labels one particular partition
p. Vertex v is connected to all vertices (points) of the ith part of partition p (recall
that i is the ray to which Cr belongs). This completes the description of E

′.
Lemma 17. If G is legally 3-colorable, then the one-sided domatic number of G′

is 6l.

Proof. We first show that G′ has a one-sided dominating set that includes exactly
one vertex from every right-hand side cluster. Consider a sequence of l arbitrary legal
3-colorings of G (the same legal 3-coloring may appear multiple times in the sequence).
Now consider an arbitrary right-hand side cluster. It is labeled by a length l merged
sequence of vertices and edges. The sequence of legal 3-colorings induces a coloring on
this merged sequence. The cluster contains exactly 2l/2 vertices whose label induces
the same coloring. Select one of them arbitrarily to be included in the one-sided
dominating set.

To show that indeed we have a one-sided dominating set, we need to show that
every left-hand side vertex u is covered. Consider the cluster C� to which u belongs.
It is labeled by a sequence of l edges and a sequence of l vertices. The sequence of
legal 3-colorings induces a coloring for the sequence of vertices. This coloring agrees
with the name of one partition p. Let i be the part of partition p to which u belongs.
Consider the right-hand side cluster Cr that is compatible with C� and belongs to ray
i. The vertex selected from Cr necessarily covers u.

We now show that the one-sided domatic number is at least 6l (in fact, it is
exactly 6l). Consider an arbitrary legal 3-coloring of G. From it, we can derive 6l

distinct length l sequences of legal 3-colorings, where in each of the l coordinates
we put one of the six permutations of the legal 3-coloring. Each of these sequences
gives a one-sided dominating set as described above. We show that these one-sided
dominating sets can be chosen to be distinct. This follows from the fact that for each
sequence of legal 3-colorings and every right-hand side cluster, we can have 6l/23l/2

equivalence classes of 2l/2 vertices (who differ only in the number they are given in
the third label) and 6l/23l/2 equivalence classes of 2l/2 sequences of colorings (who
differ only in the way they color vertices not in the merged sequence of the right-hand
side cluster). Preserving the structure of the equivalent classes, we can match the
sequences of legal 3-colorings with the vertices of a right-hand side cluster.

Lemma 18. If every 3-coloring of G legally colors at most ψ|E| edges, then the
smallest one-sided dominating set in G′ is of cardinality at least (1−o(1))|V1| lnm/6l.
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Proof. The proof is essentially identical to that of Lemma 7 in [9] and is
omitted.

By making m sufficiently large, we can have |V2| > |V1| and lnm  ln |V2|, and
the proof of Theorem 11 follows.

Appendix A. Multicoloring version. In the domatic multipartition problem,
we are additionally given an integral weight x : V "→ N indicating in how many
dominating sets each vertex can appear. The domatic number problem has x(v) = 1
for each v; the r-Conf problem of [13] has x(v) = r for each v.

We can reduce the multipartition problem to the ordinary partition problem.
Given a graph G and weight vector x, form a graph G′ as follows. G′ has x(v) copies
of each vertex v connected as a clique. For each edge uv in G, the copies of u and
v form a complete bipartite graph in G′. Any minimal dominating set in G′ is also
a dominating set in G, and taking one copy of each vertex of a dominating set in G
also gives a dominating set in G′. Further, a domatic partition of G′ is in one-to-one
correspondence with a multipartition of G (within the weight constraints). Thus,
the results obtained in this paper for the domatic number problem carry over to the
domatic multipartition problem, replacing δ by minv d(v)x(v) and n by

∑
v x(v).

Appendix B. Overview of some ingredients from [9].
Parallel repetition of two-prover proof systems. There is a straightforward

one-round two-prover proof system for Max 3-colorability-5 that has the following
properties: on yes instances, the verifier always accepts, and on no instances (when
at most a (1 − ε)-fraction of the edges can be legally colored simultaneously) the
verifier accepts with probability at most 1− ε/3. Give a 5-regular graph G, the proof
system proceeds as follows. The verifier sends to the first prover a random edge in
G and to the second prover a random vertex from that edge. We call this vertex the
common vertex. It is important that the first prover does not know which endpoint
of the edge is the common vertex and that the second prover does not know which
edge was received by the first prover. The first prover replies with two different colors
(out of the three allowable colors) for the two vertices that are the endpoints of the
edge. The second prover replies with a color for the common vertex. The verifier
accepts only if the two provers give the same color to the common vertex. For a yes
instance G the two provers can answer according to the global legal 3-coloring and
ensure that the verifier accepts with probability 1. For a no instance G, regardless of
the strategy of each prover (where a strategy is a function from questions to answers),
the acceptance probability is at most 1− ε/2, where probability is computed over the
random choices of the verifier.

The l-fold parallel repetition of this one-round two-prover proof system is as
follows. The verifier sends to the first prover a tuple of l random edges and to the
second prover a tuple of l random vertices, one from each of these edges. Each prover
replies with colors to all the vertices that it receives. The verifier accepts if on every
one of the l common vertices, the two provers agree on the color that they give. It
is not hard to see that on yes instances, the provers still have a strategy that makes
the verifier accept with probability 1. The parallel repetition theorem [34] shows that
on no instances, the verifier accepts with probability at most (1 − ε)cl, where c is a
constant (that depends on ε).

Separating codes and k-provers. To eventually get  lnn hardness of ap-
proximation results, two-prover proof systems are extended to k-prover systems in a
special way. As in the two-prover proof system, the verifier selects l edges at random
and a random vertex within each edge. This gives a total of (2|E|)l possible queries.
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Each of the k provers is sent some subset of the l edges and l vertices using the fol-
lowing rule. A (k, l)-Hadamard code is a collection of k binary words of length l each,
for which the Hamming distance between any pair of words is “large” (specifically,
l/2). With each prover we associate one codeword from the Hadamard code. The
verifier sends to each prover l/2 edges and l/2 vertices, selected according to the 1’s
and 0’s in the codeword of the respective prover. Namely, if the ith bit in the code
is 1, the next entry in the query is the respective ith edge (among the l edges in the
tuple). If the ith entry is 0, the ith vertex in the vertex-tuple is sent. Considering
separately two of the provers, the fact that their codewords have a large Hamming
distance implies that in many coordinates one prover will receive an edge while the
other prover will receive a vertex on this edge. This is similar to the scenario in the
two-prover proof system. Intuitively, we may view the k-prover proof system as

(
k
2

)
correlated two-prover proof systems going on in parallel. It is natural to have the
verifier accept if all

(
k
2

)
proof systems are accepting. The definition of acceptance

used in [9] is more subtle and will not be discussed in this overview.

Next a bipartite graph G′(V1, V2, E
′) is built based on this scenario. Specifically,

the vertices in V1 describe the provers/queries schema. The set V1 corresponds to the
provers and is partitioned into k “rays” V j

1 , 1 ≤ j ≤ k, one ray for each prover. The

sets V k
1 are further partitioned into disjoint subsets V

j
1 (Q), where Q ranges over all the

|V |l/2|E|l/2 possible questions that a prover can receive. On each possible question,
the prover must answer with a coloring of the l/2 edges and l/2 vertices received.
Thus, the V j

1 (Q) sets are further divided into all possible answers. Therefore, there

are 3l/2 · 6l/2 points inside V j
1 (Q) in this final division; a point for each possible

coloring of the l/2 vertices and l/2 edges. In addition, for technical reasons, each
point (possible answer) of each prover is duplicated 2l/2 times.

Ground sets and random partitions. To determine the structure of V2, some
ideas essentially due to [24] (and extended in [9]) are used.

The set V2 is partitioned into (2|E|)l ground sets C�, one ground set per each
possible query. Each ground set contains m points for m = |V |Θ(l). It is instructive
to note the following asymmetry. Given a query, namely, a sequence of l edges and
l corresponding endpoints for the edges, consider its corresponding ground set in V2.
There are exactly k sets V j

1 (Q) that are compatible with this sequence, one per prover
(since the question to the provers is completely determined by the Hadamard code).
On the other hand, given a question cluster V j

1 (Q), many possible query-base ground
sets in V2 could have caused this question. Indeed, since the question contains only l/2
edges and l/2 vertices, this partial information can be completed in 5l/22l/2 ways to
give compatible l edges and l vertices. Each vertex sent to this prover has 5 neighbors
and thus 5 ways of “completing” this vertex into a (compatible) edge. For each edge
sent to this prover, there are 2 possibilities for which of the two vertices to put in the
resulting query.

We use L = 3l random partitions of C�, each partitioning C� into k parts. Con-
sider the l-tuple of vertices in a possible query (namely, the part of the query corre-
sponding to the chosen vertices, one per each edge). Note that the number L = 3l

of partitions of each ground set exactly equals the number of possible colorings 3l of
the vertices in that query. We can thus form a 1-1 correspondence between the 3l

partitionings and the 3-coloring (not necessarily a consistent one) of the l vertices in
the query base. Each partition is now regarded as a coloring and vice versa. Recall
that a point in the final subpartition cluster of V1 corresponds to an answer to the
coloring of the query of l/2 edge/vertex pairs. This corresponds to a coloring of the
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l vertices of the cluster C� and hence gives a vertex coloring, and thus a partition of
C�. The edges between the vertices of V1 and V2 are defined as follows. Each vertex
(namely, coloring or answer) v ∈ V j

1 (Q) is connected to the jth part of the partition
corresponding to v (as v is a coloring, a partition is also associated with v).

Now, consider the graph G′ resulting from a 3-colorable graph G. We can choose
one point (answer) per each question-cluster in V1, so as to cover each C�. Thus all the

C� are covered using at most k · (2 · E)l vertices. This will happen if the provers use
strategies which are all part of a global 3-coloring, and this gives a small dominating
set. On the other hand, consider the resulting graph G′ when only 1− ε of the edges
of G can be simultaneously legally colored. Because of the parallel repetition which
greatly increases the gap, the provers essentially cannot use a joint strategy. This
means that each pair of answers vj ∈ V j

1 (Q), vq ∈ V q
1 (Q) chosen corresponds to two

different colorings. Hence a ground set C� is essentially covered via random sets each
containing m/k random elements of C�. Thus, the number of elements needed in

order to cover C� is roughly k lnm. This gives a total of roughly k · (2 · E)l ln |V ′|
minimum one-sided dominating sets for a logarithmic gap.

Zero-knowledge and the domatic number. Given the fact that a single
“small” one-sided dominating set exists, we can permute the colors (as done in zero-
knowledge protocols in order to “hide” information) to show the existence of “many”
disjoint dominating sets, hence a “large” domatic number. Namely, once a 3-coloring
of G exists, one gets 6 legal colorings for G. This implies a total of 6l colorings (which
can be completed into global coordinatewise-compatible colorings) of any l-tuple of
vertices. The possibility for color permutation was the main reason for reducing from a
coloring and not a satisfiability problem. Hence, we either get many small dominating
sets which implies a large one-sided domatic number, or any dominating set is large,
which gives a small one-sided domatic number.

Acknowledgments. We would like to thank Satoshi Fujita and Mario Szegedy
for helpful discussions and the two referees for their helpful comments. The first
author is the incumbent of the Joseph and Celia Reskin Career Development Chair.
The second author would like to thank Kazuo Iwama at Kyoto University for his
hospitality.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method, John Wiley, New York, 1992.
[2] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs,

J. Algorithms, 12 (1991), pp. 308–340.
[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and in-

tractability of approximation problems, J. ACM, 45 (1998), pp. 501–555.
[4] J. Beck, An algorithmic approach to the Lovász Local Lemma, Random Structures Algorithms,

2 (1991), pp. 343–365.
[5] C. Berge, Balanced matrices, Math. Program., 2 (1972), pp. 19–31.
[6] M. A. Bonucelli, Dominating sets and domatic number of circular arc graphs, Discrete Appl.

Math., 12 (1985), pp. 203–213.
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Abstract. This article presents two algebraic characterizations and two related complete prob-
lems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell.,
16 (1996), pp. 183–236]. DLIN is essentially the class of all functions that can be computed in linear
time on a Random Access Machine which uses only numbers of linear value during its computations.

The algebraic characterizations are in terms of recursion schemes that define unary functions.
One of these schemes defines several functions simultaneously, while the other one defines only one
function. From the algebraic characterizations, we derive two complete problems for DLIN under
new, very strict, and machine-independent affine reductions.

Key words. linear time, model of computation, Random Access Machine, completeness, recur-
sion schemes, affine reductions
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1. Introduction. In the definition of the main complexity classes like determin-
istic or nondeterministic polynomial time or polynomial space, the choice of the under-
lying machine model is not very crucial. The definition does not depend on whether
one chooses 1-tape, multitape, or multidimensional Turing machines or RAMs. As
long as the cost associated with a computation is reasonable, all definitions define
the same classes—with the notable exception of the nonreasonable unit-cost model
for RAMs that are allowed to multiply numbers. Linear time, on the other hand, is
a much more delicate notion. For instance, as in algorithm design, it is very sensi-
tive to the representation of inputs and to changes of the computational model. It
is therefore a nontrivial task to define a robust notion of linear time. Some authors
tried to circumvent this problem by considering so-called quasi-linear time, i.e., time
O(npolylog(n)) [33, 23, 12]. On the other hand, there is even no general agreement
on whether linear time on Turing machines is too weak or too powerful [31].
The underlying formalization of deterministic linear time for this article, the

class DLIN, was defined and investigated by one of the authors in a series of articles
[18, 17, 19]. Before we recall some details of this definition, let us first have a closer look
at why deterministic linear time on Turing machines has little to do with linear time
algorithms on, say, graphs. First, such algorithms rely usually on more sophisticated
representations of the input graphs, such as adjacency lists. Such lists are basically
pointer structures, and the algorithms usually make intensive use of pointer variables.
As the movements of the heads of a Turing machine are only local, it is hard to see how
such “pointer jumping” algorithms could be simulated on a Turing machine in linear
time. On the other hand, RAMs are perfectly suited to perform such algorithms. The
definition of the class DLIN for string problems is based on the idea of representing
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Fig. 1. The known inclusions between the linear time classes considered.

strings by pointer structures in analogy to efficient graph representations. In a first
step, a string w = w1 · · ·wn of length n is partitioned into m := �n/l� pieces of
length l = � 12 log n�. Then such a partitioned string is encoded as a unary function
f : {1, . . . ,m} → {0, . . . ,m} by defining f(i) to be the number which is encoded1
by the ith piece of the (partitioned) string w. A computation is linear time if it
needs only a linear number of steps in m. The second characteristic feature of the
model is that, during a computation, only numbers of value O(m) are allowed. The
model is quite robust with respect to arithmetic operations. We can choose addition
and subtraction as the basic arithmetic operations. Allowing multiplication does not
change the computational power. A complete definition is given in section 2. With
DLIN and NLIN we denote the classes of problems that can be computed on such
a deterministic (resp., nondeterministic) RAM in linear time. Both classes are quite
robust and seem to be very reasonable formalizations of the intuitive notion of linear
time.
Figure 1 shows the known inclusions between DLIN, NLIN and the linear time

classes for (multitape) Turing machines, DTIME(n), and NTIME(n). The separa-
tion of DTIME(n) from NTIME(n) was shown in [30].
In [15, 16, 18, 21], it is shown that NLIN, the nondeterministic counterpart of

DLIN, has a number of nice properties.
• NLIN contains all 21 NP-complete problems that were defined by Karp in
his seminal paper on NP-completeness [25].
• NLIN coincides with the class of problems that can be characterized by
logical formulas of the form ∃f1, . . . , fk for all x ϕ, where the fi are unary
function symbols and ϕ is a quantifier-free formula.
• There are natural complete sets for NLIN under DTIME(n)-reductions.
These complete sets are derived from the mentioned logical characterizations.
As DTIME(n) ⊂ NTIME(n) ⊆ NLIN, they are not in DTIME(n).
• NLIN coincides with the class of problems that can be solved in linear time
on a nondeterministic Turing machine that is allowed to perform a constant
number of string-sorting operations.

In a very recent paper [26], a logical characterization of NTIME(n) was given. Log-
ical characterizations of deterministic linear time classes seem to be more difficult to
come by. For DLIN, a decisive step was accomplished by one of the authors [34],
who gave the first machine-independent characterization of this class and of related
deterministic linear time classes.
In this article, we give algebraic characterizations of DLIN, from which we derive

complete problems for this class under very strict reductions. These results signifi-
cantly simplify and improve the characterizations that were given in [34]. We hope

1via the dyadic encoding which maps the string 0 · · · 0 to 0, 0 · · · 01 to 1, 0 · · · 10 to 2, and so on.
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that these algebraic characterizations will lead to clean logical characterizations of
DLIN which will eventually give us logical games as tools for lower bound proofs.
For a discussion of the connections between linear time complexity classes and inex-
pressibility proofs in finite model theory, see [35].
It should be noted that there exist many characterizations of classical compu-

tational complexity classes in terms of algebraic recursion schemes in the literature,
e.g., [4, 22, 23, 6, 2, 1, 14, 28, 3].
The article is organized as follows. In section 2, we give precise definitions of the

underlying computational model and the class DLIN. Furthermore, we introduce
the notion of affine reductions, a very strict type of reductions that are natural in
the context of RAM computations. In section 3, we describe the algebraic recursion
schemes that are used in the characterizations which are proved in section 4. In
section 5, we exhibit complete problems for DLIN. We conclude with a summary of
our results and possible ways they may be extended in section 6.

2. Preliminaries. For natural numbers n > 0, we write [n] to denote the set
{0, . . . , n − 1}. All arithmetic operations that we consider take only nonnegative
integer values. In particular, we use the underflow convention that a − b takes the
value 0 if a < b.

2.1. RAM data structures. As mentioned in the introduction, the notion of
linear time depends strongly on the computational model and the representation of
the input. In this article, our model will be the RAM. The basic objects that a RAM
manipulates in a single step are numbers, as opposed to Turing machines where the
basic objects are characters of a finite alphabet. Therefore, it is reasonable to view
the input and the output of a RAM as sequences of numbers, as opposed to sequences
of characters, i.e., strings. It has turned out in previous work [17, 19] that one gets
a robust model of linear time on RAMs if the running time, the number of registers,
and the value of all numbers used during a computation, including the input numbers,
are linearly bounded in the length of the input sequence, i.e., in the number of its
numbers. A sequence a0, . . . , an−1 can be nicely represented by a function f : [n]→ N,
where f is defined by f(i) = ai for each i ∈ [n]. In general, we want to be able to
consider inputs that consist of several sequences of numbers. This leads to our first
basic definition. Let t be a set of function and constant symbols. A RAM data
structure s of type t consists of

• a positive size n ∈ N,
• a constant C ∈ N for each constant symbol C of t, and
• a function f : [n]→ N for each function symbol f in t.

We refer to constants C of s by s.C and to functions f of s by s.f . We consider
the size as a special constant symbol that appears in every type without mentioning
it. Similarly, we consider the identity function id(x) = x as a function in any type
t structure without mentioning it explicitly. We refer to the size of a structure s
by s.n. In our notation, we usually do not distinguish between constant or function
symbols and the actual values they take in a structure. As it is crucial for all of
our considerations that the input numbers are linearly bounded in n, we pay special
attention to the size of the values s.f(i) and s.C compared with s.n. If c is a natural
number such that s.f(i) ≤ cs.n for each i ∈ [n] and each f ∈ t, and s.C ≤ cs.n for
each C ∈ t, then we say that s has magnification bound c or that s is c-bounded or
m(s) ≤ c. Intuitively, the magnification bound plays a similar role for RAM data
structures as the size of the alphabet does for strings.
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The restriction of the size of the numbers to be linearly bounded in n, while it
may seem at first artificial, is an important part of our model. On one hand, we do
not want arbitrary large values in our RAM registers, as, e.g., allowing linear increase
in register length would result in exponential increase in the value represented. On
the other hand, limiting the values strictly to n would result in at least technical
awkwardness. For example, in the natural representation of graphs by adjacency
lists, the numbers that occur are bounded by the number of vertices plus the number
of edges.
Our convention does not prevent RAM algorithms from manipulating arbitrarily

large words or integers at a higher level: e.g., as in real computers, where the word
size is fixed, a large integer x can be represented in contiguous registers as a list of
smaller integers x0, x1, . . . , xk, xi < b, x = x0 + x1b + · · · + xkbk, i.e., in base b, and
we take here b = θ(n).
For types t, t′ a (t, t′)-RAM function Γ is a function which maps, for some con-

stants c(Γ), d(Γ), every RAM data structure of type t with magnification bound c(Γ)
to a RAM data structure of type t′ with magnification bound d(Γ). Γ is linear if
Γ(s).n = O(s.n).
A t-RAM decision problem L is a set of RAM data structures of type t with

magnification bound c for some constant c.
Our RAM data structures are minimally structured. They can encode more

common data structures such as graphs, lists, lists of lists, etc. in a transparent way.
We give two examples for such encodings that will be used in what follows.

Example 1. (a) Many data can be viewed at a lower level as mixed lists of
nonnegative integers and special symbols, e.g., letters, parentheses, operators, equality
signs, and so on, from a fixed alphabet Σ. For example, the system of equations

f2(x) = 37 + f0(x), f4(x) = f1(x)− 51

can be represented by a list of 27 elements: f, 2, (, x, ), =, 37, . . . ,−, 51. To distinguish
numbers from other symbols, we represent each symbol of Σ by a number between 0
and k−1 and each number a by a+k, where k is the size of Σ. If, in the example above,
the alphabet Σ has the 9 symbols f, x, (, ), = , + , − , × , ;, the system of equations
can be represented by the RAM data structure s of type {g}, where s.n = 27 and
s.g(0) = 0, s.g(1) = 2 + 9 = 11, s.g(2) = 2, . . . , and s.g(26) = 51 + 9 = 60. Note that
s has magnification bound 3.
(b) As a second example, we show how directed graphs can be represented by

RAM data structures. The representation is an encoding of the adjacency list. Let G
be a directed graph with vertex set V and edge set E. Let m and m′ be the number of
elements of V and E, respectively. We represent the vertices by the numbers 1, . . . ,m
and the edges by the numbers m+ 1, . . . ,m+m′. If vertex 1 has out-degree l1, then
the numbers m+1, . . . .m+ l1 represent the outgoing edges of vertex 1. The numbers
m+ l1 + 1, . . .m+ l1 + l2 represent the outgoing edges of vertex 2, and so forth.
The RAM data structure s(G), which represents G, has type {m,m′, f−, f+},

where m and m′ are constant symbols and f− and f+ are function symbols. s(G) is
defined as follows.

• s(G).n = m+m′ + 1.
• s(G).m = m.
• s(G).m′ = m′.
• s(G).f−(i) = 0 for all i ∈ {1, . . . ,m}.
• s(G).f+(i) is the first outgoing edge from vertex i for all i ∈ {1, . . . ,m}.
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Fig. 2. An example graph G and part of its representation.

• For each number i which represents an outgoing edge of vertex j, we have
f−(i) = j, and f+(i) is the number of the target vertex of i.

As an illustration, consider the representation of the graph G, which is shown in
Figure 2.
We have s(G).n = 11. The function values s(G).f−(i) and s(G).f+(i) for all

i ∈ [11] are given in Figure 2. Note that we do not make any assumption on the order
in which the outgoing edges of a vertex are represented.
RAM data structures are very similar to finite structures as they appear in finite

model theory [9]. A finite structure consists of a universe (the set of basic elements),
constants, relations, and functions. There are the following main differences:

• We do not make use of relation symbols.
• All function symbols are unary.
• In a RAM data structure of size n, the “universe” is [n]. Unlike in finite
structures, we allow that functions and constants take values outside the
“universe”—but only in [cn] for some constant c.

2.2. RAMs and linear time. In this section, we define precisely our model of
computation and the complexity class DLIN.
A simple {+ , − , × }-RAM M is a RAM with two accumulators A,B, a special

register N , and registers Ri for every i ≥ 0. Its program is a sequence I(1), . . . , I(r)
of instructions, each of which is of one of the following forms:

• A := c for some constant c ≥ 0,

• A := A ∗B, where ∗ ∈ {+ , − , ×},
• A := N ,

• N := A,

• A := RA,

• B := A,

• RA := B,

• IF A = B THEN I(i0) ELSE I(i1),

• HALT.

The meaning of most of these instructions is straightforward. If the accumulator
A contains a number l, then the execution of the instruction A := RA copies the
contents of register Rl into A, whence the execution of RA := B copies the contents
of B into Rl. We require the last instruction I(r) of the program to be HALT. If
before the execution of an instruction A := A − B the content of A is smaller than
that of B, then A is set to 0.
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More generally, we define analogously simple Op-RAMs for any set Op of binary
and/or unary operations.
Let t be a type that consists of the constant symbols C1, . . . , Cl (besides n) and

function symbols f1, . . . , fk. We say that a RAM data structure of type t corresponds
to register values of a RAM, or vice versa, if

• the special register N contains s.n,
• the registers R(s.n)k, . . . , R(s.n)k+l−1 contain s.C1, . . . , s.Cl, and
• for each i ∈ {1, . . . , k}, the consecutive registers R(i−1)(s.n), . . . , Ri(s.n)−1 con-
tain s.fi(0), . . . , s.fi(s.n− 1), respectively.

At the beginning of a computation, on input s, the register values of the RAM
correspond to s and A and B, and all registers Ri that are not determined by this
correspondence have initial value 0.2 The computation starts with instruction I(1)
and finishes when it executes a HALT statement. M computes the RAM function Γ
if, for each c(Γ)-bounded input s, the computation terminates and, at the end of the
computation, the register values correspond to Γ(s).
Let DLIN denote the class of RAM functions Γ that can be computed in linear

time O(n) (i.e., using O(n) instructions) on a simple { + , − , × }-RAM which uses
only numbers of value O(n) for inputs of size n. We note that our convention that a
RAM that works in time O(n) should use only values O(n) as register contents and
addresses naturally implies that such a RAM also uses only a linear memory. This
is a natural restriction as one expects that an algorithm which works in linear time
O(n) does not use space more than O(n).
Although it is not decidable whether a given RAM M uses only linear values for

RAM data structures with a given magnification bound c, by adding overflow test
instructions after each instruction of M , every RAM M can be easily transformed
into a RAM M ′ such that, for each c > 0, there is a d > 0 with the following two
properties:

1. M ′ uses only values < ds.n on c-bounded inputs s.
2. If M uses only values < ds.n on c-bounded inputs s, then M ′ simulates the
behavior of M .

We call such a RAMM ′ safe and will assume safety for all the RAMs that we consider
in this article. In some of our proofs, we will make use of multimemory RAMs, i.e.,
RAMs with several sequences R1, . . . , Rk of registers and instructions A := RjA and

RjA := B for every j ≤ k, with the obvious semantics. This does not change the power
of RAMs significantly [17]. In particular, the class defined as DLIN does not change
if one uses multimemory RAMs instead of RAMs. More generally, complexity classes
on RAMs are robust. Many operations and different statements can be introduced
without changing the class.

Proposition 2.1. A {+ , − , × ,÷2}-RAM 3 M working in time O(n) and using
only integers of value O(n) can be simulated in time O(n) on a {+}-RAM M ′, which
again uses only integers of value O(n).

Proof. We are going to demonstrate how multiplication can be simulated on a
multimemory {+}-RAM. The simulation of the other operations is similar and even
simpler. More generally, it was proved in [17] that the proposition holds for any set
of linear time turing computable (LTTC) operations, such as −, ÷2, shift, XOR,
concatenation, etc., and for all time bounds t(n) ≥ n in place of O(n).

2In our context, the initialization with 0 could also be done by the program itself, as only the
first dn registers are used during the computation for some fixed d.

3Here ÷2 denotes the unary operation “division by 2.”
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Let c be a constant such that M uses, on inputs of size n, only numbers that
are smaller than cn. The main idea is to use precomputed tables, in particular, a
multiplication table for integers that are smaller than b := �√cn�. The simulation of
M by M ′ proceeds in two stages.
Precomputation.
(1) Compute b = �√cn�.
(2) For each integer i < cn, compute and store in two tables Tmodb and T÷b the
lower and the higher part of i, respectively. More precisely, let Tmodb[i] =
i mod b and T÷b[i] = i÷ b.

(3) For each integer i < b, compute and store T×b[i] = ib.
(4) For every i, j < b, compute T [ib+ j] = ij. T can be seen as a multiplication
table for integers that are less than b.

Each of these tables can be computed by M ′ in time O(s.n). As an example, the
computation of T is based on the following induction:

T [ib+ (j + 1)] =

{
T [ib+ j] + i if j + 1 < b,

0 otherwise.

Main computation. M ′ works exactly as M does, except that each multipli-
cation statement A := A × B is simulated in constant time by making use of the
precomputed tables. Let x and y denote the numbers stored in A and B, respectively.
As the product is not allowed to be as large as b2, one of the factors, say, x, must be
smaller than b. Hence

x× y = x× (y mod b) + x× b× (y ÷ b)
= T [T×b[x] + Tmodb[y]] + T×b[T [T×b[x] + T÷b[y]]].

2.3. Affine reductions. In order to studyDLIN-complete problems and, more
generally, to define a machine-independent reduction adapted for low complexity prob-
lems, we now introduce some simple algebraic notions and results about transforma-
tions of RAM data structures.

Definition 2.2. A nondecreasing affine function, for short affine function, is a
function A : Nk → N of the form A(x1, . . . , xk) = a0 + a1x1 + · · · + akxk, where the
constants a1, . . . , ak are nonnegative integers and a0 is any constant integer such that
a0 ≥ 0 if a1 = a2 = · · · = ak = 0.

Definition 2.3. Let T be a RAM function which maps RAM data structures of
type t to RAM data structures of type t′. T is an affine transformation if the following
conditions hold.

(1) There are constants l, d1, . . . , dl and affine functions α1, . . . , αl such that, for

each RAM data structure s of type t, T (s).n =
∑l
i=1 diαi(s.n).

(2) For each constant symbol C ′ �= n of t′, there is an affine function βC′ such
that, for each RAM data structure s of type t, T (s).C ′ = βC′(s.C), where C
is the vector of all constant symbols of t, including n.

(3) For each function symbol g of t′, each i ≤ l, and each r < di, there is a
function symbol fg,i,r of t, possibly the identity function symbol, and an affine
function Ag,i,r such that, for each i ≤ l, r < di, for each s, and x < αi(s.n),

T (s).g

(
r + dix+

∑
j<i

djαj(s.n)

)
= Ag,i,r(s.C, s.fg,i,r(x)),

where C is as above and s.fg,i,r(x) is interpreted as 0 whenever x ≥ s.n.
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Fig. 3. Example of an affine transformation.

Note that each T (s).g(y) depends on only one value s.fg,i,r(x). Also note that
the size of the transformed input T (s) is given by an affine function with respect to
the size of s.
Intuitively, affine transformations allow linear transformations as well as “shuf-

fle” and “concatenation” of the functions of the input structure. We illustrate the
definition with a very simple example.

Example 2. Let t consist of the function symbols h1, . . . , h4, and let t
′ consist of

the function symbol g and the constant symbol B. We define an affine transformation
from t-structures to t′-structures by choosing the following parameters.

• l = 2.

• d1 = 3, d2 = 2.

• α1(n) = α2(n) = n.

• βB(n) = n.

• fg,1,0 = h1, fg,1,1 = h2, fg,1,2 = h3.

• fg,2,0 = h3, fg,2,1 = h4.

• Ag,1,0(n, y) = n+ 2y + 1.

• Ag,1,1(n, y) = 3y + 2.

• Ag,1,2(n, y) = 4y + 3.

• Ag,2,0(n, y) = 3n+ y + 5.

• Ag,2,1(n, y) = 3y + 7.

Figure 3 shows s and T (s) for an input structure s with s.n = 4. For example,
g(14) = 20 because 14 = 0 + 2 × 1 + 3 × 4 and Ag,2,0(4, fg,2,0(1)) = 3 × 4 + 3 + 5.
The function g in T (s) can be seen as the concatenation of the shuffle of three linear
transformations of h1, h2, h3, respectively, and the shuffle of two linear transformations
of h3 and h4, respectively.
Our transformations compose well as is shown by the result that follows. The

proof is straightforward.
Lemma 2.4. If T and T ′ are affine transformations, then the composed transfor-

mation T ′ ◦ T is also affine.
Definition 2.5. Let L,L′ be two decision problems, i.e., sets of RAM data

structures. An affine reduction from L to L′ is an affine transformation T such that,
for each RAM data structure s, we have s ∈ L if and only if T (s) ∈ L′. If such a
reduction exists, we write L ≤a L′.

Remark 1. The intention of the notion of affine reduction is two-fold. Affine
reductions are

• machine-independent and
• at least as restrictive as the classical notions of reductions as indicated by the
following proposition.

Proposition 2.6. An affine transformation can be computed by a deterministic
Turing machine that works both in linear time and logarithmic space (when RAM data
structures are represented by strings).
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Fig. 4. Example of an affine projection.

Remark 2. In fact, affine reductions refine the very strict reset-log-lin reductions
defined and used by [5].
In this article, we are mainly interested in RAM functions and not in decision

problems. For a reduction between RAM functions, we need a means to extract a
RAM data structure from another, possibly larger, RAM data structure. For this
purpose, we define affine projections, which are much stricter than affine transforma-
tions.

Definition 2.7. Let t and t′ be types of RAM data structures. An affine pro-
jection P is a transformation

P : (m, s) −→ Pm(s),

where m ∈ N and s and Pm(s) are RAM data structures of respective types t and t′,
such that Pm(s) is defined as follows.

(1) For each constant symbol C of t′, and, in particular, for the symbol n, the
values Pm(s).C are determined in one of the following two ways.
• Either there is a constant symbol DC of t such that, for each t-structure
s and each m, it holds that Pm(s).C = s.DC , or
• there are a function symbol fC of t and an affine function αC : N → N

such that, for each t-structure s and eachm ∈ N, it holds that Pm(s).C =
s.fC(αC(m)).

(2) For each function symbol g of t′, there are a function symbol fg of t and
an affine function Ag : N

2 → N such that, for each t-structure s and each
m, a ∈ N, it holds that Pm(s).g(a) = s.fg(Ag(m, a)).

In this definition, we again stick to the convention that s.f(x) = 0 whenever
x ≥ s.n.
Intuitively, the additional argument m in P corresponds to the input size, and

each component of the output Pm(s), e.g., Pm(s).g(a) = s.fg(Ag(m, a)), is a copy of
some component of the original output s, the address of which is given by some affine
function.

Example 3. We continue Example 2. Again let t′ consist of the function symbol
g and the constant symbol B, and let t have the constant symbol C and the function
symbol h. In Figure 4, we illustrate Pm(s

′) for m = 4 and the affine projection P ,
which is given by setting

• fn = g and αn(m) = 2m,
• fC = g and αC(m) = m, and
• fh = g and Ah(m, a) = 3m+ a,
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where s′ = T (s) is the transformed structure from Example 2. The reader should note
how m is used to determine where the values for Pm(s

′).n, Pm(s′).C, and Pm(s′).h
can be found in s′.g.
Affine projections compose well as is shown by the technical result that follows.

The proof is straightforward.
Lemma 2.8. If P and P ′ are affine projections of appropriate types and α : N→ N

is an affine function, then the mapping P ′′ defined by the commutative diagram

i.e., such that P ′′(m, s′′) = P (m,P ′(α(m), s′′)), is also an affine projection.
Definition 2.9. Let Γ,Γ′ be two RAM functions. An affine reduction ρ from Γ

to Γ′ is a pair (T, P ), where T is an affine transformation and P is an affine projection
such that the following diagram is commutative for all RAM structures s, s′, t, t′ of the
appropriate types.

In other words,

Γ(s) = P (s.n,Γ′(T (s)))

for each RAM data structure s.
If ρ is an affine reduction from Γ to Γ′, then we write Γ →ρ Γ

′. To express that
there exists an affine reduction from Γ to Γ′, we write Γ ≤a Γ′.
Examples and properties of affine reductions. Affine reductions between

RAM functions are a generalization of affine reductions between decision problems.
We note that the relation ≤a is reflexive and transitive.
• For each RAM function, we have Γ→ρ Γ by the affine reduction ρ = (T, P ),
where T (s) = s and Pm(t

′) = t′.
• The transitivity follows from Lemmas 2.4 and 2.8.
Next, we are going to illustrate the notion of affine reductions by two more in-

volved examples. First, we show that, for each k > 3, the classical reduction from
k-satisfiability (-SAT) to 3-SAT can be turned into an affine reduction.

Example 4. Let k ≥ 3 be fixed. The problem k-SAT is defined as follows.
Input. An integer p and n clauses C0, . . . , Cn−1 of k literals with variables from

v0, . . . , vp−1.
Question. Is C0 ∧ · · · ∧ Cn−1 satisfiable?
We represent an input for k-SAT by a RAM data structure s with one constant P

and 2k functions f1, . . . , fk and g1, . . . , gk. Here P represents the number of variables,
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and, for each i ≤ s.n and each j ≤ k, the jth literal of clause Ci is vfj(i) if gj(i) = 1
and ¬vfj(i) if gj(i) = 0.
The idea of the reduction is to transform a clause (li1 ∨ li2 ∨ · · · ∨ lik) into clauses

(¬yi2∨ li1∨ li2), (¬yi3∨ yi2∨ li3), . . . , (¬yik−2∨ yik−3∨ lik−2), and (y
i
k−2∨ lik−1∨ lik), where

the yij , i < n, 2 ≤ j ≤ k − 2, are new variables which intuitively represent the values
of li1 ∨ · · · ∨ lij .
It is now easy to verify that this transformation is affine for the above represen-

tation of k-SAT instances. We encode the variables yij by the single-indexed variables
vp+(k−2)i+j . The transformation T from k-SAT instances to 3-SAT instances can be
defined as follows.

(1) l = 1, d1 = k − 2, and T (s).n = (k − 2)s.n.
(2) T (s).P = s.P + (k − 1)s.n.
(3) • T (s).f1((k − 2)x) = s.P + (k − 2)x + 2, T (s).g1((k − 2)x) = 0 (corre-

sponding to the first literal ¬yi2 in the first clause that replaces a clause
of s).
• More generally, T (s).f1(r+(k−2)x) = s.P+(k−2)x+(r+2), T (s).g1(r+
(k − 2)x) = 0 for each r, 0 ≤ r ≤ k − 4.

• T (s).f1((k− 3)+ (k− 2)x) = s.P +(k− 2)x+(k− 2), T (s).g1((k− 3)+
(k − 2)x) = 1 (corresponding to the first literal of the last clause).

• T (s).f2((k−2)x) = s.f1(x), T (s).g2((k−2)x) = s.g1(x) and T (s).f2((k−
3)+ (k− 2)x) = s.fk−1(x), T (s).g2((k− 3)+ (k− 2)x) = s.gk−1(x) (cor-
responding to the second literal of the first and last clause, respectively).
• T (s).f2(r+(k−2)x) = s.P +(k−2)x+(r+1), T (s).g2(r+(k−2)x) = 1
for all r, 1 ≤ r ≤ k − 4.
• T (s).f3(r+ (k− 2)x) = s.fr+2(x), T (s).g3(r+ (k− 2)x) = s.gr+2(x) for
all r, 0 ≤ r ≤ k − 4.

• T (s).f3((k−3)+(k−2)x) = s.fk(x), T (s).g3((k−3)+(k−2)x) = s.gk(x).
As a second example, we sketch why the problem CONTRACT is complete for the

classNLIN under affine reductions. This problem was introduced in [18], where it was
also shown to be complete for NLIN under DTIME(n)-reductions. For simplicity,
we restrict ourselves in the following to RAM data structures with only one unary
function f .
The problem CONTRACT is defined as follows.
Input. A set C of constants, a set V of variables, a set F of unary function

symbols, and a set γ of triples (f, u, v), where f ∈ F , u, v ∈ C ∪ V .
Question. Is there a function VAL : C ∪ V → C which is the identity on C such

that the equations f(VAL(u)) = V AL(v), (f, u, v) ∈ γ, define partial functions for
each f ∈ F?
We think of the triples (f, u, v) of γ as equations f(u) = v.
The proof that CONTRACT is complete forNLIN under affine reductions makes

use of the following normal form theorem of Olive [29].
Theorem 2.10. Every decision problem L in NLIN with one unary function

symbol f is expressible by a formula of the form

∃f ∀xϕ(x, f, f, succ, zero),

where ϕ is a quantifier-free formula of the form
∧k
i=1 σi(x) = τi(x). Here f is a

tuple of unary function symbols, succ and zero denote the successor function and the
everywhere 0 function, respectively, and the σi and τi are terms over f, f , succ, zero.
More precisely, a 1-bounded structure s is in L if and only if (s, succ, zero) |= ∃f
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∀ xϕ(x), where succ and zero are defined by succ(i) = i + 1 for all i < n − 1,
succ(n− 1) = n− 1, and zero(i) = 0 for all i < n.
From this theorem, it is easy to deduce the following corollary.
Corollary 2.11. For any decision problem L in NLIN, it holds that L ≤a

CONTRACT.
We illustrate the proof of the corollary by the following example.
Example 5. Let L be expressible by the following sentence.

∃g, h ∀xf(g(x)) = h(x) ∧ h(succ(x)) = zero(g(x)).

First, for each structure s, s ∈ L if and only if the following formula is satisfiable on
the domain [n].

Diag(succ) ∧Diag(zero) ∧Diag(f) ∧ ∃g, h ∀xϕ(x),(∗)

where
• ϕ(x) ≡ f(g(x)) = h(x) ∧ h(succ(x)) = zero(g(x)),
• Diag(succ) ≡ (∧i<n−1 succ(i) = i+ 1) ∧ (succ(n− 1) = n− 1),
• Diag(zero) ≡ ∧i<n zero(i) = 0, and
• Diag(f) ≡ ∧i<n f(i) = s.f(i).
Second, we unfold the formula ∃g, h ∀ xϕ(x), and hence we replace it by a formula∧

i<n ϕ
′(i). More precisely, let (C, V,F , γ) be the instance of CONTRACT which is

given by C = {0, . . . , n − 1}, V = v0, . . . , v3n−1, F = {f, g, h, succ, zero}, and the
set γ is defined below. Intuitively, the variables v0, . . . , vn−1 correspond to the terms
g(x), the variables vn, . . . , v2n−1 correspond to the terms h(x), and the variables
v2n, . . . , v3n−1 correspond to the terms succ(x).
The equations of γ are those which are given by Diag(succ), Diag(zero), and

Diag(f) plus the following equations for every i < n:
• g(i) = vi,
• h(i) = vi+n,
• f(vi) = vi+n,
• succ(i) = vi+2n,
• h(vi+2n) = 0.

Clearly, the above formula (∗) is satisfiable on [n] if and only if γ is satisfiable on
C = [n]. Hence s ∈ L if and only if (C, V,F , γ) ∈ CONTRACT.
Moreover, this reduction from L to CONTRACT can be made affine. To this end,

we represent instances (C, V,F , γ) by RAM data structures with constant symbols
C, V, F and functions f1, f2, f3. The symbols s.C, s.V , and s.F represent the size of
C, V , and F , respectively, in a natural way. The value s.n coincides with the number
of triples in γ. The ith triple of γ is represented by (s.f1(i), s.f2(i), s.f3(i)), where we
view the elements of C to be numbered from 0 to s.C − 1, the elements of V from
s.C to s.C + s.V − 1, and the elements of F from 0 to s.F − 1.
It is straightforward to see that the above reduction can be made affine in this

framework. For example, if the successor function symbol is numbered f0 and we
represent the successor function at the beginning of each instance s, then we get, for
each i < s.n − 1, s.f1(i) = 0, s.f2(i) = i, s.f3(i) = i + 1 (corresponding to the triple
(succ, i, i+ 1)), and s.f1(s.n− 1) = 0, s.f2(s.n− 1) = s.n− 1, s.f3(s.n− 1) = s.n− 1
(for (succ, s.n− 1, s.n− 1)); in other words, we use the affine functions α1(n) = n− 1,
α2(n) = 1 with the corresponding integers d1 = d2 = 1. For example, for s.f3, we get
the following values: s.f3(i) = i+ 1 for i < α1(s.n) = s.n− 1 and s.f3(i+ α1(s.n)) =
s.n− 1 for i < α2(s.n) = 1 and hence for i = 0.
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3. The algebraic framework. In this section, we are going to give two alge-
braic characterizations of DLIN. In subsection 3.1, we define simultaneous recursion
schemes. These are recursion schemes that define several functions at once. From
the structure containing these functions, the output data structure is extracted by an
affine projection. In subsection 3.2, we introduce nonsimultaneous recursion schemes.
These schemes allow more liberal operators, but they can define only a single function.

3.1. A linear simultaneous recursion scheme (LSRS). First, we define
simultaneous recursion schemes. We allow two kinds of equations: standard equations
that use arithmetical operations and a new kind that use two new operators, Bounded
Application and Equal-Predecessor. Let us consider a function f : [n]→ N. We define

Bounded Application.

f [x]y :=

{
f(x) if x < y,

x otherwise.

Equal-Predecessor.

f←(x) :=

{
max{y < x : f(y) = f(x)} if such a y exists,

x otherwise.

It will turn out that the combination of these two operators captures the essence of
random access read and write operations.

Definition 3.1. Let F be a set of unary function symbols, and let f1, . . . , fk be
unary function symbols that do not occur in F . For every i ∈ {0, . . . , k}, we write
Fi for the set F ∪ {f1, . . . , fi}. A linear simultaneous recursion scheme (LSRS) S for
f1, . . . , fk with respect to F is a sequence E1, . . . , Ek of equations, where each Ei is
of one of the following two forms:

• (operation) fi(x) = g(x) ∗ g′(x), where g, g′ ∈ Fi−1 and ∗ ∈ {+,−},
• (recursion) fi(x) = g

′[g←(x)]x, where g ∈ Fi−1 and g′ ∈ Fk.
Remark 3. We could choose other, more general, types of equations in the defi-

nition of LSRS, e.g., the following types:
• any operations that are computable in linear time on a Turing machine (see
[17]) and also multiplication, which is not known to be computable in linear
time;
• (bounded composition) fi(x) = g′[g(x)]x, where g ∈ Fi−1 and g

′ ∈ Fk;
• (bounded search)

fi(x) =

{
max{y < x | g′(y) = g(x)} if such a y exists,

x otherwise,

where g ∈ Fi−1 and g
′ ∈ Fk. (Note that the Equal-Predecessor is a bounded

search with g = g′.)
It is a consequence of the results of this article that all of these schemes define the
same class of functions, namely, DLIN. We have chosen the above definition mainly
for two reasons:

• it is small in size, as it has only two types of equations;
• it will enable us to prove other characterizations of DLIN in a smooth way,
e.g., a new recursion scheme without simultaneous recursion (see the linear
recursion scheme (LRS) in 3.2).

Lemma 3.2. Let S be an LSRS for function symbols f1, . . . , fk with respect to
a set F = {f ′1, . . . , f ′l} of function symbols. Then, for all integers m and functions
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f ′1, . . . , f
′
l : [m] → [m], there are unique functions f1, . . . , fk : [m] → [m] which fulfill

the equations of S with the overflow convention that fi(a) = 0 if the term defining
fi(a) by an addition evaluates to a value ≥ m.

Proof. It is sufficient to observe that the computation of every term fi(x), 1 ≤
i ≤ k, x < m, requires only the values of terms of the form fj(y), where the pair
(y, j) precedes the pair (x, i) in the natural lexicographical order on pairs of natural
numbers; so all terms can be computed in that order.
Given a type t, we write in the following Ft to denote the set {1,n, id} ∪ {fC |

C ∈ t} ∪ {f | f ∈ t} of function symbols.
Definition 3.3. Let t1, t2 be types. Let Γ be a RAM function, which maps RAM

data structures of type t1 to RAM data structures of type t2. Let S be an LSRS for
f1, . . . , fk with respect to Ft1 . Γ is linearly represented by S if there are an integer
c and an affine projection P such that, for each c(Γ)-bounded RAM data structure s,
S defines functions f1, . . . , fk : [cs.n] → [cs.n] with respect to the following functions
[cs.n]→ [cs.n]:

• for every function symbol f ∈ t1,

f(i) =

{
s.f(i) if i < s.n,

0 else,

• fC(i) = s.C for every constant symbol C ∈ t1,
• 1(i) = 1 for every i,
• n(i) = s.n for every i,
• id(i) = i for every i,

and Ps.n(s
′) = Γ(s), where s′ is the RAM data structure of size cs.n with the functions

f1, . . . , fk.
If a RAM function Γ is linearly represented by an LSRS, then we call Γ LSRS-

definable. We say that a RAM decision problem L of type t with magnification bound c
is LSRS-definable if the following RAM function Γ, which maps RAM data structures
of type t to 1-bounded RAM data structures of type {C}, is LSRS-definable. For each
s, Γ is defined by

• Γ(s).n = s.n and
•

Γ(s).C =

{
1 if s ∈ L,
0 if s �∈ L.

Example 6. As an example, we consider an LSRS S for the RAM function Γ,
which maps RAM data structures of type {f} to RAM data structures of type {C}
such that, for each s, Γ(s).n = s.n and Γ(s).C = max{s.f(j) | j < s.n}.

S defines functions f1, f2, f3, f4 by the following equations:

f1(x) = f3[1
←(x)]x,

f2(x) = f(x)− f1(x),
f3(x) = f1(x) + f2(x),

f4(x) = n(x)− 1(x).
Note that f3[1

←(0)]0 = 0, by definition of Bounded Application and Equal-Predecessor,
and that f3[1

←(i)]i = f3(i− 1) for i > 0. S defines functions f1, f2, f3 such that
• f1(i) = f3(i− 1),
• f2(i) = s.f(i)− f2(i− 1), and
• f3(i) = max{s.f(j) | j ≤ i} for each i < s.n.
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To see this, recall, by our convention, that b−a = 0 if b < a, and, therefore, a+(b−a) =
max{a, b} for all a, b. We get

f3(i) = f1(i) + (s.f(i)− f1(i))
= max(f1(i), s.f(i))

=

{
s.f(0) if i = 0,

max(f3(i− 1), s.f(i)) otherwise.

In particular, f3(s.n − 1) = max{s.f(j) | j < s.n} = Γ(s).C. Hence S defines
Γ with c = 1 and the affine projection P , which is given by fn = f4, αn(m) = 0,
fC = f3, and αC(m) = m− 1.
It will be convenient to allow somewhat more relaxed recursion schemes. In

particular, we allow, in the equation for any f ′i , instead of expressions g(x) ∗ g′(x),
arbitrary arithmetical expressions using −,+, and functions g ∈ Fi−1, and we allow
the use of definition by cases.

Definition 3.4. A function fi is defined by cases if it is defined as

fi(x) =

{
g1(x) if g(x) ≤ h(x),
g2(x) otherwise,

where g, h, g1, g2 have to be in Fi−1.
Lemma 3.5. Any RAM function that is linearly represented by an LSRS using

arbitrary arithmetic expressions and definition by cases can be linearly represented by
an LSRS without definition by cases.

Proof. A definition of a function fi which uses a more complicated arithmetic
expression can easily be replaced by a series of definitions of functions that use only
terms of the form g(x) ∗ g′(x). Now we describe how definition by cases can be
simulated. First, note that the convention that a − b equals 0 whenever a < b also
implies, for all a, b ∈ N, the following two statements.

• a− (a− b) = min(a, b),
• 1− (a− b) =

{
1 if a ≤ b,
0 otherwise.

Furthermore, if we restrict ourselves to the domain [m] for some m > 0, it follows
from our overflow convention for addition (cf. Lemma 3.2) that, for all a, b, c ∈ [m],

min(a, (m− 1) + (1− c)) + min(b, (m− 1) + c) =
{
a if c > 0,

b if c = 0.

This allows us to simulate definitions by cases by using several new functions that are
defined by using arithmetic operations (+ and −) only.

Remark 4. It should be pointed out that the proof of Lemma 3.5 relies on the
choice of the overflow convention. Although we view this choice as natural, we would
like to mention other possibilities.

1. We could allow multiplication in LSRS. The simulation of definitions by cases
could then simply be obtained by using

a× c+ b× (1− c)
{
a if c = 1,

b if c = 0.

It follows from Proposition 2.1 and Theorem 4.1 that this change would not
increase the expressive power of LSRS.
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2. Alternatively, definitions by cases could be simulated by allowing only multi-
plication with constants via

min(a, (m− 1)× c) + min(b, (m− 1)× (1− c)) =
{
a if c > 0,

b if c = 0.

3. A further possibility would be to make use of bounded composition (cf. Re-
mark 3) via

min(a, g(c)) + min(b, g(1− c)) =
{
a if c > 0,

b if c = 0,

where g is the easily definable function with g(0) = 0 and g(i) = m − 1 for
all other i.

The next easy lemma states that the set of LSRS-definable RAM functions is
closed under composition.

Lemma 3.6. Let Γ1 be a RAM function which maps RAM data structures of type
t1 to RAM data structures of type t2, and let Γ2 be a RAM function which maps RAM
data structures of type t2 to RAM data structures of type t3. If Γ1 is LSRS-definable
and Γ2 is LSRS-definable, then Γ2 ◦ Γ1 is also LSRS-definable.
It should be noted that the LSRS defined in this article is different from the

LSRS of [34]. On one hand, it uses a smaller set of operations, on the other hand, the
underlying domain of the defined functions is allowed to be linear in the size n of the
input whereas that domain was exactly [n] in [34].

3.2. A one-function one-equation linear recursion scheme. Is it possible
to avoid simultaneous recursion in an LSRS, as asked in [34]? In this subsection, we
give a positive answer to this question: each problem that is linearly representable by
an LSRS can also be represented by a one-function one-equation recursion scheme,
which we call LRS. The price to be paid is a slightly greater number of constructs for
subterms of the LRS.
First, we define inductively what a recursion term σ(x) with respect to a function

symbol g and a type t is.
• 1, n, and x are recursion terms.
• C is a recursion term for each constant symbol C from t.
• (Equal-Predecessor) g←(x− δ) is a recursion term for every integer δ > 0.
• (Bounded Application) If σ(x) is a recursion term, then g[σ(x)]x is a recursion
term.
• (Input application) If σ(x) is a recursion term and f is a function symbol of
t, then f(σ(x)) is a recursion term.

• (Arithmetic operation) If σ(x) and τ(x) are recursion terms, then, for each
∗ ∈ {+,−}, (σ(x) ∗ τ(x)) is a recursion term.

Unnecessary brackets can be omitted.
Definition 3.7. A linear recursion scheme (LRS) with respect to g and t is

an equation of the form g(x) = σ(x) for some recursion term σ(x) with respect to g
and t.

Example 7.

g(x) = (g[g←(x− 2)]x + x)− f(x+ C)
is an LRS with respect to g and the type t = {f, C}.
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Lemma 3.8. Let σ(x) be a recursion term with respect to g and t. Then, for all
integers m > 0 and all structures s of type t, there is a unique function g : [m] →
[m], which satisfies the equation g(a) = σ(a) for every a < m with the following
conventions:

• τ(a) = 0 if, for a subterm τ of σ, τ(a) evaluates to a value which is not in
[m];
• f(j) = s.f(j) for j < s.n, and f(j) = 0 for j ≥ s.n, for every function symbol
f of t;
• C = s.C for every constant symbol C of t.
We say that the function g : [m] → [m] is defined by the LRS g(x) = σ(x) in s.

We call [m] the range of this definition.
Proof. For the proof, it is sufficient to verify that, for every a, the evaluation of

σ(a) needs only values g(b) for numbers b < a.
Remark 5. Note that g(a) = σ(a) should also hold for a = 0; in this case,

notice the interpretation of the possible subterms of the respective forms g[σ(x)]x and
g←(x− δ) of respective values σ(0) and g←(0) = 0.

Definition 3.9. Let E be an LRS given by g(x) = σ(x). Let Γ be a RAM
function. Γ is linearly represented by E if there is a constant c and an affine projection
P , such that, for each c(Γ)-bounded RAM data structure s, E defines a function
g : [cs.n]→ [cs.n] in s, such that Ps.n(s

′) = Γ(s), where s′ is the RAM data structure
of size cs.n with the single function g.
As in the case of LSRS, we can make use of definition by cases without changing

the expressive power of LRS. The following lemma shows that simultaneous recursion
schemes are no more powerful than nonsimultaneous schemes.

Lemma 3.10. Every RAM function that is linearly representable by an LSRS is
also linearly representable by an LRS.

Proof. Let Γ be a RAM function that is linearly represented by an LSRS S,
which defines functions4 f0, . . . , fk−1 with respect to Ft1 , as in Definition 3.3, and
let P be the corresponding affine projection. Let s be a c(Γ)-bounded RAM data
structure of type t1. We write s

′ for the structure that is defined by S on s and
s′′ for Γ(s) = Ps.n(s′). To simplify notation in the following, we write n to denote
s.n. Roughly, the idea is to first encode the functions f0, . . . , fk−1 : [cn] → [cn] by
one function g. To ensure that the Equal-Predecessor operation works properly, the
encodings of the different functions should have disjoint domain and disjoint range.
This is done by using, for each i < k, only values that are congruent i modulo k to
encode function fi. As a tool for encoding and decoding operations, we additionally
encode the function (÷k) into g.
We are going to extend the domain of g in order to encode Γ(s).f , for each function

symbol f of the output data structure, by function values of a contiguous interval.
More precisely, g will be defined on [2kcn] such that
• for each b < kcn, it holds that g(b) = b÷ k, and
• for every a and i, where a < cn and 0 ≤ i ≤ k − 1, it holds that

g(kcn+ ka+ i) = kcn+ kfi(a) + i.(∗)

In other terms, for b ≥ kcn and bmod k = j, the value of g(b) is kcn+kfj((b−kcn)÷
k) + j. We are going to define the value g(b) for b < 2kcn by case distinction on
bmod k, as described in (1)–(3) below.

4We enumerate the functions from 0 to k − 1 to facilitate computations modulo k.
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(1) Let the function symbols of Ft1 = {f | f function in t1} ∪ {fC | C ∈ t1} ∪
{1,n, id} be enumerated by {f0, . . . , f l−1}. For the sake of uniformity, we
modify S to limit the occurrence of these function symbols. First, the old
function symbols f0, . . . , fk−1 and all of their occurrences in S are replaced by
fl, . . . , fk+l−1, respectively. Next, we introduce l new functions f0, . . . , fl−1

and l equations which define them. If f i is from t1, the defining equation is
simply fi(x) = f

i(x). If f i is id, then the equation is fi(x) = x; if it is 1,n,
or fC , then the equation is fi(x) = 1, fi(x) = n, or fi(x) = C, respectively.
We refer to these equations as input equations. Finally, we replace in S all
occurrences of functions from Ft1 by the respective function symbols fi.
It is straightforward that the modified system with the above k+ l equations
is equivalent to S, under the obvious semantics, although S is no longer an
LSRS. From now on, we refer to the new system by S, and k denotes the
number of equations of S. After these replacements, S no longer refers to
any functions of Ft1 except in the input equations.

(2) The equations of S are combined into one equation g(y) = σ(y) as follows.5

The term σ(y) consists of a definition by cases, depending on the size of y and
on ymod k. More precisely, we define a recursion term σi(y) corresponding
to fi for every i < k and define g by

g(y) =



0 if y ≤ k − 1,
g(y − k) + 1 if k ≤ y < kcn,
σi(y) if y ≥ kcn and ymod k = i.

Of course, the two first cases imply that g(y) = y ÷ k for each y < kcn,
as required. This allows us to express ymod k (for kcn ≤ y < 2kcn) as

(y − kcn)− kg(y − kcn) = (y − kcn)−∑k
j=1 g(y − kcn).

The case distinction itself is done along the same lines as in the proof of
Lemma 3.5 above.
Now we describe the construction of the recursion terms σi(y).
• If Ei is an input equation, then σi(y) is constructed as follows.
∗ If the right-hand side is a constant C (possibly 1 or n), then σi(y)
is defined as kcn+ kC + i.
∗ If the right-hand side is x, then σi(y) is defined as kcn + kg(y −
kcn) + i.
∗ If the right-hand side is f i(x), then σi(y) is defined as kcn+kf i(g(y−
kcn)) + i.

We justify why this definition of σi(y) is correct. We do this for the
third case; the other two cases are even simpler. Let b = kcn + ka + i
with a < cn. Then g(b − kcn) = g(ka + i) = (ka + i) ÷ k = a, and
σi(b) = kcn+ kf

i(a) + i = kcn+ kfi(a) + i, as required.
• If Ei is of the form fi(x) = fj(x)− fj′(x), then σi(y) is defined by

σi(y) = (g(y − δ)− kcn− j)− (g(y − δ′)− kcn− j′) + kcn+ i,

where δ = i − j, δ′ = i − j′, and, by definition of LSRS, i > j, j′. To
verify the correctness of this expression, let a ∈ [cn], b = kcn + ka + i,
where i < k. If g(b− δ) = g(kcn+ ka+ j) equals kcn+ kfj(a) + j and

5We choose y instead of x to distinguish the variable of the LRS from the variable of the LSRS.
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g(b− δ′) = g(kcn+ ka+ j′) equals kcn+ kfj′(a) + j′, then
(g(b− δ)− kcn− j)− (g(b− δ′)− kcn− j′) + kcn+ i

= (kfj(a)− kfj′(a)) + kcn+ i
= k(fj(a)− fj′(a)) + kcn+ i,

as required.
• The case in which Ei is of the form fi(x) = fj(x) + fj′(x) is similar to
the previous subtraction case. However, it requires an additional case
distinction because of our convention that, in universe [cn], the result of
an addition is 0 in case of overflow, which is not the case in the enlarged
universe [2kcn] if a sum lies between kcn and 2kcn. More precisely, σi(y)
is defined by

σi(y) =

{
τ(y) + kcn+ i if τ(y) < kcn,

kcn+ i otherwise,

where τ(y) = (g(y− δ)− kcn− j) + (g(y− δ′)− kcn− j′) with δ = i− j
and δ′ = i − j′. The proof of the correctness of σi(y) is similar to the
previous subtraction case.
• If Ei is of the form fi(x) = fj′ [fj

←(x)]x, where j < i and we assume
without loss of generality that6 i ≤ j′, then σi(y) is defined by

σi(y) = g[g
←(y − δ) + δ′]y − j′ + i,

where again δ = i− j and δ′ = j′ − j.
To justify this replacement, we have to ensure that the encoding of
several functions into one function does not produce any side-effects
when the Equal-Predecessor operator is applied. It is crucial here that,
for each i < k, those function values of g which encode function values of
fi are congruent to i modulo k. To be more precise, let b = kcn+ka+ i,
with a < cn. Then b− δ = kcn+ ka+ i− (i− j) = kcn+ ka+ j. Only
two cases may arise.
(a) fj

←(a) = a. This means that, for no a′ < a does it hold that
fj(a

′) = fj(a). Hence there is no a′ < a such that g(kcn + ka′ +
j) = g(kcn + ka′ + j). The definition of g ensures that, for each
e ≥ kcn, g(e)mod k = j if and only if emod k = j and that, for all
e, e′ ∈ [2kcn], if g(e) = g(e′), either e, e′ < kcn or e, e′ ≥ kcn. Hence
g←(kcn+ka+j) = kcn+ka+j, and g←(b−δ)+δ′ = kcn+ka+j′ ≥
kcn+ ka+ i = b. Hence

σi(b) = g[g
←(b− δ) + δ′]b − j′ + i

= (kcn+ ka+ j′)− j′ + i
= kcn+ ka+ i

= kcn+ kfj′ [fj
←(a)]a + i

= kcn+ kfi(a) + i

= g(b),

as required.

6If i > j′, then we first may add a new function fl into S, with l > i, defined by the new equation
fl(x) = f ′j′ (x) and replace Ei by fi(x) = fl[fj

←(x)]x.
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(b) fj
←(a) = a′ for some a′ < a. Then g←(kcn+ka+j) = kcn+ka′+j.
In consequence,

g←(b− δ) + δ′ = kcn+ ka′ + j′ < kcn+ ka+ i = b.

Hence

σi(b) = g[g
←(b− δ) + δ′]b − j′ + i

= g(kcn+ ka′ + j′)− j′ + i
= (kcn+ kfj′(a

′) + j′)− j′ + i
= kcn+ kfj′(a

′) + i
= kcn+ kfj′ [fj

←(a)]a + i
= kcn+ kfi(a) + i

= g(b),

as required.
(3) Now we complete the LRS for g. For simplicity, we assume that t2 con-
sists of the constant symbol n and only one function symbol h. Let j < k
and α be an affine function such that, for all structures s, it holds that
Γ(s).n = Ps.n(s

′).n = s′.fj(α(s.n)), and let i < k and A be an affine
function such that, for all structures s and all a < Γ(s).n, it holds that
Γ(s).h(a) = Ps.n(s

′).h(a) = s′.fi(A(s.n, a)).
We have constructed g in such a way that all function values fi(a) are some-
how available in g, but we have to deal with two problems. First, the fi(a)
appear only in an encoded way; second, they do not form a contiguous in-
terval but are scattered (modulo k). Hence, before we can extract the values
by an appropriate affine projection, we have to decode the function values
and bring them together into one interval. To accomplish this, we enlarge
the domain of g to [(2k + 2)cn] and complete the definition of g as specified
below.

g(y) =



as before if y < 2kcn,

g[g[k(y − 2kcn) + kcn+ i]y − kcn]y if 2kcn ≤ y < (2k + 1)cn,
g[g[k(y − (2k + 1)cn) + kcn+ j]y − kcn]y if (2k + 1)cn ≤ y < (2k + 2)cn.

It follows from equation (∗), the definition of g on [kcn], and this definition
that, for all a < cn, it holds that

g(2kcn+ a) = g[g[k(2kcn+ a− 2kcn) + kcn+ i]2kcn+a − kcn]2kcn+a

= g[g[ka+ kcn+ i]2kcn+a − kcn]2kcn+a

= g[g(ka+ kcn+ i)− kcn]2kcn+a

= g[kcn+ kfi(a) + i− kcn]2kcn+a

= g[kfi(a) + i]2kcn+a

= fi(a).

Analogously, we get that, for all a < cn, g((2k+1)cn+ a) = fj(a). Now it is
easy to define an affine projection P ′ which extracts Γ(s) from the structure
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s′′′ with the function g and the constant s.n via Γ(s).n = s′′′.g(α(s.n)+(2k+
1)cs.n) and

Γ(s).h(a) = Ps.n(s
′).h(a)

= s′.fi(A(s.n, a))
= s′′′.g(2kcs.n+A(s.n, a)).

4. LRSs and linear time. In this section, we show that LSRS and LRS, which
were defined in the previous section, exactly characterize the complexity class DLIN.

Theorem 4.1. Let Γ be a RAM function. Then the following assertions are
equivalent.

1. Γ belongs to DLIN.
2. Γ is linearly represented by some LSRS.
3. Γ is linearly represented by some LRS.
Since implication (2)=⇒(3) was proved in Lemma 3.10, it is sufficient to prove

(1)=⇒(2) and (3)=⇒(1).
The proof of Lemma 4.2 below gives a slightly stronger result than implication

(3)=⇒(1): with every LRS E, one can explicitly associate a “normalized” DLIN
program which computes the RAM function Γ represented by E.

Lemma 4.2. If a RAM function Γ is linearly represented by an LRS E, then
Γ ∈ DLIN.

Proof. Let Γ be a RAM function which is linearly represented by the equation
E, and let P be the corresponding affine projection. For simplicity, we assume that
the type of the input structures of Γ consists of only one function symbol fin. Recall
that E consists of one equation of the form g(x) = σ(x), where σ(x) is a recursion
term, and there is a constant c such that the output s′ = Γ(s) can be extracted from
the function g : [cs.n] → [cs.n] and s.n. Instead of formally defining a RAM for Γ,
we are going to give an algorithm that can easily be converted into a multimemory
RAM, which in turn can be converted into a simple RAM (cf. section 2.2). Its data
structure consists of variables p, x and, besides the input structure s and the output
structure s′, four one-dimensional arrays Fin, G, Ginverse, and EP. In p, we store the
value cs.n, which bounds the domain and the range of the function g that is defined
by E and s. Next we describe the intended meaning of Fin, G, Ginverse, and EP. For
indices greater than or equal to s.n, Fin is 0; for smaller indices, it is determined by
s.f . The main computation proceeds in p rounds, numbered from 0 to p − 1. After
round i of this computation, the following invariants should hold:

(a) for each j < p,

G[j] =

{
g(j) if j ≤ i,
j if i < j < p,

(b) EP[j] = g←(j) for each j ≤ i, and
(c) for each j < p,

Ginverse[j] =

{
max{l ≤ i | g(l) = j} if such an l exists,

p otherwise.

The computation of the values G[i] is relatively straightforward. We associate
with every recursion term σ(x) a programming term σ[x], which is recursively defined
as follows:
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• if σ(x) is 1, n, x, then σ[x] is 1, n, x, respectively;
• if σ(x) = g←(x− δ) for some δ, then σ[x] = EP[x− δ];
• if σ(x) = g[τ(x)]x for some subterm τ , then σ[x] = G[τ [x]];
• if σ(x) = fin(τ(x)) for some subterm τ , then σ[x] = Fin[τ [x]];
• if σ(x) = τ1(x) ∗ τ2(x) for subterms τ1 and τ2, then σ[x] = τ1[x] ∗ τ2[x].

In round i, we compute G[i] by evaluating σ[i]. The only difficulty that arises is the
evaluation of subterms of the form g←(x−δ), which would need more than a constant
number of steps if it was done in a straightforward manner. Instead, we make use of
the array EP, which contains, after round i, the value g←(j) for each j ≤ i. Ginverse

always holds a partial inverse of the function g on {0, . . . , j} and is used to compute
EP.
The algorithm for Γ is as follows.

Input s
{ Initializations }
p := cs.n
EP[0] := 0
FOR j := 0 TO s.n− 1 DO

Fin[j] := s.f(j)
FOR j := s.n TO p− 1 DO

Fin[j] := 0
FOR j := 0 TO p− 1 DO

G[j] := j
Ginverse[j] := p

{ Main loop }
FOR i := 0 TO p− 1 DO

G[i] := σ[i]
EP[i] := min(i, Ginverse[G[i]])
Ginverse[G[i]] := i

{ Output }
Compute the result s′′ by applying the affine projection Ps.n
to the structure s′ = ([p], G)

We show by induction on i that the above invariants (a)–(c) hold after each round
i. Of course, they are satisfied after the initializations, i.e., before round 0. For the
induction step, assume that (a)–(c) are satisfied before round i (0 ≤ i ≤ p − 1). We
show that they also hold after round i and hence before round i+ 1.

• G[i] = g(i) holds because, by induction, we have G[j] = g[j]i for each j ∈ [p]
and EP[j] = g←(j) for each j < i; hence bounded application and equal
predecessor are evaluated correctly.
• The assignment EP[i] := min(i, Ginverse[G[i]]) implies that EP[i] = g

←(i) by
induction.
• It is also straightforward to observe that (c) is maintained by the assignment
Ginverse[G[i]] := i.

So (a)–(c), in particular (a), are invariants; this implies immediately that the
program is correct.
The number of steps to evaluate a recursion term is linear in the size of the term.

As the recursion term of E is fixed, we conclude that the computation of each G[i]
needs only a constant number of steps; therefore, the overall computation time of the
program is O(s.n).
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It should be stressed that the structure of the resulting program is very simple,
with essentially one main loop.
It remains to prove the implication (1)=⇒(2) of Theorem 4.1.
Lemma 4.3. If a RAM function Γ is computed in time O(n) on a simple {+,−}-

RAM M, then Γ is linearly represented by some LSRS S.
Proof. Let Γ be a RAM function. For simplicity, we assume that the type of the

input as well as the type of the output consist of only one function symbol f . Let M
be as in the statement of the lemma, and let c > 0 be such that M needs less than
cn steps and uses numbers of size less than cn on c(Γ)-bounded inputs of size n.
The proof is similar to the one that was given to prove Theorem 3.1 (a) in [34].

Let us sketch the main ideas first. We are going to construct an LSRS that uses
functions I, A,B,N,RA, which are intended to describe the situation of the RAM
before each step x, where

• I(x) holds the current instruction number,
• A(x), B(x), and N(x) hold the current values of registers A, B, N , respec-
tively, and
• RA(x) holds the value of the register, the address of which is currently con-
tained in register A.

For convenience, we also use functions I ′, A′, B′, R′A, N
′, which describe the situation

after a step of the RAM. By case distinctions on the value of I(x), most of the
simulation of the computation of M is straightforward. For example, if M executes
a statement A := A + B, then the equations will force A′(x) = A(x) + B(x). The
main complication arises from the instruction A := RA, which loads the content
of the register, the number of which is contained in A (before the execution of the
instruction), into A. Note that the functions that are defined by S do not explicitly
encode the values of all registers of M at each time step t but only the content of the
register to which A points. To get the right value for RA(t), the last time step before
t at which A contained the value A(t) (i.e., the current value) must be identified. If
no such time step exists, we have to refer to the input. Recall that s.f(i) is stored in
R(i) at the beginning of the computation. This is the point at which the recursion
operation comes into play.
Compared with the proof of [34], we have to do some extra work here, as the

recursion schemes in the present article have more restricted operations. In partic-
ular, in order to facilitate the simulation of A := RA instructions, we divide the
domains of the functions into three main parts, {0, . . . , cn−1}, {cn, . . . , 2cn−1}, and
{2cn, . . . , 3cn − 1}. We use the first part to “store” s.f , the second part to actually
simulate the computation of M , and the third part to extract the output function. In
the third part, we use RA for another purpose than that described before, namely, to
encode the output.
We will take the liberty of using definition by cases (cf. Lemma 3.5) and some sim-

ple arithmetic operations that are not directly available in an LSRS. The translation
into a pure LSRS is straightforward but involves the use of some more functions.
To simplify the presentation, we are going to describe the LSRS separately for

the three parts of the domain. These definitions have then to be combined by using
definition by cases.
The order of the function symbols is I, A,B,N,RA, I

′, A′, B′, N ′, R′A.
For x < cn, A and RA are defined by

A(x) = x,

R′A(x) = f(x).
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Table 1
Equations of S for the middle part {cn, . . . , 2cn− 1} of the domain.

I(x) =

{
1 if x = cn,

I′(x− 1) otherwise,

I′(x) =




i0 if I(x) is IF A = B THEN I(i0) ELSE I(i1) and A(x) = B(x),

i1 if I(x) is IF A = B THEN I(i0) ELSE I(i1) and A(x) �= B(x),

I(x) if I(x) is HALT,

I(x) + 1 otherwise,

A(x) =

{
0 if x = cn,

A′(x− 1) otherwise,

A′(x) =




c if I(x) is A := c,

A(x) ∗B(x) if I(x) is A := A ∗ B,

RA(x) if I(x) is A := RA,

N(x) if I(x) is A := N ,

A(x) otherwise,

B(x) =

{
0 if x = cn,

B′(x− 1) otherwise,

B′(x) =

{
A(x) if I(x) is B := A,

B(x) otherwise,

N(x) =

{
n if x = cn,

N ′(x− 1) otherwise,

N ′(x) =

{
A(x) if I(x) is N := A,

N(x) otherwise,

RA(x) = R′A[A←(x)]x,

R′A(x) =

{
B(x) if I(x) is RA := B,

RA(x) otherwise.

All other functions can be defined arbitrarily in the first part of the domain; for
concreteness, we define them all to equal 0. The initialization will enable the LSRS
to smoothly recover the contents of the register RA pointed to by A in the second
part of the domain by means of the Equal-Predecessor operation.
Table 1 shows the equations of S that define the functions on the middle part

{cn, . . . , 2cn − 1} of the domain to simulate the computation of M . Note that cn
encodes the initial instant of this computation.
We note that the functions I and I ′ take only a fixed number of values. In

the conditions of the above definitions by cases, we use some abbreviations. As an
example, “I(x) is A := c” is an abbreviation for “I(x) = i1 or I(x) = i2 or . . . or
I(x) = iq,” where the ij are all numbers of instructions A := c. The expression
“I(x) is IF A = B THEN I(i0) ELSE I(i1)” has to be interpreted similarly,
depending on the possible values of i0 and i1. Furthermore, as mentioned before, the
constants that occur in the above scheme have to be replaced by additional functions
in a pure LSRS. References to x−1 are made via recursion. For example, the equation
I(x) = I ′(x − 1) is an abbreviation of I(x) = I ′[1←(x)]x. Remember that 1(i) = 1
for every i.
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As mentioned before, we use RA to extract the output values of the computation
of M , given by the value n′ of register N and the content of R(0), . . . , R(n′ − 1) at
the end of the computation.7 For 2cn ≤ x < 3cn, the LSRS consists of the equations

A(x) = x− 2cn,
RA(x) = R

′
A[A

←(x)]x.

All other functions h are defined by h(x) = h(x− 1).
It remains to be checked that the equations of S correctly define the intended

functions which describe the computation of M and that S also induces the correct
RAM output.
For this purpose, let s be a RAM data structure, 1,n, id, as before, and let I, A,

B, N , RA, I
′, A′, B′, N ′, and R′A be functions that fulfill the equations of S. First,

it is clear that, for all a < cs.n, the following hold:

A(a) = a,

R′A(a) = s.f(a),
I(a) = B(a) = N(a) = RA(a) = I

′(a) = A′(a) = B′(a) = N ′(a) = 0.

The values of the functions at cs.n describe the situation of the RAM at the beginning
of the computation with respect to the current instruction number and the contents
of registers A, B, and N . Furthermore, the definition of A and R′A on the first part
of the domain mirrors the fact that, at the beginning of its computation, M has the
value s.f(i) in register R(i).
The proof that the values of the defined functions at cs.n+ t encode the situation

of M at time t, as intended, is an easy induction on t. The most difficult part
is the correctness of function RA. Note first that, as A(a) < cs.n, for every a,
the initialization of the first part of the domain ensures that A←(a) < a for every
a ∈ {cn, . . . , 2cn− 1}. In fact, there are 2 cases.

• cs.n ≤ A←(a) < a. In this case, there exists a b, with cs.n ≤ b < a, such
that A(b) = A(a); hence the current R-register has been visited before in
the computation of M , and A←(a) is the last step for which this happened.
Hence R′A(A

←(a)) gives the correct value of RA(a).
• A←(a) < cs.n. In this case, there is no b, with cs.n ≤ b < a, such that
A(b) = A(a); hence the current R-register has not been visited before and
should still hold the value f(A(a)). By the initialization, it follows that
A←(a) = A(a) and R′A(A(a)) = f(A(a)), as required.

Finally, we have to show that S correctly defines the output Γ(s). By definition
of RA and N on the last part of the universe, it follows analogously that, for each a,
RA(2cs.n + a) contains the content of register R(a) at the end of the computation.
Furthermore, N(3cs.n− 1) has the value of register N at the end of the computation.
Hence, with a suitable projection, Γ(s) can be extracted from the functions that are
defined by S.
Altogether, we have shown that S correctly defines Γ(s). In other terms, Γ is

linearly represented by S.
This completes the proof of Theorem 4.1.

7Recall that M uses less than cn−1 steps. Therefore, as the first step is simulated at position cn,
at position 2cn−2 the simulation is finished, and we can use the position 2cn−1 for other purposes,
e.g., to encode the length of the output.
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5. Complete problems for deterministic linear time. In this section, we
are going to exhibit two problems that are related to the recursion schemes defined
before and that are complete for DLIN under affine reductions. The first problem is
an unfolded and nonuniform version of the LSRS algebra. It concerns the simultaneous
definition of k functions f1, . . . , fk : [p]→ [p] for some p > 0. A simultaneous function
definition (SFD) instance S consists of a positive integer p, a set F = {f1, . . . , fk} of
k unary function symbols, and a system of kp equations

fi(a) = (σi(a))

for each i ∈ {1, . . . , k} and a ∈ [p], each of one of the following types:

fi(a) = b,(1)

fi(a) = h(g(b)),(2)

fi(a) = g(b) ∗ h(c),(3)

fi(a) = g
←(b),(4)

where ∗ is among +,−, b and c are integers in [p], and g, h are in F .
A valuation for S is a mapping V : [p]× {1, . . . , k} → [p]. A valuation is suitable

if defining all functions fi by fi(a) = V (a, i) makes all equations true. Given an SFD
instance S and a suitable valuation V , we define the dependency graph G(S, V ) as
follows. The vertices of G(S, V ) are all pairs (a, i), where a ∈ [p] and i ∈ {1, . . . , k}.
The edges of (S, V ) are defined as follows.

• If fi(a) = fj(fl(b)) is an equation of S, then there are edges from (b, l) and
(V (b, l), j) to (a, i).
• If fi(a) = fj(b) ∗ fl(c) is an equation of S, then there are edges from (b, j)
and (c, l) to (a, i).
• If fi(a) = fj←(b) is an equation of S, then there are edges from (l, j) to (a, i)
for all l ≤ b.

If there is an edge from (b, j) to (a, i), then we also say that fj(b) is an operand of
fi(a). Note that only edges that correspond to equations of type (2) depend on V .
All other edges are determined by S only.
It is not hard to see that an SFD instance S has a valuation V with an acyclic

dependency graph if and only if the equations of S can be sorted into a list E1, . . . , Ekp
such that each operand of every equation Ei is defined in an equation Ej with j < i.
Furthermore, as shown in Lemma 5.1, if this is the case, then the equations have a
unique solution.

Example 8. If k = 2 and p = 4, the following set S of 8 (= kp) sorted equations
E1, . . . , E8 of the form fj(a) = σj(a), (j ∈ {1, 2}, a ∈ [p]), clearly satisfy the required
conditions:

• f1(2) = 1;
• f2(0) = 3;
• f2(3) = 1;
• f1(0) = f1(2) + f2(3);

• f1(1) = f2(0)− f2(3);
• f1(3) = f1(f2(3));
• f2(1) = f1←(3);
• f2(2) = f2(1)− f1(2).

Hence f1(0) = 1 + 1 = 2, f1(1) = 2, f1(3) = f1(1) = 2, f2(1) = 1, (since
f1(0) = f1(1) = f1(3) = 2 and f1(2) = 1 �= 2), and f2(2) = 0.
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Problem “simultaneous function definition (SFD)”.
Input. An SFD instance S = (p, {f1, . . . , fk}, (σi(a))i≤k,a<p).
Question. Is there a suitable valuation V of S such that G(S, V ) is acyclic?
Output. If the answer is positive, the functions f1, . . . , fk.
In fact, we have defined two problems, one decision problem and one function.

The formal representation of the inputs of this problem uses an encoding of a system
of equations that is similar to the one that was explained in Example 1 (a). The
output is a RAM data structure s′ of type {C, f} such that s′.n = kp, s′.C = p,
and s′.f((i − 1)p + j) = fi(j) for all i ∈ {1, . . . , k}, j ∈ [p]. In the following, unless
otherwise stated, we always refer to SFD as a RAM function.
We stick to the convention that the value of an arithmetical expression g(b)∗h(c)

is 0 in case of overflow, i.e., if its value is not in [p].
Next, we show that the output of an SFD instance is well defined.
Lemma 5.1. For each SFD instance S, there is at most one valuation V such

that G(S, V ) is acyclic.
Proof. We define inductively a height h(w) for vertices w of an acyclic dependency

graph as follows. For vertices of in-degree 0, the height is 0. For all other vertices w,
h(w) is one plus the maximum height of all vertices u that have an edge to w. The
acyclicity ensures that the height is well defined for each vertex. By induction on the
height of the vertices, it is easy to show that any two suitable valuations with acyclic
dependency graphs are equal.

Theorem 5.2. SFD is complete for DLIN under affine reductions.
Proof. We show that, (a) for every RAM function Γ in DLIN, we have Γ ≤a SFD

and (b) SFD is in DLIN.
(a) Let Γ ∈ DLIN be a RAM function. For simplicity, we shall assume that the

type of the input as well as the type of the output consist of only one function f . Let
S1 be the LSRS that linearly defines Γ, as it was constructed in the proof of Lemma
4.3. Given a RAM data structure s as input, we construct an SFD instance S2 that
defines the same functions as S1. The main idea is to unfold S1 so that we get one
equation for each function of S1 and each element of the universe [3cs.n]. We first
describe the construction of a set of equations which allow arbitrary terms fi(a) and
operators from {+,−} on the right-hand side. By using more function symbols, this
system can be transformed into a pure SFD instance. We describe later how these
constructions can be done with affine functions.
The SFD instance S2 uses all function symbols of the input structure s. Let

l be the number of these function symbols. Furthermore, it uses all 10 function
symbols of the functions that are defined in S1. Let c be the constant of the proof
of Lemma 4.3. The equations for the symbols of the input structure are simply
assignments. For a ≥ s.n, we assign 0. We construct equations for the three parts
{0, . . . , cs.n − 1}, {cs.n, . . . , 2cs.n − 1}, and {2cs.n, . . . , 3cs.n − 1} separately. For
the definition of the second and the third part of RA, we introduce one new function
h, defined by h(x) = A←(x). Hence the constructed SFD instance has k = l +
11 function symbols, p = kcs.n, and each a ∈ [cs.n] gives rise to 3k equations (k
equations for each of a, cs.n + a, and 2cs.n + a). For most of the function symbols,
the construction is straightforward. The treatment of definition by cases is along the
lines of Lemma 3.5. For the second and the third part of RA, we get two equations,
h(a) = A←(a) and RA(a) = R′A(h(a)). It is important to note that the semantics of
these two equations together is, in its effect for RA, the same as that of the original
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equation RA(a) = R′A[A
←(a)]a, although the bounded application is replaced by a

(nonbounded) composition of functions. This is because the construction of Lemma
4.3 ensures that, for all a ≥ cs.n, A←(a) < a.
After transforming S2 into a pure SFD instance S3, we get a system of equations

of the four allowed forms, such that, for each function symbol f and each of the three
parts of the universe, all equations have the same form. The list of these equations
is encoded into a RAM data structure with one function symbol g as described in
Example 1 (a). Recall that numbers contribute only 1 to the length of the encoding
of an equation.
As an example, assume that the sequence of cs.n equations

f3(a) = f5(a) + f9(a),

where cs.n ≤ a < 2cs.n, defines f3 on the middle part of the universe. Each equa-
tion has length 18. Let this sequence of equations be the ith such sequence in S3.
The sequence will be encoded by 18cs.n consecutive values of T (s).g defined by the
following equalities, where Di(n) =

∑
j<i djαj(n) and b ∈ [cs.n]:

• T (s).g(18b+Di(s.n)) = 0, the encoding of the symbol f ,
• T (s).g(1+ 18b+Di(s.n)) = 12, the encoding of 3, as the size of the alphabet
is 9,
• T (s).g(2 + 18b+Di(s.n)) = 2, the encoding of the opening bracket,
• T (s).g(3+18b+Di(s.n)) = b+cs.n+9, the encoding of the integer a = b+cs.n,
and so on until finally
• T (s).g(17 + 18b+Di(s.n)) = 8, the encoding of the semicolon.

So this ith part of S3 clearly satisfies the affine requirements (see (3) in Definition
2.3) with di = 18 and αi(n) = cn. Moreover, as we saw before at the end of the proof
of Lemma 4.3, the output transformation can be given by the affine projection

• Ps.n(s′).n = N(3cs.n− 1) for the size and
• Ps.n(s′).f(a) = RA(a+ 2cs.n) for the values.

More precisely, because of the output conventions of SFD, the output Γ(s) (of type
{f}) can be extracted from the output s′ = SFD(T (s)) of type {C, f}, where s.C =
p = 3cs.n, by the equalities

Γ(s).n = Ps.n(s
′).n

= fi(3cs.n− 1) if N is numbered fi

= s′.f(3(i− 1)cs.n+ (3cs.n− 1)),
and, similarly, if RA is numbered fj , for each a,

Γ(s).f(a) = Ps.n(s
′).f(a)

= fj(a+ 2cs.n)

= s′.f(3(j − 1)cs.n+ (a+ 2cs.n)).
(b) We are going to give a high-level description of an algorithm for SFD and

argue that it can be easily transformed into a RAM which solves SFD in linear time.
Let an instance S of the SFD problem be given by p, a set F = {f1, . . . , fk}, and

a set {E1, . . . , Ekp} of equations. The size of S is θ(kp). We have to show that S can
be “evaluated” in O(kp) steps.
We use the following arrays.
• For each i ≤ k, we use an array Ei such that each Ei[a] is the encoding of
the equation which defines fi(a).
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• For each i ≤ k, we use an array Fi with the intention that, at the end, for
each a < p, Fi[a] should contain fi(a).

• For each i ≤ k, we use a Boolean array Knowni such that Knowni[a] is true
only if Fi[a] contains fi(a). Initially, all entries in these arrays are set to false.

• For each i ≤ k, we use a variable MinUndefi such that, at each moment of
the computation, MinUndefi is b if Knowni[b] is false, but Knowni[a] is true
for all a < b. Initially, all MinUndefi are 0.

• For each i ≤ k, we use an array Invi such that Invi[a] always contains the
maximum b < MinUndefi, such that fi(b) = a, if such a b exists. Initially, all
Invi[a] are represented by p, i.e., a value outside [p].

• For each i ≤ k and each a < p, we use a list Li[a] that contains pairs (j, b)
such that fi(a) is an operand in the equation which defines fj(b), except if
this equation is of the form (4).

• For each i ≤ k and each a < p, we use a list L≤i [a] that contains the list of
all pairs (j, b) such that the equation Ej [b] is fj(b) = fi

←(a). Note that the
lists Li[a] and L

≤
i [a] can be directly computed from S in linear time.

• Furthermore, we use a queue Q, which consists of elements of the form (i, a, b),
a, b ∈ [p], i ≤ k, where each entry (i, a, b) indicates that fi(a) = b, but this fact
has not yet been incorporated to the whole data structure; i.e., in particular,
Knowni[a] is still false.

The algorithm is essentially a generalization of topological sorting, in fact a variant
of the linear time algorithm for Horn-satisfiability [7].
For the initialization, the algorithm does the following. It first checks that the

input is a correct SFD instance. This involves sorting the equations by i and a to
check that there is exactly one equation for each i and a. A linear time algorithm for
this purpose is described in [19]. Then all entries in Known are set to false, all entries
in Inv to p, and all values MinUndef to 0. Furthermore, Q and all lists L[i, a] and
L≤[i, a] are initially empty. For each j ≤ kp, if equation Ej defines fi(a), then we set
Ei[a] := Ej . For each equation of the form fi(a) = b, we add (i, a, b) to Q. For each
equation of the form fi(a) = fh(fj(b)), we add (i, a) to L[j, b]. For each equation of
the form fi(a) = fj(b) ∗ fh(c), we add (i, a) to L[j, b] and L[h, c]. For each equation
of the form fi(a) = fj

←(b), we add (i, a) to L≤[j, b].
The main computation of the algorithm is shown in Table 2.
Finally, it checks that all of the values of the functions f1, . . . , fk, as represented

by the array Fi, have been computed; i.e., MinUndefi = p for each i ≤ k.
It remains to show that this algorithm is correct and works in linear time. The

latter is easy to see. First, for each pair (i, a), at most one triple (i, a, b) is ever added
to Q. Hence the outermost WHILE loop is executed at most kp times. Second, the
use of MinUndefi ensures that the innermost WHILE loop is also executed at most kp
times. As the time for the initialization and the final tests is also linear, the overall
running time is at most linear. The correctness of the algorithm can be shown by an
induction on the height of the vertices of the dependency graph that corresponds to
S and the valuation that is computed by the algorithm.
Note that the overall size of each of the multidimensional arrays is at most kp.

Hence, e.g., the arrays Fi can be simulated
8 by a one-dimensional array F via Fi[a] =

F [ka+i]. More generally, the algorithm uses only integers of value O(kp), particularly
in linear space.

8Note that this RAM algorithm uses multiplication.
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Table 2
Main part of the evaluation algorithm.

WHILE Q is not empty DO BEGIN
Remove a triple (i, a, b) from Q
Fi[a] := b; Knowni[a] := true
For each pair (j, c) in L[i, a] DO BEGIN

IF Ej [c] is fj(c) = fh(fi(a)) THEN BEGIN
Set Ej [c] := ”fj [c] = fh(b)”
IF Knownh[b] THEN add (j, c, Fh[b]) to Q

ELSE add (j, c) to L[h, b]
END
IF Ej [c] is “fj(c) = fi(a) ∗ fh(d)” THEN

Set Ej [c] := ”fj [c] = b ∗ fh(d)”
IF Ej [c] is “fj(c) = fh(d) ∗ fi(a)” THEN

Set Ej [c] := ”fj [c] = fh(d) ∗ b”
IF Ej [c] is “fj(c) = fi(a)” THEN

add (j, c, b) to Q
IF Ej [c] is “fj(c) = fi(a) ∗ d” THEN

add (j, c, b ∗ d) to Q
IF Ej [c] is “fj(c) = d ∗ fi(a)” THEN

add (j, c, d ∗ b) to Q
END
WHILE MinUndefi = a and Knowni[a] DO BEGIN

For each pair (j, c) in L≤[i, a] DO
add (j, c,min(a, Invi[Fi[a]])) to Q

MinUndefi := a+ 1; Invi[Fi[a]] := a; a := a+ 1
END

END

The SFD function is strongly related to LSRS. Next we describe a problem that
is related to LRS and that also turns out to be complete for DLIN.
An inductive function definition (IFD) instance S consists of a positive integer p

and a list of p equations E0, . . . , Ep−1, where each Ea is of one of the following forms:
(i) f(a) = c for some c ∈ [p],
(ii) f(a) = f(b) ∗ f(c), where ∗ ∈ {+,−} and b, c < a,
(iii) f(a) = f(f←(a− 1) + 1).
Problem “inductive function definition (IFD)”.
Input. An IFD instance S = (p,E0, . . . , Ep−1).
Output. The function f : [p]→ [p], as defined by S.
As usual, we stick to the convention that the value of f(b) ∗ f(c) is 0 in case of

overflow. As the equations are evaluated in the order in which they are given, and as
this order agrees with the natural order on [p], there is no ambiguity in the definition
of f . However, it might happen that the output is undefined because f(b) �= a− 1 for
each b < a − 1, for an equation of type (iii), for some a. In this case, we define the
output function to be constant 0.

Theorem 5.3. The RAM function IFD is complete for DLIN under affine
reductions.

Proof. Again we have to show that (a) for every RAM function Γ in DLIN, we
have Γ ≤a IFD and (b) IFD is in DLIN.
Item (b) is much easier to show than in Theorem 5.2, as the equations are simply

evaluated in the order in which they appear. This implies that the evaluation of
equations of kind (iii) is similarly straightforward but simpler than that in the proof
of Theorem 5.2.
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It remains to show that IFD is complete for DLIN. This proof combines many
of the techniques that we have described before in this article. Let Γ ∈ DLIN be a
RAM function that is computed by a safe RAM (cf. section 2). Let S1 be an LSRS for
Γ, as constructed in the proof of Lemma 4.3, in which all definitions by cases, besides
those which refer to the partition of the domain into three parts, are arithmetized as
sketched in the proof of Lemma 3.5. Furthermore, we allow in S1 right-hand sides
like I(x − 1), which can be directly dealt with in the IFD by equations of type (ii).
In particular, S1 uses recursion only once, that is, in RA(x) = R

′
A[A

←(x)]x for the
middle part and the third part of the domain. Next we transform S1 into an LRS
S2, similarly as in the proof of Lemma 3.10. The transformation here is much easier
because, in S1, only recursion with Equal-Predecessor over A(x) is used. Let c be
as in Lemma 4.3; i.e., all functions will be defined on the domain [3cs.n] for input
data structures s. Let c′ be a constant such that the evaluation of S1 always uses
only numbers that are smaller than c′s.n. We make use of an additional function A+

with the intention that, for all a, A+(a) = A(a) + c′n. Let k be chosen such that the
functions of S1 besides A, RA, and R

′
A can be numbered as g3, . . . , gk−1. The function

f that is defined by S2 shall encode the functions of S1 and A
+ in the following way.

For each a ∈ [3cs.n], we get

f(2ka) = A(a)

f(2ka+ 1) = A+(a)

f(2ka+ 2) = RA(a)

f(2ka+ 3) = g3(a)

...
...
...

f(2ka+ k − 1) = gk−1(a)

f(2ka+ k) = A(a)

f(2ka+ k + 1) = A+(a)

f(2ka+ k + 2) = R′A(a)

f(2ka+ k + 3) = g3(a)

...
...
...

f(2ka+ k + k − 1) = gk−1(a)

Now we unfold S2 with respect to the input data structure s, as described in the
following. For simplicity, we assume that s only has one function f ′. First, S3 gets
s.n equations f(a) = s.f ′(a), where the values s.f ′(a) are given by the input and
are therefore constants for S3. Then we have s.n equations of the form f(a) = c

′s.n,
where c′s.n is also a constant for S3. The value c

′s.n is needed in the next step to
compute A+(x) from A(x). Next we unfold S2 with respect to 3cs.n analogously
to the proof of Theorem 5.2. Note that all equations are “shifted” by 2s.n, which
can be easily adapted by the coefficients of the affine functions that are constructed.
For all equations that do not use recursion, this unfolding is straightforward. Those
equations that are obtained from the only recursion equation RA(x) = R

′
A[A

←(x)]x
of S2 are encoded by equations of the form f(2ka + 2) = f(f←(2ka + 1) + 1). Note
that we represented all function values besides those of RA and R

′
A twice in f to make

this encoding possible with an equation of type (iii).
The definition of S3 by affine functions can be done in a similar manner as sketched

in the proof of Theorem 5.2.

6. Conclusion. We have given two algebraic characterizations of DLIN. We
feel that the existence of such machine-independent characterizations strengthens the
intrinsic interest of this complexity class. Moreover, maybe they will help us to find
nice logical characterizations of DLIN as was done for NLIN [20, 29, 8]. The goal of
such logical characterizations would be to allow some of the techniques of finite model
theory that have been developed to prove nonexpressibility results, to show nonlinear
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lower bound results for concrete algorithmic problems. For surveys on this topic see,
e.g., [10, 35].
Logical characterizations seem to be more difficult to obtain for deterministic lin-

ear time classes than for nondeterministic linear time classes. The known characteri-
zations of deterministic polynomial time suggest two possible approaches. Following
Graedel’s characterization of P by existential second-order Horn logic [13], one could
try to get a logical characterization of DLIN by restricting the formulas that are used
in the characterization of NLIN. The other approach would be to use some kind of
fixed point operator as in the work of Immerman and Vardi [24, 36]. Although the
results of this article can be used to get logical characterizations by both approaches,
the resulting logic is too complicated to be of any use.
We have defined a new very strict machine-independent reduction adapted for

linear time classes defined by RAMs and at least as restrictive as the classical re-
ductions like reset-log-lin [6], linear time and logarithmic space reductions, etc. Our
affine transformation transforms a structure s into a new structure s′, which is a kind
of copy of s, with possible shuffle and repetitions; in particular, the value of each
element f ′(y) of the transformed structure s′ depends only on one value f(x) of the
original structure s.
Moreover, the class of affine transformations is closed under various operations:

composition, concatenation, shuffle. Typically, the transformation of s = ([n], f0, . . . ,
fk−1) into s

′ = ([kn], f ′), where f ′ : [kn] → N is defined by f ′(kx + r) = fr(x) for
x < n and r < k, is affine.
It is easy to see that an affine reduction is highly parallelizable; more precisely,

it is in NC1, i.e., computable on a uniform Boolean circuit of fan-in two and depth
O(logn).
We have shown that affine reductions are the right kind of reductions to de-

fine both DLIN-completeness and NLIN-completeness. We are convinced that they
can be applied both in the context of tractable problems, e.g., linear reductions to
HORN-SAT, and in the context of intractable problems, e.g., reducibility from SAT
or 3-SAT.
Finally, we note that there is another kind of machine-independent reduction,

namely, the logical reduction; it would be worthwhile to compare our affine reduction
with the logical quantifier-free reduction used by [27] for linear reductions of some
NP-complete problems, such as KERNEL, to and from problem SAT. We conjecture
that an affine reduction between isomorphical invariant problems is also quantifier-
free. The converse is unclear.
We have shown that theNLIN-complete problem CONTRACT isNLIN-complete

not only via DTIME(n)-reductions but also via affine reductions. We can also prove
the respective statement, left as an exercise to the reader, for the more classicalNLIN-
complete problem reduction of incompletely specified automata (RISA) [11, 16]. We
feel that our DLIN-complete problems SFD and IFD are still interesting even if they
seem to be slightly less natural than CONTRACT and RISA because of the use of the
Equal-Predecessor operator. More precisely, IFD appears to be a minimal problem in
the following sense: it involves only one function; each one of the three forms (i)–(iii)
of the equations of an IFD instance is or seems to be necessary. Of course, on the one
hand, (i) f(a) = c and (ii) f(a) = f(b) ∗ f(c) are required to initialize some values
and compute new ones, but, on the other hand, (i)–(ii) do not seem to be sufficient
unless any DLIN algorithm can be implemented in linear time on a write-once RAM,
i.e., a RAM which may only write a value once in any register but is not allowed
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to erase or rewrite it—an unlikely simulation; see [23] and [32]. Besides, note that
IFD does not involve composition of functions; the “execution” of an equation (iii)
f(a) = f(f←(a − 1) + 1) has a flavor of “neighborhood copying”: search the last
b < a − 1 such that f(b) = f(a − 1), and copy the neighbor value f(b + 1) into f(a)
so that the pairs (f(b), f(b+ 1)) and (f(a− 1), f(a)) are equal.
If an affine transformation is regarded as a kind of copying process, then any

DLIN (resp., NLIN) problem can be regarded as a subproblem of any DLIN-
complete (resp., NLIN-complete) problem such as IFD (resp., RISA). That means
that our above-mentioned linear-time algorithms for IFD and SFD are universal
or most general programs with respect to the other linear-time programs, e.g.,
topological sorting, algorithms for Horn-satisfiability, or for graph planarity, and
so forth.
The fact that SFD and IFD areDLIN-complete via affine reductions immediately

implies that such a problem is at least as hard as any DLIN problem for many
complexity measures: time and space on Turing machines, Boolean circuit or PRAM
complexity, etc., as exemplified by the following equivalences.

Proposition 6.1.
1. SFD ∈ DTIME(n) if and only if DLIN = DTIME(n);
2. SFD ∈ DSPACE(S(n)) if and only if DLIN ⊆ DSPACE(S(n)) for any

space constructible function S(n) ≥ log n;
3. SFD ∈ NC1 if and only if DLIN ⊆ NC1;
4. SFD ∈ DTIME−PRAM(t(n)) if and only if DTIME−RAM(n) (that is,
DLIN) is included inDTIME−PRAM(t(n)) for any honest function t(n) <
n, where DTIME−PRAM(t(n)) denotes the set of problems computable in
parallel time t(n) on a PRAM which uses only numbers O(n).

It is very difficult to prove complexity lower bounds for natural combinatorial
problems on general-purpose models of computation. The NLIN-complete prob-
lems are among the very few known exceptions: from the inclusions DTIME(n) �

NTIME(n) ⊆ NLIN [30, 16], one deduces, e.g., that RISA is not in DTIME(n).
Note that RISA is in DLIN if and only if DLIN = NLIN. We have no idea on how
to prove complexity lower bounds, e.g., on Turing machines, for problems such as
HORN-SAT or GRAPH-PLANARITY, but we feel that it should be easier to prove
that IFD and SFD cannot be reduced to such a problem; e.g., IFD ≤a HORN-SAT
does not hold, and hence HORN-SAT is not complete for DLIN. Intuitively, IFD is
not a subproblem of HORN-SAT.
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Abstract. We give improved approximations for two classical embedding problems: (i) minimiz-
ing the number of crossings in a drawing on the plane of a bounded degree graph; and (ii) minimizing
the VLSI layout area of a graph of maximum degree four. These improved algorithms can be applied
to improve a variety of VLSI layout problems. Our results are as follows. (i) We compute a drawing
on the plane of a bounded degree graph in which the sum of the numbers of vertices and crossings is
O(log3 n) times the optimal minimum sum. This is a logarithmic factor improvement relative to the
best known result. (ii) We compute a VLSI layout of a graph of maximum degree four in a square
grid whose area is O(log4 n) times the minimum layout area. This is an O(log2 n) improvement over
the best known long-standing result.
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1. Introduction. In this paper, we study two related problems: (1) drawing a
bounded degree graph on the plane with the fewest number of crossings of edges and
(2) minimization of the VLSI layout area of a graph of maximum degree four in a
grid with constant aspect ratio. Considerable attention has been devoted to these
problems in the past (see, e.g., [L80, V81, BL84, U84, SSSV97, LR99]).

A drawing of a graph on the plane is an injection of the vertices of the graph to
points in the plane and a mapping of the edges to simple continuous curves between
the vertices’ images. A curve may not contain an image of a vertex as an internal
point, and three (or more) curves may intersect only at an image of a vertex. A
crossing is an intersection of two curves at a point that is not an image of a vertex.
The size of a drawing is the sum of the numbers of vertices and crossings in the
drawing. The problem of determining the minimum size of a drawing of a graph on
the plane is NP-complete [GJ83].

Bhatt and Leighton, in [BL84], apply a B(n)-approximate bisection procedure
recursively to decompose a bounded degree graph with n vertices. They prove that this
recursive decomposition induces a drawing of size O(B2(n) log2 n) times the minimum
size drawing. Shahrokhi et al. [SSSV97] considered straight line drawings induced by
decomposition trees and presented a simpler construction of a drawing of the same
size as the one achieved in [BL84]. Leighton and Rao [LR99] showed that the above
result can be realized with a (1

3 ,
2
3 )-separator. Leighton and Rao also showed how
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to find such a separator with size bounded by α(n) = O(log n) times the optimal
bisector. This implied an O(log4 n)- (or O(α2(n) log2 n)-) approximation algorithm
for the drawing size of a bounded degree graph. The bound on the approximation
factor in this algorithm relies only on the fact that an optimal drawing induces a planar
graph which admits small vertex separators. The reason that the approximation
algorithm applies only to bounded degree graphs is that, in bounded degree graphs,
the vertex separators and the edge separators have roughly the same size. It appears
that the ideas of [PSS96, SSSV97] may extend to arbitrary degree graphs. Motivated
by graph layout problems, we focus on bounded degree graphs for results related to
crossing numbers of graphs and on graphs of maximum degree four for results related
to layouts.

A VLSI layout of a graph of maximum degree four is an embedding of the graph
in a grid. The vertices of the graph are injected into the grid vertices, and the edges
of the graph are mapped into edge disjoint paths in the grid. In fact, we consider the
more restrictive “Manhattan” model of routing (in which layer assignment is trivial)
and not the “knock-knee” model. Namely, an intersection of two paths (i.e., images
of edges) at an internal grid vertex is allowed provided that one path traverses the
grid vertex horizontally and the other path traverses the grid vertex vertically. The
objective in the VLSI layout area problem is to minimize the area of the grid. Note
that to be able to embed a graph in a grid, it must be of maximum degree four.
From now on, we consider only graphs of maximum degree four for the VLSI layout
problem.

Leiserson [L80] and Valiant [V81] showed that every planar graph can be em-
bedded in a grid with constant aspect ratio of size O(n log2 n). Bhatt and Leighton
suggested embedding a graph of maximum degree four in two steps. First, draw it
on the plane, and then apply the approximation algorithm for VLSI layouts of planar
graphs to the planar graph resulting from the drawing by adding vertices in cross-
ings. The optimal layout gives a feasible drawing of the same size; therefore, the
O(log4 n)-approximation algorithm for drawing graphs on the plane combined with
the O(log2 n)-approximation algorithm for VLSI layouts of planar graphs yield an
O(log6 n)-approximation algorithm for the VLSI layout problem.

A decomposition tree of a graph G = (V,E) is a tree with a mapping of the tree
nodes to subsets of vertices as follows. The root is mapped to V ; every two siblings
are mapped to subsets that constitute a partitioning of the subset of V to which their
parent is mapped; and leaves are mapped to subsets containing a single vertex. The
cut associated with an internal tree node t is the set of edges between the subsets
to which the children of t are mapped. Bhatt and Leighton, in [BL84], proposed
a special type of decomposition trees called bifurcators. These decomposition trees
are binary trees, and the cut sizes associated with their nodes decrease exponentially
as a function of the depth of the node. Bhatt and Leighton [BL84] demonstrated
that a

√
2-bifurcator can be used for a wide variety of problems in VLSI layouts:

minimizing capacitive delay, producing fault tolerant layouts, layouts for graphs using
prefabricated chips, regular layouts, and layouts minimizing wire crossing to name a
few. (The detailed description of these applications is provided in [BL84].) Using
the approximation of drawing size, in retrospect, Bhatt and Leighton provided an
O(log2.5 n)-approximation for the optimal

√
2-bifurcator.

Our results. In this paper, we provide improved approximation algorithms for
the above problems. We first provide an O(log3 n)-approximation algorithm for the
drawing size problem. As a consequence of this result, based on Bhatt and Leighton’s
results, we obtain an O(log2 n)-approximation for the optimal

√
2-bifurcator problem
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and a corresponding improvement for all of its applications.
Our O(log3 n)-approximation for the drawing size problem combined with layout

algorithms for planar graphs yield an O(log5 n)-approximation for the minimum VLSI
layout area. Using further structural properties of the decomposition tree computed
in our algorithm, we show that the VLSI layout area problem can be approximated
to a factor of O(log4 n).

In terms of the best approximation factor known for separators, our results can be
stated as follows. Let α(n) denote the smallest known ratio of the separator size (that
can be computed efficiently) to the optimal bisector size. We show an O(α2(n) log n)-
approximation of the minimum drawing size and an O(α2(n) log2 n)-approximation
of the minimum VLSI layout area.

Our approximation algorithms construct a decomposition tree that can be viewed
as an approximation of a decomposition tree T̃ obtained by recursively bisecting the
planar graph induced by an optimal drawing. Such a decomposition tree T̃ induces a
drawing of size O(log n) times the optimal drawing size. In addition, T̃ can be used
in Leiserson’s embedding algorithm [L80] to compute a layout of area O(log2 n) times
the optimal layout area.

The decomposition tree that we compute mimics the useful properties of T̃ . In
the problem of drawing a graph on the plane, we attach an estimator φ(t) to every
tree node that estimates the optimal drawing size of the corresponding subgraph.
The estimator quality is one-sided; it may not surpass (twice) the drawing size but
might be much smaller than the drawing size. The estimators have the following two
properties that approximate the properties of the drawing sizes of the subgraphs in T̃ :
(a) the cut sizes are bounded by the square-root of the corresponding estimators up
to a logarithmic error term; and (b) the estimators decrease exponentially as one goes
down the tree. The main difficulty in constructing such an “approximated” decompo-
sition tree with estimators is that the only tool we have is approximate separators. To
overcome this difficulty, we apply a top-down approach with rebalancing to guarantee
that the estimators decrease exponentially.

Our technique extends to a framework for computing decomposition trees with
estimators of other superadditive functions. (Superadditive functions are functions in
which the sum of the function values on disjoint subgraphs is no more than the value
of the function on the whole graph.) Guha [G00] applied this technique to the fill-in
function, yielding better approximations for chordal completion, operation count, and
certain cases of elimination height and pathwidth.

For the grid embedding algorithm, we follow the paradigm suggested by Leiser-
son [L80]. First, we present a “weighted” version of Leiserson’s algorithm that can be
implemented when the separation properties of the decomposition tree are given rel-
ative to weights of subgraphs rather than sizes of subgraphs. A tempting approach is
to use the decomposition tree computed for approximating the drawing size together
with the estimators associated with its nodes as weights for the implementation of
Leiserson’s algorithm. However, this approach fails since the estimators are not ad-
equate as weights. This is because they do not satisfy a superadditivity property.
Therefore, we compute new node weights. These weights require a rebalancing of
the decomposition tree before the weighted version of Leiserson’s algorithm can be
applied.

Organization. In section 2, we define the problems and describe the basic tools:
decomposition trees, separators, etc. In section 3, we describe decomposition trees
with estimators and show that they are useful for drawing graphs. In section 4, we
present an algorithm for computing decomposition trees with estimators. In section 5,
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an improved approximation of
√
2-bifurcators is presented. In section 6, we present

an algorithm for approximating the minimum VLSI layout area.

2. Preliminaries.

Minimum drawing size of a graph. A drawing D of a graph G is a one-to-one
mapping of the vertices to points on the plane. We call the image of a vertex its
position. Every edge is mapped to a simple (non-self-intersecting) continuous curve
connecting the positions of the end-points of the edge. A curve corresponding to an
edge may not contain a position of a vertex as an interior point. A crossing is an
intersection of the interiors of two curves corresponding to images of edges. (Note
that a position of a vertex does not count as a crossing since a position of a vertex
cannot be in the interior of a curve.) We do not allow more than two curves to
intersect at every crossing. A point in a drawing is either a position of a vertex of
the graph or a crossing. We denote the minimum number of points, over all drawings
of G, by MDS(G). Note that MDS(G) = n + CR(G), where CR(G) denotes the
(minimum) crossing number of G, and n is the number of vertices in G.

The minimum drawing size of a graph satisfies the following superadditivity prop-
erty.

Proposition 1. If the vertex set of G is partitioned into disjoint sets and the re-
spective graphs induced by them are denoted by {Gi}i, then MDS(G) ≥∑iMDS(Gi).

Minimum layout area of a graph. A VLSI layout of a graph of maximum degree
four is an embedding of the graph in a grid. The embedding consists of an injection
of the graph vertices to the grid vertices and a mapping of the graph edges into edge
disjoint paths in the grid. The paths into which two edges are mapped may intersect
at an internal grid vertex, provided that one edge is mapped to the two horizontal
grid edges touching this vertex and the other edge is mapped to the vertical grid
edges touching it. The aspect ratio of a (rectangular) grid is the ratio of its short
dimension to its long one. Let Areaσ(G) denote the minimum area required to embed
a graph G in a host grid with aspect ratio σ. Let Area(G) = minσ>0 Areaσ(G).
Using a “folding” argument, Leiserson [L80] showed that Area1(G) ≤ 3 ·Area(G).
It follows that considering only embeddings in squares has only a small effect on the
minimum area.

Since every layout is also a drawing, and the area of the layout is an upper bound
on the size of the drawing, the following property holds.

Proposition 2. For every graph of maximum degree four, Area(G) ≥MDS(G).

Decomposition trees. A (binary) decomposition tree1 T of G = (V,E) is a rooted
binary tree T , and a mapping of the tree nodes to subsets of vertices is as follows:
The root is mapped to V ; every two siblings are mapped to subsets that constitute a
partition of the subset of V to which their parent is mapped; and leaves are mapped
to subsets containing a single vertex. Let Vt denote the set of vertices to which the
tree node t is mapped, and let nt = |Vt|. Let Gt = (Vt, Et) denote the subgraph
of G induced by Vt. To each internal tree node t ∈ T , we associate the cut between
the vertex sets to which the two children of t are mapped. Formally, let cut(V1, V2)
denote the edges between vertices in V1 and vertices in V2. The cut corresponding
to an internal node t is denoted by cut t. This cut is defined by cut t = cut(Vt� , Vtr ),
where t� and tr are the children of t. For an edge e = (u, v) ∈ E, let t(e) be the tree
node for which e ∈ cut t(e). Note that t(e) is the lowest tree node that is mapped to

1Decomposition trees may not be binary. However, in this paper, we consider only binary de-
composition trees.
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a set containing both u and v.

Drawings induced by decomposition trees. In [BL84], Bhatt and Leighton con-
sidered (recursive) drawings that are induced by decomposition trees. Shahrokhi
et al. [SSSV97] described simple drawings that are induced by ordered decomposition
trees.2 Following Shahrokhi and Shi [SS00], we call this drawing a linear drawing. An
ordered decomposition tree induces a permutation of the vertices by considering the
order of the leaves in a preorder traversal. (Recall that each such leaf is mapped to a
subset containing just one vertex in G.) Let v1, . . . , vn denote the vertices of G in this
order. Map the vertices to points along a line (also called the spine), unit distances
apart, according to their order. All of the edges are drawn on one side of the spine
as half circles; namely, each edge e = (vi, vj) is drawn as half a circle with diameter
|i− j| and end-points at vi and vj .

Shahrokhi et al. [SSSV97] count the number of crossings in such an induced
drawing using the following observation.

Lemma 3. In a linear drawing, if the curves corresponding to edges e = (vi, vj)
and e′ = (vk, v�) cross, then either t(e) is an ancestor of t(e′) or t(e′) is an ancestor
of t(e). (A node is considered both an ancestor and a descendant of itself.)

Proof. Observe that, for each tree node t, the vertices in Vt are drawn contiguously
along the spine. From the drawing it follows that whenever two edges e = (vi, vj)
and e′ = (vk, v�) cross, then either k < i ≤ � ≤ j or i ≤ k ≤ j < �. The lemma
follows.

A crossing of the curves of e and e′ is charged to edge e if t(e) is an ancestor
of t(e′) and to edge e′ otherwise. From Lemma 3 it follows that a crossing of the
curves of e = (u, v) and e′ is charged to e if t(e′) is either on the path connecting
t(e) to u in T or on the path connecting t(e) to v. Recall that, for an internal tree
node t, the number of edges e with t(e) = t is |cut t|. We get the following bound on
the number of crossings charged to an edge e.

Corollary 4. Let P (u, v) denote the set of nodes in T on the path from the leaf
mapped to u to the leaf mapped to v. The number of crossings in a linear drawing
that are charged to the edge e = (u, v) is bounded by

∑
t∈P (u,v) |cut t|.

Shahrokhi et al. [SSSV97] also suggested placing the vertices on a circle (or on
the corners of a convex polygon) using the same order and drawing the edges with
straight lines. The number of crossings in this drawing also satisfies Corollary 4.

Existence of special separators. In our algorithm, we need to compute a simulta-
neous edge separator. Such an edge separator is a cut that partitions a graph in a
balanced way according to two measures—the number of vertices and their weights.
Suppose that we are given a graph G with vertex weights w(v). For a set of vertices S,
let w(S) denote the sum of the weights of vertices in the set S.

Definition 1. A cut (S, V −S) is a ( 1
4 ,

3
4 )-separator with respect to the number

of vertices if min{|S|, |V − S|} ≥ 1
4 |V |.

A cut (S, V − S) is a ( 1
3 ,

2
3 )-separator with respect to the vertex weights if

min{w(S), w(V − S)} ≥ 1
3w(V ).

A cut (S, V − S) is a simultaneous (edge) separator if it is a ( 1
4 ,

3
4 )-separator

with respect to the number of vertices and a ( 1
3 ,

2
3 )-separator with respect to the vertex

weights.

The following lemma shows that a small simultaneous separator exists provided
that vertex weights are not too big.

2An ordered tree is a tree in which the children of each internal node are ordered.
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Lemma 5. If the maximum vertex weight is bounded by 2
3 of the total weight,

then there exists a cut of size O(
√
MDS(G)) that is a simultaneous edge separator.

Proof. First, for the sake of completeness, we prove the weighted version of the
Planar Separator Theorem [LT79]. Namely, we show that there exists a cut of size
O(
√
MDS(G)) that separates G into subgraphs of weight between one third and two

thirds of the total weight. Let G = (V,E). Consider an optimal drawing of G, and let

G̃ = (Ṽ , Ẽ) denote the planar graph that is obtained by introducing vertices in the

crossings of the optimal drawing. Assign zero weights to vertices in Ṽ−V , and keep the
weights of vertices in V unchanged. Note that |Ṽ | = MDS(G). Construct an ordered

decomposition tree of G̃ by applying the Planar Separator Theorem recursively and
setting the heavier subgraph as the left child in each step. Let v1, . . . , vn denote the
order induced by a preorder traversal on the vertices in V . Define Si = {v1, . . . , vi}
and S0 = φ. Define � as follows:

� = min{i : w(Si) ≥ w(V )/3}.
Observe that w(V )/3 ≤ w(S�) ≤ 2w(V )/3. If � = 1, then this follows from the fact
that w(v) ≤ 2w(V )/3 for every v ∈ V . If � > 1, then w(v�) ≤ w(S�−1) ≤ w(V )/3
because of the ordering rule, in which the heavier subgraph is set as the left child.

We now prove that the size of the cut (S�, V − S�) is O(
√
MDS(G)). Let

t0, t1, . . . , tk denote the path in the decomposition tree from the root to the leaf corre-
sponding to v�. The size of the cut (S�, V −S�) is bounded by

∑k
i=0 |cut ti |. The Planar

Separator Theorem implies that (a) |cut ti | ≤ O(

√
|Ṽti |); and (b) |Ṽti | ≤ (2/3)i · |Ṽ | for

every i = 0, 1, . . . , k. This completes the proof of the weighted version of the Planar
Separator Theorem. We note that since all of the vertices in Ṽ have constant degree,
the weighted version of the Planar Separator Theorem follows from a general theorem
of Gazit and Miller [GM90]. We detailed the proof for the sake of completeness and
also since a similar construction is used later.

A simultaneous separator can be shown to exist as follows. Let (S, V −S) denote a
( 1
3 ,

2
3 )-separator with respect to the weights w(v). If |S|, |V |−|S| ≥ 1

4 |V |, we are done.
Otherwise, without loss of generality, |S| > 3

4 |V |. Let (S1, S − S1) denote a ( 1
3 ,

2
3 )-

separator of S with respect to the number of vertices. Without loss of generality,
assume that w(S1) ≤ w(S − S1). In case w(S − S1) ≥ 1

3w(V ), we are done since the
partition into S − S1 and V − (S − S1) is a good partition and the size of the cut is
O(
√
MDS(G)).
If w(S−S1) <

1
3w(V ), let (S2, V −S−S2) denote a (

1
3 ,

2
3 )-separator of V −S with

respect to the weights. Without loss of generality, assume that w(S2) ≤ w(V −S−S2).
We claim that the partition into (S−S1)∪S2 and (V −S−S2)∪S1 is a good partition.
First, note that the size of the cut is O(

√
MDS(G)). Clearly, it is a (1

4 ,
3
4 ) partition

with respect to the number of vertices since |S1|, |S − S1| ≥ 1
4 |V |.

We show that 1
3w(V ) ≤ w(V − S − S2) + w(S1) ≤ 2

3w(V ), and thus it is a
( 1
3 ,

2
3 ) partition with respect to the weights. The lower bound is proved as follows:

w(V − S − S2) + w(S1) ≥ 1

2
w(V − S) + w(S1)

=
1

2
· [(w(V )− w(S − S1)) + w(S1)].

Since w(V )− w(S − S1) is at least
2
3w(V ), the lower bound follows. Also,

w(V − S − S2) + w(S1) ≤ 2

3
w(V − S) +

1

2
w(S) ≤ 2

3
w(V )− 1

6
w(S) ≤ 2

3
w(V ).
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Computing simultaneous separators. The proof of Lemma 5 can be made into an
efficient algorithm if one could efficiently compute balanced cuts with respect to vertex
weights (or number of vertices). The size of the cuts needs to be O(

√
MDS(G)). In

this section, we present a weaker result; namely, the cut size is O(
√
MDS(G) · log n).

This additional O(log n) factor is also added to the size of the simultaneous separator
that we can compute efficiently. The algorithm is based on applying at most twice
the Leighton–Rao bicriteria approximation algorithm for separators.

The Leighton–Rao separator algorithm [LR99] finds separators in unweighted
graphs as well as weighted graphs. A cut cut(U, V − U) is a b-balanced cut if the
weights of U and V − U are at most 1− b times the total weight. The Leighton–Rao
algorithm receives two balance parameters b ≤ 1

2 and b′ ≤ min{b, 1
3} and returns a

b′-balanced cut the size of which is O( logn
b−b′ · SEPb), where SEPb denotes the size of

an optimal b-balanced cut.
We describe how to compute a b-balanced cut with respect to vertex weights

provided that b ≤ 1
3 . (Computing balanced cuts with respect to the number of vertices

is simply the case of uniform weights.) The size of the cut is O(
√
MDS(G) · log n).

Set b′ = 1 − √1− b, and apply the Leighton–Rao algorithm. The partitioning
yields a b′-balanced cut cut(U, V − U) with respect to vertex weights. If this cut
happens to be also b-balanced, then we are done. Otherwise, assume U is the heavier
part (i.e., w(U) ≥ w(V − U)). Since cut(U, V − U) is not b-balanced, it follows that
w(U) > (1−b)w(V ). Apply the Leighton–Rao algorithm to U to obtain a b′-balanced
cut (U1, U − U1). Assume U1 is the heavier part. Then the cut cut(U1, V − U1) is
b-balanced. The upper bound follows since w(U1) ≤ (1− b′)w(U) ≤ (1− b′)2w(V ) =
(1 − b)w(V ). The lower bound follows since w(U1) ≥ 1

2w(U) ≥ 1
2 (1 − b) · w(V ) ≥

b · w(V ). (The last inequality holds since b ≤ 1
3 .) Note that the sizes of both cuts

are bounded by O(
√
MDS(G) · log n) since the sizes of the optimal b-balanced cuts

of V and U are bounded by
√
MDS(G).

Another way to compute simultaneous separators with “relaxed” balance parame-
ters uses the spreading metric based algorithm [ENRS99] for simultaneous separators.

Weight functions induced by cuts. The weight functions used in our decomposition
algorithm are defined by cuts. We consider two subsets of vertices A,B ⊆ V and call
A the home set and B the outside set. The weight of v ∈ A with respect to its home
set A and the outside set B, denoted WA,B(v), is defined to be the number of edges
connecting v with vertices in B − A. In other words, WA,B(v) equals the number of
edges in cut(A,B − A) incident to v. Note that

∑
v∈AWA,B(v) = |cut(A,B − A)|.

Since the graphs are of bounded degree, the weight function is bounded as well.
We note that for some weight functions WA,B , there may be a vertex v such that
WA,B(v) > 2

3

∑
v∈AWA,B(v). Consequently, we cannot apply Lemma 5 to find a

simultaneous separator in such cases. To keep the presentation simpler, we first
assume that such cases of unbalanced weight functions do not happen and later note
how to cope with them.

3. A decomposition tree for minimizing the drawing size.

3.1. Motivation. Following Bhatt and Leighton, the drawings that we obtain
are induced by decomposition trees. Specifically, these drawings are linear drawings
as defined by Shahrokhi et al. [SSSV97]. The definition of decomposition trees used
for approximating the minimum drawing size is motivated by an “ideal” decompo-
sition tree. Loosely speaking, this ideal decomposition tree is obtained by applying
the Planar Separator Theorem recursively as in the proof of the weighted version
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of the Planar Separator Theorem in Lemma 5. More formally, the ideal decompo-
sition tree TI is defined as follows. Let G̃ denote a planar graph that is obtained
by introducing vertices in the crossings of an optimal drawing of G = (V,E). The

decomposition tree T̃ of G̃ is obtained by recursively separating G̃ using the Planar
Separator Theorem. The decomposition tree T̃ induces the decomposition tree TI of
G as follows: (a) For every t ∈ T̃ , define Vt = Ṽt ∩ V . (b) Prune the children, if any,
of every tree node t for which |Vt| = 1.

The size of a linear drawing induced by an ideal decomposition tree TI is analyzed
as follows. For every internal tree node t ∈ TI , |cut(Vt, V − Vt)| ≤ |cut(Ṽt, Ṽ − Ṽt)|.
The Planar Separator Theorem implies that |cut(Ṽt, Ṽ − Ṽt)| = O(

√
|Ṽt|). By Corol-

lary 4, in the linear drawing induced by TI , an edge e = (u, v) is charged for at most∑
t∈P (u,v) |cut(Vt, V − Vt)| =

∑
t∈P (u,v) O(

√
|Ṽt|) crossings. The recursive separation

implies that |Ṽt| decreases exponentially as one goes down the tree; therefore, an edge

e = (u, v) is charged for O(
√
|Ṽt(e)|) crossings. To bound the total charges, charge a

tree node t for all of the edges e for which t = t(e). Hence the charging of a tree node t

is bounded by O(|cut(Ṽt, Ṽ − Ṽt)| ·
√
|Ṽt|) = O(|Ṽt|). The tree nodes in the same layer

of T̃ induce a partition of G̃. It follows that the sum of |Ṽt| over all tree nodes t in the

same layer is bounded by O(|Ṽ |) = O(MDS(G)). Since there are only a logarithmic
number of layers in TI , the size of the drawing induced by TI is O(MDS(G) · log n).

Our goal is to define a decomposition tree that mimics the properties of an ideal
decomposition tree. We attach to every tree node an estimator φ(t) that “behaves”

like Ṽt so that we can adapt the analysis above for the drawing size that is actually
computed. To be able to apply the same analysis, φ(t) should have the following
properties:

1. |cut t| ≤
√

φ(t).
2. φ(t) decreases exponentially along every path that goes down the tree.
3. φ(t) = O(MDS(Gt)).

Since we do not have an ideal separator procedure, we relax property 1 to |cut t| ≤√
φ(t) · O(log n). This degrades the approximation factor by an additional factor

of O(log2 n).

3.2. A decomposition tree with estimators.

Definition 2. A decomposition tree T of a graph G together with a function φ(t)
defined over the tree nodes is called a decomposition tree with estimators if the fol-
lowing properties are satisfied for every internal tree node t ∈ T :

P1. |cut t| ≤ c
√

φ(t) · log nt for some constant c.
P2. For every child t′ of t, φ(t′) ≤ 2

3φ(t).
P3. φ(t) < 2 ·MDS(Gt).

The following claim shows that a drawing induced by a decomposition tree with
estimators is within O(log3 n) factor from optimal.

Claim 6. The size of a linear drawing of G that is induced by a decomposition
tree T with estimators φ(·) is O(MDS(G) · log3 n).

Proof. Consider an edge e = (u, v). From Corollary 4 it follows that the number
of crossings that are charged to e is bounded by

∑
t∈P (u,v) |cut t|. Define P (e, u)

and P (e, v) to be the paths in T from t(e) to the leaves that are mapped to u and v,



CROSSINGS IN GRAPH DRAWINGS 239

respectively. It follows that

∑
t∈P (u,v)

|cut t| ≤
∑

t∈P (e,u)

|cut t|+
∑

t∈P (e,v)

|cut t|.

We bound each summand on the right-hand side as follows. Let d(t, t′) be the number
of hops along the path from t to t′.

∑
t∈P (e,u)

|cut t| ≤
∑

t∈P (e,u)

c ·
√

φ(t) · log(nt) (by property P1)

≤ c · log n ·
∑

t∈P (e,u)

√
φ(t)

≤ c · log n ·
∑

t∈P (e,u)

√
φ(t(e)) · ( 2

3

)d(t(e),t)
(by property P2)

= log n ·O(
√

φ(t(e)))

= O(
√
MDS(Gt(e)) · log n) (by property P3).

By properties P1 and P3, for each tree node t, |cut t| = O(
√
MDS(Gt) · log n);

hence we can bound the total number of crossings charged to the edges in cut t by
O(log2 n ·MDS(Gt)).

Fix some height in T , and consider all of the tree nodes t1, . . . , tr that are of this
height. Notice that the sets Vti are disjoint and thus, by the superadditivity property
(Proposition 1), MDS(G) ≥ ∑ri=1 MDS(Gti). It follows that the total number of
crossings charged to the edges in ∪ri=1cut ti is bounded by

∑
i

O(log2 n ·MDS(Gti)) ≤ O(log2 n ·MDS(G)).

Observe that the tree T has height O(log n). This is because the estimator φ(·)
decreases exponentially along each path from the root to a leaf, and the estimator of
the root of the tree is O(m2 + n) since MDS(G) = O(m2 + n). It follows that the
total number of crossing points is O(log3 n ·MDS(G)).

Remark. A better approximation algorithm for separators would yield a better
approximation factor for the crossing number and the layout area. In particular, an
α(n)-approximation algorithm for separators would imply a tightened property P1,
i.e., cut t ≤ c

√
φ(t) ·α(nt), for every tree node t. This would imply an approximation

factor of O(α2(n) · log n) for the crossing number and O(α2(n) · log2 n) for the layout
area (see section 6). This improves the corresponding results of Bhatt and Leighton
(Theorems 17 and 19 in [BL84]) by a logarithmic factor and a log-square factor,
respectively.

4. Constructing a decomposition tree with estimators. Our goal is to con-
struct a decomposition tree T of G with estimators φ(t). The challenge in computing
the tree is due to the requirements that (i)

√
φ(t) cannot be too small since we must

be able to find a separator of size c
√

φ(t) log nt for some constant c; (ii) φ(t) must de-
cay exponentially along every “downward” path; and (iii) φ(t) cannot be greater than
(twice) MDS(Gt). The algorithm avoids an exponential search by using “failures” for
pruning backtracking and for rebalancing.
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Throughout the description, let G = (V,E) denote the graph for which a decom-
position tree is being computed. To simplify notation, we refer to induced subgraphs
of G simply by their vertex sets.

Our algorithm is recursive. The input to the recursive procedures consists of the
following inputs:

• a vertex subset V ′ (the goal is to compute a decomposition tree for the sub-
graph G′ = (V ′, E′) induced by V ′);

• a “guess” g on the estimate φ(r′) of the root of this tree;
• the second procedure also inputs a weight function on the vertices in V ′. This
weight function is either the trivial function I that assigns a unit weight to
each vertex or the weight function WV ′,B with respect to the home set V ′

and an outside set B. To simplify notation, we sometimes omit the home set
and the outside set and simply denote the nontrivial weight function by W .

Let decompose(V ′, g) denote our first recursive procedure. The procedure returns one
of the following:

• “fail” if the guess is too small (i.e., g < MDS(V ′)); or
• “success,” in which case the procedure also returns a decomposition tree T ′

of G′ with estimators φ(t). The estimator of the root r′ of T ′ satisfies
φ(r′) ≤ g.

Since n+
(
m
2

)
is an upper bound on MDS(G), the decomposition tree with estimators

of the input graph G = (V,E) is computed by calling decompose(V, n+
(
m
2

)
).

The procedure decompose(V ′, g) searches for an approximation of the small-
est feasible guess in the range [1, g]. This search is performed by calling a sec-
ond procedure test-decompose(V ′, g′, I) for various values of g′. The output of pro-
cedure test-decompose is also either “fail” (when the guess is too small) or “suc-
cess” (when the guess is large enough but might be too large). In case of success,
test-decompose(V ′, g′, I) returns a decomposition tree with “lax” estimators. The es-
timate φ(r′) assigned to the root by the lax estimators might not satisfy property P3.
That is, it outputs a success also in case the estimators φ(t) satisfy properties P1–P3
for all tree nodes but the root node, and the estimator for the root φ(r′) satisfies
P1 and P2 but φ(r′) ≥ 2 · MDS(V ′). The two procedures could be merged into
a single procedure in which a range of guess values is input (the range is [1, g] for
decompose and [g, g] for test-decompose), and a search takes place within the guess
range for an approximation of the smallest feasible guess. However, the partition into
two procedures seems to simplify the description.

The procedure decompose(V ′, g). This procedure calls successively test-
decompose(V ′, g/2i, I) for i = 0, 1, 2, . . . until test-decompose returns “fail.” We dis-
tinguish between two cases.

Case 1. The first call to test-decompose (with i = 0) returns “fail.” In this case,
decompose(V ′, g) returns “fail” as well.

Case 2. Some calls to test-decompose return “success.” Let s be the index of the last
success. In this case, decompose(V ′, g) returns “success” with the decompo-
sition tree and estimators computed by test-decompose(V ′, g/2s, I).

The failure with s+1 in Case 2 is used to guarantee property P3 with respect to φ(r′).
In Lemma 8, we prove that if test-decompose(V ′, g′, I) fails, then MDS(V ′) > g′.
Therefore, the failure with s + 1 implies that g/2s < 2 ·MDS(V ′), and property P3
is satisfied.

The procedure test-decompose(V ′, g,W ). This procedure has several steps.

Step 0. If V ′ contains a single vertex v, then return “fail” if g < 1 and “success”
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if g ≥ 1. In case of success, the decomposition tree is a single leaf t with
Vt = {v} and φ(t) = 1. If G′ contains more than one vertex, go to the next
step.

Step 1. Find a simultaneous separator of V ′. (Recall that such a separator is a (1
3 ,

2
3 )-

separator with respect to the weight and a (1
4 ,

3
4 )-separator with respect to the

cardinality.) Denote the two parts by V ′1 and V ′2 = V ′ − V ′1 . Note that when
the weight function is the trivial function I, a nonweighted (1

4 ,
3
4 )-separator

suffices.
Step 2. Let cS be the constant such that by Lemma 5 there exists a simultaneous

separator of V ′ of size cS ·
√
MDS(G′). If the size of the separator is greater

than cS · √g · log n′, where n′ = |V ′|, then return “fail.” Otherwise, go to
the next step. The reason for the failure is that we are guaranteed to find
a separator of size at most cS ·

√
MDS(V ′) log n′, and thus we have a proof

that MDS(V ′) > g.
Step 3. Call decompose(V ′1 , 2g/3) and decompose(V ′2 , 2g/3).
Step 4. Distinguish between three cases depending on the outcome of Step 3.

Case 1. Both recursive calls returned a success. In this case, we have com-
puted decomposition trees with estimators for V ′1 and V ′2 that satisfy
properties P1–P3. We construct a decomposition tree for V ′ by con-
necting both subtrees to a root r′. Set the estimator φ(r′) to be g, and
return “success” with the resulting tree and estimators. Note that, in
this case, φ(r′) might be much larger than MDS(V ′).3

Case 2. Both recursive calls returned a failure. In this case, we return “fail.”
The failures imply that MDS(V ′i ) > 2g/3 for i = 1, 2; hence by super-
additivity MDS(V ′) > 4g/3, which justifies the failure.

Case 3. One recursive call returned a success and the other a failure. Assume
decompose(V ′1 , 2g/3) succeeded and decompose(V ′2 , 2g/3) failed. This is
the most complicated case which may occur, even when g is a good guess,
due to the lack of balance between MDS(V ′1) and MDS(V ′2). Such an
imbalance can hamper satisfying P2 (i.e., the exponential decay of the
estimators) along the branch from V ′ to V ′2 . The algorithm attempts to
rebalance the partitioning by recursing on V ′2 and searching for a bal-
anced cut cut(U, V ′−U), where U ⊆ V ′2 . To avoid a significant increase
in the cut size (compared with cut(V ′1 , V

′
2)), simultaneous separators are

employed as follows.
Define a weight function W2 as follows. If the procedure test-decompose was
called with the trivial weight function I, then W2 is the weight function
defined with respect to the home set V ′2 and the outside set V ′. Otherwise,
that is, if the procedure test-decompose was called with a nontrivial weight
function W , then W2 is the weight function defined with respect to the home
set V ′2 and the same outside set used for W . In this way, the outside set is
always the first vertex set that failed in the current sequence of failures.

3In fact, φ(r′) can be assigned a “tighter” value which could shorten the running time.

Namely, set φ(r′) to be the maximum of 3
2
· φ(r′1), 3

2
· φ(r′2), and (

|cut(V ′1 ,V ′2)|
cS logn′ )2, where r′i is the

root of the decomposition tree computed for V ′i . In this case, if φ(r′) = (
|cut(V ′1 ,V ′2)|
cS logn′ )2, then

by Lemma 5 it follows that φ(r′) ≤ MDS(V ′), which means that smaller guesses for V ′ are
not needed. However, if φ(r′) = 3

2
· φ(r′i), then, from superadditivity, we can only infer that

MDS(V ′) ≥MDS(V ′1)+MDS(V ′2) ≥ 1
2
·(φ(r′1)+φ(r′2)) ≥ 1

2
· 2
3
·φ(r′). Hence φ(r′) ≤ 3·MDS(V ′), and

one more guess of φ(r′)/2 would still be required for V ′.
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In Case 3, continue with the following substeps.
Step 4.1. Call test-decompose(V ′2 , g,W2). If this call fails, then we have proof

that MDS(V ′) ≥MDS(V ′2) > g; therefore, return “fail.”
Suppose that this call succeeded. Consider the recursion tree created
by the call to test-decompose(V ′2 , g,W2). Since this call succeeded, the
two recursive calls of decompose with the parts of V ′2 and guess 2g/3
as inputs either both succeeded or at most one of them failed. In case
one of the calls failed, we recursively call test-decompose on this “failed”
part with a guess g. Since, by our assumption, the calling procedure
test-decompose succeeded, test-decompose must succeed on this “failed”
part with a guess g. Again, this implies that the two recursive calls of
decompose with the subparts of this “failed” part and the guess 2g/3
either both succeeded or at most one failed. It follows that the recursion
tree has a chain of “failure” nodes, where each such failure node denotes
a failure in a call to decompose with the corresponding subgraph and
guess 2g/3. We are guaranteed that the calls to decompose with the
subgraphs that correspond to the siblings of these failed nodes succeeded.
This sequence of “mixed” siblings must end with two siblings for which
decompose succeeded on their corresponding subgraphs and 2g/3.
Figure 1 depicts the recursion tree until two successful siblings are en-
countered. We use the following notation for the vertex sets induc-
ing the subgraphs corresponding to the siblings in this sequence. Let
F0 = V ′2 and S0 = V ′1 be the vertex sets of the first pair of mixed sib-
lings. Suppose that the sequence of mixed pairs is of length x ≥ 1.
Then, for 1 ≤ i < x, the sets Fi (representing failure) and Si (rep-
resenting success) denote the partition of Fi−1 computed in Step 1 of
test-decompose(Fi−1, g,WFi−1,V ′). The set Fi is the one for which the
call to decompose(Fi, 2g/3) failed, and the set Si is the one for which
the call to decompose(Si, 2g/3) succeeded. This chain of failures ends
with the vertex set Fx−1 that is partitioned into two sets Sx and Sx+1

for which both calls to decompose(Sx, 2g/3) and decompose(Sx+1, 2g/3)
succeeded. Let S = S0 ∪ S1 ∪ · · · ∪ Sx−1.

Step 4.2. Call to decompose(S ∪Sx, 2g/3) and decompose(S ∪Sx+1, 2g/3). If
both fail, then return “fail.” Lemma 8 proves that these two failures
imply that MDS(V ′) > g.
Suppose that decompose(S ∪ Sx, 2g/3) succeeded. Recall the fact that
decompose(Sx+1, 2g/3) succeeded as well. Claim 7 proves that |cut(S ∪
Sx, Sx+1)| ≤ c · √g · log n′. Return “success” with the decomposi-
tion tree obtained by connecting the decomposition trees computed for
S ∪Sx and Sx+1 with a common root r′ and the estimators returned by
the two recursive calls together with φ(r′) = g. (A tighter assignment
of φ(r′) is possible, as suggested in footnote 3.)

Correctness. The following claim proves that the rebalancing performed in Step
4.2 does not increase the cut by much so that property P1 holds.

Claim 7. If test-decompose(V ′, g, I) reaches Step 4.2, then there exists a con-
stant c such that

|cut(S ∪ Sx, Sx+1)| ≤ c · √g · log n′.

Proof. We use the same notation as in the algorithm. Notice that S ∪ Sx =
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S0 = V ′1

S1

S2

Sx Sx+1

V ′

F0 = V ′2

F1

Fx−1

Fig. 1. A recursion tree for which (a) decompose(Fi, 2g/3) failed for i = 0, 1, . . . , x − 1 and
(b) decompose(Si, 2g/3) succeeded for i = 0, 1, . . . , x+ 1.

V ′ − Sx+1, and

cut(Sx+1, V
′ − Sx+1) = cut(Sx+1, Sx) ∪ cut(Sx+1, V

′ − Fx−1).

The success of test-decompose(Fx−1, g,WFx−1,V ′) implies that

|cut(Sx+1, Sx)| ≤ cS · √g · log n′.

Since (Sx+1, Sx) is a ( 1
3 ,

2
3 )-separator with respect to the weight function WFx−1,V ′

and since, for any subset U ⊆ Fx−1, the total weight WFx−1,V ′ over the vertices of U
is cut(U, V ′ − Fx−1), we get

|cut(Sx+1, V
′ − Fx−1)| ≤ 2

3
|cut(Fx−1, V

′ − Fx−1)|.

Continuing in the same manner, we get that, for i = x− 1, . . . , 1,

|cut(Fi, V
′ − Fi)| ≤ |cut(Fi, Si)|+ 2

3
|cut(Fi−1, V

′ − Fi−1)|.

For i = 0, . . . , x−1, |cut(Fi, Si)| ≤ cS ·√g · log n′. If we solve this recurrence relation,
we get

|cut(Sx+1, V
′ − Sx+1)| ≤ 1

1− 2
3

· cS · √g · log n′.

Setting c = 3 · cS proves the claim.
We now prove that failure of test-decompose(V ′, g,W ) implies thatMDS(V ′) > g.

This claim holds regardless of whether W is a trivial or nontrivial weight function.
Notice that the guarantee is one-sided; a success might be obtained even if g is very
small. (For example, consider a balanced binary tree as an input graph. All cuts have
size 1, so g can be sublinear, i.e., (3

2 )
log2 n, but the drawing size is linear.)

Lemma 8. If the procedure test-decompose(V ′, g,W ) fails, then g < MDS(V ′).
Proof. The proof is by induction on |V ′|. The induction basis is trivial (see

Step 0). In the induction step, we consider the steps in which a failure can be decided
upon. Assume that the lemma holds for all graphs with less than |V ′| vertices, and
assume that g ≥MDS(V ′) and test-decompose(V ′, g,W ) fails.
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1. A failure in Step 2 contradicts the assumption because of the guarantee of
the partitioning algorithm.

2. A failure in Case 2 in Step 4 contradicts the assumption as follows. By the in-
duction hypothesis, failure of test-decompose(V ′i , 2g/3, I) impliesMDS(V ′i ) >
2g/3 for i = 1, 2. From the superadditivity property (Proposition 1) it follows
that MDS(V ′) > 4g/3, which is a contradiction.

3. A failure in Step 4.1 implies, by the induction hypothesis, thatMDS(V ′2) > g.
Since MDS(V ′) ≥MDS(V ′2), we reach a contradiction.

4. The harder case to prove is when a failure is decided upon in Step 4.2. Con-
sider an optimal drawing D′ of G′, the subgraph of G induced by V ′. Every
point in D′ is either a crossing point between two edges of G′ or a vertex
in V ′. Let Dx−1 denote the restriction of D′ to a drawing of Fx−1. Re-
call that decompose(Fx−1, 2g/3) failed. Therefore, by the induction hypoth-
esis, MDS(Fx−1) > 2g/3. Since Dx−1 is a drawing of the subgraph induced
by Fx−1, it follows that Dx−1 contains more than 2g/3 points.
The points in Dx−1 can be partitioned as follows: (a) points of the restriction
of Dx−1 to Sx, namely, vertices of Sx and crossings between edges of the
subgraph induced by Sx; (b) points of the restriction of D to Sx+1; and
(c) other crossings. Let P denote the points in Dx−1 of type (b) or (c). By
swapping Sx and Sx+1 if needed, the number of points in P is at least half
the number of points in Dx−1 and hence greater than g/3.
Let D0..x denote the restriction of D′ to a drawing of S ∪ Sx. The points in
the drawing D0..x are contained in the points of the drawing D′ that are not
points in P . Since the number of points in P is more than g/3, we get that
the number of points in D0..x is strictly less than MDS(G′) − g/3. By our
assumption g ≥MDS(G′), and thus the number of points in D0..x is strictly
less than 2g/3. Since D0..x is a drawing of S ∪ Sx, MDS(S ∪ Sx) < 2g/3,
and, by the induction hypothesis, decompose(S∪Sx, 2g/3, I) succeeds. Hence
failure is not decided upon in Step 4.2, which is a contradiction.

The following claim shows that the computed decomposition tree with estimators
satisfies properties P1–P3.

Lemma 9. Let T ′ denote the decomposition tree with estimators φ(t) returned by
a successful call to decompose(G′, g). Then T and φ(t) satisfy properties P1–P3 with
respect to G′.

Proof. We extend the claim to decomposition trees computed by successful calls
to test-decompose(G′, g,W ) with the relaxation that property P3 is not required for
the root of T ′.

The proof is by induction on |V |. It is obvious to show that the induction basis
holds. The induction step proceeds as follows:

1. Property P1 is satisfied because cut t is either a cut computed by the parti-
tioning procedure (in which case the size of the cut is checked in Step 2) or
a cut obtained by rebalancing in Step 4.2 (in which case Claim 7 guarantees
that |cut t| satisfies property P1).

2. Property P2 is satisfied because, by the construction, if t′ is a child of t, then
φ(t′) ≤ 2

3φ(t).
3. Property P3 is satisfied by the induction hypothesis for all internal nodes

of T . It holds for the root r′ of T ′ since a success of decompose(G′, g) implies
a failure of test-decompose(G′, φ(r′)/2, I). By Lemma 8, this implies that
g/2 < MDS(G′), and property P3 follows.
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Polynomial running time. Let F (n, g) and G(n, g) denote the running times of
decompose and test-decompose when the subgraph has n nodes and the guess equals g.
Note that the weight function does not affect the running time. Let p(n) denote a
polynomial bounding the running time of the partitioning algorithm and the lines in
test-decompose that do not call decompose and test-decompose. The functions F (n, g)
and G(n, g) satisfy the following recurrences: (We make a relaxed upper bound in
assuming that the functions F (·) and G(·) are monotone in both parameters.)

F (n, g) ≤
�log2 g�∑
i=0

G(n, g/2i)

G(n, g) ≤ p(n) + 2F

(
3

4
n,

2

3
g

)
+G

(
3

4
n, g

)
+ 2F

(
n,

2

3
g

)
.

The following claim proves that the running time of the decomposition algorithm
is polynomial. Recall that g is always polynomial in n.

Lemma 10. There exist constants τ, γ, δ such that F (n, g) ≤ τ · p(n) · nγ · gδ.
Proof idea. One may simply prove this by induction. The reason the proof works

is that at each recursion step there are either (i) a constant number of recursive calls
in which one of the parameters (the number of vertices or the guess value) decreases
by a constant factor or (ii) a logarithmic number of recursive calls in which the guess
parameters form a geometric sequence. For this reason, it was imperative that we went
down a path with a geometrically decreasing number of vertices. It was also important
that, in Step 4.2, once the chain of failures ends with two successful siblings, we were
able to argue that the guess value should decrease by a constant factor.

Claim 6 and Lemmas 9 and 10 imply the following theorem. Note that the
algorithm computes a linear drawing.

Theorem 11. There exists an O(log3 n)-approximation algorithm for the mini-
mum drawing size of bounded degree graphs.

Coping with skewed weight functions. As mentioned above, for some weight func-
tions WA,B , there may be a vertex v such that WA,B(v) >

2
3

∑
v∈AWA,B(v). We call

such weight functions skewed weight functions. In the case of skewed weight functions,
we cannot apply Lemma 5 to find a simultaneous separator. Below, we show how to
handle such cases. First, we show that in such cases the total weight is bounded and
then prove that, because of the bounded weight, any cut that is a (1

4 ,
3
4 )-separator

with respect to the number of vertices suffices.
Claim 12. Let G = (V,E) denote a graph with maximum degree ∆. For

any two subsets of vertices A,B ⊆ V and a vertex v ∈ A such that WA,B(v) >
2
3

∑
v∈AWA,B(v), |cut(A,B −A)| ≤ 3

2 ·∆.
Proof. Recall that

∑
v∈AWA,B(v) = |cut(A,B − A)|. The claim follows since by

definition WA,B(v) ≤ ∆.
Simultaneous separators are computed in Steps 1 and 4.1 of test-decompose.

Whenever the weight function is skewed and nontrivial, a simultaneous separator
cannot be computed. Instead, a (1

4 ,
3
4 )-separator with respect to the number of ver-

tices is computed in such cases. To maintain the validity of the algorithm, we need
to revise the proof of Lemma 7.

Proof of Lemma 7 (revised). We use the same notation as in the algorithm. Notice
that S ∪ Sx = V ′ − Sx+1, and

cut(Sx+1, V
′ − Sx+1) = cut(Sx+1, Sx) ∪ cut(Sx+1, V

′ − Fx−1).
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The success of test-decompose(Fx−1, g,WFx−1,V ′) implies that

|cut(Sx+1, Sx)| ≤ cS · √g · log n′.

If cut(Sx+1, Sx) is a simultaneous separator, then, since (Sx+1, Sx) is a (
1
3 ,

2
3 )-separator

with respect to the weight function WFx−1,V ′ and since, for any subset U ⊆ Fx−1, the
total weight WFx−1,V ′ over the vertices of U is cut(U, V ′ − Fx−1), we get

|cut(Sx+1, V
′ − Fx−1)| ≤ 2

3
|cut(Fx−1, V

′ − Fx−1)|.

Suppose that cut(Sx+1, Sx) is not a simultaneous separator but a (1
4 ,

3
4 )-separator with

respect to the number of vertices. This happens when the weight function WFx−1,V ′

is skewed. By Claim 12, we have in this case |cut(Sx+1, V
′ − Fx−1)| ≤ 3

2∆ (where ∆
is the degree bound).

Combining both cases, we have

|cut(Sx+1, V
′ − Fx−1)| ≤ max

{
2

3
|cut(Fx−1, V

′ − Fx−1)|, 3
2
∆

}

≤ 2

3
|cut(Fx−1, V

′ − Fx−1)|+ 3

2
∆.

Continuing in the same manner, we get that, for i = x− 1, . . . , 1,

|cut(Fi, V
′ − Fi)| ≤ |cut(Fi, Si)|+ 2

3
|cut(Fi−1, V

′ − Fi−1)|+ 3

2
∆.

For i = 0, . . . , x − 1, |cut(Fi, Si)| ≤ cS · √g · log n′. Solving this recurrence relation,
we get

|cut(Sx+1, V
′ − Sx+1)| ≤ 1

1− 2
3

(
cS · √g · log n′ +

3

2
∆

)
.

Setting c = 3cS +
9
2∆ proves the claim.

5. Approximating
√
2-bifurcators. An (F, α)-bifurcator is a decomposition

tree in which |cut t| ≤ F · α−depth(t) for every tree node t. An optimal α-bifurcator
is an (F, α)-bifurcator with the minimum F . In our algorithm, we require that the
bounds on the cut sizes decrease geometrically by 2

3 relative to every node and not
only the root. This property was required so that we could bound the sum of the cuts
along a path from an internal tree node t to a leaf by O(φ(t)). The following corollary
is shown in [BL84, LR99].

Corollary 13. Given an O(logk n)-approximation for the size of drawing on the

plane, there exists an O(log(k+1)/2 n)-approximation algorithm for finding the optimal√
2-bifurcator.

Theorem 11 implies an improvement of the approximation factor of
√
2-bifurcators

by a
√
log n factor to O(log2 n). As mentioned in the introduction, Bhatt and

Leighton [BL84] demonstrated that
√
2-bifurcators are useful for minimizing capac-

itive delay, producing fault tolerant layouts (layouts using prefabricated chip and
regular layouts), minimizing wire crossing in layouts, and more.
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6. VLSI layouts. In this section, we present a VLSI layout algorithm for graphs
of maximum degree four. The algorithm embeds a graph G in a square host grid of
size O(Area(G) · log4 n).

An O(log5 n)-approximate VLSI layout area can be derived by applying planar
graph embedding algorithms on the drawing computed in section 4, the size of which
is O(MDS · log3 n) [L80, V81]. This is an improvement by a logarithmic factor over
the approximation factor of the VLSI layout algorithm of Bhatt and Leighton [BL84].
We show how an additional logarithmic factor can be saved.

6.1. Weighted version of Leiserson’s algorithm. Leiserson’s algorithm for
computing layouts of graphs is based on the graphs satisfying a separator theorem.
The separator theorem is stated in terms of the number of vertices. Namely, every
n-vertex graph in a given family can be separated into two disjoint graphs, each
containing at least a constant fraction of the vertices, by removing at most f(n) edges.
For example, in bounded degree planar graphs, the separator is guaranteed to be
bounded by the square-root of the number of vertices, and the size of each part is
bounded by 2

3 of the original number of vertices. Planar graph embedding algorithms

require O(n · log2 n) area.
We consider a “weighted” version of Leiserson’s algorithm in which subgraphs

are assigned weights. The input to the weighted version of Leiserson’s algorithm con-
sists of a graph and a decomposition tree with weights Wt(t) defined over the tree
nodes. Loosely, the cut size in every internal tree node is bounded by the square-
root of the weight of the tree node, and the weight of each node is divided roughly
equally between its two children. The weighted version of Leiserson’s algorithm re-
turns a VLSI layout of area O(Wt(r) · log2 Wt(r)), where r denotes the root of T . If
Wt(r) = O(MDS(G) · log2 n), then logWt(r) = O(log n), and, by Proposition 2, an
approximation factor of O(log4 n) follows for the VLSI layout.

The following four properties of the decomposition tree T and the tree node
weights Wt(t) are sufficient for the “success” of the weighted version of Leiserson’s
algorithm:

Nontriviality. For each leaf �, Wt(�) ≥ 1.
Superadditivity. For any two siblings t� and tr in the tree, with a parent t,

Wt(t�) + Wt(tr) ≤Wt(t).

Balance. For any two siblings t� and tr in the tree,

max{Wt(t�),Wt(tr)} ≤ 2 ·min{Wt(t�),Wt(tr)}.

(Note that the above two conditions imply that both the weights Wt(t�)
and Wt(tr) are at most 2

3Wt(t).)

Separator. For any internal tree node t, |cut t| = O(
√

Wt(t)).
We outline the weighted version of Leiserson’s algorithm. First, the algorithm de-

fines a function A(t) over the tree nodes that specifies the area allocated for embedding
Gt. The function A(t) is defined as follows:

A(t) =

{
1 if t is a leaf,(√

A(t�) +A(tr) + α · |cut t|
)2

otherwise,

where t� and tr denote the children of t and α = 2
√
3.
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Given a rectangle Rt with aspect ratio at least 1
3 and area A(t), the algorithm

computes an embedding of Gt in Rt as follows. A subrectangle R′t of area A(t�)+A(tr)
that is similar to Rt is allocated for embedding G� and Gr. The subrectangle R′t is
divided between Gt� and Gtr in proportion to the weights Wt(t�) and Wt(tr). After
Gt� and Gtr are embedded in the subrectangles allocated for them, the edges of cut t
are embedded using the unused rows and columns of Rt. (At most two columns and
two rows are used for embedding each edge in the cut.) In Claim 14, it is proved that
there is a sufficient number of unused rows and columns left in Rt for routing the
edges of cut t.

We briefly point out why each of the properties is required: Nontriviality and
superadditivity guarantee that the size of a rectangle allocated for a subgraph is not
smaller than the size of the subgraph. Superadditivity also makes sure that the sub-
rectangle allocated for the children of t is not larger than the rectangle allocated for t.
The balance property makes sure that the division of the rectangle does not create
subrectangles whose aspect ratios are below 1

3 . Hence, throughout the algorithm, the
aspect ratios of the rectangles that serve as hosts for subgraphs are at least 1

3 . This
also implies that the host grid for the whole graph can be a rectangle of aspect ratio
1
3 rather than a square. The separator property is used to solve the recurrence and
prove the bound on the required area.

The following claim shows that the weighted version of Leiserson’s algorithm
succeeds in embedding a graph of maximum degree four in a rectangle of area A(t).

Claim 14. Let T denote a decomposition tree with node weights Wt(t) of a
graph G of maximum degree four. Suppose that the node weights satisfy the nontriv-
iality, superadditivity, and balance properties. If R is a rectangle whose aspect ratio
is at least 1

3 and whose area is at least A(t), then the weighted version of Leiserson’s
algorithm succeeds in embedding G in R.

Proof. The proof follows [L80, Thm. 6]. In particular, we rely on two observations
in Leiserson’s proof. One observation is that aspect ratios do not deteriorate. Namely,
suppose we divide a rectangle R whose aspect ratio is at least 1

3 into two subrectangles
R1 and R2 by cutting it along the longer side. Suppose also that this cut is made
between a third and two thirds of the side’s length so that the area of the larger
subrectangle is at most twice the area of the smaller subrectangle. Then the aspect
ratios of R1 and R2 are also at least

1
3 . The second observation is that a new edge can

be routed in a given embedding by introducing at most two rows and two columns.
(This is called “slicing” in [L80].)

The proof is by induction on the height of the tree node. The induction ba-
sis obviously holds for leaves. Let R′t denote the subrectangle of Rt allocated for
Gt� and Gtr . By definition, R′t and Rt have the same aspect ratio. The area of R′t
equals A(t�) + A(t�). (There is a “rounding” issue that we ignore to make the pre-
sentation simpler.) We need to show that there are at least 2 · |cut t| spare rows and
columns in Rt for routing the edges of cut t.

Let L(R) and W (R) denote the length and width of a rectangle R. (Assume
W (Rt) ≤ L(Rt).) Denote the aspect ratio of a rectangle R by σ(R), namely, σ(R) =
W (R)/L(R). The width of Rt satisfies

W (Rt) =
area(Rt)

L(Rt)
=

area(Rt) · σ(Rt)
W (Rt)

.

Since area(Rt) ≥ A(t),

W (Rt) ≥
√

A(t) · σ(Rt).
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Note that, since Rt and R′t are similar, they have the same aspect ratio; hence

W (R′t) =
√

A(t�) +A(tr)
√

σ(Rt).

By the last two equations and the definition of A(t), it follows that

W (Rt) ≥
√

σ(Rt) ·A(t)
=
√

σ(Rt) ·
(√

A(t�) +A(tr) + 2
√
3 · |cut t|

)

= W (R′t) +
√

σ(Rt) · 2
√
3 · |cut t|.

Since σ(Rt) ≥ 1
3 , it follows that W (Rt)−W (R′t) ≥ 2 · |cut t|. Hence there are enough

spare rows. Since L(Rt) − L(R′t) = (W (Rt) −W (R′t))/σ(Rt), there are also enough
spare columns, and the claim follows.

The following claim shows that if the decomposition tree satisfies all four proper-
ties, then A(r) = O(Wt(r)·log2 Wt(r)), where r denotes the root of the decomposition
tree.

Claim 15. Let T denote a decomposition tree with node weights Wt(t) of a
graph G of maximum degree four. Suppose that the node weights satisfy the nontriv-
iality, superadditivity, balance, and separator properties. There exists a constant cA
such that

A(t) = cA ·Wt(r) · log2 Wt(r).

Proof. The proof follows [L80, section 5]. Recall that α = 2
√
3, and let β =

maxt∈T {|cut t|/
√

Wt(t)}. The separator property implies that β is a constant. Define
the function B(t) over the tree nodes as follows:

B(t) =

{
1 if t is a leaf,
max{B(t�), B(tr)}+ α · β otherwise.

We prove by induction that A(t) ≤ B2(t) ·Wt(t). This obviously holds for leaves.
The induction step is proved as follows:

√
A(t) =

√
A(t�) +A(tr) + α · |cut t|

≤
√

B2(t�) ·Wt(t�) +B2(tr) ·Wt(tr) + αβ
√

Wt(t)

≤ max{B(t�), B(tr)} ·
√

Wt(t) + αβ
√

Wt(t)

= B(t) ·
√

Wt(t).

The second inequality follows from the induction hypothesis and the definition of β.
The third inequality follows from the superadditivity property.

The balance and superadditivity properties imply that the depth of T is at
most log2/3 Wt(t), and hence it follows that B(t) ≤ αβ log2/3 Wt(t), and the claim
follows.

Remark. If the balance property is relaxed so that max{Wt(t�),Wt(tr)} ≤
(1 − σ) ·Wt(t), then the aspect ratios of the rectangles allocated in the algorithm
are lower bounded by σ. The proof of Claim 14 required that α ≥ 2/

√
σ. In the

proof of Claim 15, A(t) is proportional to α2. Therefore, the balance property can be
relaxed at the cost of increasing A(t).
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6.2. Computing a weighted decomposition tree. Given a graph G, we show
how to construct a decomposition tree T and a weight function Wt(·) that obeys the
properties sufficient for the success of the weighted version of Leiserson’s algorithm.
Observe that recursively separating an optimal drawing of G generates a decompo-
sition tree that satisfies these properties if the weight function equals the size of the
subdrawing. We show how to compute an “approximation” of such a tree in which
the weight of the root is O(MDS(G) log2 n).

At first glance, it is tempting to use the decomposition tree computed for the
minimal drawing as the decomposition tree required here and to use the estimator
function computed before as the required weight function. Two obstacles obstruct
this approach: (a) The decomposition tree is not balanced since the ratio of estima-
tors of two siblings is not bounded. (b) The decomposition tree may not obey the
superadditivity property, as we may have two siblings with estimators that add up to
more than the estimator of the parent (i.e., the estimators of each of the children of
an internal node t can be 2φ(t)/3). Violating balance is solved by rebalancing, but
violating superadditivity makes φ(t) a bad candidate for a weight function. Superad-
ditivity is obtained by presenting a weight function that is computed bottom-up (to
ensure superadditivity). Balance is obtained afterward by rebalancing the tree with
respect to the weights in a top-down fashion.

6.2.1. The new weight function. Let T denote the decomposition tree of G
with estimator φ(t) computed in section 4. Let CW (t) be the maximum sum of cut
sizes along a path from t to a leaf in the subtree rooted at t, where the maximum is
taken over all such paths.

Definition 3. The weight function Wt(t) is defined as follows:

Wt(t) =

{
1 if t is a leaf,
max{Wt(t�) + Wt(tr),CW 2(t)} otherwise.

The following lemma bounds the weight of the root of T .

Lemma 16. For some constant cW , Wt(t) ≤ cW ·MDS(Gt) · log2(nt + 1).

Proof. The proof is by induction. The induction basis for the leaves is obvious.
Consider an internal tree node t. If Wt(t) = Wt(t�) + Wt(tr), then the claim follows
by the superadditivity of the minimum drawing size.

If Wt(t) = CW 2(t), note that the upper bounds on the sizes of the cuts along
any path from t to any of its leaves decay exponentially and that the size of the
first cut (and hence the sum of all of the cuts along a path from t to a leaf) is
O(
√

φ(t) log nt) = O(
√
MDS(Gt) log nt). The square of the sum of these cuts is

O(MDS(Gt) log
2 nt). For an appropriately chosen cW , the claim follows.

The weight function Wt(t) satisfies all of the properties required except for the
balance property. We show how to achieve balance in the following subsection.

6.2.2. Rebalancing the tree. Rebalancing proceeds in two steps: First, the
tree is rebalanced so that the weight of each node is at most two-thirds the weight of
its parent. Second, weights are inflated, if necessary, so that balance is achieved.

Procedure rebalance(T ). The rebalance(T ) procedure balances the tree recursively
and assigns weights Wt2(·) to tree nodes. The weight of each node is at most two-
thirds the weight of its parent. The input consists of a collection of trees (inclusive
of the case of a single tree) denoted by T , where the initial input consists of a single
tree. The procedure outputs a decomposition tree over the union of the leaves of trees
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in T . The following notation is used: the weight of a tree, Wt(T ′), is defined to be the
weight of its root, Wt(r′). Given a collection T of trees, let Wt(T ) =∑T ′∈T Wt(T ′).

The procedure rebalance(T ). Assume T = {T1, . . . , Tp}.
1. If there exists any j such that

∑j
i=1 Wt(Ti) is between

1
3 and 2

3 of Wt(T ), we
create the two collections T1 = {T1, . . . , Tj} and T2 = {Tj+1, . . . , Tk}. The
separating cut is of size 0.

2. If there is no such j, then there exists a j such that
∑j−1
i=1 Wt(Ti) and∑p

i=j+1 Wt(Ti) are both less than 1
3Wt(T ). Starting at the root r(Tj) of Tj ,

walk down the tree, following the heavier subtree until the first subtree T ′

whose weight is less than 2
3Wt(Tj) is reached. Let the subtrees hanging from

the path from r(Tj) to T ′ (other than T ′) be T ′1, . . . , T
′
q (where T ′q denotes

the sibling of T ′). By Lemma 17,
∑q
i=1 Wt(T ′i ) <

2
3Wt(Tj).

3. We have four collections:

Ta = {T1, . . . , Tj−1}, Tb = {Tj+1, . . . , Tp},
Tc = {T ′}, Td = {T ′1, . . . , T ′q}.

Let MIN (a, b) ∈ {a, b} be the index of the collection with the smaller weight
between collections Ta and Tb. Recall that the weight of a collection T is
the sum of the weights of the trees in T . Similarly, MAX (a, b) ∈ {a, b} is
defined to be the index of the larger weighted collection. Define MIN (c, d)
and MAX (c, d) similarly. Let

T1 = TMIN (a,b) ∪ TMAX (c,d),

T2 = TMAX (a,b) ∪ TMIN (c,d).

4. Call rebalance(T1) and rebalance(T2), and let Si denote the decomposition tree
computed for Ti. Let S be a decomposition tree for T obtained by connecting
S1 and S2 to a root s. Set Wt2(s) = Wt(T ).

Note that the weight function Wt2(·) satisfies all of the properties except for
balance. In particular: (a) The separator property holds since the size of a cut is either
zero or is bounded by CW (r(Tj)), where r(Tj) is the root of Tj , which is bounded

by
√

Wt(Tj). (b) The superadditivity property holds since either T = T1∪T2 or Tj is
partitioned into the collections Tc and Td, and Wt(Tj) ≥Wt(Tc)+Wt(Td). Note also
that if a single tree is rebalanced, then the weight of the root after rebalancing equals
the weight of the root before balancing. So Lemma 16 implies that the weight of the
root s of the decomposition tree computed by rebalance({T}) satisfies

Wt2(s) ≤ cW ·MDS(Gt) · log2(n+ 1).

The following lemmas prove that the weight of every node is at most two-thirds
the weight of its parent.

Lemma 17. In step 2 above,
∑q
i=1 Wt(T ′i ) <

2
3Wt(Tj).

Proof. Consider two cases: (a) If Wt(T ′) > Wt(Tj)/3, then it follows by superad-
ditivity. (b) If Wt(T ′) ≤Wt(Tj)/3, then Wt(T ′q) ≤Wt(Tj)/3 also. Since the weight of

the parent of T ′ and T ′q is not less than
2
3Wt(Tj), we have

∑q−1
i=1 Wt(T ′i ) < Wt(Tj)/3,

and the claim follows.
Lemma 18. In the decomposition tree returned by rebalance(T ), the weight of a

nonroot node is at most two-thirds the weight of its parent.
Proof. Since Wt(TMIN (a,b)) ≤ 1

2 (Wt(T ) −Wt(Tj)) along with Wt(TMAX (c,d)) <
2
3Wt(Tj), we have Wt(T1) < 2

3Wt(T ). For the bound on Wt(T2), we distinguish
two cases. (a) Wt(Tj) ≤ 2

3Wt(T ). In this case, since Wt(TMIN (c,d)) ≤ 1
2Wt(Tj)

and Wt(TMAX (a,b)) < 1
3Wt(T ), we have Wt(T2) < 2

3Wt(T ). (b) Wt(Tj) > 2
3Wt(T ).
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In this case, since Wt(TMAX (a,b)) ≤ Wt(T ) −Wt(Tj), we have Wt(T2) ≤ Wt(T ) −
Wt(Tj) +

1
2Wt(Tj) <

2
3Wt(T ).

Inflating weights and achieving balance. The balance property is obtained by
inflating weights using the following local transformation. For every nonroot internal
tree node t, let t′ denote its sibling. Define Wt3(t) as follows:

Wt3(t) = max

{
Wt2(t),

1

2
Wt2(t

′)
}

.

After the inflation, all of the other properties are preserved. For example, the super-
additivity property is preserved since, if Wt3(t�) > Wt2(t�), then Wt3(t�)+Wt3(tr) ≤
3
2Wt2(tr) ≤ 3

2 · 2
3Wt2(t) = Wt2(t) ≤Wt3(t), where t denotes the parent of t� and tr.

Having computed a decomposition tree with weights that satisfy all of the prop-
erties, we conclude with the following theorem.

Theorem 19. Every graph G of maximum degree four can be embedded in poly-
nomial time in any grid of aspect ratio at least 1

3 and area O(Area(G) log4 n).
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Abstract. In this paper, we solve a widely publicized open problem posed by Peter Winkler
in 1988. The problem is to decide whether or not it is possible to partition the vertices of a graph
into four distinct nonempty sets A, B, C, and D, such that there is no edge between the sets A and
C, and between the sets B and D, and that there is at least one edge between any other pair of
distinct sets. Winkler asked whether this problem is NP-complete. We show in this paper that it
is NP-complete. We study the problem as the compaction problem for a reflexive 4-cycle. We also
show in this paper that the compaction problem for a reflexive k-cycle is NP-complete for all k ≥ 4.

Key words. computational complexity, graph, coloring, homomorphism, retraction, compaction
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1. Introduction. In this paper, we study the computational complexity of a spe-
cial graph coloring problem, called the compaction problem. An extended abstract of
this paper appears in [Vikas, 1999]. The coloring problem is a classic problem in graph
theory. The graph homomorphism problem, also called the H-coloring problem, is a
generalization of the coloring problem. The compaction problem is the graph homo-
morphism problem with additional constraints. The open problem of Peter Winkler
described above can be viewed as a special case of the compaction problem. We ex-
plain the motivation for Winkler’s problem after introducing the following definitions
and problems.

Definitions. The pair of vertices of an edge in a graph are called the endpoints
of the edge. An edge with the same endpoints in a graph is called a loop. A vertex v
of a graph is said to have a loop if vv is an edge of the graph. A reflexive graph is a
graph in which every vertex has a loop. An irreflexive graph is a graph which has no
loops. Any graph, in general, is a partially reflexive graph, meaning that its individual
vertices may or may not have loops. Thus reflexive and irreflexive graphs are special
partially reflexive graphs. A bipartite graph is irreflexive by definition. When we
do not mention the terms reflexive, irreflexive, or bipartite, the corresponding graph
may be assumed to be a partially reflexive graph. For a graph G, we use V (G) and
E(G) to denote its vertex set and edge set, respectively. A vertex u is said to be
adjacent to a vertex v in a graph if uv is an edge of the graph; if u is adjacent to
v then v is also adjacent to u. A graph in which every two distinct vertices are
adjacent is called a complete graph. We denote an irreflexive complete graph with
k vertices by Kk. A path of length k − 1 is a graph containing k distinct vertices,
say v0, v1, v2, . . . , vk−1, such that v0v1, v1v2, . . . , vk−2vk−1 are all the nonloop edges of
the graph, k ≥ 1; we may write such a path as v0v1v2 . . . vk−1. A cycle of length k,
called a k-cycle, is a graph containing k distinct vertices, say v0, v1, v2, . . . , vk−1, such
that v0v1, v1v2, . . . , vk−2vk−1, vk−1v0 are all the nonloop edges of the graph, k ≥ 3;
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we may write such a cycle as v0v1v2 . . . vk−1v0. A square will be used as a synonym
for a 4-cycle. For our purpose we shall denote a reflexive k-cycle by Ck.

Let G be a graph. A vertex v of G is said to be an isolated vertex of G if v is not
adjacent to any other vertex v′ of G, v �= v′ (note that an isolated vertex may have a
loop). A graph H is said to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
If H is a subgraph of G such that H contains all the edges of G whose both endpoints
are in V (H) then H is called the subgraph of G induced by V (H), and we say that
H is an induced subgraph of G. Given an induced subgraph H of G, we denote by
G−H the subgraph obtained by deleting from G the vertices of H together with the
edges incident with them; thus G−H is a subgraph of G induced by V (G)− V (H).
A chordal graph is a graph which does not contain any induced cycle of length greater
than three. A chordal bipartite graph is a bipartite graph which does not contain any
induced cycle of length greater than four. A clique of G is a set K ⊆ V (G) such that
every two distinct vertices in K are adjacent in G, i.e., the subgraph of G induced
by K is a complete graph. When a set S is an argument of a mapping f , we define
f(S) = {f(s)|s ∈ S}. The distance between a pair of vertices u and v in G, denoted
as dG(u, v) or dG(v, u), is the length of a shortest path from u to v in G if u and
v are connected in G; we define dG(u, v) (and dG(v, u)) to be infinite if u and v are
disconnected in G. The diameter of G is the maximum distance between any two
vertices in G. The distance between two sets X and Y of vertices in G, denoted as
dG(X,Y ) or dG(Y,X), is the minimum distance between any vertex of X and any
vertex of Y in G, that is, dG(X,Y ) = min{dG(x, y)|x ∈ X, y ∈ Y }, where min A gives
the minimum element in a set A. If a set has only one vertex, we may just write the
vertex instead of the set. In the following, let G and H be graphs.

A homomorphism f : G → H, of G to H, is a mapping f of the vertices of G to
the vertices of H, such that if g and g′ are adjacent vertices of G then f(g) and f(g′)
are adjacent vertices of H. If there exists a homomorphism of G to H then G is said
to be homomorphic to H. Note that for any homomorphism f : G→ H, if a vertex v
of G has a loop then the vertex f(v) of H necessarily also has a loop. Also note that
if G is irreflexive then G is k-colorable if and only if G is homomorphic to Kk. Thus
the concept of a homomorphism generalizes the concept of a k-colorability.

A compaction c : G → H, of G to H, is a homomorphism of G to H, such that
for every vertex x of H there exists a vertex v of G with c(v) = x, and for every
edge hh′ of H, h �= h′, there exists an edge gg′ of G with c(g) = h and c(g′) = h′.
Notice that the first part of the definition for a compaction (the requirement for every
vertex x of H) follows from the second part unless H has isolated vertices. If there
exists a compaction of G to H then G is said to compact to H. Given a compaction
c : G→ H, if for a vertex v of G we have c(v) = x, where x is a vertex of H, then we
say that the vertex v of G covers the vertex x of H under c; and if for an edge gg′ of
G we have c({g, g′}) = {h, h′}, where hh′ is an edge of H, then we say that the edge
gg′ of G covers the edge hh′ of H under c (note that in the definition of compaction,
it is not necessary that a loop of H be covered by any edge of G under c).

We note that the notion of a homomorphic image used in [Harary, 1969] (also
cf. [Hell and Miller, 1979]) coincides with the notion of a compaction in the case
of irreflexive graphs (i.e., when G and H are irreflexive in the above definition for
compaction).

Now suppose that H is an induced subgraph of G. A retraction r : G→ H, of G
to H, is a homomorphism of G to H such that r(h) = h for every vertex h of H. If
there exists a retraction of G to H then G is said to retract to H, and H is said to be
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a retract of G. Note that every retraction r : G→ H is necessarily also a compaction.

Homomorphism, compaction, and retraction problems. The problem of
deciding the existence of a homomorphism to a fixed graph H, called the homomor-
phism problem for H, also known as the H-coloring problem, and denoted as H-COL,
asks whether or not an input graph G is homomorphic to H. If H is a graph which
has a vertex h with a loop then every graph G is homomorphic to H, as we will have
the homomorphism f : G → H, with f(v) = h, for all v ∈ V (G). Thus the problem
H-COL is interesting only if H is irreflexive. A complete complexity classification of
H-COL has been given in [Hell and Nesetril, 1990]. Note that the classic k-colorability
problem is a special case of the problem H-COL when H is Kk and the input graph
G is irreflexive.

The problem of deciding the existence of a compaction to a fixed graph H, called
the compaction problem for H, and denoted as COMP -H, is the following:

Instance: A graph G.
Question: Does G compact to H?

Note that Winkler’s problem is the problem COMP-C4. We also present results for
the problem COMP-Ck for all k ≥ 4. The problem COMP-Ck can be viewed as the
problem to decide whether or not it is possible to partition the vertices of a graph
into k distinct nonempty sets A0, A1, . . . , Ak−1, such that there is at least one edge
between the pair of sets Ai and A(i+1) mod k, for all i = 0, 1, 2, . . . , k − 1, k > 2, and
there is no edge between any other pair of distinct sets. When both G and H are
input graphs (i.e., H is not fixed), and H is reflexive, the problem of deciding whether
or not G compacts to H has been studied in [Karabeg and Karabeg, 1991, 1993]. Note
that unlike the problem H-COL, the problem COMP -H is still interesting if H has a
loop.

The problem of deciding the existence of a retraction to a fixed graph H, called
the retraction problem for H, and denoted as RET -H, asks whether or not an input
graph G, containing H as an induced subgraph, retracts to H. Retraction problems
have been of continuing interest in graph theory for a long time and have been studied
in various literature including [Hell, 1972], [Hell, 1974], [Nowakowski and Rival, 1979],
[Pesch and Poguntke, 1985], [Bandelt, Dahlmann, and Schutte, 1987], [Hell and Rival,
1987], [Pesch, 1988], [Feder and Winkler, 1988], [Bandelt, Farber, and Hell, 1993],
[Feder and Hell, 1998], [Feder, Hell, and Huang, 1999].

Note that the graph H for the problems H-COL, COMP -H, and RET -H is
assumed to be fixed by default even if not explicitly mentioned.

Motivation. It has been proved in [Feder and Winkler, 1988] that RET-C4 is
NP-complete. This has also been proved independently by G. MacGillivray in 1988
(personal communication, cf. [Feder and Hell, 1998]). The transformation used in
[Feder and Winkler, 1988] is from the satisfiability problem; this was proved there in
order to show that RET -H is not polynomial time solvable for all graphs H unless P
= NP. The transformation used by MacGillivray is from the 4-colorability problem.

It is not difficult to show that for every fixed graph H, if RET -H is solvable in
polynomial time then COMP -H is also solvable in polynomial time. Is the converse
true? This was also asked by Winkler in the context of reflexive graphs (personal
communication, cf. [Feder and Winkler, 1988]), and this was the general problem
that motivated Winkler. As mentioned above, RET-C4 is NP-complete. It turns out
that for any reflexive graph H, other than C4, with at most four vertices, RET -H
is polynomial time solvable. In other words, as mentioned in [Feder and Winkler,
1988], the unique smallest reflexive graph H for which RET -H is NP-complete is
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C4. Therefore, with respect to the preceding question, Winkler asked specifically the
following question in 1988 (personal communication, cf. [Feder and Winkler, 1988])
which has been a popular open problem: Is COMP-C4 NP-complete? We show in
this paper that COMP-C4 is NP-complete. To show this, we give a transformation
from RET-C4 to COMP-C4, using our technique explained below.

Our generic technique. We describe here a technique that we developed to use
in our proofs. Let a graph G containing H as an induced subgraph be an instance of
RET -H. When we give a transformation from RET -H to COMP -H, we apply the
following technique. We construct in time polynomial in the size of G, a graph G′

(containing G as an induced subgraph) such that the following statements (i), (ii),
and (iii) are equivalent:

(i) G retracts to H.
(ii) G′ retracts to H.
(iii) G′ compacts to H.

Thus if RET -H is NP-complete, this shows that COMP -H is also NP-complete. It
is this technique that we have used throughout, when giving a transformation from
RET -H to COMP -H, for any graph H. Thus our technique turned out to be a
generic one. We prove the equivalence of the above statements by showing that (i) is
equivalent to (ii), and (ii) is equivalent to (iii).

Results. We now first mention the results known for RET-Ck. Feder extended
the proof of NP-completeness of RET-C4 showing that RET-Ck is NP-complete for
all k ≥ 4 (personal communication through Hell, cf. [Feder and Hell, 1998]). This was
also proved independently by G. MacGillivray in 1988 (personal communication).
The transformation used by both Feder and MacGillivray is from the k-colorability
problem. For the case of a reflexive 3-cycle, it is easily seen that RET-C3, and
hence COMP-C3, are both polynomial time solvable. In fact, when H is a reflexive
chordal graph (which includes C3), the problem RET -H is shown to be polynomial
time solvable in [Feder and Hell, 1998], and hence COMP -H is also polynomial time
solvable.

In this paper, we show that COMP-Ck is NP-complete for all k ≥ 4. We do this
by giving a transformation from RET-Ck to COMP-Ck, using the technique described
above, for all k ≥ 4. For proving NP-completeness of COMP-Ck, for all k ≥ 4, we
provide four categories of construction depending on whether k = 4m, 4m+1, 4m+2,
or 4m+ 3, for some integer m ≥ 1.

Since every retraction is also a compaction, the equivalence of (ii) and (iii) in
the above technique implies that if G′ compacts to H then there exists a compaction
c : G′ → H which is also a retraction. Hence, in our definition of compaction, if we
require a compaction to also cover loops then the equivalence of (i), (ii), and (iii) in
the above technique implies that if RET -H is NP-complete then COMP -H remains
NP-complete under this varied definition of compaction also. Thus, with the above
technique, our NP-completeness results for COMP -H in this paper also hold under
this varied definition of compaction.

In the figures in this paper, we shall not be depicting any edge vh of G, with
v ∈ V (G − H) and h ∈ V (H), where G is any graph containing H as an induced
subgraph, i.e., G is an instance of RET -H. Also, in the figures in this paper, we shall
not be depicting any loops. For the problem COMP -H, in the theorems in this paper,
it is sufficient to remember that there is a loop on each vertex of the graph H. The
presence or absence of a loop on any other vertex of any graph is immaterial for these
theorems.
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Although the NP-completeness of deciding the existence of a compaction to a
reflexive square is a special case of the NP-completeness of deciding the existence of
a compaction to a reflexive k-cycle, for all k ≥ 4, we first present, in section 2, the
proof for the case of a reflexive square which is easier to follow and will be helpful
in understanding the proof for the case of a reflexive k-cycle, for all k ≥ 4, which
we present next in section 3. In section 4, we present our results for compaction to
irreflexive cycles without including the proofs.

2. Compaction to a reflexive square. We prove the following theorem in this
section.

Theorem 2.1. The problem of deciding the existence of a compaction to a re-
flexive square is NP-complete.

Proof. Let H be the reflexive square in Figure 2.1.

h0

h1 h

h

2

3

Fig. 2.1. H.

We shall prove that the problem of deciding the existence of a compaction to H,
i.e., the problem COMP -H, is NP-complete. Clearly, COMP -H is in NP. We give
a polynomial transformation from RET -H to COMP -H. As mentioned earlier, the
problem RET -H is NP-complete. Let G be a graph with H as an induced subgraph of
G, i.e., let G be an instance of RET -H. We construct in time polynomial in the size
of G, a graph G′ (containing G as an induced subgraph) such that the statements (i),
(ii), and (iii) mentioned in our technique in section 1 are equivalent. Since RET -H
is NP-complete, this shows that COMP -H is also NP-complete. We prove that (i)
is equivalent to (ii), and (ii) is equivalent to (iii), in Lemma 2.1.1 and Lemma 2.1.2,
respectively.

The construction of G′ is as follows. For each vertex v in V (G−H), we add to G
three distinct new vertices: uv adjacent to v, h0, h1; wv adjacent to v, h2, h3, uv; and
yv adjacent to h0, h2, uv, wv. See Figure 2.2. Note that there could be edges in G from
v to some vertices of H but as mentioned earlier, in Figure 2.2 and all subsequent
figures in this paper, we are not depicting these edges. Furthermore, we add the edges
uvuv′ and wvwv′ for all v, v′ ∈ V (G−H), v �= v′.

Before completing the construction of G′, we choose one fixed direction for every
edge of G −H. By convention, this chosen direction will be implied by the order of
the endpoints, when an edge is specified in this proof, i.e., when we mention an edge
vv′ of G −H in this proof, we assume that the chosen direction is from v to v′. For
every edge vv′ in E(G −H), v �= v′, we add a new vertex xvv′ adjacent to v, v′, uv,
and wv′ . (Note how the choice of a direction for the edge vv′ affects the adjacencies
from xvv′). See Figure 2.3.

This completes the construction of G′. For an edge vv′ ∈ E(G − H), the con-
struction of G′ is illustrated in Figure 2.4. We now prove the following two lemmas
in order to prove the theorem.
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h3

v

uv wv

yv

h0

h1 h2

Fig. 2.2. Construction of G′ for a vertex v in G−H.

xvv’

v v’
uv

wv’

Fig. 2.3. Construction of G′ for an edge vv′ in G−H.

Lemma 2.1.1. G retracts to H if and only if G′ retracts to H.
Proof. If G′ retracts to H then it is clear that G retracts to H since G is a

subgraph of G′. Now suppose that r : G→ H is a retraction. We define a retraction
r′ : G′ → H as follows.

For each vertex v of the graph G, we define

r′(v) = r(v).

For the vertices uv, wv, and yv of G′, with v ∈ V (G−H), we define

r′(uv) = h1, r′(wv) = h2, and r′(yv) = h1, if r(v) = h1 or h2, and

r′(uv) = h0, r′(wv) = h3, and r′(yv) = h3, if r(v) = h0 or h3.
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h3

wvuv
wv’uv’

xvv’

v’v

h0

h2h1

yv

yv’

Fig. 2.4. Construction of G′, with vv′ ∈ E(G−H).

For the vertex xvv′ of G′, with vv′ ∈ E(G−H), we define

r′(xvv′) = r(v), if r(v) = h2 or h3, and

r′(xvv′) = r(v′), if r(v) = h0 or h1.

We now verify that r′ : G′ → H is indeed a homomorphism (and hence a re-
traction). We shall do this by considering all the edges ab of G′ and proving that
r′(a)r′(b) is an edge of H.

Consider first an edge vv′, with vv′ ∈ E(G). We have r′(v)r′(v′) = r(v)r(v′).
Hence r′(v)r′(v′) is an edge of H (as r : G→ H is a homomorphism).

Next consider an edge uvuv′ , with v, v′ ∈ V (G − H). We have that r′(uv) and
r′(uv′) are h0 or h1 depending on the values of r(v) and r(v′), respectively. Hence
r′(uv)r′(uv′) is always an edge of H. For the edges uvh0 and uvh1, with v ∈ V (G−H),
we argue similarly, since r′(h0) = r(h0) = h0 and r′(h1) = r(h1) = h1. In a similar
way, we also argue for the edges wvwv′ , wvh2, and wvh3, with v, v′ ∈ V (G−H).

Now consider an edge uvv, with v ∈ V (G − H). We have r′(v) = r(v), and if
r(v) = h1 or h2 then r(uv) = h1, otherwise r(uv) = h0. Thus r′(uv)r′(v) is always an
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edge of H. Similarly, we argue for an edge wvv, with v ∈ V (G−H).

Take now an edge yvh0, with v ∈ V (G −H). We have r′(h0) = r(h0) = h0, and
depending on the value of r(v), r′(yv) = h1 or h3. Thus r′(yv)r′(h0) is always an edge
of H. Similarly, we argue for an edge yvh2, with v ∈ V (G−H).

Now consider an edge uvwv, with v ∈ V (G − H). If r(v) = h1 or h2, we have
r′(uv) = h1 and r′(wv) = h2. If r(v) = h0 or h3, we have r′(uv) = h0 and r′(wv) = h3.
Thus r′(uv)r′(wv) is always an edge of H.

Now take an edge yvuv, with v ∈ V (G − H). If r(v) = h1 or h2, we have
r′(uv) = h1 and r′(yv) = h1. If r(v) = h0 or h3, we have r′(uv) = h0 and r′(yv) = h3.
Thus r′(yv)r′(uv) is always an edge of H. Similarly, we argue for an edge yvwv, with
v ∈ V (G−H).

Consider now an edge xvv′v, with vv′ ∈ E(G −H). We have r′(xvv′) = r(v) or
r(v′), and r′(v) = r(v). Since r(v)r(v′) must be an edge of H, r′(xvv′)r′(v) is always
an edge of H. Similarly, we argue for an edge xvv′v

′, with vv′ ∈ E(G−H).

Next consider an edge xvv′uv, with vv′ ∈ E(G−H). First suppose that r(v) = h2

or h3. Then r′(xvv′) = r(v). We have already proved that r′(v)r′(uv) = r(v)r′(uv)
is an edge of H. Hence r′(xvv′)r′(uv) = r(v)r′(uv) is an edge of H. Now suppose
that r(v) = h0 or h1. Then r′(xvv′) = r(v′). If r(v) = h0 then r′(uv) = h0 = r(v)
and r′(xvv′)r′(uv) = r(v′)r(v) is an edge of H. If r(v) = h1 then r′(uv) = h1 = r(v)
and r′(xvv′)r′(uv) = r(v′)r(v) is again an edge of H. Thus we have proved that
r′(xvv′)r′(uv) is always an edge of H.

Finally, consider an edge xvv′wv′ , with vv′ ∈ E(G − H). First suppose that
r(v) = h2 or h3. Then r′(xvv′) = r(v). We have r′(wv′) = h2 or h3 depending on
the value of r(v′). Thus r(v)r′(wv′) is an edge of H, and hence r′(xvv′)r′(wv′) =
r(v)r′(wv′) is an edge of H. Now suppose that r(v) = h0 or h1. Then r′(xvv′) =
r(v′). We have already proved that r′(v′)r′(wv′) = r(v′)r′(wv′) is an edge of H.
Hence r′(xvv′)r′(wv′) = r(v′)r′(wv′) is an edge of H. Thus we have proved that
r′(xvv′)r′(wv′) is always an edge of H.

Thus we have proved that r′ : G′ → H is a homomorphism. Since r′(h) = r(h) =
h, for all h ∈ V (H), r′ : G′ → H is a retraction, and the lemma is proved.

Lemma 2.1.2. G′ retracts to H if and only if G′ compacts to H.
Proof. If G′ retracts to H then by definition G′ compacts to H. Now suppose

that c : G′ → H is a compaction. We let U = {uv|v ∈ V (G − H)} ∪ {h0, h1} and
W = {wv|v ∈ V (G−H)} ∪ {h2, h3}. Note that U and W are cliques in G′.

Since U is a clique in G′, c(U) must be a clique in H. Thus c(U) has either one
or two vertices. Similarly, c(W ) has either one or two vertices. We shall prove that
c(U) and c(W ) both have two vertices.

Suppose that c(U) has only one vertex. Without loss of generality, let c(U) =
{h0}. We can assume this, as due to symmetry of vertices inH, we can always redefine
the compaction c so that c(U) = {h0}. As every vertex of G′ is adjacent to a vertex in
U , no vertex a of G′ can have c(a) = h2. Thus c(U) must have two vertices. Similarly,
c(W ) must also have two vertices.

Thus both c(U) and c(W ) are cliques of size two in H. Without loss of gener-
ality, suppose that c(U) = {h0, h1} (due to symmetry). We first prove that c(W ) =
{h2, h3}. Let some edge ab of G′ cover the edge h2h3 of H under c (indeed there
exists such an edge in G′, as c : G′ → H is a compaction). Then both a and b are not
in U , as c(U) = {h0, h1}. Thus a and b are among the vertices h2, h3; wv, yv, v, with
v ∈ V (G−H); and xvv′ , with vv′ ∈ E(G−H). Suppose that c(W ) �= {h2, h3}. Then
no edge with both endpoints in W covers the edge h2h3 of H under c, and hence not
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both a and b belong to W . Thus ab must be an edge among vwv, yvwv, yvh2, with
v ∈ V (G −H); vv′, vxvv′ , v′xvv′ , and wv′xvv′ , with vv′ ∈ E(G −H). Further, if vh2

or vh3 is an edge of G, for some vertex v ∈ V (G−H), then we need to include such
an edge also for ab. We shall consider each of these possible edges for ab and show
that they do not cover the edge h2h3 under c, i.e., c({a, b}) �= {h2, h3}, implying that
c(W ) = {h2, h3}.

Consider first an edge vwv, with v ∈ V (G−H). If c({v, wv}) = {h2, h3} then it
must be that c(uv) = h2 or h3, as uv is adjacent to v and wv. This is a contradiction,
as c(uv) = h0 or h1 by assumption. A similar argument applies to an edge vxvv′ , with
vv′ ∈ E(G−H); and an edge yvwv, with v ∈ V (G−H).

Next consider an edge yvh2, with v ∈ V (G −H). If c({yv, h2}) = {h2, h3} then
c(wv) = h2 or h3, as wv is adjacent to yv and h2. Since c(W ) �= {h2, h3}, it must be
that c(wv) = c(h2). This implies that c({yv, wv}) = {h2, h3}, which as noted above
does not hold. Similarly, for the possible edges vh2 and vh3, with v ∈ V (G −H), if
c(v, h2) = {h2, h3} or c(v, h3) = {h2, h3} then we will have c(v, wv) = {h2, h3}, which
we have shown above is not possible.

Now consider an edge vv′ ∈ E(G − H). Suppose that c({v, v′}) = {h2, h3}.
Without loss of generality, let c(v) = h2 and c(v′) = h3 (due to symmetry). Since uv
and uv′ are adjacent to v and v′, respectively, and c(U) = {h0, h1}, we have c(uv) = h1

and c(uv′) = h0. Since c(wv) must be adjacent to c(v) = h2 and c(uv) = h1, we have
c(wv) ∈ {h1, h2}. Also, c(wv′) must be adjacent to c(uv′) = h0 and c(v′) = h3.
Hence c(wv′) ∈ {h0, h3}. Since wv is adjacent to wv′ in G′, and c(W ) �= {h2, h3},
this implies that c(wv) = h1 and c(wv′) = h0. Now c(xvv′) must be adjacent to
c(wv′) = h0, c(uv) = h1, c(v) = h2, and c(v′) = h3, which is impossible.

Consider now an edge v′xvv′ , with vv′ ∈ E(G − H). If c({v′, xvv′}) = {h2, h3}
then c(v) = h2 or h3, as v is adjacent to v′ and xvv′ . This implies that either
c({v, v′}) = {h2, h3} or c({v, xvv′}) = {h2, h3}, both of which we have already proved
do not hold.

Finally, consider an edge wv′xvv′ , with vv′ ∈ E(G − H). If c({wv′ , xvv′}) =
{h2, h3} then c(v′) = h2 or h3, as v′ is adjacent to wv′ and xvv′ . This implies that
either c({v′, wv′}) = {h2, h3} or c({v′, xvv′}) = {h2, h3}, both of which we have
already proved do not hold.

This completes the proof that c(W ) = {h2, h3}. We now prove that c(h0) �= c(h1).
Suppose to the contrary that c(h0) = c(h1). We know that c(h0), c(h1) ∈ {h0, h1}
(as c(U) = {h0, h1}). Without loss of generality, let c(h0) = c(h1) = h0 (due to
symmetry). Since c(U) = {h0, h1}, c(uv) = h1 for some vertex v of G − H. Since
wv and h2 are adjacent to uv and h1, respectively, and c(W ) = {h2, h3}, we have
c(wv) = h2 and c(h2) = h3. Now c(yv) must be adjacent to c(h0) = h0, c(uv) = h1,
c(wv) = h2, and c(h2) = h3, which is impossible.

Thus c(h0) �= c(h1), i.e., c({h0, h1}) = {h0, h1}. Without loss of generality,
suppose that c(h0) = h0 and c(h1) = h1 (due to symmetry). Since h2 and h3 are
adjacent to h1 and h0, respectively, and c(W ) = {h2, h3}, we have c(h2) = h2 and
c(h3) = h3. Thus c : G′ → H is a retraction, and the lemma is proved.

We have thus proved Theorem 2.1.

3. Compaction to a reflexive k-cycle. We prove the following theorem in
this section.

Theorem 3.1. The problem of deciding the existence of a compaction to a re-
flexive k-cycle is NP-complete for all k ≥ 4.

Proof. Let H be the reflexive k-cycle h0h1 . . . hk−1h0, with k ≥ 4. See Figure 3.1.



262 NARAYAN VIKAS

h0

h1

hk-1

Fig. 3.1. H.

We shall prove that the problem of deciding the existence of a compaction to
H, i.e., the problem COMP -H, is NP-complete. Clearly, the problem COMP -H is
in NP. We give a polynomial transformation from the problem RET -H to COMP -
H. As mentioned earlier, the problem RET -H is NP-complete. Let a graph G
containing H as an induced subgraph be an instance of RET -H. We construct in
time polynomial in the size of G, a graph G′ (containing G as an induced subgraph)
such that the statements (i), (ii), and (iii) mentioned in our technique in section 1
are equivalent. Since RET -H is NP-complete, this shows that COMP -H is also NP-
complete. In analogy to the proof of Theorem 2.1 for a reflexive square, we prove that
(i) is equivalent to (ii), and (ii) is equivalent to (iii), in two separate lemmas.

Assume that k = 4m, 4m + 1, 4m + 2, or 4m + 3, for some integer m ≥ 1. Thus
for any k we have m = �k/4�. We also let n = �k/2�. It may be helpful to note that
n −m = m + 1 for k = 4m + 2 and k = 4m + 3, and n −m = m for k = 4m and
k = 4m+ 1. There are four categories of construction for G′, depending on whether
k = 4m, 4m+ 1, 4m+ 2, or 4m+ 3. We include here a detailed proof of the theorem
for k = 4m+ 2 and k = 4m+ 3. The proof for k = 4m and k = 4m+ 1 is similar to
the proof for k = 4m+ 2 and k = 4m+ 3, respectively. Hence we will make remarks
and refer to the cases k = 4m + 2 and k = 4m + 3 when proving the theorem for
the cases k = 4m and k = 4m+ 1, respectively. We shall assume that all arithmetic
operations are done modulo k unless otherwise convenient.

We prove the theorem in the cases k = 4m + 2, k = 4m, k = 4m + 3, and
k = 4m+ 1 in separate sections.

Proof of Theorem 3.1 in the case k = 4m + 2. The construction of G′

is as follows. For each vertex v in V (G − H), we add to G three vertex disjoint
paths Uv, Wv, and Yv, each containing n − 1 new vertices. Let Uv = uv1u

v
2 . . . u

v
n−1,

Wv = wv1w
v
2 . . . w

v
n−1, and Yv = yv1y

v
2 . . . y

v
n−1, with v ∈ V (G − H). We add the

edges uv1h0, uv1h1, vuvn−1, wv1hn, wv1hn+1, vwvn−1, uvm+1w
v
m+1, yv1h0, yvn−1hn, uv1y

v
1 ,

and wv1y
v
n−1, with v ∈ V (G − H) (note that hn is the vertex opposite to h0 in H).

For each v ∈ V (G − H), we also add a new vertex av adjacent to uvm and wvm. For
convenience, in the proof of the first lemma, we also use hk to denote the vertex h0. See
Figure 3.2. Furthermore, we add the edges uv1u

v′
1 and wv1w

v′
1 for all v, v′ ∈ V (G−H),

v �= v′.
As for a reflexive square in Theorem 2.1, we choose one fixed direction for every

edge of G−H, and when we mention an edge vv′ of G−H in this proof, we assume
that the chosen direction is from v to v′. For every edge vv′ ∈ E(G−H), v �= v′, we
add a new vertex xvv′ adjacent to v, v′, uvn−1, and wv

′
n−1. See Figure 3.3.



COMPACTION TO REFLEXIVE CYCLES 263
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Fig. 3.2. Construction of G′ for a vertex v in G−H, with k = 4m+ 2.

xvv’

v v’

uv
n-1

w v’
n-1

Fig. 3.3. Construction of G′ for an edge vv′ in G−H.

This completes the construction of G′. We now prove the following two lemmas
in order to prove the theorem for k = 4m+ 2.

Lemma 3.1.1. G retracts to H if and only if G′ retracts to H.
Proof. If G′ retracts to H then clearly G retracts to H, as G is a subgraph of

G′. Now suppose that r : G → H is a retraction. Below, we define a retraction
r′ : G′ → H. As we go along the definition of r′, we shall be considering the edges
ab of G′, showing that r′(a)r′(b) is indeed an edge of H (as required for r′ : G′ → H
to be a homomorphism). Recall that the edges of G′ are ab, uvi u

v
i+1, wvi w

v
i+1, yvi y

v
i+1,

uv1h0, uv1h1, wv1hn, wv1hn+1, vuvn−1, vwvn−1, uvm+1w
v
m+1, avu

v
m, avw

v
m, yv1h0, yvn−1hn,

uv1y
v
1 , wv1y

v
n−1, uv1u

v′
1 , wv1w

v′
1 , gxgg′ , g

′xgg′ , xgg′u
g
n−1, and xgg′w

g′
n−1, with ab ∈ E(G),

v, v′ ∈ V (G−H), gg′ ∈ E(G−H), i = 1, 2, . . . , n− 2.
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For each vertex v of the graph G, we define
r′(v) = r(v).

Thus for an edge vv′ of G′, with vv′ ∈ E(G), we have that r′(v)r′(v′) = r(v)r(v′) is
an edge of H.

We now fix a vertex v ∈ V (G − H) for defining r′ for the vertices of Uv,Wv,
and Yv, and for the vertex av. Let r(v) = hj . For the purpose of this lemma, as
mentioned earlier, we use h0 and hk to denote the same vertex, and use the subscript
0 or k as convenient. We shall define r′ for the said vertices when 1 ≤ j ≤ n and
when n+ 1 ≤ j ≤ k.
First assume that 1 ≤ j ≤ n.
For the vertices of Uv, we define r′ as follows.
If j ≤ m then we define
r′(uvi ) = hi for all i = 1, 2, . . . ,m,
r′(uvi ) = hn−i for all i = m+ 1,m+ 2, . . . , n− j,
r′(uvi ) = hj for all i = n− j + 1, n− j + 2, . . . , n− 1.

Thus for the edges uv1h0, uv1h1, and vuvn−1 of G′, r′(uv1)r′(h0) = h1h0, r′(uv1)r′(h1) =
h1h1, and r′(v)r′(uvn−1) = hjhj are, respectively, the edges ofH, when j ≤ m. Clearly,
for the edge uvi u

v
i+1 of G′, r′(uvi )r

′(uvi+1) is an edge of H for all i = 1, 2, . . . , n− 2.
If j > m then we define
r′(uvi ) = hi for all i = 1, 2, . . . , j − 1,
r′(uvi ) = hj for all i = j, j + 1, . . . , n− 1.

Thus with j > m, we have r′(uvn−1) = hj−1 if j = n, and r′(uvn−1) = hj if j < n. Hence
for an edge vuvn−1 of G′, r′(v)r′(uvn−1) = hjr

′(uvn−1) is an edge of H, when j > m.
Also, for the edges ab of G′ among uv1h0, uv1h1, and uvi u

v
i+1, for all i = 1, 2, . . . , n− 2,

clearly r′(a)r′(b) is an edge of H, when j > m.
For the vertices of Wv, we define r′ as follows.
If j ≥ n−m+ 1 then we define
r′(wvi ) = hn−i+1 for all i = 1, 2, . . . ,m,
r′(wvi ) = hi+1 for all i = m+ 1,m+ 2, . . . , j − 1,
r′(wvi ) = hj for all i = j, j + 1, . . . , n− 1.

If j < n−m+ 1 then we define
r′(wvi ) = hn−i+1 for all i = 1, 2, . . . , n− j,
r′(wvi ) = hj for all i = n− j + 1, n− j + 2, . . . , n− 1.

As for the case of Uv, it can be verified that for the edges ab of G′ among wv1hn,
wv1hn+1, vwvn−1, and wvi w

v
i+1, for all i = 1, 2, . . . , n− 2, r′(a)r′(b) is always an edge of

H.
Now we show that for an edge uvm+1w

v
m+1 of G′, r′(uvm+1)r′(wvm+1) is an edge of

H. We note that r′(wvm+1) = hm+2 if j ≥ n−m+1, and r′(wvm+1) = hn−m = hm+1 if
j < n−m+1. Also, we have r′(uvm+1) = hn−m−1 = hm if j ≤ m, and r′(uvm+1) = hm+1

if j > m. Thus, if j < n −m + 1 = m + 2 then r′(uvm+1)r′(wvm+1) = r′(uvm+1)hm+1

is an edge of H (as r′(uvm+1) = hm or hm+1). If j ≥ n − m + 1 = m + 2 then
r′(uvm+1)r′(wvm+1) = hm+1hm+2 is an edge of H. Thus under all possibilities, we have
shown that r′(uvm+1)r′(wvm+1) is an edge of H.
For the vertex av, we define
r′(av) = hm+1.

Thus for the edges avu
v
m and avw

v
m of G′, r′(av)r′(uvm) = hm+1hm and r′(av)r′(wvm) =

hm+1hn−m+1 = hm+1hm+2 are, respectively, the edges of H.
For the vertices of Yv, we define
r′(yvi ) = hi for all i = 1, 2, . . . , n− 1.
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Thus for the edges uv1y
v
1 and wv1y

v
n−1 of G′, r′(uv1)r′(yv1) = h1h1 and r′(wv1)r′(yvn−1) =

hnhn−1 are, respectively, the edges of H. Also, for the edges ab of G′ among yv1h0,
yvn−1hn, and yvi y

v
i+1, for all i = 1, 2, . . . , n− 2, clearly r′(a)r′(b) is an edge of H.

Now assume that n+ 1 ≤ j ≤ k.

Similar to the previous case, where 1 ≤ j ≤ n, it can be verified that for the edges ab
of G′ considered in the previous case, r′(a)r′(b) is indeed an edge of H in this case
also, where n+ 1 ≤ j ≤ k.
For the vertices of Uv, we define r′ as follows.

If j ≥ k −m+ 1 then we define

r′(uvi ) = hk−i+1 for all i = 1, 2, . . . ,m,

r′(uvi ) = hn+i+1 for all i = m+ 1,m+ 2, . . . , j − n− 1,

r′(uvi ) = hj for all i = j − n, j − n+ 1, . . . , n− 1.

If j < k −m+ 1 then we define

r′(uvi ) = hk−i+1 for all i = 1, 2, . . . , k − j,
r′(uvi ) = hj for all i = k − j + 1, k − j + 2, . . . , n− 1.

For the vertices of Wv, we define r′ as follows.

If j ≤ n+m then we define

r′(wvi ) = hn+i for all i = 1, 2, . . . ,m,

r′(wvi ) = hk−i for all i = m+ 1,m+ 2, . . . , k − j,
r′(wvi ) = hj for all i = k − j + 1, k − j + 2, . . . , n− 1.

If j > n+m then we define

r′(wvi ) = hn+i for all i = 1, 2, . . . , j − n− 1,

r′(wvi ) = hj for all i = j − n, j − n+ 1, . . . , n− 1.

For the vertex av, we define

r′(av) = hk−m.

For the vertices of Yv, we define

r′(yvi ) = hk−i for all i = 1, 2, . . . , n− 1.

This completes the definition of r′ for the vertices of Uv, Wv, and Yv and for the
vertex av.

Consider now the edges uv1u
v′
1 and wv1w

v′
1 of G′, with v, v′ ∈ V (G−H). From the

definition of r′, we have that r′(uv1) and r′(uv
′

1 ) are h1 or h0, and r′(wv1) and r′(wv
′

1 )
are hn or hn+1. Thus r′(uv1)r′(uv

′
1 ) and r′(wv1)r′(wv

′
1 ) are always the edges of H.

For the vertex xvv′ , with vv′ ∈ E(G−H), we define

r′(xvv′) = r(v), if r(v) �∈ {h0, h1}, and

r′(xvv′) = r(v′), if r(v) ∈ {h0, h1}.
We now consider the edges of G′ associated with xvv′ , with vv′ ∈ E(G − H).

For the edges vxvv′ and v′xvv′ of G′, we argue as for the case of a reflexive square
in Lemma 2.1.1 that r′(v)r′(xvv′) and r′(v′)r′(xvv′) are, respectively, the edges of H,
with vv′ ∈ E(G−H).

Consider now an edge xvv′u
v
n−1 of G′, with vv′ ∈ E(G−H). First suppose that

r(v) �∈ {h0, h1}. Then r′(xvv′) = r(v). We have already proved that r′(v)r′(uvn−1) =
r(v)r′(uvn−1) is an edge of H. Hence r′(xvv′)r′(uvn−1) = r(v)r′(uvn−1) is an edge of
H. Now suppose that r(v) ∈ {h0, h1}. Then r′(xvv′) = r(v′). If r(v) = h1 then
from our definition of r′ we have r′(uvn−1) = hj = h1 = r(v) (as j = 1 ≤ m), and
hence r′(xvv′)r′(uvn−1) = r(v′)r(v) is an edge of H. If r(v) = h0(= hk) then from
the definition of r′ we have r′(uvn−1) = hj = h0 = r(v) (as j = k ≥ k −m + 1), and
hence r′(xvv′)r′(uvn−1) = r(v′)r(v) is an edge of H. Thus we have proved, under all
possibilities, that r′(xvv′)r′(uvn−1) is an edge of H.
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Now consider an edge xvv′w
v′
n−1 of G′, with vv′ ∈ E(G−H). First suppose that

r(v) �∈ {h0, h1}. Then r′(xvv′) = r(v). Now first let r(v′) = hj , with 1 ≤ j ≤ n. Then

from our definition of r′ we have r′(wv
′
n−1) = hj = r(v′) if j > 1, and r′(wv

′
n−1) =

hj+1 = h2 if j = 1. Hence if j > 1 then r′(xvv′)r′(wv
′
n−1) = r(v)r(v′) is an edge of H.

If j = 1 then since r(v) is adjacent to r(v′) = hj = h1 and r(v) �∈ {h0, h1}, it must

be that r(v) = h2. Thus if j = 1 then r′(xvv′)r′(wv
′
n−1) = r(v)h2 = h2h2 is an edge of

H. Now let r(v′) = hj , with n + 1 ≤ j ≤ k. Then from the definition of r′ we have

r′(wv
′
n−1) = hj = r(v′) if j < k, and r′(wv

′
n−1) = hj−1 = hk−1 if j = k. Hence if j < k

then r′(xvv′)r′(wv
′
n−1) = r(v)r(v′) is an edge of H. If j = k then since r(v) is adjacent

to r(v′) = hj = hk = h0 and r(v) �∈ {h0, h1}, it must be that r(v) = hk−1. Thus if

j = k then r′(xvv′)r′(wv
′
n−1) = r(v)hk−1 = hk−1hk−1 is an edge of H.

Now suppose that r(v) ∈ {h0, h1}. Then r′(xvv′) = r(v′). We have already
proved that r′(v′)r′(wv

′
n−1) = r(v′)r′(wv

′
n−1) is an edge of H. Hence r′(xvv′)r′(wv

′
n−1) =

r(v′)r′(wv
′
n−1) is an edge of H. Thus we have proved, under all possibilities, that

r′(xvv′)r′(wv
′
n−1) is an edge of H.

This completes the proof that r′ : G′ → H is a homomorphism. Since r′(h) =
r(h) = h, for all h ∈ V (H), it follows that r′ : G′ → H is a retraction, and the lemma
is proved.

Lemma 3.1.2. G′ retracts to H if and only if G′ compacts to H.
Proof. If G′ retracts to H then by definition G′ compacts to H. Now suppose

that c : G′ → H is a compaction. We shall prove that G′ retracts to H. We let
U = {uv1|v ∈ V (G−H)} ∪ {h0, h1} and W = {wv1 |v ∈ V (G−H)} ∪ {hn, hn+1}. Note
that U and W are cliques in G′.

Since U is a clique in G′, c(U) must be a clique in H. Thus c(U) has either one
or two vertices. Similarly, c(W ) has either one or two vertices. We shall prove that
c(U) and c(W ) both have two vertices.

Suppose that c(U) has only one vertex. Without loss of generality, let c(U) = {h0}
(due to symmetry). We note that dG′(U, a) < n for all a ∈ V (G′). Hence we have
dG′(U, a) < dH(c(U) = {h0}, hn) = n for all a ∈ V (G′). This implies that c(a) �= hn
for all a ∈ V (G′). Thus c(U) must have two vertices. We also note that dG′(W,a) < n,
for all a ∈ V (G′), and hence, similarly, c(W ) must also have two vertices.

Thus both c(U) and c(W ) are cliques of size two in H. Without loss of gener-
ality, suppose that c(U) = {h0, h1} (due to symmetry). We first prove that c(W ) =
{hn, hn+1}. Let some edge ab of G′ cover the edge hnhn+1 of H under c (indeed there
exists such an edge in G′). We note that both hn and hn+1 are at distance n−1 from
c(U) in H. Thus both a and b must be at distance greater than or equal to n−1 from
U in G′. While there is no vertex at distance greater than n − 1 from U in G′, the
only vertices that could possibly be at distance n− 1 from U in G′ are hn, hn+1, wv1 ,
wvn−1, yvn−1, v, with v ∈ V (G−H); and xvv′ , with vv′ ∈ E(G−H). Thus a and b are
among these vertices. Upper bounds on distance to these vertices from U in G′ may
be obtained due to the following paths in G′ (appropriate paths will apply to vertices
in question). We are talking of upper bounds, as presence of an edge vh of G, with
v ∈ V (G−H), h ∈ V (H), may result in a shorter path from U to a vertex mentioned
above in G′. The paths are

h1h2 . . . hn−1hn, h0hk−1hk−2 . . . hn+2hn+1, uv1u
v
2 . . . u

v
mavw

v
mw

v
m−1 . . . w

v
1 ,

uv1u
v
2 . . . u

v
m+1w

v
m+1w

v
m+2 . . . w

v
n−1, uv1y

v
1y
v
2 . . . y

v
n−1, uv1u

v
2 . . . u

v
n−1v,

and uv1u
v
2 . . . u

v
n−1xvv′ .

Suppose that c(W ) �= {hn, hn+1}. Then no edge with both endpoints inW covers



COMPACTION TO REFLEXIVE CYCLES 267

the edge hnhn+1 of H under c, and hence not both a and b belong toW . Thus ab must
be an edge among vwvn−1, wv1y

v
n−1, yvn−1hn, with v ∈ V (G − H); vv′, vxvv′ , v′xvv′ ,

and wv
′
n−1xvv′ , with vv′ ∈ E(G −H); in order to meet the requirements of the edge

ab, both vertices in each of these edges are assumed to achieve distance n − 1 from
U in G′. Further, if vhn or vhn+1 is an edge of G, for some vertex v ∈ V (G − H),
then we need to include such an edge also for ab. We shall consider each of these
possible edges for ab and show that they do not cover the edge hnhn+1 under c (i.e.,
c({a, b}) �= {hn, hn+1}), implying that c(W ) = {hn, hn+1}.

Consider first an edge vwvn−1, with v ∈ V (G − H). Since c(uv1) = h0 or h1,
either hn or hn+1 is at distance n from c(uv1) in H. Since both v and wvn−1 are at
distance n − 1 from uv1, it is impossible that c({v, wvn−1}) = {hn, hn+1}. A similar
argument applies to an edge vxvv′ , with vv′ ∈ E(G−H); and an edge wv1y

v
n−1, with

v ∈ V (G−H).

Next consider an edge yvn−1hn, with v ∈ V (G−H). If c({yvn−1, hn}) = {hn, hn+1}
then c(wv1) = hn or hn+1, as wv1 is adjacent to yvn−1 and hn. Since c(W ) �= {hn, hn+1},
it must be that c(wv1) = c(hn). This implies that c({yvn−1, w

v
1}) = {hn, hn+1} which,

as noted above, is impossible.

Now consider an edge vv′ ∈ E(G − H). Suppose that c({v, v′}) = {hn, hn+1}.
Without loss of generality, let c(v) = hn and c(v′) = hn+1 (due to symmetry). We
have c(uv1), c(uv

′
1 ) ∈ {h0, h1}. Since dG′(u

v
1, v) = n − 1 < dH(h0, c(v) = hn) = n,

this implies that c(uv1) �= h0, and hence c(uv1) = h1. Since dG′(u
v′
1 , v

′) = n − 1 <
dH(h1, c(v

′) = hn+1) = n, this implies that c(uv
′

1 ) �= h1, and hence c(uv
′

1 ) = h0. We
have the path uv1u

v
2 . . . u

v
n−1v of length n− 1 in G′. Since c(uv1) = h1 and c(v) = hn,

this implies that c(uvi ) = hi for all i = 1, 2, . . . , n − 1. Thus we have c(uvn−1) =
hn−1. Since c(wvn−1) must be adjacent to c(v) = hn, this implies that c(wvn−1) ∈
{hn−1, hn, hn+1}. Since dG′(u

v
1, w

v
n−1) = n − 1 < dH(c(uv1) = h1, hn+1) = n, this

implies that c(wvn−1) �= hn+1, and hence c(wvn−1) ∈ {hn−1, hn}. Since c(wv
′
n−1) must

be adjacent to c(v′) = hn+1, this implies that c(wv
′
n−1) ∈ {hn, hn+1, hn+2}. Since

dG′(u
v′
1 , w

v′
n−1) = n − 1 < dH(c(uv

′
1 ) = h0, hn) = n, this implies that c(wv

′
n−1) �= hn,

and hence c(wv
′
n−1) ∈ {hn+1, hn+2}.

We now prove that c(wv
′
n−1) �= hn+1, which would leave us with the

only choice that c(wv
′
n−1) = hn+2. Suppose that c(wv

′
n−1) = hn+1. We have the

path uv
′

1 u
v′
2 . . . u

v′
m+1w

v′
m+1w

v′
m+2 . . . w

v′
n−1 of length n− 1 in G′. Since c(uv

′
1 ) = h0 and

c(wv
′
n−1) = hn+1, this implies that c(uv

′
i ) = hk−i+1 for all i = 1, 2, . . . ,m + 1, and

c(wv
′
i ) = hk−i for all i = m+ 1,m+ 2, . . . , n− 1. Thus we have c(uv

′
m) = hk−m+1 and

c(wv
′
m+1) = hk−m−1. Since wv

′
m is adjacent to wv

′
m+1 and at distance two from uv

′
m in

G′, this implies that c(wv
′
m) = hk−m−1 or hk−m. Since wv

′
1 is at distance m− 1 from

wv
′
m in G′, it follows that c(wv

′
1 ) = hs, n + 1 ≤ s ≤ k − 1. We also have the path

uv1u
v
2 . . . u

v
m+1w

v
m+1w

v
m+2 . . . w

v
n−1 of length n − 1 in G′. As shown above, we have

c(uvi ) = hi, for all i = 1, 2, . . . ,m + 1, and c(wvn−1) = hn or hn−1. This implies that
c(wvi ) = hi+1 or hi for all i = m + 1,m + 2, . . . , n − 1. Thus we have c(uvm) = hm
and c(wvm+1) = hm+1 or hm+2. Since wvm is adjacent to wvm+1 and at distance two
from uvm in G′, this implies that c(wvm) = hm, hm+1, or hm+2. Since wv1 is at distance
m − 1 from wvm in G′, it follows that c(wv1) = ht, 1 ≤ t ≤ n. We have that c(wv1)
and c(wv

′
1 ) must be adjacent in H. The only possible pair of values for t and s are

n and n + 1, respectively, for c(wv1) to be adjacent to c(wv
′

1 ). Thus c(wv1) = hn and
c(wv

′
1 ) = hn+1, which implies that c(W ) = {hn, hn+1} and we have a contradiction.

Thus c(wv
′
n−1) �= hn+1, and hence c(wv

′
n−1) = hn+2.



268 NARAYAN VIKAS

Now, c(xvv′) must be adjacent to c(uvn−1) = hn−1, c(v) = hn, c(v′) = hn+1, and

c(wv
′
n−1) = hn+2, which is impossible.
Consider now an edge v′xvv′ , with vv′ ∈ E(G−H). If c({v′, xvv′}) = {hn, hn+1}

then c(v) = hn or hn+1, as v is adjacent to v′ and xvv′ . This implies that either
c({v, v′}) = {hn, hn+1} or c({v, xvv′}) = {hn, hn+1}, both of which we have already
proved do not hold.

Now consider an edge wv
′
n−1xvv′ , with vv′ ∈ E(G − H). If c({wv′n−1, xvv′}) =

{hn, hn+1} then c(v′) = hn or hn+1, as v′ is adjacent to wv
′
n−1 and xvv′ . This implies

that either c({v′, wv′n−1}) = {hn, hn+1} or c({v′, xvv′}) = {hn, hn+1}, both of which
we have already proved do not hold.

Finally, consider a possible edge vhn, with v ∈ V (G−H). Suppose that c({v, hn})
= {hn, hn+1}. Without loss of generality, let c(v) = hn and c(hn) = hn+1 (due
to symmetry). Exactly, as in the case vv′ ∈ E(G − H) above, we establish that
c(wv1) = ht, 1 ≤ t ≤ n. Since c(wv1) must be adjacent to c(hn) = hn+1 in H, it follows
that c(wv1) = hn, and hence hn, hn+1 ∈ c(W ), which is a contradiction. We argue
similarly for a possible edge vhn+1, with v ∈ V (G−H).

This completes the proof that c(W ) = {hn, hn+1}. We now prove that c(h0) �=
c(h1). Suppose to the contrary that c(h0) = c(h1). We have c(h0), c(h1) ∈ {h0, h1},
as c(U) = {h0, h1}. Without loss of generality, let c(h0) = c(h1) = h0 (due to
symmetry). Since c(U) = {h0, h1}, c(uv) = h1 for some vertex v of G − H. We
have c(wv1), c(hn) ∈ {hn, hn+1}, as c(W ) = {hn, hn+1}. Since dG′(h1, hn) = n − 1 <
dH(c(h1) = h0, hn) = n, this implies that c(hn) �= hn, and hence c(hn) = hn+1.
Since dG′(u

v
1, w

v
1) = n − 1 < dH(c(uv1) = h1, hn+1) = n, this implies that c(wv1) �=

hn+1, and hence c(wv1) = hn. Now, c(yvn−1) must be adjacent to c(hn) = hn+1

and c(wv1) = hn. Hence c(yvn−1) ∈ {hn, hn+1}. Also, c(yv1) must be adjacent to
c(h0) = h0 and c(uv1) = h1. Hence c(yv1) ∈ {h0, h1}. We have dG′(y

v
1 , y

v
n−1) = n− 2 <

dH({h0, h1}, {hn, hn+1}) = n − 1. Hence it is impossible that c(yv1) ∈ {h0, h1} and
c(yvn−1) ∈ {hn, hn+1}.

Thus c(h0) �= c(h1), i.e., c({h0, h1}) = {h0, h1}. Without loss of generality,
suppose that c(h0) = h0 and c(h1) = h1 (due to symmetry). We have c(hn), c(hn+1) ∈
{hn, hn+1}, as c(W ) = {hn, hn+1}. Since dG′(h1, hn) = n− 1 < dH(c(h1) = h1, hn+1)
= n, this implies that c(hn) �= hn+1, and hence c(hn) = hn. Since dG′(h0, hn+1) =
n−1 < dH(c(h0) = h0, hn) = n, this implies that c(hn+1) �= hn, and hence c(hn+1) =
hn+1. We have the path h1h2 . . . hn of length n − 1 in G′. Since c(h1) = h1 and
c(hn) = hn, this implies that c(hi) = hi for all i = 1, 2, 3, . . . , n. We also have the
path h0hk−1hk−2 . . . hn+1 of length n−1 in G′. Since c(h0) = h0 and c(hn+1) = hn+1,
this implies that c(hi) = hi for all i = 0, n+ 1, n+ 2, n+ 3, . . . , k − 1. Thus we have
c(hi) = hi for all i = 0, 1, 2, . . . , k − 1. Hence c : G′ → H is a retraction and the
lemma is proved.

Proof of Theorem 3.1 in the case k = 4m. The construction of G′ is as
follows. For each vertex v in V (G − H), we add to G three vertex disjoint paths
Uv, Wv, and Yv, each containing n − 1 new vertices. Let Uv = uv1u

v
2 . . . u

v
n−1, Wv =

wv1w
v
2 . . . w

v
n−1, and Yv = yv1y

v
2 . . . y

v
n−1, with v ∈ V (G−H). We add the edges uv1h0,

uv1h1, vuvn−1, wv1hn, wv1hn+1, vwvn−1, uvmw
v
m, yv1h0, yvn−1hn, uv1y

v
1 , and wv1y

v
n−1, with

v ∈ V (G − H). For convenience, in the proof of the first lemma, as for the case
k = 4m+ 2, we also use hk to denote the vertex h0. See Figure 3.4. Furthermore, we
add the edges uv1u

v′
1 and wv1w

v′
1 for all v, v′ ∈ V (G−H), v �= v′.

The addition of a new vertex xvv′ and the edges associated with it are same as
for the case k = 4m+2, with vv′ ∈ E(G−H), v �= v′. See Figure 3.3. This completes
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Fig. 3.4. Construction of G′ for a vertex v in G−H, with k = 4m.

the construction of G′.
Note that the construction of G′ is like for k = 4m+ 2 except that now we do not

have the vertex av and the edge uvm+1w
v
m+1, with v ∈ V (G−H). Instead we have the

edge uvmw
v
m, with v ∈ V (G − H). The two lemmas that we gave for the case when

k = 4m + 2 hold similarly for the case when k = 4m with some variations in their
proofs as noted below.

Lemma 3.1.3. G retracts to H if and only if G′ retracts to H.
Proof. If G′ retracts to H then clearly G retracts to H, as G is a subgraph of G′.

If r : G → H is a retraction then we define a retraction r′ : G′ → H exactly as we
defined in the case k = 4m + 2 in Lemma 3.1.1 except that now we do not need to
define r′(av), with v ∈ V (G−H). As for the case k = 4m+ 2, it can be verified that
for every edge ab of G′, r′(a)r′(b) is indeed an edge of H. Recall that the edges of G′

are ab, uvi u
v
i+1, wvi w

v
i+1, yvi y

v
i+1, uv1h0, uv1h1, wv1hn, wv1hn+1, vuvn−1, vwvn−1, uvmw

v
m,

yv1h0, yvn−1hn, uv1y
v
1 , wv1y

v
n−1, uv1u

v′
1 , wv1w

v′
1 , gxgg′ , g

′xgg′ , xgg′u
g
n−1, and xgg′w

g′
n−1,

with ab ∈ E(G), v, v′ ∈ V (G−H), gg′ ∈ E(G−H), i = 1, 2, . . . , n− 2.

Lemma 3.1.4. G′ retracts to H if and only if G′ compacts to H.
Proof. If G′ retracts to H then by definition G′ compacts to H. Now suppose

that c : G′ → H is a compaction. We shall prove that G′ retracts to H. We define
cliques U and W , as we did for the case k = 4m + 2 in Lemma 3.1.2, i.e., we let
U = {uv1|v ∈ V (G−H)} ∪ {h0, h1} and W = {wv1 |v ∈ V (G−H)} ∪ {hn, hn+1}.

We note that dG′(U, a) < n and dG′(W,a) < n for all a ∈ V (G′). Thus, exactly as
for the case k = 4m+2, we establish that both c(U) and c(W ) are cliques of size two in
H. Without loss of generality, suppose that c(U) = {h0, h1} (due to symmetry). We
first prove that c(W ) = {hn, hn+1}. Let some edge ab of G′ cover the edge hnhn+1 of
H under c. As for the case k = 4m+2, we have that both a and b are at distance n−1
from U in G′. The only vertices that could possibly be at distance n−1 from U in G′

are hn, hn+1, wv1 , wvn−1, yvn−1, v, with v ∈ V (G−H); and xvv′ , with vv′ ∈ E(G−H).
Upper bounds on distance to these vertices from U in G′ may be obtained due to the
following paths in G′:



270 NARAYAN VIKAS

h1h2 . . . hn−1hn, h0hk−1hk−2 . . . hn+2hn+1, uv1u
v
2 . . . u

v
mw

v
mw

v
m−1 . . . w

v
1 ,

uv1u
v
2 . . . u

v
mw

v
mw

v
m+1 . . . w

v
n−1, uv1y

v
1y
v
2 . . . y

v
n−1, uv1u

v
2 . . . u

v
n−1v,

and uv1u
v
2 . . . u

v
n−1xvv′ .

Notice that the paths to wv1 and wvn−1 from uv1, mentioned above, are different from
the case k = 4m+ 2.

Suppose that c(W ) �= {hn, hn+1}. Then, just as for the case k = 4m + 2, we
conclude that ab must be an edge among vwvn−1, wv1y

v
n−1, yvn−1hn, with v ∈ V (G −

H); vv′, vxvv′ , v′xvv′ , and wv
′
n−1xvv′ , with vv′ ∈ E(G − H); in order to meet the

requirements of the edge ab, both vertices in each of these edges are assumed to
achieve distance n − 1 from U in G′. Further, if vhn or vhn+1 is an edge of G, for
some vertex v ∈ V (G −H), then we need to include such an edge also for ab. Note
that the set of these possible edges for ab is the same as for the case k = 4m+ 2. For
all these possible edges of ab except vv′ ∈ E(G −H), the proof that these edges do
not cover the edge hnhn+1 under c (i.e., c({a, b}) �= {hn, hn+1}) is exactly the same
as for the case k = 4m+ 2.

For an edge vv′, we now make use of the paths uv1u
v
2 . . . u

v
mw

v
mw

v
m+1 . . . w

v
n−1 and

uv
′

1 u
v′
2 . . . u

v′
mw

v′
mw

v′
m+1 . . . w

v′
n−1 instead of the paths uv1u

v
2 . . . u

v
m+1w

v
m+1w

v
m+2 . . . w

v
n−1

and uv
′

1 u
v′
2 . . . u

v′
m+1w

v′
m+1w

v′
m+2 . . . w

v′
n−1, respectively, with vv′ ∈ E(G−H). We con-

sider this case and show its proof.

Let vv′ be an edge of G−H. Suppose that c({v, v′}) = {hn, hn+1}. Without loss
of generality, let c(v) = hn and c(v′) = hn+1 (due to symmetry). Exactly, as in the
case k = 4m + 2, we prove that c(uvi ) = hi for all i = 1, 2, . . . , n − 1, c(uv

′
1 ) = h0,

c(wvn−1) ∈ {hn−1, hn}, and c(wv
′
n−1) ∈ {hn+1, hn+2}.

Now we prove that c(wv
′
n−1) �= hn+1, which would leave us with the

only choice that c(wv
′
n−1) = hn+2. Suppose that c(wv

′
n−1) = hn+1. We have the

path uv
′

1 u
v′
2 . . . u

v′
mw

v′
mw

v′
m+1 . . . w

v′
n−1 of length n − 1 in G′. Since c(uv

′
1 ) = h0 and

c(wv
′
n−1) = hn+1, this implies that c(uv

′
i ) = hk−i+1 for all i = 1, 2, . . . ,m, and

c(wv
′
i ) = hk−i for all i = m,m+1, . . . , n−1. Thus we have c(wv

′
m) = hk−m. Since wv

′
1

is at distance m − 1 from wv
′
m in G′, it follows that c(wv

′
1 ) = hs, n + 1 ≤ s ≤ k − 1.

We also have the path uv1u
v
2 . . . u

v
mw

v
mw

v
m+1 . . . w

v
n−1 of length n − 1 in G′. Since

c(uvi ) = hi, for all i = 1, 2, . . . ,m, and c(wvn−1) = hn or hn−1, this implies that
c(wvi ) = hi+1 or hi for all i = m,m + 1, . . . , n − 1. Thus we have c(wvm) = hm or
hm+1. Since wv1 is at distance m − 1 from wvm in G′, it follows that c(wv1) = ht,
1 ≤ t ≤ n. We have that c(wv1) and c(wv

′
1 ) must be adjacent in H. The only possible

pair of values for t and s are n and n + 1, respectively, for c(wv1) to be adjacent to
c(wv

′
1 ). Thus c(wv1) = hn and c(wv

′
1 ) = hn+1, which implies that c(W ) = {hn, hn+1}

and we have a contradiction. Thus c(wv
′
n−1) �= hn+1, and hence c(wv

′
n−1) = hn+2.

Now, c(xvv′) must be adjacent to c(uvn−1) = hn−1, c(v) = hn, c(v′) = hn+1, and

c(wv
′
n−1) = hn+2, which is impossible. Hence c({v, v′}) �= {hn, hn+1}.
Thus we have that c(W ) = {hn, hn+1}. Exactly, as for the case k = 4m + 2, we

prove that c(h0) �= c(h1). Without loss of generality, we let c(h0) = h0 and c(h1) = h1

(due to symmetry), and exactly as for the case k = 4m+2, we establish that c(hi) = hi
for all i = 0, 1, 2, . . . , k − 1, i.e., c : G′ → H is a retraction.

Proof of Theorem 3.1 in the case k = 4m + 3. The construction of G′ is
as follows. For each vertex v in G −H, we add to G three vertex disjoint paths Uv,
Wv, and Yv, where Uv and Wv each contains n − 1 new vertices, and Yv contains n
new vertices. Let Uv = uv1u

v
2 . . . u

v
n−1, Wv = wv1w

v
2 . . . w

v
n−1, and Yv = yv1y

v
2 . . . y

v
n,
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Fig. 3.5. Construction of G′ for a vertex v in G−H, with k = 4m+ 3.

with v ∈ V (G − H). We add the edges h0u
v
1, vuvn−1, hnw

v
1 , vwvn−1, uvm+1w

v
m+1,

hk−1y
v
1 , hn−1y

v
n, uv1y

v
1 , wv1y

v
n, and wv1y

v
n−1, with v ∈ V (G − H) (note that hn is a

vertex opposite to h0 in H, and hn−1 is a vertex opposite to hk−1 in H). For each
v ∈ V (G−H), we also add a new vertex av adjacent to uvm and wvm. See Figure 3.5.

The addition of a new vertex xvv′ and the edges associated with it are same as
for the case k = 4m+ 2, with vv′ ∈ E(G−H), v �= v′. See Figure 3.3.

This completes the construction of G′. As for the case k = 4m+ 2, we now prove
the following two lemmas in order to prove the theorem for k = 4m+ 3.

Lemma 3.1.5. G retracts to H if and only if G′ retracts to H.

Proof. If G′ retracts to H then clearly G retracts to H, as G is a subgraph of
G′. Now suppose that r : G → H is a retraction. Below, we define a retraction
r′ : G′ → H. Similar to the case k = 4m + 2, it can be verified that for the edges
ab of G′, r′(a)r′(b) is indeed an edge of H. Recall that the edges of G′ are (note the
difference in the set of edges as compared to the case k = 4m+2) ab, uvi u

v
i+1, wvi w

v
i+1,

yvj y
v
j+1, uv1h0, wv1hn, vuvn−1, vwvn−1, uvm+1w

v
m+1, avu

v
m, avw

v
m, yv1hk−1, yvnhn−1, uv1y

v
1 ,

wv1y
v
n−1, wv1y

v
n, gxgg′ , g

′xgg′ , xgg′u
g
n−1, and xgg′w

g′
n−1, with ab ∈ E(G), v ∈ V (G−H),

gg′ ∈ E(G−H), i = 1, 2, . . . , n−2, j = 1, 2, . . . , n−1. We shall, however, include the
verification for the edges xvv′u

v
n−1 and xvv′w

v′
n−1, with vv′ ∈ E(G−H), as it may be

helpful.

For each vertex v of the graph G, we define

r′(v) = r(v).

Now we fix a vertex v ∈ V (G−H) for defining r′ for the vertices of Uv,Wv, and Yv,
and for the vertex av. Let r(v) = hj . We shall define r′ for the said vertices when
0 ≤ j ≤ n, and when n+ 1 ≤ j ≤ k − 1.
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First assume that 0 ≤ j ≤ n.
For the vertices of Uv, we define r′ as follows.
If j = 0 then we define
r′(uvi ) = hi−1 for all i = 1, 2, . . . ,m,
r′(uvi ) = hn−i−1 for all i = m+ 1,m+ 2, . . . , n− 1.

If 1 ≤ j ≤ m then we define
r′(uvi ) = hi for all i = 1, 2, . . . ,m,
r′(uvi ) = hn−i for all i = m+ 1,m+ 2, . . . , n− j,
r′(uvi ) = hj for all i = n− j + 1, n− j + 2, . . . , n− 1.

If j > m then we define
r′(uvi ) = hi for all i = 1, 2, . . . , j − 1,
r′(uvi ) = hj for all i = j, j + 1, . . . , n− 1.

For the vertices of Wv, we define r′ as follows.
If j = n then we define
r′(wvi ) = hn−i for all i = 1, 2, . . . ,m− 1,
r′(wvi ) = hi+1 for all i = m,m+ 1,m+ 2, . . . , n− 1.

If n−m ≤ j ≤ n− 1 then we define
r′(wvi ) = hn−i for all i = 1, 2, . . . ,m,
r′(wvi ) = hi for all i = m+ 1,m+ 2, . . . , j,
r′(wvi ) = hj for all i = j + 1, j + 2, . . . , n− 1.

If j < n−m then we define
r′(wvi ) = hn−i for all i = 1, 2, . . . , n− j − 1,
r′(wvi ) = hj for all i = n− j, n− j + 1, . . . , n− 1.

For the vertex av, we define r′ as follows.
If j = 0 then we define
r′(av) = hm.

If j �= 0 then we define
r′(av) = hm+1.

For the vertices of Yv, we define
r′(yvi ) = hi−1 for all i = 1, 2, . . . , n.

Now assume that n+ 1 ≤ j ≤ k − 1.
For the vertices of Uv, we define r′ as follows.
If j ≥ k −m then we define
r′(uvi ) = hk−i for all i = 1, 2, . . . ,m,
r′(uvi ) = hn+i+1 for all i = m+ 1,m+ 2, . . . , j − n− 1,
r′(uvi ) = hj for all i = j − n, j − n+ 1, . . . , n− 1.

If j < k −m then we define
r′(uvi ) = hk−i for all i = 1, 2, . . . , k − j − 1,
r′(uvi ) = hj for all i = k − j, k − j + 1, . . . , n− 1.

For the vertices of Wv, we define r′ as follows.
If j ≤ n+m then we define
r′(wvi ) = hn+i for all i = 1, 2, . . . ,m,
r′(wvi ) = hk−i−1 for all i = m+ 1,m+ 2, . . . , k − j − 1,
r′(wvi ) = hj for all i = k − j, k − j + 1, . . . , n− 1.

If j > n+m then we define
r′(wvi ) = hn+i for all i = 1, 2, . . . , j − n− 1,
r′(wvi ) = hj for all i = j − n, j − n+ 1, . . . , n− 1.

For the vertex av, we define
r′(av) = hk−m−1.
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For the vertices of Yv, we define
r′(yvi ) = hk−i−1 for all i = 1, 2, . . . , n.

This completes the definition of r′ for the vertices of Uv, Wv, and Yv, and for the
vertex av.
For the vertex xvv′ , with vv′ ∈ E(G−H), we define
r′(xvv′) = r(v), if r(v) �∈ {h0, hk−1}, and
r′(xvv′) = r(v′), if r(v) ∈ {h0, hk−1}.
We now consider the edges xvv′u

v
n−1 and xvv′w

v′
n−1 of G′ and show that

r′(xvv′)r′(uvn−1) and r′(xvv′)r′(wv
′
n−1) are the edges of H, with vv′ ∈ E(G − H).

It may be helpful to include the proof for these edges.
Consider first an edge xvv′u

v
n−1 of G′, with vv′ ∈ E(G−H). First suppose that

r(v) �∈ {h0, hk−1}. Then r′(xvv′) = r(v). We already have that r′(v)r′(uvn−1) =
r(v)r′(uvn−1) is an edge of H. Hence r′(xvv′)r′(uvn−1) = r(v)r′(uvn−1) is an edge of
H. Now suppose that r(v) ∈ {h0, hk−1}. Then r′(xvv′) = r(v′). If r(v) = h0

then from our definition of r′ we have r′(uvn−1) = h0 = r(v) (as j = 0), and hence
r′(xvv′)r′(uvn−1) = r(v′)r(v) is an edge of H. If r(v) = hk−1 then from our defi-
nition of r′ we have r′(uvn−1) = hj = hk−1 = r(v) (as j = k − 1 ≥ k − m), and
hence r′(xvv′)r′(uvn−1) = r(v′)r(v) is an edge of H. Thus we have proved, under all
possibilities, that r′(xvv′)r′(uvn−1) is an edge of H.

Now consider an edge xvv′w
v′
n−1, with vv′ ∈ E(G−H). First suppose that r(v) �∈

{h0, hk−1}. Then r′(xvv′) = r(v). Now first let r(v′) = hj , with 0 ≤ j ≤ n. Then from

our definition of r′ we have r′(wv
′
n−1) = hj = r(v′), if j > 0, and r′(wv

′
n−1) = hj+1 = h1

if j = 0. Hence if j > 0 then r′(xvv′)r′(wv
′
n−1) = r(v)r(v′) is an edge of H. If j = 0

then since r(v) is adjacent to r(v′) = hj = h0 and r(v) �∈ {h0, hk−1}, it must be that

r(v) = h1. Thus if j = 0 then r′(xvv′)r′(wv
′
n−1) = r(v)h1 = h1h1 is an edge of H.

Now let r(v′) = hj , with n + 1 ≤ j ≤ k − 1. Then from our definition of r′ we have

r′(wv
′
n−1) = hj = r(v′), if j < k− 1, and r′(wv

′
n−1) = hj−1 = hk−2, if j = k− 1. Hence

if j < k − 1 then r′(xvv′)r′(wv
′
n−1) = r(v)r(v′) is an edge of H. If j = k − 1 then

since r(v) is adjacent to r(v′) = hj = hk−1 and r(v) �∈ {h0, hk−1}, it must be that

r(v) = hk−2. Thus if j = k − 1 then r′(xvv′)r′(wv
′
n−1) = r(v)hk−2 = hk−2hk−2 is an

edge of H.
Now suppose that r(v) ∈ {h0, hk−1}. Then r′(xvv′) = r(v′). We already have

that r′(v′)r′(wv
′
n−1) = r(v′)r′(wv

′
n−1) is an edge of H. Hence r′(xvv′)r′(wv

′
n−1) =

r(v′)r′(wv
′
n−1) is an edge of H. Thus we have proved, under all possibilities, that

r′(xvv′)r′(wv
′
n−1) is an edge of H.

Thus, as for k = 4m+ 2, we conclude that r′ : G′ → H is a homomorphism and
a retraction.

Lemma 3.1.6. G′ retracts to H if and only if G′ compacts to H.
Proof. If G′ retracts to H then by definition G′ compacts to H. Now suppose

that c : G′ → H is a compaction. We shall prove that G′ retracts to H. We define
the sets U = {uv1|v ∈ V (G − H)} ∪ {h1, h0, hk−1} and W = {wv1 |v ∈ V (G − H)} ∪
{hn−1, hn, hn+1} (unlike the even k case, U and W are not cliques in G′).

Since the subgraph of G′ induced by the vertices in U is of diameter two (with
h0 adjacent to every vertex in U), the vertices of c(U) induce a path of length at
most two in H. Thus c(U) has either one, two, or three vertices. Similarly, c(W ) has
either one, two, or three vertices. We shall prove that both c(U) and c(W ) have three
vertices.

Suppose that c(U) has only one or two vertices, i.e., c(U) induces a path of length
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at most one in H. Without loss of generality, let c(U) = {h0} or c(U) = {h0, h1}
(due to symmetry). We note that dG′(U, a) < n for all a ∈ V (G′). Hence we have
dG′(U, a) < dH(c(U), hn+1) = n for all a ∈ V (G′). This implies that c(a) �= hn+1 for
all a ∈ V (G′). Thus c(U) must have three vertices. We also note that dG′(W,a) < n,
for all a ∈ V (G′), and hence, similarly, c(W ) must also have three vertices. We point
out here that upper bounds on dG′(U, y) and dG′(W, y), for the vertices y of Yv, with
v ∈ V (G−H), are obtained differently due to the following paths in G′:
uv1y

v
1y
v
2 . . . y

v
n−1, h1h2 . . . hn−1y

v
n, wv1y

v
n−1y

v
n−2 . . . y

v
1 , and wv1y

v
n.

Thus c(U) and c(W ) both induce paths containing three vertices in H. Without
loss of generality, suppose that c(U) = {h1, h0, hk−1} (due to symmetry). We first
prove that {hn, hn+1} ⊂ c(W ), i.e., c(W ) = {hn−1, hn, hn+1} or c(W ) = {hn, hn+1,
hn+2}. Let some edge ab of G′ cover the edge hnhn+1 of H under c (clearly there
exists such an edge in G′). We note that both hn and hn+1 are at distance n−1 from
c(U) in H. Thus both a and b must be at distance greater than or equal to n−1 from
U in G′. While there is no vertex at distance greater than n − 1 from U in G′, the
only vertices that could possibly be at distance n− 1 from U in G′ are hn, hn+1, wv1 ,
wvn−1, yvn−1, yvn, v, with v ∈ V (G−H); and xvv′ , with vv′ ∈ E(G−H). Upper bounds
on distance to these vertices from U in G′ may be obtained due to the following paths
in G′ (appropriate paths will apply to vertices in question). We are mentioning upper
bounds, as presence of an edge vh of G, with v ∈ V (G −H), h ∈ V (H), may result
in a shorter path from U to a vertex mentioned above in G′. The paths are

h1h2 . . . hn, hk−1hk−2 . . . hn+1, uv1u
v
2 . . . u

v
mavw

v
mw

v
m−1 . . . w

v
1 ,

uv1u
v
2 . . . u

v
m+1w

v
m+1w

v
m+2 . . . w

v
n−1, uv1y

v
1y
v
2 . . . y

v
n−1, h1h2 . . . hn−1y

v
n,

uv1u
v
2 . . . u

v
n−1v, and uv1u

v
2 . . . u

v
n−1xvv′ .

Suppose that {hn, hn+1} �⊂ c(W ). Then no edge with both endpoints inW covers
the edge hnhn+1 of H under c, and hence not both a and b belong to W . Thus ab
must be an edge among vwvn−1, wv1y

v
n, wv1y

v
n−1, yvn−1y

v
n, with v ∈ V (G−H); vv′, vxvv′ ,

v′xvv′ , and wv
′
n−1xvv′ , with vv′ ∈ E(G−H); in order to meet the requirements of the

edge ab, both vertices in each of these edges are assumed to achieve distance n−1 from
U in G′. Further, if vhn or vhn+1 is an edge of G, for some vertex v ∈ V (G − H),
then we need to include such an edge also for ab. We shall consider each of these
possible edges for ab and show that they do not cover the edge hnhn+1 under c (i.e.,
c({a, b}) �= {hn, hn+1}), implying that {hn, hn+1} ⊂ c(W ).

For the edges vwvn−1, wv1y
v
n−1, with v ∈ V (G−H); and vxvv′ , with vv′ ∈ E(G−H),

we argue exactly as in the case k = 4m+ 2 except that now c(uv1) = hk−1, h0, or h1.

Consider now an edge yvnw
v
1 , with v ∈ V (G − H). Suppose that c({yvn, wv1}) =

{hn, hn+1}. Without loss of generality, let c(yvn) = hn and c(wv1) = hn+1 (due
to symmetry). We have c(h1) = h1, h0, or hk−1. Since dG′(h1, y

v
n) = n − 1 <

dH({h0, hk−1}, c(yvn) = hn) = n, this implies that c(h1) �∈ {h0, hk−1}, and hence
c(h1) = h1. We have the path h1h2 . . . hn−1y

v
n of length n− 1 in G′. Since c(h1) = h1

and c(yvn) = hn, this implies that c(hi) = hi for all i = 1, 2, . . . , n − 1. Since c(hn)
must be adjacent to c(hn−1) = hn−1 and c(wv1) = hn+1, this implies that c(hn) = hn.
Thus we have c(wv1) = hn+1 and c(hn) = hn, implying that {hn, hn+1} ⊂ c(W ), which
is a contradiction.

Now consider an edge yvn−1y
v
n, with v ∈ V (G−H). Suppose that c({yvn−1, y

v
n}) =

{hn, hn+1}. Without loss of generality, let c(yvn−1) = hn+1 and c(yvn) = hn (due
to symmetry). We have c(uv1) = h1, h0, or hk−1. Since dG′(u

v
1, y

v
n−1) = n − 1 <

dH({h0, h1}, c(yvn−1) = hn+1) = n, this implies that c(uv1) �∈ {h0, h1}, and
hence c(uv1) = hk−1. Since c(wv1) must be adjacent to c(yvn) = hn, this implies that
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c(wv1) ∈ {hn−1, hn, hn+1} (we are not making use of the fact that c(wv1)
is adjacent to yvn−1, for k > 5, to cover up the case for k = 5 also). Since
dG′(u

v
1, w

v
1) = n − 1 < dH(c(uv1) = hk−1, {hn, hn−1}) = n, this implies that c(wv1) �∈

{hn, hn−1}, and hence c(wv1) = hn+1. Thus we have c(yvn) = hn and c(wv1) = hn+1,
which we have already proved is impossible.

Now consider an edge vv′ ∈ E(G − H). Suppose that c({v, v′}) = {hn, hn+1}.
Without loss of generality, let c(v) = hn and c(v′) = hn+1 (due to symmetry). We have
c(uv1), c(uv

′
1 ) ∈ {h1, h0, hk−1}. Since dG′(u

v
1, v) = n−1 < dH({h0, hk−1}, c(v) = hn) =

n, this implies that c(uv1) �∈ {h0, hk−1}, and hence c(uv1) = h1. Since dG′(u
v′
1 , v

′) =
n−1 < dH({h0, h1}, c(v′) = hn+1) = n, this implies that c(uv

′
1 ) �∈ {h0, h1}, and hence

c(uv
′

1 ) = hk−1. We have the path uv1u
v
2 . . . u

v
n−1v of length n−1 in G′. Since c(uv1) = h1

and c(v) = hn, this implies that c(uvi ) = hi for all i = 1, 2, . . . , n − 1. Thus we have
c(uvn−1) = hn−1. Since c(wvn−1) must be adjacent to c(v) = hn, this implies that
c(wvn−1) ∈ {hn−1, hn, hn+1}. Since dG′(u

v
1, w

v
n−1) = n − 1 < dH(c(uv1) = h1, hn+1) =

n, this implies that c(wvn−1) �= hn+1, and hence c(wvn−1) ∈ {hn−1, hn}. Since c(wv
′
n−1)

must be adjacent to c(v′) = hn+1, this implies that c(wv
′
n−1) ∈ {hn, hn+1, hn+2}. Since

dG′(u
v′
1 , w

v′
n−1) = n− 1 < dH(c(uv

′
1 ) = hk−1, hn) = n, this implies that c(wv

′
n−1) �= hn,

and hence c(wv
′
n−1) ∈ {hn+1, hn+2}.

We now prove that c(wv
′
n−1) �= hn+1, which would leave us with the

only choice that c(wv
′
n−1) = hn+2. Suppose that c(wv

′
n−1) = hn+1. We have the

path uv
′

1 u
v′
2 . . . u

v′
m+1w

v′
m+1w

v′
m+2 . . . w

v′
n−1 of length n − 1 in G′. Since c(uv

′
1 ) = hk−1

and c(wv
′
n−1) = hn+1, this implies that c(uv

′
i ) = hk−i for all i = 1, 2, . . . ,m + 1, and

c(wv
′
i ) = hk−i−1 for all i = m + 1,m + 2, . . . , n − 1. Thus we have c(uv

′
m) = hk−m

and c(wv
′
m+1) = hk−m−2. Since wv

′
m is adjacent to wv

′
m+1 and at distance two from uv

′
m

in G′, this implies that c(wv
′
m) = hk−m−2 or hk−m−1. Since wv

′
1 is at distance m − 1

from wv
′
m in G′, it follows that c(wv

′
1 ) = hs, n+ 1 ≤ s ≤ k− 2. We also have the path

uv1u
v
2 . . . u

v
m+1w

v
m+1w

v
m+2 . . . w

v
n−1 of length n − 1 in G′. As shown above, we have

c(uvi ) = hi, for all i = 1, 2, . . . ,m + 1, and c(wvn−1) = hn or hn−1. This implies that
c(wvi ) = hi+1 or hi for all i = m + 1,m + 2, . . . , n − 1. Thus we have c(uvm) = hm
and c(wvm+1) = hm+1 or hm+2. Since wvm is adjacent to wvm+1 and at distance two
from uvm in G′, this implies that c(wvm) = hm, hm+1, or hm+2. Since wv1 is at distance
m − 1 from wvm in G′, it follows that c(wv1) = ht, 1 ≤ t ≤ n. We have that c(wv1)
and c(wv

′
1 ) must be adjacent in H. The only possible pair of values for t and s are

n and n + 1, respectively, for c(wv1) to be adjacent to c(wv
′

1 ). Thus c(wv1) = hn and
c(wv

′
1 ) = hn+1, which implies that hn, hn+1 ∈ c(W ) and we have a contradiction.

Thus c(wv
′
n−1) �= hn+1, and hence c(wv

′
n−1) = hn+2.

Now, c(xvv′) must be adjacent to c(uvn−1) = hn−1, c(v) = hn, c(v′) = hn+1, and

c(wv
′
n−1) = hn+2, which is impossible.

For the edges v′xvv′ , wv
′
n−1xvv′ , with vv′ ∈ E(G −H); and a possible edge vhn,

with v ∈ V (G−H), the arguments are exactly as in the case k = 4m+ 2.
Finally, consider a possible edge vhn+1, with v ∈ V (G − H). Suppose that

c({v, hn+1}) = {hn, hn+1}. Without loss of generality, let c(v) = hn and c(hn+1) =
hn+1 (due to symmetry). Exactly, as in the case vv′ ∈ E(G−H) above, we establish
that c(wv1) = ht, 1 ≤ t ≤ n. Since wv1 is at distance two from hn+1 in G′, it follows that
c(wv1) = hn or hn−1. Clearly, c(wv1) �= hn, as otherwise we will have hn, hn+1 ∈ c(W ).
Thus c(wv1) = hn−1. Since hn is adjacent to wv1 and hn+1, this implies that c(hn) = hn,
and hence hn, hn+1 ∈ c(W ), which is a contradiction.

This completes the proof that {hn, hn+1} ⊂ c(W ). Thus c(W ) = {hn−1, hn, hn+1}
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or c(W ) = {hn, hn+1, hn+2}. Without loss of generality, suppose that c(W ) =
{hn−1, hn, hn+1} (due to symmetry). This implies that c(hn) = hn, as hn is ad-
jacent to every vertex in W . We have c(U) = {h1, h0, hk−1} and h0 is adjacent to
every vertex in U . Hence c(h0) = h0. We have the path h0h1 . . . hn of length n in G′.
Since c(h0) = h0 and c(hn) = hn, this implies that c(hi) = hi for all i = 0, 1, . . . , n.

We now prove that c(hk−1) = hk−1. Suppose to the contrary that c(hk−1) �= hk−1.
Thus we have c(hk−1) = h0 or h1, c(h0) = h0, and c(h1) = h1. Since c(U) =
{h1, h0, hk−1}, it must be that c(uv1) = hk−1 for some vertex v of G − H. We have
c(wv1) ∈ {hn−1, hn, hn+1}, as c(W ) = {hn−1, hn, hn+1}. Since dG′(u

v
1, w

v
1) = n − 1 <

dH(c(uv1) = hk−1, {hn, hn−1}) = n, this implies that c(wv1) �∈ {hn, hn−1}, and hence
c(wv1) = hn+1. Now, c(yvn) must be adjacent to c(hn−1) = hn−1 and c(wv1) = hn+1.
Hence c(yvn) = hn. Since c(yv1) must be adjacent to c(uv1) = hk−1 and c(hk−1) =
h0 or h1, this implies that c(yv1) ∈ {h0, hk−1}. However, dG′(y

v
1 , y

v
n) = n − 1 <

dH({h0, hk−1}, c(yvn) = hn) = n, and hence it is impossible that c(yv1) ∈ {h0, hk−1}.
Hence it must be that c(hk−1) = hk−1.

We have the path hk−1hk−2 . . . hn of length n in G′. Since c(hk−1) = hk−1 and
c(hn) = hn, this implies that c(hi) = hi for all i = n, n+ 1, . . . , k − 1. Thus we have
c(hi) = hi for all i = 0, 1, 2, . . . , k − 1. Hence c : G′ → H is a retraction, and the
lemma is proved.

Proof of Theorem 3.1 in the case k = 4m + 1. The construction of G′ is
as follows. For each vertex v in G −H, we add to G three vertex disjoint paths Uv,
Wv, and Yv, where Uv and Wv each contains n − 1 new vertices, and Yv contains n
new vertices. Let Uv = uv1u

v
2 . . . u

v
n−1, Wv = wv1w

v
2 . . . w

v
n−1, and Yv = yv1y

v
2 . . . y

v
n,

with v ∈ V (G −H). We add the edges h0u
v
1, vuvn−1, hnw

v
1 , vwvn−1, uvmw

v
m, hk−1y

v
1 ,

hn−1y
v
n, uv1y

v
1 , and wv1y

v
n, with v ∈ V (G − H). Further, if k > 5 then we also add

the edge wv1y
v
n−1, with v ∈ V (G − H). If k = 5 then for each v ∈ V (G − H) we

add a new vertex zv adjacent to yvn−1, hn, and uv1 (note the similarity between the
adjacencies of zv and wv1). Thus there is a slight difference in the construction of G′

for k = 4m+ 1 > 5 and k = 4m+ 1 = 5. See Figures 3.6 and 3.7.

v

h

h h

h0

1

k-1h

h

uv
n-1 uv

m uv
1 w v

1 w v
m w v

m+1 w v
n-1

n-1

n

n+1

yn-1
v

yv
1

yv
n

uv
m+1

Fig. 3.6. Construction of G′ for a vertex v in G−H, with k = 4m+ 1 > 5.
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u

w v
zv

yv
h

h

h

hh

0

21

3

4

v
1

1

1

2
yv

v

Fig. 3.7. Construction of G′ for a vertex v in G−H, with k = 4m+ 1 = 5.

The addition of a new vertex xvv′ and the edges associated with it are same as
for the case k = 4m+2, with vv′ ∈ E(G−H), v �= v′. See Figure 3.3. This completes
the construction of G′.

Note the similarity between the construction of G′ for k = 4m+1 and k = 4m+3.
The two lemmas that we gave for the case when k = 4m + 3 hold similarly for the
case when k = 4m+ 1 with some variations in their proofs as noted below.

Lemma 3.1.7. G retracts to H if and only if G′ retracts to H.
Proof. If G′ retracts to H then clearly G retracts to H, as G is a subgraph of G′.

If r : G → H is a retraction then we define a retraction r′ : G′ → H exactly as we
defined in the case k = 4m + 3 in Lemma 3.1.5 except that now we do not need to
define r′(av), with v ∈ V (G−H). For k = 5 however, we now need to define r′(zv),
with v ∈ V (G−H): in the case 0 ≤ j ≤ n, we define r′(zv) = hn−1 = h1; and in the
case n + 1 ≤ j ≤ k − 1, we define r′(zv) = hn+1 = h3. As for the case k = 4m + 2,
it can be verified that for every edge ab of G′, r′(a)r′(b) is indeed an edge of H.
Recall that the edges of G′ are (note the difference in the set of edges as compared
to the case k = 4m) ab, uvi u

v
i+1, wvi w

v
i+1, yvj y

v
j+1, uv1h0, wv1hn, vuvn−1, vwvn−1, uvmw

v
m,

yv1hk−1, yvnhn−1, uv1y
v
1 , wv1y

v
n, gxgg′ , g

′xgg′ , xgg′u
g
n−1, and xgg′w

g′
n−1, with ab ∈ E(G),

v ∈ V (G − H), gg′ ∈ E(G − H), i = 1, 2, . . . , n − 2, j = 1, 2, . . . , n − 1. Further, if
k > 5 then G′ also has the edge wv1y

v
n−1, with v ∈ V (G −H). If k = 5 then G′ also

has the edges zvy
v
n−1, zvhn, and zvu

v
1, with v ∈ V (G−H).

Lemma 3.1.8. G′ retracts to H if and only if G′ compacts to H.
Proof. If G′ retracts to H then by definition G′ compacts to H. Now suppose that

c : G′ → H is a compaction. We shall prove thatG′ retracts toH. For k > 5, we define
the sets U and W as we did for the case k = 4m+ 3 in Lemma 3.1.6, i.e., we let U =
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{uv1|v ∈ V (G−H)}∪{h1, h0, hk−1} and W = {wv1 |v ∈ V (G−H)}∪{hn−1, hn, hn+1}.
For k = 5, the set U is same as defined here but the set W now also contains zv for
all v ∈ V (G−H), i.e., W = {wv1 , zv|v ∈ V (G−H)} ∪ {hn−1, hn, hn+1}.

We note that dG′(U, a) < n and dG′(W,a) < n for all a ∈ V (G′). We point out
here that an upper bound on dG′(W, y), for the vertices y of Yv, with v ∈ V (G−H),
is obtained differently in the cases k > 5 and k = 5 due to the following paths in G′:
for k > 5: wv1y

v
n−1y

v
n−2 . . . y

v
1 , and wv1y

v
n;

for k = 5: zvy
v
n−1y

v
n−2 . . . y

v
1 = zvy

v
1 , and wv1y

v
n = wv1y

v
2 .

Thus, exactly as for the case k = 4m+ 3, we establish that both c(U) and c(W )
induce paths containing three vertices in H. Without loss of generality, suppose that
c(U) = {h1, h0, hk−1} (due to symmetry). We first prove that {hn, hn+1} ⊂ c(W ),
i.e., c(W ) = {hn−1, hn, hn+1} or c(W ) = {hn, hn+1, hn+2}. Let some edge ab of G′

cover the edge hnhn+1 of H under c. As for the case k = 4m+ 3, we have that both a
and b are at distance n− 1 from U in G′. The only vertices that could possibly be at
distance n− 1 from U in G′ are hn, hn+1, wv1 , wvn−1, yvn−1, yvn, v, with v ∈ V (G−H);
xvv′ , with vv′ ∈ E(G − H); and for k = 5, we also have zv, with v ∈ V (G − H).
Upper bounds on distance to these vertices from U in G′ may be obtained due to the
following paths in G′:
h1h2 . . . hn, hk−1hk−2 . . . hn+1, uv1u

v
2 . . . u

v
mw

v
mw

v
m−1 . . . w

v
1 ,

uv1u
v
2 . . . u

v
mw

v
mw

v
m+1 . . . w

v
n−1, uv1y

v
1y
v
2 . . . y

v
n−1, h1h2 . . . hn−1y

v
n,

uv1u
v
2 . . . u

v
n−1v, and uv1u

v
2 . . . u

v
n−1xvv′ .

Notice that the paths to wv1 and wvn−1 from uv1, mentioned above, are different from
the case k = 4m+ 3.

Suppose that {hn, hn+1} �⊂ c(W ). Then, just as for the case k = 4m + 3, we
conclude that ab must be an edge among vwvn−1, wv1y

v
n, yvn−1y

v
n, with v ∈ V (G−H);

vv′, vxvv′ , v′xvv′ , wv
′
n−1xvv′ , with vv′ ∈ E(G − H); wv1y

v
n−1, when k > 5, with

v ∈ V (G − H); and zvy
v
n−1, when k = 5, with v ∈ V (G − H); in order to meet

the requirements of the edge ab, both vertices in each of these edges are assumed to
achieve distance n−1 from U in G′. Further, if vhn or vhn+1 is an edge of G, for some
vertex v ∈ V (G−H), then we need to include such an edge also for ab. Note that the
set of these possible edges for ab is the same as for the case k = 4m+ 3 except for a
difference in the case k = 5. For all these possible edges of ab except vv′ ∈ E(G−H)
and zvy

v
n−1, when k = 5, with v ∈ V (G−H), the proof that these edges do not cover

the edge hnhn+1 under c (i.e., c({a, b}) �= {hn, hn+1}) is exactly the same as for the
case k = 4m+ 3.

For an edge zvy
v
n−1, when k = 5, we argue similarly as for an edge vwvn−1, with

v ∈ V (G−H), to show that it does not cover the edge hnhn+1 under c.

For an edge vv′, we now make use of the paths uv1u
v
2 . . . u

v
mw

v
mw

v
m+1 . . . w

v
n−1 and

uv
′

1 u
v′
2 . . . u

v′
mw

v′
mw

v′
m+1 . . . w

v′
n−1 instead of the paths uv1u

v
2 . . . u

v
m+1w

v
m+1w

v
m+2 . . . w

v
n−1

and uv
′

1 u
v′
2 . . . u

v′
m+1w

v′
m+1w

v′
m+2 . . . w

v′
n−1, respectively, with vv′ ∈ E(G−H). We con-

sider this case and show its proof.

Let vv′ be an edge of G−H. Suppose that c({v, v′}) = {hn, hn+1}. Without loss
of generality, let c(v) = hn and c(v′) = hn+1 (due to symmetry). Exactly, as in the
case k = 4m + 3, we prove that c(uvi ) = hi for all i = 1, 2, . . . , n − 1, c(uv

′
1 ) = hk−1,

c(wvn−1) ∈ {hn−1, hn}, and c(wv
′
n−1) ∈ {hn+1, hn+2}.

Now we prove that c(wv
′
n−1) �= hn+1, which would leave us with the

only choice that c(wv
′
n−1) = hn+2. Suppose that c(wv

′
n−1) = hn+1. We have the path

uv
′

1 u
v′
2 . . . u

v′
mw

v′
mw

v′
m+1 . . . w

v′
n−1 of length n−1 in G′. Since c(uv

′
1 ) = hk−1 and c(wv

′
n−1)



COMPACTION TO REFLEXIVE CYCLES 279

= hn+1, this implies that c(uv
′
i ) = hk−i for all i = 1, 2, . . . ,m, and c(wv

′
i ) = hk−i−1

for all i = m,m + 1, . . . , n − 1. Thus we have c(wv
′
m) = hk−m−1. Since wv

′
1 is at

distance m− 1 from wv
′
m in G′, it follows that c(wv

′
1 ) = hs, n+ 1 ≤ s ≤ k− 2. We also

have the path uv1u
v
2 . . . u

v
mw

v
mw

v
m+1 . . . w

v
n−1 of length n − 1 in G′. Since c(uvi ) = hi

for all i = 1, 2, . . . ,m+ 1, and c(wvn−1) = hn or hn−1, this implies that c(wvi ) = hi+1

or hi, for all i = m,m+ 1, . . . , n− 1. Thus we have c(wvm) = hm+1 or hm. Since wv1 is
at distance m− 1 from wvm in G′, it follows that c(wv1) = ht, 1 ≤ t ≤ n. We have that
c(wv1) and c(wv

′
1 ) must be adjacent in H. The only possible pair of values for t and

s are n and n+ 1, respectively, for c(wv1) to be adjacent to c(wv
′

1 ). Thus c(wv1) = hn
and c(wv

′
1 ) = hn+1, which implies that hn, hn+1 ∈ c(W ) and we have a contradiction.

Thus c(wv
′
n−1) �= hn+1, and hence c(wv

′
n−1) = hn+2.

Now, c(xvv′) must be adjacent to c(uvn−1) = hn−1, c(v) = hn, c(v′) = hn+1, and

c(wv
′
n−1) = hn+2, which is impossible. Hence c({v, v′}) �= {hn, hn+1}.
Thus we have that {hn, hn+1} ⊂ c(W ). Hence c(W ) = {hn−1, hn, hn+1} or

c(W ) = {hn, hn+1, hn+2}. Without loss of generality, suppose that c(W ) = {hn−1, hn,
hn+1} (due to symmetry). Exactly, as for the case k = 4m+3, we prove that c(hk−1) =
hk−1 and establish that c(hi) = hi for all i = 0, 1, 2, . . . , k − 1, i.e., c : G′ → H is a
retraction.

We have thus proved Theorem 3.1.

4. Compaction to an irreflexive k-cycle. In this section, we shall assume
that Ck denotes an irreflexive k-cycle.

It follows from [Hell and Nesetril, 1990] that RET-Ck and COMP-Ck are both
NP-complete for all odd k ≥ 3. It is easy to see that RET-C4, and hence COMP-C4,
are both polynomial time solvable. In fact, whenH is a chordal bipartite graph (which
includes C4), the problem RET -H is polynomial time solvable [Bandelt, Dahlmann,
and Schutte, 1987], and hence COMP -H is also polynomial time solvable. Feder
showed that RET-Ck is NP-complete for all even k ≥ 6 (personal communication
through Hell, cf. [Feder, Hell, and Huang, 1999]). This was also proved independently
by G. MacGillivray in 1988 (personal communication). The transformation used by
both is from the k/2-colorability problem.

Determining the complexity of COMP-Ck, for any particular even k ≥ 6, has been
of interest since a long time to various people including Hell and Nesetril (personal
communications). We show that COMP-Ck is NP-complete for all even k ≥ 6. To
show this, we give a transformation from RET-Ck to COMP-Ck, using the technique
described in section 1 where we restrict the input graph to be bipartite for all even
k ≥ 6. For proving NP-completeness of COMP-Ck, for all even k ≥ 6, we provide two
categories of construction depending on whether k = 4m+ 2 for some integer m ≥ 1,
or k = 4m for some integer m ≥ 2.
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Abstract. Studies on the relationship between label consistency, computability, and complexity
assume the existence of local orientation; this assumption is in fact at the basis of the point-to-point
model and is realistic for systems where a communication link can connect only two entities. However,
in systems which use more advanced communication and interconnection technology, such as buses,
optical networks, and wireless communication media, and more importantly, in heterogeneous systems
(such as the Internet) which include any combination of the above, local orientation cannot be
assumed. This implies that the entire established body of results on the relationship between label
consistency (e.g., sense of direction) and computability and complexity does not hold for systems
with advanced communication technology.

In this paper we consider a new type of consistency which we shall call backward consistency and
which, unlike sense of direction, can exist even without local orientation. Thus, unlike all previous
forms of consistency, it can be found (or designed) in advanced distributed systems.

We study backward consistency both in terms of its relationship with the traditional properties of
local orientation and (weak) sense of direction, and with respect to symmetries of the edge labelings
and of the naming functions. We show that backward consistency is computationally equivalent to
sense of direction; in other words, it is possible to take advantage of the computational power of
sense of direction even in the absence of local orientation.

Key words. distributed computing, sense of direction, global consistency
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PII. S0097539700377293

1. Introduction. A distributed system is a collection of computational entities
communicating by exchanging messages. Depending on how the communication is
achieved, different models exist. In the point-to-point model, the communication
topology of the system is viewed as an edge-labeled undirected graph (G = (V,E), λ)
where nodes correspond to the system entities, edges represent pairs of neighboring
entities (i.e., entities which can communicate directly), each node x ∈ V has a local
label (usually called port number) λx(〈x, y〉) associated to each of its incident edges
〈x, y〉, and λ = {λx : x ∈ V } is the set of labeling functions.

In studies on computing in distributed systems, recurring challenging questions
arise concerning the relationships between local views and global consistency, and con-
cerning their impact on distributed computability and communication complexity. In
these studies, locality is at the entity level: the local view of an entity x consists of just
the labeling λx of its communication ports (or communication links, incident edges)
and, sometimes, of the naming βx used to refer to the other entities. A major goal
of this investigation is to derive under what properties of λ and/or β it is possible to
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infer global properties about the entire system. A practical aim is to determine if and
how these properties can be usefully employed, e.g., to yield more efficient distributed
computations. Examples of these studies include compact routing, which focuses on
determining under what conditions the local port numbering provides global routing
information for given global naming schemes (see [25] for a recent survey), and sense
of direction, which analyzes the impact on communication complexity of local port
labelings and local naming schemes (see [21] for a recent survey).

In particular, there is a large body of evidence on the positive impact on com-
plexity of the set of global consistency constraints satisfied by labelings with sense of
direction (e.g., see [18, 19, 22, 30, 32, 33, 41]). Properties of sense of direction have
been studied, for example, in [5, 8, 10, 11, 17, 20, 23, 24, 26, 42]. Several levels of
sense of direction have been considered and investigated, with researchers trying to
identify the “smallest” amount of consistency really needed (e.g., to efficiently solve
a specific problem).

All studies in the relevant literature, with very few exceptions, make the basic
(but often unstated) fundamental assumption that the entities are able to distinguish
among their incident links, i.e., the labelings λx are injective functions. Even if the
links haven’t yet been assigned a label, it is assumed that an entity is capable of such
an assignment (e.g., [15, 27, 31]). This assumption, usually called local orientation,
is in fact at the basis of the point-to-point model and is realistic for systems where a
communication link can connect only two entities.

If we are to model systems which use more advanced communication and inter-
connection technology, such as buses, optical networks, and wireless communication
media, and more importantly, in heterogeneous systems (such as the Internet) which
include any combination of the above, local orientation cannot be assumed. This is
because any direct connection between k entities will correspond, at each of those
entities, to k − 1 edges with the same label; hence, if k > 2 (e.g., a bus), λ is not
injective. That is, unless the system is point-to-point (i.e., each connection is between
only two entities) there are nodes that cannot distinguish between some of their inci-
dent edges. This implies that the entire established body of results on the relationship
between consistency, computability, and complexity does not hold and, thus, cannot
be applied outside the point-to-point model. In other words, very little is known on
this subject for systems with advanced communication technology. (A vast body of
knowledge does indeed exist on these systems, but not on these topics.)

There are a few exceptions: the early work on computing in complete graphs
with “ambiguous” labelings [26, 40], the more recent studies on computability in
anonymous “wireless” networks [14, 37], and the results on leader election and function
evaluation in anonymous networks with different types of “port awareness” [9, 45].
Note that “ambiguous,” “wireless,” and “port aware” all denote the (possible) absence
of local orientation.

In this paper we consider a new type of consistency which we shall call back-
ward consistency. Backward consistency is strongly related to the classical “forward”
consistency implied by sense of direction; however, unlike sense of direction, it can
exist even without local orientation. Thus, unlike all previous forms of consistency,
backward consistency can be found (or designed) in advanced distributed systems.

In the following, we study backward consistency both in terms of its relationship
with the traditional properties of local orientation and (weak) sense of direction,
and with respect to symmetries of the edge labelings and of the naming functions. In
particular, we focus on the conditions under which a labeling can have simultaneously
forward and backward consistency.
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We then consider the power of backward consistency and prove that backward
consistency is computationally equivalent to sense of direction. In other words, it
is possible to take advantage of the computational power of sense of direction even
in the absence of local orientation. This counterintuitive result somehow extends
and generalizes the results of [1, 14] on the insensitivity of ring networks to local
orientation. In addition to the theoretical result, we also provide a simple effective
procedure to efficiently map protocols exploiting sense of direction into ones using
“backward sense of direction.”

In the following we consider the undirected case (i.e., bidirectional communication
capabilities); this is done only for simplicity of exposition, as all results extend to and
hold in the directed case as well.

2. Basic definitions and properties.

2.1. Labelings and sense of direction. In this section we first recall the basic
definitions of consistency, symmetry, and sense of direction in labeled graphs; most of
the terminology follows [20].

Let G = (V,E) be a simple connected undirected graph, and let E(x) denote the
set of edges incident to node x ∈ V . Given G = (V,E) and a set Σ of labels, a local
labeling function of x ∈ V is any function λx : E(x) → Σ which associates a label
l ∈ Σ to each edge e ∈ E(x). A set λ = {λx : x ∈ V } of local labeling functions will be
called a labeling of G, and by (G,λ) we shall denote the corresponding (edge-)labeled
graph. If all functions in λ are injective, we say that λ is a local orientation. Note that
local orientation is assumed in the point-to-point model and in almost all literature
on informative labelings, including those on unlabeled networks (e.g., [15, 27, 31]).
A labeling λ is symmetric if there exists a bijection ψ : Σ → Σ such that for each
〈x, y〉 ∈ E, λy(〈y, x〉) = ψ(λx(〈x, y〉)); ψ will be called the edge-symmetry function.

A walk π in G is a sequence of edges in which the endpoint of one edge is the
starting point of the next edge. Let P [x] denote the set of all walks starting from
x ∈ V , and let P [x, y] denote the set of walks starting from x ∈ V and ending in
y ∈ V . Let Λx : P [x] → Σ+ and Λ = {Λx : x ∈ V } denote the extension of λx
and λ, respectively, from edges to walks; let Λ[x] = {Λx(π) : π ∈ P [x]}, and let
Λ[x, y] = {Λx(π) : π ∈ P [x, y]}.

Given an edge-symmetry function ψ, we shall denote by Ψ : Σ+ → Σ+ its exten-
sion to strings; i.e., for α = a1 · a2 · . . . · ap ∈ Σ+, Ψ(α) = ψ(ap) · . . . · ψ(a1), where ·
denotes the concatenation operator.

Informally, a labeled graph (G,λ) has sense of direction when it is possible to
understand, from the labels associated to the edges, whether different walks from any
given node x end in the same node or in different ones.

A coding function of (G,λ) is any function c with domain Σ+. It is said to be
consistent if the following holds ∀x, y, z ∈ V , ∀π1 ∈ P [x, y], π2 ∈ P [x, z]: c(Λx(π1)) =
c(Λx(π2)) iff y = z. In other words, the labelings of the walks originating from the
same node are mapped to the same value iff they end in the same node. Thus, we can
define a consistent coding if the following holds ∀x, y, z ∈ V , ∀α ∈ Λ[x, y], β ∈ Λ[x, z]:
c(α) = c(β) iff y = z. We shall denote by N (c) the codomain of c.

Definition 1 (weak sense of direction). A labeled graph (G,λ) has weak sense
of direction c iff c is a consistent coding function of (G,λ). Alternatively, we shall
say that c is a weak sense of direction in (G,λ).

We see immediately that consistency requires local orientation, as follows.
Lemma 1. Let (G,λ) have weak sense of direction c. Then λ has local orienta-

tion.
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Proof. By contradiction, let there exist two distinct neighbors y, z of a node x ∈ V
such that λx(〈x, y〉) = λx(〈x, z〉); thus, c(λx(〈x, y〉)) = c(λx(〈x, z〉)). On the other
hand, by definition of the consistent coding function, c(λx(〈x, y〉)) �= c(λx(〈x, z〉)),
which leads to the contradiction.

Given a coding function c, a decoding function d for c is any function d :
Σ × N (c) → N (c) such that ∀〈x, y〉 ∈ E(x), π ∈ P [y, z]: d(λx(〈x, y〉), c(Λy(π))) =
c(λx(〈x, y〉) ·Λy(π)), where · is the concatenation operator. Or alternatively, ∀a ·w ∈
Λ[x, z], a ∈ Σ: d(a, c(w)) = c(a · w).

Definition 2 (sense of direction). A labeled graph (G,λ) has sense of direction
(c,d) iff c is a weak sense of direction and d is a decoding function for c. Alterna-
tively, we shall say that (c,d) is a sense of direction in (G,λ).

Let L, W, and D denote the set of labeled graphs (G,λ) with local orientation,
weak sense of direction, and sense of direction, respectively. The following relationship
holds.

Lemma 2 (see [11, 20]). D ⊂ W ⊂ L.
The proof follows from the fact that local orientation is necessary but (obviously)

not sufficient for consistency [20], and the fact that there exist labeled graphs with
weak sense of direction but without sense of direction [11].

2.2. Backward consistency and sense of direction. In this section we in-
troduce the notion of backward consistency.

Definition 3. A coding function c of (G,λ) is backward consistent if the fol-
lowing holds ∀x, y, z ∈ V , ∀π1 ∈ P [x, z], π2 ∈ P [y, z]: c(Λx(π1)) = c(Λy(π2)) ⇔
x = y.

In other words, sequences of labels of walks terminating in the same node are
mapped to the same value iff they start from the same node.

Note that the difference between the consistency just defined and the traditional
one is of “viewpoint.” In the latter, the focus is forward, on the sequence of labels on
walks leaving from a given node; in the former the focus is backward, on the sequences
of labels on walks which terminate at a given node.

Definition 4 (weak backward sense of direction). A system (G,λ) has weak
backward sense of direction c iff c is a backward consistent coding function. Alterna-
tively, we shall say that c is a weak backward sense of direction in (G,λ).

Given a coding function c, a backward decoding function b for c is any function
b : N (c) × Σ → N (c) such that ∀π ∈ P [x, y], d(a,c(w))= c(aw) 〈y, z〉 ∈ E(y),
b(c(Λx(π)), λy(〈y, z〉)) = c(Λx(π) · λy(〈y, z〉)), where · is the concatenation operator.
(Recall that N (c) denotes the codomain of c.) We can now define backward sense of
direction.

Definition 5 (backward sense of direction). A system (G,λ) has backward sense
of direction (c,b) iff c is a weak backward sense of direction and b is a backward
decoding function for c. Alternatively, we shall say that (c,b) is a backward sense of
direction in (G,λ).

We shall denote by W− and D− the set of labeled graphs (G,λ) with backward
weak sense of direction and backward sense of direction, respectively. In the following,
when no ambiguity arises, we shall omit the reference to (G,λ).

3. Backward consistency.

3.1. Absence of local orientation. The first basic difference between forward
and backward consistency is striking: Local orientation is not implied by the definition
of backward sense of direction.
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Theorem 1 (D− �⊂ L, L �⊂ D−). Local orientation is neither necessary nor
sufficient for backward sense of direction.

Proof. Consider the labeled graph (G,λ) of Figure 1. It is easy to verify that there
exist both consistent backward coding and decoding functions in (G,λ). However,
there is no local orientation. The fact that it is not sufficient is obvious (see, for
example, the graph of Figure 4, which has local orientation but not backward sense
of direction).

Thus, in a system with backward sense of direction, nodes might not be able to
distinguish among some of their incident edges. As the example in Figure 1 shows,
in a system with backward sense of direction, this “blindness” can even be complete
(i.e., it extends to all incident edges of a node) and, in the extreme case, total (i.e., it
occurs at every node).

This phenomenon is not restricted to a few special graphs. On the contrary,
every graph G can be labeled so as to have complete and total blindness and still
have backward sense of direction.

Theorem 2. For any graph G there exists a labeling λ such that ∀x ∈ V ,
∀〈x, y〉, 〈x, z〉 ∈ E(x), λx(〈x, y〉) = λx(〈x, z〉), but (G,λ) has backward sense of direc-
tion.

Proof. Consider the labeling λ defined as follows: ∀〈x, y〉, 〈w, z〉 ∈ E, λx(〈x, y〉) =
λw(〈w, z〉) iff x = w (see Figure 2). With this labeling, all the links starting from
the same node x are labeled with the same label (hence, there is total and complete
blindness). It is not difficult to show that the coding function c defined as c(a ·α) = a
∀ a ∈ Σ, α ∈ Σ+ is backward consistent and that the function b(c(α), a) = c(α) is a
backward decoding for c; hence, (G,λ) has backward sense of direction.

Note that this is not the labeling used in Figure 1.

3.2. Backward local orientation. Systems with backward consistency may be
without local orientation; however, they do have a property which is the “backward”
analogue of local orientation. A labeling λ is a backward local orientation if the
following holds ∀z, 〈x, z〉, 〈y, z〉 ∈ E(z): λx(〈x, z〉) �= λy(〈y, z〉). Let L− denote the set
of labeled graphs (G,λ) with backward local orientation.

First observe that backward local orientation is (obviously) not sufficient for back-
ward consistency.

Theorem 3 ((L− −W−) �= ∅, (L− −W−)−L �= ∅). Backward local orientation
does not suffice for (either) backward consistency (or local orientation).

Proof. Consider the labeled graph of Figure 3. Such a graph clearly has backward
local orientation. By contradiction, let us assume that it has backward weak sense of
direction. By definition of backward coding function we would have that, from node



286 P. FLOCCHINI, A. RONCATO, AND N. SANTORO

✉

✉

✉

✉

✉�
�
�
�
�
�❅

❅
❅
❅
❅
❅

�
�
�
�
�
�❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✟✟
✟✟

✟✟
✟✟

✟✟
✟✟

2
2

2
✉

1

31

5
5

6

6

4
4

4

3

Fig. 2. Total blindness.

z

y
x

a

a

a a

b

a

d

c

❅
❅
❅
❅

❅
❅
❅
❅✧

✧
✧
✧
✧
✧
✧✧

c

b

b

b

a

c

b
a

�

�

�

�

�

�

�

�

Fig. 3. (L− −W−)− L �= ∅.

x, c(b · a) = c(c · b). However the labels b · a correspond to a path in P [y, x] and c · b
to a path in P [z, x]; thus, by definition of backward consistency, we must have the
following: c(b · a) �= c(c · b). Since this graph does not have local orientation, this
actually proves that (L− −W−)− L �= ∅.

However, in a system with weak backward sense of direction, there is always
backward local orientation.

Theorem 4 (W− ⊂ L−). If (G,λ) has weak backward sense of direction, then λ
has backward local orientation.

Proof. Let (G,λ) be a labeled graph without backward local orientation and
with backward consistency. Then there exist two edges 〈x, z〉 and 〈y, z〉 such that
λx(〈x, z〉) = λy(〈y, z〉). But this contradicts the existence of a backward coding
function c, as by definition c(λx(〈x, z〉)) = c(λy(〈y, z〉)).

Summarizing, (backward) local orientation is necessary but not sufficient for
(backward) consistency. Thus, W− ⊂ L−.

Two questions naturally arise: Is the simultaneous presence of both local orien-
tation and backward local orientation sufficient for consistency? Is it sufficient for
backward consistency? The answer to these questions is negative, as we prove the
stronger result that there exist labeled graphs having both forms of local orientation
but without either form of consistency.

Theorem 5 ((L∩L−)− (W∪W−) �= ∅). The simultaneous presence of local ori-
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entation and backward local orientation does not imply either weak sense of direction
or backward weak sense of direction.

Proof. Consider the labeled graph (G,λ) shown in Figure 4. The labeling clearly
has both local orientation and backward local orientation. By contradiction, assume
(G,λ) has weak sense of direction c. By definition of consistent coding, at node x
it must be c(a · b) = c(c); however, at node y it must be c(a · b) �= c(c), yield-
ing a contradiction. Assume now, again by contradiction, that (G,λ) has backward
weak sense of direction c. By definition of backward consistent coding, at node z it
must be c(a · b) = c(c); however, at node w it must be c(a · b) �= c(c), which is a
contradiction.

3.3. Orthogonality. In this section we will show that the concept of backward
consistency is orthogonal to that of sense of direction; in particular, even the pres-
ence of sense of direction is not sufficient to guarantee the existence of a backward
consistency.

Theorem 6 (D �⊂ L−, L− �⊂ D). Sense of direction is neither necessary nor
sufficient for the existence of backward local orientation.

Proof. Consider any graph with more than two nodes labeled with a neighbor-
ing labeling (e.g., see Figure 5); all such labeled graphs have sense of direction [20]:
the coding function c is c(α · a) = a ∀a ∈ Σ, α ∈ Σ+, and the decoding function is
d(a, c(α)) = c(α). On the other hand, (G,λ) does not have backward local orienta-
tion. In other words, sense of direction is not sufficient for the existence of backward
local orientation. The fact that it is also not necessary follows from Theorem 5.

In other words, sense of direction cannot guarantee backward consistency because
it cannot even guarantee backward local orientation. What if there is backward local
orientation in addition to sense of direction? The answer is still negative, as shown
in the following theorem.

Theorem 7 ((D∩L−) �⊂ W−, (D∩L−) �⊃ W−). Simultaneous presence of sense
of direction and backward local orientation is neither necessary nor sufficient for the
existence of a backward consistent coding function.
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Proof. �⊂. To prove that it is not sufficient, consider the labeled graph (G,λ) of
Figure 6. It is easy to verify that there exist both a consistent coding function and
decoding function in (G,λ). By contradiction, assume that there exists a backward
consistent coding function c in (G,λ). Then, by definition of backward consistency at
node x we have that c(1·1) = c(2·2). However, the sequence of labels 1·1 corresponds
to a path in P [z, y] and the sequence 2 · 2 to a path in P [w, y]; thus, by definition of
backward consistency, c(1 · 1) �= c(2 · 2), yielding the contradiction.

�⊃. Now we will prove that it is not necessary. By Theorem 4, backward con-
sistency implies backward local orientation. However, from Theorem 6, it follows
that backward consistency does not imply local orientation and, thus, does not imply
sense of direction. This means that the simultaneous presence of sense of direction
and backward local orientation is not necessary for backward consistency.

The results of this section indicate that the presence of some additional property
is necessary for one type of consistency to imply the other. We will show in the next
section that edge-symmetry is one such property.

4. Symmetry and backward consistency. The results of the previous section
indicate that the presence of some additional property is necessary for one type of
consistency to imply the other. We will show that edge-symmetry is one such property.

Recall that a labeling λ is symmetric if there exists a bijection ψ : Σ → Σ such that
for each 〈x, y〉 ∈ E, λy(〈y, x〉) = ψ(λx(〈x, y〉)); ψ will be called the edge-symmetry
function, and Ψ : Σ+ → Σ+ is its extension to strings. Let ES denote the set of
labeled graphs (G,λ) with λ symmetric.

Notice that all common labelings (e.g., “dimensional” in hypercubes, “compass”
in meshes and tori, “left-right” in rings, “distance” in chordal rings, etc.) are sym-
metric.

4.1. Edge-symmetry and backward consistency. We will show that, while
generally not true (as shown by Theorem 1), in systems with edge-symmetry, local
orientation is necessary for backward consistency. In fact, we shall show that in
systems with edge-symmetry, L = L−.

Theorem 8 (ES ∩ L = ES ∩ L−). Let (G,λ) be a system with edge-symmetry;
then there is local orientation iff there is backward local orientation.

Proof. Let (G,λ) be a system with edge-symmetry. ⊂. By contradiction, suppose
there is local orientation but no backward local orientation. Then there must exist
two distinct edges 〈x, z〉, 〈y, z〉 such that λx(〈x, z〉) = λy(〈y, z〉). However, by local
orientation, we have that λz(〈z, x〉) �= λz(〈z, y〉), which contradicts the fact that there
is edge-symmetry.
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⊃. By contradiction, suppose now that there is backward local orientation but
no local orientation. Then there must exist two distinct edges 〈x, y〉, 〈x, z〉 such
that λx(〈x, y〉) = λx(〈x, z〉). However, by backward local orientation we must have
λy(〈y, x〉) �= λz(〈z, y〉), contradicting edge-symmetry of the labeling.

Thus, a system with edge-symmetry has either both types of local orientation or
none; still, presence of both types and edge-symmetry are not sufficient for backward
consistency.

Theorem 9 (ES∩L∩L− �⊂ W−). The simultaneous presence of local orientation
and edge-symmetry is not sufficient for the existence of backward consistency.

Proof. Consider the labeled graph of Figure 7. The labeling is a coloring, i.e., the
edge-symmetry function is the identity function; moreover, it is a local orientation.
By contradiction, assume that there exists a backward consistent coding function c.
By definition of backward consistency, at node x we have that c(a · b) = c(c · d) and
at node y, that c(c · d) = c(e · f), which implies c(a · b) = c(e · f). However, the
sequence of labels b · a corresponds to a path in P [w, z], and f · e corresponds to a
path in P [v, z]; thus we have that c(a · b) �= c(e · f), which is a contradiction.

We will now show that edge-symmetry in a system with (weak) sense of direction
suffices for the system to have (weak) backward sense of direction.

Lemma 3 (see [20]). ∀π ∈ P [x, y], Λx(π) = Ψ(Λy(π
R)), where πR ∈ P [y, x] is

the reverse of walk π.

Theorem 10 (ES ∩W ⊂ W−, ES ∩D ⊂ D−). Let (G,λ) be a system with edge-
symmetry. If (G,λ) has weak sense of direction c, then there exists a weak backward
sense of direction cb. Furthermore, if c has a consistent decoding, there exists a
consistent backward decoding of cb.

Proof. Let (G,λ) have edge-symmetry and weak sense of direction c. Let cb be
the coding function defined as follows: ∀π ∈ P [x], cb(α) = c(Ψ(α)), where α = Λx(π).
We will now show that cb is backward consistent.

Let π1 ∈ P [x, z], π2 ∈ P [y, z], α1 = Λx(π1), and α2 = Λy(π2). By Lemma 3,
we have that α1 = Ψ(Λz(π

R
1 )) and α2 = Ψ(Λz(π

R
2 )). By definition of the consistent

coding function, we have that c(Ψ(Λz(π
R
1 ))) = c(Ψ(Λz(π

R
2 ))) iff x = y. By definition

of cb, it follows that cb(Λx(π1)) = cb(Λy(π2)) iff y = z; that is, cb is backward
consistent.

Now let (G,λ) have edge-symmetry and sense of direction (c,d). Let b be
the function defined as follows: ∀π ∈ P [x, y], 〈y, z〉 ∈ E(y), b(cb(α), λy(〈y, z〉)) =
d(ψ(λy(〈y, z〉)), cb(α)), where α = Λx(π). We will now show that b is a backward
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Fig. 9. Proof of Theorem 13.

decoding. By definition of cb we have that d(ψ(λy(〈y, z〉)), cb(α)) = d(ψ(λy(〈y, z〉)),
c(Ψ(α))). By definition of the decoding function we have that d(ψ(λy(〈y, z〉)), c(Ψ(α)))
= c(ψ(λy(〈y, z〉))·Ψ(α)). But, by definition of c, we have that c(ψ(λy(〈y, z〉))·Ψ(α)) =
cb(α ·λy(〈y, z〉)). Thus, it follows that b(cb(α), λy(〈y, z〉)) = cb(α ·λy(〈y, z〉)), proving
that b is a backward decoding of cb.

Conversely, edge-symmetry in a system with (weak) backward sense of direction
suffices for the system to have (weak) sense of direction.

Theorem 11 ((ES ∩ W−) ⊂ W, (ES ∩ D−) ⊂ D). Let (G,λ) be a system with
edge-symmetry. If (G,λ) has weak backward sense of direction cb, then there exists
a weak sense of direction c. Furthermore, if cb has a consistent backward decoding,
there exists a consistent decoding of c.

From Theorems 10 and 11, it follows that systems with edge-symmetry have either
both types of consistency or none. In other words, in systems with edge-symmetry,
W = W− and D = D−.

An immediate question is whether systems with edge-symmetry are the only ones
with such a property.

Theorem 12 (W ∩W− �⊂ ES). Edge-symmetry is not necessary for a system to
have both forward and backward consistency.

Proof. Consider the graph of Figure 8. This graph does not have edge-symmetry;
however, it is easy to verify that there exist both a forward consistent coding function
c, and a backward consistent coding function cb.

4.2. Edge-symmetry and biconsistency. In the previous section we have
seen that all systems with edge-symmetry have either both types of consistency or
neither. For those that do have them, the corresponding coding functions are in
general different.

The question we ask now is under what circumstances a single coding function
suffices, that is, when a coding function is both forward and backward consistent.
We shall call any such function biconsistent. Let W± and D± denote the set of
labeled graphs (G,λ) with biconsistent weak sense of direction and biconsistent sense
of direction, respectively. The first result is the following.

Theorem 13. Edge-symmetry is not sufficient for a (backward) consistent coding
function to be biconsistent.

Proof. Consider the labeled graph in Figure 9. This labeling has local orientation.
Consider any coding function such that c(1) = c(3), c(2) �= c(4), c(1, 2) = c(1432),
c(3, 4) = c(3214), c(2, 1) = c(43), and ∀α, β ∈ {1, 2, 3, 4}∗, c(α12β) = c(α21β)
= c(α34β) = c(α43β) = c(αβ).

It is easy to verify that such a coding function is consistent. However, c is not
biconsistent. In fact, c(1) = c(3), which violates the backward consistency in y.
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Even if not all the coding functions in a symmetric labeling are biconsistent, there
exists at least one biconsistent coding function.

Theorem 14 (ES ∩W = ES ∩W− = ES ∩W±). In a system (G,λ) with edge-
symmetry and (backward) weak sense of direction there exists also a biconsistent weak
sense of direction.

Proof. Let c be a weak sense of direction in (G,λ) with edge-symmetry; we will
show how to construct a weak sense of direction c which is biconsistent. We define
the equivalence relation R between strings on the labeling alphabet in the following
way: ∀α, β ∈ Σ+ : αRβ ⇔ ∃x, y ∈ V, π1, π2 ∈ P [x, y] : Λx(π1) = α ∧ Λx(π2) = β. Let
R+ be the transitive closure of R. Let c(α) = [α]R+ (i.e., the equivalence class of the
string α of the equivalence R+).

Claim 1.
(i) For all weak sense of direction c′, α, β ∈ Σ+ : c(α) = c(β) ⇒ c′(α) = c′(β).
(ii) ∀α, β : c(α) = c(β) ⇔ c(ψ(α)) = c(ψ(β)).
(iii) [ψ(α)]R+ = ψ([α]R+).
We now prove that c is a consistent coding function. Let x, y, z ∈ V, π1 ∈

P [x, y]π2 ∈ P [x, z] : Λx(π1) = α∧Λx(π2) = β; then we have to prove that c(α) = c(β)
iff y = z. By Claim 1(i), c(α) = c(β) implies c(α) = c(β), and by consistence of c
it follows that y = z. If y = z, then by definition of R it holds that αRβ, and then
[α]R+ = [β]R+ , that is, c(α) = c(β).

We now prove that c is a backward consistent coding function. By contradiction
suppose that c is not consistent. Then there exists x, y, z and π1 ∈ P [x, z], π2 ∈
P [y, z] for which c(Λx(π1)) = c(Λ(π2)) ⇔ x = y is false. By Claim 1(i), this implies
that there exists x, y, z, π′1 ∈ P [z, x], π′2 ∈ P [z, y] : Λz(π

′
1) = ψ(α), Λz(π

′
2) = ψ(β),

and c(ψ(α)) = c(ψ(β)) ⇔ x = y is false, contradicting the forward consistency of
c.

The presence of biconsistency guaranteed by the above theorem is automatically
true only for weak sense of direction. This property, unfortunately, does not extend
to sense of direction, as the following theorem shows.

Theorem 15 (ES∩D �⊂ W±). Sense of direction in a system with edge-symmetry
is not sufficient for the existence of a biconsistent coding function.

Proof. Consider the labeled graph of Figure 10. It is easy to verify that there
exists a sense of direction for such a system. Let (c,d) be a sense of direction and
suppose, by contradiction, that c is backward consistent.

By definition of the coding function at node x we have that c(df) = c(be); it
follows that d(a, c(be)) = d(a, c(df)) = c(c), which means that c(abe) = c(c), contra-
dicting the hypothesis of backward consistency at node y.
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As a consequence of the previous theorem we have that sense of direction in a
system with edge-symmetry is not sufficient for the existence of a backward sense of
direction (i.e., ES ∩ D �⊂ W±).

Now we will study a sufficient property of a consistent function to be biconsistent.
A weak sense of direction c has name-symmetry iff there exists a function µ : N (c) →
N (c) such that ∀π ∈ P [x, y], µ(c(Λx(π))) = c(Λy(π

R)). A useful property is the
following [22] lemma.

Lemma 4 (see [22]). Let λ be a symmetric labeling and let ψ be the corresponding
function. A consistent coding function c has name-symmetry iff ∀π1 ∈ P [s, t], π2 ∈
P [w, z], c(Λs(π1)) = c(Λw(π2)) ⇒ c(Ψ(Λs(π1))) = c(Ψ(Λw(π2))).

Theorem 16. In a system (G,λ) with edge-symmetry, any weak sense of direction
with name-symmetry is also weak backward sense of direction.

Proof. Let c be a weak sense of direction in (G,λ) with edge- and name-symmetry,
and let ψ be the edge-symmetry function. By contradiction, suppose that c is not
a consistent backward coding function; that is, suppose ∃x, y, z, π1 ∈ P [x, z], π2 ∈
P [y, z] with x �= y such that c(Λx(π1)) = c(Λy(π2)). Since there is name-symmetry,
by Lemma 4, we have that c(Ψ(Λx(π1))) = c(Ψ(Λy(π2))). But Λz(π1) = Ψ(Λx(π1)),
Λz(π2) = Ψ(Λy(π2)) and π1 ∈ P [z, x], π2 ∈ P [z, y], which contradicts the consistency
of c in z.

In other words, in systems with edge-symmetry, any consistent coding function
with name-symmetry is also backward consistent. We will now show that if any such
coding function is decodable, then it is also backward decodable; that is, if there is
sense of direction, there is also backward sense of direction with exactly the same
coding function.

Lemma 5. Let c be a coding function with name-symmetry, and let µ be the name-
symmetry function. For any α ∈ Σ+ corresponding to a path, µ(µ(c(α))) = c(α).

Proof. By definition of the name-symmetry function, we have µ(µ(c(α))) =
µ(c(Ψ(α))) = c(Ψ(Ψ(α))) = c(α).

Theorem 17. Let (c,d) be a sense of direction in a system (G,λ) with edge-
and name-symmetry. Then there exists a backward decoding b of c; that is, (c,b) is
a backward sense of direction in (G,λ).

Proof. Let ψ and µ be, respectively, the edge- and name-symmetry functions. Let
x, y ∈ V , π ∈ P [x, y], and ω = Λx(π). By definition of the name-symmetry function
we have that c(Ψ(ω)) = µ(c(ω)); it follows that µ(c(Ψ(ω))) = µ(µ(c(ω))). By Lemma
5, we have that

µ(c(Ψ(ω))) = c(ω).(4.1)

Consider now the following backward decoding function: ∀π ∈ P [x, y], ω = Λx(π)
and for 〈y, z〉 ∈ E(y) ∧ λy(〈y, z〉) = a, b(c(ω), a) = µ(d(ψ(a), µ(c(ω)))).

By definition of the name-symmetry function, it follows that µ(d(ψ(a), µ(c(ω))) =
µ(d(ψ(a), c(Ψ(ω)))) = µ(c(Ψ(w · a))).

By (4.1), µ(c(Ψ(w · a))) = c(ω · a). It follows that b(c(ω), a) = c(ω · a), and thus
b is consistent.

5. Consistency landscape. The results of the previous sections can be seen,
and have sometimes been stated, in terms of the “consistency landscape” (see Fig-
ure 11), i.e., of the relationship among the sets L,W,D,L−,W−,D−.

In this section, we continue the analysis of the “consistency landscape.”
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Fig. 11. The consistency landscape.

5.1. Transformations and constructions. In this section, we introduce two
useful operations on labeled graphs. In the end, we shall derive general results on the
structure of the consistency landscape.

The first operation, called “doubling,” allows us to transform a labeling into a
symmetric one. Hence, it allows us to transform a system with only one type of
consistency into one which has both.

Given (G,λ), the doubling of λ is the mapping λ2
x((x, y)), defined as follows: for

all edges 〈x, y〉, λ2
x(〈x, y〉) = (λx(〈x, y〉), λy(〈y, x〉)). Its extension from edges to walks

will be denoted by Λ2.

The most important property of double labeling is that if (G,λ) has either form
of consistency, then (G,λ2) has both.

Given two strings of equal length α = a0a1 . . . ak ∈ Σ+ and β = b0b1 . . . bk ∈ Σ+,
let α ⊕ β = (a0, b0)(a1, b1) . . . (ak, bk) ∈ (Σ2)+ denote their product. Given a string
α = a0a1 . . . ak ∈ Σ+, let αR = akak−1 . . . a0 denote the reverse string.

Theorem 18 (double labeling). If (G,λ) has either (weak) sense of direction or
(weak) backward sense of direction, then (G,λ2) has both (weak) sense of direction
and (weak) backward sense of direction.

Proof. Let c be a coding function in (G,λ). Consider the coding function c2

defined as follows: ∀ α⊕β ∈ (Σ2)+, c2(α⊕β) = c(α). Clearly, c2 is (resp., backward)
consistent in (G,λ2) iff c is (resp., backward) consistent in (G,λ).

Let c, and hence c2, be (resp., backward) consistent. Given a function d : Σ ×
N (c) → N (c), define the function d2 as follows: ∀ (a, b) ∈ Σ2 and α ⊕ β ∈ (Σ2)+,
d2((a, b), c2(α⊕β)) = d(a, c(α)). Clearly, d2 is a decoding of c2 iff d is a decoding of c.
Similarly, given b : N (c)×Σ → N (c), the function b2(c2(α⊕ β), (a, b)) = d(a, c(α))
is a backward decoding of c2 iff b is a backward decoding of c.

In other words, (weak) sense of direction in (G,λ) implies (weak) sense of direction
in (G,λ2), and (weak) backward sense of direction in (G,λ) implies (weak) backward
sense of direction in (G,λ2).

Finally observe that λ2 is symmetric; in fact, for every 〈x, y〉 ∈ E, λ2
x(〈x, y〉) =

λ2
y(〈y, x〉)R. Thus, by Theorems 10 and 11, if (G,λ2) has one type of consistency, it

has both.

The operation of doubling is important in that it allows us to transform a labeling
into a symmetric one, and thus to extend the existing consistency to include also the
other type.

The proof of Theorem 18 shows also how to employ the (resp., backward) coding
and decoding of the original system to construct the analogous ones of the new system.
However, it does not give any indication on the nature of the coding and decoding
of the opposite type. As we will see later, such a nature is useful also for the other
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transformation to be discussed in this section.
The purpose of the following lemmas is to show how to construct in the new

systems the coding and decoding of the opposite type.
Lemma 6. Let c be a weak sense of direction in (G,λ); then cb(α ⊕ β) = c(βR)

is a weak backward sense of direction in (G,λ2). Furthermore, if c has a decoding d,
then b(cb(α⊕ β), (a, b)) = d(b, c(βR)) is a backward decoding of cb.

Proof. Let x, y, z ∈ V , π1 ∈ P [x, z], π2 ∈ P [y, z]. Let Λ2
x(π1) = (a0, a

′
0) (a1, a

′
1)

. . . (ah, a
′
h), and Λ2

y(π2) = (b0, b
′
0)(b1, b

′
1) . . . (bk, b

′
k).

Let x = y. By definition of cb we have that cb(Λ
2
x(π1)) = c(a′h . . . a′0) = c(Λz(π1).

Since x = y, by definition of the consistency of c we have that c(Λz(π1
R)) =

c(Λz(π2
R)) = c(b′k . . . b′0). Since c(b′k . . . b′0) = cb(Λ

2
y(π2)), it follows that cb(Λ

2
x(π1)) =

cb(Λ
2
y(π2)).
Let x �= y. By definition of cb we have that cb(Λ

2
x(π1)) = c(a′h . . . a′0). Since

x �= y, by definition of the consistency of c we have that c(Λz(π1
R)) �= c(Λz(π2

R)).
But Λz(π1

R) = (a′h . . . a′0), and Λz(π2
R) = b′k . . . b′0. Since c(b′k . . . b′0) = cb(Λ

2
y(π2)),

it follows that cb(Λ
2
x(π1)) �= cb(Λy(π2)).

We now show that the corresponding backward consistent decoding function is the
following: ∀π ∈ P [x, y], ∀〈y, z〉 ∈ E(y), let Λ2

x(π) = (α ⊕ β)) and λ2
y(〈y, z〉) = (a, b);

then b(cb(α⊕ β), (a, b)) = d(b, c(βR).
By definition of the consistent decoding function, d(b, c(βR) = c(b · βR). By

definition of cb we have that c(b · βR) = cb((α⊕ β) · (a, b)). Thus, it follows that b is
consistent, i.e., b(cb(α⊕ β), (a, b)) = cb((α⊕ β) · (a, b)).

Similarly, we have the following lemma.
Lemma 7. Let c be a weak backward sense of direction in (G,λ). Then cf (α⊕β) =

c(βR) is a weak sense of direction in (G,λ2). Furthermore, if c has a backward
decoding b, then d((a, b), cf (α⊕ β)) = b(c(βR), b) is a decoding of cf .

The second transformation is “reversal.” Given a labeling λ of a graph G, the
reverse labeling λ̃ of G is obtained in the following way: ∀〈x, y〉 ∈ E, λ̃x(〈x, y〉) =
λy(〈y, x〉).

The reversal operation is related to doubling as follows, where cb, cf , b, and d
are as defined in Lemmas 6 and 7.

Lemma 8. Let c be a weak sense of direction in (G,λ); then cb is a weak back-
ward sense of direction in (G, λ̃). Furthermore, if c has a decoding d, then (cb,b) is
backward sense of direction in (G, λ̃).

Lemma 9. Let c be a weak backward sense of direction in (G,λ); then cf is a

weak sense of direction in (G, λ̃). Furthermore, if c has a backward decoding b, then
(cf ,d) is a sense of direction in (G, λ̃).

Proof. It directly follows from Theorem 18 that the following coding function is
consistent: ∀π ∈ P [x0], π = 〈x0, x1〉 . . . 〈xm−1, xm〉: cb(Λ̃x(π)) = c(λ̃xm−1(〈xm−1, xm〉)
. . . λ̃x0(〈x0, x1〉)). The corresponding backward decoding function is the follow-
ing: ∀π ∈ P [x0], π = (〈x0, x1〉 . . . 〈xm−1, xm〉), ∀〈xm, y〉 ∈ E(xm): b(cb(Λ̃x0(π)),
λ̃xm(〈xm, y〉)) = d(λ̃xm(〈xm, y〉), c(λ̃xm−1(〈xm−1, xm〉) . . . λ̃x0(〈x0, x1〉)).

The above lemmas have a very important consequence, as follows.
Theorem 19. (G,λ) has (weak) backward sense of direction iff (G, λ̃) has (weak)

sense of driection.
This result implies that the structure of the “forward” consistency landscape and

that of the backward consistent are mirror images. This fact will be instrumental in
simplifying the proof of some of the results to be established in the remainder of this
section.
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Fig. 12. Gw.

5.2. Core. We now focus on the structure of the “core” of the consistency land-
scape; i.e., the set W ∩W−.

The first result we establish is that backward sense of direction is a stronger form
of consistency than weak backward sense of direction.

Theorem 20 (D− ⊂ W−). There are systems with backward consistency where
no coding function is backward decodable.

Proof. The proof follows from Lemmas 2 and 9.
The next question we consider is whether the simultaneous presence of both con-

sistencies suffices for the existence of either form of decoding. The answer is negative,
as there exist systems with both weak sense of direction and weak backward sense of
direction where no (backward) coding function is (backward) decodable. Let Gw be
the labeled graph shown in Figure 12.

Lemma 10 (see [11]). Gw ∈ W −D.
Theorem 21 ((W ∩W−) �⊂ (D∪D−)). Existence of both types of consistency is

not sufficient for decodability of either type.
Proof. By Lemma 10, graph Gw has weak sense of direction, but any coding

function is not decodable. Such a labeled graph has edge-symmetry since the labeling
is a coloring. Thus, by Theorem 10 we have that it also has backward weak sense
of direction. However, no backward consistent coding function for Gw can be back-
ward decodable; otherwise Gw would have backward sense of direction and, thus, by
Theorem 11 would also have sense of direction contradicting Lemma 10.

Theorem 22 ((D ∩ W−) �⊂ D−, D− �⊂ (W− ∩ D)). Simultaneous presence
of sense of direction and backward weak sense of direction is neither necessary nor
sufficient for the existence of a backward decoding function.

Proof. Not sufficient. It is easy to verify that the labeled graph of Figure 13 has
sense of direction and weak backward sense of direction. However, no backward coding
function is backward decodable. In fact, let c be a backward coding function; by
definition, we have that c(dc) = c(fe) and c(ba) = c(dc); it follows that c(ba) = c(fe).
Let b be a backward decoding function; then we have that b(c(ba),m) = c(p) =
b(c(fe),m). But b(c(fe),m) = c(q). It follows that c(q) = c(p), which contradicts
both forward and backward coding.

Not necessary. It follows from the fact that local orientation is not necessary for
having a backward decoding function (see Theorem 1).

Thus, by Theorem 19, the following holds.
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Fig. 13. (D ∩W−)−D− �= ∅.

Theorem 23 ((D− ∩ W) �⊂ D). Simultaneous presence of backward sense of
direction and weak sense of direction is not sufficient for the existence of a decoding
function.

5.3. Outer structure. In this section we focus on the outer structure of the
consistency landscape: (L ∪ L−)− (W ∩W−).

We first introduce two useful properties.
Given two labeled graphs (G1, λ1) and (G2, λ2), the melding of (G1, λ1) and

(G2, λ2) by x1 ∈ V1, x2 ∈ V2, denoted by G1[x1, x2]G2, is the union of the two
graphs restricted by imposing x1 = x2.

Theorem 24. Let G1 and G2 be vertex- and label-disjoint labeled graphs with
weak sense of direction. Then ∀x1 ∈ V1, x2 ∈ V2, G = G1[x1, x2]G2 also has weak
sense of direction. Furthermore, if G1 and G2 have sense of direction, (G,λ) also
has sense of direction.

Proof. By hypothesis the labeled graphs are label-disjoint, that is, Σ1 ∩ Σ2 = ∅.
By hypothesis there exists two coding function c1 and c2 such that c1 is a consistent
coding function for G1 and c2 for G2. Without loss of generality we can also assume
that N (c1) ∩ N (c2) = ∅. (If this is not the case, take c′1 = (0, c1) and c′2 = (1, c2).)
Let i : (Σ1 ∪ Σ2)

+ → {1, 2} be a function such that i(α) = 1 iff the last symbol of α
belongs to Σ1; otherwise, i(α) = 2. Let f : (Σ1 ∪ Σ2)

+ → Σ+
1 ∪Σ+

2 be a function such
that f(α) = α∩Σi(α) (i.e., f(α) is the string of all the symbols of α belonging to the
set Σi(α)).

Let p(x, α) = x if x ∈ Gi(α), and x1 = x2 otherwise. Then it is easy to see that

∀α ∈ ΛG[x, y] ⇒ f(α) ∈ ΛGi(α)
[p(x, α), y].(*)

Now let c be so defined: c(α) = ci(α)(f(α)). Now we will prove that c is consis-
tent. By contradiction suppose that c is not consistent; then there exist x, y, z ∈ VG
and α ∈ ΛG[x, y], β ∈ ΛG[x, z] such that either c(α) = c(β) but y �= z, or c(α) �= c(β)
but y = z.

In the first case, since the codomains of c1 and c2 are disjoint, it follows that
ci(f(α)) = ci(f(β)) for some i such that f(α), f(β) ∈ Σ+

i . By (*) it follows that
f(α) ∈ ΛGi [p(x, α), y] and f(β) ∈ ΛGi [p(x, β), z]. Because of i(α) = i(β) it follows
that p(x, α) = p(x, β). Thus, f(α) ∈ ΛGi [x

′, y] and f(β) ∈ ΛGi [x
′, z]. By consistency

of ci it follows that y = z, yielding a contradiction.
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In the second case, if y = z and y ∈ Gi for some i, by (*) and analogous de-
ductions, we have that f(α), f(β) ∈ ΛGi [x

′, y] and, by consistency of ci, ci(f(α)) =
ci(f(β)); that is, c(α) = c(β), yielding a contradiction.

Thus, we have proved that c is consistent; that is, G has weak sense of direction.
Now we will prove that if G1 and G2 have sense of direction, then G also has

sense of direction. Let d1 and d2 be the decoding functions, and let d be so defined:

d(a, c(w)) =




d1(a, c(w)) if a ∈ Σ1 ∧ c(w) ∈ N (c1) (1)
d2(a, c(w)) if a ∈ Σ2 ∧ c(w) ∈ N (c2) (2)
c(w) if a ∈ Σ1 ∧ c(w) ∈ N (c2) (3)
c(w) if a ∈ Σ2 ∧ c(w) ∈ N (c1) (4)

.

We will show that d(a, c(w)) = c(aw) ∀ aw ∈ ΛG[x, z]. We have to consider the four
cases in the definition of d.

(1) In this case d(a, c(w)) = d1(a, c(w)), a ∈ Σ1, and c(w) ∈ N (c1). Thus, a is
a label of an edge of G1 and w is a label of a path ending in G1. This means that
c(w) = c1(f(w)). Then, d1(a, c(w)) = d1(a, c1(f(w))). By property (*), it follows
that f(w) is the label of a path in G1; since x ∈ G1, a · f(w) = f(aw) ∈ ΛG1 [x, z]. By
consistency of d1, we have d1(a, c1(f(w))) = c1(a · f(w)) = c1(f(aw)) = c(aw).

(2) Symmetric to case (1).
(3) In this case, d(a, c(w)) = c(w), a ∈ Σ1, and c(w) ∈ N (c2). Thus, a is a label

of an edge in G1, while w is the labeling of a path ending in G2. This implies that
f(aw) = f(w). Thus, d(a, c(w)) = c(w) = c2(f(w)) = c2(f(aw)) = c(aw).

(4) Symmetric to case (3).
Theorem 25. (W −D) �⊂ L−.
Proof. Consider the labeled graph of Figure 14. Notice that such a graph is the

melding in x of the graph Gw of Figure 12 and a line with two edges 〈x, y〉 and 〈y, z〉.
Since the labeled line has trivially weak sense of direction and since, by Lemma

10, the graph Gw of Figure 12 has weak sense of direction, it follows from Theorem 24
that the graph of Figure 14 has weak sense of direction as well.

On the other hand, by Lemma 10, the graph of Figure 12 does not have sense of
direction, and, as a consequence, the graph of Figure 14 also does not have sense of
direction. Moreover, this labeled graph does not have backward local orientation; in
fact λx(〈x, y〉) = λz(〈z, y〉).

As a consequence, we have the following.
Theorem 26. (W− −D−)− L �= ∅.
Proof. The proof follows from Theorems 19 and 25.
Theorem 27. ((W −D) ∩ L−)−W− �= ∅.
Proof. Consider the labeled graph (G,λ) of Figure 15. Notice that it is the melding

in x of Figure 12 and a labeled graph (G′, λ′). It is easy to verify that (G′, λ′) has weak
sense of direction, which implies that (G,λ) has weak sense of direction. However,
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since by Lemma 10 the graph Gw of Figure 12 does not have sense of direction, it
follows that (G,λ) also does not have sense of direction. Clearly, there is backward
local orientation. By contradiction, let us assume that there is weak backward sense
of direction in (G,λ). By definition of backward consistency at node x we would have
that c(1 · 1) = c(2 · 2) (since these two sequences of labels correspond to two paths
from y to x); however, c(1 · 1) �= c(2 · 2) (since they also correspond to two paths
starting from different nodes (w and z) and terminating in the same node y).

As a consequence, we have the following.
Theorem 28. ((W− −D−) ∩ L)−W �= ∅.
Proof. The proof follows from Theorems 19 and 27.

6. Backward consistency and Σ. In this section we ask some questions about
the relationship between the set of labels used in (G,λ) and the existence of backward
consistency. In particular, we focus on the number κ(G,λ) = |Σ| of labels used in
(G,λ). A general bound on κ is the following, where deg(G) and e(G) denote the
maximum degree and the number of edges in G, respectively.

Lemma 11. If (G,λ) has backward consistency, then d(G) ≤ κ(G,λ) ≤ 2e(G).

6.1. Minimum backward sense of direction. If κ(G,λ) = d(G), the labeling
is said to be minimum and so is called any consistency property existing in (G,λ). So,
consistency in minimally labeled systems is called minimum (weak) sense of direction;
similarly we can define the backward analogues. Let mC denote the subclass of C of
labeled graphs (G,λ) for which λ is a minimum labeling (e.g., mW is the class of
labeled graphs with minimum weak sense of direction).

We now study the relationship between minimality and biconsistency in arbitrary
topologies.

Theorem 29. Edge-symmetry in a minimum weak sense of direction is not
sufficient for backward consistency.

Proof. Consider the labeled graph of Figure 16.
For each α ∈ {r, l, a}∗, let µ(α) ∈ {r, a}∗, the string obtained from α applying

as many times as possible one of the following simplification rules: rl → ε, lr → ε,
aa → ε, rrr → ε, lll → ε, l → rr. The first three rules eliminate all the cycles of
length 2, and the following two rules eliminate all the cycles of length 3. The last
rule rewrites the l with two r’s. Let A = {α : ∃v ∧ ∃π ∈ P [v] : Λv(π) = α}, and let
µ(A) = {µ(α) : α ∈ A}. It can be proven that µ(A) = r2∗(·a · r2∗)?, where r2∗ means
at most 2 repetitions of the symbol r (there can be 0 repetitions). (x)? means 0 or 1
repetition of x. Let a coding function c be defined as follows:

c(α) =

{
(µ(α), 0) if µ(α) ∈ r2∗,
(β, 1)) if µ(α) = r2∗aβ.
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For each node v let v be the node on the same ring with degree 3 (e.g., 2 = 3 = 1 = 1
and 4 = 5 = 6 = 4). We can prove the following property.

Claim 2.
1. ∀x, y, π ∈ P [x, y], (c(Λx(π)) = c(γ, 0) ⇔ x = y ∧ ∃π′ ∈ P [x, y] ∧ Λx(π

′) = γ).
2. ∀x, y, π ∈ P [x, y], (c(Λx(π)) = c(γ, 1) ⇔ x �= y ∧ ∃π′ ∈ P [y, y] ∧ Λy(π

′) = γ).
It is easy to see that c is a consistent coding function. But c is not backward

consistent. We can see that ra is the label of the path from 6 to 1 passing from
node 4, and a is the label of the path from 4 to 1. Thus 4 �= 6, but c(ra) = (ε, 1)
= c(a).

Corollary 1. Edge-symmetry in a minimum (backward) weak sense of direction
is not sufficient for biconsistency.

Note that this also gives, as a corollary, a different proof of Theorem 13.
Now we will study the relationship between sense of direction and minimality in

regular graphs. Let R denote the set of labeled regular graphs, that is, deg(v) = k
for all nodes v.

First observe that the requirement of minimality does not make edge-symmetry
necessary for either form of consistency.

Lemma 12 (R ∩ mW(−) �⊂ ES). Edge-symmetry is not necessary for having
minimum weak sense of direction or minimum weak backward sense of direction in
regular graphs.

Proof. The nonnecessity for minimum weak backward sense of direction can be
seen by considering Figure 1, where the graph has minimum weak backward sense
of direction but does not have edge-symmetry; the mirror image result follows by
Theorem 19.

However, for the simultaneous existence of both types of consistency, unlike the
general case (see Theorem 12), edge-symmetry is necessary if minimality is required.

Theorem 30 (mW±∩R = mW∩ES∩R = mW−∩ES∩R). In a regular labeled
graph (G,λ) with edge-symmetry, any minimum weak sense of direction (minimum
weak backward sense of direction) is also biconsistent.

Proof. Let c be a consistent coding function for (G,λ). By contradiction, let us
assume that c does not have backward consistency, which means that there exist two
paths π1 ∈ P [x, z], π2 ∈ P [y, z] such that either (i) c(Λx(π1)) = c(Λy(π2)) and x �= y
or (ii) c(Λx(π1)) �= c(Λy(π2)) and x = y.

Let us consider case (i). Since the graph is regular and the labeling minimum,
there must exist a path π3 ∈ P [x] such that Λx(π3) = Λy(π2). Thus, c(Λx(π1)) =
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c(Λy(π3)), which implies that π3 ∈ P [x, z]. This is a contradiction, because it violates
local orientation in z.

Consider now case (ii). This case violates the definition of forward consistency in
x.

The reverse is analogous.

Thus, with edge-symmetry, the class of regular graphs with minimum weak back-
ward sense of direction coincides with the class of edge-symmetric regular graphs with
minimum weak sense of direction. Using the characterization of the latter class by
[10, 23], we obtain the following.

Theorem 31. A regular labeled graph (G,λ) with edge-symmetry has minimum
weak backward sense of direction iff it is a Cayley graph with Cayley labeling.

In other words, if there is edge-symmetry, Cayley graphs with Cayley labelings are
the only regular graphs with minimum backward sense of direction and/or minimum
sense of direction.

Corollary 2 (mW± ∩ ES ∩ R = mD± ∩ ES ∩ R). In a regular labeled graph
with edge-symmetry, any minimum and biconsistent weak sense of direction is a sense
of direction.

The situation is quite different in the absence of edge-symmetry; in this case, at
most one type of minimum consistency can exist.

Lemma 13 (mW∩mW− ⊂ ES). Without edge-symmetry and restricted to regular
graphs, mW ∩mW− = ∅.

Proof. The proof follows from Theorem 30.

6.2. Number of labels and backward consistency. In this section we ask
under what conditions a (large) value κ(G,λ) is sufficient for backward consistency.
The first obvious result is that κ(G,λ) = 2e(G); then the system has both sense of
direction and backward sense of direction without further conditions.

Lemma 14. If κ(G,λ) = 2e(G), then (G,λ) has both sense of direction and
backward sense of direction.

Basically, this numerical requirement is equivalent to having all edges labeled with
unique labels.

If we are interested only in backward sense of direction, we can actually relax
this condition. In fact, it is sufficient that the labels used by each node are different
from the ones used by the other nodes for the system to have backward sense of
direction (but not necessarily sense of direction); see, for example, Figure 17. Let
Σx = {λx(x, y) : y ∈ E(x)}.

Theorem 32. If, in (G,λ), Σx∩Σy = ∅ ∀ x �= y, then (G,λ) has backward sense
of direction.

Proof. For each a ∈ Σ, only one node x uses a: let σ(a) = Σx.

Consider the following backward coding function: ∀π ∈ P [x0], π = 〈x0, x1〉 . . .
〈xm−1, xm〉, c(Λx(π)) = σ(λx0(〈x0, x1〉)).

Let π1 ∈ P [x, z], π2 ∈ P [y, z]; π1 = 〈x, x1〉 . . . 〈xh, z〉, π2 = 〈y, y1〉 . . . 〈yk, z〉. We
have that c(Λx(π1)) = σ(λx(〈x, x1〉)) and c(Λy(π2)) = σ(λy(〈y, y1〉)).

Consider the case x = y. By definition of σ, we have that σ(λx(〈x, x1〉)) =
σ(λy(〈y, y1〉)); thus, c(Λx(π1)) = c(Λy(π2)).

Consider the case x �= y. Since, by hypothesis, all the labels used by x are
different from all the labels used by y, we have σ(λx(〈x, x1〉)) �= σ(λy(〈y, y1〉)) and
c(Λx(π1)) �= c(Λy(π2)).

It is easy to see that the corresponding backward consistent decoding function is
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the following:

∀π ∈ P [x0], π = 〈x0, x1〉 . . . 〈xm−1, xm〉,∀〈xm, y〉 ∈ E(xm),

b(c(Λx0(π), λxm(〈xm, y〉)) = c(Λx0(π)).

Analogously, when the labels used for the edges terminating in x are different
from the ones used for edges terminating in any y �= x, then the system has sense of
direction. Let Σ−x = {Σy(y, x) : y ∈ E(x)}.

Theorem 33. If, in (G,λ), Σ−x ∩ Σ−y = ∅ ∀ x �= y, then (G,λ) has sense of
direction.

Notice that among the labelings satisfying the assumption of Theorem 32 are
those yielding the systems with complete blindness discussed in Theorem 2; among
the labelings satisfying the assumption of Theorem 33 are the so-called neighboring
ones. In both cases the number of labels used is exactly n(G).

7. Computational equivalence. From a computational viewpoint, anonymous
systems are the least powerful distributed systems—and hence the ideal setting in
which to study the capabilities of specific properties (e.g., [1, 2, 7, 16, 22, 35, 36, 38,
39, 43, 44]). The computational power of sense of direction in anonymous systems
has been investigated for specific labeled graphs (e.g., meshes and tori [4, 34], hyper-
cubes [28, 29], and Cayley graphs [27]). The general characterization has been given
in [22]; as an indication of its capabilities, many unsolvable problems in anonymous
networks (e.g., computing the XOR in a regular network without knowledge of the
network size) can be solved if the system has sense of direction (and without break-
ing anonymity). To exist, and thus to be exploited, sense of direction requires the
existence of constraints much stronger than local orientation.

What happens, from a computational point of view, if the system does not even
guarantee local orientation? What can be computed if nodes cannot even distinguish
among their links? There are several studies on computability in the absence of local
orientation investigating these questions for specific topologies [14], specific problems
[45], or classes of functions [9, 37]. As expected, these results indicate that the absence
of local orientation dramatically reduces the computational power in almost all graphs
(a noticeable exception is the ring [14]).
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In this section we study the computational capability of the newly introduced
backward consistency, which can exist even in the presence of complete and total
blindness. We show the unexpected result that backward consistency has the same
computational capabilities as sense of direction. In other words, not only does it
overcome the handicap of not having local orientation, but it also actually empowers
even a totally blind system with the additional capabilities of sense of direction.

7.1. Computability. A basic concept when computing on anonymous networks
is the one of view, introduced in [44]. The view T(G,λ)(v) of a node v in a labeled
graph (G,λ) is an infinite, labeled, rooted tree “downward locally isomorphic” to G,
i.e., such that there exists a map from the vertices of the tree to the vertices of G
which maps the root of the tree to v, the children of the root to the neighbors of v,
and, recursively, the children of a node to the neighbors of that node. The labeling
of the arcs are also downward preserved. When no ambiguity arises, we shall denote
a view T(G,λ)(v) simply by T (v).

Let G denote the set of labeled graphs. Given C ⊆ G and a graph G, let C/G
denote the restriction of C to G; e.g., L−/G is the set of labeled graphs obtained by
labeling G with backward local orientations.

A problem P is solvable in C/G if it is solvable in all labeled graphs (G,λ) ∈ C/G.
Given a topological knowledge K, a problem P is K-solvable in C/G if it is solvable
in all (G,λ) ∈ C/G, where all the nodes are empowered with a priori knowledge K.

We first report two results on the computational capabilities of sense of direction.
The first result is that, from a computational point of view, there is no difference
between weak sense of direction and sense of direction.

Theorem 34 (see [22]). ∀G ∀P, P is solvable in W/G iff P is solvable in D/G.

The second result shows that, with sense of direction, no other knowledge is
necessary.

Theorem 35 (see [22]). ∀G ∀P ∀K, if P is K-solvable in L/G, then P is solvable
in W/G.

We will now focus on backward consistency and establish the equivalence result.

Theorem 36. ∀G ∀P, P is solvable in D/G iff P is solvable in D−/G.

Proof. To prove this theorem we will need several steps.

Given two labeled graphs (G = (V,E), λ) and (G′ = (V ′, E′), λ′), a labeled graph
isomorphism is a bijection χ : V → V ′ which preserves edges and edge labels; that is,
〈u, v〉 ∈ E ⇔ 〈χ(u), χ(v)〉 ∈ E′ and λ(〈u, v〉) = λ′(〈χ(u), χ(v)〉).

The complete topological awareness of a node x ∈ V in a labeled graph (G =
(V,E), λ) is knowledge of the isomorphic image ψ(G,λ) of (G,λ) and of φ(x) for some
labeled graph isomorphism ψ. The complete topological knowledge on a labeled graph
(G = (V,E), λ) (denoted by TK) is when every node x ∈ V has complete topological
awareness. Note that the isomorphism known by each node may be different.

The importance of TK becomes apparent with the following fact.

Lemma 15 (see [22]). ∀G ∀P, P is TK-solvable in L/G iff P is solvable in
D/G.

In other words, TK represents the maximum information obtainable with sense
of direction. Hence, to prove the main theorem, we need only show that every node
can construct TK with weak backward sense of direction. To do this, first observe
the following.

Lemma 16 (see [22]). Let c be a consistent coding function of (G,λ). Then
∀u ∈ V , T(G,λ)/c = ψ(G,λ) for some labeled graph isomorphism ψ.



BACKWARD SENSE OF DIRECTION IN DISTRIBUTED SYSTEMS 303

That is, consistency would allow each node to construct an isomorphic image of
(G,λ) from each view. Since in its view a node knows its location (it is the root), it
knows its location in the image. Therefore, to complete the proof, we have to show
how to constructively empower each node with local orientation and a consistent
coding.

If there is backward consistency in (G,λ), a local orientation with forward con-
sistency can be easily constructed by employing the result of Lemma 9: if (G,λ) has
backward consistency, then (G, λ̃) has local orientation and consistency. Since λ̃ is
distributedly constructible (i.e., each node x can construct λ̃x) by a simple round of
communication), T(G,λ̃)(u) is also constructible at every node.

Thus, we must only show how to construct at each node a consistent coding
function c for (G, λ̃), given b, λx, and λ̃x. This is done by observing that, by Theorem
18, if (G,λ) has backward consistent coding b, then we can construct a consistent
coding c of (G,λ2), and by Lemma 9, c is a consistent coding for (G, λ̃).

Summarizing, if (G,λ) has backward consistency b, each node v can construct the
view T(G,λ̃)(v) and a consistent coding of (G, λ̃) which will empower it to construct

both an isomorphic image of both (G,λ) and ψ(v). This knowledge is equivalent
to complete topological knowledge; since the class of problems solvable with TK is
exactly the same solvable with sense of direction alone, it follows that backward sense
of direction is computationally equivalent to sense of direction.

7.2. Complexity. The result of Theorem 36 opens the problem of how to effec-
tively use the computational power of backward consistency. The approach suggested
by the proof of Theorem 36 is to use backward consistency to “simulate” sense of
direction. While theoretically valid, this approach sidesteps the problem since it does
not exploit backward consistency directly. Furthermore, the technique employed in
the proof is not algorithmically reasonable, since it requires the construction of the
views T(G,λ̃)(v), a task with a formidable communication complexity.

While not solving the general problem, we will provide some complexity relief by
pointing out how the simulation approach can be carried out simply and efficiently,
without construction of the views.

Let A be an algorithm which solves problem P in any system with sense of
direction. The simulation S(A) of A in a system (G,λ) in which there is backward
sense of direction is performed in two stages:

(1) Preprocessing. Each processor x computes the set Σx(a) = {b : λx(x, y) = a
and λy(y, x) = b} for each of its labels a ∈ λx(E(x)). Notice that

⋃
Σ(a) = λ̃x(E(x)).

(2) Simulation. Whenever, in algorithm A, a node x sends a message m on an
edge labeled l, in the simulation S(A) it will send a message (m, l) to the set of
edges labeled by the (unique) label p ∈ λx(E(x)) such that l ∈ Σx(p); whenever, in
algorithm A, a node performs an action O upon reception of a message m from a link
labeled l, in the simulation of A it will perform the same action O upon reception
of message (m, l) from any of the edges labeled p, where p is the (unique) label such
that l ∈ Σx(p).

It is easy to see that algorithm S(A) behaves on (G,λ) in exactly the same way
as the algorithm A would behave on (G, λ̃) (the only difference being that S(A) sends
a pair (m, label) every time A sends a message m). In fact, we have the following
result.

Theorem 37. Algorithm S(A) solves P in any system with backward sense of
direction iff A solves P in any system with sense of direction.

Proof. Let A solve P in any system with sense of direction. Since (G,λ) has
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backward sense of direction, from Theorem 19, we have that (G, λ̃) is a system with
sense of direction; and thus A solves P on (G, λ̃). But, by construction, algorithm
S behaves on (G,λ) in exactly the same way as the algorithm A would behave on
(G, λ̃), and the proof follows.

The reverse is analogous.

Moreover, the number of message transmissions of S(A) (denoted by MT ) is the
same as in the original algorithm A. The number of message receptions (denoted
by MR) obviously depends on the cardinality of the sets Σx(p). Given (G,λ), let
h(G,λ) = Maxx∈V,a∈Σ{Σx(a)}; clearly, h(G,λ) ≤ d(G).

Theorem 38.
(1) MT (S(A), G, λ) = MT (A,G, λ̃).

(2) MR(S(A), G, λ) ≤ h(G,λ)MR(A,G, λ̃).

In other words, it is possible to use simulation with some level of efficiency. How-
ever, the real task is to develop protocols and techniques which exploit backward
consistency directly (not just to simulate forward consistency).

8. Concluding remarks and open problems. Sense of direction, for its ex-
istence, requires the presence of many “low-level” subconditions, in particular local
orientation. However, local orientation cannot be assumed if we are to model systems
with more advanced communication and interconnection technology. In this paper
we have shown the existence of another type of consistency—backward consistency—
which is computationally equivalent to sense of direction but does not require local
orientation; thus, it can be found (or designed) in advanced distributed systems.

The relationship between backward consistency and communication complexity
is still virtually unknown. The study of how to effectively and efficiently exploit the
power of backward consistency when solving problems is an open research area. Some
results already exist for specific problems; see, for example, the protocols developed
for multi-hop radio networks [3, 12].

Sense of direction and backward consistency are two among a large (and prac-
tically unknown) population of varying types of general consistency. An interesting
aspect of the results presented here is that backward consistency and sense of direc-
tion are not comparable, but rather orthogonal. This fact raises the possibility of the
existence of yet other types of consistency that are computationally equivalent to, but
not comparable to, sense of direction.

There are interesting coincidences and analogies; for example, the discovery that
the reverse of labeling with an important property (sense of direction) has another
important property (backward consistency) finds its parallel in the context of interval
routing, where it was recently discovered that the reversal of any interval-routing
labeling is a broadcast labeling [13]. This coincidence reveals a new viewpoint from
which to examine the problem: any operation on the labeling will transform the class
of problem solvable in the resulting system (the result will obviously depend on the
original type of consistency). The open questions then become, What operations on
the labeling (such as reversal) preserve computability? Which will transform it? And
into what will it be transformed?
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Abstract. We show that there is always a binary space partition (BSP) of size O(n log k) and an
autopartition of size O(nk) for n disjoint line segments in the plane, assuming that the segments have
k distinct orientations. In particular, if k is a constant, these bounds imply that there is a linear-size
BSP and autopartition. Our proof is constructive and can be turned into algorithms computing such
a BSP or autopartition in O(n2) and O(n2k) times.

Key words. binary space partition, line segments, computational geometry
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1. Introduction. The binary space partition (BSP) is a data structure intro-
duced by the computer graphics community in the late seventies [17, 24, 26]. Origi-
nally it was designed to give an efficient visibility algorithm for polygonal scenes using
the “painter’s method.” Currently applications of BSP range through hidden surface
removal [18, 13], shadow generation [6], ray tracing [8, 25], solid modeling [19], surface
approximation [20, 28], and robot motion planning [7, 4].

Informally, a BSP for n disjoint objects in the plane is a recursive dissection of
the plane into convex regions such that each region is dissected in two by a segment
or a line until every object (or part of an object) is in a distinct region. Ideally, every
object should be in one convex region, but sometimes it is inevitable that some of
the objects are dissected. The size of the BSP is defined as the number of regions in
the resulting plane partition. The size of a BSP effects substantially the complexity
of the algorithms using this data structure. Our concern, in general, is to find small
BSPs for certain sets of objects. A special but important class of BSPs consists of
autopartitions where every convex region is dissected along a flat of one of the objects
within the region.

Previous and related works. The BSP was invented by Fuchs, Kedem, and
Naylor [17], based on ideas of Schumacker et al. [24, 26]. Paterson and Yao [22]
proved that there exists a BSP of size O(n log n) for a set of n disjoint line seg-
ments in the plane. The expected size of an autopartition, where cuts are made along
the line segments in a random order, is O(n log n). The best-known lower bound,
Ω(n log n/ log log n), for both BSP and autopartition follows from a recent construc-
tion described in [27]. De Berg, de Groot, and Overmars [11] have found linear upper
bounds to the BSP for line segments where the ratio between the length of the longest
and shortest segment is bounded by a constant.
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Paterson and Yao [23, 21] exhibited BSPs of size O(n2) for rectangles in R
3,

matching the Ω(n2) lower bound of a construction due to Eppstein. Agarwal

et al. [2] constructed a BSP of size n2O(
√

logn) for n fat orthogonal rectangles in

R
3 in n2O(

√
logn) time. Dumitrescu, Mitchell, and Sharir [14] have proved that the

size of the smallest BSP for n axis-parallel 2-dimensional rectangles in R
4 is Θ(n5/3)

in the worst case. De Berg [10] gave BSPs of size O(n) for n “uncluttered” objects in
R
d for every d ∈ N in O(n log n) time.

Main result. The construction of [27] shows that, in general, we cannot expect
linear-size BSPs for sets of line segments in the plane. We may ask what is the
smallest BSP if n segments have few different orientations compared to n, which is
the case in many applications. Paterson and Yao [22] proved an O(n) upper bound on
the smallest BSP for orthogonal line segments. Dumitrescu, Mitchell, and Sharir [14]
improved this upper bound to 2n− 1 and gave a worst-case lower bound of 2n− o(n).
For more than two distinct directions (even for three different orientations) no better
bound was known than O(n log n). We have the following.

Theorem 1. If L is a set of n disjoint line segments in the plane with at most
k distinct directions, then there exists for L

(i) a BSP of size O(n log k), where every segment is cut at most O(log k) times;

(ii) an autopartition of size O(nk), where every segment is cut at most O(k)
times.

If k is a constant, Theorem 1 yields a linear upper bound, which is, up to a
constant factor, optimal. Interestingly enough, the bound of Theorem 1(i) is also
asymptotically tight for the lower bound construction of [27]: Here n line segments
have exp(Θ(logn/ log log n)) different directions, and the minimum-size BSP is as big
as Ω(n log n/ log log n) = Ω(n log k). For k = n, Theorem 1(i) returns the well-known
bound of O(n log n) due to Paterson and Yao [22].

Our proof is constructive. The algorithm of constructing a BSP of size O(n log k)
and an autopartition of size O(nk) uses O(n2) and O(n2k) times, respectively. For
k = 2, d’Amore and Franciosa [9] gave an O(n log n) time algorithm to find an au-
topartition of size at most 4n.

Definitions. We define the BSP and the autopartition in the Euclidean plane
only. It can be defined analogously in higher-dimensional Euclidean spaces (see, e.g.,
[12]). A binary space partition tree P for a set L of n disjoint line segments in the plane
is a rooted binary tree defined as follows. Each node u ∈ P corresponds to a convex
region Ru. The root of P corresponds to R

2 (or, equivalently, to the convex hull of all
segments). If int(Ru) is disjoint from the segments, then u is a leaf of P . Otherwise
Ru is partitioned into two convex regions Rv and Rw along a line, and the two children
v and w correspond to Rv and Rw, respectively. A BSP is an autopartition if each Ru,
where the interior of Ru intersects a segment of L, is dissected along a line spanned
by one of the segments intersecting int(Ru).

The size of a BSP P is the number of its leaves. We denote by R(P ) the set
of regions corresponding to the leaves of P . The regions in R(P ) give a convex
decomposition of the plane. Note that many different BSPs and autopartitions exist
for the same set L. The size of a BSP depends largely on the choice of the line
that splits Ru at each interior node u. In fact, we consider a BSP for L as a recursive
algorithm of building the tree from the root, where we choose a splitting line whenever
there is a node u for which int(Ru) intersects a segment and split Ru into two regions
Rv and Rw.

Proof technique and organization. Instead of the size of the BSP, we count



BSPs FOR SEGMENTS WITH FEW DIRECTIONS 309

the number c(P ) of cuts on line segments during a BSP P , i.e., the events where a
splitting line of an interior node v ∈ P crosses a segment � ∈ L. The number of
pieces of line segments is thus n+ c(P ). The size of every BSP P described below is
bounded by O(n + c(P )), since all our BSPs predominantly partition regions along
fragments of the given line segments, and every fragment must be contained in one
of the partitioning lines. Therefore, it is enough to show that there is a BSP (resp.,
autopartition) P with c(P ) = O(n log k) (resp., O(nk)) for n disjoint line segments
with k distinct directions.

We construct BSPs and autopartitions recursively. In the main loop, we apply
a BSP for the segments which have an endpoint on the boundary of the convex hull
conv(

⋃
L). Our Lemma 1 ensures that such a BSP cuts every line segment at most

O(log k) and O(k) times in the case of BSPs and autopartitions, respectively. Every
fragment of segments cut during one iteration will have an endpoint on the boundary of
a corresponding cell Rv, and we apply a BSP for those segments in the next iteration.
In section 2, we describe the main loop of our algorithm and the proof of Theorem 1.

The proof of Lemma 1 can be found in sections 5 and 6. The two proofs (for the
cases of BSP and autopartition) use recursion, too, and rely on simple partitioning
algorithms on convex sequences and cycles. We discuss these concepts in detail in
section 3.

2. Main theorem. First we introduce some notation. Fix a set L of disjoint line
segments in the plane. We denote by int(C) and ∂C the interior and the boundary,
respectively, of a planar set C. A cell is defined as a bounded closed convex region in
the plane. We avoid considering unbounded convex regions by associating the root of
every BSP to the convex hull conv(

⋃
L) of segments (instead of R

2). Consequently,
every node u of a BSP corresponds to a cell Ru.

For a cell C, let L(C) = {� ∩ int(C) : � ∈ L} \ {∅}, that is, the set of fragments
of line segments from L within the cell C. We use a simple observation throughout
this paper: If there is a segment � ∈ L(Ru) for some interior node u of the BSP
such that � connects two points on the boundary of the cell Ru, then we can split Ru
along � without creating any new cuts on segments. We apply such free cuts whenever
possible. If a segment � ∈ L is dissected into many pieces by consecutive cuts, we
only have to care about two pieces, the two endings of �, which are two disjoint line
segments in two nonoverlapping regions of the current convex partition.

We may assume that no segment of L(C) has two endpoints on the boundary of
C, since otherwise a free cut could split C into two cells. We partition L(C) into two
disjoint subsets: Let B(C) be the set of boundary segments, i.e., segments from L(C)
with exactly one endpoint on the boundary of C (and the other endpoint in int(C)).
Let I(C) be the set of interior segments, i.e., segments from L(C) which lie entirely
in the interior of C.

Suppose without loss of generality (w.l.o.g.) that none of the segments of L is
parallel to the x-axis of our coordinate system. Let B+(C) ⊂ B(C) (resp., B−(C) ⊂
B(C)) be the set of all segments � ∈ B(C) such that the extension of � beyond the
boundary ∂C is y-monotone increasing (resp., decreasing). Since the roles of B+(C)
and B−(C) are symmetric, the claims we formulate below for B+(C) hold equally for
B−(C), too.

The following lemma is the key to the proof of Theorem 1(i) and 1(ii). The proof
of this lemma is postponed until the last two sections.

Lemma 1. Assume that we are given a nonempty set L of disjoint line segments
in the plane with at most k distinct directions and a cell C.
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(i) There exists a BSP PC for B+(C) where every line segment of B(C) is cut at
most 3
log2 k�+8 times and every line segment of I(C) is cut at most 6
log2 k�+11
times.

(ii) There exists a BSP PC for B+(C) where every line segment of B(C) is cut
at most 4k + 4 times and every line segment of I(C) is cut at most 4k + 7 times.
Moreover, every region Ru corresponding to an internal node u ∈ PC is partitioned
along a segment of L(Ru).

The last sentence of Lemma 1(ii) does not say that the BSP PC is an autopartition
for B+(C): Possibly PC uses splitting lines spanned by segments of L(C) which are
actually not in B+(C). This constraint, however, will be used below to establish the
existence of an autopartition for L(C). A BSP P for L(C) is now constructed by the
following recursive algorithm.

Algorithm 1.

• Put i := 1 and R1 := {conv(⋃L)}.
• While there is a C ∈ Ri such that L(C) is nonempty, do

(1) If i is odd, then for every cell C ∈ Ri where B+(C) is nonempty, parti-
tion C applying Lemma 1 to B+(C).

(2) If i is even, then for every cell C ∈ Ri where B−(C) is nonempty,
partition C applying Lemma 1 to B−(C).

(3) In every cell C ∈ Ri where B(C) is empty but there is a segment � ∈
I(C), dissect C along �.

(4) Apply all possible free cuts in the resulting cells.
(5) Let Ri+1 be the set of all resulting cells, and put i := i+ 1.

Proof of Theorem 1. Algorithm 1 performs a BSP for L. If every cell is dissected
along a segment in the cell, then this BSP is an autopartition. From the point of view
of one line segment � ∈ L, the algorithm appears as follows: � is cut into pieces at
some step i
. (There is the possibility of cutting along � before it is cut otherwise. In
this case � is not cut at all by the procedure.) In step i
, � may be cut several times,
and its two endings fall into B+(D1) and B−(D2), where D1 and D2 are distinct cells
of Ri�+1. Assume w.l.o.g. that i
 is odd. In the even step i
 + 1, BSPs for B−(D1)
and B−(D2) are called. In this step, both endings may also be cut several times. D1

may be subdivided and the ending of the portion of � within B+(D1) belongs to some
B+(E1) for a E1 ⊆ D1, E1 ∈ Ri�+2. In the odd step i
 + 2, a BSP for B+(E1) is
called, but � may still be cut several times. Analogously, if i
 is even, both endings
may be cut at step i
+1, but only one of them can be cut in step i
+2. Thus, � may
be cut in at most three consecutive steps of Algorithm 1.

For part (i) of Theorem 1, we determine the maximal number of cuts during the
“life cycle” of a segment � from Lemma 1(i). In step i
, segment � is cut at most
6
log2 k� + 11 times. In step i
 + 1, either ending of the segment is cut at most
3
log2 k� + 8 times. Finally in step i
 + 2, its one surviving ending might be cut at
most 3
log2 k�+ 8 times. All in all, � is cut at most 15
log2 k�+ 35 times during the
algorithm.

For the proof of Theorem 1(ii), we use Lemma 1(ii). In step i
, segment � is cut
at most 4k + 7 times. In step i
 + 1, either ending of the segment is cut at most
4k + 4 times. Finally in step i
 + 2, its one surviving ending can be cut at most
4k+4 times. All in all, � is cut at most (4k+7)+ 3(4k+4) = 16k+19 times during
Algorithm 1.

The constants in the upper bounds on the total number of cuts per segment can
be slightly improved by a more careful analysis, namely, by applying the detailed
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�4
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Fig. 1. P (S) for a convex sequence S.

versions of Lemma 1(i) and 1(ii) as they appear in sections 5 and 6.

3. Sequences, cycles, and convex cycles. In this section, we define a few
simple BSP schemes using simple structures formed by boundary segments. These
partition algorithms will serve as building blocks in the proofs of Lemma 1(i) and 1(ii)
in the last two sections.

Let C be a cell and let L be a set of segments as above. For this section, consider
a fixed set X, X ⊂ B(C) of boundary segments. Recall that every segment � ∈ X
has one endpoint in int(C). Denote the other endpoint, � ∩ ∂C, by p(�). Extend �
towards the interior of C until it hits another segment of X or the boundary ∂C and
denote the endpoint of the extension by g(�). Notice that the extension of � may cross
segments of L(C) \X before hitting some other segment of X or ∂C; in other words,
the function g depends on X ⊂ B(C).

3.1. Sequences and cuts along sequences. We define a sequence as follows.
Definition 1. A sequence of X is a t-tuple (�1, �2, . . . , �t), t ∈ N, such that
– �1, �2, . . . , �t ∈ X,
– g(�i) ∈ �i+1 for i = 1, 2, . . . , t− 1, and
– g(�t) ∈ ∂C.

Definition 2. A sequence (�1, �2, . . . , �t) is convex if the point p(�1) together
with the points g(�i), i = 1, 2, . . . , t, form a convex (t+ 1)-gon (see Figure 1).

Consider a convex sequence S = (�1, �2, �3, . . . , �t) in X. We obtain a BSP by
recursively cutting along the segments of the sequence in reverse order starting from
�t and proceeding to �1.

Algorithm 2 (P (S)).
• Input: cell C, convex sequence S = (�1, �2, �3, . . . , �t).
• For j = 0, 1, 2, . . . , t− 1, do

Partition every region D, D ∩ �t−j �= ∅, along the line through �t−j.
Proposition 2. In P (S), no segment of X is cut, and every segment of L(C)\X

is cut at most twice.
Proof. Since the segments of L are disjoint, the only portion of the partitioning

lines p(�i)g(�i), i = t, t−1, . . . , 1, that may cut other segments is the extension of �i to
g(�i). All these portions lie along sides of the convex polygon p(�1)g(�1)g(�2) . . . g(�t).
A convex polygon crosses every line segment at most twice.

Let T (P (S)) be the union of all the segments along which P (S) made a dissection
(i.e., the union of all extended segments p(�i)g(�i), i = 1, 2, . . . , t). Note that T (P (S))
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b2
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c4
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c6

Fig. 2. Three cycles (a1, a2, a3), (b1, b2, b3), and (c1, c2, c3, c4, c5, c6) give rise to four convex
cycles (a1, a2, a3), (b1, b2, b3), (c4, c5, c6), and (c6, c1, c2). Segments of cycles are depicted by bold
lines. Segments of L(C) \X are not indicated.

is a connected set.

3.2. Cycles and convex cycles.

Definition 3. A cycle of X is a t-tuple (�1, �2, . . . , �t), t ∈ N, such that

– �1, �2, . . . , �t ∈ X,
– g(�i) ∈ �i+1 for i = 1, 2, . . . , t− 1, and
– g(�t) ∈ �1.

Figure 2 exhibits three cycles. Every segment of X may appear in at most one
cycle. The concept of convex cycle, defined below, is not a subclass of cycles: The
extension of one segment in a convex cycle does not necessarily hit the next element
of the cycle, but all segments are arranged along the sides of a convex polygon.

Definition 4. A convex cycle of X is a t-tuple (�1, �2, . . . , �t) such that

– �1, �2, . . . , �t ∈ X,
– g(�i) ∈ �i+1 for i = 1, 2, . . . , t− 1,
– the extension of �t hits the line through �1 at a point a ∈ C but does not cross

any segment of X until it reaches a, and
– g(�1)g(�2) . . . g(�t−1)a forms a convex t-gon.

In Figure 2, the cycles (a1, a2, a3) and (b1, b2, b3) are convex cycles. The third cycle
(c1, c2, c3, c4, c5, c6) is not a convex cycle but contains two convex cycles, (c4, c5, c6)
and (c6, c1, c2), which are indicated by their striped interior convex regions.

Proposition 3. For any cycle (�1, �2, . . . , �t), there is q ∈ [1, t − 2] and r ∈
[q + 2, t] such that (�q, �q+1, . . . , �r) is a convex cycle.

Proof. Consider the polygonal curve γ = (p(�1), g(�1), g(�2), . . . , g(�t)). If γ has
no self-crossing, then S is a convex cycle.

Let (p(�1), g(�1), g(�2), . . . , g(�r−1), w) ⊂ γ be the longest prefix curve without
self-crossing. That is, w denotes the common point of two segments, say, g(�q)g(�q+1)
and g(�r−1)g(�r), q + 1 < r − 1. We show that (�q, �q+1, . . . , �r) is a convex cycle.
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Fig. 3. The notation on a convex cycle S (left) and P 0(S, 4) (right).

g(�i) ∈ �i+1 for i = q, q + 1, . . . , r − 1; the extension of �r hits the line through �q at
point w; but it does not hit any segment of X before. Extend every segment �i for
i = 1, 2, . . . , r − 1 to g(�i), and �r to w. We obtain a convex partition of C in which
one face is (g(�q), g(�q+1), . . . , g(�r−1), w); therefore it is a convex polygon.

We observe here a useful property of set B+(C) with respect to cycles.

Proposition 4. B+(C) contains no cycle.

Proof. Suppose, to the contrary, that (�1, �2, �3, . . . , �t) is a convex cycle and,
furthermore, �i ∈ B+(C) for every i = 1, 2, . . . , t. Let w be the vertex of the polygon
g(�1)g(�2) . . . g(�t−1)a with the largest y-coordinate. Point w is the intersection of two
lines through, say, �i and �i+1. Either the extension of �i or that of �i+1 beyond the
boundary ∂C is not y-monotone increasing, a contradiction.

Consider a convex cycle S = (�1, �2, �3, . . . , �t) of X. Extend every �i for i =
1, 2, . . . , t− 1 to g(�i), and �t to a. The extended segments of S partition the cell C
into t + 1 convex regions S∗, S1, . . . , St. One of them, S∗ = g(�1)g(�2) . . . g(�t−1)a,
lies completely in the interior of C (Figure 3, left).1 Clearly, int(S∗) is disjoint from
all segments of X. Every Si, i = 1, . . . , t, has a common boundary with C. We may
choose the notation of Si, i = 1, 2, . . . , t, such that Si is bounded by portions of the
extension of segments �i and �i+1, and by ∂C.

3.3. Cuts along convex cycles. Consider a convex cycle S = (�1, �2, �3, . . . , �t).
A BSP P 0(S, i), i = 1, . . . , t, can be obtained in the following way (see Figure 3, right).

Algorithm 3 (P 0(S, i)).
• Input: cell C, index i, convex cycle S = (�1, �2, �3, . . . , �t).
• For j = 0, 1, 2, . . . , t− 1, do

Partition every region D, D ∩ �i−j �= ∅, along the line through �i−j.
Denote by π(S, i) the set of regions Si, i = 1, 2, . . . , t, pierced by the line through

�i ∈ S, and let π̄(S, i) = {S1, S2, . . . , St}\π(S, i). For instance, in Figure 3, π(S, 4) =
{S1, S5}.

Remark 1. For any convex cycle S = (�1, �2, �3, . . . , �t) and any index i, 1 ≤ i ≤ t,
we have Si−1 ∈ π̄(S, i) and Si ∈ π̄(S, i).

Proposition 5. The regions of π̄(S, i) are elements of the convex subdivision
R(P 0(S, i)).

1Here and in what follows, arithmetic on the indices of �1, �2, . . . , �t and S1, S2, . . . , St is meant
mod t, that is, t+ 1 stands for 1.
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Fig. 4. P 0(S, 4) (left) and P 1(S, 4) (right). Dissection lines are dashed.

Proof. Every region Sj , j = 1, 2, . . . , t, is determined by the cuts along �j+1 and
along �j to g(�j). Every segment �j of S, except for �i, is extended to g(�j) only. If
Sj ∈ π̄(S, i), then the partitioning lines cut Sj out along its boundaries.

Proposition 6. In the BSP P 0(S, i),
- every segment of the convex cycle S is cut at most once,
- no segment of X in a region of π(S, i) is cut,
- every segment of X in a region of π̄(S, i) is cut at most twice, and
- every segment of L(C) \X is cut at most four times.

Proof. A segment in the cycle S can only be cut by the line through �i. By
Proposition 5, a segment lying in a region of π(S, i) cannot be cut. A segment
entirely in a region of π̄(S, i) can be cut by the line through �i. It can also be cut by
the line through �t: If the line through �i separates �1 and g(�1), then the dissection
along �t beyond the point a may cut again into the region S1 (see, e.g., Figure 4,
left). A segment � ∈ L(C) \X may be cut by the lines through �i and �t and by other
dissecting lines located along the convex polygon S∗.

In Algorithm 6 in section 6, we wish to have at most one cut on segments of X
within the regions of π̄(S, i); therefore, we need a slightly modified version of P 0(S, i),
as follows.

Algorithm 4 (P 1(S, i)).
• Input: cell C, index i, convex cycle S = (�1, �2, �3, . . . , �t) such that the line

through �i does not cross the segment �1 but crosses the extended segment
p(�1)g(�1).

• For j = 0, 1, 2, . . . , i− 1, do
Partition every region D, D ∩ �i−j �= ∅, along the line through �i−j.

The line through �i intersects the segments �i+1, �i+2, . . . , �t, because p(�i+1),
p(�i+2), . . . , p(�t), and p(�1) are all on the same side of �i. Therefore the portions of
these segments between ∂C and the line through �i give rise to free cuts once the BSP
P 1(S, i) is completed.

The two main differences between P 0(S, i) and P 1(S, i) are that (1) P 0(S, i)
dissects along all segments of S while P 1(S, i) does not dissect along �i+1, �i+2, . . . , �t;
(2) P 0(S, i) cuts segments within a region of π̄(S, i) at most twice, but P 1(S, i) cuts
them at most once.

Proposition 7. In the BSP P 1(S, i),
- every segment of the convex cycle S is cut at most once,
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wF

∂FC

Fig. 5. Segments of F are bold, segments of F ∗ are thin, and segments of L(C) \ F ∗ are dashed.

- no segment of X in a region of π(S, i) is cut,
- every segment of X in a region of π̄(S, i) is cut at most once, and
- every segment of L(C) \X is cut at most three times.

4. More preparations. In sections 5 and 6, we describe two binary space par-
titioning algorithms for B+(C) to prove Lemma 1(i) and 1(ii). In intermediate steps
of the partitionings in a subcell D ⊂ C, the set B+(D) may contain strictly more
elements than F = {� ∩ D : � ∈ B+(C)} \ {∅} (i.e., the set of endings of segments
of B+(C) in D): Although F ⊆ B+(D) holds, the endings of interior segments of C
may also be in B+(D). In the algorithms below, we wish to treat endings of segments
I(C) similarly to segments of I(D) up to a certain step, and later we wish to treat
them as segments B(D). We determine how to handle segments of B(D) \ F by the
set F ∗ defined below.

For any F ⊂ B+(C), we define F ∗ as follows. Let wF be the vertex of C with
the largest y-coordinate. Now let ∂FC ⊂ ∂C be the shortest polygonal path along
the boundary ∂C of C containing all endpoints of F on ∂C, but not containing wF .
Let F ∗ be the set of segments in B(C) \F which have one endpoint in ∂FC (and the
other endpoint in int(C)). (See Figure 5.)

Proposition 8. Given F ⊂ B+(C), if B(C) \ F ∗ contains no convex cycle,
then there is a convex sequence S = (�1, �2, . . . , �t), t ∈ N, of B(C) \ F ∗ such that
p(�1) ∈ ∂C \ ∂FC or g(�t) ∈ ∂C \ ∂FC.

Proof. If there is a segment � ∈ F such that g(�) is in ∂C \∂FC, then let S = (�).
Assume that g(�) �∈ ∂C \ ∂FC for any � ∈ F . Let X = B(C) \ F ∗.

Let p(r1) and p(s1) be the first and last points of the curve ∂FC (with possibly
p(r1) = p(s1) if |F | = 1). Suppose w.l.o.g. that the y-coordinate of p(s1) is greater
than or equal to that of p(r1). Consider the sequence S = (s1, s2, . . . , st) starting
with s1. Notice that if si ∈ F for the indices i = 1, 2, . . . , j, then the y-coordinates
of p(s1), g(s1), g(s2), . . . , g(sj) are strictly increasing. If g(sj) is on the boundary of
C (i.e., t = j), then it is in ∂C \ ∂FC by the choice of s1. Therefore, the sequence
starting with s1 must contain a segment sq ∈ X \ F , j < q ≤ t. Let sq be the last
segment of S from the set X \ F . Finally let t′ = t− q + 1 and let S ′ be the post-fix
sequence (sq, sq+1, . . . , st) of S.

We know that p(sq) ∈ ∂C \ ∂FC; now we show that S ′ is convex. Denote the
elements of S ′ by (�′1, �

′
2, . . . , �

′
t′). Every sequence of one or two segments is convex, so

assume that t′ ≥ 3. For every segment � ∈ B(C), we distinguish a left and a right side
such that the closed curve on the boundary of C oriented in counterclockwise order
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traverses � from left to right. We may suppose w.l.o.g. that the extension of �′1 hits
the left side of �′2. If the extension of every �′i, i = 2, 3, . . . , t′ − 1, hits the left side of
�′i+1, then S′ is convex. Suppose, to the contrary, that j ∈ {2, 3, . . . , t′−1} is the first
index such that �′j hits the right side of �′j+1. The polygonal curve p(�′j)g(�

′
j)p(�

′
j+1)

dissects C into two parts: C1 and C2. One part, say C1, contains �′1 ∈ X \ F and
all of the segments �′1, �

′
2, . . . , �

′
j−1, because X contains no convex cycle. Since both

�′j and �′j+1 are in F and g(�′t′) lies in ∂C2 ∩ ∂C, the common boundary of C and
C1 belongs to ∂FC. Therefore p(�′1) ∈ ∂FC, which in turn implies that �′1 is in F , a
contradiction.

Proposition 9. Given a cell C, a set of segments L, and a nonempty set F ⊂
B+(C), at least one of the following three statements holds.

(a) There is a convex sequence S = (�1, �2, . . . , �t), t ∈ N, in B(C)\F ∗ such that
p(�1) ∈ ∂C \ ∂FC or g(�t) ∈ ∂C \ ∂FC.

(b) There is a convex cycle S = (�1, �2, . . . , �t), t ∈ N, in B(C) \ F ∗, and there
is an index i, 0 ≤ i ≤ t, such that F has no element in regions of π(S, i).

(c) There is a convex cycle S = (�1, �2, . . . , �t), t ∈ N, in B(C) \ F ∗ where
�i, �i+1, . . . , �j ∈ F , �j+1, �j+2, . . . , �i−1 �∈ F , and the supporting line of �j
intersects p(�i−1)g(�i−1).

Proof. If X contains no convex cycle, then (a) holds by Proposition 8. Suppose
that X contains a convex cycle S = (�1, �2, . . . , �t).

If there is an index i such that every segment of F is either part of the cycle
S or within one of two regions Si and Si+1, then (b) holds by Remark 1. Assume
that segments of F are in at least three consecutive regions Si−1, Si, Si+1, . . . , Sj ,
where j �= i − 1, i. Consequently, �i, �i+1, . . . , �j ∈ F and �j+1, �j+2, . . . , �i−1 �∈ F .
Now, if the supporting line of �j does not intersect p(�i−1)g(�i−1), then π(S, j) ⊂
{Sj+1, Sj+2, . . . , Si−2}. Thus F has no element in regions of π(S, j) and (b) holds.
Otherwise (c) holds.

Proposition 9 states that at least one of (a), (b), and (c) holds, but it does not
provide us with the convex sequence or convex cycle S. It is easy to find an S by
shooting a ray from an initial segment of X and iterating ray shooting queries until we
hit the boundary of the cell or hit a previous (extended) segment. In the latter case,
we identify a convex cycle, which necessarily satisfies (a) or (b). An algorithm finding
any one convex sequence or cycle S may require a linear number of ray shooting queries
among the segments of X, even if S consists of a small number of segments. Here,
we do not elaborate on how to find an appropriate sequence or cycle S, since in the
main partition algorithms (Algorithms 5 and 6 below) we need to find an appropriate
S possibly Ω(n) times, and we refer to a data structure appropriate for that many
ray shooting queries at the end of section 5.

5. BSP for boundary segments. We demonstrate Lemma 1(i) in the following
refined formulation (Lemma 10), which is necessary for the induction step in our proof.

Definition 5. We say that the directions of a subset of segments F ⊂ B+(C)
are consecutive if the directions are consecutive in the linear order determined by the
minimal angle α, 0 < α < π, made with the x-axis. (Recall that none of the segments
of L are horizontal.)

Lemma 10. Let L and C be as in Lemma 1. Consider a nonempty set F ⊂ B+(C)
such that the directions in F belong to f consecutive directions. There is a BSP for
F such that
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1. every � ∈ B(C) \ F ∗ is cut at most 3
log2 f�+ 3 times,
2. every � ∈ F ∗ is cut at most 3
log2 f�+ 8 times,
3. every � ∈ I(C) is cut at most 6
log2 f�+ 11 times.

We prove Lemma 10 by giving an explicit partition algorithm (Algorithm 5)
and showing that the number of cuts during that algorithm is within the bounds of
Lemma 10. Throughout the remainder of this paper, we use the shorthand notation
F ∩D = {� ∩ int(D) : � ∈ F} \ {∅} for the portions of the segments of F ⊂ B+(C) in
a subcell D ⊂ C.

Algorithm 5. Input: [C,L(C), F ] where C is a cell, L is a set of segments, and
F ⊂ B+(C), F �= ∅.

(1) Let X := B(C) \ F ∗.
(2) Find a convex sequence or a convex cycle S as in Proposition 9.
(3) In the three cases of Proposition 9 proceed as follows:

(a) Apply P (S) for the convex sequence S.
(b) Apply P 0(S, i) for the convex cycle S.
(c) If the segments of F crossed by p(�i)p(�i−1) belong to at most 
f/2�

consecutive directions,
– then dissect C along p(�i)p(�i−1) and apply P 0(S, j);
– else dissect C along p(�j)p(�i−1) and apply P 0(S, j − 1).

(4) Apply all possible free cuts.
(5) Call recursively Algorithm 5 for [D,L(D), F ∩ D] in every resulting cell D

where F ∩D is nonempty.

In step (3)(c), the line segment p(�i)p(�i−1) dissects the region Si−1 and the
line segment p(�j)p(�i−1) dissects the regions Sj , Sj+1, . . . , Si−2. The line through �j
separates p(�i−1) from g(�i−1) and from the region S∗. This implies that the segment
p(�j)p(�i−1) does not intersect S∗ but crosses all the segments �j+1, �j+2, . . . , �i−1.
Therefore S remains a convex cycle after a dissection along either p(�i)p(�i−1) or
p(�j)p(�i−1), so P 0(S, j) and P 0(S, i) are defined.

Proof of Lemma 10. We proceed by induction on |L(C)|. Our lemma clearly holds
for |L(C)| = 1. Suppose that it holds for every |L′(C ′)| < |L(C)|. Put X = B(C)\F ∗.
We show that Algorithm 5 provides a required BSP.

Notice that segments are cut only in step (3) of Algorithm 5. The free cuts in step
(4) do not increase the number of cuts on segments. We use one common argument
for cases (a) and (b); while for case (c) we use another argument. In the first two
cases, the partition P (S) (and, resp., P 0(S, i)) has, as we show below for both cases,
the following two properties:

(α) If a segment � ∈ X is cut, then it is cut at most twice and is either part of
S or its ending is in a subcell D of R(P (S)) (or, resp., R(P 0(S, i))) in which
F ∩D is empty.

(β) If a segment � ∈ I(C) ∪ F ∗ is cut, then it is cut at most four times and its
ending(s) are in sets B(D) \ (F ∩ D)∗ in the corresponding subcell(s) D of
R(P (S)) (or, resp., R(P 0(S, i))).

We prove properties (α) and (β) below, but let us first show that they establish our
lemma: If a segment of X is cut, then it is cut at most twice and its ending is cut no
more in the induction step by (α). If a segment of F ∗ is cut, then it is cut at most
four times and its ending will be cut, by (β) and by induction, at most 3
log2 f�+ 3
more times, which totals to at most 3
log2 f� + 7 cuts. If a segment of I(C) is cut,
then it is cut at most four times and either of its endings will be cut, by (β) and by
induction, at most 3
log2 f� + 3 more times, which totals to at most 6
log2 f� + 10
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Fig. 6. Case (b) in Algorithm 5 with i = 2. Segments of F are bold.

cuts.
Case (a). By Proposition 2, no segment of X = B(C) \ F ∗ is cut, so (α) follows.

We need to prove (β). (α) implies that in any subcell D ∈ R(P (S)) the common
point of an � ∈ F ∩D and ∂D is necessarily on ∂FC. Furthermore, a common point
of an � ∈ I(C)∪F ∗ cut by P (S) and ∂D is on T (P (S)). Therefore to prove (β), it is
enough to show that ∂FC ∩ ∂D is a connected curve for every subcell D ∈ R(P (S)).
But ∂FC ∩ ∂D is necessarily connected, since T (P (S)) is connected and contains at
least one point (i.e., p(�1) or g(�t)) from ∂C \ ∂FC.

Case (b). Every segment of F either is part of the convex cycle S or lies in a
cell Sj , Sj ∈ π̄(S, i), of R(P 0(S, i)). Therefore, by Propositions 5 and 6, a segment
of F can be cut (at most once) only if it is in the cycle S. By Proposition 5, if any
�′ ∈ B(C) \ (F ∪ F ∗) is cut, then its ending must lie in some region Sj , j ∈ π(S, I).
This proves (α). Finally, as in case (a), (β) follows from the fact that T (P 0(S, i)) is
connected and, by Proposition 4, contains at least one point from ∂C \ ∂FC. (See
Figure 6 for illustrations.)

Case (c). Observe that the sets of directions of segments of F which cross the
segments p(�i)p(�i−1) and p(�j)p(�i−1), respectively, are disjoint: Segments of B+(C)
cannot cross both p(�i)p(�i−1) and p(�j)p(�i−1). Indeed, the directions2 of rays along
segments of X crossing both p(�i)p(�i−1) and p(�j)p(�i−1) are between the direc-

tions of
−−−−−−−−→
p(�i−1)p(�i) and

−−−−−−−−→
p(�i−1)p(�j). The opposite of these directions lies between−−−−−−−−→

p(�i)p(�i−1) and
−−−−−−−−→
p(�j)p(�i−1), which is a proper subset of the directions between

−→
�i

and
−→
�j . Recall that the directions between the directions of

−→
�i and

−→
�j are among

the consecutive directions of F ⊂ B+(C). Therefore segments of X with opposite
directions must belong to B−(C). (See Figure 7 for an illustration.)

In step (3)(c) of Algorithm 5, if the segments of F crossed by p(�i)p(�i−1) belong
to at most 
f/2� consecutive directions, then C is dissected along p(�i)p(�i−1); if the
segments of F crossed by p(�j)p(�i−1) belong to at most 
f/2� consecutive directions,
then C is dissected along p(�j)p(�i−1). Suppose w.l.o.g. that the first case is called and
our algorithm dissects C along p(�i)p(�i−1) and applies P 0(S, j). Let R(Q) denote the
set of the resulting subcells. Instead of properties (α) and (β), we have the following
two properties:

(γ) If a segment of X is cut, then it is cut at most three times and either is part

2The direction α ∈ [0◦, 180◦) of a line corresponds to two opposite directions, α and α + 180◦,
of rays.
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Fig. 7. Example for case (c), with a convex cycle highlighted and with i = 4 and j = 1.

of S or its ending is in a subcell D ∈ R(Q) in which F ∩D belongs to at most

f/2� consecutive directions.

(δ) A segment of F ∗ ∪ I(C) can be cut in two possible ways:
– Either it is cut at most five times and each of its endings is in some B(D) \
(F ∩D)∗, D ∈ R(Q); or
– it is cut at most three times and one of its ending is in (F ∩D)∗, D ∈ R(Q),
where segments of F ∩D belong to at most 
f/2� consecutive directions, and
a second ending (for segments of I(C)) is in B(D′) \ (F ∩D′)∗, D′ ∈ R(Q).

Let us first show that (γ) and (δ) establish our lemma: If a segment of X is cut, then
it is cut at most three times. If f > 1, then its ending is further cut by induction at
most 3
log2(f/2)�+ 3 more times, which totals to 3
log2 f�+ 3 cuts. If a segment of
F ∗ is cut, then either it is cut at most five times and its ending is cut by induction at
most 3
log2 f� + 3 more times (this totals to 3
log2 f� + 8 cuts) or it is cut at most
three times and its ending is cut by induction at most 3
log2(f/2)� + 8 more times
(this totals to 3
log2 f�+ 8 cuts). If a segment of I(C) is cut, then either it is cut at
most five times and both its endings are cut at most 3
log2 f� + 3 more times (this
totals to 6
log2 f� + 11 cuts) or it is cut at most three times and one ending is cut
at most 3
log2 f�+3 more times and the other is cut at most 3
log2(f/2)�+8 times
(this totals to 6
log2 f�+ 11 cuts, too).

Now we show (γ). Elements of X can be cut once by p(�i−1)p(�i) and at most
twice by P (S, j). In particular, every segment of the convex cycle S can be cut at most
twice only, and no segment ending remains. If a segment of X\S is cut by p(�i−1)p(�i),
then its ending is necessarily in a cell D ∈ R(Q) where all segments of F ∩ D are
cut by p(�i−1)p(�i); therefore F ∩D belongs to at most 
f/2� consecutive directions.
According to Proposition 6, P 0(S, j) can further dissect segments of X which lie in
regions of π(S, j). Since only Si−1 ∈ π(S, j) contains segments of F , the BSP P 0(S, j)
can dissect segments of X already cut by p(�i−1)p(�i). (Similarly if P 0(S, j − 1) is
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applied, we may assure that g(�j−1) ∈ p(�i−1)p(�j); hence the line through �j−1 cuts
segments of F whose directions belong to 
f/2� consecutive directions.)

For (δ), notice that an ending of a segment � ∈ F ∗ ∪ I(C) is in (F ∩D)∗ for some
subcell D ∈ R(Q) only if its endpoint on ∂D is between two endpoints of two endings
from F ∩ D which are cut by p(�i−1)p(�i) or by P 0(S, j). If this happens, then � is
cut at most once by p(�i−1)p(�i) and at most twice more only by P 0(S, j), and the
second ending of an � ∈ I(C) belongs to B(E)\((F ∩E)∪(F ∩E)∗) for an E ∈ R(Q).
Otherwise � ∈ F ∗∪I(C) can be cut five times: once by p(�i−1)p(�i) and four times by
P 0(S, j), but the ending(s) do not belong to (F ∩D)∗ in the corresponding subcell(s)
D ∈ R(Q).

Our proof can easily be turned into an O(n2) time and O(n2) space algorithm.
We expect that this complexity is not optimal. Our algorithm takes O(n2) time
because finding a convex cycle S ⊂ X can use up to a linear number of ray shooting
queries (even if S consists of a constant number of segments), and we cannot use the
information from this computation in the induction steps, as many new elements are
inserted into X for the subproblems. Each time a new segment ending � is inserted
into X, not only do we need to compute the segment its extension hits, but we also
need to make updates on every segment of X whose extension now hits � with respect
to X. Computing the dissections alone could be done in O(n4/3+2εk2/3+ε) time by ray
shooting techniques of, e.g., Agarwal [1] and Agarwal and Matoušek [3]. It can offer
a space-time trade-off, but the updates on the structure of X would require O(n3)
queries.

Once we allow for an O(n2) time and space algorithm, the full arrangement of
the n lines through the line segments is at hand. It can be computed in O(n2)
time and space by the incremental algorithm of Chazelle, Guibas, and Lee [5] (see
also [16, 15]). This data structure allows us to insert new lines (in particular, new
elements of X and the dissecting lines which are not supporting lines of any segment)
into the arrangement in linear time.

Using the notation introduced in the beginning of this section, we show the life
cycle of a segment � ∈ L, as follows. A segment can, at first, be in I(C). If � is cut
into pieces, then the two endings are in B+(C1) and B−(C2) (either in some set F ∗

or in B(C) \ F ∗). Next, the two endings move independently into X and eventually
to F . We can keep track of these events for each segment ending, and there is only a
constant number of events for each segment.

We first compute the arrangement of the n supporting lines of the segments of L
in O(n2) time. Then we compute the convex hull conv(

⋃
L), the cell corresponding

to the root of our BSP tree. We build a BSP by our Algorithm 1 while maintaining
the sets L(C), I(C), B+(C), and B−(C) for each cell corresponding to a leaf of our
current BSP tree. The total cost of maintaining L(C) for all leaves is O(n2), since the
cell containing a segment endpoint can be dissected at most linearly many times. In
each round of Algorithm 1, we need to recompute X and the function g(�) for every
segment � ∈ X: For each segment ending we can find the hitting point of its extension
in linear time using the full arrangement. A segment ending can occur in X in at
most two more rounds of Algorithm 1. In the arrangement of the segments, we label
each edge maintaining the information whether it is

– a portion of a segment in L(C), and in particular belongs to I(C), B+(C),
or B−(C);

– part of a segment ending in F , F ∗, or X;
– part of the boundary of a cell C; and
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– part of an extension of a segment of X to another segment of X or to ∂C.

Thus we can maintain a pointer from each segment ending in X to the point hit
by its extension at another element of X or at ∂C. When a segment of � ∈ I(C) is
cut and its ending is inserted into X in step (1) of Algorithm 5, we can update the
information on the extensions of elements of X in linear time: at each intersection of �
with an extension of a previous segment �′ ∈ X, we simply update the pointer of �′ to
� and delete the labels of the edges on the line through �′ beyond the intersection with
�. The total time complexity of maintaining hitting relations within X amounts to
O(n2). Relying on these pointers, we find either a convex cycle or a convex sequence
complying with one of the three cases of Proposition 9 in linear time (that is, we can
find a sequence or cycle SC in each cell C ∈ Ri in O(|L(C)|) time, which totals to
O(n) time for all cells of the current partition). In either case, we dissect a cell C into
subcells along the convex cycle or convex sequence and eliminate at least one segment
ending from X. The total time spent on searching cycles is therefore O(n2), too.

The space complexity can be reduced to O(n) by allowing O(n2 log n) time. For
each segment � ∈ L we maintain the information if it is in the interior of any cell of
the current partition or if � is already dissected and its two endings belong to B+(C1)
and B−(C2) and the middle of � is the boundary of some cells of the current partition.
Once a segment � is dissected, we also maintain the two extensions of the endings to
another segment of X or to the boundary of a cell. This involves a ray shooting query
for the first time. We invest O(n log n) time into every ray shooting query: We spend
O(n) time on computing the intersection with all other supporting lines of segments
and cutting lines and O(n log n) time on sorting the intersections. When a segment
ending � is inserted into X, we can update the information on the extensions of other
segments of X (which might hit � from now on) in O(n log n) time, too, based on the
sorted list of intersections of � with extensions of other segments in X. Similarly, we
use O(n log n) time for a dissection along a segment. As each segment ending implies
one ray shooting, one insertion into X, and one cutting, the total time amounts to
O(n2 log n).

6. Autopartition for boundary segments. In this section , we formulate and
prove a stronger version of Lemma 1(ii). The proof follows the scheme of section 5.

Lemma 11. Let C and L be as in Lemma 1. Consider a nonempty set F ⊂ B+(C)
such that the directions in F belong to f consecutive directions. There is a BSP P
for F such that

1. every segment of F is cut at most 2f times,
2. every segment of F ∗ is cut at most 4f + 4 times,
3. every segment of I(C) is cut at most 4f + 7 times,
4. every segment of B(C) \ (F ∪ F ∗) is cut at most once.

5. In particular, if an ending of a segment � ∈ F ∗ or � ∈ I(C) is in a common
subcell with an ending of segment of B(C) \ (F ∪ F ∗), then � is cut at most
5 or 7 times, respectively.

6. Every region corresponding to an internal node v ∈ P is dissected along a
segment of L(Rv).

We prove Lemma 11 by giving an explicit partition algorithm (Algorithm 6),
which is a modified version of our Algorithm 5. Specifically, Algorithm 6 has new
elements only in step (3)(c). The proof of Lemma 11 is based on the same case
distinction as the proof of Lemma 10. The only difference is in the argument for case
(c), where we are bound to use dissections along segments of L(C). For the proof of
Lemma 10, we applied induction to sets F ∩D in the subcells of C. When segments
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of F ∩D were cut in step (3)(c), we ensured that their endings belonged to at most

f/2� consecutive directions. If we had to use autopartitions, we were unable to find
a scheme which halved the number of consecutive directions. We can only ensure that
if the segments of F ∩ D are cut in one loop, then the number of their consecutive
directions decreases by a constant.

Algorithm 6. Input: [C,L(C), F ] where C is a cell, L is a set of segments, and
F ⊂ B+(C), F �= ∅.

(1) Let X := B(C) \ F ∗.
(2) Find a convex sequence or a convex cycle S as in Proposition 9.
(3) In the three cases of Proposition 9 proceed as follows:

(a) Apply P (S) for the convex sequence S.
(b) Apply P 0(S, i) for the convex cycle S.
(c) (i) If the line through �i−1 does not cross the segment �1 but crosses

the extended segment p(�1)g(�1), then apply P 1(S, i− 1); else apply
P 0(S, i− 1).

(ii) Apply all possible free cuts.
(iii) In every resulting cell D, let Fx(D) denote the segments of F ∩ D

whose endpoint lies on ∂FC.
(iv) Call recursively Algorithm 6 for [D,L(D), Fx(D)] in every cell where

Fx(D) �= ∅.
(4) Apply all possible free cuts.
(5) Call recursively Algorithm 6 for [D,L(D), F (D)] in every resulting cell D

where F (D) is nonempty.

Proof of Lemma 11. We proceed by induction on |L(C)|. Our lemma clearly
holds for |L(C)| = 1. Suppose that it holds for every |L′(C ′)| < |L(C)|. For cases (a)
and (b), we can repeat the argument of Lemma 10 with the parameters in 1–4 of our
Lemma 11. We only need to remark that properties 5 and 6 of Lemma 11 hold by
induction.

Let us recall the setting in case (c): We assume that we are given a cell C, a
set of segments L, and a subset F ⊂ B+(C) of the boundary segments, and that
X = B(C) \ F ∗. We assume, furthermore, that there is a convex cycle S ⊂ X and
that there are at least two common segments of S and F . We denote the common
segments by �i, �i+1, . . . , �j appearing in this (cyclic) order in S. The supporting
line of �j intersects p(�i−1)g(�i−1), which implies that the direction of the line �i−1 is
between the consecutive directions of F between �i and �j . (See Figure 8.)

In step (3)(c)(i) of Algorithm 6 a BSP P (S, i − 1) is applied. Let s denote the
line through �i−1. Line s may cut the regions in π(S, i − 1), and π(S, i − 1) ⊆
{Si, Si+1, . . . , Sj−1}. By Proposition 1, it cannot cut any segment of B(C)\(F ∪F ∗).

In every subcell D ∈ R(P (S, i − 1)), we partition the endings of the segments
in F ∩ D into two sets: Let Fs(D) be the subset of endings of segments cut by s,
and let Fx(D) be the subset of segments not cut by s. Observe that segments in
Fs(D) have at most f − 1 consecutive directions: The direction of s cannot occur in
Fs(D). Observe, furthermore, that Fs(D)∗ and Fx(D)∗ are disjoint in every subcell
D ∈ R(P (S, i − 1)). Elements of Fx(D)∗ all belong to F ∗. Elements of Fs(D)∗ are
endings of segments from F ∗ or I(C) cut by the line s.

In step (3)(c)(iv) of Algorithm 6, we obtain a BSP PD for Fx(D) in each subcell
D ∈ R(P (S, i − 1)). These BSPs jointly partition C into a collection E of subcells.
In step (5) of Algorithm 6, a BSP for (F ∩D) ∩ E (or, for short, F ∩ E) is applied
in each subcell E ∈ E , D ∈ R(P (S, i − 1)). Notice that F ∩ E = Fs(D) ∩ E since a
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Fig. 8. Example for case (c), with a convex cycle highlighted and with i = 1 and j = 4.

BSP for (Fx ∩D) was already applied. For brevity, we refer to the three partitioning
schemes as P (S, i − 1), Px, and Ps. (The last two recursive calls can be carried out
in parallel in the nonoverlapping subcells.)

We check one by one statements 1–5 of our lemma. Statement 6 follows automat-
ically.

1. If a segment �1 ∈ F is not cut by s, then it belongs to Fx(D), D ∈ R(P (S, i−1))
and is cut at most 2f times by induction. If �1 ∈ F is cut by s, then Px (called in
step (3)(c)(iv) for Fx(D) in a subcell D ∈ R(P (S, i− 1))) cuts it at most once more,
and Ps (by induction to Fs(E), E ⊂ D) cuts it at most 2(f − 1) times.

2. A segment �2 ∈ F ∗ is cut at most 4 times by P (S, i − 1) by Propositions 6
and 7. If the ending of �2 is in Fs(D)∗, D ∈ R(P (S, i − 1)), then it is cut at most
once by Px and at most 4(f − 1) + 4 times by Ps. This totals to 4f + 4 cuts. If the
ending of �2 is in Fx(D)∗, D ∈ R(P (S, i− 1)), then it was not cut by P (S, i− 1) and
it is cut at most 4f + 4 times by Px. It can be cut once more by Ps, but then by
Lemma 11(5) it was cut at most 5 times by Px; this totals to at most 6 cuts. Otherwise
if �2 ∈ F ∗ is cut by P (S, i− 1) and its ending is in B(D) \ (Fx(D)∪Fx(D)∗) for some
D ∈ R(P (S, i − 1)) and in B(E) \ ((Fs ∩ E) ∪ (Fs ∩ E)∗), E ⊆ D, then it is cut at
most 4 times by P (S, i− 1), at most once by Px, and at most once by Ps, that is, at
most 6 times in total.

3. A segment �3 ∈ I(C) is cut at most 4 times by P (S, i− 1). Note that if �3 is
cut by s, then at most one of its endings may be in Fs(D)∗, D ∈ R(P (S, i − 1)). If
one ending is actually in Fs(D)∗, then this ending is cut at most once by Px and at
most 4(f − 1) + 4 times by Ps, while the other ending is cut at most once by both
Px and Ps. This implies at most 4f + 7 cuts on �3. If neither ending is in Fs(D)∗,
D ∈ R(P (S, i−1)), then Px and Ps cuts either ending at most once each, which totals
to at most 8 cuts on �3. If �3 is not cut by P (S, i−1) and, therefore, belongs to I(D),
D ∈ R(P (S, i − 1)), then Px cuts it at most 4f + 7 times. The subsequent BSP Ps
can cut either of its endings at most once more, but in that case, by Lemma 11(5), it
was cut at most 7 times by Px; thus we obtain a total of at most 9 cuts.
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4. A segment �4 ∈ B(C) \ (F ∪F ∗) is cut by s only if �4 is part of S. Moreover it
cannot be in any of the regions π(S, i− 1) ⊆ {Si, Si+1, . . . , Sj−1}, which are possibly
cut by s. Therefore Px cuts �4 at most once, but Ps cannot cut the ending of �4.

5. Observe that the BSP Ps for Fs ∩E was applied only in subcells E ∈ E where
Fs ∩ E is nonempty, that is, only in subcells of R(P (S, i − 1)) which lie along the
extension of segment �i−1 beyond g(�i−1). If a segment �5 ∈ F ∗ ∪ I(C) is cut by
P (S, i− 1) (at most 4 times) and one of its endings lies in a cell D1 ∈ R(P (S, i− 1))
which has no common boundary with (the relative interior of) ∂FC, then this ending
is necessarily in B(D1)\(Fx(D1)∪Fx(D1)

∗) and is cut at most once by Px. Ps does not
cut this ending, since Fs∩E = ∅ for all such E ⊆ D1. If, furthermore, �5 ∈ I(C) and its
other ending lies in some D2 ∈ R(P (S, i−1)), then it is in B(D2)\(Fx(D2)∪Fx(D2)

∗)
and then in B(E) \ ((Fs ∩E) ∪ (Fs ∩E)∗), E ⊆ D2; hence is cut at most once by Px
and at most once by Ps. The total number of cuts is therefore 5 and 7 if � ∈ F ∗ and
� ∈ I(C), respectively.

It is straightforward to turn this proof into an O(n2k) time and O(n2) space
algorithm using the arrangement of the supporting lines of all segments, or into an
O(n2k log n) time and O(n) space algorithm by maintaining, as in section 5, only
constant information per segment. The crucial difference, compared to the algorithms
at the end of section 5, is that a segment ending can be inserted into X and deleted
from it O(k) times: in case 5 of the previous proof, a segment ending can be in
B(D) \ (Fx(D)∪Fx(D)∗) ⊂ X then in (Fs(D)∩E)∗ �⊂ X. Each time, when we apply
induction with a smaller value of the parameter f , some of the segment endings can
be deleted from X, and we need to recompute the relations between elements of X.
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this paper.
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Abstract. Given a digraph D = (V,A) and a set of κ pairs of vertices in V , we are interested
in finding, for each pair (xi, yi), a directed path connecting xi to yi such that the set of κ paths so
found is arc-disjoint. For arbitrary graphs the problem is NP-complete, even for κ = 2.

We present a polynomial time randomized algorithm for finding arc-disjoint paths in an r-regular
expander digraph D. We show that if D has sufficiently strong expansion properties and the degree
r is sufficiently large, then all sets of κ = Ω(n/ logn) pairs of vertices can be joined. This is within
a constant factor of best possible.
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1. Introduction. Given a (graph) digraph D = (V,A) with n vertices and a
set of κ pairs of vertices in V , we are interested in finding, for each pair (xi, yi), an
(undirected) directed path connecting xi to yi, such that the set of κ paths so found
is (edge) arc-disjoint. This is a classical problem in graph theory. See Frank [7] for
a survey and Chapter 9.2 of the recent book on digraphs by Bang-Jensen and Gutin
[2].

For undirected graphs, the related decision problem is in P for fixed κ (see Robert-
son and Seymour [22]) but is NP-complete if κ is part of the input. For digraphs the
situation is seemingly much worse. Fortune, Hopcroft, and Wyllie [6] showed that the
related decision problem is NP-complete, even when κ = 2.

For undirected graphs there have been positive results in the case of expanders.
Peleg and Upfal [21] presented a polynomial time algorithm for the case where D is a
(sufficiently strong) bounded degree expander graph and κ ≤ nε for a small constant ε
that depends on the expansion property of the graph. This result has been improved
and extended by Broder, Frieze, and Upfal [4, 5], Frieze [8, 9], Leighton and Rao [17],
and Leighton, Rao, and Srinivasan [18, 19]. In particular Frieze [9] showed that if
D has sufficiently strong edge expansion properties and r is sufficiently large, then
all sets of κ = Ω(n/ log n) pairs of vertices can be joined. This is within a constant
factor of a simple upper bound. The purpose of this paper is to extend this result to
digraphs.

In this paper we discuss r-regular digraphs. A digraph D is r-regular if every
vertex has in-degree and out-degree r. Let dµ be the median distance between pairs
of vertices in the digraph D which has m arcs. Clearly, there exists a collection of
O(m/dµ) pairs of vertices that cannot be connected by arc-disjoint paths because such
a collection of paths would require more arcs than all the arcs available. In the case
of an r-regular expander, this absolute upper bound on κ is O(n/ log n) (assuming
r is independent of n). We show that if D has sufficiently strong arc expansion
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properties and r is sufficiently large, then all sets of κ = Ω(n/ log n) pairs of vertices
can be joined. This is therefore within a constant factor of the optimum. The precise
definition of “sufficiently strong” is given after the theorem.

Theorem 1. Let D = (V,A) be an n-vertex, r-regular digraph. Suppose that D
is a sufficiently strong arc expander. Then there exist ε1, ε2 > 0 such that D has the
following property: For all sets of pairs of vertices {(xi, yi) | i = 1, . . . , κ} satisfying

(i) κ = �ε1rn/ log n�, and
(ii) for each vertex v, |{i : xi = v}|, |{i : yi = v}| ≤ ε2r,

there exist arc-disjoint paths in D, each of length O(log n), joining xi to yi for each
i = 1, 2, . . . , κ. Furthermore, there is a polynomial time randomized algorithm for con-
structing these paths. The constants ε1, ε2 depend only on certain expansion param-
eters α, β, γ defined below. They do not depend on n or r. (For example, conditions
(2) with ε = α, (3), (9), and (12) suffice.)

Remark 1. The algorithm is similar to the algorithm of [9]. The difficulty in
moving from graphs to digraphs has been with that part of the algorithm for graphs
which was based on the rapid mixing of a random walk on expanders. Random
walks on digraphs are not necessarily time reversible, and the steady state can be
hard to determine. We therefore abandoned this approach and replaced it with a
different random choice of path (in part, this random choice for digraphs uses the
multicommodity flow results of Leighton and Rao [16]).

It will be observed that this new algorithm can substitute for that given in [9].
Remark 2. If D has sufficiently strong vertex expansion properties, then we can

take κ = �ε1rn/ logr n�; see Remark 4 below.
Remark 3. It is perhaps worth remarking that regularity is not crucial to the

result. One can easily extend the results to digraphs where in- and out-degrees are
constrained to be in the interval [r, ar], where a ≥ 1 is an absolute constant. All we
need is for r to be sufficiently large. The crucial property is strong expansion.

1.1. Preliminaries. In this section we state the definitions for the expanders
we work with here, make some preliminary observations about such expanders, and
precisely define the notion of “sufficiently strong” expansion needed for Theorem 1.
We begin with some notational conventions.

Let D = (V,A) be a digraph and let n = |V |. For S, T ⊆ V let A+
D(S, T ) be the

set of arcs with tail in S and head in T ; that is,

A+(S, T ) = A+
D(S, T ) = {(u, v) ∈ A | u ∈ S, v ∈ T} and d+(S, T ) = |A+(S, T )|.

We define A−(S, T ) similarly (i.e., A−(S, T ) = A+(T, S)). We set

A+(S) = {(u, v) ∈ A | u ∈ S, v �∈ S} and d+(S) = |A+(S)|.

So, for example, we have A+(S) = A+(S, V \ S). We define A−(S) and d−(S) analo-
gously. Throughout the paper, when � is used as a subscript or superscript, it stands
for + or −. We abbreviate A�({v}, T ) to A�(v, T ). Thus, for v ∈ V , d+D(v) and d−D(v)
denote the out-degree and in-degree of v in D.

We now have the notation necessary to introduce expansion. We define expanders
in terms of arc expansion (a weaker property than vertex expansion). For S ⊆ V let
Φ�
S = d�(S)/|S|. The (arc) expansion Φ = Φ(D) of D is defined by

Φ = min
S⊆V
|S|≤n/2

min{Φ+
S ,Φ

−
S }.
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A digraph D = (V,A) is a θ-expander if for every set S ⊆ V , |S| ≤ n/2, we have
d�(S) ≥ θ|S|; in other words, D is a θ-expander if Φ(D) ≥ θ. An r-regular digraph
D = (V,A) is called an (α, β, γ)-expander if for every set S ⊆ V ,

d�(S) ≥
{
(1− α)r|S| if |S| ≤ γn,
βr|S| if γn < |S| ≤ n/2.

We naturally assume that β < 1 − α. By “sufficiently strong” in Theorem 1 we
mean that β, γ are arbitrary and α is sufficiently small; in particular, we assume
that conditions (2) with ε = α, (3), (9), and (12) hold. We also assume throughout
that r and n are sufficiently large (but r is not a function of n). We have made
no real attempt to optimize constants. Such digraphs exist; in particular, random
regular digraphs are usually (α, β, γ)-expanders. (See [4] for the corresponding notion
in undirected graphs.)

We conclude this section with some preliminary observations about expanders.
Since |A�(S, S)|+ d�(S) = r|S| we see that, putting in(S) = |A+(S, S)| = |A−(S, S)|,
in an (α, β, γ)-expander

in(S) ≤ αr|S| when |S| ≤ γn.(1)

For a digraph ∆ = (V ′, A′) and a set S ⊆ V ′ we define its out-neighbor set N+
∆(S)

as

N+
∆(S) = {w /∈ S : ∃v ∈ S such that (v, w) ∈ A′}.

Similarly, the in-neighbor set of S, N−∆ (S), is given by

N−∆ (S) = {w /∈ S : ∃v ∈ S such that (w, v) ∈ A′}.
Lemma 1. Suppose that D = (V,A) is an (α, β, γ)-expander and that D′ =

(V ′, A′) is a subdigraph of D of expansion at least θr where θ > α. Suppose S ⊆ V ′.
If |S| ≤ γα

θ n, then

|N�
D′(S)| ≥

θ − α

α
|S|.

Proof. Suppose that |S| ≤ γα
θ n and T = N�

D′(S) satisfies |T | < θ−α
α |S|. Then

|S ∪ T | <
(
1 +

θ − α

α

)
|S| = θ

α
|S| ≤ γn.

But S ∪ T contains at least

θr|S| > θr

(
1 +

θ − α

α

)−1
|S ∪ T | = αr|S ∪ T |

arcs, which contradicts (1).

2. The algorithm. The input to our algorithm is a sufficiently strong (α, β, γ)-
expander digraph D and a set of pairs of vertices {(xi, yi) | i = 1, . . . , κ} satisfying
the premises of Theorem 1. The output is a set of κ arc-disjoint paths, P1, . . . , Pκ,
such that Pi connects xi to yi.

The algorithm has three phases. We begin in Phase 0 by splitting our graph
into 13 arc-disjoint expanders Di = (V,Ai), 1≤ i≤13. These graphs will be used for
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various purposes in Phases 1 and 2, and each path we construct will be a union of paths
in the Di’s. Phase 1 consists mainly of applications of GenPaths, an algorithm that
uses the expander property to naively connect pairs of vertices with paths of length
O(log n) one at a time, deleting the arcs from a path as soon as it is used. Of course,
this deletion of arcs may quickly destroy the expander property. To compensate for
this problem, GenPaths “shrinks” the expanders in which it finds paths. The real
work of GenPaths is in keeping as many vertices as possible “connected” to these
shrinking expanders. Those pairs of vertices that are not connected with paths in
Phase 1 (i.e., those pairs that contain a vertex whose connection with one of the
“shrinking expanders” is lost) are handled in Phase 2. There are O( n

log4 n
) such pairs.

Loosely speaking, Phase 2 uses the multicommodity flow algorithm of Leighton and
Rao to give a distribution on paths connecting the remaining pairs such that whp
paths chosen at random with respect to this distribution are arc-disjoint.

2.1. Phase 0. We need an algorithm for splitting an (α, β, γ)-expander digraph
into 13 expander digraphs. Algorithms for splitting undirected graphs are given in [4]
and [10]. They are easily adapted to digraphs, and we outline an adaptation of the
algorithm of [10] in Appendix A. In the appendix we prove the following.

Theorem 2. Suppose we have

r

log r
≥ 91ε−2 and β ≥ 65ε−2r−1 log 2er(2)

and that D is an r-regular (α, β, γ)-expander, r constant. Then there is a ran-
domized polynomial time algorithm which, with probability at least 1 − δ, constructs
A1, A2, . . . , A13 such that the arc expansion Φi of Di = (V,Ai) satisfies

Φi ≥ (1− ε)
Φ

13
− (α+ 2ε) r

for i = 1, 2, . . . , 13.
This theorem is useful only if Φ is at least a constant multiple of r and α is

sufficiently small. This is the case discussed in this paper. The algorithm runs in
O(n2 lnn log δ−1) expected time. There is not enough time to verify that the algorithm
succeeds. Instead, we simply assume it has and repeat the split if we fail to find the
required paths.

We apply the algorithm of Theorem 2 with α = ε and assume that

β > 156α.(3)

Setting

β0 =
β

13
− 4α > 8α > 0,(4)

each Di satisfies

Φi = Φ(Di) ≥ β0r, and(5)

β0r ≤ d�i (v) < r for all v ∈ V.(6)

2.2. Phase 1. Phase 1 uses expanders D1 through D6. The centerpiece of
Phase 1 is the algorithm GenPaths, which connects a large collection of random
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pairs of vertices in an expander with arc-disjoint paths. Since the pairs xi, yi are ar-
bitrary, GenPaths cannot be applied to them directly; we must reduce the problem
of connecting the xi’s to the yi’s to the problem of connecting random pairs.

In order to produce random pairs we introduce three random sets of κ vertices:
X̃, Ỹ , and Z. In the initialization step of Phase 1, a network-flow technique is used to
find a collection of arc-disjoint paths P1 = {P 1

i : i = 1, . . . , κ} from X = {x1, . . . , xκ}
to X̃ in expander D1 such that the path P 1

i starts at xi for i = 1, . . . , κ. It is
important to note that we have no control over which element of X̃ is at the end of
the path P 1

i (but there will be one path ending at x for each x ∈ X̃). This network-
flow technique is also used in the initialization step of Phase 1 to find a collection
of arc-disjoint paths P6 = {P 6

i : i = 1, . . . , κ} from Ỹ to Y = {y1, . . . , yκ} in D6

such that the endpoint of the path P 6
i is yi. After the initialization step, we take a

random ordering of X̃: X̃ = {x̃1, . . . , x̃κ}. Furthermore, we order Ỹ so as to respect
the pairing of X̃ and Ỹ that is inherited from the collections P1 and P6; that is,
we set Ỹ = {ỹ1, . . . , ỹκ} so that if the endpoint of P 1

i is x̃j , then ỹj is the starting
point of P 6

i . Thus, it remains to find a collection of arc-disjoint paths connecting
the pairs {(x̃i, ỹi) : i = 1, . . . , κ}. Unfortunately this sequence of pairs of vertices
is not truly random. This is a consequence of the fact that the pairing between X̃
and Ỹ is determined by a deterministic process (i.e., knowledge of some of the pairs
from this collection may bias the distribution on the unknown pairs). We overcome
this problem by introducing the third random set Z = {z1, . . . , zκ}. The sequences
{(x̃i, zi) : i = 1, . . . , κ} and {(zi, ỹi) : i = 1, . . . , κ} are perfectly random sequences of
pairs of vertices (as long as we view them separately). It remains to connect these
two sequences of pairs of vertices with arc-disjoint paths. This is the work of the
algorithm GenPaths.

The input to GenPaths is a pair of expanders, Da and Db, and a collection of
pairs of vertices {(vi, ui) : i = 1, . . . , κ} that is generated uniformly at random. The
output of GenPaths is a collection of arc-disjoint paths from vi to ui for i = 1, . . . , κ
that use only the arcs from Da and Db. We apply GenPaths twice. For the first
application we set Da = D2, Db = D3, and {(vi, ui) : i = 1, . . . , κ} = {(x̃i, zi) : i =
1, . . . , κ}. In the second application we set Da = D4, Db = D5, and {(vi, ui) : i =
1, . . . , κ} = {(zi, ỹi) : i = 1, . . . , κ}. Now, the expander Da is used to connect the vi’s
to the ui’s with short paths one at a time. In order to be sure that such paths exist we
must be working with an expander. Therefore we delete some vertices in the course of
the algorithm; in other words, this expander shrinks as the algorithm progresses. Db

is used to keep as many vertices as possible connected to the “shrinking expander”
contained in Da. We should note that these connections also require that Db be an
expander. So, Db also “shrinks” in the course of the algorithm. The subroutines
Remove and ConnectBack are used by GenPaths.

2.2.1. Initialization. Let X̃, Ỹ be two randomly chosen κ-subsets of V . We
begin by replacing the problem of finding paths from xi to yi by that of finding paths
from ai to bi, where ai ∈ X̃ and bi ∈ Ỹ . Let X denote the set {x1, x2, . . . , xκ} and
Y = {y1, y2, . . . , yκ}. We connect X to X̃ via arc-disjoint paths in the digraph D1

using a network flow. We construct our network as follows:

• Each directed arc of D1 gets capacity 1.
• Each v ∈ V becomes a source of capacity |{i : xi = v}|, and each member of

X̃ becomes a sink of capacity 1.

Then we find a flow from X to X̃ that satisfies all demands. We can find such a
maximum flow with integer values, and this decomposes naturally into |X| arc-disjoint
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paths (together perhaps with some cycles). We connect Ỹ to Y by arc-disjoint paths
in a similar manner using D6

We now have a collection of arc-disjoint paths P1 = {P 1
i : i = 1, . . . , κ} such that

the starting point of P 1
i is xi for i = 1, . . . , κ and each member of X̃ is the endpoint

of exactly one path from P1. Furthermore, we have a collection of arc-disjoint paths
P6 = {P 6

i : i = 1, . . . , κ} such that each member of Ỹ is the starting point of exactly
one path from P6 and the endpoint of path P 6

i is yi for i = 1, . . . , κ.

2.2.2. Algorithm GENPATHS. The aim of GenPaths is to join vi and ui for
i = 1, 2, . . . , κ by a short (i.e., of length O(log n)) path in Da. After constructing
a path, we remove its arcs. It is important to ensure that short paths exist. Of
course, this would not be a problem if we could ensure that Da remained an expander
throughout. We have to be satisfied with identifying a dynamically changing large
subgraph ∆a = (Va, Fa) of Da which is an expander. Initially ∆a = Da, and Va
loses vertices as GenPaths progresses. We ensure that ∆a remains an expander
by keeping the degrees of vertices in the ∆a close to their degree in Da. This may
involve deleting some (low degree) vertices after the construction of a path. We use
the routine Remove to do this.

If the proposed start vertex v of a walk on ∆a does not lie in Va, then we try
to connect it back to Va by a path in Db. The terminal endpoint of this walk is
denoted by v′. We use a subroutine ConnectBack for this purpose. Similarly, the
proposed end vertex u might not lie in Va. In this case we use ConnectBack to
find a path from some u′ ∈ Va to u in Db. We do not expect to succeed all the time
and our failures are kept in a set L for treatment in Phase 2. The arcs in the paths
generated by ConnectBack are deleted from Db. Since ConnectBack requires
that Db is an expander we will also be working with a second “shrinking expander”
∆b = (Vb, Fb) contained in Db. This shrinking expander will also be maintained by
use of the subroutine Remove.

In the end, the path from vi to ui will be a concatenation of up to three separate
paths. There will always be a path Qi from Da, and there may also be a short walk (or
walks) from Db provided by ConnectBack (these are denoted WCB→

i and WCB←
i ,

respectively).
1. Algorithm GenPaths
2. begin
3. ∆t ← Dt, t = a, b.
4. for i = 1 to κ do
5. Execute Remove(∆a)
6. Execute ConnectBack(Va, vi,→, v′i, i,W

CB→
i )

7. Execute ConnectBack(Va, ui,←, u′i, i,W
CB←
i )

8. if i �∈ L then
9. Construct a shortest path Qi from v′i to u′i in ∆a.
10. Pi ← (WCB→

i , Qi,W
CB←
i )

11. ∆a ← ∆a \ E(Pi)
12. fi
13. od
14. end GenPaths

2.2.3. Subroutine REMOVE. The purpose of Remove is to delete vertices
that might prevent a digraph from being an expander. In the course of GenPaths
we apply remove to ∆a and ∆b. In other words, this simple algorithm iteratively
removes those vertices whose in-/out-degree is less than the original in-/out-degree
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minus β0r/2. To be precise, at the end of the algorithm we have a graph ∆t = (Vt, Ft),
where t ∈ {a, b} such that

v ∈ Vt implies d�∆t(v) ≥ d�Dt(v)− β0r/2 ≥ β0r/2.(7)

The final inequality in (7) follows from (6). It follows immediately from (7) that for
S ⊆ Vt we have

d�∆t(S) ≥ d�Dt(S)− β0r|S|/2 ≥ (Φt − β0r/2)|S|.

This implies that, provided neither Va nor Vb become empty (an issue which we take
up in the next section), both ∆a and ∆b are expanders throughout Phase 1:

Φ∆t ≥ Φt − β0r/2 ≥ β0r/2 for t = a, b.(8)

1. Algorithm REMOVE(∆t)
2. begin
3. B ← {v ∈ Vt : d+∆t(v) < d+Dt(v)− β0r/2 or d−∆t(v) < d−Dt(v)− β0r/2}.
4. if B �= ∅ then
5. A← Vt \B
6. d← max{ max{d+Dt(v)− d+∆t(v,A) , d−Dt(v)− d−∆t(v,A)} : v ∈ A}.
7. while d > β0r/2 do
8. C ← {w ∈ A : max{d+Dt(w)− d+∆t(w,A) , d−Dt(w)− d−∆t(w,A)} ≥ β0r/2}
9. B ← B ∪ C
10. A← A \ C
11. d← max{ max{d+Dt(v)− d+∆t(v,A) , d−Dt(v)− d−∆t(v,A)} : v ∈ A}.
12. od
13. Vt ← A
14. fi
15. end Remove

2.2.4. Subroutine CONNECTBACK. The purpose ofConnectBack is to con-
nect a vertex z to Va by means of a short walk in Db. The direction of this walk is
determined by the input dir. If dir =→, then a path from z to Va is required, and if
dir =←, then a path from Va to z is needed. If z ∈ Va already, then ConnectBack
does nothing but relabel z as z′. Since |V \Va| can be of order n (this is discussed be-
low), we must maintain the expander property of ∆b in order to find short connecting
paths. Thus we apply Remove to ∆b in the course of ConnectBack. Now, those
pairs that contain a vertex that lies in V \ (Va ∪ Vb) are passed to Phase 2 in the set
L. Thus, the long-term success of ConnectBack hinges on keeping V \ (Va ∪ Vb)
small. In fact, this can be viewed as the key point in all of GenPaths.

We keep Vb large by ensuring that the paths we use in ∆b are spread out; in
other words, we avoid using too many paths through any one vertex. This is achieved
whp; recall that the pairs of vertices {(vi, ui) : i = 1, . . . , κ} that are the input to
GenPaths are assumed to be generated uniformly at random. When a path is needed
(i.e., when z �∈ Va) ConnectBack constructs a collection Wdir of walks in ∆b. This
collection has the following properties:

1. If dir =→, then every walk in Wdir = W→ is a walk from a distinct vertex
in Vb \ Va to Va.

2. If dir =←, then every walk in Wdir = W← is a walk from Va to a distinct
vertex in Vb \ Va.
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3. No path in Wdir is longer than 22 log logn.
4. No vertex of Db lies on more than 240(log logn)2 paths.

The set of start vertices of the walks in W→ is denoted S→CB , and the set of terminal
vertices of the walks in W← is denoted S←CB . Clearly, S

dir
CB ⊆ Vb \ Va. The collection

of walks will have the following additional property:

5. |V \ (Va ∪ Sdir
CB)| ≤ n

(lnn)4 .

In other words, condition 3 says that the paths in Wdir are short, condition 4 says
that the paths are “spread out” and condition 5 says that very few vertices are left
out of the collection.

We emphasize that Wdir is constructed without use of any information about z.
Therefore, z (which was a random vertex to begin with) can be viewed as a vertex
chosen uniformly at random after the collection Wdir is constructed. Heuristically,
we can think of W→ and W← as collections of connecting paths that are updated
whenever ∆a or ∆b “shrink,” but we only “look” at these collections when we need
them.

If z ∈ Sdir
CB , then we connect z back to Va by way of the unique path in Wdirthat

begins at z (if dir =→) or ends at z (if dir =←). If z does not lie in Sdir
CB , we put i

into L (note that we have either z = x̃i or z = ỹi). Arc-disjoint paths for the pairs
(x̃i, ỹi), i ∈ L are found in Phase 2.

A network-flow technique for the construction of the collection of paths Wdir

follows from the proof of Lemma 3, which is given in section 2.3.3.

1. subroutine CONNECTBACK(Va, z,dir, z
′, i,WCB)

2. begin
3. if z ∈ Va
4. then z′ ← z
5. else
6. Execute Remove(∆b)
7. Construct Wdir (see Lemma 3 for algorithm).
8. if z �∈ Sdir

CB

9. then L← L ∪ {i}
10. else
11. WCB ← the unique path in Wdir with start/terminal vertex z
12. z′ ← terminal/start vertex of WCB

13. ∆b ← ∆b \WCB

14. fi
15. fi
16. end ConnectBack

2.3. Analysis of Phase 1. There are three facts concerning Phase 1 that remain
to be shown: that the flow needed in the initialization exists, that V3 stays large, and
that at the end of Phase 1 whp we have L = O( n

(log n)4 ).

2.3.1. Initialization. In this subsection we show that if (5) holds and r is suf-
ficiently large, then we can find arc-disjoint paths from {x1, . . . , xκ} to X̃ in D1 and
arc-disjoint paths from Ỹ to {y1, . . . , yκ} in D6 for any choice of x1, . . . , yκ consistent
with the premises of Theorem 1, and for every choice for X̃, Ỹ . We assume that we
have

8α > ε2 > r−1.(9)
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For S ⊆ V , let

α(S) =
∑
v∈S
|{i : xi = v}| and ξ(S) = |S ∩ X̃|.

It follows from a theorem of Gale [12] (see Bondy and Murty [3, Theorem 11.8]) that
if

d+D1
(S) ≥ ξ(S̄)− α(S̄) for all S ⊆ V,(10)

then there exists a flow in the network defined on D1 such that exactly one unit of
flow travels through each vertex in X̃, and the amount of flow traveling through each
vertex v ∈ {x1, . . . , xκ} is |{i : xi = v}|. In other words, (10) implies a successful run
of Phase 2.

Now, if |S| ≤ n/2, then, applying (4), (5), and (9), we have

d+D1
(S) ≥ |S|Φ1 ≥ |S|β0r ≥ 8αr|S| ≥ ε2r|S| ≥ α(S)− ξ(S) = ξ(S̄)− α(S̄).

On the other hand, if |S| > n/2, then we have

d+D1
(S) = d−D1

(S̄) ≥ |S̄|Φ1 ≥ |S̄|β0r ≥ ε2r|S̄| ≥ ξ(S̄)− α(S̄).

Therefore, Phase 1 succeeds with respect to X, X̃. The same argument applies to
Y, Ỹ . To ensure these paths are of length O(log n) we can solve a minimum cost
maximum flow problem as indicated in Kleinberg and Rubinfeld [13].

2.3.2. On the size of Va.
Lemma 2. Throughout GenPaths we have

|Va| ≥ (1− γ0)n,

where

γ0 =
β0γ

10
.

Proof. It follows from (8) that ∆a is a (β0r/2)-expander throughout the execution
of Phase 1. It follows from Lemma 1 that the diameter of ∆a is always at most

τ =

⌈
2 log3 n+

2

αγ

⌉
.(11)

Indeed, consider breadth-first search from some v ∈ Va. Let Lt, t ≥ 0, be the vertices
at distance t from v. Lemma 1 implies that the cardinalities of the Lt grow at a rate
at least 3 until they reach size (2γα/β0)n. The same will be true for breadth-first
search to a target vertex w. This accounts for the first term in (11). Once Lt reaches
(2γα/β0)n, we use the fact that going to the next level involves finding β0r|Lt|/2
“new arcs,” at least until size n/2 is reached. This accounts for the second term in
(11).

Thus the total number of arcs in the paths that are removed from Da is at most
κτ . Let B be the set of vertices that are removed from ∆a in the course of Phase 1,
and let B1 be the set of vertices in B incident with at least β0r/4 of the paths that
are generated in Da. We have

|B1| ≤ 4κτ

β0r
≤ γ0n

2
,
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provided

ε1 ≤ β2
0γ

160
,(12)

where ε1 is as in the statement of Theorem 1. Let B2 = B \ B1 (i.e., those vertices
removed from ∆a that lie on less than β0r/4 of the paths generated in Da).

Assume for the sake of contradiction that |B2| > |B1|. Let B3 be the first |B1|
vertices of B2 to join B. Note that the vertices in B3 have a large degree to B1 ∪B3

(otherwise these vertices would remain in Va). Applying (4) we have

inDa(B1 ∪B3) ≥ β0r

4
|B3| = β0r

8
|B1 ∪B3| > αr|B1 ∪B3|.

This contradicts (1).
Therefore, |B| = |B1|+ |B2| ≤ 2|B1| ≤ γ0n.

2.3.3. Analysis of CONNECTBACK. Of course, the first order of business here
is to show how the collection of paths Wdir is generated.

Lemma 3. Suppose that D = (V,A) is an (α, β, γ)-expander and that D′ =
(V ′, A′) is a subdigraph of D of expansion at least θr where θ > 6α. Suppose that
S ⊆ V ′ and that |S| ≥ (1− γα

θ )n, and let T = V ′ \ S. Then there exists T � ⊆ T such
that D′ contains a collection of walks Wdir = {Wv : v ∈ T �} such that

1. for dir =→ /←, v is the start/terminal vertex of Wv for all v ∈ T �;
2. the terminal/start vertex of each Wv is in S;
3. each Wv is of length at most 22 log log n;
4. no vertex of D′ lies on more than 240(log log n)2 paths; and
5. |T \ T �| ≤ n

(log n)4 .

Proof. Assume without loss of generality that dir =→. For i = 1, 2, . . . , let

Ti = {v ∈ T : distD′(v, S) = i},
and set T0 = S. Since N+

D′ (∪k≥iTk) ⊆ Ti−1, it follows from Lemma 1 that we have

|Ti−1| ≥ ζ|Ti| for i ≥ 1,(13)

where ζ = θ−α
α > 5. Setting i0 = �11 log log n� and T̂ =

⋃
i≥i0 Ti, it follows from (13)

that we have

|T̂ | ≤ n

2(log n)4
.(14)

Fix 1 ≤ i < i0. We define a flow network Ni. The vertex set of Ni is {s, t} ∪⋃j0
j=1(Cj ∪C ′j), where C1 and C ′1 are disjoint copies of Ti for 2 ≤ j ≤ i, Cj and C ′j are

disjoint copies of
⋃

�≥i+1−j T� and, for i < j ≤ j0 = 2i0, Cj and C ′j are disjoint copies
of V ′. The vertices s and t will be the source and sink, respectively, for the flow we
introduce to Ni. A vertex v in V ′ may appear many times in the vertex set of Ni; a
copy of v in Cj is denoted vj , and a copy of v in C ′j is denoted v′j . For ease of notation,
we let φ be the map that takes the vertices of Ni to their corresponding vertices in
V ′. The arc-set of Ni is defined as follows. There is an arc from s to each vertex of
C1. Each v ∈ S gives rise to arcs (v′j , t), i < j ≤ j0. If v

′
j ∈ C ′j and wj+1 ∈ Cj+1 are

such that (v, w) is an arc of D′, then (v′j , wj+1) is an arc of Ni. All arcs described so
far have infinite capacity. In addition there are arcs (vj , v

′
j) of unit capacity defining

a perfect matching between Cj and C ′j for 1 ≤ j ≤ j0.
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Claim 1. Ni contains an s− t flow of value at least |Ti| − n
(log n)5 .

We first show the lemma follows from Claim 1. The flow given by Claim 1 defines
paths in D′ from all but at most n

(log n)5 vertices of Ti to S, each of length at most j0.

No vertex of V ′ can be on more than j0 paths since each visit to v uses a (vj , v
′
j) arc

for some j. Repeating this construction for i = 1, 2, . . . , i0 we find paths for all but
a set T̃ of at most i0

n
(log n)5 ≤ n

2(log n)4 vertices, and no vertex can be on more than

i0j0 paths. Putting T � = T \ (T̂ ∪ T̃ ) and using (14) gives us the lemma.
It only remains to prove Claim 1. Of course, we do this via the max-flow min-cut

theorem. Consider a cut Z∪̇Z̄ of Ni, where the vertex set Z contains s but not t. Let
Aj = Z∩Cj , Bj = Cj \Aj , A

′
j = Z∩C ′j , and B′j = C ′j \A′j for j = 1, 2, . . . , j0. Assume

for the sake of contradiction that the capacity of this cut is less than |C1| − n
(log n)5 .

It follows from this assumption that the cut contains no infinite capacity arcs and
therefore

A1 = C1, φ(Aj+1) ⊇ N+
D′(φ(A

′
j)) for all j, φ(A′j) ∩ S = ∅ for all j.

(15)

The capacity of the cut is

|B′1|+
j0∑
j=2

|φ(Aj) ∩ φ(B′j)|.(16)

The third condition of (15) implies that for all j, |A′j | < γα
θ n. It then follows from

Lemma 1 and the second condition of (15) that we have |Aj+1| ≥ ζ|A′j |. This implies
that for all j we have either

|A′j+1| ≥
1

2
|Aj+1| ≥ ζ

2
|A′j |(17)

or

|φ(Aj+1) ∩ φ(B′j+1)| ≥
1

2
|Aj+1| ≥ ζ

2
|A′j |.(18)

Now, if |A′1| ≤ n
(log n)5 , then |B′1| ≥ |C1| − n

(log n)5 , which contradicts our initial

assumption. On the other hand, if |A′1| > n
(log n)5 , then, since ( ζ2 )

j0−1 > (log n)5,

condition (17) cannot always hold. Let j1 ≥ 1 be the first j for which (18) holds. We
have

|φ(Aj1+1) ∩ φ(B′j1+1)| ≥ (ζ/2)j1 |A′1| ≥ |A′1|.

The capacity of the cut is at least |B′1|+ |A′1| = |C1|. This is a contradiction.
To get the collection of paths needed for ConnectBack we apply Lemma 3 with

D′ = ∆b, V
′ = Vb, S = Va ∩ Vb. So, for example, we have Sdir

CB = T �. It remains to
show that whp we have |L| ≤ n

(log n)4 .

Note that Lemma 3 can be applied only if Va ∩ Vb is large. However, by applying
the proof of Lemma 2 and the fact that the paths generated by ConnectBack
are short (length at most 22 log logn) we see that |Vb| = n − O(n log log n/ log n)
throughout, and this is sufficient. (Furthermore, the assumption that θ > 6α in
Lemma 3 is justified, since it follows from this observation that the expansion of ∆b

is always at least 3β0r/4.) However, we shall see that Vb is whp larger than this.



ARC-DISJOINT PATHS IN EXPANDER DIGRAPHS 337

This is where we use the fact that the paths inWdir are spread out (i.e., the fact that
there are at most 240(log log n)2 paths in Wdir through any one vertex).

It follows from this fact that the probability that an arbitrary vertex w is on the
path WCBdir

i is at most 240(log log n)2/n. It follows that we have

Pr
(∣∣{i : w ∈WCB→

i

}∣∣+ ∣∣{i : w ∈WCB←
i

}∣∣ ≥ 20
)

≤ Pr(B(2κ, 240(log log n)2/n) ≥ 20)

≤
(
2κ

20

)(
240(log log n)2

n

)20

= o((log n)−19).

(19)

Let B be the set of vertices which are removed from ∆b by applications of Remove.
Let X1 be the set of vertices in B that are on at least 20 of the paths WCB→

i ,WCB←
i .

Note that X1 contains the set B1 introduced in the proof of Lemma 2 (B1 is the
collection of vertices taken out of Vb by Remove that are on many of the paths).
It follows from (19) and Markov’s inequality that whp we have |X1| ≤ n/(log n)18.
Now, B (which contains V \ Vb at every step) consists of B1 together with extra
vertices deleted by Remove. In total this will be at most 2|B1| vertices removed by
the argument of Lemma 2, following (12). Thus, |B| ≤ 2|B1| ≤ 2|X1|. Therefore

|B| ≤ n

(log n)18
(20)

whp.
Now, a failure (i.e., the index i joining the set L) can occur in one of two ways.

On one hand we have a failure if either vi or ui does not lie in Va∪Vb, and on the other
hand a failure results when ui ∈ Vb \ (Va ∪ S→CB) or vi ∈ Vb \ (Va ∪ S←CB). It follows
from (20) that the total number of failures of the first type is whp at most n

(log n)18 .

For failures of the second type we note that v1, . . . , vκ form a random sequence of size
o(n). The probability that a particular vertex gives a failure of the second kind is at
most

|Sdir
CB |
n

= O

(
1

(log n)4

)
.

Applying the Chernoff bound for the tails of the binomial, we see that whp the total
number of failures of the second kind is O(n/(log n)4).

Remark 4. Suppose D has the following vertex expansion property for small sets:
S ⊆ V, |S| ≤ γ

rn implies that |N�
D(S)| ≥ (1 − α)r|S|. The algorithm of Theorem 4

can be modified to split D so that each subgraph Di and small S satisfies |N�
Di
(S)| ≥

1−30α
13 r|S|. Then the shortest paths in ∆a will be of length O(logr n) and the claim

in Remark 2 will follow.

2.4. Phase 2. The set of pairs {(x̃i, ỹi) : i ∈ L} have not yet been connected by
paths. We have seen that whp the number of such pairs, |L|, is at most O(n/(log n)4).
These pairs are dealt with by the algorithm described below which uses digraphs D7–
D13.

The heart of the algorithm is a randomized method (based on a multicommodity
flow result of Leighton and Rao [16]) for connecting pairs of vertices with arc-disjoint
paths which workswhp when the collection of pairs is generated uniformly at random.
So, as in Phase 1, some preliminary steps must be taken in order to reduce the problem
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of connecting an arbitrary set of pairs of vertices with arc-disjoint paths to the problem
of connecting a random collection of pairs with arc-disjoint paths. We proceed directly
to a description of the algorithm. Let m = |L| and λ = �log n�.

We begin by “amplifying” each start vertex x̃i, i ∈ L, and each end vertex ỹi, i ∈ L,
to a collection of λ vertices. This process occurs in steps (a) and (b).

(a) In this step, we choose a collection of vertices wj , 1 ≤ j ≤ 2m, and a collection
of sets of vertices Wj , 1 ≤ j ≤ 2m, such that for 1 ≤ j ≤ 2m,
(i) wj ∈Wj ;
(ii) |Wj | = λ;
(iii) the sets Wj are pairwise disjoint; and
(iv) D9 contains an arborescence with vertex set Wj and root wj ; for 1 ≤

j ≤ m this arborescence is directed away from the root, and for m+1 ≤
j ≤ 2m this arborescence is directed toward the root.

Following [17], we find these arborescences by partitioning large arborescences
of D9. We begin with a rooted spanning arborescence T with the property
that all arcs are directed away from the root. We generate W1, . . . ,Wm

greedily from D9, removing an arborescence from T once it is used. Of
course, this process will divide T into a number of components. However,
since the maximum degree of D9 is r, the number of components produced
in this process is at most rλm = O( nr

(log n)3 ). Since any tree having at least λ

vertices contains a subtree having exactly λ vertices, we will always be able
to find the needed arborescences. We then apply Remove to D9 less the
vertex set ∪mi=1Wi to produce an expander D′9. It follows from the proof of
Lemma 2 that D′9 has n − o(n) vertices. We repeat the process described
above (this time using D′9 and an arborescense directed toward the roots) to
produce Wm+1, . . . ,W2m.

(b) Let SX = {x̃i : i ∈ L} and SY = {ỹi : i ∈ L} denote the sets of vertices
that need to be joined. Use a network flow algorithm (analogous to what is
given in the initialization step of Phase 1) in D7 to connect in an arbitrary
manner the vertices of SX to WX = {w1, . . . , wm} by m arc-disjoint paths.
Using the same network flow algorithm in D8, connect in an arbitrary manner
the vertices of WY = {wm+1, . . . , w2m} to SY by m arc-disjoint paths. The
expansion properties of D7 and D8 ensure that such paths always exist (as
we saw in the initialization step of Phase 1).

Let x̂k (resp., ŷk) denote the vertex in WX that was connected to the endpoint x̃k
(resp., ỹk). Our problem is now to find arc-disjoint paths joining x̂k to ŷk for 1 ≤ k ≤
m. If wt has been renamed as x̂k (resp., ŷk), then rename the elements of Wt as x̂k,�
(resp., ŷk,�), 1 ≤ 8 ≤ λ.

(c) Choose ξj , 1 ≤ j ≤ λm, and ηj , 1 ≤ j ≤ λm, uniformly at random from
V without replacement. Using a network-flow algorithm (as in (b)) connect
{x̂k,� : 1 ≤ k ≤ m, 1 ≤ 8 ≤ λ} to {ξj : 1 ≤ j ≤ λm} by arc-disjoint paths in
D10. Similarly, connect {ηj : 1 ≤ j ≤ λm} to {ŷk,� : 1 ≤ k ≤ m, 1 ≤ 8 ≤ λ}
by arc-disjoint paths in D13. Rename the other endpoint of the path starting
at x̂k,� (resp., ending at ŷk,�) as x∗k,� (resp., y

∗
k,�).

(d) Choose z∗k,�, 1 ≤ k ≤ m, 1 ≤ 8 ≤ λ, uniformly at random from V with re-
placement. (We sample without replacement in (c) to ensure that all vertices
have demands 0 or 1 in the flow algorithm. Here it is convenient to sample
with replacement so that these choices are independent.) Now, it is impor-
tant to note that the pairs x∗k,�, z

∗
k,� and the pairs z∗k,�, y

∗
k,� are (when viewed
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separately) perfectly random. We are using the same “trick” that we used in
Phase 1 for replacing the problem of connecting arbitrary pairs to the problem
of connecting random pairs.
The paths between pairs of the form x∗k,�, z

∗
k,� and between pairs of the form

z∗k,�, y
∗
k,� are generated at random. Using the multicommodity flow algorithm

of Leighton and Rao [16] find a collection of paths Pu,v;θ, u �= v ∈ V, 1 ≤ θ ≤
νu,v, where each Pu,v;θ is a path in D11 from u to v. These are the flow paths
given by Theorem 18 in [16] (νu,v is simply the number of flow paths we have
for the pairs u, v). Let Pu,v = {Pu,v;θ : 1 ≤ θ ≤ νu,v}. For each Pu,v;θ we
will have a flow value fu,v;θ > 0, and we let Fu,v =

∑νu,v
θ=1 fu,v;θ. Theorem 18

promises the following:
(P1) For all arcs e of D11, ∑

(u,v,θ): e∈Pu,v;θ
fu,v;θ ≤ 1.

(P2)

Fu,v ≥ c2
n log n

for some absolute constant c2 > 0.
(P3) The length of each path Pu,v;θ is at most λ1 = c1 logr n for some abso-

lute constant c1 > 0.
For u, v ∈ V , let Pu,v be the probability distribution over Pu,v where
Pu,v(Pu,v;θ) = f(u, v, θ)/F (u, v). Then for each k, 8 choose W ′k,� randomly
from Px∗k,,z∗k, using the distribution Px∗k,,z

∗
k,

to select the path.

Let B′k denote the bundle of paths {W ′k,�, 1 ≤ 8 ≤ λ}. Carry out the same
construction in D12 and construct a bundle of paths B′′k = {W ′′k,�, 1 ≤ 8 ≤ λ},
where W ′′k,� is a path from z∗k,� to y∗k,�.
Let π0 = maxePr(e ∈ P ), where P is a path chosen by (i) randomly choosing
endpoints u, v and then (ii) choosing P ∈ Pu,v according to the distribution
Pu,v. We have

π0 = max
e

∑
Pu,v;θ	e

1

n2
· f(u, v, θ)

F (u, v)
≤ 1

n2
n log n

c2
=

log n

c2n
.

We say that W ′k,� is bad if there exists k′ �= k such that W ′k,� shares an arc
with a walk in a bundle B′k′ .
Now, suppose the bundles in the set {Bj : j �= k} are fixed. The collection of
paths involved in these bundles gives at most mλλ1 arcs. Thus, the proba-
bility that Wk,l is bad, conditioning on what happens outside the bundle Bk,
is at most

π0mλλ1 = O

(
1

log n

)
.

We say that index k is bad if either B′k or B′′k contains more than λ/3 bad
walks. If index k is not bad, then we can find a walk from x∗k,� to y∗k,� through
x∗k,� for some 8 which is arc-disjoint from all other walks. This gives a walk

xk − x̃k − x̂k − x̂k,� − x∗k,� − z∗k,� − y∗k,� − ŷk,� − ŷk − ỹk − yk,
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which is arc-disjoint from all other such walks.
The probability that index k is bad is at most

2Pr(B(λ,O((log n)−1)) ≥ λ/3) = O(n−2).

So with probability 1-o(1) there are no bad indices.

Appendix A. Splitting an expander digraph. We prove two results on
splitting D into D1 ∪ · · · ∪Dk, where Di = (V,Ai). The first is nonconstructive and
shows what might be achieved. The second is constructive and uses the first. The
split produced by the second is not as good as that indicated by the first result. We
use a subscript i to denote graph-theoretic constructs related to Di. Thus d

+
i (v) is the

out-degree of v in Di. Left unsubscripted, such things refer to D. Thus d−(v) = r.
In section B we prove the following.
Theorem 3. Let k ≥ 2 be a positive integer and let ε > 0 be a small positive

real number. Suppose that the r-regular digraph D = (V,A) has edge expansion Φ and
that we have

r

ln r
≥ 7kε−2 and Φ ≥ 5ε−2k ln 2er.

Then there exists a partition A = A1 ∪A2 ∪ · · · ∪Ak such that for 1 ≤ i ≤ k

Φi ≥ (1− ε)
Φ

k
and (1− ε)

r

k
≤ δ∗(Di) ≤ ∆∗(Di) ≤ (1 + ε)

r

k
.

We then use this in Appendix C in the proof of Theorem 4.
Theorem 4. Suppose that the conditions of Theorem 3 hold, and suppose further

that D is an (α, β, γ)-expander. Then there is a randomized polynomial time algo-
rithm (running time O(n2 lnn ln δ−1)) which with probability at least 1− δ constructs
A1, A2, . . . , Ak such that

Φi ≥ (1− ε)
Φ

k
− (α+ ε) r

for i = 1, 2, . . . , k.
Note that this theorem is useful only if Φ ≥ cr for some c satisfying c � α. For

random r-regular digraphs we can take γ to be a small constant and α = O(γ + 1√
r
).

Also note that there is not enough time to verify that the algorithm succeeds. Instead,
we assume it has and repeat the split if we fail to find the required paths.

Appendix B. Existence result. We prove Theorem 3. We will use the general
version of the Lovász local lemma. For each a ∈ A we randomly choose an integer
i ∈ [k] and then place a in Ai. We must show that there is a positive probability of
choosing a partition which satisfies the conditions of the theorem.

We begin with some definitions and preliminary observations. Let G = (V,E) be
the 2r-regular (multi-)graph obtained by ignoring orientation in D. If S ⊆ V , then
G[S] is the subgraph of G induced by S. We say that S is connected if G[S] is.

Claim 2. For v ∈ V there are at most (2er)s−1 sets S such that (i) v ∈ S, (ii)
|S| = s, and (iii) S is connected.

Proof of Claim 2. The number of such sets is bounded by the number of distinct
s-vertex trees which are rooted at v. This in turn is bounded by the number of distinct
2r-ary rooted trees with s vertices. This is equal to

(
2rs
s

)
/((2r − 1)s+ 1); see Knuth

[15].
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In both this section and what follows will use the following Chernoff bounds for
the tails of the binomial distribution B(n, p):

Pr(B(n, p) ≥ (1 + ε)np) ≤ e−ε
2np/3,(21)

Pr(B(n, p) ≤ (1− ε)np) ≤ e−ε
2np/2,(22)

where 0 ≤ ε ≤ 1.

For our application of the Lovász local lemma, we define the following bad events:

(a) For v ∈ V , i ∈ [k], and ∗ ∈ {+,−}, Av,i,∗ = A{v},i,∗ is the event that

d∗i (v) �∈ [(1− ε)r/k, (1 + ε)r/k].

(b) For S ⊆ V, 2 ≤ |S| ≤ n/2, S connected, i ∈ [k], and ∗ ∈ {+,−}, AS,i,∗ is the
event that

|d∗i (S)| < (1− ε)|d∗(S)|/k.

In showing that Φi is sufficiently large we can restrict our attention to S for which S
is connected. Indeed, for S ⊆ V let C1, C2, . . . , Ct be the components of G[S]. Then
for ∗ ∈ {+,−},

Φ∗S,i ≥ min
1≤s≤t

d∗i (Cs)

|Cs| .

Using the Chernoff bounds given above, we obtain

Pr(Av,i,∗) ≤ 2e−ε
2r/(3k) ≤ 2e−(7 ln r)/3 <

1

r2

and

Pr(AS,i,∗) ≤ exp

{
−ε2d∗(S)

2k

}
≤ e−2|S| ln r =

1

r2|S|
.

Now, for S ⊆ V, 1 ≤ |S| ≤ n/2, and S connected, let

xS,i,∗ =
(
2

r2

)|S|
.

We show that for ∗,# ∈ {+,−},

Pr(AS,i,∗) < xS,i,∗
∏

(S,i,∗)∼(T,j,#)

(1− xT,j,#),(23)

where (S, i, ∗) ∼ (T, j,#) denotes adjacency of AS,i,∗ and AT,j,# in the dependency
graph of bad events (i.e., we have (S, i, ∗) ∼ (T, j,#) if and only if A∗(S)∩A#(T ) �= ∅).
The theorem then follows from the general version of the local lemma; see, for example,
Alon and Spencer [1].

It follows from Claim 2 that if |S| = s, then there are at most ks(2er)t events
AT,j,# with |T | = t such that (S, i, ∗) ∼ (T, j,#). Thus, using 1 − x ≥ e−2x for
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0 ≤ x ≤ 1/2, we have

xS,i,∗
∏

(S,i,∗)∼(T,j,#)

(1− xT,j,#) ≥
(
2

r2

)s∏
t≥1

(
1−

(
2

r2

)t
)ks(2er)t

≥
(
2

r2

)s

exp


−2ks

∑
t≥1

(
4e

r

)t



=

(
2

r2

)s

exp

{
− 8kes

r − 4e

}

>
1

r2s
,

since for small values of ε, the fact that r/ ln r ≥ 7kε−2 implies

r > 4e+
8ke

ln 2
.

Thus (23) holds, proving the theorem.

Appendix C. Splitting algorithm. In this section, we prove Theorem 4.
Idea. We produce the split in a series of rounds that gives a series of vertex sets

V = B1 ⊇ B2 ⊇ · · · ⊇ Bt. In round i we fix the “destination” of a fixed arc if it has at
least one endpoint in Bi but no endpoint in Bi+1. This is done in such a way that if
S ⊆ Bj \Bj+1, then d+i (S), d

−
i (S) are large enough, and further that every vertex in

Bj \Bj+1 has few neighbors in Bj+1. We will see that this latter condition accounts
for the − (α+ 2ε) r term in the theorem.

Assume that we have B ⊆ V . Initially, B = V . We randomly color the arcs of D
which are incident with B with k colors. Note that if s0 = 5kε−2Φ−1 lnn,

Pr

(
∃S ⊆ B, i ∈ [k] s.t. |S| > s0, S is connected and Φi,S ≤ (1− ε)

Φ

k

)

≤ 2kn
∑
s≥s0

(2er)s−1e−ε
2sΦ/(2k) ≤ 4kn(2er)s0e−ε

2s0Φ/(2k) = O(kn−1/5).

So, in a sense the large sets take care of themselves. Now consider the smaller sets.
Let

X0 =

{
v : ∃S ⊆ B, |S| ≤ s0, S is connected, v ∈ S and i ∈ [k] s.t. Φi,S ≤ (1− ε)

Φ

k

}
.

X0 can be constructed in O(n(er)s0) = O(n2) time.

E(|X0|) ≤ |B|
s0∑
s=1

(2er)s−1e−ε
2sΦ/(2k) ≤ |B|

2er

since Φ ≥ 5ε−2k ln 2er.
Therefore by Markov’s inequality,

Pr

(
|X0| ≥ |B|

er

)
≤ 1

2
.
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We repeat the above coloring until we find that |X0| ≤ |B|
er . Now recursively define

Xj = Xj−1 ∪ {vj}, where d+(vj , Xj−1) ≥ (α+ ε)r or d−(vj , Xj−1) ≥ (α+ ε)r if such
a vj exists. Here we use the strong expansion properties of an (α, β, γ)-expander:
|S| ≤ γn implies that S contains at most

(r|S| − d∗(S)) ≤ αr|S|

arcs. Note that Xj has at least (α+ ε)rj arcs and at most j + |B|er vertices. Thus this

process stops before j reaches α|B|
εer , unless |Xj | exceeds γn first. However, this latter

possibility cannot happen because |X0| + α|B|
εer ≤ (1 + α

ε )
1
er |B| ≤ γ|B| ≤ γn, since

γ, ε > r−
1
2 , α < 1 implies γ > (1 + α

ε )
1
er .

So if X denotes Xj when vj+1 cannot be found, then

|X| ≤ γ|B|.
We will repeat the construction with B replaced by X. Let V = B1 ⊇ B2 ⊇ · · · ⊇ Bt

be the sequence of sets constructed. Bt will be the first set of size at most r−1 lnn.
Since γ < 1

2 , we have t ≤ log2 n. Thus the expected number of recolorings needed is
at most 2 log2 n and is ≤ 3 log2 n whp. We can “brute force” color the arcs incident
with Bt so that every subset S of Bt satisfies Φi,S ≥ (1− ε) Φ

k . We use Theorem 3 to
justify the success of this. The sequence of sets B1, B2, . . . , Bt satisfies the following:

• |Bj | ≤ γjn;
• S ⊆ Bj \Bj+1 implies Φi,S ≥ (1− ε) Φ

k ;• v ∈ Bj \ Bj+1 implies v has at most (α + ε)r out-neighbors and at most
(α+ ε)r in-neighbors in Bj+1.

So if S ⊆ V and Sj = S ∩ (Bj \Bj+1),

d∗i (S) ≥
t−1∑
j=1

(d∗i (Sj)− d∗i (Sj , Bj+1)) + d∗i (St)

≥
t−1∑
j=1

(
(1− ε)

Φ

k
− (α+ ε)r

)
|Sj |+ (1− ε)

Φ

k
|St|

≥
(
(1− ε)

Φ

k
− (α+ ε) r

)
|S|.
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THE PROBABLE VALUE OF THE LOVÁSZ–SCHRIJVER
RELAXATIONS FOR MAXIMUM INDEPENDENT SET∗
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Abstract. Lovász and Schrijver [SIAM J. Optim., 1 (1991), pp. 166–190] devised a lift-and-
project method that produces a sequence of convex relaxations for the problem of finding in a graph
an independent set (or a clique) of maximum size. Each relaxation in the sequence is tighter than
the one before it, while the first relaxation is already at least as strong as the Lovász theta function
[IEEE Trans. Inform. Theory, 25 (1979), pp. 1–7]. We show that on a random graph Gn,1/2, the

value of the rth relaxation in the sequence is roughly
√
n/2r, almost surely. It follows that for those

relaxations known to be efficiently computable, namely, for r = O(1), the value of the relaxation is
comparable to the theta function. Furthermore, a perfectly tight relaxation is almost surely obtained
only at the r = Θ(log n) relaxation in the sequence.

Key words. stable set polytope, semidefinite relaxation, lift-and-project, random graph, clique

AMS subject classifications. 05C69, 05C80, 90C22, 90C27
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1. Introduction. LetG(V,E) be a graph on n vertices. An independent set (also
known as a stable set) in G is a subset of vertices no two of which are connected by
an edge. The maximum independent set problem requires one to find an independent
set of maximum size in an input graph G. The independence number (also known as
a stability number) of G, denoted α(G), is the maximum size of an independent set
in G.

A clique in G is a subset of vertices every two of which are connected by an edge.
The maximum clique problem requires one to find a clique of maximum size in an input
graph G. The clique number of G, denoted ω(G), is the maximum size of a clique in G.
A clique in G forms an independent set in the edge complement graph G, so ω(G) =
α(G). It follows that the maximum clique problem and the maximum independent
set problem are equivalent in many respects, including the context presented here.
For consistency with related literature, we refer to one problem in some parts and to
the other problem in others.

The maximum independent set problem is fundamental in the area of combinato-
rial optimization and is closely related, in addition to the maximum clique problem,
to the vertex cover problem (the vertex complement of an independent set) and the
chromatic number problem (minimum cover by independent sets). The maximum
independent set problem (or even finding α(G)) is one of the first problems shown to
be NP-hard in [16].

A common way to cope with the NP-hardness of a problem is to devise algorithms
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that give approximate solutions. An efficient (i.e., polynomial time) algorithm is said
to have an approximation ratio ρ > 1 for the maximum independent set problem if for
every input graph, the ratio between α(G) and the size of the independent set returned
by the algorithm is at most ρ = ρ(n). It is known through work culminating in [12]
that for any fixed ε > 0, it is impossible to approximate the independence number
α(G) within a ratio of n1−ε, unless NP has randomized polynomial time algorithms
(NP = ZPP). The best approximation algorithm that is known for α(G), due to [4],
has approximation ratio O(n/ log2 n).

The intractability of the maximum independent set problem in the worst case
suggests studying the performance of algorithms on average instances. A possible
rigorous description of average instances is by probabilistic models; see, e.g., [8] for a
survey on average-case analysis of graph algorithms on random graphs.

The problem of finding a maximum independent set on a random graph appears
to be difficult. Let Gn,1/2 denote the random graph on n labeled vertices obtained
by connecting each pair of vertices by an edge independently with probability 1/2. It
is known that the independence number of Gn,1/2 is roughly 2 log2 n, almost surely,
i.e., with probability that approaches 1 as n tends to infinity; see, e.g., [3]. Several
simple and natural algorithms (e.g., the greedy one) find an independent set of size
roughly log2 n, almost surely. However, no algorithm is known to find efficiently an
independent set of size significantly larger than log2 n; see, e.g., [17, 8]. Finding
independent sets of size 3

2 log2 n in random graphs was even suggested as a hard
computational problem on which to base cryptographic applications; see [14].

Lovász theta function. A well-known relaxation of the maximum independent set
problem is the theta function of a graph, denoted ϑ(G), introduced by Lovász [21]
(see also [11, Chapter 9] and Knuth’s survey [18]). The theta function can be formu-
lated as a semidefinite program and thus can be computed, up to arbitrary precision,
in polynomial time; see, e.g., [11]. We may consider the theta function also as a
relaxation of the maximum clique problem by formally referring to ϑ(Ḡ).

In terms of approximation ratio, the theta function appears to have little to offer.
The ratio between ϑ(G) and the independence number α(G) can be as large as n1−o(1),
as shown in [6].

Also, on the average there is a large gap between the Lovász theta function ϑ(G)
and the independence number α(G). While the independence number of a random
graph Gn,1/2 is almost surely roughly 2 log2 n, it was shown by Juhász [15] that the
value of the theta function is almost surely Θ(

√
n).

The hidden clique problem. Jerrum [13] and Kučera [20] suggested independently
the following hidden clique problem. A random graph Gn,1/2 is chosen and a clique
of size k is randomly placed in the graph. We wish to find in this graph a maximum
clique. Jerrum showed that the Metropolis process almost surely does not find the
clique when k = o(

√
n). Kučera observed that when k > c

√
n log n for an appropriate

constant c, the vertices of the planted clique would almost surely be the ones with
the largest degrees in G, and hence it is easy to recognize them efficiently. Alon,
Krivelevich, and Sudakov [1] showed an algorithm that almost surely finds the planted
clique whenever k ≥ Ω(

√
n). Their algorithm is based on spectral properties of the

graph, namely, it uses the eigenvector that corresponds to the second largest eigenvalue
of the adjacency matrix of the graph. (See also [24].)

Feige and Krauthgamer [7] devised another algorithm that is based on the semidef-
inite programming relaxation provided by the Lovász theta function. Their algorithm
works for the same planted clique size k as the algorithm of [1], but it has the ad-
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vantage of being more robust; it works also in a semirandom model in which an
adversary can remove edges that are outside the planted clique. Another advantage
of their algorithm is that it certifies almost surely the optimality of its solution.

The approach of [7] was motivated by Juhász’ result [15] that the theta function
of a random graph Gn,1/2 is Θ(

√
n), almost surely. It follows that the maximum clique

relaxation ϑ(Ḡ) is also almost surely Θ(
√
n) for a random graph Gn,1/2. When a clique

of size k ≥ c
√
n for a sufficiently large constant c > 0 is planted in a random graph,

the theta function (being a relaxation) must increase to at least k. Furthermore, it
is plausible that such a noticeable increase in the theta function will allow us to find
the planted clique. Indeed, it is shown in [7] that on the hidden clique graph Gn,1/2,k,
the theta function almost surely gives exactly k, the planted clique size, in which case
it allows us to find the planted clique (with some extra work). In contrast, when a
clique of size k = o(

√
n) is planted in a random graph, the monotonicity properties

of the theta function (see, e.g., [18, sections 18–19]) guarantee that its value can only
increase, but not by more than k. It follows that on the hidden clique graph Gn,1/2,k,
the value of the theta function is also almost surely Θ(

√
n), and it is therefore possible

that the planted clique has no noticeable effect on the theta function.

A possible direction for extending the approach of [7] to a planted clique of smaller
size k = o(

√
n) is to use relaxations that are stronger than the Lovász theta function.

In particular, it is desirable to find a relaxation whose value on a random graph Gn,1/2

is almost surely o(
√
n).

The general Lovász–Schrijver technique. Lovász and Schrijver [23] propose a gen-
eral technique for obtaining stronger and stronger relaxations of 0-1 integer program-
ming problems. Specifically, they devise several procedures called matrix-cut operators
that produce from a convex (e.g., linear programming) relaxation P ⊆ [0, 1]n of the
problem a convex set that is an improved relaxation for the 0-1 (i.e., integral) vectors
in P . That is, the resulting convex set is contained in P and contains all the 0-1 vec-
tors in P . The matrix-cut operators follow a lift-and-project approach; they lift the
convex relaxation P into a higher (quadratic) dimension by introducing new variables
and new constraints, and then project it back into the original space.

The two main matrix-cut operators of Lovász and Schrijver [23] are denoted by
N and N+. The difference between the two operators is that the lifting of the latter
involves, in addition, a positive semidefinite constraint. That is, if P is a linear
programming relaxation, then N(P ) is also a linear programming relaxation, while
N+(P ) is a semidefinite programming relaxation.

The matrix-cut operators can be applied iteratively, say r ≥ 0 times, and the
iterated operators are denoted Nr and Nr

+. The N -rank of a convex relaxation P is
defined as the number of iterations of the N operator that are needed to obtain the
convex hull of the 0-1 vectors of P (i.e., a perfectly tight relaxation). The N+-rank is
defined similarly. Lovász and Schrijver [23] show that the N -rank of a relaxation is
always at most the dimension d (e.g., number of variables in a linear program). The
N+ operator is a strengthening of the N operator, and hence the N+-rank is also al-
ways at most d. Goemans and Tunçel [10] and Cook and Dash [5] show independently
that there exist relaxations whose N+-rank meets the upper bound d.

Furthermore, Lovász and Schrijver [23] show that the N and N+ operators have
the following important algorithmic property. If it is possible to efficiently optimize
(linear objective functions) over a relaxation P , then it is also possible to efficiently
optimize over the relaxation obtained by applying the operator on P . It follows that
for every fixed r ≥ 0, the iterated operators Nr and Nr

+ also satisfy this property.
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Strong relaxations for maximum independent set. To obtain relaxations of the
maximum independent set problem, Lovász and Schrijver [23] apply their general
technique of matrix-cut operators on a classical linear programming relaxation FRAC
of the problem. The relaxation FRAC is a linear program of polynomial size, and
hence for every fixed r ≥ 0, one can efficiently optimize over Nr

+(FRAC). In contrast,
the dimension d (i.e., number of variables) of FRAC is the number of vertices n in
the graph, and so optimizing over Nn(FRAC) is NP-hard.

Lovász and Schrijver [23] show that the semidefinite programming relaxation
N+(FRAC) is at least as strong as the Lovász theta function. It follows, for ex-
ample, that for any graph on which the theta function is not tight, the relaxation
Nr

+(FRAC) for r ≥ 2 is stronger than the theta function.

The N -rank of a graph is defined as the N -rank of the relaxation FRAC. The
N+-rank is defined similarly. It follows that for graphs with bounded N+-rank, the
maximum independent set problem can be solved in polynomial time. This family
includes, for example, all perfect graphs, since the above connection with the theta
function implies that their N+-rank is at most 1.

Stephen and Tunçel [25] study the case where the n-vertex graph G is the line
graph of a graph H on h vertices. They show that the N+-rank of G is at most �h/2�,
and that this bound is met if H is a complete graph on an odd number of vertices, in
which case n =

(
h
2

)
, and so the N+-rank of G is Ω(

√
n). Note that independent sets

in G correspond to matchings in H, and that a maximum weight matching can be
found efficiently; it follows that there are graphs with unbounded (and rather large)
N+-rank, in which the maximum (weighted) independent set problem can be solved
in polynomial time.

Our results. We examine the asymptotic behavior on the random graph Gn,1/2 of
the relaxations of Lovász and Schrijver [23] for the maximum independent set prob-
lem. In particular, we show that the typical value of the semidefinite programming
relaxation Nr

+(FRAC) on a random graph is roughly
√

n/2r for r = o(log n). We note
that this characterization answers (up to a constant factor) a question of Knuth [18,
section 37, Problem P6].

Theorem 1.1. For every fixed δ > 0 and r = o(log n), the value of the relax-
ation Nr

+(FRAC) on a random graph Gn,1/2 is at least
√

n/(2 + δ)r+1 and at most

4
√

n/(2− δ)r+1, almost surely.

Recall that the strongest relaxations of Lovász and Schrijver [23] whose value
is known to be efficiently computable are Nr

+(FRAC) for r = O(1). Theorem 1.1
shows that on a random graph, the typical value of these relaxations is smaller than
that of the theta function by no more than a constant factor. In the hidden clique
problem, the planted clique size k that a heuristic can handle can be improved by
an arbitrarily large constant factor using a method of [1], and therefore it appears
that the improvement offered by these stronger relaxations can be achieved by other
methods.

We use Theorem 1.1 to characterize, up to a constant factor, the typical N+-rank
of a random graph Gn,1/2.

Theorem 1.2. The N+-rank of a random graph Gn,1/2 is almost surely Θ(logn).

Our results for the N+ operator extend to a slightly stronger variant of the matrix-
cut operators of Lovász and Schrijver [23]. This operator, denoted NFR+, is special-
ized for the maximum independent set problem and retains the important algorithmic
property of N+, namely, an efficient optimization over P implies an efficient optimiza-
tion over NFR+(P ).
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Organization. Section 2 is a technical description of the matrix-cut operators
of Lovász and Schrijver [23] (including our variant NFR+). We present the formal
definitions in section 2.1 and state in section 2.2 some basic useful properties (whose
proof is deferred to Appendix A.1).

Section 3 describes our results on matrix-cuts in a random graph. Specifically, a
lower bound on the value of the relaxation Nr

+(FRAC) is shown in section 3.1 and an
upper bound is shown in section 3.2.

The appendix proves several useful properties of the matrix-cut operators. In
section A.1 we give some basic properties that are needed for our main results, and in
section A.2 we give bounds on the ranks of the different matrix-cut operators. Most
of the results on the N and N+ operators were previously published in [23, 5, 10]
and are included here for completeness. The results on the NFR+ operator were not
published previously (to the best of our knowledge).

Preliminaries. Throughout, we omit the graph G(V,E) if it is clear from the
context. We let n denote the number of vertices in the graph G and assume, without
loss of generality, that V = {1, . . . , n}. For a vertex i in the graph, let Γ(i) denote the
set of the vertices that are adjacent to i in the graph, i.e., Γ(i) := {j ∈ V : ij ∈ E},
and let Γ(S) denote the set of vertices in V that are adjacent to at least one vertex
of S, i.e., Γ(S) := ∪i∈SΓ(i).

An n×n (real) matrix Y is positive semidefinite if Y is symmetric and xTY x ≥ 0
for all x ∈ R

n. It is well known that a symmetric matrix Y is positive semidefinite if
and only if all the eigenvalues of Y are nonnegative.

A Gram matrix representation of an n×n matrix Y is a set of real-valued vectors
{v1, . . . , vn} such that Yij = vTi vj for all i, j (i.e., Y = BTB for a corresponding
matrix B). It is well known that a matrix Y is positive semidefinite if and only if it
has a Gram matrix representation.

2. The Lovász–Schrijver matrix-cut operators. In this section we describe
the so-called matrix-cut operators that were proposed by Lovász and Schrijver [23].
Given a convex set (e.g., a polytope) P , the matrix-cut operators consider P as a
relaxation of the convex hull of its 0-1 vectors and produce another relaxation that
is tighter than P . In other words, these operators produce a convex set that is
sandwiched (in terms of containment) between P and (the convex hull of) the 0-1
vectors in P . Furthermore, the produced relaxation is strictly tighter than P , unless
P is already tight. Our description and notation mostly follow that of Lovász and
Schrijver [23] (but also those of [5, 10]). An alternative formulation of the matrix-cut
operators is given by Lovász in [22].

Section 2.1 reviews the definitions of the Lovász–Schrijver matrix-cut operators.
In section 2.2 we state some of their known properties (that we need), focusing on
the application of these operators to the stable set problem. For completeness (and
to aid readers who are unfamiliar with these operators), we give the proofs of these
properties in the appendix, where these and relevant known results and examples are
repeated and extended to a more general setting that includes the NFR+ operator.

Throughout, let ej be the jth unit vector, let 0 be the vector of all zeros, and let
1 =

∑
j ej be the vector of all ones. The sizes (dimensions) of 0,1, and ej will be clear

from the context. Recall that a set is called a cone if it is closed under multiplication by
a nonnegative number. A convex cone is thus a set that is closed under a nonnegative
linear (i.e., conic) combination. (Throughout, we will consider convex cones rather
than polytopes.) A polyhedral cone is a cone that is also a polyhedron; equivalently,
a polyhedral cone is a set that can be defined by {x : Ax ≥ 0} for some matrix A.
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2.1. Definitions.
Homogenization. It will be convenient to deal with homogenous systems of in-

equalities. We therefore embed the n-dimensional space R
n in R

n+1 as the hyperplane
x0 = 1 (throughout, the 0th variable plays a special role) and work with convex cones
in R

n+1, as follows.
Since we deal with 0-1 programming on n variables, our basic example is a poly-

tope P that is contained in [0, 1]n (the convex hull of the n-dimensional hypercube
{0, 1}n). To homogenize P using the new variable x0, first embed P in the hyperplane
x0 = 1 of R

n+1 and then generate from it a convex cone. That is, if

P = {x ∈ R
n : Ax ≤ b, 0 ≤ x ≤ 1} ,(1)

then the convex cone obtained by homogenization is

K :=

{(
x0

x

)
∈ R

n+1 : Ax ≤ x0b, 0 ≤ x ≤ x01

}
.(2)

Note that such K can be described as the intersection of finitely many halfspaces
defined by linear constraints utx ≥ 0 (here x ∈ R

n+1), and hence it is a polyhedral
cone.

We denote by Q ⊂ R
n+1 the convex cone that is obtained from the polytope

[0, 1]n via the homogenization procedure (1)–(2). Namely,

Q :=
{
(x0, x1, . . . , xn)

T : 0 ≤ xi ≤ x0 for all 1 ≤ i ≤ n
}
.(3)

Note that Q is a polyhedral cone that can be described by 2n linear inequalities.
Throughout, let K ⊆ Q be a (closed) convex cone. We denote by KI the convex

cone that is generated by all 0-1 vectors in K. Observe that within the hyperplane
x0 = 1, KI is exactly the integral hull (i.e., convex hull of the integral vectors) of K.
For example, QI = Q.

The polar cone of K, denoted K∗, is the convex cone defined by

K∗ := {u ∈ R
n+1 : xTu ≥ 0 for all x ∈ K}.

Observe that a vector u ∈ K∗ corresponds to a linear constraint uTx ≥ 0 that is
valid for K (i.e., satisfied by all vectors x ∈ K). The polar cone K∗ is thus the
collection of valid linear constraints for K. For example, Q is defined in (3) by 2n
linear constraints, and hence Q∗ is spanned by the vectors ei and fi = e0 − ei for
i = 1, . . . , n.

Fractional stable sets. We will be mostly interested in the stable set problem. Let
G(V,E) be a graph with no isolated vertices and |V | = n. Then the stable sets of G
correspond to the 0-1 solutions of the system of linear inequalities

xi ≥ 0 for all i ∈ V (nonnegativity constraints)(4)

and

xi + xj ≤ 1 for all ij ∈ E (edge constraints).(5)

Let STAB(G) ⊂ R
n denote the convex hull of the 0-1 solutions of the system (4)–(5).

Let FRAC(G) ⊂ R
n (for “fractional stable sets”) denote the solution set of the system

(4)–(5) (i.e., without integrality restriction). Clearly, STAB(G) ⊆ FRAC(G).
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Let FR(G) ⊂ R
n+1 be the polyhedral cone that is obtained from the polytope

FRAC(G) via the homogenization procedure (1)–(2). That is, FR(G) is the solution
set of the following homogenous system of linear inequalities for the stable set problem:

xi ≥ 0 for each i ∈ V,(6)

x0 − xi − xj ≥ 0 for each ij ∈ E.(7)

Let ST(G) be the polyhedral cone that is obtained from the polytope STAB(G) via
the homogenization procedure (1)–(2). It is straightforward that (FR(G))I = ST(G).

Throughout, we omit the graph G when it is clear from the context, denoting
STAB(G) by STAB, etc. It can be seen that the polar cone FR∗ is spanned by the
vectors ei for i = 1, . . . , n and the vectors fij = e0 − ei − ej for ij ∈ E. Note that
FR ⊆ Q and hence FR∗ ⊇ Q∗.

Matrix-cut operators. Let K1,K2 ⊆ Q be closed convex cones in R
n+1 (e.g.,

K1 = FR(G) and K2 = Q). Consider the cone K1 ∩ K2. For each u ∈ K∗1 the
constraint uTx ≥ 0 is valid for K1, and for each v ∈ K∗2 the constraint vTx ≥ 0
is valid for K2. It follows that the quadratic inequality (uTx)(xT v) ≥ 0 is valid for
K1 ∩K2. Furthermore,

K1 ∩K2 =
{
x : uTxxT v ≥ 0 for all u ∈ K∗1 , v ∈ K∗2 , x0 ≥ 0

}

because any original inequality, say uTx ≥ 0 for K1, can be recovered by adding
the two quadratic inequalities obtained by ei, fi ∈ Q∗ ⊆ K∗2 , giving uTx · x0 =
uTxxT (ei + fi) ≥ 0.

Furthermore, all 0-1 vectors in K1 ∩K2 satisfy x2
i = xi. Therefore, if x is a 0-1

vector in K1 ∩K2 and with x0 = 1, then setting Y = xxT we have the following:
(a) Y is symmetric.
(b) Y e0 = diag(Y ), i.e., Yii = Yi0 for all 1 ≤ i ≤ n.
(c) uTY v ≥ 0 for all u ∈ K∗1 and v ∈ K∗2 .
(d) Y is positive semidefinite.

Note that (c) can be written as
(c′) Y K∗2 ⊆ K1.
Lovász and Schrijver [23] proposed the following lift-and-project procedure. Given

K1,K2, consider the derived cones

M(K1,K2) := {Y ∈ R
(n+1)×(n+1) : Y satisfies (a)–(c)},

M+(K1,K2) := {Y ∈ R
(n+1)×(n+1) : Y satisfies (a)–(d)}

and define the projections of these liftings on R
n+1:

N(K1,K2) := {Y e0 : Y ∈M(K1,K2)},

N+(K1,K2) := {Y e0 : Y ∈M+(K1,K2)}.

It follows from the above discussion that

(K1 ∩K2)I ⊆ N+(K1,K2) ⊆ N(K1,K2) ⊆ K1 ∩K2.(8)
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Relevant variants of the operators. We shorten notation to better handle two
important special cases. When K2 = Q we omit K2, i.e., N(K) := N(K,Q) and
N+(K) := N+(K,Q). In this case, we have that (c′) is equivalent to the following:

(c′′) Every column of Y is in K1; the difference of the first column and any other
column of Y is in K1.

Note that we have from (8) that

KI ⊆ N+(K) ⊆ N(K) ⊆ K.(9)

For the stable set problem, we may take K2 = FR, denoting it in the subscript,
i.e., NFR(K) := N(K,FR) and NFR+(K) := N+(K,FR). In this case, we have that
(c′) is equivalent to the following:

(c′′′) Y ei ∈ K1 for all i ≥ 1, and Y fij ∈ K1 for all ij ∈ E.

We assume throughout that K ⊆ FR, and then we have from (8) that

KI ⊆ NFR+(K) ⊆ NFR(K) ⊆ K.(10)

It follows from the definition that using K2 = FR is at least as strong as using
K2 = Q in the same operator, i.e., NFR(K) ⊆ N(K) and NFR+

(K) ⊆ N+(K). We
therefore have that

KI ⊆ NFR+(K) ⊆ NFR(K) ⊆ N(K) ⊆ K,(11)

KI ⊆ NFR+(K) ⊆ N+(K) ⊆ N(K) ⊆ K.(12)

It can also be seen that NFR(K) �⊆ N+(K) (e.g., when G is a clique on 5 vertices
and taking K = FR; see Appendix A.2), but it is not clear (to us) whether N+(K) ⊆
NFR(K). The strength of these operators is further discussed in Appendix A.2.

Iterated operators. Define the iterated operator Nr(K) recursively by N0(K) =
K and Nr(K) = N(Nr−1(K)) for r ≥ 1. For other operators, the iterated operator
is defined similarly.

The following theorem of Lovász and Schrijver [23] proves that even without the
positive semidefiniteness constraint (d), it suffices to apply n iterations in order to
get from a convex cone K ⊆ Q the cone KI . It follows that applying the N operator
on K �= KI produces a relaxation of KI that is strictly tighter than K.

Theorem 2.1 (Lovász and Schrijver [23]). Let K ⊆ Q be a convex cone in R
n+1.

Then Nn(K) = KI .

It is often easier to work in the original n-dimensional space (without homoge-
nization), so in the case that K is the cone obtained from a polytope (or a convex
set) P in [0, 1]n via the homogenization procedure (1)–(2), define

N(P ) :=

{
x ∈ R

n :

(
1
x

)
∈ N(K)

}
,

and similarly for the other operators (including the iterated ones).

For the stable set problem, K will be one of the cones obtained from FR(G) by an
iterated operator, e.g., Nr(FR(G)). Going back to the original n-dimensional space
we shall abbreviate Nr(G) := Nr(FRAC(G)), and similarly for the other operators.
We then have from Theorem 2.1 that Nn(G) = STAB(G).
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Ranks. The N -rank of an inequality uTx ≥ 0 that is valid for KI is the smallest
nonnegative integer r such that uTx ≥ 0 is valid for Nr(K). (Note that the rank is
relative to K.) For N+, NFR, and NFR+ the rank is defined similarly. Theorem 2.1
implies that the rank of any valid inequality is at most n (the dimension).

The N -rank of a cone K is the smallest nonnegative integer r such that Nr(K) =
KI , and similarly for the other operators. By Theorem 2.1, the N -rank of K is at
most n (the dimension).

The N -rank of a graph G is the N -rank of FR(G), and similarly for the other
operators. For example, for a bipartite graph, STAB = FRAC, and hence the N -rank
of a bipartite graph is 0. We discuss bounds on the rank in Appendix A.2.

2.2. Useful properties.

Algorithmic aspects. Lovász and Schrijver [23] give sufficient conditions for effi-
cient weak (i.e., up to arbitrary precision) optimization (of linear objective functions)
over N(K), N+(K), NFR(K), and NFR+(K). Technically, the matrix-cut operators
have the following algorithmic property.

Theorem 2.2 (Lovász and Schrijver [23]). A polynomial time weak separation or-
acle for K gives a polynomial time weak separation oracle for Nr(K), Nr

+(K), Nr
FR(K),

and Nr
FR+(K) for any fixed constant r.

By the equivalence between weak (i.e., up to arbitrary precision) optimization
and weak separation (see [11]), Theorem 2.2 implies a weak optimization of any linear
objective function over these relaxations of KI .

Lovász and Schrijver [23] suspect that Theorem 2.2 does not extend to N(K,K).
They remark, however, that if K is given by an explicit system of polynomially many
linear inequalities, then Theorem 2.2 does extend to N(K,K).

For the stable set problem, the cone K = FR is given by an explicit linear program
of polynomial size, so one can solve the separation problem for it in polynomial time.
We thus obtain the following theorem.

Theorem 2.3. For every fixed r ≥ 0, the weak optimization problem for Nr(G)
can be solved in polynomial time, and similarly for Nr

+, Nr
FR, N

r
FR+.

Down-monotonicity. A nonempty convex set P ⊆ [0, 1]n is called down-monotone
(in [0, 1]n) if for every x ∈ P , every y ∈ [0, 1]n with y ≤ x is also in P (see, e.g., [11,
p. 11]). Similarly, a convex cone {0} �= K ⊆ Q is called down-monotone if for every
x ∈ K, every y ∈ Q with y ≤ x and y0 = x0 is also in K.

The next lemma shows that the relaxations of the stable set problem that are
produced by iterated matrix-cut operators are down-monotone. Its proof appears in
Appendix A.1.

Lemma 2.4. Nr(G) is down-monotone for every r ≥ 0, and similarly for Nr
+,

Nr
FR, Nr

FR+.

Removing vertices from the graph. Recall that V = {1, . . . , n}. For a vector
x ∈ R

n and a subset W ⊂ V , we denote by xW the restriction of x to the coordinates
of W .

The next lemma characterizes the relaxations of the stable set problem that are
produced by iterated matrix-cut operators when one of the coordinates is fixed (i.e.,
xi = 0 or xi = x0). Its proof appears in Appendix A.1.

Lemma 2.5. Let x ∈ R
n and assume that i satisfies xi = 1 and xj = 0 for all

j ∈ Γ(i). Then for all r ≥ 0, x ∈ Nr(G) if and only if xV−Γ(i)−i ∈ Nr(G− Γ(i)− i),
and similarly for Nr

+, Nr
FR, and Nr

FR+.
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Vertex deletion and contraction. Let aTx ≤ b be an inequality valid for STAB(G).
For a subset W ⊂ V , we denote by aW the restriction of a to the coordinates of W . For
every i ∈ V , if aTx ≤ b is valid for STAB(G), then aTV−ix ≤ b is valid for STAB(G− i)
and aTV−Γ(v)−ix ≤ b− ai is valid for STAB(G− Γ(i)− i). Following the terminology

of Lovász and Schrijver [23], we say that these inequalities arise from aTx ≤ b by the
deletion and contraction of vertex i, respectively. Note that if aTx ≤ b is an inequality
such that for some i, both the deletion and the contraction of i yield inequalities valid
for the corresponding graphs, then aTx ≤ b is valid for G.

Upper bounds on the N+-rank. Lovász and Schrijver [23] prove the following
bounds for the N+ operator.

Lemma 2.6 (Lovász and Schrijver [23]). If aTx ≤ b is an inequality valid for
STAB(G) such that for all i ∈ V with ai > 0 the contraction of i gives an inequality
with N+-rank at most r, then aTx ≤ b has N+-rank at most r + 1.

Lemma 2.7 (Lovász and Schrijver [23]). The N+-rank of a graph G is at most
its stability number α(G).

3. The Lovász–Schrijver relaxations in a random graph. In this section
we show that the N+-rank of a random graph Gn,1/2 is almost surely Θ(log n). In
particular, we analyze the asymptotic behavior of max{1Tx : x ∈ Nr

+(G)} for r =
o(log n). Loosely speaking, we show that the value of this relaxation is almost surely
roughly

√
n/2r. The precise formulations of our lower bound and upper bound on

max{1Tx : x ∈ Nr
+(G)} appear below. Our analysis extends the proof of Juhász [15]

that shows that the theta function of a random graph is almost surely Θ(
√
n).

Theorem 3.1. For any c >
√
2 there exists an ε′ > 0 such that if 0 ≤ r ≤ ε′ log n,

then almost surely max{1Tx : x ∈ Nr
+(Gn,1/2)} ≥

√
n/cr+1, and similarly for Nr

FR+.
The proof of Theorem 3.1 appears in section 3.1. Technically, we show that

Nr
+(Gn,1/2) almost surely contains the “uniform” solution (1/cr+1

√
n)1 and hence

obtain a lower bound on the probable value of the relaxation.
To show that the above lower bound is nearly tight, we next give an upper bound

on the value of the relaxation. Its proof appears in section 3.2.
Theorem 3.2. For any d <

√
2 there exists an ε′ > 0 such that if 1 ≤ r ≤

ε′ log n, then almost surely max{1Tx : x ∈ Nr
+(Gn,1/2)} ≤ 4

√
n/dr+1, and similarly

for Nr
FR+.

It is straightforward that Theorem 1.1 follows from Theorems 3.1 and 3.2 by
taking c =

√
2 + δ and d =

√
2− δ.

The N+-rank of a random graph Gn,1/2. Using Theorem 3.1 and Lemma 2.7 we
can now show that the N+-rank of a random graph is almost surely Θ(logn), proving
Theorem 1.2. For comparison, it follows from Corollary A.24 that the N -rank of a
random graph is almost surely at least Ω(n/ log n).

Proof of Theorem 1.2. Let G be a random graph from the distribution Gn,1/2,
and let us first show a lower bound on the N+-rank. It is well known that, almost
surely, the maximum size of a stable set in G is roughly 2 log2 n, i.e.,

max{1Tx : x ∈ STAB} ≤ O(log n).

We have from Theorem 3.1 with r = ε′ log n that, almost surely,

max{1Tx : x ∈ Nr
+(FRAC)} ≥ nΩ(1).

It follows that Nr
+(FRAC) �= STAB, and hence the N+-rank of FRAC (and therefore

of G) is larger than r = ε′ log n = Ω(log n).
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The upper bound on the N+-rank of G follows from Lemma 2.7. Indeed, the
stability number of a random graph Gn,1/2 is almost surely roughly 2 log2 n, and
hence the N+-rank of G is almost surely O(log n), as claimed.

3.1. Lower bound on the value of Nr
+(Gn,1/2). We prove Theorem 3.1 by

showing that Nr
+(Gn,1/2) almost surely contains the “uniform” solution (1/cr+1

√
n)1.

First we exhibit in Lemma 3.3 certain conditions that are sufficient for such a uniform
solution to be feasible in Nr

+(G). We then show in Lemma 3.4 that these conditions
are almost surely satisfied by a random graph Gn,1/2.

We will say that two vertices are nonadjacent if they are not adjacent and they
are not equal (i.e., they are adjacent in the complement graph). We make no attempt
to optimize constants.

Lemma 3.3. Let G be a graph on n vertices, let c =
√
2(1+ ε)10 for 0 < ε < 1/5,

and let r ≥ 0. Assume that for every S ⊂ V with |S| ≤ r, the graph G′ = G−S−Γ(S)
satisfies the following (letting n′ denote the number of vertices in G′):

(i) All eigenvalues of the adjacency matrix of G′ are at least −(1 + ε)
√
n′.

(ii) The degree of every vertex in G′ is between 1
1+ε

n′
2 and (1 + ε)n

′
2 .

If cr+1 ≤ ε
√
n, then (1/cr+1

√
n)1 ∈ Nr

+(G), and similarly for Nr
FR+(G).

Proof. Proceed by induction on r. For the base case r = 0, observe that
(1/cr+1

√
n)1 (and even (1/2)1) satisfies the nonnegativity and edge constraints and

therefore is in FR(G) by definition.
For the inductive step, assume that it holds for r ≥ 0, and let us show that it

holds for r + 1. Let G be a graph with (i) and (ii) holding for any |S| ≤ r + 1, and
cr+2 ≤ ε

√
n. We can choose, in particular, |S| = 0 and have that (i) and (ii) hold for

the graph G itself. To ease notation, define

µ := (1 + ε)5(cr+1/
√
2)
√
n.(13)

Let A be the n × n adjacency matrix of G, i.e., Aij = 0 whenever (i, j) ∈ E or
i = j, and Aij = 1 otherwise. We know from (i) that all eigenvalues of A are at least
−(1 + ε)

√
n ≥ −µ. Hence, the matrix B = A+ µI is positive semidefinite, and there

exist vectors z1, . . . , zn such that Bij = zTi zj . Therefore

‖zi‖2 = Bii = µ for all i ≥ 1.(14)

Let z0 =
∑n
i=1 zi. Then

‖z0‖2 =

(∑
i>0

zi

)T 
∑
j>0

zj


 =

∑
i,j>0

Bij =
∑
i>0

∑
j>0

Bij .

To estimate
∑
j>0 Bij =

∑
j>0 Aij + µ for i > 0, observe that we have from (ii) that

1

1 + ε

n

2
≤
∑
j>0

Aij ≤ (1 + ε)
n

2
,

while µ ≤ (cr+2/2)
√
n ≤ εn/2. Hence,

1

1 + ε

n

2
≤
∑
j>0

Bij ≤ (1 + ε)2
n

2
,(15)
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and we conclude that

1

1 + ε

n2

2
≤ ‖z0‖2 ≤ (1 + ε)2

n2

2
.(16)

For every i ≥ 0 let vi be the unit length vectors in the direction of the vector zi,
i.e., vi = zi/‖zi‖, and let xi = (vTi v0)

2. Observe that x0 = (vT0 v0)
2 = 1.

We claim that x = (x1, . . . , xn)
T is in Nr+1

+ (G). Let us first show how the proof
of Lemma 3.3 follows from this claim. Indeed, from (ii) we have that

vTi v0 =

(
zi
‖zi‖

)T (∑
j>0 zj

‖z0‖
)

=

∑
j>0 Bij√
µ‖z0‖ .

Together with (15) and (16) we can estimate xi = (vTi v0)
2 by

1

(1 + ε)4
· 1

2µ
≤ xi ≤ (1 + ε)5

1

2µ
,(17)

and from (13) we have that

xi ≥ 1

2(1 + ε)4
·

√
2

(1 + ε)5cr+1
√
n
≥ 1

cr+2
√
n
;

thus (1/cr+2
√
n)1 ≤ x ∈ Nr+1

+ (G). By the monotonicity guaranteed in Lemma 2.4

we have (1/cr+2
√
n)1 ∈ Nr+1

+ (G), which indeed proves the inductive step.

We now prove the claim x ∈ Nr+1
+ (G) by presenting a matrix Y ∈ M+(Nr

+(G))
whose 0th column corresponds to x. Indeed, let Y be the (n + 1) × (n + 1) matrix
defined by Yij = (vTi vj)

√
xixj for all i, j ≥ 0. By definition, Yi0 = (vTi v0)

√
xi = xi

for i ≥ 0, and in particular Y00 = x0 = 1. We will show that Y satisfies (a), (b), (c′′),
and (d). Three of them are straightforward:

(a) Y is symmetric by definition.
(b) Yii = ‖vi‖2xi = xi and hence Yii = xi = Yi0.
(d) Y is positive semidefinite because it can be represented by the vectors {√xivi},

i.e., Yij = (
√
xivi)

T (
√
xjvj) for all i, j ≥ 0.

Before proving (c′′), observe that for i, j > 0 we have

Yij =

(
zi
‖zi‖

)T (
zj
‖zj‖

)√
xixj = (1/µ)Bij

√
xixj ,

and Bij is either µ, 0, or 1. So for i, j > 0 we have

Yij =




xi if i = j,
0 if i �= j and ij ∈ E,
(1/µ)

√
xixj if i �= j and ij �∈ E,

and the estimate of (17) gives that xi ∼ 1/2µ and
√
xixj ∼ 1/2µ. Hence,

Y =




1 x1 · · · xn

x1 x1 0
∣∣∣√xixjµ

...
. . .

xn 0
∣∣∣√xixjµ xn



∼




1 1
2µ · · · 1

2µ

1
2µ

1
2µ 0

∣∣∣ 1
2µ2

...
. . .

1
2µ 0

∣∣∣ 1
2µ2

1
2µ



.
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Consider Y ei, the ith column of Y , for i > 0, and scale it by a factor of 1/xi
so that its 0th entry will be 1. We get a fractional solution where vertex i has
value 1, its adjacent vertices have value 0, and its nonadjacent vertices j have value
(1/µ)

√
xj/xi ∼ 1/µ. Let G′ be the subgraph of G induced on the latter vertices (i.e.,

those nonadjacent to i), and let n′ denote the number of vertices in G′. Then by
Lemma 2.5, we have that the fractional solution Y ei is in Nr

+(G) if and only if its
restriction to G′ is in Nr

+(G′). Each coordinate in the fractional solution restricted
to G′ is bounded by

1

µ

√
xj
xi
≤ 1

µ
(1 + ε)9/2 ≤

√
2

cr+1
√

n(1 + ε)
≤ 1

cr+1
√
n′

,

where the first inequality is due to (17), the second is due to (13), and the third follows
from n′ ≤ (1 + ε)n2 , which we have from (ii). The fractional solution restricted to G′

is thus dominated by the uniform solution (1/cr+1
√
n′)1, which belongs to Nr

+(G′)
by applying the induction hypothesis to G′. (Note that G′ satisfies (i) and (ii) for
any 0 ≤ |S| ≤ r by definition, and that we have cr+1 ≤ ε

√
n/c ≤ ε

√
n′.) From the

monotonicity guaranteed by Lemma 2.4, we conclude that also the fractional solution
restricted to G′ is in Nr

+(G′), and therefore Y ei ∈ Nr
+(G).

Consider Y fi, the difference between column 0 and column i of Y , for i > 0. Its
0th entry is 1− xi ∼ 1− 1/2µ, its ith entry is 0, and any other jth entry is at most
roughly 1/2µ. Observe that

xi ≤ (1 + ε)5

2µ
≤ 1√

2n
≤ 1− 1√

2
,(18)

where the first inequality is due to (17), the second is due to (13), and the third is
due to

√
n ≥ 5ε

√
n ≥ 5cr+2 > 10. Scaling the vector Y fi by a factor 1/(1 − xi) so

that its 0th entry is 1, we obtain a fractional solution in which the value of the jth
entry is at most

xj
1− xi

≤ (1 + ε)5/2µ

1/
√
2

=
1

cr+1
√
n
.

The fractional solution is thus dominated by (1/cr+1
√
n)1, which by the induction

hypothesis belongs to Nr
+(G). (Note that G satisfies the requirements for r). From

the monotonicity guaranteed by Lemma 2.4 (as all entries of Y fi are nonnegative),
we conclude that Y fi ∈ Nr

+(G).
We therefore have that (c′′) holds, which completes the proof of the inductive

step for Nr
+(G).

Finally, let us show that the proof extends also to Nr
FR+(G). We need to consider

also Y fij for ij ∈ E. The 0th entry of this vector is 1−xi−xj ∼ 1−2/2µ, the ith and
jth entries are 0, and any other kth entry is either roughly 1/2µ if k is adjacent to
both i, j, or roughly 1/2µ− 2/2µ2 ∼ 1/2µ if k is nonadjacent to both i, j, or roughly
1/2µ − 1/2µ2 ∼ 1/2µ if k is adjacent to exactly one of i, j. Similar to (18) we have
that

xi + xj ≤ 2 · 1√
2n
≤ 1− 1√

2
.

Scaling this vector (by a small factor) so that the 0th entry is 1, we obtain a fractional
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solution in which the value of the kth entry is at most

xk
1− xi − xj

≤ (1 + ε)5/2µ

1/
√
2

=
1

cr+1
√
n
.

The fractional solution is thus dominated by (1/cr+1
√
n)1, which by the induction

hypothesis belongs to Nr
+(G). From the monotonicity guaranteed by Lemma 2.4 (as

all entries of Y fij are nonnegative), we conclude that Y fij ∈ Nr
+(G).

Lemma 3.4. Let ε > 0. Then there exists an ε′ > 0 that depends only on ε
such that for any r ≤ ε′ log n, a random graph Gn,1/2 almost surely satisfies all the
requirements of Lemma 3.3.

Proof. Observe that a sufficiently small ε′ > 0 that depends on ε guarantees that
cr+1 ≤ ε

√
n (we can assume, without loss of generality, that ε < 1/5).

Consider a particular choice of S of size s ≤ r, and its corresponding graph
G′(V ′, E′) (the subgraph of G induced on the vertices that are nonadjacent to all
the vertices of S). The number of vertices in G′, which we denote by n′ = |V ′|, has
binomial distribution B(n − s, 1/2s). Since s ≤ log n ≤ n/4, we have by Chernoff
bound that

P
[
n′ ≤ n/2s+1

] ≤ 2−δ1n/2
s

(19)

for some fixed δ1 > 0.
G′ is a random graph (with edge probability 1/2) on n′ vertices. Therefore, the

adjacency matrix of G′ is a random symmetric matrix, and we can use results on the
concentration of its eigenvalues. In particular, we have from Krivelevich and Vu [19]
(who improve the concentration shown by Füredi and Komlós [9]; see also [2]) that

P [G′ does not satisfy (i)] ≤ 2−δ2n
′

(20)

for some δ2 > 0 that depends on ε.
Since G′ is a random graph, the degree of a particular vertex in G′ has binomial

distribution B(n′−1, 1/2). By Chernoff bound and the union bound on the n′ vertices
we have that

P [G′ does not satisfy (ii)] ≤ n′2−δ3n
′

(21)

for some fixed δ3 > 0 that depends on ε.
Using the union bound on the events of (20) and (21) we can bound the probability

that G′ does not satisfy (i) or (ii). In order to obtain a bound in terms of n (rather
than n′), we add to the union bound also the event of (19) and have that for some
fixed δ > 0 that depends on ε,

P [G′ does not satisfy (i) or (ii)] ≤ n2−δn/2
s

.

Taking the union bound on all possible sets S of size at most r, the probability
that the requirements of Lemma 3.3 do not hold is at most

r∑
s=0

(
n

s

)
n2−δn/2

s ≤ rnr+12−δn/2
r ≤ nr+22−δn/2

r � 1

when r ≤ ε′ log n for a sufficiently small ε′ > 0 that depends on ε, and hence these
requirements hold almost surely.

The proof of Theorem 3.1 follows from Lemmas 3.3 and 3.4.
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3.2. Upper bound on the value of Nr
+(Gn,1/2). We prove Theorem 3.2 by

showing that the inequality 1Tx ≤ 4
√
n/dr+1 is almost surely valid for Nr

+(G). First
we exhibit in Lemma 3.5 certain conditions that are sufficient for this inequality to
be valid for Nr

+(G). We then show in Lemma 3.6 that these conditions are almost
surely satisfied by a random graph Gn,1/2.

The Lovász theta function of a graph is defined as ϑ(G) := max{1Tx : x ∈
TH(G)}, where TH(G) is the solution set of the nonnegativity constraints (4) and
the so-called orthogonality constraints (see [21, 11] for a definition). Lovász and
Schrijver [23] show that the orthogonality constraints have N+-rank at most 1, and
hence N+(G) ⊆ TH(G).

Lemma 3.5. Let G be a graph on n vertices, let d =
√
2(1− ε) for 0 < ε < 1, and

let r ≥ 1. Assume that for every S ⊂ V with |S| ≤ r, the graph G′ = G − S − Γ(S)
satisfies the following (letting n′ denote the number of vertices in G′):

(i) ϑ(G′) ≤ 2(1 + ε)
√
n′.

(ii) The degree of every vertex in G′ is between 1
1+ε

n′
2 and (1 + ε)n

′
2 .

If dr+1 ≤ ε2
√
n, then max{1Tx : x ∈ Nr

+(G)} ≤ 4
√
n/dr+1, and similarly for Nr

FR+.

Proof. Proceed by induction on r. For the base case r = 1, we can choose |S| = 0
and then (i) and (ii) hold for the graph G itself. In particular, we have that

max{1Tx : x ∈ N+(G)} ≤ ϑ(G) ≤ 2(1 + ε)
√
n < 4

√
n/d2.

For the inductive step, assume that it holds for r ≥ 1, and let us show that
it holds for r + 1. In other words, given a graph G with (i) and (ii) holding for
any |S| ≤ r + 1, we will prove that the inequality 1Tx ≤ 4

√
n/dr+2 is valid for

Nr+1
+ (G). By Lemma 2.6 we know that it suffices to prove that for every vertex v,

the inequality that arises from the contraction of v, i.e., 1Tx ≤ 4
√
n/dr+2−1, is valid

for Nr
+(G− Γ(v)− v).

By the induction hypothesis for G′ = G− Γ(v)− v we have that max{1Tx : x ∈
Nr

+(G′)} ≤ 4
√
n′/dr+1, i.e., the inequality 1Tx ≤ 4

√
n′/dr+1 is valid for Nr

+(G′).
Since (ii) holds also for G itself, we have that n′ ≤ (1 + ε)n2 , and hence

4
√
n′

dr+1
≤ 4
√
n

dr+1

√
1 + ε√
2

=
4
√
n

dr+2

√
1 + ε(1− ε) ≤ 4

√
n(1− ε2)

dr+2
≤ 4
√
n

dr+2
− 1,

where the last inequality follows from dr+2 ≤ 4ε2
√
n. Therefore we have that for

Nr
+(G′) the inequality 1Tx ≤ 4

√
n′/dr+1 ≤ 4

√
n/dr+2− 1 holds, which completes the

proof of the inductive step.

Finally, the proof immediately extends to the Nr
FR+ operator since Nr

FR+(G) ⊆
Nr

+(G).

Lemma 3.6. Let ε > 0. Then there exists an ε′ > 0 that depends only on ε
such that for any r ≤ ε′ log n, a random graph Gn,1/2 almost surely satisfies all the
requirements of Lemma 3.5.

Proof. The proof is similar to that of Lemma 3.4, but with the different require-
ment (i). Juhász [15] shows that ϑ(G′) is at most (2 + o(1))

√
n′, almost surely, by

using the result of Füredi and Komlós [9] on the concentration of eigenvalues of ran-
dom symmetric matrices. By using the stronger concentration result of Krivelevich
and Vu [19] (see also [2]), we have that the analogue of (20) holds, and the proof
follows.

The proof of Theorem 3.2 follows from Lemmas 3.5 and 3.6.
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Appendix. Properties of the matrix-cut operators.

A.1. Basic properties. We collect some properties of the matrix-cut operators
defined in section 2.1. In particular, we prove Lemmas 2.4 and 2.5 (which are used in
section 3.1).

Monotonicity. It is straightforward that the matrix-cut operators are monotone
with respect to containment of K1 and K2, as follows.

Lemma A.1. Let K ′1 ⊆ K1 and K2 ⊆ K ′2. Then N(K ′1,K
′
2) ⊆ N(K1,K2), and

similarly for N+.
For the stable set problem it follows that the matrix-cut operators are monotone

with respect to adding/removing edges.
Corollary A.2. Let G′ be a graph that is obtained from another graph G by

adding edges. Then Nr(G′) ⊆ Nr(G), and similarly for Nr
+, Nr

FR, Nr
FR+.

Proof. Observe that FR(G′) ⊆ FR(G). The proof follows from Lemma A.1.
Down-monotonicity. The next lemma shows that down-monotonicity (see sec-

tion 2.2 for a definition) is preserved by the matrix-cut operators. It extends a similar
result that is given for N(·) and N+(·) by Goemans and Tunçel [10, Theorem 5.1]
(under the name lower-comprehensive) and by Cook and Dash [5, Lemma 2.6] (under
the name anti-blocking type).

Lemma A.3. Let K1,K2 ⊆ Q be down-monotone convex cones. Then N(K1,K2)
is down-monotone, and similarly for N+.

Proof. Let x ∈ N(K1,K2) and 0 ≤ x′ ≤ x with x′0 = x0. It suffices to prove that
x′ ∈ N(K1,K2) when x, x′ differ only in a single coordinate, say i = 1, since we can
repeat the same argument for each coordinate. Furthermore, for a single coordinate
i = 1 it suffices to prove the case x′1 = 0, since N(K1,K2) is convex, and so convex
combinations of x′ and x give any desired value in coordinate i = 1.

Since x ∈ N(K1,K2), there exists a matrix Y ∈M(K1,K2) with x = Y e0. Define
the matrix Y ′ by

Y ′ij =

{
0 if i = 1 or j = 1,
Yij otherwise.

We claim that Y ′ ∈M(K1,K2). Indeed, Y ′ clearly satisfies (a) and (b). To prove
(c), let u ∈ K∗1 , v ∈ K∗2 , and from Proposition A.4 below we have that u− u1x1 ∈ K∗1
and v − v1x1 ∈ K∗2 , and hence

uTY ′v = (u− u1x1)
TY (v − v1x1) ≥ 0.

Observe that x′ = Y ′e0, and therefore x′ ∈ N(K1,K2), as required.
For the proof of N+ we need to show that (d) also holds, and indeed from the

Gram matrix representation of Y we can obtain a Gram matrix representation of Y ′

by replacing the vector that corresponds to coordinate i = 1 with the all-zeros vector
0.

Proposition A.4. Let K ⊆ Q be down-monotone and let v ∈ K∗. Then v −
viei ∈ K∗ for all i ≥ 1.

Proof. By the down-monotonicity of K, for every x ∈ K we have that x−xiei ∈ K,
and hence (v − viei)

Tx =
∑
j �=i vjxj = vT (x− xiei) ≥ 0.

We can now prove Lemma 2.4, i.e., show that Nr(G) is down-monotone for every
r ≥ 0, and similarly for Nr

+, Nr
FR, Nr

FR+.
Proof of Lemma 2.4. Observe that Q is down-monotone by its definition (3), and

that FRAC is down-monotone by its definition (6)–(7). By Lemma A.3 the matrix-cut
operators preserve down-monotonicity and the proof follows.
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Flipping and renaming coordinates. The operators N,N+, NFR, NFR+ are invari-
ant under various operations, including renaming coordinates (i.e., permuting the
order of coordinates), and flipping coordinates xi → (x0 − xi) for any subset of the
coordinates {1, 2, . . . , n}. More formally, we present the following lemma.

Lemma A.5 (Lovász and Schrijver [23]). Let A be a linear transformation map-
ping Q onto itself. Then N(AK1, AK2) = AN(K1,K2), and similarly for N+. Hence
N(AK) = AN(K), and similarly for N+.

By flipping coordinates, one can extend Lemma A.3. For example, it follows that
the N and N+ operators preserve up-monotonicity; see Cook and Dash [5, section 2]
(as the blocking property) and Goemans and Tunçel [10, section 5] (as the “convex
corner” property).

Intersection with faces. A face of Q is the intersection of Q with hyperplanes of
the form {x : xi = 0} or {x : xi = x0}. The intersection of K with a face of Q consists
of all x ∈ K with one or more of their coordinates fixed to 0 or x0 (recall that x0

corresponds to 1 in the nonhomogenous case).
The following lemma proves equivalence between fixing some coordinates before

applying a matrix-cut operator (e.g., in K) and afterwards (e.g., in N(K)). It extends
a similar result that is given by Goemans and Tunçel [10] for N(·) and N+(·).

Lemma A.6. If F is a face of Q, then N(K1 ∩ F,K2) = N(K1,K2) ∩ F and
similarly for N+.

Proof. The direction “⊆” follows from Lemma A.1, since N(K1 ∩ F,K2) ⊆
N(K1,K2) and N(K1 ∩ F,K2) ⊆ N(F,K2) ⊆ F , and similarly for N+.

For the converse direction “⊇” with the N operator, let x ∈ N(K1,K2) ∩ F .
Then there exists a matrix Y ∈ M(K1,K2) with Y e0 = x. Let H be any one of
the hyperplanes of the form {x : xi = 0} or {x : xi = x0} that define F . Since
ej , fj ∈ Q∗ ⊆ K∗2 for all j, we have that Y ej ∈ K1 ⊆ Q and Y fj ∈ K1 ⊆ Q, while
their sum satisfies Y ej + Y fj = Y e0 = x ∈ F ⊂ H. Since H defines a face of Q, then
by definition of a face we have that Y ej (and also Y fj) must belong to H.1 But every
v ∈ R

n+1 is a linear combination of {e0, e1, . . . , en} and Y ej ∈ H for all j ≥ 0, and
so Y v ∈ H for every v, including all v ∈ K∗2 .

For every v ∈ K∗2 we have that Y v belongs to K1 ⊆ Q by the definition of Y . We
saw above that Y v also belongs to all hyperplanes H that define F , and we conclude
that Y v belongs also to F . Hence, Y v ∈ K1 ∩ F for all v ∈ K∗2 , implying that
Y ∈ M(K1 ∩ F,K2) and x ∈ N(K1 ∩ F,K2). The proof for N+ is similar, since Y is
also known to be positive semidefinite.

We remark that the above proof of Lemma A.6 extends to the case where F is a
face of K1, as shown by Cook and Dash [5, Lemma 2.2] for N(·) and N+(·). For the
special cases K2 = Q and K2 = FR we obtain the following.

Corollary A.7. If F is a face of Q (or a face of K), then N(K∩F ) = N(K)∩F ,
and similarly for N+, NFR, NFR+.

Deleting fixed coordinates. Suppose that K is contained in a face of Q. Then
some of the coordinates are fixed (i.e., xi = 0 or xi = x0), and it may be desirable to
delete these coordinates and reduce the dimension. Formally, a deletion operation of
indices subset I ⊂ {1, . . . , n} is the function f : R

n+1 → R
n+1−|I|, where f(x) is the

vector x restricted to the coordinates not in I, i.e., f(x) = (xi)i �∈I .

1In other words, suppose that the hyperplane H is defined by the equality uT x = 0 (with u = ei
or u = fi) and that the inequality uT x ≥ 0 is valid for Q (i.e., Q is entirely contained in one
side of H). We then have that uT (Y ej), u

T (Y fj) ≥ 0, while their sum is uT x = 0, implying that
uT (Y ej) = uT (Y fj) = 0.
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For the stable set problem it is straightforward that the effect of fixing and deleting
a coordinate of FR(G) is as follows.

Lemma A.8. Let F = Q ∩ {x : xi = 0}, and let f be the deletion operation of
coordinate i. Then f(FR(G) ∩ F ) = FR(G− i).

Lemma A.9. Let F = Q ∩ {x : xi = x0}, and let f be the deletion operation of
coordinate i. Then f(FR(G) ∩ F ) = FR(G− i) ∩ {x : ∀j ∈ Γ(i), xj = 0}.

We show below that deleting fixed coordinates of K before applying a matrix-cut
operator (e.g., in K) is equivalent to deleting them afterwards (e.g., in N(K)). This
extends similar results that are given for N(·) and N+(·) by Cook and Dash [5] (see
also [25]). Technically, they consider an embedding operation (that introduces new
coordinates that are fixed to either 0 or x0), which is just the inverse of the deletion
operation.

We first handle the basic case of one coordinate that is fixed to 0 (Lemma A.10),
then extend the result to an arbitrary face F and to an arbitrary K2 (Lemma A.11),
and finally specialize it to the cases K2 = Q and K2 = FR (Corollary A.12).

Lemma A.10. Let F = Q∩{x : xn = 0} and let f be the deletion operation of co-
ordinate n. If K1,K2 ⊆ F are convex cones, then f(N(K1,K2)) = N(f(K1), f(K2)),

2

and similarly for N+.
Proof. The deletion operation f is a linear transformation from R

n+1 to R
n and

thus can be described as an n × (n + 1) matrix A. Note that columns 0 to n − 1
of A form an identity matrix, and column n of A is all zeros. We first claim that
AK∗ = (AK)∗ for K = K1 and for K = K2. Indeed, by definition, u ∈ AK∗ if there
exists r ∈ R with (ur ) ∈ K∗. Note that (ur ) ∈ K∗ holds either for all values of r or for
no value of r, since K ⊂ {x : xn = 0}. Therefore,

AK∗ =
{
u : ∃r ∈ R with

(
u
r

)
∈ K∗

}
=

{
u :

(
u
0

)
∈ K∗

}
.

We also have that

(AK)∗ = {u : uT (Ax) ≥ 0 ∀x ∈ K} = {u : ATu ∈ K∗}.

Since ATu = (u0 ), we obtain AK∗ = (AK)∗.
Let us now prove that M(AK1, AK2) = AM(K1,K2)A

T . For the direction “⊆”,
let Y ∈ M(AK1, AK2). Then by (c), for every u ∈ K∗1 , v ∈ K∗2 we have that
uTATY Av ≥ 0. We therefore have that

(
Y 0
0T 0

)
= ATY A ∈M(K1,K2).

Multiplying by A from the left and by AT from the right, we obtain (since AAT is
the identity matrix) that Y ∈ AM(K1,K2)A

T .
For the converse direction “⊇”, let Y ∈ AM(K1,K2)A

T . Since K1 ⊆ {x : xn =
0}, every matrix in M(K1,K2) has only zeros in row n, and by the symmetry (a) it
has only zeros also in column n. Hence,

ATY A =

(
Y 0
0T 0

)
∈M(K1,K2).

2Note that the application of N in the right-hand side is in a smaller dimension than in the
left-hand side.
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By (c), for every u ∈ K∗1 , v ∈ K∗2 it holds that uTATY Av ≥ 0, and hence Y ∈
M(AK1, AK2).

Now since AT e0 is just e0 (in a larger dimension), we conclude that

N(AK1, AK2) = AM(K1,K2)A
T e0 = AM(K1,K2)e0 = AN(K1,K2).

The proof for the N+ operator is similar since Y is positive semidefinite if and only
if ATY A is (observe that Y has a Gram matrix representation if and only if ATY A
has such a representation).

Lemma A.11. Let F = Q ∩ {x : ∀i ∈ I0, xi = 0} ∩ {x : ∀i ∈ I1, xi = x0}, and
let f be the deletion operation of the coordinates I0 ∪ I1. If K1 ⊆ F and K2 ⊆ Q are
convex cones, then f(N(K1,K2)) = N(f(K1), f(K2 ∩ F )), and similarly for N+.

Proof. K1 and K2 ∩ F are both contained in F , so we can repeatedly apply
Lemma A.10 to them and delete the coordinates of I0 ∪ I1. (Note that by using
Lemma A.5 we can extend Lemma A.10 also to deleting coordinates that are fixed to
x0.) It follows that f(N(K1,K2 ∩ F )) = N(f(K1), f(K2 ∩ F )).

By Lemma A.6 we have thatN(K1,K2∩F ) = N(K1,K2)∩F , and sinceN(K1,K2)
⊆ K1 ⊆ F , we have that N(K1,K2 ∩ F ) = N(K1,K2). The proof follows.

Corollary A.12. Let F = Q∩{x : ∀i ∈ I0, xi = 0}∩{x : ∀i ∈ I1, xi = x0}, and
let f be the deletion operation of the coordinate I0 ∪ I1. If K ⊆ F is a convex cone,
then f(N(K)) = N(f(K)),3 and similarly for N+, NFR, and NFR+.

Proof. For the N operator we have from Lemma A.11 that

f(N(K)) = N(f(K), f(Q ∩ F )),

and f(Q∩F ) is just Q in the smaller dimension, so f(N(K)) = N(f(K)). The proof
for the N+ operator is similar.

For the NFR operator we have from Lemma A.11 that

f(NFR(K)) = N(f(K), f(FR(G) ∩ F )),

and it follows from Lemmas A.8 and A.9 that f(FR(G)∩F ) = FR(G− I0 − I1)∩H,
where H = {x : xi = 0 ∀i ∈ Γ(I1)− I0 − I1}. We therefore have that

f(NFR(K)) = N(f(K),FR(G− I0 − I1) ∩H).

Note that f(K) ⊂ H since K ⊆ F ∩FR(G) ⊆ H, and so by Lemma A.6 we have that
f(NFR(K)) = NFR(f(K)), as required. The proof for NFR+(K) is similar.

Removing vertices from the graph. For the stable set problem, the properties
collected so far, and in particular Corollary A.12, give a useful characterization to
whether x ∈ Nr(G) in the case that x has a fixed coordinate (i.e., xi = 0 or xi = x0).

Recall that V = {1, . . . , n}. For a vector x ∈ R
n and a subset W ⊂ V , we denote

by xW the restriction of x to the coordinates of W . We can now prove Lemma 2.5,
showing that if x ∈ R

n with xi = 1 and xj = 0 for all j ∈ Γ(i), then for all r ≥ 0,
x ∈ Nr(G) if and only if xV−Γ(i)−i ∈ Nr(G − Γ(i) − i), and similarly for Nr

+, Nr
FR,

and Nr
FR+.

Proof of Lemma 2.5. It is clear that x belongs to the face F of Q that is defined
by the hyperplanes {x : xi = x0} and {x : xj = 0} for all j ∈ Γ(i). Then x ∈
Nr(G) if and only if x ∈ Nr(G) ∩ F , which is equivalent, by Corollary A.7, to

3Note that the application of N in the right-hand side is in a smaller dimension than in the
left-hand side.
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x ∈ Nr(FR(G) ∩ F ). Let f be the deletion operation of the coordinates Γ(i) ∪ {i},
and then we have equivalently that f(x) ∈ f(Nr(FR(G) ∩ F )). By Corollary A.12,
the latter is equivalent to f(x) ∈ Nr(f(FR(G) ∩ F )). By Lemmas A.8 and A.9, we
have that f(FR(G) ∩ F ) = FR(G − Γ(i) − i), and the proof follows. The proof for
Nr

+, Nr
FR, and Nr

FR+ is similar.
Lemma A.13. Let x ∈ R

n be a vector and assume that xi = 0 for some i. Then
x ∈ Nr(G) if and only if xV−i ∈ Nr(G− i), and similarly for Nr

+, Nr
FR, and Nr

FR+.
Proof. It is clear that x belongs to the face F of Q that is defined by the hyper-

plane xi = 0. Then x ∈ Nr(G) if and only if x ∈ Nr(G) ∩ F , which is equivalent,
by Corollary A.7, to x ∈ Nr(FR(G) ∩ F ). Let f be the deletion operation of the
coordinate i, and then we have equivalently that f(x) ∈ f(Nr(FR(G) ∩ F )). By
Corollary A.12, the latter is equivalent to f(x) ∈ Nr(f(FR(G)∩F )). By Lemma A.8
we have that f(FR(G) ∩ F ) = FR(G − i), and the proof follows. The proof for Nr

+,
Nr

FR, and Nr
FR+ is similar.

A.2. Bounds on the rank. We describe some general methods to obtain upper
and lower bounds on the N -rank and N+-rank of valid inequalities and extend them to
the NFR-rank. We also illustrate the use of these methods on a few valid constraints
for the stable set problem (see Table 1).

The N -rank of an inequality valid for STAB(G) depends only on the subgraph
induced by those vertices with a nonzero coefficient, and similarly for N+, NFR, and
NFR+. Indeed, if a vertex i has a zero coefficient, then the inequality being valid for
Nr(G) is equivalent, by Lemma 2.4, to the inequality being valid for Nr(G) ∩ {x :
xi = 0}, which in turn is equivalent, by Lemma A.13, to the inequality being valid
for Nr(G− i).

Upper bounds on the N -rank. Lovász and Schrijver [23] give an upper bound on
N(K), which allows us to upper bound the N -rank of an inequality, as follows.

The sum of two sets K ′,K ′′ ⊆ R
n+1 is defined as K ′ + K ′′ := {x′ + x′′ : x ∈

K ′, x′′ ∈ K ′′}. Note that ifK ′,K ′′ are convex cones in Q, thenK ′+K ′′ is also a convex
cone in Q. Furthermore, if K ′,K ′′ are obtained via the homogenization procedure
(1)–(2) from polytopes P ′, P ′′ ⊆ R

n, respectively, then K ′ + K ′′ corresponds to all
convex combinations of a point from P ′ and a point from P ′′ (recall that x0 needs to
be scaled to 1).

Lemma A.14 (Lovász and Schrijver [23]). For all 1 ≤ i ≤ n,

N(K) ⊆
(
K ∩ {x : xi = 0}

)
+
(
K ∩ {x : xi = x0}

)
.

Proof. If x ∈ N(K), then there exists Y ∈ M(K) with x = Y e0 = Y ei + Y fi for
any i ≤ i ≤ n. Clearly, Y ei ∈ K ∩ {x : xi = x0} and Y fi ∈ K ∩ {x : xi = 0}, and the
proof follows.

Corollary A.15. If an inequality is valid for both K ∩ {x : xi = 0} and
K ∩ {x : xi = x0}, then it is valid for N(K).

Goemans and Tunçel [10] note that repeatedly using Lemma A.14 and Corol-
lary A.7 gives that, for all I ⊆ {1, . . . , n} with |I| = r,

Nr(K) ⊆
∑
I0⊆I

(
K ∩ {x : ∀i ∈ I0, xi = 0} ∩ {x : ∀i ∈ I \ I0, xi = x0}

)
.

In particular, this shows that the N -rank of any cone K is at most n, proving Theo-
rem 2.1.
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For the stable set problem, Corollary A.15 can be rephrased as follows (using
Lemmas 2.5 and A.13).

Lemma A.16 (Lovász and Schrijver [23]). Let P be a convex set with STAB ⊆
P ⊆ FRAC. If aTx ≤ b is an inequality such that for some i ∈ V , both the deletion
and contraction of i give an inequality valid for P , then aTx ≤ b is valid for N(P ).

For example, if C induces a chordless odd cycle in G, the odd hole constraint

∑
i∈C

xi ≤ |C| − 1

2
(22)

has N -rank at most (and actually exactly) 1, because both the contraction and the
deletion of any vertex result in an inequality that is valid for FRAC. (In fact, Lovász
and Schrijver [23] prove that N(FRAC) is exactly the relaxation that is obtained by
adding to FRAC all the odd hole constraints.)

Lovász and Schrijver [23] also give the following upper bound on the N -rank of
a graph. The proof follows by applying Lemma A.16 repeatedly for n − α(G) − 1
vertices outside a maximum stable set in the graph, since the graph induced on the
other vertices must be bipartite.

Corollary A.17 (Lovász and Schrijver [23]). The N -rank of a graph G with
stability number α(G) is at most n− α(G)− 1.

It follows that the N -rank of any graph G is at most n−2. Note that the N -rank
of FR is at most n − 2, while the N -rank of a general cone K is at most (and can
actually be) n.

We next analyze the N -rank of a few more examples, due to Lovász and Schri-
jver [23]. By Corollary A.17, if B is a clique in G, the clique constraint

∑
i∈B

xi ≤ 1(23)

has N -rank at most (and actually exactly) |B| − 2. Note that the class of all clique
constraints strengthens the class of all edge constraints (5).

If D induces a chordless odd cycle in G (the edge complement of G), the odd
antihole constraint

∑
i∈D

xi ≤ 2(24)

has N -rank at most (and actually exactly) (|D| − 3)/2, because the contraction of a
vertex results in an inequality trivially valid for FRAC, and the deletion of a vertex
results in an inequality that is the sum of two clique constraints, each of size (|D|−1)/2
and hence of N -rank (|D| − 5)/2.

If W induces an odd wheel in G with center i0 ∈W , the odd wheel constraint

∑
i∈W\{i0}

xi +
|W | − 2

2
xi0 ≤

|W | − 2

2
(25)

has N -rank at most (and actually exactly) 2, since the contraction of the center vertex
results in a trivial inequality, and the deletion of the center vertex results in the odd
hole constraint.
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Upper bounds on the NFR-rank. The methods for obtaining upper bounds on the
N -rank can be extended (with modifications) to upper bounds on the NFR-rank, as
follows.

Lemma A.18. For all ij ∈ E,

N(K) ⊆
(
K ∩ {x : xi = xj = 0}

)
+
(
K ∩ {x : xj = x0}

)
+
(
K ∩ {x : xi = x0}

)
.

Proof. If x ∈ NFR(K), then there exists Y ∈M(K) with x = Y e0 = Y ei+Y ej +
Y fij for any ij ∈ E. Clearly, Y ei ∈ K ∩ {x : xi = x0}, Y ej ∈ K ∩ {x : xj = x0}, and
Y fij ∈ K ∩ {x : xi = xj = 0}, and the proof follows.

Corollary A.19. Let ij ∈ E. If an inequality is valid for K ∩ {x : xi = x0},
for K ∩ {x : xj = x0}, and for K ∩ {x : xi = xj = 0}, then it is valid for NFR(K).

Corollary A.19 can be rephrased as follows (using Lemmas 2.5 and A.13).
Lemma A.20. Let P be a convex set with STAB ⊆ P ⊆ FRAC. If aTx ≤ b is an

inequality such that for some ij ∈ E, the contraction of i, the contraction of j, and
the deletion of {i, j} give an inequality valid for P , then aTx ≤ b is valid for N(P ).

The following upper bound on the NFR-rank of a graph follows by applying
Lemma A.20 repeatedly on edges, so that the removal of their endpoints results in a
bipartite graph (e.g., a matching that is maximal with respect to containment).

Corollary A.21. Suppose that a graph G contains a set of β edges, the removal
of whose endpoints results in a bipartite graph. Then the NFR-rank of G is at most
β.

It follows that the NFR-rank of a graph G is at most (n − 2)/2 if n is even and
(n− 1)/2 if n is odd; in general it is at most �(n− 1)/2�. In particular, the NFR-rank
of the clique constraint (23) is at most �(|B| − 1)/2�.

We can apply these bounds to the other examples. The NFR-rank of the odd
hole constraint (22) is at most (and thus exactly) 1, since the NFR operator is at
least as strong as N . The NFR-rank of the odd antihole constraint (24) is at most
�(|D|+ 1)/4�, because the contraction of a vertex results in an inequality trivially
valid for FRAC, and the deletion of two vertices results in an inequality that is the
sum of two clique constraints, each of size at most (|D| − 1)/2 and hence of NFR-
rank �(|D| − 3)/4�.4 The NFR-rank of the wheel constraint (25) is at most (and thus
exactly) 1, since the contraction of the center vertex results in a trivial inequality, the
contraction of a noncenter vertex results in an inequality that is valid for FRAC, and
the deletion of these two vertices also results in an inequality that is valid for FRAC.

Lower bounds on the N -rank. Lovász and Schrijver [23] show that certain uniform
fractional stable sets belong to Nr(G), regardless of the graph G. For example, for
r = 0 it is straightforward that (1/2)1 ∈ FRAC(G). The following lemma allows us
to extend this to larger r, with the uniform solution being smaller, depending on r.

Lemma A.22 (Lovász and Schrijver [23]). Assume that P is down-monotone and
contains STAB(G). If (1/r)1 ∈ P for r > 0, then 1/(r + 1)1 ∈ N(P ).

Proof. Let K be the convex cone obtained from P via the homogenization proce-
dure (1)–(2). Define the matrix Y ∈ R

(n+1)×(n+1) by

Yij =

{
1 if i = j = 0,
1/(r + 1) if (i = 0, j > 0) or (i > 0, j = 0) or (i = j > 0),
0 otherwise.

4In fact, direct calculations show that the NFR-rank of the odd antihole constraint (24) with
|D| = 7 is at most 1.
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To see that Y ∈M(K,Q) observe that (a), (b) clearly hold, and let us now show that
(c′′) holds:

Y ei =
1

t+ 1
(e0 + ei) ∈ ST(G) ⊆ K

and

Y fi =
r

r + 1
e0 +

∑
j �=0,i

1

r + 1
ej =

r

r + 1


e0 +

∑
j �=0,i

1

r
ej


 .

By the induction hypothesis we have that

∑
j �=0,i

1

r
ej ≤

∑
j �=0

1

r
ej ∈ P,

and the down-monotonicity of P implies that Y fi ∈ K, and thus (c′′) holds. We
conclude that Y e0 ∈ N(K), i.e., 1/(r + 1)1 ∈ N(P ).

Corollary A.23 (Lovász and Schrijver [23]). 1/(r+2)1 ∈ Nr(G) for all r ≥ 0.
Proof. Proceed by induction on r. We mentioned above that the case r = 0 is

trivial. The inductive step follows from Lemma A.22, since Nr(FRAC(G)) clearly
contains STAB(G) and is down-monotone by Lemma 2.4.

Corollary A.24 (Lovász and Schrijver [23]). The N -rank of a graph G with
stability number α(G) is at least n/α(G)− 2.

Proof. Let r be the N -rank of G, and hence Nr(G) = STAB(G). By Corol-
lary A.23 we have that 1/(r + 2)1 ∈ Nr(G). The inequality 1Tx ≤ α is valid for
STAB(G) = Nr(G), and in particular for 1/(r+2)1, implying that n/(r+2) ≤ α(G),
and the proof follows.

For example, the stability number of a clique B is 1, so the N -rank of B is at
least, and hence exactly, |B| − 2. In fact, the above proof shows that the N -rank of
the clique constraint (23) is at least, and hence exactly, |B|−2. The stability number
of an odd antihole D is 2, so the N -rank of D is at least |D|/2 − 2, and since |D| is
odd, it must be at least (|D| − 3)/2. In fact, this shows that the N -rank of the odd
antihole constraint (24) is at least, and hence exactly, (|D| − 3)/2. Corollary A.23
also yields a lower bound on the N -rank of the wheel constraint (25). Indeed, let r be
the N -rank of this constraint. Then we have that this constraint is valid for Nr(G)
and, in particular, for 1/(r + 2)1 ∈ Nr(G). Thus,

1

r + 2

(
|W | − 1 +

|W | − 2

2

)
≤ |W | − 2

2
,

which gives us that 2(|W |−1)
|W |−2 + 1 ≤ r + 2 and thus r ≥ 1 + 2

|W |−2 . Since the N -rank

of the wheel constraint is an integer, it must be at least, and hence exactly, 2.
Lower bounds on the NFR-rank. The methods for obtaining lower bounds on the

N -rank can be extended (with modifications) to lower bounds on the NFR-rank, as
follows.

Lemma A.25. Assume that P be down-monotone and contains STAB(G). If
(1/r)1 ∈ P for r > 0, then 1/(r + 2)1 ∈ NFR(P ).

Proof. Define the matrix Y ∈ R
(n+1)×(n+1) by

Yij =

{
1 if i = j = 0,
1/(r + 2) if (i = 0, j > 0) or (i > 0, j = 0) or (i = j > 0),
0 otherwise.
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To see that Y ∈ M(K,FR) observe that (a), (b) clearly hold, and let us now show
that (c′′) holds:

Y ei =
1

r + 2
(e0 + ei) ∈ ST(G) ⊆ K

and for ij ∈ E

Y fij =
r

r + 2
e0 +

∑
l �=0,i,j

1

r + 2
el =

r

r + 2


e0 +

∑
l �=0,i,j

1

r
el


 .

By the induction hypothesis we have that

∑
l �=0,i,j

1

r
el ≤

∑
l �=0

1

r
el ∈ P,

and the down-monotonicity of P implies that Y fij ∈ K, and thus (c′′) holds. We
conclude that Y e0 ∈ NFR(K), i.e., 1/(r + 2)1 ∈ NFR(P ).

Corollary A.26. 1/(2r + 2)1 ∈ Nr
FR(G) for all r ≥ 0.

Proof. Proceed by induction on r. We mentioned above that the case r = 0 is
trivial. The inductive step follows from Lemma A.25, since Nr

FR(FRAC(G)) clearly
contains STAB(G) and is down-monotone by Lemma 2.4.

Corollary A.27. The NFR-rank of a graph G with stability number α(G) is at
least n/(2α(G))− 1.

Proof. Let r be the N -rank of G, and hence Nr(G) = STAB(G). By Corol-
lary A.26 we have that 1/(r + 2)1 ∈ Nr(G). The inequality 1Tx ≤ α(G) is valid for
STAB(G) = Nr(G), and in particular for 1/(r+2)1, implying that n/(2r+2) ≤ α(G),
and the proof follows.

For example, the NFR-rank of a clique B is at least |B|/2− 1 (since the stability
number of B is 1), and it must be an integer, so we have that it is at least �(|B| − 1)/2�.
In fact, the above proof shows that the NFR-rank of the clique constraint (23) is at
least, and hence exactly, �(|B| − 1)/2�. The NFR-rank of an odd antihole D is at least
|D|/4− 1 (since the stability number of D is 2), and it must be an integer (while |D|
is odd), so we have that it is at least �|D|/4�. In fact, this shows that the N -rank of
the odd antihole constraint (24) is at least �|D|/4�.

Upper bounds on the N+-rank. Lovász and Schrijver [23] give also a sufficient
condition for an inequality to be valid for N+(K). The following lemma considers
an inequality uTx ≥ 0 with u0 ≥ 0 and ui ≤ 0 for i ≥ 1. It can be extended to
an arbitrary inequality uTx ≥ 0 by flipping the relevant coordinates according to
Lemma A.5.

Lemma A.28 (Lovász and Schrijver [23]). If for all i with ui < 0, uTx ≥ 0 is
valid for K ∩ {x : xi = x0}, then uTx ≥ 0 is valid for N+(K).

By applying this to the stable set problem we obtain Lemma 2.6. Indeed, consid-
ering the original n-dimensional space, the inequalities aTx ≤ b (with a ∈ R

n) that
are valid for STAB(G) are nontrivial only when b > 0 and a ≥ 0, and then we can
use Lemma A.28.

For example, the clique, odd hole, odd wheel, and odd antihole constraints all
have N+-rank at most (and thus exactly) 1. Lovász and Schrijver [23] show also
that the so-called orthogonality constraints (see [21, 11] for a definition) are valid for
N+(FRAC) by definition, and hence their N+-rank is also 1.
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One simple way to derive facet-defining valid inequalities from other facet-defining
inequalities is cloning a clique at a vertex i. That is, replacing the vertex i by a clique
and replacing every edge incident to i by corresponding edges that are incident to
all the clique vertices and substituting the variable of i in the inequality with the
sum of the variables of the clique vertices. In general, it is not clear how cloning
influences the N+-rank of an inequality. However, Goemans and Tunçel [10] note
that Lemma 2.6 implies that cloning at the center vertex of an odd wheel inequality
still has N+-rank 1, and that cloning at one or several vertices of an odd wheel, odd
hole, or odd antihole inequality has N+-rank at most 2. Indeed, fixing any variable
(of the corresponding subgraph) to 1, the resulting inequality can be seen to be a
linear combination of clique inequalities and hence valid for N+(FRAC).

Corollary A.29 (Lovász and Schrijver [23]). If G − Γ(i) − i has N+-rank at
most r for every i ∈ V , then the N+-rank of G is at most r + 1.

It follows, for example, that the N+-rank of a clique, an odd antihole, or an odd
wheel is at most (and hence exactly) 1. It also follows (as stated in Lemma 2.7) that
the N+-rank of a graph G is at most its stability number α(G). This bound is tight
for a clique.

Lower bounds on the N+-rank. Lovász and Schrijver [23] give no general method
to lower bound the N+-rank. The approach taken by Stephen and Tunçel [25], Goe-
mans and Tunçel [10], and Cook and Dash [5] is to obtain an analogue of Corol-
lary A.23 that holds for a specific cone K. That is, they show that Nr

+(K) contains
a “uniform” solution that does not belong to KI , and thus obtain that the N+-rank
of K must be larger than r. Our analysis in section 3 also follows this approach.

We note that Goemans and Tunçel [10] give a sufficient condition for N+(K) =
N(K) to hold, but this condition does not appear to be applicable to the stable set
problem.

The ranks of the constraints exemplified above are listed in Table 1.

Table 1
The ranks of some example constraints.

Constraint N -rank NFR-rank N+-rank NFR+-rank
odd hole (22) 1 1 1 1
clique (23) |B| − 2 �(|B| − 1)/2� 1 1
antihole (24) (|D| − 3)/2 �|D|/4� ≤ rank ≤ �(|D|+ 1)/4� 1 1
wheel (25) 2 1 1 1
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[25] T. Stephen and L. Tunçel, On a representation of the matching polytope via semidefinite
liftings, Math. Oper. Res., 24 (1999), pp. 1–7.



STABILITY OF ADAPTIVE AND NONADAPTIVE PACKET
ROUTING POLICIES IN ADVERSARIAL QUEUEING NETWORKS∗

DAVID GAMARNIK†

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 371–385

Abstract. We investigate the stability of packet routing policies in adversarial queueing net-
works. We provide a simple classification of networks which are stable under any greedy scheduling
policy. We show that a network is stable if and only if the underlying undirected connected graph
contains at most two edges. We also propose a simple and distributed policy which is stable in an
arbitrary adversarial queueing network even for the critical value of the arrival rate r = 1. Finally, a
simple and checkable network flow-type load condition is formulated for adaptive adversarial queue-
ing networks, and a policy is proposed which achieves stability under this new load condition. This
load condition is a relaxation of the integral network flow-type condition considered previously in
the literature.
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1. Introduction. The focus of this paper is the stability of adversarial queueing
systems. Such queueing models have attracted much attention recently as a conve-
nient tool for modeling packet injection and routing in a communication network. An
adversarial assumption on the nature of the incoming traffic substitutes more tradi-
tional stochastic arrival assumptions. Two types of queueing networks are usually
considered: circuit switch and packet switch networks (also referred to as adaptive
and nonadaptive packet routing networks). In the first model, an adversary injects
packets for processing, specifying the paths that the packets have to follow. The
scheduler needs to decide which packets to process when several packets are compet-
ing for the same edge. Such models have been introduced by Borodin et al. in [6] and
considered subsequently in several papers [3], [9], [11], [17].

In packet switch networks, an adversary injects packets and specifies only their
origin and destination. The scheduler is free to choose a path along which the packets
are processed. This model has been considered only recently by Aiello et al. [1].
In both models, the goal of the scheduler is to keep the queue lengths of packets
competing for the same edge as small as possible. While constructing schedules which
guarantee minimal queue length is a computationally intractable problem (even static
circuit switch and packet switch scheduling problems are NP-complete), researchers
have focused on schedules which at least guarantee bounded queue lengths at all times,
i.e., stability.

1.1. Stability of nonadaptive packet routing schedules. A natural neces-
sary condition for stability exists in circuit switch-type networks. A positive integer w
(called burstiness) exists such that, for any edge e and any time interval [t1, t2), the
total number of packets that are injected and contain edge e on their paths should not
be bigger than t2 − t1 + w (assuming each edge processes packets with unit speed).

∗Received by the editors March 13, 2000; accepted for publication (in revised form) July 30,
2002; published electronically January 28, 2003. A preliminary version of this paper appeared in
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, ACM, New York, 1999,
pp. 206–214.

http://www.siam.org/journals/sicomp/32-2/36916.html
†T.J. Watson Research Center, IBM, Yorktown Heights, NY 10598 (gamarnik@watson.ibm.com).

371



372 DAVID GAMARNIK

If the load condition is systematically violated, the queue lengths will build up no
matter what schedule is used. The focus of the research has been understanding
when the load condition is also sufficient for stability. It was proven that acyclic and
unidirectional ring queueing networks are stable whenever the load condition is met
and an arbitrary greedy schedule is implemented [3], [6], [16]. Meanwhile, certain nat-
ural policies were shown to be unstable even if the load condition holds. Andrews [2]
and Andrews et al. [3] showed that First-In-First-Out (FIFO) and Nearest-To-Go
(NTG) policies can be unstable. The instability of FIFO policies was also shown
before by Bramson [7] for nonadversarial (stochastic) queueing networks. Borodin
et al. [6] showed that NTG policy can be unstable in certain networks even if the
arrival rate of the packets is bounded by an arbitrarily small constant r. On the other
hand, Furthest-To-Go policy is stable in all networks (Andrews et al. [3]) whenever
the maximal arrival rate r is strictly smaller than one. Goel [11] provided a complete
algorithmic characterization of directed graphs which are stable for all greedy schedul-
ing rules. Such characterization can be adapted to undirected graphs in which packets
competing for an edge from opposite sides can simultaneously cross the edge. Our as-
sumption throughout the paper will be that only one packet can cross any given edge
at a time from either end, and all the graphs are assumed to be undirected. Obtaining
a complete algorithmic classification of stable networks for every policy seems to be
an unachievable task. It is shown in Gamarnik [10] that checking stability for a class
of generalized priority policies is an algorithmically undecidable problem. Whether
undecidability holds for more common policies like FIFO or priority policies remains
to be seen.

1.2. The stability of adaptive packet routing schedules. The stability of
adaptive packet routing schedules in adversarial queueing networks has only recently
been analyzed by Aiello et al. [1]. This model does not have a natural load condition
for stability, as opposed to nonadaptive queueing models. There is no explicit load
on edges implied by the incoming traffic; rather, the load depends on the routing
policy used. Aiello et al. thus introduced the following assumption. Suppose, for
some positive integer w and some positive real r < 1, that an adversary can associate
with each incoming packet a path in such a way that, in every time interval [t, t+w),
every edge has been assigned to no more than rw paths. In other words the adversary
should be able to reformulate the problem in the nonadaptive sense, described above,
without revealing the underlying assigned paths. It was shown in [1] that a stable
distributed routing policy exists under the assumption above. Also, the schedule does
not assume the knowledge of the arrival rate r and interval w, and the total number
of packets in the network is bounded by O(m5/2n5/2w/(1 − r)), where m and n are
the numbers of edges and nodes in the graph, respectively.

1.3. Results. A number of questions remain outstanding, some of which are
listed in Borodin et al. [6]. It is not clear whether a ring-type queueing network
allowing traffic in both directions is stable under any greedy scheduling rule. More
generally, which networks are stable under all greedy scheduling rules (universally
stable)? This question was resolved by Goel [11] for directed graph queueing networks
but remains outstanding for undirected graphs in which each edge can be crossed by
only one packet at a time from either end. We provide in this paper a very simple
answer to this problem. A connected undirected graph is universally stable if and
only if it contains at most two edges. We establish this result by proving universal
stability for a simple graph with two edges, G1, and constructing unstable greedy
schedules for graphs G2, G3, G4 (see Figure 1). We will show specifically that such an
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Fig. 1. Graphs G1, G2, G3, G4.

unstable greedy policy exists when the maximal arrival rate r satisfies r3 + r4 > 1 for
the graph G2 and satisfies r4 + r5 > 1 for the graphs G3, G4.

These schedules are very similar to the ones constructed by Goel [11] and Andrews
et al. [3]. Clearly, any connected undirected graph with more than two edges contains
one of the graphs G2, G3, G4 as a subgraph and as a result is unstable. In particular,
the ring-type queueing network either is graph G4 or contains G3 as a subgraph and,
as a result, is not universally stable. We then propose a very simple distributed
Nearest-To-Origin (NTO) priority policy and prove that this policy is stable in all
adversarial queueing networks even for the critical arrival rate r = 1. This answers
positively the question posed in [6] on the existence of a stable scheduling policy under
a critical arrival rate r = 1.

For the case of adaptive packet routing models, we consider a more relaxed load
condition than the one used in [1]. We assume that, for the packets that arrive dur-
ing any time interval of the length w, the corresponding static multicommodity flow
problem has a feasible fractional solution with maximal congestion (to be defined)
not bigger than rw, where r < 1. That is, we relax the integrality requirement in the
multicommodity flow-type constraint on the arriving traffic considered in [1]. We con-
struct a simple discrete review-type policy based on the static packet routing problem
and prove that this policy is stable under this relaxed load condition. The algorithm
is based on an algorithm proposed in [5] for the static packet routing problem, which
achieves asymptotic optimality as the network load diverges to infinity.

The advantage of the relaxed assumption above is clear—the load condition can
be checked efficiently by solving a corresponding fractional multicommodity flow prob-
lem, whereas the integral multicommodity flow problem is NP-complete. Specifically,
if the maximal arrival rate for any pair of origin-destination nodes (i, j) is rij , then
there exists a stable packet routing protocol if the fractional multicommodity flow
problem with parameters rij has a feasible solution with maximal congestion smaller
than one. Our scheduling rule, however, would not assume the knowledge of the
rates rij . We will also show that if, for any feasible solution, the maximal congestion
is bigger than one, then no stable policy exists. We do not know whether a stable
policy exists when the smallest maximal congestion is equal to one.

The disadvantage of our schedule compared to the one of Aiello et al. is that it
occasionally needs information about the queue lengths in the entire network and thus
is not distributed. Our bounds on maximal queue lengths are also inferior to the ones
in [1].

We conclude with some open questions and directions for further research.
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2. Definitions and assumptions. A nonadaptive adversarial queueing net-
work is given as a graph (V,E). An adversary injects packets for processing. Each
arriving packet has a prespecified path it has to follow. Once the end of the path
is reached, the packet leaves the network. Each packet takes a unit time to cross
a single edge, and only one packet in either direction can cross any given edge at a
time. Packet processing occurs at integer time epochs t = 0, 1, 2, . . . , although packet
arrival can occur at an arbitrary real time. Packets that wait to cross some edge e
accumulate into a queue at the vertex of e until chosen to cross. We introduce some
additional notation in order to formally describe the dynamics. Let P be the set of
all simple paths in the network (the set of paths that can be requested by packets).

For each path P ∈ P, let {eP0 , eP1 , . . . , ePk(P )} be the set of consecutive edges

in P . Let AP (t1, t2) denote the total number of packets injected during the time
interval [t1, t2) that request path P . For each P ∈ P and e ∈ P , let D(e,P )(t1, t2)
be the total number of packets following path P that crossed edge e during the time
interval [t1, t2). In particular, D(e,P )(t, t+1) takes value 0 or 1 for each t = 0, 1, 2, . . . .
The values of D(e,P )(t, t + 1) depend on the rule by which packets competing for the
same edge are prioritized—the scheduling rule. Some examples of scheduling rules
include First-In-First-Out (FIFO), in which packets are prioritized according to their
arrival time into edge e, Longest-In-System, in which packets are prioritized according
to their arrival time into the network, Shortest-In-System, Furthest-To-Go (FTG), and
many others. Note that, whichever policy is used, the following restriction applies.
For any edge e and time t,

∑
P :e∈P

D(e,P )(t, t + 1) ≤ 1.

In other words, at most one packet can cross an edge e during the time interval
[t, t + 1). Finally, let AP (t) = AP (0, t) and D(e,P )(t) = D(e,P )(0, t), and let Q(e,P )(t)
be the total number of packets following path P that are waiting to cross edge e
at time t. The dynamics of the network is described as follows. For each t = 0, 1, 2, . . .
and each path P ∈ P,

Q(eP0 ,P )(t) = Q(eP0 ,P )(0) + AP (t)−D(eP0 ,P )(t)(1)

and

Q(eP
i
,P )(t) = Q(eP

i
,P )(0) + D(eP

i−1
,P )(t)−D(eP

i
,P )(t)(2)

for all i = 1, 2, . . . , k(P ). We let Q(t) =
∑
e,P Q(e,P )(t) denote the total number of

packets in the network at time t.
The packets are injected into the system by an adversary in a restricted manner.

There exist a positive real number r, called the arrival rate, and a positive integer w
with the following property. For each edge e, the total number of packets, injected
during any interval [t1, t2), whose assigned paths contain e is at most r(t2 − t1) + w.
Formally, for each e ∈ E and t1 < t2,

∑
P :e∈P

AP (t1, t2) ≤ r(t2 − t1) + w.(3)

This is the load assumption considered in [3], [6], [9], [11] and is a generalization of
the path-specific arrival rate assumption considered earlier by Cruz [8].
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The goal of the stability analysis is to understand the conditions under which the
total number of packets in the network stays bounded, i.e., the conditions under which
the network is stable. Specifically, we are interested in when a particular scheduling
policy is stable and which networks are stable under an arbitrary greedy scheduling
policy.

Definition 1. A scheduling policy in an adversarial queueing network (V,E, r, w)
is defined to be greedy if, whenever there is a positive number of packets waiting to
cross any given edge e at time t, at least one of these packets will cross e during
interval [t, t + 1). Formally, for each e ∈ E and t = 0, 1, 2, . . . ,

∑
P :e∈P

Q(e,P )(t) > 0

implies

∑
P :e∈P

D(e,P )(t, t + 1) = 1.(4)

Definition 2. A scheduling policy in an adversarial queueing network (V,E, r, w)
is defined to be stable if, under this policy, the total number of packets in the network
stays bounded for all times. Namely,

sup
t∈�+

Q(t) <∞.

A scheduling policy is defined to be universally stable if it is stable in all graphs. A
(directed or undirected) graph (V,E) is defined to be universally stable if every greedy
policy in it is stable for all r < 1 and all nonnegative w.

The necessary condition for stability is

r ≤ 1.(5)

If this condition is violated, then an adversary can inject packets so that no scheduling
rule will be able to keep the number of packets bounded.

An adaptive packet routing model is similar to the model above. An undirected
graph (V,E) is given. An adversary injects packets but now specifies only their
origin-destination pair (i, j) ∈ V 2. The goal of the scheduler is to select the paths for
packets as well as to prioritize packets competing for the same edge. The total number
of packets in the network again needs to be bounded. Immediately the following
question arises: What is the analogue of the condition (5)? Aiello et al. [1] considered
the following condition. A certain integer w and a real value r < 1 are fixed. It
is assumed that the packets that arrived during any time interval [t, t + w) can be
associated with paths in the graph (V,E) in such a way that any edge e belongs
to no more than rw paths. This condition can be reformulated using the integral
multicommodity flow problem as follows. For a given graph (V,E) and a set of
positive integers nij , i, j ∈ V , consider the following integer programming problem
(we represent edges as pairs of nodes (k, l) ∈ E):

Minimize Cmax

Subject to∑
k:(i,k)∈E

xijik = nij , (i, j) ∈ V 2,(6)
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∑
k:(k,j)∈E

xijkj = nij , (i, j) ∈ V 2,(7)

∑
l:(l,k)∈E

xijlk =
∑

l:(k,l)∈E
xijkl, (i, j) ∈ V 2, k �= i, j,(8)

Ckl =
∑

(i,j)∈V 2

xijkl, (k, l) ∈ E,(9)

Ckl ≤ Cmax, (k, l) ∈ E,(10)

xijkl, Ckl ≥ 0,(11)

xklij ∈ Z+.(12)

Here xijkl represents the number of packets going from node i to node j that pass
through the edge (k, l). Equations (6)–(8) represent the conservation of flow. Ckl
represents the total amount of integral flow assigned to any edge (k, l) ∈ E, and Cmax

represents the maximal amount of flow assigned to any edge e ∈ E.

It is not hard to prove that the load condition considered by Aiello et al. is
equivalent to the following condition. Let Aij(t, t + w) denote the number of packets
that arrived during the time interval [t, t+w) and have an origin-destination pair (i, j).
The condition is that, for any time t, the integral multicommodity flow problem above
with input nij = Aij(t, t + w) has a solution Cmax satisfying

Cmax ≤ rw.(13)

Definition 3. An adversarial queueing network is said to be of the type (r, w, IMF )
(IMF stands for integral multicommodity flow) if the condition (13) is satisfied for any
time t, where Cmax is the optimal value of the integral multicommodity flow problem
(6)–(12) on the input nij = Aij(t, t + w).

An algorithm was constructed in [1] which achieves stability under the load con-
dition (r, w, IMF ) for networks of type (r, w, IMF ) with r < 1. In this paper, we
consider queueing networks of the type (r, w,FMF ) (FMF stands for fractional mul-
ticommodity flow), where the load condition above is still assumed to be satisfied,
but the solution to the multicommodity flow problem above need not be integral
(constraint (12) is removed).

Definition 4. An adversarial queueing network is said to be of the type (r, w,FMF )
if the condition (13) is satisfied for any time t, where Cmax is the optimal value to the
fractional multicommodity flow problem (6)–(11) on the input nij = Aij(t, t + w).

Clearly our load condition is weaker. Since it uses a linear programming formu-
lation, the condition is also efficiently checkable. We construct in section 4 a stable
scheduling policy under this relaxed load condition whenever r < 1.

3. Universally stable graphs and universally stable policies. In the first
part of this section, we focus on universal stability of undirected graphs. An exact
characterization of directed stable graphs is given in [11]. Two directed graphs were
constructed which are not universally stable. It is then proven that a directed graph
is universally stable if and only if it does not contain one of these two graphs as a
minor (for a definition of a graph minor, see [14]). This leads to an efficient algorithm
for checking whether a given graph is stable.

In this section, we show that, for undirected graphs, the classification is even
simpler. A graph with one edge and a graph G1 with two edges are the only connected
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undirected universally stable graphs. Note that the stability of unconnected graphs
can be resolved by considering their connected components.

Theorem 1. A connected undirected graph is universally stable if and only if it
has at most two edges.

Remark. We conjecture that the graph with two edges is stable also for the critical
arrival rate r = 1, but we do not have a proof.

Proof. We omit a trivial case of a graph with only one edge. We prove the
stability of the graph G1 by a simple reduction to a unidirectional ring network with
two nodes. An adversarial queueing network (V,E, r, w) is called a unidirectional ring
network if it is of the form V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , en}, ek = (vk, vk+1),
k = 1, 2, . . . , n−1, en = (vn, v1), and if every path P contains edges in increasing order
modulo n. Namely, P = {ej , ej+1, . . . , ej+k(P )} for some ej , where the convention is
to identify edge en+i with ei. Thus a unidirectional ring is a circular form graph with
all the packets moving in one direction. It was shown in [3] that the unidirectional
ring is universally stable for all r < 1 and the total number of packets in the network
at any moment is not bigger than n2w/(1 − r) (assuming initially that there are no
packets in the network). We now show that, from the stability point of view, our
graph G1 is equivalent to the unidirectional ring with two nodes V = {v1, v2} and
two edges E = {elower, eupper} connecting nodes v1 and v2. Any packet in G1 going
from 0 to 1 or from 1 to 0 we associate with a packet going along the edge elower

in the directions v1 → v2. Any packet in G1 going from 1 to 2 or from 2 to 1 we
associate with a packet going along the edge eupper in the directions v2 → v1. We
associate packets going along nodes 0, 1, 2 or 2, 1, 0 similarly. It is easy to see that this
correspondence makes the two systems equivalent. In particular, graph G1 is stable,
and, if the initial number of packets is zero, then the maximal number of packets at
any time is not more than 4w/(1− r).

We now prove the second part of the theorem. We will show that in any connected
graph with more than two edges there exists an unstable greedy scheduling policy
whenever r > .86. Clearly it suffices to prove the existence of such policies only for
graphs G2,G3, G4 on Figure 1.

Consider the graph G2 first. The arrival pattern and the scheduling policy are
described in several stages. Suppose initially that there are c packets waiting to cross
the edge (1, 0), where c is a sufficiently large number. During the time interval [0, c),
we process these c packets and generate rc packets requesting the path 1, 0, 2. These
packets do not move until time c. During the time interval [c, c+rc), we process these
rc packets and generate r2c packets requesting path 2, 0, 3 and r2c packets requesting
0, 1. These packets also do not move until the time c + rc. During the next time
interval of the length r2c, we generate r3c packets requesting 1, 0, 3 and r3c packets
requesting 2, 0. The latter packets are processed before the previously generated
2, 0, 3 packets. As a result, at time c + rc + r2c, we obtain r3c packets requesting
1, 0, 3 and r3c packets requesting 2, 0, 3 (the latter generated in the previous round).
During the next r3c time units, we process entirely packets on the path 1, 0, 3, process
packets on the path 2, 0, 3 along the edge (2, 0), and generate r4c packets requesting
path 0, 3. In the end, we obtain r3c+r4c packets requesting edge (0, 3). If r3 +r4 > 1
(which holds for r > .82), we end up with more than c packets requesting the path 0, 3.
Repeating the schedule for c′ = (r3 + r4)c packets starting from the edge (0, 3), we
obtain an unstable schedule. This completes the proof for the graph G2.

The proof for the graph G3 is very similar. Suppose initially that we have c packets
requesting path 2, 1. Process these packets, and generate rc packets requesting 2, 0
during the time interval [0, c). Process the new packets, and generate r2c packets
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requesting paths 1, 2, 3 and 0, 1. Process these packets, and generate r3c packets
requesting 3, 2, 1 and 0, 1. During the next r3c time units, process all 0, 1 packets,
and generate r4c packets requesting 0, 1, 2. Also during this time interval, generate
and process r4c packets requesting 3, 2, give them priority over previously generated
3, 2, 1 packets, and in the remaining time process these 3, 2, 1 packets. We obtain in
the end r4c packets requesting 0, 1, 2 and r4c packets requesting 3, 2, 1. Note that all
these packets require edge (1, 2). Process all the 0, 1, 2 packets, process 3, 2, 1 packets
through their first edge (3, 2), and generate r5c packets requesting 2, 1. As a result,
we obtain r4c + r5c packets requesting edge 2, 1. If r4 + r5 > 1, that is, r > .86,
then we end up with more than c packets requesting edge 2, 1. It follows that the
scheduling rule is unstable. The construction of the unstable policy in the graph G4

is identical to the one of G3, where we identify node v3 of G3 with v0 of G4. This
completes the proof of the theorem.

In the remainder of this section, we address the question of universal stability
of specific policies. We propose a simple NTO policy and prove that it is stable in
all graphs even for the critical arrival rate r = 1. The NTO policy gives priority
to packets which have crossed the smallest amount of edges. Namely, if two packets
following paths P, P ′ ∈ P compete for the same edge e = ePi = eP

′
j and i < j, then the

packet following P should be processed first. If i = j, then the packets are prioritized
arbitrarily.

Theorem 2. NTO policy is stable in any network for r = 1.
Proof. Let Qe(0) denote the total initial number of packets waiting to cross an

edge e. Also let Qk(t) denote the total number of packets at time t which are within
exactly k steps from the origin. That is,

Qk(t) =
∑
P∈P

Q(eP
k
,P )(t).

Let us call these packets layer k packets. We will show by induction by k that Qk(t)
is bounded by a constant for all t.

Base step k = 0. Fix an edge e and a time t. Let t0 ∈ [0, t] be the largest
time at which no packets of layer 0 (packets that have not crossed any edge yet)
were waiting at e. If no such time exists, set t0 = 0. The total number of layer 0
packets in e at time t0 is then at most Qe(0). During the time interval [t0, t), at most
r(t− t0)+w = t− t0 +w layer 0 (external) packets that want to cross e have arrived.
Also, by the choice of t0, edge e was processing packets constantly during the time
interval [t0, t). Since NTO policy is used, layer 0 packets have priority over all other
packets. It follows that total number of layer 0 packets at the edge e at time t satisfies

∑
P :eP0 =e

Q(eP0 ,P )(t) ≤ Qe(0) + t− t0 + w − (t− t0) = Qe(0) + w.

As a result, Q0(t) ≤
∑
eQe(0) + w|E| for all t. We denote

∑
eQe(0) + w|E| by B0.

Induction step. Suppose, for some constants Bj , j = 0, 1, . . . , k−1, Qj(t) ≤ Bj
for all j ≤ k − 1 and for all times t. We will show that, for some constant Bk,
Qk(t) ≤ Bk for all t. Again, fix an edge e and an arbitrary time t. Again let t0 ≤ t
denote the largest time instance such that there were no layer k packets waiting to
cross e. Then edge e was always processing packets during the time interval [t0, t)
(packets in layer k or lower). The layer k packets that wait to cross e at time t then
are composed only of packets which were in layers j ≤ k−1 at time t0 or packets that
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arrived externally during the time interval [t0, t) and have edge e as their kth edge

on the requested path. The first group of packets has a size bounded by
∑k−1
j=0 Bj ,

by the induction assumption. The second is bounded by
∑
P :eP

k
=eAP (t0, t). We now

estimate the number of layer k packets that crossed e during the time interval [t0, t).
Since NTO policy is used, these packets were not processed only when there were
packets in layers up to k − 1 that wanted to cross e. The number of such packets is
bounded by

∑k−1
j=0 Bj , i.e., the total possible number of packets in layers up to k − 1

at time t0, plus
∑k−1
j=0

∑
P :eP

j
=eAP (t0, t), which is the number of new packets that

arrived in [t0, t) and cross e within k − 1 steps. We conclude that at least

max

{
0, t− t0 −

k−1∑
j=0

Bj −
k−1∑
j=0

∑
P :eP

j
=e

AP (t0, t)

}

packets of layer k crossed e during the time interval [t0, t). We obtain

∑
P :eP

k
=e

Qk(t) ≤
k−1∑
j=0

Bj +
∑

P :eP
k

=e

AP (t0, t)−
(
t− t0 −

k−1∑
j=0

Bj −
k−1∑
j=0

∑
P :eP

j
=e

AP (t0, t)

)

≤ 2

k−1∑
j=0

Bj + w,

where the last inequality follows from (3) and r = 1. Thus the total number of layer k

packets is bounded by Bk = 2|E|(∑k−1
j=0 Bj) + w|E|. This completes the induction

step.

After this paper was written, it was pointed out to the author by Kleinberg [12]
that a similar analysis shows the stability of FTG policy (which gives priority to
packets closest to their destination) when r = 1. During the course of the proof, we
obtained the following bound on the total number of packets in the network at time t:

|Q(t)| ≤ (2|E|)pmax+1(B0 + w),

where B0 is the initial number of packets in the network and pmax is the maximal
length |P | of paths P ∈ P. Unfortunately, the bound is exponential in the network pa-
rameters. It is shown in [4] that both NTO and FTG lead to exponentially large queue

sizes in certain networks. It is also shown that no bound better than 2
√

max |V |,|E|

is possible for a whole class of distributed deterministic policies including NTG and
FTG.

Note that, unlike the r < 1 case, stability under the r = 1 condition does not
necessarily imply that all the packets are delivered within a finite time. Indeed,
consider the graph G1 operating under NTG policy. Assume that initially there
are several packets requesting path 0, 1, 2. Assume that at each integer moment
t = 1, 2, . . . an adversary injects a packet following 1, 2. These packets have priority
over the initial packets and block them from processing forever. Thus the delivery
time for the initial packets is infinity. Whether there exists a policy with bounded
delivery time for every packet when r = 1 is an open question.
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4. Stable scheduling policies in adaptive adversarial queueing networks.
In this section, we focus on adaptive packet routing policies in adversarial queueing
networks. We have an undirected graph (V,E) and parameters r, w > 0. An adversary
generates packets and specifies only their origin-destination. The network flow load
assumption (r, w,FMF ), described in section 2, is assumed to be satisfied by an ad-
versary traffic. The goal is to construct a policy which is stable under the (r, w,FMF )
assumption, when r < 1, and show that no stable policy exists against any adversary
traffic when r > 1. For the case in which r < 1, we consider a corresponding static
packet routing problem on a fixed input nij , which is formulated as follows. Suppose,
for each i, j ∈ V , that we are given nij packets which are required to go from node i
to node j via some path selected by the scheduler. Each edge can process only one
packet at one time unit. The objective is to find a routing schedule which would
minimize the time until all the packets reach their destination (makespan time). This
static version of the packet routing problem with the makespan objective has been
considered before by Srinivasan and Teo [15] and Bertsimas and Gamarnik [5]. We
use here an asymptotically optimal scheduling algorithm developed in [5] (the Packet
Routing Synchronization Algorithm or PRSA) for this static packet routing problem.
The following result was proven in [5].

Theorem 3. Let nij denote the number of packets that are present in the network
at time 0 and have nodes i, j ∈ V as their origin-destination pair. Let Cmax be the
optimal solution to the (fractional) multicommodity problem with input nij, i, j ∈ V .
Then there exists a packet routing scheduling algorithm which brings all the packets
to their destination (has makespan time) in not more than

Cmax + O(|V |3|E|
√

Cmax)(14)

time units. Moreover, the algorithm is such that, after time T = Cmax + |V |√Cmax,
not more than 2|V ||E|√Cmax + |V |2|E| packets are still present in the network.

Since Cmax is a lower bound on any feasible makespan time, the schedule is
asymptotically optimal when the total initial number of packets

∑
ij nij diverges to

infinity. We now use this scheduling algorithm to construct a stable policy in a
network (V,E) which satisfies the load condition (r, w,FMF ). The routing policy is
of Discrete Review type and is described as follows. We assume that T0 = 0. The
number of packets of type (i, j) at time t is denoted by Qij(t).

Discrete Review Algorithm. For k = 0, 1, 2, . . . , let Ck
max denote the optimal

value to the multicommodity flow problem with the input nij = Qij(Tk). Set Tk+1 =

Tk +Ck
max + |V |

√
Ck

max. Implement the PRSA at time Tk to the input nij = Qij(Tk)

for the first Ck
max + |V |

√
Ck

max time units, ignoring packets arriving after time Tk.
In other words, the Discrete Review Algorithm looks at times Tk, k = 0, 1, 2, . . . ,

at the entire network and solves the corresponding static packet routing problem,
ignoring packets that arrive after Tk. Intuitively, since the PRSA has makespan time
close to the maximal congestion when the loads are high, then, by the (r, w,FMF )
assumption, Ck+1

max/C
k
max ≈ r < 1, and the Discrete Review policy is stable. The

following result is obtained.
Theorem 4. Suppose an adversarial queueing network (V,E) satisfies the

(r, w,FMF ) load condition. If r < 1, then the Discrete Review routing schedule is
stable. Moreover,

lim sup
t→∞

∑
ij

Qij(t) = O

( |V |4|E|3 + w2|E|
(1− r)2

)
.(15)
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If r > 1, then no stable routing policy exists.
Proof. First we prove the stability of the Discrete Review routing schedule. We

show that, for any k,

Ck+1
max ≤ r(Ck

max + |V |
√

Ck
max) + w + |V |2|E|

√
Ck

max.(16)

In fact, the total number of type (i, j) packets in the network at time Tk+1 consists
of two types of packets. We have Aij(Tk, Tk+1) packets that arrived during the time
interval [Tk, Tk+1) and packets that arrived before time Tk and still have not been
processed. Denote the latter packets by Q̂ij(Tk). From Theorem 3, since Tk+1−Tk =

Ck
max + |V |

√
Ck

max, we have

∑
ij

Q̂ij(Tk) ≤ 2|V ||E|
√

Ck
max + |V |2|E| ≤ |V |2|E|

√
Ck

max(17)

(as long as |V |, Cmax ≥ 4, which we assume to hold). Since our network is of
(r, w,FMF ) type, the optimal value of the multicommodity flow problem on the input
nij = Aij(Tk, Tk+1) is at most

r

(⌈
Tk+1 − Tk

w

⌉
w

)
≤ r(Tk+1 − Tk) + w.

The optimal value of the multicommodity flow problem on the input nij = Q̂ij(Tk)

is upper bounded by
∑
ij Q̂ij(Tk). We obtain that the optimal value Ck+1

max of the

multicommodity flow problem on the input nij = Qij(Tk+1) = Aij(Tk, Tk+1)+Q̂ij(Tk)
satisfies

Ck+1
max ≤ r(Tk+1−Tk)+w+|V |2|E|

√
Ck

max = r(Ck
max+|V |

√
Ck

max)+w+|V |2|E|
√

Ck
max.

This proves (16). From (16) we obtain

lim sup
k→∞

Ck
max ≤ r lim sup

k→∞
Ck

max + (r|V |+ |V |2|E|) lim sup
k→∞

√
Ck

max + w

≤ r lim sup
k→∞

Ck
max + (r + |V |2|E|+ w)

√
lim sup
k→∞

Ck
max

or

lim sup
k→∞

Ck
max ≤

(r + |V |2|E|+ w)2

(1− r)2
.(18)

We finally argue that, for any t = 0, 1, 2, . . . , the total number of packets in the
network at time t, for large t, is at most 2|E|Ckt

max, where kt satisfies Tkt ≤ t < Tkt+1.
We split all the packets in the network at time t into two groups: those that arrived
before time Tkt and those that arrived after time Tkt . The first group has a size at
most

∑
ij Qij(Tkt), which is at most |E|Ckt

max since Ckt
max is a feasible solution to the

multicommodity problem on the input nij = Qij(Tkt). The second group has a size
at most

∑
ij Qij(Tkt+1) since none of these packets are processed before time Tkt+1.

Therefore, the second group has a size at most |E|Ckt+1
max . We apply (18) and conclude

the proof of the theorem.
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We now prove that if r > 1, then no stable routing policy exists. For that we
need to exhibit a certain adversarial arrival pattern with arrival rate r for which
stability cannot be achieved. Select δ > 0, a small positive value, and construct a set
of rates rij such that the optimal value r0 of the multicommodity flow problem on
the input nij = rij satisfies r0 = r/(1 + δ). This can be achieved as follows: select
values r′ij very small arbitrarily, and increase them proportionally by t, rij = r′ijt
until the objective value becomes r0. We now construct an arrival pattern. For each
pair (i, j), inject a type (i, j) packet every 1/rij time units. Select an integer w > 0
so that rijw > 1/δ for every rij . Then, for every time t,

Aij(t, t + w) ≤
⌈

w

1/rij

⌉
≤ rijw + 1 = rijw +

1

rijw
rijw ≤ rij(1 + δ)w.

Since the optimal value of the multicommodity flow problem on the input rij(1+δ) is
r0(1 + δ) = r, the network is of the (r, w,FMF ) type. In the proof of Corollary 1, we
show that, for this arrival pattern, if the objective value r0 = r/(1 + δ) > 1, then no
stable policy can exist. By choosing δ sufficiently small, we obtain the result.

The Discrete Review Algorithm is one way of turning a schedule for a static
packet routing problem into a schedule for a dynamic packet routing problem. There
are schedules other than the PRSA which achieve a certain degree of closeness to the
optimal makespan time. For example, a routing schedule was constructed in [15] with
makespan time cCmax, where Cmax is the optimal maximal congestion (solution to
the multicommodity flow problem), and c is some (large) constant independent of the
data of the problem. Note that this schedule, if implemented in the Discrete Review
manner, does not necessarily lead to a stable policy if r > 1/c. The asymptotic
optimality of the routing schedule (which is achieved by the PRSA) is essential for
stability.

The result above can be used to decide what the necessary and sufficient condi-
tions are for stability in adversarial queueing networks when the arrival rate for each
pair of origin-destination is bounded by a constant.

Corollary 1. Given an adversarial queueing network (V,E), suppose that there
exist constants rij, i, j ∈ V , and a positive integer w > 0 such that the total number
of packets injected during any interval [t1, t2) with origin-destination pair (i, j) is not
bigger than rij(t2 − t1) + w. If the multicommodity flow problem on the input rij,
i, j ∈ V , has an optimal solution satisfying Cmax < 1, then there exists a stable packet
routing schedule. If the optimal solution satisfies Cmax > 1, then a stable schedule
cannot exist.

Proof. Suppose Cmax < 1 for the multicommodity flow problem on the input
nij = rij . Select a positive integer

W >
2|V |2w

1− Cmax
.

By assumption, for any time t,

Aij(t, t + W ) ≤ rijW + w.

Also, by assumption, the optimal value of the multicommodity flow problem on the
input nij = rijW is at most CmaxW . The optimal value of the multicommodity flow
problem on the input nij = w is trivially at most |V |2w. Therefore, the optimal value
of the multicommodity flow problem on the input nij = rijW + w is at most

CmaxW + |V |2w = CmaxW +
|V |2w
W

W ≤ CmaxW +
1− Cmax

2
W =

1 + Cmax

2
W.
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We set r = (1+Cmax)/2 < 1. Then our queueing network is of the type (r,W,FMF ).
We apply Theorem 4 and complete the proof of the first part.

Suppose now that the optimal solution to the multicommodity flow problem on
the input nij = rij satisfies Cmax > 1. Let an adversary inject a type (i, j) packet
every 1/rij time unit. Then, for every type (i, j),

Aij(t1, t2) ≤
⌈
t2 − t1
1/rij

⌉
≤ rij(t2 − t1) + 1 ≤ rij(t2 − t1) + w.

So this arrival pattern satisfies the conditions of the theorem. Suppose, for the pur-
poses of contradiction, that there exists a stable routing policy. For every type (i, j)
and every edge (k, l) ∈ E, let Dij

kl(t1, t2) denote the number of type (i, j) packets that
crossed the edge (k, l) during the time interval [t1, t2), when this stable policy is im-
plemented. Let also Qij

k (t) denote the number of type (i, j) packets that are queued
at the node k at time t. Then

Qij
i (t) = Qij

i (0) + Aij(0, t)−
∑

k:(i,k)∈E
Dij
ik(0, t).(19)

Also, for each k �= i, j,

Qij
k (t) =

∑
l:(l,k)∈E

Dij
lk(0, t)−

∑
l:(k,l)∈E

Dij
kl(0, t).(20)

By assumption, Qij
j (t) = 0 and Dij

jl(0, t) = 0 for all l such that (j, l) ∈ E. Since
the policy implemented is stable, then there exists B > 0 such that, for all k and all
times t, Qij

k (t) ≤ B. In particular,

Qij
k (t)/t→ 0(21)

when t→∞. Note that, for each (k, l) ∈ E,

∑
i,j

Dij
kl(0, t)/t ≤ 1(22)

since each edge processes at most one packet at a time. Therefore, there exists a
sequence t1 < t2 < · · · < ts < · · · along which all the limits

xijkl ≡ lim
s→∞

Dij
kl(0, ts)

ts

exist. Note also that

lim
t→∞

Aij(0, t)

t
= rij .

From (19)–(21), it follows that xijkl, i, j ∈ V , (k, l) ∈ E is a feasible solution to the
multicommodity flow problem on the input nij = rij . However, from (22) it follows
that, for each edge (k, l) ∈ E,

∑
i,j

xijkl ≤ 1.
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In particular, the maximal congestion Cmax corresponding to this feasible solution
satisfies Cmax ≤ 1. This contradicts the assumption.

It is not clear whether a stable packet routing schedule exists for the critical case
Cmax = 1, analogous to the NTO policy proposed in section 3. The existence of such
a policy might depend on the integrality of a feasible solution to the multicommodity
flow problem (6)–(12).

Note that the bound given by Theorem 4 is weaker than the bound

O

( |V |5/2|E|5/2w
1− r

)
(23)

obtained in [1] for networks of type (r, w, IMF ). Also, the schedule constructed in [1]
is distributed, whereas our schedule needs information about the entire network at
times Tk. This raises the question of whether the schedule in [1] is applicable for
the network of type (r, w,FMF ). This turns out to be possible but at the cost of a
somewhat inferior performance. Consider1 an optimal fractional solution (maximal
congestion) Cmax to the multicommodity problem on the input nij = Aij(t, t + w).
Using Raghavan’s and Thomson’s randomized algorithm (see [13]), one can construct
an integral solution to the multicommodity flow problem with expected maximal

congestion satisfying C int
max ≤ Cmax + Cmax ·O(

√
log |E|
Cmax

). Suppose now that

w > O

(
log |E|r
(1− r)2

)
.(24)

Then Cmax ≤ rw implies C int
max ≤ rw +

√
rwO(

√
log |E|) < w. Thus, if (24) holds,

then the network is of the type (r′, w, IMF ) for r′ ≡ C int
max/w. Unfortunately, the

bound (24) combined with (23) implies the bound

O

( |V |5/2|E|5/2 log |E|r
(1− r)2(1− r′)

)
,

which is at best (using r ≤ r′) O( 1
(1−r)3 ) when r ≈ 1. This is inferior to our bound

O( 1
(1−r)2 ) in Theorem 4 when r ≈ 1. (Recall that our bound does not require (24).)

Observe that we used the second part of Theorem 3 in the construction of the Dis-
crete Review Algorithm. We could also use the first part (routing entirely the packets
present in the system at time Tk) at the price of somewhat larger upper bounds,
although this scheme has the following advantage. In this form of implementation,
the path of each packet is predetermined at time Tk for packets present in their orig-
ination node at time Tk. Thus the path information can be recorded in the header of
the packet, and no path recalculation is needed while the packet is on its route.

5. Conclusion. We have provided in this paper a simple classification of undi-
rected graphs which are universally stable: a connected undirected graph is universally
stable if and only if it has at most two edges. We have also proved that a simple dis-
tributed policy, NTO, achieves stability in all the graphs under the critical arrival
rate r = 1. A multicommodity flow-type load condition was formulated for adaptive
adversarial queueing networks, and a stable policy was constructed whenever this load
condition was met.

1The author wishes to thank Ashish Goel for pointing out this argument.
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A number of interesting questions remain outstanding. It is not clear which
graphs are universally stable for a given value of r < 1. Given that a network could
be unstable for an arbitrarily small r (see [6]), such a classification could be quite
nontrivial. Deciding the stability of specific policies is not well understood in general
and might become an impossible problem in light of the undecidability results in [10].

Acknowledgments. The author wishes to thank Ashish Goel, Matthew An-
drews, and several anonymous referees for many fruitful suggestions and corrections.
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MANY TO ONE EMBEDDINGS FROM GRIDS INTO CYLINDERS,
TORI, AND HYPERCUBES∗
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Abstract. We describe novel methods for embedding 2-dimensional grid graphs into cylinders
(one way wrap-around grids), tori, and hypercubes, where the guest grid G is larger than the host
graph H, implying a many to one embedding.

We call �| G | / | H |� the optimal load, denoted l. We consider optimal embeddings with respect
to dilation (the stretching of guest edges) and load; i.e., edges are mapped to edges or onto one node,
and the number of grid nodes mapped onto any hypercube node is not greater than l.

We show, by construction, that, for loads of at least 4, optimal embeddings into the hypercube
always exist subject only to modest restrictions on the relative dimensions of guest and host. If the
problem instances are grouped by grid height, the restrictions imply that only some finite number of
instances in each group may not be solvable by the given methods.

The essence of the method is a mapping from grids into cylinders of height at least one half of but
not greater than the grid height, and so it can also be used to construct embeddings into cylinders
and tori.

Previous work has gone so far as to show that if the optimal load l is a power of 2, then dilation
1, load l + 1 embeddings into the hypercube can be constructed. Optimal results for loads 2 and 3
are not known.

Key words. graph embedding, many to one, grid, cylinder, torus, hypercube

AMS subject classification. 05C10
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1. Introduction. The study of embeddings from one family of graphs to another
has received substantial attention over many years. Besides the inherent mathematical
interest of these problems, motivation for the study comes from the many concerns
of computer science that can be effectively modelled by this graph theoretical ab-
straction. In this paper, we describe some results on many to one embeddings from
2-dimensional grids into smaller cylinders, tori, and hypercubes. Plausible applica-
tions for our results include the simulation of large grid-like networks of processors by
smaller networks in the form of cylinders, tori, or hypercubes and the efficient imple-
mentation of a parallel algorithm conceived of as running on a grid of unlimited size
but executed on some fixed sized network in those same families. In these applications
the embedding parameters load, dilation, and congestion, defined in the next section,
strongly influence the effectiveness of the simulation.

Several papers have discussed grid to grid and grid to hypercube embeddings.
[6, 7, 9, 15] describe one to one embeddings from 2-dimensional grids into other 2-
dimensional grids of smaller aspect ratio, with dilation 2. Likewise, [12] considers
efficient embeddings from grids into grids.

One to one embeddings from 2-dimensional grids into hypercubes are considered
in [13], and those from 3-dimensional grids into hypercubes are considered in [3] and
[11].
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It is well known (see, for example, [8] and Lemma 3.1) that not all 2-dimensional
grids are subgraphs of the minimum sized hypercube sufficient to contain the grid.
In [2], it is shown that all 2-dimensional grids can be one to one embedded into the
smallest possible hypercube with dilation two. This result can also be obtained by
an entirely different route, namely, by using the grid to grid embeddings just cited to
reduce the width of the grid down to the next power of two; i.e., embed the guest grid
into a grid that is a subgraph of the hypercube. This is the approach taken in [1].

What happens when the guest grid is arbitrarily larger than the host graph, i.e.,
one considers many to one embeddings, is by no means completely understood. Do
dilation one embeddings with an optimal load always exist, at least into the hypercube
if not for the simpler families?

Many to one embeddings from 2-dimensional grids into smaller 2-dimensional
grids are considered in [14]. There it is shown that dilation one with optimal load
plus one is always obtainable as long as the host is smaller than the guest in both
dimensions. In [10], many to one embeddings from both 2- and 3-dimensional grids
into hypercubes are considered. For 2-dimensional grids, the main result (Theorem
1) states the following (and we paraphrase): If the optimal load is 2k for some integer
k, then an embedding exists with dilation one and load 2k + 1.

Our main result shows that dilation one optimal load solutions can always be
constructed for embeddings from the 2-dimensional grid into the hypercube for all
loads greater than three, with only a modest restriction on the relative dimensions of
the guest and host. The restriction may be interpreted as saying that, in each group
of problem instances of a given grid height, only a finite number might not be solved
by our methods.

The technique is based on a mapping into the torus, so similar results also apply to
the torus, under some restrictions on the relation between grid and torus dimensions.

For cylinders, the absence of horizontal wrap-around edges seems to prevent the
technique from achieving optimal load in those instances where the host is only just
big enough to contain the guest.

We leave open the conjecture that instances of the grid to hypercube embedding
problem always have optimal load and dilation 1 solutions for all loads greater than
or equal to 2 and irrespective of the relative dimensions of the guest and host.

2. Definitions. A graph embedding is a mapping from the nodes of the guest
graph to the nodes of the host graph, together with a mapping from guest edges to
paths in the host. In general, the node mapping can be one to one or many to one,
but here we are concerned only with many to one embeddings. The dilation of a guest
edge is the length of the path which is the image of that edge in the host. Because,
in a many to one mapping, nodes incident to an edge could be mapped to the same
host node, it is possible that the dilation of an edge is zero. The dilation of an entire
embedding is the largest dilation over all edges in the guest.

Here we consider only instances where the number of nodes in the guest graph,
denoted | G |, is greater than the number of nodes in the host, | H |. For any many to
one mapping, the maximum over all host nodes of the number of guest nodes mapped
to the host node is called the load of the mapping. We call the ratio �| G | / | H |�,
denoted l, the optimal load. Throughout the paper, we assume that l ≥ 2.

The congestion of an embedding is the maximum over all host edges of the number
of guest edges mapped to a path that includes the host edge.

We are interested only in what we call optimal embeddings, which are those with
dilation 1 and for which no more than l guest nodes are mapped onto any host node.
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Restricting the dilation to 1 means that we consider only embeddings that map edges
to edges or map both ends of a guest edge onto the same host node. Hence we have
no need in this presentation to explicitly define the guest edge to host path mapping.

The family of guest graphs which we consider consists of the 2-dimensional grids.
A 2-dimensional grid of height h and width w is the graph comprising the node set
{(x, y) | 0 ≤ x < h, 0 ≤ y < w} and the edge set {{(u, v), (x, y)} | | u−x | + | v−y |=
1}. We will refer to these guest graphs as (h,w)-grids.

The families of host graphs considered are as follows:
1. Cylinders, which we picture as (h,w)-grids with wrap-around edges in the

vertical dimension, are the graphs comprising the node set {(x, y) | 0 ≤ x < h, 0 ≤
y < w} and the edge set {{(u, v), (x, y)} | | u−x | + | v− y |= 1}⋃{(0, v), (h− 1, v)}.
We will refer to these host graphs as (h,w)-cylinders.

2. Tori, which we picture as (h,w)-grids with wrap-around edges in both dimen-
sions, are the graphs comprising the node set {(x, y) | 0 ≤ x < h, 0 ≤ y < w} and the
edge set {{(u, v), (x, y)} | | u−x | + | v− y |= 1}⋃{(0, v), (h−1, v)}⋃{(u, 0), (u,w−
1)}. We will refer to these host graphs as (h,w)-tori.

3. Hypercubes of dimension d, denoted Qd, are the graphs with vertex set {n |
0 ≤ n ≤ 2n − 1} and edge set {{x, y} | the binary representations of x and y differ in
exactly one bit position}.

3. An example. Figure 3.1 defines our notation for naming the nodes of the
guest and host graphs. We begin with a small example by way of introducing both
our notation and our method. In this example, the host is a cylinder.

It is well known (see, for example, [8]) that not all 2-dimensional grids G are sub-
graphs of H, where H is the smallest hypercube such that |G| ≤ |H|. The distinction
between those that are and are not is defined in the following lemma.

Lemma 3.1. The (h,w)-grid is a subgraph of Qd iff �log2 h�+ �log2 w� ≤ d.
So, for example, the (5, 6)-grid is not a subgraph of Q5. We also use another

well-known property of the hypercube Qd; again, see [8].
Lemma 3.2. If p+ q ≤ d, then the (2p, 2q)-torus is a subgraph of Qd.
Consequently, the (4, 8)-cylinder is a subgraph of Q5. Hence there is no dilation

1 load 1 embedding from the (5, 6)-grid into the (4, 8)-cylinder because such an em-
bedding would imply the existence of a dilation 1 embedding from the (5,6)-grid into
Q5, contradicting Lemma 3.1.

However, there is a load 2 dilation 1 embedding into the (4, 4)-cylinder. A solution,
illustrated in Figure 3.2, demonstrates the way we will illustrate all such embeddings.
If the guest is an (h,w)-grid, the diagram shows an h × w array of integers. Let the
top leftmost element in the array shown in the figure be indexed (0,0). Then any
element (i, j) in the array represents a node (i, j) in the guest grid, as illustrated
in Figure 3.1. The value of array element (i, j) defines which host row is to be the
image of grid node (i, j). The host column number is defined by the numbers beneath
the bottom row, where adjacent host columns are distinguished by the presence or
absence of shading. For example, Figure 3.2 tells us that node (4,3) of the guest is
mapped to row 2, column 1 of the host.

Remembering that there exist wrap-around edges between rows 0 and 3 in the
host cylinder, one can verify that the diagram defines a legitimate load 2 embedding
in which edges are mapped to edges by noticing the following:

1. Each host node appears no more than twice.
2. Elements in the array that are vertically or horizontally adjacent, i.e., repre-

senting adjacent guest nodes, are designated either adjacent row numbers in the same
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b)  A (4,4)-cylinder

0,30,1 0,2 0,4

1,11,0 1,2 1,3 1,4 1,5

2,0

0,5

2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4

4,14,0 4,2 4,3 4,4 4,5

3,5

0,10,0 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

a)   A  (5,6)-grid

0,0

Fig. 3.1. Node-naming conventions.
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0                1              2       3
Host column Number

0

1

2

3

4

Row
Number

Guest

0       1        2       3         4       5
Guest  column Number

Fig. 3.2. Embedding a (5, 6)-grid into a (4, 4)-cylinder with load 2.

host column or identical row numbers in adjacent host columns.

Our way of visualizing embeddings is an alternative to that often used in previous
work, where one draws the host and indicates for each host node which guest nodes
are mapped onto it. It is interesting to note that the solutions suggested by these
different views are quite distinct and that the pattern underlying one type of solution
may not be at all apparent in the alternative visualization.

4. The partial mapping.

4.1. Informal description of the partial mapping. Our embedding is based
on a single, simple guest node to host node mapping. This mapping does not im-
mediately give us the final embedding because it is only a partial mapping from the
guest (h,w)-grid. This partial mapping does not define an image for guest nodes in
the bottom left and top right corners in the diagrams. The final total mapping is
constructed from the partial mapping by methods to be described in later sections.
In this section, we describe and define the partial mapping and investigate some of
its properties.

The partial mappings are illustrated in the same way as in the earlier example,
Figure 3.2. Consider Figure 4.1, which defines a load 2 dilation 1 mapping from the
nodes of a subgraph of a (13, 20)-grid to the nodes of an (8,13)-cylinder.
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7 7 6 6 6 6 6 6 6 5 5 4 4 4 4 4
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1 1 1 1 0 0 0 0 0 0 0 7 7 6 6 6

2 2 2 2 1 1 0 0 0 0 0 0 0 7 7 7

2 2 2 2 2 1 1 1 1 1 1 1 0 0 7 7

3 3 3 3 3 2 2 1 1 1 1 1 1 1 0 0

3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 0

4 4 4 4 4 4 3 3 2 2 2 2 2 2 2 1

5 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2

6 5 5 5 5 5 5 5 4 4 3 3 3 3 3 3

7 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4

2 3 4 5 6 80 1 7 9 10 11 12

Host Column Number

0 Guest Column Number 15

Fig. 4.1. A height 13 load 2 partial mapping.

4.2. Formal definition of the partial mapping. The partial mapping maps
nodes from a grid of height hg onto the nodes of a cylinder of height hh, where
hg/2 < hh < hg, with load l. To completely define the mapping, we need a fourth
parameter, which we call a profile. Let p = p1p2 · · · pk denote a string of k integers.

Definition 4.1. The string p is a (k, n)-profile if
∑k
i=1 pi = n, and, for all i,

pi ≥ 2.
Informally, the profile associated with a given mapping is the sequence of “step”

heights on the left or right of a host column in a mapping diagram. We will refer
to these step sequences as left and right column profiles when the context makes
the meaning clear. To map a height hg guest into a height hh host, we need an
(hg − hh, hg)-profile. Of course, for any hg, hh pair, there are many profiles satisfying
the definition. For example, the (5,13)-profile used to generate Figure 4.1 and which
is the left profile of host column 0 is 2 2 2 2 5.

For each (hg, hh, l,p) 4-tuple, we define a mapping, i.e., we define a function
F (hg, hh, l,p), whose value is the required node to node mapping.

For each column i of the host, F (hg, hh, l,p) defines the set Ci of triples (r, c, v),
where 0 ≤ r < hg. The existence of the triple (r, c, v) in Ci indicates that node (r, c)
of the guest is to be mapped to node (v, i) of the host; i.e., the contents of Ci define
completely which guest nodes are mapped onto which row nodes of column i in the
host. Note that i is unbounded, meaning that we can apply the mapping to any width
host of the given height.

Before presenting a formal definition of the partial mapping, Definition 4.2 below,
we give an informal description. Figure 4.1 can be used as an example. Let k = hg−hh
so that we use a profile p = p1p2 · · · pk.
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1. Starting at the top of guest column 0, mark off p1 rows in that column. In
column 1, mark off the p2 rows immediately following the marked rows in column 0.
Continue in this fashion until the last pk rows are marked in column k − 1. By the
definition of p, hg rows have been marked in the first k columns of the guest grid.

2. Consider the sequence of integers 0 through hh − 1. Skipping the top row in
each marked column segment, write the first p1 − 1 numbers in the sequence in the
remaining p1 − 1 rows of column 0, the next p2 − 1 numbers in the sequence in the
remaining p2−1 rows of column 1, and so on to the last pk−1 numbers in the sequence
in the remaining pk − 1 rows of column k − 1. At this point, we have computed C0

0

as defined in item 1 (i) of Definition 4.2.
3. Repeat l − 1 times: run down the right-hand edge of the current pattern,

and, for each of the most recent additions of the numbers 0 through hh − 1, copy
that number into the next location one column to the right and one row down from
the current position. If moving down runs off the bottom of the pattern, place the
number in the next vacant location in row 0. At this point, we have completed the
computation of C0, i.e., the mapping into the first host column, as defined in item
1 (ii) of Definition 4.2.

4. To create C1 from C0, i.e., host column 1 from host column 0, or, in general,
Ci+1 from Ci, all numbers are incremented by one, and the pattern is cyclically rotated
downward by l rows. In the cyclic rotation, items that run off the bottom are returned
to the top rows, but the column number is decreased by k every time the new row
number passes through a multiple of hg. This process is defined in item 2 of Definition
4.2.

Here is the algebraic definition, which is used to prove claims about the properties
of the mapping and could be used as the basis for an algorithm to generate it.

Definition 4.2 (the partial mapping). The Ci corresponding to the 4-tuple
(hg, hh, l,p), where p is a (k, n)-profile, are defined recursively as follows:

1. C0 =
⋃l−1
j=0 C

j
0 , where the following hold:

(i) Let d1 = 0 and for all i, 2 ≤ i ≤ k, let di = di−1 + pi − 1. Then for all
i, 1 ≤ i ≤ k; for all z, di ≤ z < di + pi − 1, (z + i, i− 1, z) ∈ C0

0 .
(ii) For all j, 1 ≤ j ≤ l− 1, (r, c, v) ∈ Cj−1

0 implies ((r+1) mod hg, c+1−�(r+
1)/hgk, v) ∈ Cj0 .

2. For all i, 1 ≤ i, (r, c, v) ∈ Ci−1 implies ((r+l) mod hg, c+l−�(r+l)/hgk, (v+
1) mod hh) ∈ Ci, where “mod” denotes the remainder after integer division.

The reader will find that C0, generated with l = 2, hg = 13, and hh = 8, and
profile 2 2 2 2 5 yield host column 0 in Figure 4.1 and that C1 defines host column 1
and so on. This definition can be used as the basis for an algorithm which computes
the mapping using a number of arithmetic and other primitive operations linear in
the size of the guest.

4.3. Properties of the partial mapping. The following properties of the map-
pings are evident from the diagrams and are straightforward to prove.

The mapping properties.
1. Every node in the host is the image of exactly l guest nodes; i.e., the load is

optimal (taking the size of the domain of the mapping to be the numerator).
2. If two nodes are adjacent in the guest and both have images defined by the

mapping, then their images are adjacent in the host; i.e., the dilation of the mapping
is one.

3. Each edge in a host column appears no more than 2l − 1 times, and each
edge in a host row appears no more than l times; i.e., the congestion of the mapping



MANY TO ONE EMBEDDINGS 393

is ≤ 2l − 1.
4. The left and right column profiles are rotated through l rows from one host

column to the next.
The first statement follows directly from rule 1 (ii) in the definition of the map-

ping. The second can be demonstrated by an inductive argument based on noting
that, within a column, adjacent array elements are given adjacent row numbers and
that, across column boundaries, adjacent elements are given identical row numbers.
The third statement follows from the fact that adjacent consecutive row numbers
within a host column correspond to column edges and there are no more than 2l − 1
such adjacencies per edge. Host row edges correspond to adjacent numbers across
host column boundaries. Along a boundary, each row number can appear no more
than l times. The fourth statement follows directly from rule 2 in the definition of
the mapping.

The partial mapping has two significant periodicity properties. For example,
notice that in Figure 4.1 the left profile of host column 0 and the right profile of host
column 12 (which is identical to the left profile of host column 13) are identical.

Definition 4.3. The structural periodicity of the mapping is the smallest inte-
ger, ps, such that ∃δs for all i(r, c, v) ∈ Ci implies (r, c+δs, (v+ps) mod hh) ∈ Ci+ps .

Note also that the values in host column 13 (the next column in the mapping but
not shown in the diagram) would not be identical to those in column 0. However,
C0 would be identical, in both profiles and content, to C104 (104 = 8 × 13) were the
mapping to be continued that far.

Definition 4.4. The numerical periodicity of the mapping is the smallest inte-
ger, pn, such that ∃δn for all i(r, c, v) ∈ Ci implies (r, c+ δn, v) ∈ Ci+pn .

The following lemmas show how these periodicities are related to the parameters
that define the mapping. We refer to the greatest common divisor and to the lowest
common multiple of two positive integers i and j as gcd(i, j) and lcm(i, j), respectively,
and we use i | j to mean i divides j.

Lemma 4.5. The structural periodicity of the pattern is given by ps = hg/gcd(l, hg),
and the constant δs is given by δs = lhh/gcd(l, hg).

Proof. Suppose the operation defined in rule 2 of the initial mapping definition is
repeated ps = hg/gcd(l, hg) times on a triple (r, c, v), producing the triple (r

′, c′, v′).
Then the following hold:
1. r′ = (r + lps) mod hg = (r + lhg/gcd(l, hg)) mod hg = r.
2. Let k = hg − hh. The column number c will be incremented, by l, ps times

and decremented, by k, the number of times the value of r, incremented by l at each
iteration, passes through a multiple of hg, namely, �(r + lps)hg times. Noting that
�r/hg + (l/hg)(hg/gcd(l, hg)) = l/gcd(l, hg), we have

c′ = c+ lhg/gcd(l, hg)− lk/gcd(l, hg)

= c+ l(hg − k)/gcd(l, hg)

= c+ lhh/gcd(l, hg).

3. v′ = (v + ps) mod hh.
4. hg/gcd(l, hg) is the smallest integer z with the required properties because

z must satisfy r = (r + lz) mod hg. Then it must be that hg | lz, i.e., l = ax,
z = by, where xy = hg for some integers a, b, x, y. Since z is minimal, it must be that
x = gcd(l, hg). Hence z = by = bhg/x = bhg/gcd(l, hg) ≥ hg/gcd(l, hg).

Lemma 4.6. The numerical periodicity of the pattern is given by

pn = lcm(hh, hg/gcd(l, hg)).
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Proof. We require that r′ = r, which implies that pn = aps for some integer a.
Also, we must have v′ = v, and hence aps mod hh = 0. Hence aps = lcm(hh, ps) =
lcm(hh, hg/gcd(l, hg)).

Note that both periodicities are independent of the profile p used to initiate the
mapping.

For some of our constructions, we need a lower bound on what we will call the
column thickness of a mapping.

Definition 4.7. The column thickness of a mapping is the minimum over all
rows of the number of grid columns in the row mapped to the same host column.

Lemma 4.8. The thickness of a partial mapping is ≥ �l/2.
Proof. The thickness of C0 is ≥ �l/2 because C0

0 ∪C1
0 includes every row at least

once. Hence every two repetitions of rule 1 (ii) of the mapping definition adds at least
one to the thickness. The later columns are formed by the rotation of C0, which does
not change its shape.

5. Embedding into cylinders. So far we have described only partial mappings
from guest grid nodes to the host cylinder nodes, but our goal is to define a total
mapping for (h,w)-grids. Obviously, a partial mapping can yield a total mapping
for any (h,w)-grid whose nodes fall within the domain of the partial mapping. By
a partially mapped guest column, we mean one for which one or more but not all
column nodes have an image defined by the mapping. For example, in Figure 4.1, we
can obtain a load 2, dilation 1 embedding of the (13, 12)-grid into an (8, 13)-cylinder
by discarding the partially mapped columns.

In this section, we improve on that by showing that we can “square up” at least
one end of the mapping diagram. This squaring up method works for one particular
family of profiles. Let k = hg − hh. The (k, hg)-profile we need is a sequence of k− 1
twos followed by hg − 2(k − 1). Let us call these cylindrical profiles. Figure 4.1 was
initiated by such a profile.

A guest node will be said to be uncovered if it is not in the domain of the partial
mapping. In the mapping diagrams, the uncovered nodes that we consider now are
those making up the bottom left corner. We will refer to this set of uncovered nodes
as the corner.

Lemma 5.1. There are (k−1)hh nodes in the corner of a partial mapping initiated
by a cylindrical profile.

Proof. We deduce from the definition of the partial mapping, rule 1 (i), that
there are k − 1 partially mapped columns, that the leftmost such column is of height
hg−2, and that the rightmost column is of height hg−2k+2, decreasing by 2 at each
column. A simple summation yields the following: the number of uncovered nodes =
(k − 1)(hg − k) = (k − 1)hh.

The remainder of the paper is presented in terms of mapping diagrams. We do
not attempt to specify the mappings algebraically. The following process creates a
corner mapping diagram which maintains the necessary mapping properties for any
load l.

1. Take (k − 1) height hh columns, numbered 0 through k − 2. Assign the first
l columns to host column 0, the next l to host column 1, and so on until all are given
some designation. The columns will now be divided into �(k − 1)/l� groups, with l
columns per group, except perhaps for the last group, which will contain (k−1) mod l
columns. Number the rows of column 0 from 0 downward to hh − 1 (or any rotation
thereof). See Figure 5.1 (a), where an appropriate rotation is chosen to match Figure
4.1.
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2. For columns 1 through k − 2, the following hold.
(i) If the guest node and its left neighbor are assigned to the same host column,
assign a row number one less (cyclically) than its left neighbor.

(ii) If the column and its left neighbor are assigned to different (adjacent) host
columns, assign a row number identical to that of its left neighbor.

See Figure 5.1 (b).
3. Repeat the following shift process k−2 times: Consider a 45 degree diagonal

drawn from above the top leftmost element, down to the right edge of the current
profile. Shift everything above this diagonal one place up and one place to the left.
See Figure 5.1 (c) through (e).

We observe the following.

1. The diagram covers hh(k − 1) nodes, i.e., the number originally uncovered,
and distributes them with load ≤ l across �(k − 1)/l� host columns.

2. After steps 1 and 2, mapping properties 2 and 3 hold.
3. Mapping properties 2 and 3 are preserved at each step of the shifting process.

This can be seen by noting the following.
(i) Any diagonal shift involving elements originally related in the way defined by

steps 1 and 2 preserves the properties. Consider two horizontally adjacent elements,
left and right, on either side of the diagonal which defined the shift. Shifting puts
right above left, and the element which was below and to the right of right becomes
the right neighbor of left. In each of the only two possible cases (i.e., left and right are
assigned either to the same or to adjacent host columns) the row numbering defined
in steps 1 and 2 ensures that mapping properties are preserved.

(ii) All diagonal shifts are on elements related as defined in steps 1 and 2, as
the diagonal moves up through previously undisturbed elements.

4. Height hg − 2 is achieved.
5. The right profile of the result is a cylindrical profile.

Finally, we note that once a corner has been built in this way, we can continue the
mapping in the usual way. It is necessary only to note whether those uncovered ele-
ments adjacent to elements covered by the corner building process should be assigned
to the same host column or to the next one.

Case 1. l | (k−1), i.e., the number of host columns used in the corner is a multiple of
the load. In this case, the mapping that follows the corner begins with a new
host column. Then the mapping definition 1 (i) is initiated not by a profile
but by the numbers already defined by the corner. Then definition 1 (ii) is
applied without change.

Case 2. Not (l | (k − 1)), i.e., the available repetitions of the current host column, as
determined by the load, have not been completely used. Again, rule 1 (i) is
modified so that Ci0, for some i, is defined not by a profile but by the numbers
defined by the corner construction. Ci+1

0 through Cl−1
0 are defined as usual

by rule 1 (ii).

Figure 5.1 shows the construction of a corner for the problem instance hh = 8,
hg = 13, and load 2. Here we need four columns to fill the corner, i.e., two host
columns, each appearing twice.

Figure 5.2 shows a similar example—the construction of a corner for the same
problem instance but with load 3. Now we need two host columns, one appearing
three times and the other once. As the mapping continues, it will first use two copies
of this latter host column.

In general, we know how to square up the other end of the mapping only in certain
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Fig. 5.1. Creating a corner: hg = 13, hh = 8, load 2.

special cases. We can, however, put an upper bound on how many extra host columns
we may have to use to make up for the uncovered nodes in the top right corner of the
mapping. We need to consider the skew of the mapping.

Definition 5.2. Let the mapping be defined for host columns 0 through i. The
skew of a mapping is the number of guest columns that are partially mapped and that
contain some element mapped to host column i.

Lemma 5.3. The skew of any partial mapping is ≤ hg − hh.

Proof. By definition of the mapping, rule 1 (i), there are hg − hh − 1 par-
tially mapped guest columns containing some element mapped to host column 0.
As the mapping progresses across host columns, the profile can be split by the wrap-
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Fig. 5.2. Creating a corner: hg = 13, hh = 8, load 3.

around at only one place, which can increase the skew by no more than one over the
minimum.

Let wc denote the smallest integer such that hgwg ≤ lhhwc; i.e., wc is the smallest
width of a host of height hh that can accommodate the given guest at the given load.
Let k denote hg − hh.

Theorem 5.4. If hg/2 < hh < hg, then the (hg, wg)-grid is embeddable in the
(hh, wh)-cylinder, where wh = (wc + �k/�l/2�) with dilation 1 and load l.

Proof. We can square up the left end of the mapping as just demonstrated. The
skew is an upper bound on the number of partially mapped columns at either end.
Hence, by Lemma 5.3, the skew of the mapping at the right end is not greater than
k. By Lemma 4.8, each host column covers at least �l/2 nodes from every row of the
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w

Ci

g

Fig. 5.3. A high load can yield an optimal embedding.

grid. Hence we need no more than �k/�l/2� extra host columns to make up for the
skew.

We can also note that, if the load is sufficiently high, guest column wg may be
completely mapped, without the addition of extra host columns beyond column wc.
Such a situation is illustrated in Figure 5.3, where host column Ci is necessary but
not completely used.

Theorem 5.5. If lhhwh − hgwg ≥ khh and hg/2 < hh < hg, then the (hg, wg)-
grid is embeddable in the (hh, wh)-cylinder with dilation 1 and load l.

Proof. The skew is the number of partially mapped columns. The leftmost of
these is of height ≤ hg − 1, and the next is of height ≤ h− 3, etc., for ≤ k columns.
Summing this series shows that the number of guest nodes in the partially filled
columns is ≤ k(hg − k) = khh. Hence we need to add no extra host columns as long
as lhhwc − hgwg ≥ khh.

6. Embedding into tori.

6.1. The problem. We now consider the “hardest” instances of the problem of
embedding an (hg, wg)-grid into an (hh, wh)-torus, namely, those where wg is maximal
with respect to preserving hgwg ≤ lhhwh. We will derive certain restrictions on the
load and on the guest and host dimensions under which optimal solutions can be
constructed.

To obtain these solutions, we match up the ends of a partial mapping. Consider
first those special cases in which wg is a multiple of the numerical periodicity (Defi-
nition 4.4 and Lemma 4.6). By definition, the host row numbers and profiles at the
left and right ends of the partial mapping match. Hence we can cut the mapping
vertically anywhere outside of the partially mapped columns, transpose the left and
right portions of the mapping, and so produce a total mapping for the guest grid.

For example, consider Figure 6.1. In the illustration, a continuation of the ex-
ample shown in Figure 4.1, hg = 13, hh = 8, and l = 2. Hence, by Lemma 4.6, the
numerical periodicity is pn = 104. So the figure is illustrating an embedding of the
(13,128)-grid into the (8,104)-cylinder with load 2.

Of course, except in these very special cases, neither the row numbers nor the
profiles at the ends of the mapping will match. We now show how to solve both of
these problems.

6.2. Toroidal profiles. For embeddings into tori, we must initiate the partial
mapping with a unique profile. We will refer to them here as toroidal profiles. In
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Fig. 6.1. Matching up the ends of a partial mapping.

[4, 5], where their existence and properties are demonstrated, they are called Eu-
clidean strings because they are generated by an extension to Euclid’s greatest com-
mon divisor algorithm. In this section, we show how to generate these special profiles
and state their properties without repeating the proofs.

Let p = p1p2 · · · pk denote a string of k nonnegative integers. Let ρ(p) denote a
left rotation of p by one position, i.e., ρ(p) = p2 · · · pkp1, and let ρ

d(p) denote a left
rotation through d positions. Let σi(p) be the string obtained from p by replacing pi
by pi + 1 and p(i+1)modk by p(i+1)modk − 1.

Definition 6.1. The string p is a toroidal (k,n)-profile if
∑k
i=1 pi = n, and

there exist integers d and i such that σi(p) = ρd(p).
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function profile (k, n : integer) : string;
if (k = 1) and (n = 1) then profile := 1
else if n > k then profile := expand(profile(k, n− k))
else profile := increment(profile(k − n, n));

Fig. 6.2. Computing a profile.

procedure parameters (k, n : integer);
if (k = 1) and (n = 1) then i := 0; j := 0; c := 0; d := 1
else if k < n then parameters (k, n − k); j := i + j; c := c + d else parameters (k − n, n); i :=
i+ j + 1; d := c+ d;

Fig. 6.3. Computing the profile parameters.

In [4, 5], the following lemma is established.

Lemma 6.2. A toroidal (k, n)-profile exists iff gcd(k, n) = 1, where gcd denotes
the greatest common divisor. If it exists, then it is unique.

Suppose 1r denotes a string of r ones, and suppose the function expand(p) replaces
every element r in p by the string 01r and the function increment(p) replaces every
number r in p by r + 1. Then Figure 6.2 describes, in pseudocode, a procedure that
computes a (k, n)-profile when k and n are relatively prime.

For the application of profiles to the computation of our embedding, we also need
to compute the following parameters. We note that, since the profile is unique, all of
these parameters are well defined.

1. i and d, as in the definition of profile,
2. j, the sum of elements p1 through pi,
3. c, the sum of the d elements to the left (cyclically) of and including pi.

Figure 6.3 shows a pseudocode procedure which computes these parameters, as-
suming that all the variables are global. Figure 6.4 shows the computation of a string
and its associated parameters for particular values of k and n.

We will refer to the parameters c and d as the cost and displacement of a profile,
respectively, and we let ck,n and dk,n denote the cost and the displacement, respec-
tively, of a toroidal (k, n)-profile.

Lemma 6.3. If n+ k ≥ 2, then dk,nn = ck,nk + 1.

Proof. We argue by induction on n+ k. For the basis, we note that, if n+ k = 2,
then (n = 1) and (k = 1), and hence the initialization defined by the algorithm
satisfies the lemma.

We note that n and k are not equal because gcd(n, k) = 1. For the induction,
suppose first that n > k. By the inductive hypothesis, dk,n−k(n − k) = ck,n−kk + 1.
Hence dk,n−kn = dk,n−k(n − k) + dk,n−kk = (ck,n−k + dk,n−k)k + 1. However, when
n > k, the algorithm sets dk,n−k = dk,n and ck,n−k + dk,n−k = ck,n. Hence dk,nn =
ck,nk + 1.

Suppose n < k. By the inductive hypothesis, dk−n,nn = ck−n,n(k − n) + 1.
Hence (dk−n,n + ck−n,n)n = ck−n,nk + 1. However, when n < k, the algorithm sets
dk−n,n + ck−n,n = dk,n and ck−n,n = ck,n. Hence dk,nn = ck,nk + 1.

So dk,n and −ck,n are in fact the constants computed by the standard extended
Euclidean algorithm. Lemma 6.3 yields the following corollary.

Corollary 6.4. ck,n is the multiplicative inverse of (n − k) modulo k, i.e.,
ck,n(n− k) ≡ 1 mod n.

Proof. By Lemma 6.3, dk,nn = ck,nk + 1, implying −ck,nk = −dk,nn+ 1. Hence
ck,n(n−k) = ck,nn−ck,nk = ck,nn−dk,nn+1 = (ck,n−dk,n)n+1. Hence ck,n(n−k) ≡
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Fig. 6.4. An example of computing a profile and its parameters.

1 mod n.

It is also shown in [4, 5] that all of the elements in a profile are of the form i or i+1
for some integer i. We will be using (hg − hh, hg)-profiles, and so, since hh > hg/2,
all of the profile elements will be ≥ 2.

6.3. Matching profiles. We are considering those problem instances in which
0 ≤ l|H| − |G| < hg, the case in which the difference is zero being trivial. So we
need a way of dropping between 1 and hg − 1 host nodes from the mapping while
simultaneously guaranteeing that the left profile of host column 0 is identical to the
right profile of the last column.

Consider the running example, where hg = 13 and hh = 8. The application of
the toroidal profile generator (see Figures 6.2 and 6.3) yields the profile 2 3 2-3 3,
where swapping the hyphenated pair yields a rotation of the original string. In our
application, the profile elements define the height of the steps in the left or right
profiles of the host columns.

Suppose our mapping is based on a toroidal profile, and suppose we remove el-
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Fig. 6.5. Dropping an element while preserving the profile.

ement (i + 1) from the mapping in the right profile of some host column, where i is
the profile parameter in Definition 6.1. Removing an element decreases the height of
the step containing that element and increases the height of the step above. However,
because the profile is toroidal, the resulting profile is a rotation of the original. Be-
cause the profile is preserved, except for a rotation, the operation can be repeated as
many times as necessary. This is illustrated in Figure 6.5.

We deduce that we can drop (l|H| − |G|) < hg elements and be assured that the
right profile of the rightmost host column is a rotation of the left profile of column 0.
It remains only to show that not only are these two profiles rotations of each other,
but they are identical. For the moment, let us assume that we apply the drop process
to distinct host columns.

Lemma 6.5. If the drop operation is applied to l|H| − |G| distinct host columns,
the right profile of the rightmost host column is identical to the left profile of host
column 0.

Proof. Every host column rotates the profile l rows in what we will call the
forward direction. Therefore, the profile shift s in the forward direction relative to its
initial position is given by

s = (l(wh mod ps)) mod hg,(6.1)

where ps denotes the structural periodicity. By Lemma 4.5, ps = hg/gcd(l, hg), and
so we derive from (6.1)

s = (lwh) mod hg.(6.2)

Let δ = lwhhh−wghg. Suppose we apply the drop process δ times. Each application
shifts the profile c rows backward, where c is the cost of the profile. So the repeated
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application shifts the profile s′ = δc mod hg rows. However,

δc mod hg = c(lwhhh − wghg) mod hg,(6.3)

and so

s′ = lwh mod hg = s(6.4)

because chh mod hg = 1 by Corollary 6.4.
Hence the profile shift caused by the excess host columns is exactly compensated

for by the repeated application of the drop process. Finally, we note that all of
the drop operations can be applied to one host column, without removing all of the
elements from that column from any one row.

Lemma 6.6. If (l|H| − |G|) < hg drop operations are applied to one host column
and the load l ≥ 4, the resulting width of the column is at least one.

Proof. By Corollary 6.4, chh mod hg = 1. It follows that c and hg are relatively
prime. Hence, since δ = (l|H| − |G|) < hg, if up to δ elements are dropped, they are
all taken from different rows, so the width of the column is decreased by no more than
one. By Lemma 4.8, the width of a column in the partial mapping is at least �l/2;
hence, if l ≥ 4, the resulting width is at least �l/2 − 1 = 1.

6.4. Matching row numbers. We describe a perturbation of the partial map-
ping which has the effect of incrementing all the host row numbers by one or two in
all the columns following the perturbation. The perturbation can be applied to any
instance of the problem for which the load is at least 4.

Let us suppose we are perturbing host column i. Ci is composed of C
0
i through

Cl−1
i . The perturbation simply adds one or two to all the host row values in C2

i and
to those in C3

i . If l > 4, then the mapping follows in the usual way after C
3
i . It is

clear that the perturbation is still yielding dilation 1. In fact, at the junction where
the perturbation occurs, adjacent guest nodes are mapped to the same host node; i.e.,
for those edges the dilation is zero. It is also clear that, since only the values in the
mapping are changed, the profiles are not changed.

Figures 6.6 and 6.7 illustrate the process with a load 4 example, following from
our running example. In these figures, the shading distinguishes C0

i and C1
i from C2

i

and C3
i .

Suppose we need to increment the row numbers by more than one. The process
just described can be repeated on C4

i and C5
i , etc., within a host column. Each

column, therefore, can be used to obtain an increment of up to 2�(l − 2)/2. We
observe that the row values never need to be incremented by more than hh − 1 and
that we can adjust by incrementing either by one or two. We have then justified the
following lemma.

Lemma 6.7. If �(hh − 1)/2� ≤ wh�(l − 2)/2 and the right profile of the last
column in the mapping is identical to the left profile of column 0, then we can adjust
row values so that they are equal in these two profiles.

6.5. The solution. The computation of the total mapping can then proceed as
follows.

1. Compute a toroidal (hg−hh, hg)-profile together with the associated param-
eters using Figures 6.2 and 6.3.

2. Use this profile to initiate the computation of a partial mapping using Defi-
nition 4.1.
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3. Compute δ, the difference between available host nodes and the number of
guest nodes, and apply the drop process δ times to (say) the right profile of the
rightmost host column.

4. Compute the row number incrementation required, and apply the incremen-
tation perturbation.

5. Cut the modified partial mapping vertically at any point outside of the par-
tially mapped columns, and transpose the left and right portions produced by the
cut.

The conditions under which this process is effective are summarized in the fol-
lowing theorem.

Theorem 6.8. If
1. hg/2 < hh < hg,
2. hg and (hg − hh) are relatively prime,
3. the optimal load is at least 4, and
4. wh(�(l − 2)/2) ≥ �(hh − 1)/2�+ 1,

then the (hg, wg)-grid can be embedded in the (hh, wh)-torus with optimal load and
dilation 1.

Proof. The first item is a necessary condition for the construction of the partial
mapping. The second is sufficient for a suitable profile to exist for the initiation of
the mapping. The restriction on the load is sufficient for the increment operation and
allows the drop operation to be repeated on one column.

The last item ensures that there is sufficient width within which to carry out both
the row incrementation and the drop operations. Each host column i is composed of
�(l − 2)/2 pairs Cki , Ck+1

i , where k ≥ 2. We may not assume that we can apply the
increment operation on a pair that has already been the subject of the drop operation.
As many as �(hh − 1)/2 increment operations may be necessary. Consequently, we
have sufficient host width if wh(�(l − 2)/2) ≥ �(hh − 1)/2+ 1.

7. Embedding into hypercubes. The previous section has shown that we can
construct optimal embeddings into the torus under some restrictions on the load and
dimensions of the guest and host. Because we can always find a torus of suitable
height within a hypercube host, we obtain a much simpler result.

Consider the restrictions listed in Theorem 6.8 when applied to the embedding of
the (hg, wg)-grid into the hypercube Qd of dimension d.

1. By Lemma 3.2, there is a toroidal subgraph of the hypercube with height hh
in the range hg/2 to hg, namely, hh = 2

�log2 hg�, which is the next power of 2 less
than hg. Then also wh is a power of two, namely, 2

d−�log2 hg�.
2. If hg is an odd number, then hg and hh are relatively prime since hh is now

a power of two.
3. We retain the condition on the optimal load, namely, l = �hgwg/2d� ≥ 4.
4. The last restriction cannot be dispensed with, but see the corollaries below.

It can be simplified slightly by noting that hh is a power of 2, yielding

wh(�(l − 2)/2) ≥ hh/2 + 1,

where hh and wh are now as defined in the first item.
Let hh and wh be the dimensions of the host torus as defined above as functions

of the guest grid and host hypercube dimensions hg, hh, and d. Then the following
theorems follow from Theorem 6.8.

Theorem 7.1. If
1. hg is odd,
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2. the optimal load l ≥ 4, and
3. wh(�(l − 2)/2) ≥ hh/2 + 1,

then the (hg, wg)-grid can be embedded into Qd with optimal load and dilation 1.
We cannot guarantee that all instances of the problem present sufficient width to

permit the necessary incrementation and drop operations. For example, the problem
instance

hg = 11, wg = 14, hh = 8, wh = 4, l = 5

does not satisfy the third constraint of Theorem 7.1. Some slightly stronger but
simpler forms of that constraint show more clearly that it is excluding only a small
portion of problem instances.

Corollary 7.2. If hg is odd and the optimal load l ≥ 4 and wh ≥ hh, then the
(hg, wg)-grid can be embedded into Qd with optimal load and dilation 1.

Proof. If wh ≥ hh, then the third constraint of Theorem 7.1 is satisfied.
Corollary 7.3. If hg is odd and either ((l = 4 or l ≥ 6) and wg ≥ 2hg) or

(l = 5 and wg ≥ 5hg/2), then the (hg, wg)-grid can be embedded into Qd with optimal
load and dilation 1.

Proof. Since, by definition of the problem, lhhwh ≥ hgwg and wg ≥ hg > hh, if
wg ≥ 2hg, we deduce that lwh > 2hh ≥ 2hh + 1 . However, �l/2 − 1 ≥ l/4 for l = 4
and l ≥ 6, thus satisfying the third constraint. For load 5, the same algebra shows
that wg ≥ 5hg/2 suffices.

The theorem implies that, if we group the problem instances by hg, there are no
more than a finite number of instances of the problem in each group that may not
be solved by our method. Finally, we note that instances where hg is even either are
trivial if hg is a power of two or can be reduced to instances where hg is odd.

Theorem 7.4. If hg is of the form a2k for some odd integer a and positive integer
k and either k ≤ d and there is an optimal embedding from the (a,wg)-grid into the
hypercube of degree d− k or k > d, then the (hg, wg)-grid can be embedded into the
hypercube of degree d with optimal load and dilation 1.

Proof. If k ≤ d, we note that it must be that 2k|(l2d − a2kwg). Hence we can
solve the subproblem of embedding the (a,wg)-grid into Qd−k with load l and then
construct a solution to the original problem by simple duplication of the host.

If k > d, then |Qd| < hg and |Qd| | hg. Hence an embedding can be constructed
by simple duplication of the host.

Theorem 7.5. If hg is a power of two, then an optimal embedding always exists
into any hypercube.

Proof. If hg = 2
k and d ≤ k, then the host is not bigger than one column of the

guest. Hence a simple duplication technique can cover the guest with copies of the
host.

If hg = 2
k and d > k, then we consider the (2k, 2d−k)-grid, which is a subgraph

of the host. A simple duplication technique can then cover the guest with copies of
the host.

Theorems 7.1, 7.4, and 7.5 cover all possibilities for the form of hg and constitute
the main result of this paper. Corollaries 7.2 and 7.3 slightly simplify the third
condition.

8. Conclusions. We have described a novel grid to hypercube embedding con-
struction which is simple and optimal with respect to load and dilation for all except
perhaps finitely many instances for each grid height, when the load is at least four.
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The method also yields optimal embeddings into the torus, under constraints on
the relative heights of the torus and grid. For embeddings into the cylinder, the same
constraints are necessary, and we may have to extend the cylinder somewhat beyond
the minimum necessary to accommodate the grid.

Open problems include the removal of the restrictions on load 4 and above hyper-
cube embeddings and the question as to whether optimal load dilation 1 hypercube
embeddings exist for loads 2 and 3. It may also be possible to push the results we
have obtained here further for cylindrical and toroidal hosts.

Acknowledgment. We are indebted to the referees for thorough readings and
for their many valuable suggestions and corrections.
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Abstract. Given a planar graph G and a sequence C1, . . . , Cq , where each Ci is a family of vertex
subsets of G, we wish to find a plane embedding of G, if any exists, such that, for each i ∈ {1, . . . , q},
there is a face Fi in the embedding whose boundary contains at least one vertex from each set in Ci.
This problem has applications in the recovery of topological information from geographical data and
the design of constrained layouts in VLSI. Let I be the input size, i.e., the total number of vertices
and edges in G and the families Ci, counting multiplicity. We show that this problem is NP-complete
in general. We also show that it is solvable in O(I log I) time for the special case in which, for each
input family Ci, each set in Ci induces a connected subgraph of the input graph G. Note that the
classical problem of simply finding a planar embedding is a further special case of this case with
q = 0. Therefore, the processing of the additional constraints C1, . . . , Cq incurs only a logarithmic
factor of overhead.
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1. Introduction. It is a fundamental problem in mathematics (see, e.g., [13, 17,
18, 19, 20, 29]) to embed a graph into a given surface while optimizing certain objec-
tives required by applications. (Throughout this paper, a graph may have multiple
edges and self-loops, but a simple graph has neither.) A graph is planar if it can be
embedded on the plane so that any pair of edges intersect only at their endpoints; a
plane graph is a planar graph together with such an embedding. A classical variant
of the problem is to test whether a given graph is planar and, in case it is, to find a
planar embedding. This planarity problem can be solved in linear time sequentially
[4, 5, 19] and efficiently in parallel [26].

In this paper, we initiate the study of the following new planarity problem. Let
G be a planar graph. Let M be a sequence C1, . . . , Cq, where each Ci is a family of
vertex subsets of G. A plane embedding Φ of G satisfies Ci if the boundary of some
face in Φ contains at least one vertex from each set in Ci. Φ satisfiesM if it satisfies
all Ci. G satisfiesM if G has an embedding that satisfies M.

Problem 1 (the common-face embedding (CFE) problem).
• Input: A planar graph G and a sequence M of families of vertex subsets of G.
• Question: Does G satisfy M?

Let I be the input size, i.e., the total number of vertices and edges in G and
the families Ci, counting multiplicity. We first show that the CFE problem is NP-
complete in general. Then, for the special case in which each vertex subset in each Ci
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induces a connected subgraph of G, we give an O(I log I)-time algorithm which finds
a plane embedding satisfying M, if any exists. Note that the classical problem of
simply finding a planar embedding is a further special case of this special case with
q = 0. Therefore, the processing of the additional constraints C1, . . . , Cq incurs only
a logarithmic factor of overhead.

The CFE problem arises naturally from topological inference [6]. For instance,
in the conference version of this paper [7], a less general and less efficient variant of
our algorithm for the special case was employed to design fast algorithms for recon-
structing maps from scrambled partial data in geometric information systems [7]. In
this application [8, 9, 10, 15, 23, 24], each vertex subset in M describes a recognizable
geographical feature, and each face in a planar embedding represents a geographical
region. Each family in M is a set of features that are known to be near each other,
i.e., surrounding the same region (on the boundary of the same face). Similarly, our
algorithm for the special case can compute a constrained layout of VLSI modules [14],
where each vertex subset consists of the ports of a module, and each subset family
specifies a set of modules that are required to be close to each other [7].

To the best of our knowledge, the conference version of this paper is the first to
investigate the CFE problem [7]. A related problem has been studied in the context
of speeding up the computation of Steiner trees and minimum-concave-cost network
flows [11, 25, 3]. Given a planar graph G = (V,E) and a set of special vertices S ⊆ V ,
the pair (G,S) is called k-planar if all the vertices in S are on the boundaries of at
most k faces of a planar embedding of G. Bienstock and Monma [3] showed that
testing k-planarity is NP-complete if k is part of the input but takes linear time for
any fixed k.

The remainder of this paper is organized as follows. Section 2 proves the NP-
completeness result and formally states the main theorem on the CFE algorithm
(Theorem 2.2). Sections 3 through 6 prove the main theorem by detailing the algo-
rithm for the key cases in which G is (1) triconnected, (2) disconnected, (3) connected,
or (4) biconnected, respectively. The triconnected case is the base case in that the
other cases are eventually reduced to it. For this reason, this case is analyzed be-
fore the other cases. Section 7 concludes this paper with some directions for further
research.

2. Basics and the main results.

2.1. Basic definitions. Let G be a graph. |G| denotes the size of G, i.e., the
total number of vertices and edges in G. V(G) denotes the vertex set of G. If G is a
plane graph, then F(G) denotes the set of faces of G.

A set U is G-local if U ⊆ V(G). A family C of sets is G-local if every set in C is
G-local.

For a subset U of V(G), the subgraph of G induced by U is the graph (U,EU ),
where EU consists of all edges e of G whose endpoints both belong to U ; G − U
denotes the subgraph of G induced by V(G)− U .

A cut vertex of G is one whose removal increases the number of connected com-
ponents in G; a block of G is a maximal subgraph of G with no cut vertex. Let
Ψ(G) denote the forest whose vertices are the cut vertices and the blocks of G and
whose edges are those {v,B} such that v is a cut vertex of G, B is a block of G, and
v ∈ V(B). Note that Ψ(G) is a tree if G is connected. A block vertex of Ψ(G) is a
vertex of Ψ(G) that is a block of G.

Let w be a cut vertex of G. Let W1, . . . ,Wk be the vertex sets of the con-
nected components of G− {w}. Let Gi be the subgraph of G induced by {w} ∪ Wi.
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G1, . . . , Gk are called the augmented components of G induced by w.

G is biconnected if it is connected and has at least two vertices but no cut vertex.
G is triconnected if it is biconnected and has at least three vertices and the removal
of any two vertices does not disconnect it.

The size of a set S, denoted by |S|, is the number of elements in S. The size of
a family C of sets, denoted by |C|, is

∑
S |S|, where S ranges over all sets in C. The

size of a sequence M of families of sets, denoted by |M|, is
∑
C |C|, where C ranges

over all families in M.

2.2. An NP-completeness result.

Theorem 2.1. The CFE problem is NP-complete.

Proof. We reduce the SATISFIABILITY problem [14] to the CFE problem. Let φ
be a CNF formula over variables x1, . . . , xn with n ≥ 2. Let C1, . . . , Cm be the clauses
of φ, each regarded as the set of literals in it. We construct a simple biconnected planar
graph G = (V1 ∪ V2, E) as follows. V1 = {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} ∪ {c1, . . . , cm}.
V2 = {u0, . . . , un}. For each xi, G contains edges {ui−1, xi}, {xi, ui}, {ui−1, x̄i},
{x̄i, ui}. The only other edges of G are {u0, c1}, {c1, c2}, {c2, c3}, . . . , {cm−1, cm},
{cm, un}, {un, u0}. Let M be the sequence {{c1}, C1}, . . . , {{cm}, Cm}. Observe
that, in every plane embedding Φ of G, the cycle c1, . . . , cm, un, u0 forms the boundary
of some face F . Moreover, for each i = 1, . . . , n, exactly one of xi and x̄i is on the
boundary of the face other than F whose boundary contains the path c1, . . . , cm.
Also, for every set S ⊆ {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} with |S ∩ {xi, x̄i}| = 1 for all
i = 1, . . . , n, G has a plane embedding where the boundary of some face contains
the path c1, . . . , cm and the vertices in S. Therefore, φ is satisfiable if and only if G
satisfies M.

2.3. The main theorem. Although the input to the CFE problem is a planar
graph G, it is easy to see that G satisfies a given sequence M if and only if its
underlying simple graph (i.e., the simple graph obtained from G by deleting multiple
edges and self-loops) satisfies the same M. Thus, throughout the rest of this paper,
unless explicitly stated otherwise, G and M always denote the input simple graph
and the input sequence to our algorithm for the CFE problem, respectively. Also, I
always denotes |G|+ |M|, i.e., the size of the input to our algorithm.

The next theorem is the main theorem of this paper. In light of this theorem,
the remainder of the paper assumes that every vertex subset of G in M induces a
connected subgraph of G.

Theorem 2.2. If every vertex subset in M induces a connected subgraph of G,
then the CFE problem can be solved in O(I log I) time.

Proof. We consider three special cases:

• Case M1. G is connected.
• Case M2. G is biconnected.
• Case M3. G is triconnected.

In section 3, Theorem 3.8 solves Case M3 of the CFE problem faster than the desired
time bound. In section 4, Theorem 4.3 reduces this theorem to Case M1. In section 5,
Theorem 5.3 reduces Case M1 to Case M2. In section 6, Theorem 6.1 uses Theorem 3.8
to solve Case M2 of the CFE problem within the desired running time. This theorem
follows from Theorems 4.3, 5.3, and 6.1.

As mentioned in section 1, Case M3 is the base case, meaning that the other cases
are eventually reduced to it. So the next section describes an algorithm for this case.
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3. Solving Case M3, where G is triconnected. Throughout this section, we
assume that G is triconnected. Then G has a unique combinatorial embedding up to
the choice of the exterior face [21, 30]. Thus the CFE problem reduces in linear time
to that of finding all the faces in the embedding whose boundaries intersect every set
in some Ci. The naive algorithm takes Θ(|G||M|) time. We solve the latter problem
more efficiently by recursively solving Problem 2 defined below.

Throughout this section, for technical convenience, the vertices of a plane graph
are indexed by distinct positive integers. The faces are indexed by positive integers
or −1. The faces indexed by positive integers have distinct indices and are called the
positive faces. Those indexed by −1 are the negative faces.

Let H be a plane graph. A vf-set of H is a set of vertices and positive faces in
H. A vf-family of H is a family of vf-sets of H. A vf-sequence of H is a sequence
of vf-families of H. For a vf-family D = {S1, . . . , Sd} of H, we define Λf(H,D) and
ACF(H,D) as follows:

1. Λv(H,D) = ∩di=1Si ∩ V(H).
2. Λf(H,D) is the set of positive faces F of H such that, for each Si ∈ D, F is

a face in Si or its boundary intersects Si − Λv(H,D).
3. ACF(H,D) = Λv(H,D) ∪ Λf(H,D).
Problem 2 (the all-common-face (ACF) problem).
• Input: A plane graph H and a vf-sequence N of H.
• Output: ACF(H,D1), . . . ,ACF(H,Dq), where D1, . . . ,Dq are the vf-families

in N .
Throughout the rest of this section, H and N always denote the input graph and

the input sequence to our algorithm for the ACF problem, respectively.
To solve the ACF problem recursively, H need not be simple or triconnected.

Furthermore, those faces that are indexed by −1 are ruled out as final output dur-
ing recursions. To solve the problem efficiently, each vertex in Λv(H,Di) is meant
as a succinct representation of all the faces whose boundaries contain that vertex.
Similarly, the positive faces in the input Di and the output are represented by their
indices.

The next observation relates the CFE problem and the ACF problem.
Observation 3.1. Let the faces of G be indexed by positive integers. Then the

output to the CFE problem is “yes” if and only if, for all Ci, ACF(G, Ci) �= ∅.
Section 3.1 proves a counting lemma useful for analyzing the time complexity of

our algorithms for the ACF problem. Section 3.2 provides a technique for simplifying
H during recursions. Section 3.3 uses this technique to recursively solve the ACF
problem without increasing the total size of the subproblems.

3.1. A counting lemma.
Lemma 3.2.
1. Let v1 and v2 be distinct vertices in G. Let F1 and F2 be distinct faces in G.
Then both v1 and v2 are on the boundaries of both F1 and F2 if and only if
v1 and v2 form a boundary edge of both F1 and F2.

2. Given a set U of vertices in G, there are O(|U |) faces in G whose boundaries
each contain at least two vertices in U .

3. Given a set P of faces in G, there are O(|P|) vertices in G which are each on
the boundaries of at least two faces in P.

Proof. We prove the statements separately as follows.
Statement 1. This statement immediately follows from the condition that G is

triconnected with no multiple edges.
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Fig. 3.1. This is an example of a graph H, a vf-set S, and PS , where a number in a circle is
the index of the corresponding face.

Statement 2. Since G has no multiple edges, G contains O(|U |) edges between
distinct vertices in U . Then this statement follows from statement 1 and the fact that
an edge in a simple plane graph can be a boundary edge of at most two faces.

Statement 3. If G has at most three vertices, the statement holds trivially. Oth-
erwise, the statement follows from statement 2 and the fact that the dual of G is also
a simple triconnected plane graph [22].

Corollary 3.3. If H is simple and triconnected, then the output of the ACF
problem has size O(|N |).

Proof. This corollary follows from Lemma 3.2(2).

3.2. Simplifying H over a vf-set. To solve the ACF problem efficiently, we
simplify the input graph H by removing unnecessary edges and vertices as follows.

For a vf-set S of H, the plane graph H♦S of H constructed as follows is said to
simplify H over S. An example is illustrated in Figures 3.1, 3.2, and 3.3.

Let PS be the set of the positive faces in H whose boundaries each contain at
least two distinct vertices in S ∩V(H). Let HS be the plane subgraph of H (1) whose
vertices are those in S∩V(H) and the boundary vertices of the faces in (S∩F(H))∪PS
and (2) whose edges are the boundary edges of the faces in (S ∩ F(H)) ∪ PS . Note
that HS inherits a plane embedding from H.

Let U3 be the set of vertices which are of degree at least 3 in HS ; note that each
vertex in U3 appears on the boundaries of at least two faces in (S ∩ F(H)) ∪ PS . A
compressible path P in HS is a maximal path, which may be a cycle, such that (1)
every internal vertex of P appears only once in it, and (2) no internal vertex of P
is in S ∪ U3. Note that, by the choice of U3, every internal vertex of a compressible
path is of degree 2 in HS . We use this property to further simplify HS . Let H♦S
be the plane graph obtained from HS by replacing each compressible path with an
edge between its endpoints. This edge is embedded by the same curve in the plane
as the path is. For technical consistency, if a compressible path forms a cycle and its
endpoint is not in S∪U3, then we replace it with a self-loop for the vertex of the cycle
with the smallest index.

Each vertex in H♦S is given the same index as in H. Note that the closure of
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Fig. 3.3. This is the graph H♦S for the example of H and S in Figure 3.1.

the interior of each face of H♦S is the union of those of several faces or just one in H.
Let F be a face in H♦S, and let F ′ be one in H. Let σ (respectively, σ′) denote the
closure of the interior of F (respectively, F ′). If σ = σ′, then F and F ′ are regarded as
the same face, and F is assigned the same index in H♦S as F ′ is in H. For technical
conciseness, these two faces are identified with each other. If σ is the union of the
closures of the interiors of two or more faces in H, F is not the same as any face in
H and is indexed by −1. This completes the definition of H♦S.

Lemma 3.4.

1. Given H and S, we can compute H♦S in O(|H|+ |S|) time.
2. Let S′ be a vf-set of H♦S. If S′ ⊆ S, then H♦S′ = (H♦S)♦S′.
3. If H simplifies G over a vf-set S∗ with S ⊆ S∗, then |H♦S| = O(|S|).
Proof. Statements 1 and 2 are straightforward. To prove statement 3, it suffices

to prove |G♦S| = O(|S|) since by statement 2, H♦S = G♦S.
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To bound the number of vertices in G♦S, let PS and U3 be as specified in the
definition of G♦S. Let U1 be the set of vertices v in G♦S such that v appears on
the boundary of exactly one face in (S ∩ F(G)) ∪ PS . Then (S ∩ V(G)) ∪ U3 ∪ U1

consists of all the vertices in G♦S. Note that |U1| ≤ |(S ∩ F(G)) ∪ PS |. Also, by
Lemma 3.2(3), |U3| = O(|(S ∩ F(G)) ∪ PS |). Consequently, since by Lemma 3.2(2)
|PS | = O(|(S ∩ V(G))|), |(S ∩ V(G)) ∪ U3 ∪ U1| = O(|S|) as desired.

To bound the number of edges in G♦S, we first examine the multiple edges. Let u
and v be adjacent vertices in G♦S. LetXu,v be the set of faces in (S∩F(G))∪PS whose
boundaries contain both u and v. Then |Xu,v| ≥ 1. By Lemma 3.2(1), |Xu,v| ≤ 2.
If Xu,v = {F}, then the two boundary paths of F between u and v may degenerate
into at most two multiple edges between u and v in G♦S. If Xu,v = {F1, F2}, then
by the triconnectivity of G, F1 and F2 share exactly one common boundary edge e,
which is also an edge in G♦S. Let Ci be the boundary of Fi without e. C1 and C2

may degenerate into at most two multiple edges between u and v in G♦S. In sum-
mary, there are at most three multiple edges between two vertices in G♦S. Similarly,
only the boundary of a face in S ∩ F(G) can degenerate into a self-loop in G♦S; so
G♦S has only O(|S|) self-loops. By Euler’s formula, G♦S has O(|S|) edges as
desired.

3.3. Algorithms for the ACF problem. Throughout this subsection, let
D1, . . . ,Dq be the vf-families in N . To solve the ACF problem recursively, we use
simplification to reduce the number of Di and the number of sets in each Di.

For brevity, we define several notations. For a vf-family D of H, let H♦D =
H♦(∪S∈DS). For a vf-sequence N ′: D′1, . . . ,D′p of H, let H♦N ′ = H♦(D′1∪· · ·∪D′p).
For a vf-set S∗ of H and a vf-family D of H, we say D ≤ S∗ if S ⊆ S∗ for all S ∈ D.
For a vf-set S∗ of H, we say N ≤ S∗ if Di ≤ S∗ for all Di, 1 ≤ i ≤ q.

Lemmas 3.5 and 3.6 below reduce to 1 the number of Di inN in the ACF problem.
Lemma 3.5. Assume q ≥ 2. Let N = D1, . . . ,D�q/2	 and Nr = D�q/2	+1, . . . ,Dq.

Let H = H♦N and Hr = H♦Nr.
1. Given H and N , we can compute H and Hr in O(|H|+ |N |) total time.
2. For 1 ≤ i ≤ �q/2�, H♦Di = H♦Di. Similarly, for �q/2� + 1 ≤ i ≤ q,

H♦Di = Hr♦Di.
3. If H simplifies G over a vf-set S∗ with N ≤ S∗, then |H| = O(|N|) and

|Hr| = O(|Nr|).
Proof. The three statements follow from those of Lemma 3.4, respectively.
Lemma 3.6. Assume q ≥ 1. Let Hi = H♦Di.
1. ACF(H,Di) = ACF(Hi,Di).
2. If H simplifies G over a vf-set S∗ with N ≤ S∗, then |Hi| = O(|Di|).
3. If H simplifies G over a vf-set S∗ with N ≤ S∗, then, given H and N , we
can compute all Hi in O(|H|+ |N | log(q + 1)) total time.

Proof. We prove the statements separately as follows.
Statement 1. The proof is straightforward. Note that a positive face in Hi is also

a positive face in H and that a negative face in Hi combines one or more faces not in
ACF(H,Di).

Statement 2. The proof follows from Lemma 3.4(3).
Statement 3. The graphs Hi can be computed by applying Lemma 3.5 recursively

with O(log(q+1)) iterations. By Lemma 3.5(1), the first iteration takes O(|H|+ |N |)
time. By Lemmas 3.5(3) and 3.5(1), each subsequent iteration takes O(|N |) time. By
Lemma 3.4(2), the constant coefficient in the O(|N |) term does not accumulate over
recursions.
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Lemma 3.7 below solves the ACF problem with only one Di in N .
Lemma 3.7. Let D = {S1, . . . , Sd} be a vf-family of H where d ≥ 1. Let D′ =

{S1, . . . , S�d/2	} and D′r = {S�d/2	+1, . . . , Sd}. Let H = H♦D′ and Hr = H♦D′r.
Let D′′ = {ACF(H,D′),ACF(Hr,D′r)}.

1. ACF(H,D) = ACF(H,D′′).
2. If H simplifies G over a vf-set S∗ with D ≤ S∗, then, given H and D,

ACF(H,D) can be computed in O(|H|+ |D| log(d+ 1)) time.
Proof. The statements are proved separately as follows.
Statement 1. Note that ACF(H,D) = ACF(H, {ACF(H,D′),ACF(H,D′r)}) by a

straightforward case analysis. Then, as in Lemma 3.6(1), ACF(H,D′) = ACF(H,D′)
and ACF(H,D′r) = ACF(Hr,D′r).

Statement 2. We compute ACF(H,D) recursively using statement 1. If d = 1,
then ACF(H,D) = S1. If d = 2, then ACF(H,D) can be computed in O(|H|) time in
a straightforward manner. For d > 2, there are three stages:

1. Compute H and Hr in O(|H|+ |D|) time in a straightforward manner.
2. Recursively compute ACF(H,D′) and ACF(Hr,D′r).
3. Compute ACF(H,D′′) in O(|H|) time in a straightforward manner, which is

ACF(H,D) by statement 1.
This recursive computation has log d + O(1) iterations. The recursion at the top
level takes O(|H| + |D|) time. Every subsequent level takes O(|D|) time since by
Lemma 3.4(3) O(|H|) = O(|D′|) and O(|Hr|) = O(|D′r|). Note that by Lemma 3.4(2),
the constant coefficient in the O(|D|) term does not accumulate over recursions.

The next theorem is the main result of this section.
Theorem 3.8.
1. Let d be the maximum number of vf-sets in any Di in N . If H simplifies

G over a vf-set S∗ with N ≤ S∗, then the ACF problem can be solved in
O(|H|+ |N | log(d+ q)) time.

2. Let d be the maximum number of vertex sets in any Ci inM. Case M3 of the
CFE problem can be solved in O(|G|+ |M| log(d+ q)) time.

Proof. Statement 1 follows from Lemmas 3.6 and 3.7. Statement 2 follows from
Observation 3.1, statement 1, and the fact that G has a unique combinatorial embed-
ding computable in linear time [21, 30].

In section 6.4, the algorithm for Case M2 of the CFE problem calls Theorem
3.8(2) to solve subproblems in which some S ∈ Ci may consist of a single edge {u, v}.
For such subproblems, we replace S by {u} and {v} and then apply Theorem 3.8(2).

4. Reducing Theorem 2.2 to Case M1, where G is connected. Let
G1, . . . ,Gk be the connected components of G. Let C1, . . . , Cq be the families in M.
A family Ch in M is global if, for every i ∈ {1, . . . , k}, Ch is not Gi-local. Let H be
an edge-labeled graph defined as follows. The vertices of H are 1, . . . , k. For each
global Ch, H contains a cycle C possibly of length 2, where (1) the vertices of C are
those i ∈ {1, . . . , k} such that some set in Ch is Gi-local and (2) the edges of C are all
labeled h. See Figures 4.1(1) through 4.1(3) for examples of G, M, and H.

Observation 4.1. Let H1, . . . , H be the connected components of H. For each
Hj, let G′j be the subgraph of G formed by all Gi with i ∈ V(Hj). Let M′

j be the
sequence of all G′j-local families in M. Then G satisfies M if and only if every G′j
satisfies M′

j.
By Observation 4.1, we may assume that H is connected. Let B1, . . . , Bp be the

blocks of H. Then, for each global Ch, exactly one Bj contains all the edges labeled
h. For every Bj , let Uj = ∪hCh, where h ranges over all labels on the edges of Bj . For
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Fig. 4.1. (1) This is a simple disconnected graph G with six connected components G1 through
G6, where V(G1) = {1, . . . , 8}, V(G2) = {9, . . . , 13}, V(G3) = {21, 22}, V(G4) = {16, . . . , 20},
V(G5) = {23, . . . , 25}, and V(G6) = {14, 15}. (2) This is a sequenceM of families of vertex subsets
of G, where C6 and C7 are G1-local but the rest of the families are global. (3) This is the graph H
constructed from G and M. (4) These are the sequences constructed for G1 through G6.

each Gi, let Mi be the sequence consisting of the Gi-local families in M as well as the
families Uj,i = {U ∈ Uj | U is Gi-local} for all Bj with i ∈ V(Bj). See Figure 4.1(4) for
an example of M1, . . . ,M6 constructed from G, M, and H in Figures 4.1(1) through
4.1(3).

Lemma 4.2. G satisfies M if and only if every Gi satisfies Mi.
Proof. The two directions are proved as follows.
(=⇒) Let Φ be an embedding of G satisfying M. Let Φi be the restriction of Φ

to Gi. For each Gi, our goal is to prove that Φi satisfies Mi. First, Φi satisfies each
Gi-local family in M. Let Bj be a block of H with i ∈ Bj . We next prove that Φi
satisfies Uj,i. Let i, i1, . . . , i be the vertices of Bj . We claim that G has no cycle C
such that at least one but not all of Gi, Gi1 , . . . ,Gi� are inside C in Φ. To prove by
contradiction, assume that such a C exists. Then some Gx with 1 ≤ x ≤ k contains C.
However, by the construction of H, no connected component of H − {x} contains all
of i, i1, . . . , i, contradicting the fact that Bj is a block of H. Thus the claim holds.
Therefore, the boundary of some face F in Φ intersects each of Gi,Gi1 , . . . ,Gi� . Since
F must be unique, the boundary of F intersects every set in Ch for every Ch in M
such that the sets in Ch fall into two or more of Gi, Gi1 , . . . , Gi� . Hence the boundary
of F intersects every set in Uj . Consequently, Φi satisfies Uj,i.

(⇐=) Let Φi be an embedding of Gi satisfying Mi. We construct an embedding
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of G satisfying M as follows. First, consider a block Bj of H. Let i1, . . . , i be the
vertices of Bj . Let G′j be the subgraph of G formed by Gi1 , . . . , Gi� . Let M′

j be
the sequence consisting of Uj and the Gix-local families in M for x = 1, . . . , ". We
can assume that the boundary of the exterior face of Φix intersects every set in Uj,ix .
By identifying the exterior faces of Φi1 , . . . , Φi� , we can combine the embeddings
into an embedding Φ′j of G′j satisfying M′

j . Next, we utilize T = Ψ(H) to combine
Φ′1, . . . ,Φ

′
p into a single embedding of G. First, root T at a block of H. For a leaf

Bj1 in T , let Gi and Bj2 be the parent and grandparent of Bj1 in T , respectively.
Let Li,1 (respectively, Li,2) be the restriction of Φ′j1 (respectively, Φ′j2) to Gi. Note
that Φi, Li,1, and Li,2 are topologically equivalent up to the choice of their exterior
face. Thus Φ′j1 (respectively, Φ′j2) can be obtained as follows: For every vertex i′ �= i
of Bj1 (respectively, Bj2), put a suitable embedding Li′ of Gi′ that is topologically
equivalent to Φi′ into a suitable face Fi′ of Φi. This gives an embedding of those
Gx ∈ {G1, . . . ,Gk} with x ∈ V(Bj1) ∪ V(Bj2). We replace Φ′j2 with this embedding,
replace Bj2 with the union of Bj1 and Bj2 , and delete Bj1 from T . Afterward, if Gi
becomes a leaf of T , then we further delete it from T . We repeat this process until T
is a single vertex, at which time we obtain an embedding of G satisfying M.

Theorem 4.3. Theorem 2.2 holds if it holds for Case M1.
Proof. The proof follows from Lemma 4.2 and the fact that H and the sequences

Mi above can be constructed from G and M in O(I) time.

5. Reducing Case M1 to Case M2, where G is biconnected. This section
assumes Case M1, where G is connected. We also assume that G has at least two
vertices; otherwise, the problem is trivial.

Section 5.1 shows how to eliminate one cut vertex from G; iterating this elim-
ination until G has no cut vertex gives us a reduction from Case M1 to Case M2.
However, this reduction is not efficient. Section 5.2 describes a more efficient reduc-
tion based on a direct elimination of all cut vertices from G. Throughout the rest of
this section, let C1, . . . , Cq be the families in M.

5.1. Eliminating one cut vertex. Let w be a cut vertex of G. Let G1, . . . ,Gk
be the augmented components of G induced by w. For each Ch in M, let
Uh,1, . . . ,Uh,th be the sets in Ch containing w; possibly th = 0. Ch is w-global if,
for all i ∈ {1, . . . , k}, Ch − {Uh,1, . . . , Uh,th} is not Gi-local; otherwise, Ch is w-local.

Observation 5.1.
1. Assume that Ch − {Uh,1, . . . , Uh,th} is Gi-local for some Gi. Then G satisfies

M if and only if G satisfies M with Ch replaced by (Ch − {Uh,1, . . . , Uh,th})
∪ {Uh,1∩V(Gi), . . . ,Uh,th∩V(Gi)}.

2. Assume that Ch is w-global. Then G satisfies M if and only if G satisfies M
with Ch replaced by Ch − {Uh,1, . . . , Uh,th}.

By Observation 5.1, we may assume that (1) each set in a w-global family in M
does not contain w and (2) each set in a family in M is Gi-local for some Gi. Let H
be an edge-labeled graph constructed as follows. The vertices of H are 1, . . . , k. For
each w-global family Ch, H has a cycle C possibly of length 2, where (1) the vertices
of C are those i ∈ {1, . . . , k} such that at least one set in Ch is Gi-local and (2) the
edges of C are all labeled h. See Figures 5.1(1) through 5.1(3) for examples of G, M,
and H.

Note that Observation 4.1 still holds for this H and the augmented components
G1, . . . ,Gk. Thus we may assume that H is connected. Let B1,. . . ,Bp be the blocks
of H. Clearly, for each w-global family Ch ∈ M, exactly one block of H contains
all the edges labeled h. For each Bj , let Uj = ∪hCh ∪ {{w}}, where h ranges over
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M1 : { {2}, {1} }

M2 : { {2}, {4} }, { {2}, {6} }

M3 : { {2}, {8,9} }, { {2}, {9,10}, {7,9} }

M4
: { {2,11}, {11,16}, {17,19} }, { {14, 20, 21}, {15,16} },

 { {2}, {13,14}, {11,15}, {12,13} }, { {19}, {21} }

(1) G

(3) H

(2) M

G
1

G
2

G
3

G
4

Fig. 5.1. (1) This is a simple connected graph G with a cut vertex 2. It induces four augmented
components G1 through G4 with V(G1) = {1, 2}, V(G2) = {2, . . . , 6}, V(G3) = {2, 7, . . . , 10}, and
V(G4) = {2, 11, . . . , 21}. (2) This is a sequence M of families of vertex subsets of G, where only
C2 through C5 are 2-global. (3) This is the graph H constructed from G and M. (4) These are the
sequences constructed for G1 through G4, respectively.

all labels on the edges of Bj . For each Gi, let Mi be the sequence consisting of the
Gi-local families in M as well as the families Uj,i = {U ∈ Uj | U is Gi-local} for all Bj
with i ∈ V(Bj). See Figure 5.1(4) for an example of M1, . . . ,M4 constructed from
G, M, and H in Figures 5.1(1) through 5.1(3).

Lemma 5.2. G satisfies M if and only if every Gi satisfies Mi.

Proof. The two directions are proved as follows.

(=⇒) The proof is the same as that of Lemma 4.2 except that the claim therein
now implies that the boundary of some face F in Φ intersects each of Gi −{w},Gi1 −
{w}, . . . ,Gi� − {w}.

(⇐=) The proof is the same as that of Lemma 4.2 except that Φ′j1 (respectively,
Φ′j2) now can be obtained as follows: For each vertex i′ �= i of Bj1 (respectively,
Bj2), put a suitable embedding Li′ of Gi′ that is topologically equivalent to Φi′ into
a suitable face Fi′ of Φi, and then identify the two occurrences of w.

5.2. Eliminating all cut vertices. Let T = Ψ(G). Root T at a block vertex,
and perform a postorder traversal of T . For each vertex γ of T , let post(γ) be the
postorder number of γ in the postorder traversal of T .

Let W = {w1, . . . , w} be the set of cut vertices of G where post(w1) < · · · <
post(w). For each v ∈ V(G)−W , let post(v) = post(B), where B is the unique block
of G with v ∈ V(B). We may assume V(G) = {1, . . . , n}. For each v ∈ V(G), the rank
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(1 ) T = Ψ(G)
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(3)
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11 (1, {17,19}) → (7, {19}) 

8 (4, {14; 13}) → (6, {14,20; 21})

7 (5, {12,13})

4 (1, {2,11; 7,8}) → (2, {2,14; 17})

1 (2, {1}) 2 (2, {4}) → (3, {6}) 3 (3, {8,9}) → (4, {9,10}) → (5, {7,9}) 5 (6, {15,16})

6 (1, {11; 16}) → (4, {11; 15})

10

9 (7, {21})

1 2 3 4 5 6

71 2 3 4 5 6

7R

11 4 3 8 7 8

71 2 3 4 5 6

11A 1

Fig. 5.2. (1) This is Ψ(G), where G is the simple graph in Figure 5.1(1). Here, V(B1) =
{1, 2}, V(B2) = {2, . . . , 6}, V(B3) = {2, 7, . . . , 10}, V(B4) = {2, 11, . . . , 14}, V(B5) = {11, 15, 16},
V(B6) = {14, 17, . . . , 20}, and V(B7) = {20, 21}. The number to the left of each vertex γ of Ψ(G)
is post(γ), and the list to the right is L(γ) before processing the first cut vertex of G. For visibility,
each set U in a pair in L(γ) with U ∩W �= ∅ is divided into two parts via a semicolon; the first part
consists of vertices in U ∩W in the increasing order of their postorder numbers. (2) These are the
representatives in the union-find data structure before processing the first cut vertex of G. (3) This
is the array A1 before processing the first cut vertex of G.

of v, denoted by rank(v), is (post(v), v). The rank of a vertex u is lower than that
of another vertex v if (1) post(u) < post(v) or (2) post(u) = post(v) and u < v. For
each wi ∈ W , let Bi,1,. . . , Bi,ki be the children of wi in T . Let Bi,0 be the parent of
vertex wi in T .

Theorem 5.3. Theorem 2.2 holds for Case M1 if it holds for Case M2.

Proof. It suffices to construct a sequence M[B] for each block B of G, with a total
size of O(I) in O(I log I) total time over all the blocks of G, such that G satisfies M
if and only if every B satisfies M[B]. To construct M[B] based on Observation 5.1
and Lemma 5.2, we process w1,. . . , w one at a time. During the processing of wi,
we construct M[Bi,j ] for all j = 1, . . . , ki. Then, we delete wi, Bi,1,. . . , Bi,ki from
T . After processing w, we are left with the root B,0 for which we then construct
M[B,0].

We use the following data structures. See Figure 5.2 for an example of some of
the data structures before processing the first cut vertex of G.

1. During the construction, some families in M may be united, and we use a
union-find data structure to maintain a collection of disjoint dynamic subsets
of ∆ = {1, . . . , q}. (Recall that q is the number of families inM.) Each subset
of ∆ in the data structure is identified by a representative member of the
subset. For each h ∈ ∆, letR(h) be the representative of the subset containing
h. Initially, each h ∈ ∆ forms a singleton subset, and thus R(h) = h.

2. Each set U in a family in M is implemented as a pair (W[U ],S[U ]), where
W[U ] is a linked list, and S[U ] is a splay tree [28]. Initially, W[U ] consists of
the vertices in U∩W in the increasing order of their postorder numbers. S[U ]
is initialized by inserting the ranks of the vertices in U−W into an empty splay
tree. A splay tree supports the following operations in amortized logarithmic
time per operation: (1) insert a rank, and (2) delete the ranks in a given
range.
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3. A linked list L[B] for each block B of G. Initially, each L[B] consists of all
pairs (h, U) such that h ∈ ∆, U ∈ Ch, U is B-local, and U ∩W = ∅.

4. A linked list L[wi] for each wi ∈ W . Initially, each L[wi] consists of all pairs
(h, U) such that h ∈ ∆, U ∈ Ch, wi ∈ U , and i = min{j | wj ∈ U ∩W}.

5. An arrayA1[1 . . . q] of integers. Initially, for each h ∈ ∆, A1[h] = maxγ post(γ),
where γ ranges over all vertices of T such that L[γ] contains a pair (h, ∗) with
∗ = “don’t care.”

6. An array A2[1 . . . q] of integers. Initially, for each h ∈ ∆, A2[h] = 0.
7. An array J [1 . . . q] of linked lists of integers. Initially, for each h ∈ ∆, J [h] is

empty.
8. A temporary array Y [1 . . . q] of integers.

We maintain the following invariants immediately before processing each wi. In
particular, we initialize the above data structures so that the invariants hold before
w1 is processed. It takes O(I) total time to initialize the data structures except the
splay trees.

1. For each vertex γ of T and each pair (h, U) ∈ L[γ], (1) W[U ] consists of
the vertices in U ∩ {wi, . . . , w} in the increasing order of their postorder
numbers, (2) the rank of each vertex of U − {wi, . . . , w} is stored in S[U ],
and (3) for every wj ∈ U ∩{w1, . . . , wi−1}, post(wj) and rank(wj) have been
updated as post(Bj,0) and (post(Bj,0), wj), respectively.

2. For each block vertex B of T and each (h, U) ∈ L[B], it holds that h ∈ ∆, U
is B-local, and U ∩ {wi, . . . , w} = ∅.

3. For each j ∈ {i, . . . , "} and each (h, U) ∈ L[wj ], it holds that h ∈ ∆, wj ∈ U ,
and j = min{x | i ≤ x ≤ " and wx ∈ U}.

4. For each h ∈ ∆ with R(h) = h, let C′h = {U | there is a vertex γ of T such
that L[γ] contains a pair (h′, U) with R(h′) = h}. Let M′ be the sequence of
all families C′h such that h ∈ ∆ and R(h) = h. Let G′ be the subgraph of G
induced by ∪BV(B), where B ranges over all the block vertices of T . Then
G satisfies M if and only if (1) G′ satisfies M′ and (2) for each block B of G
that has been deleted from T , B satisfies M[B].

5. For each h ∈ ∆ with R(h) = h, A1[h] = maxγ post(γ), where γ ranges over
all vertices of T such that L[γ] contains a pair (h′, ∗) with R(h′) = h.

6. For each h ∈ ∆, A2[h] = 0 and J [h] is empty.

We process wi as follows in Stages W1 through W4. See Figure 5.3 for an example
of some of the data structures after processing the first cut vertex of G.

• Stage W1 checks whether each related family is wi-global as follows.

1. Compute X = {h ∈ ∆ | R(h) = h, and for some j ∈ {1, . . . , ki}, L[Bi,j ]
contains a pair (h′, ∗) with R(h′) = h}. (Remark. For each h ∈ ∆ − X
with R(h) = h, the family C′h − {U | wi ∈ U} is Qi-local, where Qi is the
augmented component of G′ induced by wi that is not among Bi,1,. . . , Bi,ki .
See the fourth invariant for C′h and G′.)

2. For each h ∈ X, set Y [h] to be the number of integers j ∈ {1, . . . , ki} such
that L[Bi,j ] contains a pair (h′, ∗) with R(h′) = h. (Remark. For h ∈ X,
Y [h] ≥ 1.)

3. For each h ∈ X, perform the following:
(a) If Y [h] = 1 and A1[h] ≤ post(wi), then set A2[h] = j, where j is the

unique integer in {1, . . . , ki} such that L[Bi,j ] contains a pair (h′, ∗) with
R(h′) = h. (Remark. C′h − {U | wi ∈ U} is Bi,j-local.)

(b) Otherwise, set A2[h] = −1. (Remark. C′h − {U | wi ∈ U} is wi-global.)
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Fig. 5.3. This is the data structure after processing the first cut vertex (i.e., the vertex 2) of
the graph in Figure 5.3(1).

• Stage W2 modifies each U with wi ∈ U in each wi-local family based on Obser-
vation 5.1(1) as follows.

1. For each (h, U) ∈ L[wi] withA2[R(h)] ≥ 1, let j = A2[R(h)], delete all vertices
outside V(Bi,j) from U , and then insert (h, U) into L[Bi,j ]. Here, deleting
all vertices outside V(Bi,j) from U is done as follows: Delete wi from W[U ],
delete all the ranks in the range [−∞ . . . (post(Bi,j), 0)] and all the ranks in
the range [(post(Bi,j), n+1) . . .∞] from S[U ], and insert (post(Bi,j), wi) into
S[U ].

2. For each (h, U) ∈ L[wi] with A2[R(h)] = 0, perform the following. (Remark.
C′h − {U | wi ∈ U} is Qi-local. See the remark in step 1 of Stage W1 for Qi.)
(a) Delete all vertices v with post(v) < post(wi) from U as follows: Delete

wi from W[U ], delete all the ranks in the range [−∞ . . . rank(wi)] from
S[U ], and insert (post(Bi,0), wi) into S[U ].

(b) If W[U ] = ∅, i.e., U has no cut vertex, then insert (h, U) into L[Bi,0],
and set A1[R(h)] = max{post(Bi,0), A1[R(h)]}.

(c) If W[U ] �= ∅, then find the first vertex wj in W[U ], insert (h, U) into
L[wj ], and set A1[R(h)] = max{post(wj), A1[R(h)]}. (Remark. j > i.)

• Stage W3 modifies each wi-global family based on Observation 5.1(2) as follows.

1. For each h ∈ X with A2[h] = −1, set J [h] = {j ∈ {1, . . . , ki} | L[Bi,j ]
contains a pair (h′, ∗) with R(h′) = h}.

2. For each h ∈ X with A2[h] = −1 and A1[h] > post(wi), insert 0 into J [h].
3. Set post(wi) = post(Bi,0) and rank(wi) = (post(Bi,0), wi).
4. Construct an edge-labeled graph Hi as follows. The vertices of Hi are 0, 1,
. . . , ki. For each h ∈ X with A2[h] = −1, Hi has a cycle possibly of length
2 whose vertices are the integers in J [h] and whose edges are all labeled h.

5. For each block B of Hi, find the labels h1, . . . , ht on the edges in B, and
unite those subsets in the union-find data structure that have h1, . . . , ht as
their representative, respectively; afterward, for the representative hr of the
resulting subset, further perform the following:
(a) Insert (hr, {wi}) into all lists L[Bi,j ] such that j ∈ V(B).
(b) If 0 ∈ V(B), then set A1[hr] = max{post(Bi,0), A1[h1],. . . , A1[ht]}.

• Stage W4 constructs the sequences M[Bi,j ] for 1 ≤ j ≤ ki and updates the
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data structures as follows.
1. For each j and each (h, U) in L[Bi,j ], replace (h, U) by (R(h), U).
2. For each j, set M[Bi,j ] to be the sequence of the families C′′h = {U | (h, U) ∈
L[Bi,j ]}, where h ranges over those integers that are in a pair in L[Bi,j ].

3. Delete wi and its children from T .
4. For each h ∈ X, set A2[h] = 0 and J [h] = ∅.

By Observation 5.1 and Lemma 5.2, after the processing of wi, the invariants hold
for i+ 1.

After processing w, we construct M[B,0] as follows: Replace each pair (h, U)
in L[B,0] by (R(h), U), and then set M[B,0] to be the sequence of the families
C′′h = {U | (h, U) ∈ L[B,0]}, where h ranges over those integers that are in a pair in
L[B,0].

By the invariants, Observation 5.1, and Lemma 5.2, G satisfies M if and only if
every block B of G satisfies M[B]. As for the time complexity, we make the following
observations:

1. When processing wi, we create at most ni new sets all equal to {wi}, where
ni is the maximum number of blocks in a simple graph with ki + 1 vertices.
Since ni = O(ki + 1) and ki + 1 does not exceed the degree of wi in G, the
total number of newly created sets is O(|G|).

2. If a set U does not intersect {wi, . . . , w} immediately before the processing
of wi, then there is at most one wj ∈ {wi, . . . , w} such that some vertices of
U are touched during the processing of wj .

3. If wi is in U immediately before the processing of wi, then we either (1)
touch at most 1 + |{v ∈ U | post(v) ≤ post(wi)}| vertices of U during the
processing of wi, or (2) touch no vertex of U during the processing of each
wj ∈ {wi+1, . . . , w}.

There are at most q unions and O(I) finds, and at most |G| insertions into each
splay tree. By the above observations, the total time spent on the union-find data
structure isO(I log I), that on the splay trees isO(I log |G|), and that on the remaining
computation is O(I), all within the desired time.

6. Case M2, where G is biconnected. This section assumes that G is bi-
connected. Let C1, . . . , Cq be the families in M. For each i ∈ {1, . . . , q}, let Ci =
{Ui,1, . . . , Ui,ri}.

Theorem 6.1. Theorem 2.2 holds for Case M2.
To prove Theorem 6.1, we review a decomposition of G in section 6.1, outline the

basic ideas of our CFE algorithm in section 6.2, detail the algorithm in section 6.3,
and analyze it in section 6.4.

6.1. SPQR decompositions. A planar st-graph G is a directed acyclic plane
graph such that G has exactly one source s and exactly one sink t, and both vertices
are on the exterior face. These two vertices are the poles of G. A split pair of G is
either a pair of adjacent vertices or a pair of vertices whose removal disconnects the
graph obtained from G by adding the edge (s, t). A split component of a split pair
{u, v} is either an edge (u, v) or a maximal subgraph C of G such that C is a planar
uv-graph and {u, v} is not a split pair of C. A split pair {u, v} of G is maximal if there
is no other split pair {u′, v′} in G such that a split component of {u′, v′} contains both
u and v.

The decomposition tree T of G is a rooted ordered tree recursively defined in four
cases as follows. The nodes of T are of four types: S, P,Q, and R. Each node µ
of T has an associated planar st-graph ske(µ), called the skeleton of µ. Also, µ is
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Fig. 6.1. The tree in (2) is the decomposition tree of the graph in (1).

associated with an edge in the skeleton of the parent φ of µ, called the virtual edge of
µ in ske(φ).

Case Q. G is a single edge from s to t. Then T is a Q-node whose skeleton is G.
Case S. G is not biconnected. Let c1, . . . , ck−1 with k ≥ 2 be the cut vertices of

G. Since G is a planar st-graph, each ci is in exactly two blocks Gi and Gi+1 with
s ∈ G1 and t ∈ Gk. Then T ’s root is an S-node µ, and ske(µ) consists of the chain
e1, . . . , ek, where the edge ei goes from ci−1 to ci, c0 = s, and ck = t.

Case P. {s, t} is a split pair of G with k split components, where k ≥ 2. Then
T ’s root is a P-node µ, and ske(µ) consists of k parallel edges e1, . . . , ek from s to t.

Case R. Otherwise. Let {s1, t1}, . . . , {sk, tk} with k ≥ 1 be the maximal split
pairs of G. Let Gi be the union of the split components of {si, ti}. Then T ’s root
is an R-node µ, and ske(µ) is the simple graph obtained from G by replacing each
Gi with an edge ei from si to ti. Note that adding the edge (s, t) to ske(µ) yields a
simple triconnected graph.

Figure 6.1 illustrates the decomposition tree of G as well as the skeletons of µ
and ν. In the last three cases, µ has children χ1, . . . , χk, in this order, such that each
χi is the root of the decomposition tree of Gi. The virtual edge of χi is the edge ei in
ske(µ). Gi is called the pertinent graph pert(χi) of χi as well as the expansion graph
of ei. Note that G is the pertinent graph of T ’s root. Also, no child of an S-node is
an S-node, and no child of a P-node is a P-node.

The allocation nodes of a vertex v of G are the nodes of T whose skeleton contains
v; note that v has at least one allocation node.

Lemma 6.2 (see [2]).
1. T has O(|G|) nodes and can be constructed in O(|G|) time. The total number
of edges of the skeletons stored at the nodes of T is O(|G|).

2. The pertinent graphs of the children of µ can share only vertices of ske(µ).
3. If v is in ske(µ), then v is also in the pertinent graph of all ancestors of µ.
4. If v is a pole of ske(µ), then v is also in the skeleton of the parent of µ. If v
is in ske(µ) but is not a pole of ske(µ), then v is not in the skeleton of any
ancestor of µ.

5. The least common ancestor µ of the allocation nodes of v itself is an allocation
node of v, called the proper allocation node of v. Also, if v �∈ {s, t}, then µ
is the only allocation node of v such that v is not a pole of ske(µ).
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6. If v �= s, t, then the proper allocation node of v is an R-node or S-node.
For each non-S-node µ in T , pert(µ) is called a block of G [2], which differs from

that in sections 4 and 5. For a block B = pert(µ), let node(B) = µ. For an ancestor
φ of node(B), the representative of B in ske(φ) is the edge in ske(φ) whose expansion
graph contains B.

Let µ be an R-node or P-node in T with children χ1, . . . , χb. For each k ∈
{1, . . . , b}, let ek be the virtual edge of χk in ske(µ). If χk is an S-node, pert(χk) is
a chain consisting of two or more blocks. If χk is an R-node or P-node, pert(χk) is a
single block. For each k ∈ {1, . . . , b}, we say that the blocks in pert(χk) are on edge
ek. The minor blocks of pert(µ) are the blocks on e1,. . . , the blocks on eb.

6.2. Basic ideas. An st-orientation of a planar graph is an orientation of its
edges together with an embedding such that the resulting digraph is a planar st-graph.

Lemma 6.3 (see [1, 2]). If an n-vertex simple planar graph has an st-orientation,
then every embedding, where s and t are on the exterior face, of this graph can be
obtained from this orientation through a sequence of O(n) following operations:

1. Flip an R-node’s skeleton around its poles.
2. Permute a P-node’s children (and consequently their skeletons with respect to
their common poles).

Let {s, t} be an edge of G. Since G is a simple biconnected graph, we convert G
to a planar st-graph in O(n) time [12] for technical convenience. For the remainder
of section 6, let T be the decomposition tree of G.

The CFE algorithm processes the nodes of T in a bottom-up manner. It first
processes the leaf nodes of T . When processing a node µ, for each Ci such that
pert(µ) is the smallest block that intersects every set in Ci, the algorithm looks for
an embedding of pert(µ) that satisfies Ci. If this is impossible, the algorithm outputs
“no” and stops; otherwise, it continues on to process the next node of T . We note, in
passing, that Theorem 3.8(2) is used when processing R-nodes.

Let µ be a node of T . Tµ denotes the subtree of T rooted at µ, and dep(µ) denotes
the distance from T ’s root to µ. We need the following definitions:

1. Ui,j is contained in pert(µ) if the vertices of Ui,j are all in pert(µ); Ui,j is
strictly contained in pert(µ) if, in addition, no pole of pert(µ) is in Ui,j .

2. Let done(Ui,j) be the deepest node µ in T such that Ui,j is strictly contained
in pert(µ), if such a node exists. If no such µ exists, then Ui,j contains a pole
of G, and let done(Ui,j) be T ’s root.

3. A family Ci straddles pert(µ) if at least one set in Ci is strictly contained in
pert(µ) and at least one set in Ci has no vertex in pert(µ).

4. Let done(Ci) be the deepest node µ in T such that, for every Ui,j ∈ Ci, at
least one vertex of Ui,j is in pert(µ).

5. Let sub(µ) = {Ui,j | done(Ui,j) = µ} and fam(µ) = {Ci | done(Ci) = µ}.
6. If µ is a P-node or R-node, let xfam(µ) = fam(µ) ∪ (∪χk fam(χk)) and

xsub(µ) = sub(µ) ∪ (∪χksub(χk)), where χk ranges over all S-children of
µ.

In a fixed embedding of a block B, the poles of B divide the boundary of its
exterior face into two paths side1(B) and side2(B), called the two sides of B. Ui,j
is two-sided for B if both side1(B) and side2(B) intersect Ui,j . In particular, Ui,j is
two-sided for B if it contains a pole of B. Ui,j is side-1 (respectively, side-2) for B
if only side1(B) (respectively, side2(B)) intersects Ui,j . Assume that B is a minor
block of pert(µ) for some µ. Let ek be the representative of B in ske(µ). In a fixed
embedding of ske(µ), ek separates two faces F and F ′. When embedding pert(µ), we
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can embed side1(B) toward either F or F ′, referred to as the two orientations of B
in pert(µ).

A family Ci is side-0 (respectively, side-1 or side-2) exterior-forcing for B if
done(Ci) is an ancestor of node(B) in T and some Ui,j ∈ Ci strictly contained in
B is two-sided (respectively, side-1 or side-2) for B. For p = 0, 1, 2, define the
following.

1. extp(B) = min{dep(done(Ci)) | Ci, 1 ≤ i ≤ q, is side-p exterior-forcing for B}
if at least one family in M is side-p exterior-forcing for B;

2. extp(B) = ∞ otherwise.
Assume extp(B) �= ∞. Let µ = node(B), φ1, φ2, . . . , φh be the path in T from

µ to φh, where dep(φh) = extp(B). For each " ∈ {1, . . . , h − 1}, the representative
of B in ske(φ) must be an exterior edge in any satisfying embedding of ske(φ). In
addition, if p = 1 or 2, sidep(B) must be embedded toward the exterior face of the
embedding of pert(φ).

Since (s, t) is an edge of G, the root ρ of T is a P-node and has a child Q-node
φ representing (s, t). A subtle difference between ρ and each nonroot node of T is
that the two sides of G = pert(ρ) are actually on the same face. To eliminate this
difference, we delete φ from T ; afterward, if ρ has only one child, we further delete ρ
from T . From here onward, T denotes this modified tree.

6.3. The CFE algorithm. The CFE algorithm processes T from the bottom
up. A ready node µ of T is either (1) a leaf node or (2) a P-node or R-node such that
the non-S-children of µ and the children of every S-child of µ all have been processed.
The CFE algorithm processes the ready nodes of T in an arbitrary order. An S-node
is processed when its parent is processed. We detail how to process µ as follows.

For the case where µ is a leaf node of T , note that pert(µ) is a single edge of G.
Since no Ui,j is strictly contained in pert(µ), sub(µ) = ∅. Also, each Ci ∈ fam(µ) is
satisfied by every embedding of G. Therefore, we simply set extp(pert(µ)) = ∞ for
p = 0, 1, 2.

We next consider the case where µ is a non-leaf-ready node. Before µ is processed,
an embedding of every minor block of pert(µ) is already fixed, except for a possible flip
around its poles. Moreover, for each minor block B of pert(µ) and each p ∈ {0, 1, 2},
extp(B) is known. When processing µ, the CFE algorithm checks whether some
embedding Φµ of pert(µ) satisfies the following two conditions:

1. Φµ satisfies every Ci in xfam(µ).
2. For each Ci straddling pert(µ) and each Ui,j ∈ Ci strictly contained in pert(µ),

at least one vertex of Ui,j is embedded on the exterior face of Φµ. (Remark.
This ensures the existence of an embedding of pert(done(Ci)) satisfying Ci
later.)

If no such Φµ exists, then G cannot satisfy M, and the CFE algorithm outputs “no”
and stops. Otherwise, it finds such a Φµ and fixes it except for a possible flip around
its poles. It also computes extp(pert(µ)) for p = 0, 1, 2.

To detail how to process µ, we classify the sets Ui,j that intersect pert(µ) into
four types and define a set img(Ui,j , µ) for each type as follows.

Type 1. Ui,j contains at least one pole of ske(µ). Then done(Ui,j) is an ancestor
of µ. Let img(Ui,j , µ) = {v ∈ Ui,j | v is a vertex in ske(µ)}.

Type 2. Ui,j contains at least one vertex but no pole of ske(µ). Then done(Ui,j) =
µ. Let img(Ui,j , µ) as in the case of type 1.

Type 3. Ui,j is strictly contained in pert(χ) for some S-node child χ of µ, and Ui,j
contains at least one vertex in ske(χ). Then done(Ui,j) = χ. Let img(Ui,j , µ) consist
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of the virtual edge of χ in ske(µ).
Type 4. Ui,j is strictly contained in a minor block B of pert(µ). Then done(Ui,j)

is node(B) or its descendent. Let img(Ui,j , µ) consist of the representative of B in
ske(µ).

Each element of img(Ui,j , µ) is called an image of Ui,j in ske(µ). The remainder
of section 6.3 details how to process µ.

6.3.1. Processing an S-child of µ. When processing µ, for each S-child χ of
µ, we need to find an embedding of pert(χ) satisfying certain conditions. We call this
process the S-procedure and describe it below.

Let χ be an S-child of µ. Then ske(χ) is a path. Let e1,. . . , eb be the edges in
ske(χ). For each k ∈ {1, . . . , b}, let Bk be the expansion graph of ek. Before the
S-procedure is called on χ, the following requirements are met.

1. For each k ∈ {1, . . . , b}, an embedding of Bk has been fixed, except for a
possible flip around its poles.

2. For some integers k ∈ {1, . . . , b} and p ∈ {1, 2}, sidep(Bk) is required to face
either the left or the right side of ske(χ).

Our only choice for embedding pert(χ) is to flip B1,. . . , Bb around their poles. We
need to check whether, for some combination of flippings of B1,. . . , Bb, (1) the re-
sulting embedding satisfies every Ci ∈ fam(χ) and (2) the second requirement above
is met.

The S-procedure consists of the following five stages.
• Stage S1 constructs an auxiliary graph D = (VD, ED) with VD = {kp | 1 ≤ k ≤

b, p = 1, 2} as follows. For each Ci ∈ fam(χ), insert an arbitrary path Pi into D to
connect all kp ∈ VD such that, for some type-4 Ui,j ∈ Ci, (a) img(Ui,j , χ) = {ek}, and
(b) Ui,j is side-p for Bk. To avoid confusion, we call the elements of VD points and
the connected components of D clusters. Those points kp ∈ VD such that sidep(Bk)
is required to face the left side of ske(χ) are called L-points. R-points are defined
similarly. Note that, for each cluster C of D, all sidep(Bk), where kp ranges over all
the points in C, must be embedded toward the same side of ske(χ). Also, each type-3
Ui,j in Ci contains a vertex in ske(χ) which is on both sides of ske(χ). For this reason,
such sets were not considered when constructing D.

• Stage S2 checks whether there is a cluster of D containing both an L-point and
an R-point. If such a cluster exists, then S2 outputs “no” and stops. Suppose that
no such cluster exists. If a cluster C contains an L-point (respectively, R-point), we
call C an L-cluster (respectively, R-cluster).

• Stage S3 constructs another auxiliary graph RD = (VRD, ERD) from D as
follows. The vertices of RD are the clusters of D. For each k ∈ {1, . . . , b}, there is
an edge {C1, C2} in RD, where C1 (respectively, C2) is the cluster of D containing
point k1 (respectively, k2). Note that RD may have self-loops.

• Stage S4 checks whether RD is bipartite. If it is not, then S4 outputs “no”
and stops. Otherwise, for each connected component K of RD, the clusters in K
can be uniquely partitioned into two independent subsets VK,1 and VK,2 of clusters.
If VK,1 or VK,2 contains both an L-cluster and an R-cluster, S4 outputs “no” and
stops. Otherwise, VRD can be partitioned into two independent subsets V LRD and
V RRD of clusters such that all L-clusters are in V LRD and all R-clusters are in V RRD. Let
V LD = {kp | kp is in a cluster in V LRD} and V RD = {kp | kp is in a cluster in V RRD}.

• Stage S5 embeds sidep(Bk) toward the left side of ske(χ) for each kp ∈ V LD .
Example 1. In Figure 6.2, pert(χ) has eight blocks B1, . . . , B8. The left side of

each Bk is side1(Bk). Also, fam(χ) = {C1, . . . , C6}. An integer i in a small square on
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Fig. 6.2. The graph in (1) is pert(χ) for an S-node χ, the graph in (2) is D, and that in (3) is
RD.

sidep(Bk) for p = 1 or 2 indicates that kp is on Pi. For example, the points on P5 are 51,
61, and 72. The letter L is marked on side1(B1), indicating that side1(B1) must face
left. The letter R is marked on side1(B7), indicating that side1(B7) must face right.
D is shown in Figure 6.2(2). 11 is an L-point, while 71 is an R-point. RD is shown in
Figure 6.2(3). C1 is an L-cluster and C7 is an R-cluster. RD is bipartite, and VRD can
be partitioned into V LRD = {C1, C4, C9} and V RRD = {C2, C3, C5, C6, C7, C8}. Thus
V LD = {11, 21, 31, 41, 51, 61, 72, 81} and V RD = {12, 22, 32, 42, 52, 62, 71, 82}. Flipping B7

in Figure 6.2(1) gives a satisfying embedding of pert(χ). If 82 were also on P5, there
would be an edge {72, 82} in D, which would cause C9 and C8 to be merged in RD
with a self-loop attached to it. In that case, RD would not be bipartite, and the CFE
algorithm would output “no.”

6.3.2. µ is an R-node. In this case, adding the edge (s, t) to ske(µ) yields a
simple triconnected graph. Thus the unique embedding of ske(µ) with both s and
t on the exterior face is ske(µ) itself. Let χ1,. . . , χb be the children of µ in T . For
each k ∈ {1, . . . , b}, let Bk,1,. . . , Bk,sk be the minor blocks of pert(µ) in pert(χk).
Note that sk = 1 when χk is an R-node or P-node. To process µ, the CFE algorithm
proceeds in five stages.

• Stage R1 first computes C′i = {img(Ui,j , µ) | Ui,j ∈ Ci} for every Ci ∈ fam(µ).
Let M′(µ) be the sequence of all C′i with Ci ∈ fam(µ). Then R1 calls Theorem 3.8(2)
to solve the CFE problem on input ske(µ) and M′(µ). If the output is “no,” R1
outputs “no” and stops. Otherwise, for each C′i in M′(µ), there is a face Fi in ske(µ)
whose boundary intersects each img(Ui,j , µ) ∈ C′i. Note that Fi must be unique or
else done(Ci) would be a descendent of µ, contradicting the fact that Ci ∈ fam(µ).

• Stage R2 computes the minor block Bk,l of pert(µ) strictly containing Ui,j for
each Ci ∈ fam(µ) and each type-4 Ui,j ∈ Ci. If Ui,j is two-sided for Bk,l, either side
of Bk,l may be embedded toward the face Fi; otherwise, for some p ∈ {1, 2}, Ui,j is
side-p for Bk,l, and it requires that sidep(Bk,l) be embedded toward Fi.

• Stage R3 makes sure that, for every Ci straddling pert(µ) and for every Ui,j ∈ Ci
strictly contained in pert(µ), a vertex in Ui,j is embedded on the exterior face of
pert(µ). This is done by checking whether the following statements are all false.
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1. There are an exterior edge ek of ske(µ) and a minor block Bk,l of pert(µ) on
ek with maxp∈{1,2} extp(Bk,l) < dep(µ); thus both side1(Bk,l) and side2(Bk,l)
must be embedded toward the exterior face of ske(µ).

2. There are an interior edge ek of ske(µ) and a minor block Bk,l of pert(µ) on
ek with minp∈{0,1,2} extp(Bk,l) < dep(µ); thus at least one of side1(Bk,l) and
side2(Bk,l) must be embedded toward the exterior face of ske(µ).

3. There is a Ui,j ∈ sub(µ) with dep(done(Ci)) < dep(µ) (i.e., Ci straddles
pert(µ)), and neither side of ske(µ) contains an image in img(Ui,j , µ).

4. There are an S-child χk of µ and a Ui,j ∈ sub(χk) such that dep(done(Ci)) <
dep(µ) and the virtual edge ek of χk is an interior edge in ske(µ).

If at least one statement above holds, R3 outputs “no” and stops. Otherwise, for
each minor block Bk,l of pert(µ) such that extp(Bk,l) < dep(µ) for some p ∈ {1, 2}, it
requires that sidep(Bk,l) be embedded toward the exterior face of ske(µ). Note that,
since statement 2 above is false, the representative ek of Bk,l in ske(µ) must be an
exterior edge of ske(µ).

• Stage R4 first checks whether, for some minor block Bk,l of pert(µ), the ori-
entation requirements imposed on Bk,l in Stages R2 or R3 are in conflict. If they
are, R4 outputs “no” and stops. Otherwise, for each R-child or P-child χk of µ, the
minor block pert(χk) can be oriented according to the requirements imposed on it
or arbitrarily if no requirement was imposed on it. Afterward, for each S-child χk
of µ, it calls the S-procedure on input χk together with the orientation requirements
that were imposed on the minor blocks in pert(χk) in Stages R2 or R3. If the S-
procedure on a χk outputs “no,” R4 outputs “no” and stops because pert(χk) cannot
be successfully embedded; otherwise, it has found a satisfying embedding of pert(µ).

• Stage R5 computes extp(pert(µ)) for p = 0, 1, 2 as follows. Let xsub′(µ) =
{Ui,j ∈ xsub(µ) | dep(done(Ci)) < dep(µ)}; i.e., xsub′(µ) consists of all Ui,j ∈ xsub(µ)
such that Ci straddles pert(µ). Partition xsub′(µ) into A0, A1, A2, where A0 (respec-
tively, A1 or A2) consists of all Ui,j ∈ xsub′(µ) such that Ui,j is two-sided (respec-
tively, side-1 or side-2) for pert(µ). For i ∈ {1, 2}, let βi = minp,Bk,l extp(Bk,l), where
p ranges over all integers in {0, 1, 2} and Bk,l ranges over all minor blocks on an edge
of sidei(ske(µ)). Then set

ext0(pert(µ)) = min
Ui,j∈A0

dep(done(Ci));

ext1(pert(µ)) = min

{
β1, min

Ui,j∈A1

dep(done(Ci))
}

;

ext2(pert(µ)) = min

{
β2, min

Ui,j∈A2

dep(done(Ci))
}
.

This completes the processing of µ.
Example 2. In Figure 6.3, the circles denote the vertices in ske(µ), where s and

t are the poles of pert(µ). An integer i in a small square at a side of a block Bk,l
indicates that a set in Ci has a vertex on that side of Bk,l. Also, fam(µ) = {C1, C2}.
C1 = {U1,1, . . . , U1,4}. U1,1 is of type 3 and img(U1,1, µ) = {e3}. U1,2 and U1,3 are
of type 4, img(U1,2, µ) = {e2}, and img(U1,3, µ) = {e4}. U1,2 is two-sided for B2,1.
U1,4 is of type 2 and img(U1,4, µ) = {d}. C2 consists of U2,1 and U2,2, which are of
type 4. img(U2,1, µ) = {e1} and img(U2,2, µ) = {e2}. C3 is the only family straddling
pert(µ). U3,1, U3,2, and U3,3 are the sets in C3 that intersect pert(µ); the other sets
in C3 are not shown in this figure. U3,1 is of type 4 and img(U3,1, µ) = {e1}. U3,2 is of
type 2 and is two-sided for pert(µ); img(U3,2, µ) = {a, b, c}. Since U3,3 is not strictly
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Fig. 6.3. The graph in (1) is pert(µ) for an R-node µ, and the graph in (2) is ske(µ).

contained in pert(µ), it is not tested during the processing of µ. Note that pert(µ)
has a satisfying embedding as shown. For i = 1, 2, the boundary of Fi intersects each
set in Ci. The exterior face of pert(µ) contains an image of every set in C3 strictly
contained in pert(µ). The side of B4,1 on which 1 is marked must be embedded
toward F1. In contrast, whichever side of B2,1 is embedded toward F1, the boundary
of F1 intersects U1,2. In the embedding of pert(µ), C3 is side-1 (respectively, side-0)
exterior-forcing for pert(µ) because of U3,1 (respectively, U3,2).

6.3.3. µ is a P-node. In this case, ske(µ) consists of parallel edges e1, e2, . . . , eb
between its two poles with b ≥ 2. Let χ1,. . . , χb be the children of µ in T . For each
k ∈ {1, . . . , b}, let Bk,1,. . . , Bk,sk be the minor blocks of pert(µ) in pert(χk). When
embedding ske(µ), edges e1 through eb can be embedded in any order. The CFE
algorithm first finds a proper embedding of ske(µ) in three stages.

• Stage P1 constructs an auxiliary graph H = (VH , EH) with VH = {e1, . . . , eb}
by performing the following steps in turn for every Ci ∈ fam(µ):

1. Compute Si = ∪Ui,j img(Ui,j , µ), where Ui,j ranges over all type-3 or type-4
sets in Ci. Let mi be the number of edges in Si. Then mi ≥ 2; otherwise, Ci
would be in fam(χk) for some k ∈ {1, . . . , b}.

2. If mi ≥ 3, then output “no” and stop since pert(µ) does not satisfy Ci.
3. Insert edge {ek, ek′} to H, where ek and ek′ are the two edges in Si.

Note that, for each Ci ∈ fam(µ), no set in Ci is of type 2, and each type-1 set in Ci
contains a pole of pert(µ), which is on every face of all embeddings of ske(µ). For this
reason, neither type-1 nor type-2 set in Ci is considered in the construction of H.

• Stage P2 checks whether both statements below are false in order to ensure
that, for every Ci straddling pert(µ) and every Ui,j ∈ Ci strictly contained in pert(µ),
a vertex in Ui,j is embedded on the exterior face of pert(µ).

1. There is a minor block Bk,l of pert(µ) with maxp∈{1,2} extp(Bk,l) < dep(µ).
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Fig. 6.4. The graph in (1) is pert(µ) for a P-node µ, and that in (2) is ske(µ).

2. There are at least three edges ek in ske(µ) such that (1) there is a minor block
Bk,l on ek with minp∈{0,1,2} extp(Bk,l) < dep(µ) or (2) χk is an S-node and
there exists Ui,j in sub(χk) with dep(done(Ci)) < dep(µ).

If statements 1 or 2 hold, P2 outputs “no” and stops. Otherwise, it marks each
ek ∈ VH for which statement 2(1) or 2(2) holds. Note that at most two ek ∈ VH
are marked, and each marked ek ∈ VH must be an exterior edge in any satisfying
embedding of ske(µ).

• Stage P3 outputs “no” and stops if an ek ∈ VH has degree at least 3 in H or
a marked ek ∈ VH has degree 2 in H. Otherwise, P3 finds and fixes an embedding
of ske(µ), where (1) each marked ek ∈ VH is in the exterior face and (2) for every
{ek, ek′} ∈ EH , ek and ek′ form the boundary of a face. For each Ci ∈ fam(µ), let Fi
be the face in the fixed embedding of ske(µ) whose boundary is formed by the two
edges in Si. Note that, for each Ui,j ∈ Ci, the boundary of Fi intersects img(Ui,j , µ).

Next, the CFE algorithm tries to embed pert(µ) based on the embedding of
ske(µ) fixed in Stage P3 through the same stages as Stages R2 through R5 in section
6.3.2 except that, in the stage corresponding to R5, A0 = ∅ and the algorithm sets
ext0(pert(µ)) = ∞. This completes the processing of µ.

Example 3. In Figure 6.4, fam(µ) = {C1, C2}. C1 = {U1,1, U1,2, U1,3}. Both U1,1

and U1,2 are of type 4; img(U1,1, µ) = {e1} and img(U1,2, µ) = {e2}. U1,3 is of type 1
and need not be tested during the processing of µ. C2 = {U2,1, U2,2}. U2,1 is of type
3 and img(U2,1, µ) = {e3}. U2,2 is of type 4 and img(U2,2, µ) = {e4}. C3 is the only
family straddling pert(µ). {U3,1 and U3,2} are the sets in C3 that intersect pert(µ); the
other sets in C3 are not shown in this figure. Since U3,2 contains the pole t of pert(µ),
it is not tested during the processing of µ. U3,1 is of type 4 and img(U3,1, µ) = {e1}.
VH = {e1, e2, e3, e4} and EH = {{e1, e2}, {e3, e4}}. Only e1 is marked in graph H.
Figure 6.4(2) shows an embedding of ske(µ) that might be found and fixed in Stage
P3. This embedding of ske(µ) results in a satisfying embedding of pert(µ) as shown.
If either C1 had another set strictly contained in block B4,1 or C3 had another set
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strictly contained in B2,1, then pert(µ) has no satisfying embedding.
This completes the description of the CFE algorithm. Its correctness follows from

the above discussion and Lemma 6.3.

6.4. Implementation and analysis. We implement the CFE algorithm as fol-
lows. The nodes of T are identified by their preorder numbers. At each node µ ∈ T ,
we store dep(µ) and the preorder number of the largest node in Tµ. Let χ1, . . . , χb be
the children of µ. The nodes in Tχ1 , . . . , Tχb form an ordered partition of the nodes
in Tµ − {µ}. For a node ν, we can check whether ν is in Tµ in O(1) time. If ν ∈ Tµ,
we can find the subtree Tχk containing ν in O(log |G|) time by a binary search of the
children of µ. We equip T with a data structure which can be constructed in linear
time and which outputs a least common ancestor query in O(1) time [16, 27].

We also store ske(µ) at µ. Each µ has a pointer to its virtual edge in its parent’s
skeleton. For each nonpole vertex of ske(µ), we mark µ as its proper allocation node.
This takes O(|G|) total time by Lemma 6.2(1). Each edge e of G has a pointer to the
leaf node in T that represents e.

Lemma 6.4. Given G,M, and T , we can compute fam(µ), sub(µ), done(Ci), and
done(Ui,j) for all nodes µ of T , all Ci in M, and all Ui,j in Ci in O(I) total time.

Proof. For each vertex v of G, let low(v) be the deepest allocation node of v in
T . In O(|G|) time, we can compute low(v) for all vertices v of G. For a set Ui,j ∈ Ci,
if a pole of G is in Ui,j , then done(Ui,j) is the root of T ; otherwise, done(Ui,j) is the
least common ancestor of all low(v) with v ∈ Ui,j . So done(Ui,j) can be computed in
O(|Ui,j |) time. Let low(Ui,j) be the deepest one among all low(v) with v ∈ Ui,j . We
can compute low(Ui,j) in O(|Ui,j |) time. Since done(Ci) is the least common ancestor
of all low(Ui,j) with Ui,j ∈ Ci, it can be computed in O(|Ci|) time. Thus, in O(I)
total time, we can compute done(Ui,j) and done(Ci) for all Ci in M and all Ui,j in Ci.
Afterward, in O(I) total time, we can compute fam(µ) and sub(µ) for all nodes µ of
T .

After processing µ, the CFE algorithm records the following information:
1. the embedding of ske(µ);
2. extp(pert(µ)) for p = 0, 1, and 2;
3. the edges and vertices on side1(ske(µ)) and side2(ske(µ)), respectively;
4. an integer p = 0, 1, or 2 for each Ui,j ∈ xsub(µ), indicating whether Ui,j is

two-sided, side-1, or side-2 for pert(µ), respectively.
The CFE algorithm processes a P-node or R-node µ with the five operations

below.
Operation 1 uses O(|Ui,j |+ log |G|) time to determine the type of a given Ui,j in

xfam(µ) and finds img(Ui,j , µ) as follows. Let ν = done(Ui,j).
Case 1. dep(ν) ≤ dep(µ). Then Ui,j is of type 1 or 2 for pert(µ). Ui,j is of type

1 if and only if it contains a pole of pert(µ). Also, img(Ui,j , µ) consists of all v ∈ Ui,j
which are also in ske(µ). Note that v ∈ ske(µ) if and only if µ is the proper allocation
node of v or v is a pole of pert(µ).

Case 2. dep(ν) = dep(µ) + 1, and ν is an S-node. Then Ui,j is of type 3 for
pert(µ). Also, img(Ui,j , µ) consists of the virtual edge of ν in ske(µ).

Case 3. Otherwise. Then Ui,j is of type 4 for pert(µ). Also, img(Ui,j , µ) is the
virtual edge of χk in ske(µ), where χk is the child of µ such that ν is in the subtree
Tχk .

Operation 2 checks in O(|Ui,j |) time whether a given Ui,j ∈ xsub(µ) has a vertex
on either side of pert(µ) after an embedding of pert(µ) is fixed. If Ui,j ∈ sub(µ), we
check whether a vertex in img(Ui,j , µ) is on either side of ske(µ). If Ui,j ∈ sub(χk)
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for an S-child χk of µ, we check whether the virtual edge ek of χk is on either side of
ske(µ).

Operation 3 uses O(1) time to check whether a given Ui,j ∈ xsub(µ) is in xsub′(µ)
by checking whether dep(done(Ci)) < dep(µ).

Operation 4 checks whether a given Ui,j is strictly contained in pert(µ) and, if so,
further computes the minor block B of pert(µ) strictly containing Ui,j in O(|Ui,j | +
log |G|) total time. For the first task, we check whether (1) ν = done(Ui,j) is a
descendent of µ, or (2) ν = µ and Ui,j contains no pole of pert(µ). For the second
task, we first find the child χk of µ such that Tχk contains ν. If χk is not an S-node,
pert(χk) is B; otherwise, B is pert(η), where η is the child of χk such that Tη contains
ν.

Operation 5 checks in O(log |G|) time whether a given type-4 Ui,j for pert(µ) is
side-1, side-2, or two-sided for the minor block Bk,l in pert(µ) strictly containing Ui,j .
Let η = node(Bk,l) and ν = done(Ui,j). Note that η has been processed. If η = ν,
this operation takes O(1) time using the information stored for η. If ν is a descendent
of η, the representative e of ν in ske(η) can be found in O(log |G|) time. Then it
takes O(log |G|) time to check whether e is on side1(ske(η)) or side2(ske(η)) using the
information stored for η.

Lemma 6.5.
1. {xfam(µ) | µ is a P-node or R-node} is a partition of {C1, . . . , Cq}.
2. {xsub(µ) | µ is a P-node or R-node} is a partition of C1 ∪ · · · ∪ Cq.
3. Each input family Ci is processed exactly once.
4. Each input Ui,j is processed at most twice, and the total time spent on pro-
cessing Ui,j is O(|Ui,j |+ log |G|).

Proof. Statements 1 and 2 are straightforward. Statement 3 holds since each
Ci is processed only when the node µ with Ci ∈ xfam(µ) is processed. Each Ui,j is
processed once when the node µ with Ui,j ∈ xsub(µ) is processed and once when the
node φ with Ci ∈ xfam(φ) is processed. When Ui,j is processed, we perform some
of operations 1 through 5 on it. Since an operation takes O(|Ui,j | + log |G|) time,
statement 4 holds.

We now bound the time of processing an R-node or P-node µ. Let xske(µ) be
obtained from ske(µ) by replacing the virtual edge of each S-child χk of µ with ske(χk).
Let nµ be the number of vertices in xske(µ). Let Nµ =

∑
Ci∈xfam(µ) |Ci|. Recall that

µ is processed using some of the following operations:
1. Process the sets Ui,j in the families Ci ∈ xfam(µ).
2. Call Theorem 3.8(2) on input ske(µ) and M′(µ).
3. Call the S-procedure on χk for the S-children χk of µ.
4. Compute extp(pert(µ)) for p = 0, 1, and 2.
5. Construct auxiliary graphs D, RD, and H, and operate on them.

Note that each K ∈ {D,RD,H} is constructed and operated on in O(|K|) total
time. Since

∑
K |K| ≤ nµ, where K ranges over all auxiliary graphs constructed

during the processing of µ, it takes O(nµ) total time to process the auxiliary graphs
for µ. Therefore, the above operations take O((nµ + Nµ) log I) time in total. By
summing over all P-nodes and R-nodes µ of T , and by Theorem 3.8, Lemma 6.2(1),
and Lemma 6.5, the CFE algorithm runs in the desired total time, completing the
proof of Theorem 6.1.

7. Directions for further research. We have proved that the CFE problem
can be solved in O(I log I) time for the special case where, for each input family Ci,
each set in Ci induces a connected subgraph of the input graph G. One direction
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for further research would be to reduce the running time to linear. Such a result
might lead to substantial simplification of the SPQR tree decomposition or an entirely
different data structure. Another worthy direction would be to solve more general
cases in similar time bounds. Beyond these technical open problems, it would be of
significance to find further applications of the CFE problem in addition to VLSI layout
and topological inference as well as to identify novel and fundamental constrained
planar embeddings.
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Abstract. We propose new Las Vegas randomized algorithms for the solution of a square nonde-
generate system of equations, with well-separated roots. The algorithms use O(δ 3nD2 log(D) log(b))
arithmetic operations (in addition to the operations required to compute the normal form of the
boundary monomials modulo the ideal) to approximate all real roots of the system as well as all
roots lying in a fixed n-dimensional box or disc. Here D is an upper bound on the number of all
complex roots of the system (e.g., Bezout or Bernshtein bound), δ is the number of real roots or
the roots lying in the box or disc, and ε = 2−b is the required upper bound on the output errors.
For computing the normal form modulo the ideal, the efficient practical algorithms of [B. Mourrain
and P. Trébuchet, in Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation, ACM, New York, 2000, pp. 231–238] or [J. C. Faugère, J. Pure Appl. Algebra, 139 (1999),
pp. 61–88] can be applied. We also yield the bound O(3nD2 log(D)) on the complexity of counting
the numbers of all roots in a fixed box (disc) and all real roots. For a large class of inputs and
typically in practical computations, the factor δ is much smaller than D, δ = o(D). This improves
by the order of magnitude the known complexity estimates of the order of at least 3nD4 +D3 log(b)
or D4, which so far are the record estimates even for the approximation of a single root of a system
and for each of the cited counting problems, respectively. Our progress relies on proposing several
novel techniques. In particular, we exploit the structure of matrices associated to a given polynomial
system and relate it to the associated linear operators, dual space of linear forms, and normal forms
of polynomials in the quotient algebra; furthermore, our techniques support the new nontrivial exten-
sion of the matrix sign and quadratic inverse power iterations to the case of multivariate polynomial
systems, where we emulate the recursive splitting of a univariate polynomial into factors of smaller
degree.
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quasi-Toeplitz matrices, quasi-Hankel matrices, matrix sign iteration, quadratic power iteration
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1. Introduction. The classical problem of solving a multivariate polynomial
system of equations is presently the subject of intensive research and one of the central
practical and theoretical problems in the area of algebraic computation (see [21], [5],
[32], [15].) It has major applications, for instance, to robotics, computer modelling
and graphics, molecular biology, and computational algebraic geometry.

The oldest approach to the solution is the elimination method, reducing the prob-
lem to the computation of the associated resultant or its multiples. This classical
method evolved in the old works by Bezout, Dixon, and Macaulay (see, e.g., [21],
[45]) but later remained largely ignored by the researchers and algorithm designers
until it was resurrected first by Chistov and Grigoriev [8], who designed a determin-
istic solution algorithm, then in a randomized approach by Canny [4], and later by
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Giusti and Heintz [18] and has since become a very popular approach. One of the
major further steps was the reduction of the solution of a multivariate polynomial
system to matrix operations, in particular, by rational transformation of the original
problem into a matrix eigenproblem (cf. [1], [16], [15], [27], [25], [10]).

The approach has been explored and extended by many researchers, has been
exploited in the practice of algebraic computing, and has also supported the record
asymptotic upper bound O∗(D4) on the arithmetic computational complexity of the
solution of a nondegenerate polynomial system having a finite number of roots [40].
Here and hereafter, O∗(s) stands for O(s logc s), c denoting a constant independent of
s, and D is an upper bound on the number of roots of the given polynomial system.
(For D, one may choose either the Bezout bound,

∏
i di, di denoting the maximum

degree in the ith variable in all monomials of the system, or the Bernshtein bound,
which is much smaller for sparse systems and equals the mixed volume of the associ-
ated Newton polytope, defined by the exponents of the monomials.) Even for many
subproblems and related problems, no known algorithms support any better bound
than O(D4). This includes approximation of all real roots of a polynomial system
(which is highly important due to applications to robotic and computer graphics), all
its roots lying in a fixed n-dimensional box or disc, counting all roots in such a box
or disc or all real roots, and even approximation of a single root. Some progress was
achieved in [30], where a single root was approximated in O∗(3nD2) time, but under
a strong restriction on the input polynomials.

Against this background, our new algorithms support the computational cost
estimate of O∗(3nD2) for all of the subproblems listed above, that is, for both of the
counting problems, the computation of a single root, all real roots, and all roots in
a fixed box or disc. More precisely, our bound is O∗(δ 3nD2) in the latter two cases,
where δ is the number of real roots or roots in the selected box or disc, respectively.
In practical applications, such a number is typically much less than D. The number
of real roots grows as

√
D for a large class of input systems [41]. See also the sparse

case [24]. Thus, for all listed problems, we improve the known complexity estimates
by an order of magnitude.

We have a reservation from a theoretical point of view; that is, our main algorithm
relies on the known effective algorithms for the computation of the normal form of
monomials on the boundary of the monomial basis (see section 4). These algorithms
exploit structured matrices and in practice appear to run faster than our subsequent
computations (see [17], [33]), but their known theoretical cost bounds are greater than
the order of e3nD3 (see [22]).

Our paper addresses the problem of the asymptotic acceleration of the resolution
stage, where the structure of the quotient algebra A (associated with the polynomial
system) is already described by using the minimal number of parameters, that is, via
the normal form of the monomials on the boundary of the basis. From a purely the-
oretical point of view, we have an alternative approach that avoids the normal-form
algorithms at the price of using the order of O(12nD2) additional arithmetic opera-
tions [31]. This should be technically interesting because no other known approach
yields this bound, but in this paper, we prefer to stay with our present, practically
promising version, referring the reader to [31] on the cited theoretical approach. Our
practically promising solution relies on fast computation of normal forms of poly-
nomials modulo the ideal, based on the algorithm of [33]. Some limited amount of
experimental evidence to the efficiency of this algorithm has been reported in [33],
and further experimentation is ongoing.
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Our algorithms approximate the roots numerically, and in terms of the required
upper bound 2−b (b is the bit precision) on the output errors of the computed solution,
we obtain the running time estimate O(log b) due to quadratic convergence of our
algorithms. Within a constant factor, such an estimate matches the lower bound
of [39] and enables us to yield a high output precision at relatively low cost; this
gives us a substantial practical advantage versus the algorithms that reach only O(b)
because the solution of a polynomial system is usually needed with a high precision.
We achieve this by using the matrix sign iteration and the inverse quadratic iteration,
both of which converge at a quadratic rate right from the start. All techniques and
results can be extended to the case of sparse input polynomials (see Remark 3.16).
In this case, the computation cost bounds become O(DCPolMult), where CPolMult is
the cost of polynomial multiplication, which is small when the polynomials are sparse.
(This cost depends on the degree of the polynomials and not only on an upper bound
D on the number of roots.)

The factor 3n is a substantial deficiency, of course, but it is still much less than
D for the large and important class of input polynomials of degree higher than 3.

Our results require some other restrictions. First, we consider systems with sim-
ple roots or well-separated roots. In the presence of a cluster, a specific analysis is
needed [43] and deserves additional work, which is not in the scope of this paper.
Second, we need the existence of a nondegenerate linear form, which implies that the
quotient algebra A is a Gorenstein algebra [12], [14]. This is the case in which the
solution set is 0-dimensional and is defined by n equations. If we have more than n
equations defining a 0-dimensional variety, we may take their n-random linear com-
bination (see, e.g., [13]), which yields the required Gorenstein property, but this may
introduce extra solutions that we will have to remove at the end. Finally, for approx-
imation, our algorithms converge quadratically (using O(log(b)) steps) but require
certain nondegeneracy assumptions (such as uniqueness of the minimum of the value
of |h(ζ)|, where ζ is a root and h(x) is a polynomial). The latter assumptions can be
ensured with a high probability by a random linear transformation of the variables.
Even if these assumptions are barely satisfied, the slowdown of the convergence is not
dramatic because the convergence is quadratic right from the start.

Similarly, we apply randomization to regularize the computations at the counting
stages and for the auxiliary computation of the nondegenerate linear form in the dual
space Â. Then again, nondegeneracy is ensured probabilistically and is verified in the
subsequent computation. (That is, we stay under the Las Vegas probabilistic model,
where failure may occur, with a small probability, but otherwise the correctness of
the output is ensured.)

Some of our techniques should be of independent interest. In particular, we extend
the theory of structured matrices to the ones associated to multivariate polynomials
and show correlation among computations with such matrices and dual spaces of linear
forms. We show some new nontrivial applications of the normal forms of polynomials
of the quotient algebra. Furthermore, we establish new reduction from multivariate
polynomial computations to some fundamental operations of linear algebra (such as
the matrix sign iteration, the quadratic inverse power iteration, and the computation
of Schur’s complements).

Our progress has some technical similarity to the acceleration of the solution of
linear systems of equations via fast matrix multiplication (in particular, we also rely
on faster multiplication in the quotient algebra defined by the input polynomials)
but even more so to the recent progress in the univariate polynomial rootfinding
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via recursive splitting of the input polynomial into factors (cf. [6], [34], [36], [37]).
Although recursive splitting into factors may be hard to even comprehend in the
case of multivariate polynomial systems, this is exactly the basic step of our novel
recursive process, which finally reduces our original problem to ones of small sizes.
Of course, we could not achieve splitting in the original space of the variables, but
we yield it in terms of idempotent elements of the associated quotient algebra (such
elements represent the roots), and for this purpose we have to apply all of our advanced
techniques. This approach generalizes the methods of [6] and [36] to the multivariate
case. The only missing technical point of our extension of the univariate splitting
construction of [36] is the balancing of the splitting, which was the most recent and
elusive step in the univariate case (cf. [36], [37]). It is a major challenge to advance
our approach to achieve balancing in our recursive splitting process even in the worst
case (possibly by using the geometry of discriminant varieties) and, consequently,
to approximate all of the roots of any specific polynomial system in O∗(3nD2 log b)
arithmetic time. Another goal is the computations in the dual space, as well as with
structured matrices. The latter subject is of independent interest as well [44], [32].

Let us conclude this section with a high-level description of our approach. Our
solution of polynomial systems consists of the following stages:

1. Compute a basic nondegenerate linear form on the quotient algebra A associ-
ated to a given system of polynomial equations.

2. Compute nontrivial idempotent elements of A.

3. Recover the roots of the given polynomial system from the associated idempo-
tents.

The quotient algebra A and the dual space of linear forms on it are defined and
initially studied in section 2. Stage 1 is elaborated in section 4. Idempotents are
computed by iterative algorithms of section 6. Section 7 shows how to recover or to
count the roots efficiently when the idempotents are available. The computations are
performed in the quotient algebra, and they are reduced to operations in the dual space
by using the associated structured (quasi-Toeplitz and quasi-Hankel) matrices. In
section 3, we define the classes of such matrices, show their correlation to polynomial
computations, and exploit it to operate with such matrices faster. In section 5, we
show how the combined power of the latter techniques and the ones developed for
working in the dual space enable us to rapidly perform the basic operations in the
quotient algebra and, consequently, the computations of sections 6 and 7.

Stage 1 contributes O(3nD2 logD) ops to the overall complexity bound, assum-
ing that the normal form of the monomials on the boundary of a basis is known.
The computation of a nontrivial idempotent at stage 2 has cost O(3nD2 logD log b),
which dominates the cost of the subsequent root counting or their recovery from the
idempotents. The overall complexity depends on the number of idempotents that one
has to compute, which in turn depends on the number δ of roots of interest. So far,
we cannot utilize here the effective tools of balanced splitting, available in the similar
situation for the univariate polynomial rootfinding. Thus, in the worst case, in each
step we split out only a single root from the set of all roots, and then we need δ
idempotents.

2. Definitions and preliminaries. Hereafter, R = C[x1, . . . , xn] is the ring of
multivariate polynomials in the variables x1, . . . , xn, with coefficients in the complex
field C. Z is the set of integers, N is its subset of nonnegative integers, and L =
C[x±1 , . . . , x

±
n ] is the set of Laurent polynomials with monomial exponents in Z

n. For
any a = (a1, . . . , an) ∈ Z

n, xa is the monomial xa = xa1
1 · · ·xann . �E� is the cardinality



MULTIVARIATE POLYNOMIAL SYSTEMS 439

(that is, the number of elements) of a finite subset E of Z
n. “ops” will stand for

“arithmetic operations” in the underlying coefficient ring or field.

2.1. Quotient algebra. To motivate and to demonstrate our study, we will
next consider the univariate case, where we have a fixed polynomial f ∈ C[x] of

degree d with d simple roots: f(x) = fd
∏d

i=1(x−ζi). The quotient algebra of residue
polynomials modulo f , denoted by A = C[x]/(f), is a vector space of dimension d.
Its basis is (1, x, . . . , xd−1). Consider the Lagrange polynomials

ei =
∏
j �=i

x− ζj
ζi − ζj

.

One immediately sees that
∑

i ei = 1 and eiej ≡ ei(ei − 1) ≡ 0 (for these two
polynomials vanish at the roots of f). In other words, the Lagrange polynomials
ei are orthogonal idempotents in A, and we have A =

∑
i C ei. Moreover, for any

polynomial a ∈ A, we also have (a− a(ζi))ei ≡ 0, so that ei is an eigenvector for the
operator of multiplication by a in A, for the eigenvalue a(ζi). These multiplication
operators have a diagonal form in the basis (ei) of A. According to a basic property
of Lagrange polynomials, we have a ≡ ∑i a(ζi) ei(x) for any a ∈ A. Therefore, the
dual basis of (ei) (formed by the coefficients of the ei in this decomposition) consists
of the linear forms associating to a its values at the points ζi. We will extend this
approach to the case of multivariate polynomial systems, which, of course, will require
substantial further elaboration and algebraic formalism. We refer the reader to [26],
[27], [32], [42] for further details.

Let f1, . . . , fm be m polynomials of R, defining the polynomial system f1(x) =
0, . . . , fm(x) = 0. Let I be the ideal generated by these polynomials, that is, the set
of polynomial combinations

∑
i fiqi of these elements. A = R/I denotes the quotient

ring (algebra) defined in R by I, and ≡ denotes the equality in A. We consider the
case in which the quotient algebra A = R/I is of finite dimension D over C. This
implies that the set of roots or solutions Z(I) = {ζ ∈ C

n; f1(ζ) = · · · = fm(ζ) = 0} is
finite: Z(I) = {ζ1, . . . , ζd} with d ≤ D. Then we have a decomposition of the form

A = A1 ⊕ · · · ⊕ Ad,(1)

where Ai is a local algebra, for the maximal ideal mζi defining the root ζi. From
decomposition (1), we deduce that there exist orthogonal idempotents e1, . . . , ed sat-
isfying

e1 + · · ·+ ed ≡ 1 and ei ej ≡
{

0 if i �= j,
ei if i = j.

If I = Q1∩ · · ·∩Qd is the minimal primary decomposition of I, we have eiA ∼ R/Qi,
where Ai = eiA is a local algebra, for the maximal ideal mζi defining the root ζi.
Thus, to any root ζ ∈ Z, we associate an idempotent eζ .

2.2. Dual space. Let R̂ denote the dual of the C-vector space R, that is, the
space of linear forms

Λ : R→ C,

p �→ Λ(p).
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(R will be the primal space for R̂.) Let us recall two celebrated examples, that is, the
evaluation at a fixed point ζ,

1ζ : R→ C,

p �→ p(ζ),

and the map

(da = (d1)a1 · · · (dn)an) : R→ C

p �→ 1∏n
i=1 ai!

(dx1
)
a1 · · · (dxn)

an (p)(0),(2)

where a = (a1, . . . , an) is any vector from N
n and dxi is the partial derivative with

respect to the variable xi. For any b = (b1, . . . , bn) ∈ N
n, we have

da(xb) =

{
1 if ∀i, ai = bi,
0 otherwise.

Therefore, (da)a∈Nn is the dual basis of the primal monomial basis. Thus we decom-

pose any linear form Λ ∈ R̂ as

Λ =
∑
a∈Nn

Λ(xa)da.(3)

Hereafter, we will identify R̂ with C[[d1, . . . ,dn]]. The map Λ → ∑
a∈Nn

Λ(xa)da

defines a one-to-one correspondence between the set of linear forms Λ and the set
C[[d1, . . .dn]] = C[[d]] = {∑a∈Nn

λad
a1
1 · · ·dann } of polynomials in the variables

d1, . . . ,dn.
The evaluation at 0 corresponds to the constant 1 under this definition. It will

also be denoted by δ0 = d0.
We will denote by Â and also by I⊥ the subspace of R̂ made of those linear forms

that vanish on the ideal I.
We now define multiplication of a linear form by a polynomial (R̂ is an R-module)

as follows. For any p ∈ R and Λ ∈ R̂, we write

p � Λ : R→ C,

q �→ Λ(p q).

For any pair of elements p ∈ R and a ∈ N, a > 1, we have

(dxi)
a

(xi p)(0) = a (dxi)
a−1

p(0).

Consequently, for any pair (p,a), p ∈ R, a = (a1, . . . , an) ∈ N
n (where ai �= 0 for a

fixed i), we obtain

xi � da(p) = da(xi p)

= da1
1 · · ·dai−1

i−1 dai−1
i d

ai+1

i+1 · · ·dann (p);

that is, xi acts as the inverse of di in C[[d]]. For this reason, such a representation is
referred to as the inverse systems (see, for instance, [23]). If ai = 0, then xi�d

a(p) = 0,
which allows us to redefine the product p � Λ as follows.
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Proposition 2.1. For any pair p, q ∈ R and any Λ(d) ∈ C[[d]], we have

p � Λ(q) = Λ(p q) = π+(p(d−1) Λ(d))(q),

where π+ is the projection mapping Laurent series onto the space generated by the
monomials in d with positive exponents.

This yields the following algorithm.
Algorithm 2.2. For any polynomial p ∈ 〈xα〉α∈E and a vector [Λ(xβ)]β∈E+F ,

compute the vector [p � Λ(xβ)]β∈F as follows:
• Write Λ̃(d) =

∑
β∈E+F Λ(xβ)dβ.

• Compute the product ρ(d) = p(d−1)Λ̃(d) in C[d,d−1].
• Keep the coefficients ρα of dα for α ∈ F .

3. Quasi-Toeplitz and quasi-Hankel matrices. In this section, we describe
the structure of the matrices and some tools that we will use for our algorithm design.

Let us recall first the known arithmetic complexity bounds for polynomial mul-
tiplication (see [2, pp. 56–64]), which is the basic step of our subsequent algorithms.
Let CPolMult(E,F ) denote the number of ops (that is, of arithmetic operations) re-
quired for the multiplication of a polynomial with support in E by a polynomial with
support in F .

Theorem 3.1. Let E + F = {αi = (α
(i)
1 , . . . , α

(i)
n ), i = 1, . . . , N} with |α(i)| =∑

j α
(i)
j = di for i = 1, . . . , N and d = maxi(di). Let CK;Eval(G) ops suffice to

evaluate a polynomial with a support G on a set of K points. Then we have

CPolMut(E,F ) = O (CN ;Eval(E) + CN ;Eval(F ) + N (log2(N) + log(d))
)
.

Proof. Apply the evaluation-interpolation techniques to multiply the two polyno-
mials (cf. [2]). That is, first evaluate the input polynomials on a fixed set of N points,
then multiply pairwise the computed values to obtain the values of the product on
the same set, and finally interpolate from these values and compute the coefficients
of the product by applying the (sparse) polynomial interpolation algorithm (cf. [2]).
By summarizing the computational cost estimates, we obtain the theorem.

For special sets E and F , we have better bounds.
Theorem 3.2. Let Ed = [0, . . . , d− 1] ⊂ N. Then

CPolMult(Ed, Ed) = O(d log(d)).

Theorem 3.3. Let Ec = {(α1, . . . , αn) ; 0 ≤ αi ≤ ci−1}, Ed = {(β1, . . . , βn) ; 0
≤ βi ≤ di − 1}, c = max{c1, . . . , cn}, and d = max{d1, . . . , dn}. Then we have

CPolMult(Ec, Ed) = O(M log(M)),

where M = fn and f = c + d + 1.
Theorem 3.4. Let Ef,n be the set of exponents having total degree at most f in

n variables. Then

CPolMult(Ec,n, Ed,n) = O(T log2(T )),

where T =
(
n+c+d

n

)
is the number of monomials of degree at most c+d in n variables.

Remark 3.5. Theorems 3.1 and 3.3 correspond, respectively, to lattice points
in a product of intervals and in the scaled standard simplex and can be extended to
the computations over any ring of constants (rather than over the complex field) at
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the expense of increasing their complexity bounds by at most the factors of log log(N)
or log log(M), respectively [2]. Theorem 3.4 can be extended similarly to any field of
constants having characteristic 0.

Next, by following [32], [31], we will extend the definitions of Toeplitz and Hankel
matrices to the multivariate case. As we will see, these structures are omnipresent
when we solve polynomial systems.

Definition 3.6. Let E and F be two finite subsets of N
n, and let M =

(mα,β)α∈E,β∈F be a matrix whose rows are indexed by the elements of E and columns
by the elements of F . Let i denote the ith basis coordinate vector of N

n.

• M = [mα,β ]α∈E,β∈F is an (E,F ) quasi-Toeplitz matrix if and only if, for
all α ∈ E, β ∈ F , the entries mα,β = tα−β depend only on α − β, that is,
if and only if, for i = 1, . . . , n, we have mα+i,β+i = mα,β, provided that
α, α+i ∈ E;β, β+i ∈ F ; such a matrix M is associated with the polynomial
TM (x) =

∑
u∈E+F tu xu.

• M is an (E,F ) quasi-Hankel matrix if and only if, for all α ∈ E, β ∈ F ,
the entries mα,β = hα+β depend only on α + β, that is, if and only if, for
i = 1, . . . , n, we have mα−i,β+i = mα,β provided that α, α− i ∈ E;β, β + i ∈
F ; such a matrix M is associated with the Laurent polynomial HM (d) =∑

u∈E−F hud
u.

For E = [0, . . . ,m − 1] and F = [0, . . . , n − 1] (resp., F = [−n + 1, . . . , 0]),
Definition 3.6 turns into the usual definition of Toeplitz (resp., Hankel) matrices (see
[2]). Quasi-Toeplitz matrices have also been studied under the name of multilevel
Toeplitz matrices (see, e.g., [44]) in the restricted special case, where the sets E and
F are rectangular (i.e., a product of intervals). For our study of polynomial systems
of equations, using the latter restricted case is not sufficient, and our more general
definitions are required.

The definitions can be extended immediately to all subsets E,F of Z
n if we work

with the Laurent polynomials.

The classes of quasi-Toeplitz and quasi-Hankel matrices can be transformed into
each other by means of multiplication by the reflection matrix, having ones on its
antidiagonal and zeros elsewhere.

Definition 3.7. Let πE : L→ L be the projection map such that πE(xα) = xα

if α ∈ E and πE(xα) = 0 otherwise. Also let πE : C[[d]] → C[[d]] denote the
projection map such that πE(dα) = dα if α ∈ E and πE(dα) = 0 otherwise.

We can describe the quasi-Toeplitz and quasi-Hankel operators in terms of poly-
nomial multiplication (see [30], [29]), and the next proposition reduces multiplication
of an (E,F ) quasi-Toeplitz (resp., quasi-Hankel) matrix by a vector v = [vβ ] ∈ C

F to
(Laurent’s) polynomial multiplication.

Proposition 3.8. The matrix M is an (E,F ) quasi-Toeplitz (resp., an (E,F )
quasi-Hankel) matrix if and only if it is the matrix of the operator πE ◦µTM ◦πF (resp.,
πE ◦ µHM ◦ πF ), where, for any p ∈ L, µp : q �→ p q is the operator of multiplication
by p in L.

Proof (see [29]). We will give a proof only for an (E,F ) quasi-Toeplitz matrix
M = (Mα,β)α∈E,β∈F . (The proof is similar for a quasi-Hankel matrix.) The associated
polynomial is TM (x) =

∑
u∈E+F tux

u. For any vector v = [vβ ] ∈ C
F , let v(x) denote



MULTIVARIATE POLYNOMIAL SYSTEMS 443

the polynomial
∑

β∈F vβx
β . Then

TM (x) v(x) =
∑

u∈E+F,β∈F
xu+β tu vβ

=
∑

α=u+β∈E+2F

xα


∑
β∈F

tα−β vβ


 ,

where we assume that tu = 0 if u �∈ E + F . Therefore, for α ∈ E, the coefficient of
xα equals

∑
β∈F

tα−β vβ =
∑
β∈F

Mα,β vβ ,

which is precisely the coefficient α of Mv.
Algorithm 3.9. Multiplication of the (E,F ) quasi-Toeplitz (resp., quasi-Hankel)

matrix M = (Mα,β)α∈E,β∈F by a vector v = [vβ ] ∈ C
F :

• multiply the polynomials TM =
∑

u∈E+F tu xu (resp., HM (d) =
∑

u∈E−F hud
u)

by v(x) =
∑

β∈F vβx
β (resp., v(d−1) =

∑
β∈F vβd

−β),
• and output the projection of the product on xE (resp., dE).

Definition 3.10. CPolMult(E,F ) denotes the number of ops required to multiply
a polynomial with a support in E by a polynomial with a support in F .

Clearly, Algorithm 3.9 uses CPolMult(E+F, F ) (resp., CPolMult(E−F,−F )) ops.
Proposition 3.11.
(a) An (E,F ) quasi-Hankel (resp., an (E,F ) quasi-Toeplitz) matrix M can be

multiplied by a vector by using O(N log2(N) + N log(d) + CM,N ) ops, where
d = degHM (resp., deg TM ) , N = �E − 2F � (resp., �E + 2F �), and CM,N

denotes the cost of the evaluation of all monomials of the polynomial HM

(resp., TM ) on a fixed set of N points.
(b) In particular, the ops bound becomes O(M log(M)), where E + F = Ec, F =

Ed and Ec, Ed and M = (c+ d+ 1)n are defined as in Theorem 3.3, whereas
(c) the bound turns into O(T log2(T )), where E + F = Ec,n, F = Ed,n and

Ec,n, Ed,n, and T =
(
n+c+d

n

)
are defined as in Theorem 3.4.

Proof. Reduce the problem to computing the product of the two polynomials
HM (x) (resp., TM (x)) and V (x), and then apply Theorems 3.1–3.4.

Applying these results, we can bound the number of ops in Algorithm 2.2 as
follows.

Proposition 3.12. For any polynomial p ∈ R with support in E and any vector
[Λ(xα)]α∈E+F (with Λ ∈ R̂), the vector [p � Λ(xβ)]β∈F can be computed in O(�E +
F � log2(�E + F �)) ops.

Once we have a fast matrix-by-vector multiplication, a nonsingular linear system
of equations can also be solved quickly by means of the conjugate gradient algorithm,
which is based on the following theorem [19, section 10.2].

Theorem 3.13. Let W v = w be a nonsingular linear system of N equations.
Then N multiplications of each of the matrices W and WT by vectors and O(N2)
additional ops suffice to compute the solution v to this linear system.

Note that WT is a quasi-Toeplitz (resp., quasi-Hankel) matrix if W is, and then
both matrices can be multiplied by a vector quickly (see Proposition 3.11). Therefore,
in the cases of quasi-Toeplitz and quasi-Hankel matrices W , Theorem 3.13 yields a
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fast algorithm for solving the linear system W v = w. We will also need the following
related result.

Theorem 3.14 (see [32]). Let W be an N × N real symmetric or Hermitian
matrix. Let S be a fixed finite set of complex numbers. Then there is a randomized
algorithm that selects N random parameters from the set S independently of each
other (under uniform probability distribution on S) and either fails with a probability

of at most (N+1)N
2�S	 or performs O(N) multiplications of the matrix W by vectors and

O(N2 log(N)) other ops to compute the rank and the signature of W .

Hereafter, random selection of elements of a set S as in Theorem 3.14 will be
called sampling.

Proof. To support the claimed estimate, we first tridiagonalize the matrix W by
the Lanczos randomized algorithm [2, pp. 118–119], which involves an initial vector

of dimension N and fails with a probability of (N+1)N
2�S	 if the N coordinates of the

vector have been sampled at random from the set S. The above bound on the failure
probability and the cost bound of O(N) multiplications of the matrix W by vectors
and O(N2 log(N)) other ops of this stage have been proved in [38]. Then, in O(N)
ops, we compute the Sturm sequence of the N values of the determinants of all of
the k × k northwestern (leading principal) submatrices of W for k = 1, . . . , N and
obtain the numbers N+ and N− of positive and negative eigenvalues of W from the
Sturm sequence (cf., e.g., [3]). These two numbers immediately define the rank and
the signature of W .

Combining Proposition 3.11 with Theorems 3.13 and 3.14 gives us the next corol-
lary.

Corollary 3.15. For an N ×N quasi-Toeplitz or quasi-Hankel matrix W , the
estimates of Theorems 3.13 and 3.14 turn into O(N2 log(N)) ops if the matrix has a
maximal (c, d) support where c + d = N . They turn into O(N2 log2(N)) ops if the
matrix has a total degree (c, d) support where c + d = O(N) and into O((log2(N) +
log(d))N2 + CW,N ) otherwise, where d and CW,N are defined as in Proposition 3.11
(a) for M = W .

Remark 3.16. Hereafter, we will refer to the matrices of case (b) in Proposition
3.11 as the matrices with support of the maximal degree (c, d) and to the matrices
of case (c) as the ones with support of the total degree (c, d). Furthermore, stating
our estimates for the arithmetic complexity of computations, we will assume that
the input polynomials have the maximal degree (c, d) support. That is, we will rely on
Theorem 3.3 and Proposition 3.11 (b), and we will express the estimates in terms of the
cardinality of the supports E and/or F or in terms of an upper bound D on the number
of common roots of the input polynomials. The estimates can be easily extended to
the other cases based on Theorem 3.1 or 3.4 and Proposition 3.11 (a) or (c) instead of
Theorem 3.3 and Proposition 3.11 (b). In the latter case (Theorem 3.4 and Proposition
3.11 (c)), the cost estimates increase by the factors log(D), log(�E�), or log(�F �),
respectively. In case Theorems 3.1 and Proposition 3.11 (a) are used, the estimates
are expressed in terms of the bounds CPolMult(G,H) or CM,N for appropriate sets G
and H, matrix M , and integer N . The latter case covers sparse input polynomials for
which the respective bounds CPolMult(G,H) and CM,N are smaller than for the general
(or dense) input, although they are not expressed solely in terms of the cardinality D.
(They also depend on the degree of the monomials or the cardinality of the supports
of the input polynomial system.)
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4. Computation of a nondegenerate linear form. In this section, we will
compute a nondegenerate linear form on A provided that we are given a basis (xα)α∈E
of A and the normal form of the elements on the boundary of this basis. This is the
case, for instance, when we have computed a Gröbner basis of our ideal I for any
monomial ordering [9] or when we apply any other normal-form algorithm [28], [33].

Definition 4.1.
• Let υi = (δi,1, . . . , δi,n) ∈ N

n, where δi,j is the Kronecker symbol.
• For all A ⊂ N

n, Ω (A) = {α ∈ N
n : α ∈ A or ∃i ∈ {1, . . . , n} , α− υi ∈ A}.

• Nα for α ∈ Ω(E) is the normal form of the monomial xα mod I, i.e., the
canonical representative of its class modulo the ideal I. Nα = xα if α ∈ E,
and

Nα =
∑
β∈E

nα,βx
β

if α ∈ Ω(E)− E.

Our goal is to obtain the coefficients τ(xα) for α ∈ E+E+E, where τ ∈ Â = I⊥

is a generic linear form. We will compute them, by induction, under the following
hypothesis.

Hypothesis 4.2.
• (xα)α∈E is stable under derivation, that is, α = α′ + vi ∈ E implies that
α′ ∈ E.

• Nα, the normal form of xα, is available for every α ∈ Ω (E).
• The values τα = τ (xα) are available for all α ∈ E, where τ is not degenerate

∈ Â = I⊥.
For the third part, we can remark that a random choice of τ(xα) will imply with a

high probability that τ does not degenerate. Our procedure is based on the following
property.

Proposition 4.3. For each α ∈ Ω (E), we have τα = τ (Nα) =
∑

β∈E nα,βτβ.
This value can be computed by applying O (D) ops, where D = �E�. More generally,
for all γ ∈ E we have the following inductive relation:

τα+γ =
∑
β∈E

nα,βτβ+γ .

Now assume that we have computed all of the values τβ for β ∈ Ω (E), and let
α = α0 + υi ∈ Ω (Ω (E)) with α0 ∈ Ω (E). Then

τ (xα) = τ (xiNα0) =
∑
β∈E

nα0,βτ
(
xix

β
)
.

We know all of the nα0,β and all of the τ
(
xix

β
)

because β + υi ∈ Ω (E). Therefore,
we obtain τα =

∑
β∈E nα0,βτβ+υi by computing a scalar product. Recursively, this

leads us to the following inductive definition of the “levels” Ωi.
Definition 4.4. Write Ω0 = E, Ω1 = Ω (E) and Ωi = Ω (Ωi−1) ∩ (E + E +

E), i = 2, 3, . . . , and write h = max {|α| : α ∈ E} so that E + E + E = Ω2h.
Proposition 4.5. For every α ∈ Ωi, there is α

′ ∈ N
n and α1 ∈ Ω1 − Ω0 such

that α = α1 + α′ with |α′| ≤ i− 1 and for all β ∈ E we have β + α′ ∈ Ωi−1.
Proof. Assume that i > 0. Let α ∈ Ωi ⊂ E +E +E. Then α can be decomposed

as follows: α = γ0 +γ1 +γ2 with γ0, γ1, γ2 ∈ E and |γ1 +γ2| = i. As i > 1, there exists
α′ = γ1 + γ2 − υj ∈ N

n, and because (xα)α∈E is stable by Hypothesis 4.2, we have
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α′ ∈ E + E. It follows that α = α1 + α′, where α1 = γ0 + υj ∈ Ω1 and |α′| ≤ i − 1.
Therefore, for all β ∈ E, β + α′ ∈ Ωi−1, which completes the proof.

Assume now that we have already computed all of the values τβ for β ∈ Ωi−1.
Then, according to Proposition 4.5, for any α ∈ Ωi, we have α = α1+α′, with α1 ∈ Ω1

and |α′| ≤ i− 1. Thus, if α1 ∈ Ω1 − Ω0, we have

τ(xα) = τ(xα1 xα
′
) =

∑
β∈E

nα1,βτ(xβ+α′)

with β+α′ ∈ Ωi−1; otherwise, if α1 ∈ Ω0, we have α = α1+α′ ∈ Ωi−1. In other words,
we can compute by induction the values of τ on Ωi from its values on Ωi−1. This yields
the following recursive algorithm for the computation of τ(xα) with α ∈ E + E + E.

Algorithm 4.6. Compute the first coefficients of the series associated with a
linear form τ of I⊥ as follows:

1. For i from 1 to 2h do for each α = α0 + α1 ∈ Ωi with α0 and α1 as in
Proposition 4.5 compute τα =

∑
β∈E nα1,βτα0+β

End for
2. Compute and output the polynomial S =

∑
α∈E+E+E ταd

α.

Proposition 4.7. The arithmetic complexity of Algorithm 4.6 is O (3nD2
)
.

Proof. For each element α ∈ E + E + E, we compute τα in O (D) arithmetic
operations, and there are at most O (3nD) elements in E +E +E, which gives us the
claimed arithmetic complexity estimate.

5. Arithmetic in the algebra A. Our algorithms in the next sections perform
computations in A efficiently based on the knowledge of a certain linear form on A
(such as the one computed in the previous section), which induces a nondegenerate
inner product. More precisely, we assume that the following items are available.

Basic set of items:

• a linear form τ ∈ Â = I⊥, such that the bilinear form τ(a b) from A×A to
C is nondegenerate,

• a monomial basis (xα)α∈E of A,
• the coefficients (τ(xα))α∈F , where F = E + E + E.

The number of elements in E is the dimension D of A over C. We describe basic
operations in the quotient ring A in terms of the following quasi-Hankel matrix.

Definition 5.1. For any Λ in Â and for any subset F of N
n, let HFΛ denote the

quasi-Hankel matrix, HFΛ = (Λ(xα+β))α,β∈F .
By default we will assume we are dealing with the maximal degree support when-

ever we state our arithmetic complexity estimates (see Remark 3.16).

Proposition 5.2. The matrix HFΛ can be multiplied by a vector by using O(3n�F �
log(3n�F �)) ops.

Proof. Apply Proposition 3.11 (b) to the (F, F ) quasi-Hankel matrix HFΛ , and
observe that �F + F + F � = 3n�F �.

Combining Corollary 3.15 and Proposition 5.2 implies the following result.

Proposition 5.3. Check if the linear system HFΛu = v has a unique solution,
and, if so, computing the solution requires O(3n�F �2 log(3n�F �)) ops. The same
cost estimate applies to the computation of the rank of the matrix HFΛ , which involves
randomization with �F � random parameters and has a failure probability of at most
(�F �+ 1) �F �/ (2�S�) provided that the parameters have been sampled from a fixed
finite set S.
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5.1. Dual basis. As τ defines a nondegenerate bilinear form, there exists a set
of polynomials (wα)α∈E such that τ(xαwβ) = δα,β , δα,β being Kronecker’s symbol,
δα,α = 1, and δα,β = 0 if α �= β . The set (wα)α∈E is called the dual basis of (xα)α∈E
for τ .

Proposition 5.4 (projection formula). For any p ∈ R, we have

p ≡
∑
α∈E

τ(pwα)xα ≡
∑
α∈E

τ(pxα)wα.(4)

Proof. See [7], [11].
Definition 5.5. For any p ∈ A, denote by [p]x and [p]w the coordinate vectors

of p in the bases (xα)α∈E and (wα)α∈E, respectively.
Let wα =

∑
β∈E wβ,α xβ , and let Wτ = (wα,β)α,β∈E be the coefficient matrix. By

the definition of the dual basis,

τ(wα xγ) =
∑
β∈E

wα,β τ(xβ+γ)(5)

is 1 if α = γ and 0 elsewhere. In terms of matrices, (5) implies that

Hτ Wτ = ID,(6)

where Hτ = HEτ = (τ(xβ+γ))β,γ∈E . From the definition of Wτ and (6), we deduce that

[p]x = Wτ [p]w, [p]w = Hτ [p]x.(7)

The next result follows from Proposition 5.3.
Proposition 5.6. For any p ∈ A, the coordinates [p]x of p in the monomial basis

can be computed from its coordinates [p]w in the dual basis by using O(3nD2 log(3nD))
ops.

5.2. Product in A. We apply projection formula (4) and, for any f ∈ R, deduce
that f ≡∑α∈E τ(f xα)wα =

∑
α∈E f � τ(xα)wα in A. Furthermore, by expressing

the linear form f � τ as a formal power series, we obtain f � τ =
∑

α∈Nn
f � τ(xα)dα

so that the coefficients of (dα)α∈E in the expansion of f � τ are the coefficients [f ]w
of f in the dual basis (wα)α∈E .

Similarly, for any f, g ∈ A, the coefficients of (dα)α∈E in fg�τ are the coefficients
[fg]w of f g in the dual basis (wα)α∈E . This leads to the following algorithm for
computing the product in A.

Algorithm 5.7. For any pair f, g ∈ 〈xα〉α∈E, compute the product fg in the
basis 〈xα〉α∈E of A as follows:

1. Compute the coefficients of (dα)α∈E in the product f g � τ .
2. Obtain the coefficients [f g]w from the first coefficients of fg � τ .
3. Solve in u the linear system [f g]w = Hτ u.

Output the vector u, which is the coordinate vector [f g]x of f g in the monomial basis
of A.

Proposition 5.8. The product f g can be computed in O(3nD2 log(3nD)) ops.
Proof. f g � τ is the product of polynomials with supports in −E or E + E + E.

Such a product can be computed in O(3nD log2(3nD)) ops (see Proposition 3.11 and
Remark 3.16 and observe that �E + E + E� = O (3n�E�)). The complexity of the
third step is bounded according to Proposition 5.3 (with F = E).
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5.3. Inversion in A. The projection formula of Proposition 5.4 implies that
f xα =

∑
β∈E f � τ(xα+β)wβ , which means that [f xα]w is the coordinate vector

[f � τ(xα+β)]β∈E , that is, the column of the matrix Hf$τ indexed by α. In other
words, [f xα]w = Hf$τ [xα]x. By linearity, for any g ∈ A, we have

[f g]w = Hf$τ [g]x = Hτ [f g]x,

according to (7). Thus, if fg = 1, that is, if g = f−1, we have Hf$τ [g]x = Hτ [1]x. This
leads to the following algorithm for computing the inverses (reciprocals) in A.

Algorithm 5.9. For any f ∈ 〈xα〉α∈E, verify whether there exists the inverse
(reciprocal) of f ∈ A, and, if so, compute it.

1. Compute v = Hτ [1]x.
2. Solve in u the linear system Hf$τu = v or output Failure if the matrix Hτ
is not invertible.

Output the vector u, which is the coordinate vector [f−1]x of f
−1 in the monomial

basis of A.
By combining Propositions 5.2 and 5.3 and Remark 3.16, we obtain the following

proposition.
Proposition 5.10. The inverse (reciprocal) f−1 of an element f of A can be

computed by using O(3nD2 log(3nD)) ops.

6. Iterative methods. Our algorithms for the root approximation will essen-
tially amount to computing nontrivial idempotents in the quotient algebra A by itera-
tive processes with the subsequent simple recovery of the roots from the idempotents.
The algorithms work in C

D, and we will write i =
√−1. More rudimentary univariate

versions of such algorithms were studied in [6]. We will use the basic operations in
the quotient algebra A in order to devise two iterative methods, which will converge
to nontrivial idempotents. We will first consider an iteration associated to a slight
modification of the so-called Joukovski map (see [20], [6]): z �→ 1

2 (z + 1
z ) and its

variant z �→ 1
2 (z− 1

z ). The two attractive fixed points of this map are 1 and −1; for
its variant, they turn into i and −i.

Algorithm 6.1. Sign iteration. Choose u0 = h ∈ 〈xα〉α∈E, and recursively
compute uk+1 ≡ 1

2 (uk − 1
uk

) ∈ A, k = 0, 1, . . . .
By applying Proposition 5.10 and Remark 3.16, we obtain the following result.
Proposition 6.2. Each iteration of Algorithm 6.1 requires O(3nD2 log(3nD))

ops.
Proof. Apply Proposition 5.3 and Remark 3.16 to estimate the arithmetic cost of

the computation of the inverse (reciprocal) of an element of A. To yield the claimed
cost bound of Proposition 6.2, it remains to compute a linear combination of un and
u−1
n in O(D) ops by direct operations on vectors of size D.

Hereafter, �(h) and  (h) denote the real and the imaginary parts of a complex
number h, respectively. Recall that we write ζ to denote the common roots ζ ∈ Z (I)
of given polynomials f1, . . . , fm.

Remark 6.3. In Proposition 6.4, we will assume that J (h (ζ)) �= 0 for all ζ ∈
Z (I) and, in Proposition 6.6, that |h (ζ) | is minimized for a unique root ζ ∈ Z (I).
These assumptions are satisfied for a generic system of polynomials or a generic
polynomial h.

Proposition 6.4. The sequence (u0, u1, . . . ) of Algorithm 6.1 converges quadrat-
ically to σ =

∑
�(h(ζ))>0 eζ −

∑
�(h(ζ))<0 eζ , and we have

‖un − σ‖ ≤ K × ρ2n
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(for some constant K), where

ρ+ = max�(h(ζ))>0,ζ∈Z(I)

∣∣∣∣h(ζ)− i

h(ζ) + i

∣∣∣∣ ,

ρ− = max�(h(ζ))<0,ζ∈Z(I)

∣∣∣∣h(ζ) + i

h(ζ)− i

∣∣∣∣ ,
i =

√−1, and ρ = max{ρ+, ρ−}.
Proof. Apply the classical convergence analysis of the Joukovski map (see [20])

to the matrices of multiplication by un in A, whose eigenvalues are {un(ζ),
ζ ∈ Z(I)}.

Let

e+ =
∑

�(h(ζ))>0

eζ =
1

2
(1 + σ), e− =

∑
�(h(ζ))≤0

eζ =
1

2
(1− σ)

denote the two sums of the idempotents associated to the roots ζ ∈ Z such that
 (h(ζ)) > 0 and  (h(ζ)) < 0, respectively.

If h(x) is a linear function in x, then each of the idempotents e+ and e− is asso-
ciated with all of the roots lying in a fixed half-space of C

n defined by the inequalities
 (h(ζ)) > 0 or  (h(ζ)) < 0. Conversely, an appropriate linear function h(x) defines
the idempotents e+ and e− associated with any fixed half-space of C

n. Furthermore,
for any fixed polytope in C

n defined as the intersection of half-spaces, we may com-
pute the family of the associated idempotents whose product will be associated with
the polytope. In particular, any bounded box is the intersection of 4n half-spaces,
and the associated idempotent can be computed in 4n applications of Algorithm 6.1.
Let us specify the case in which the polytope is the almost flat unbounded box ap-
proximating the real manifold Rn = {x :  (xi) = 0, i = 1, . . . , n}. In this case, the
choices of h = xi − ε and h = xi + ε allow us to approximate the two idempotents

e−i,ε =
∑
�(ζi)<ε

eζ , e+
i,ε =

∑
�(ζi)>−ε

eζ .

Their product can be computed in O(3nD2 log(3nD)) ops to yield ri,ε =
∑
|�(ζi)|<ε eζ ,

and the product rε ≡ r1,ε · · · rn,ε can be computed in O(3nD2 log(3nD)) ops to yield
the sum of the fundamental idempotents whose associated roots of the polynomial
system are nearly real.

Algorithm 6.5. Computing the sum of the fundamental (nearly real) idempo-
tents.

• For i from 1 to n do
u0 = xi ± ε; u1 :≡ 1

2 (u0 − 1
u0

) in A; k := 1;

while ‖uk − uk−1‖ < 2−b do { uk+1 := 1
2 (uk − 1

uk
); k := k + 1 }

Compute e±i,e and ri,ε.
• Compute and output the product rε ≡ r1,ε · · · rn,ε in A.

According to Propositions 6.2 and 6.4 and Remark 3.16, we have the following
proposition.

Proposition 6.6. An approximation of rε (within the error bound ε = 2−b) can
be computed in O(µ 3nD2 log(3nD)) ops, where

µ = µ(b, ρ) = log |b/ log (ρ) |(8)
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and

ρ = maxi{ max�(ζi)>0,ζ∈Z(I) | ζi−i
ζi+i |,

max�(ζi)<0,ζ∈Z(I) | ζi+i
ζi−i | }.(9)

The second iterative method is the quadratic power method.
Algorithm 6.7. Quadratic power iteration. Choose u0 = h ∈ 〈xα〉α∈E, and

recursively compute un+1 ≡ u2
n ∈ A, n = 0, 1, . . . .

Each step of this iteration requires at most O (3nD2 log (3nD)
)

ops, and we have
the following property.

Proposition 6.8. An approximation (within the error bound ε = 2−b) of the
idempotent eζ such that a unique simple root ζ minimizes |h| on Z(I) can be computed
in O (ν3nD2 log (3nD)

)
ops, where

ν = ν (b, γ) = log (b/| log (γ) |) ,(10)

γ =

∣∣∣∣ h(ζ)

h(ζ ′)

∣∣∣∣ ,(11)

and |h(ζ ′)| is the second smallest value of |h| over Z(I).
Proof. We rely on the convergence analysis of the quadratic power method

applied to the matrices of multiplication by un in A, whose eigenvalues are {un(ζ),
ζ ∈ Z(I)}.

7. Counting and approximating the roots and the real roots. In this
section, we will apply the techniques and algorithms of the previous sections to the
problems of counting and approximation of the roots of the system p = 0.

In the algorithms for counting roots, we will use the randomization required to
apply Theorem 3.13. The resulting randomized algorithms and the computational
complexity estimates for counting (excluding the preprocessing stage of subsection
7.5) will apply to any 0-dimensional polynomial system.

In the approximation algorithms, we do not need randomization except for the
ensurance of the assumption of Propositions 6.4 (cf. Remark 6.3), but the estimates
for the computational cost depend on the parameters ρ and γ of the two latter propo-
sitions (cf. (8), (11)) and remain meaningful unless these parameters are extremely
close to 1.

7.1. Counting the roots and the real roots.
Theorem 7.1 (see [29]). The number of the roots (resp., real roots) of the system

p = 0 is given by the rank (resp., the signature) of the quasi-Hankel matrix HE
τ .

Theorem 7.1, Corollary 3.15, and Remark 3.16 together imply the following result.
Corollary 7.2. The numbers of the roots and of the real roots of the poly-

nomial system p = 0 can be computed by a randomized algorithm that generates D
random parameters and, in addition, performs O(3nD2 log(3nD)) ops. If the random
parameters are sampled from a fixed finite set S, then the algorithm may fail with a
probability at most (3nD + 1) 3nD/ (2�S�).

7.2. Approximation of a root. Application of Algorithm 6.7 in A yields the
following theorem.

Theorem 7.3. The idempotent corresponding to a root ζ that maximizes the
absolute values |h(ζ)| of a fixed polynomial h(x) can be approximated (within an error
bound ε = 2−b) by using O(3nD2ν log(3nD)) ops, where ν is defined in (10) and (11).
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The latter cost bound dominates the cost of the subsequent transition from the
idempotent to a root.

Theorem 7.4. The n coordinates of a simple root ζ can be determined from the
idempotent eζ in O(3nD2 log(3nD)) ops. This bound increases by the factor of n if
the root is multiple.

Proof. We compute Jeζ in A (where J is the Jacobian of the n equations) by
Algorithm 5.7. According to [29], [32], in the case of a simple root, we have

HEτ [J eζ ]x = λ [ζα]α∈E , λ ∈ C.

This vector is computed at the arithmetic cost within the complexity bound of Propo-
sition 5.2 (cf. [32]), and this immediately gives us the coordinates of the root ζ if xE

contains 1, x1, . . . , xn, which is generically the case. If the root is not simple, then,
according to the relation

xi J eζ ≡ ζi J eζ

(see [29], [32], [11]), we recover the coordinates of ζ by computing n + 1 products in
A (by Algorithm 5.7).

7.3. Approximation of a selected root. In view of Theorem 7.4, it is suffi-
cient to approximate the idempotents associated to the roots.

Suppose that we seek a root of the system p = 0 whose coordinate x1 is the
closest to a given value u ∈ C. Let us assume that u is not a projection of any root
of the system p = 0 so that x1− u has the inverse (reciprocal) in A. Let h(x) denote
such an inverse (reciprocal). We have h (x)(x1 − u) ≡ 1 and h(ζ) = 1

ζ1−u . Therefore,

a root whose coordinate x1 is the closest to u1 is a root for which |h(ζ)| is the largest.
Consequently, iterative squaring of h = h(x) shall converge to this root.

The polynomial h can be computed by using O(3nD2ν log(3nD)) ops for ν of (10)
and (11) (see [32, section 3.3.4]).

One may compute several roots of the polynomial system by applying the latter
computation (successively or concurrently) to several initial values u.

7.4. Counting nearly real roots and the roots in a polytope. As long as
we have (a close approximation to) the idempotent r associated with a fixed polytope,
we may restrict our counting and approximation algorithms to such a polytope simply
by moving from the basic nondegenerate linear form τ to the form r � τ (by using
O(3nD2 log(3nD)) ops). Let us specify this in the case in which the polytope is the
nearly flat box approximating the real space R

n (cf. Algorithm 6.5 and Proposition
6.6).

Let AR
ε = rεA denote the subalgebra of A corresponding to the (nearly) real

idempotents for a fixed ε = 2−b.
We may restrict our computation on AR

ε by computing the linear form τ ′ = rε � τ
(in O(3nD2 log(D)) ops, according to Proposition 3.12), and we have the following
properties.

Proposition 7.5.
• The linear form τ ′ = rε � τ defines a nondegenerate inner product on AR

ε .
• The number of nearly real roots (counted with their multiplicities) is the rank
of the matrix HE

rε$τ = (rε � τ(xβ+γ))β,γ ∈ F .

• Let E′ be a subset of E such that the submatrix HE′
τ ′ is of the maximal rank.

Then E′ is a basis of Aε.
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Proof. See [32].

We thus require an algorithm for computing the rank of HE
τ ′ (see [35] on fast

computation of the rank). Assuming (8) and (9), we deduce the following result from
Theorem 3.14.

Proposition 7.6. The number of all nearly real roots can be computed by using
O(µ 3nD2 log(3nD)) ops (for µ of (8) and (9)).

7.5. Approximation of nearly real roots and the roots in a box.. To
compute a nearly real root as well as a root lying in a fixed box in C

n maximizing a
given function |h|, we may apply Algorithm 6.7 in A (or AR

ε ) and Proposition 6.8 and
obtain the following theorem.

Theorem 7.7. A nearly real root (as well as a root lying in a fixed box) that
maximizes a function |h| can be computed (up to an error ε = 2−b) by using
O((µ + ν) 3nD2 log(3nD)) ops for µ and ν of (8)–(11).

This process can be extended to compute the other roots via deflation. That is,
we replace rε by r′ε = rε − eζ , compute τ ′′ = r′ε � τ , and apply the same iteration
to compute the next (real) root, where |h| takes on its second smallest value over
Z(I). We can also restrict our computation to a fixed box by using the algorithm
of subsection 7.4 to compute the sum of the idempotents corresponding to the roots
lying inside the box. The complexity of each step is bounded in Theorem 7.7, leading
to the following result for δ (real) roots in a given box.

Theorem 7.8. The δ (real) roots ζ lying in a given box can be computed (up
to an error ε = 2−b) by using O((µ + ν)n3nδ D2 log(D) log(b)) ops for µ and ν of
(8)–(11).
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Boston, Springer-Verlag, New York, 2001.

[36] V. Y. Pan, Optimal and nearly optimal algorithms for approximating complex polynomial zeros,
Comput. Math. Appl., 31 (1996), pp. 97–138.

[37] V. Y. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Rev., 39
(1997), pp. 187–220.

[38] V. Y. Pan and Z. Chen, The complexity of matrix eigenproblem, in Proceedings of the 31st
Annual ACM Symposium on Theory of Computing, ACM, New York, 1999, pp. 507–516.

[39] J. Renegar, On the worst-case complexity of approximating zeros of polynomials, J. Complex-
ity, 3 (1987), pp. 90–113.

[40] J. Renegar, On the worst-case arithmetic complexity of approximating zeros of systems of
polynomials, SIAM J. Comput., 18 (1989), pp. 350–370.

[41] M. Shub and S. Smale, On the complexity of Bezout’s theorem I—geometric aspects, J. Amer.
Math. Soc., 6 (1993), pp. 459–501.

[42] H. J. Stetter, Eigenproblems are at the heart of polynomial system solving, SIGSAM Bulletin,
30 (1996), pp. 22–25.

[43] H. J. Stetter, Analysis of zero clusters in multivariate polynomial systems, in Proceedings of
the International Symposium on Symbolic and Algebraic Computation, ACM, New York,
1996, pp. 127–135.

[44] E. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and
clustering, Linear Algebra Appl., 232 (1996), pp. 1–43.

[45] B. L. van der Waerden, Modern Algebra, Volume II, Frederick Ungar Publishing, New York,
1948.



NEW BOUNDS FOR VARIABLE-SIZED ONLINE BIN PACKING∗

STEVEN S. SEIDEN† , ROB VAN STEE‡ , AND LEAH EPSTEIN§

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 455–469

The remaining authors would like to dedicate this paper to the memory of our friend

Steve Seiden, who was killed in an accident on June 11, 2002

Abstract. In the variable-sized online bin packing problem, one has to assign items to bins one
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1. Introduction. In this paper, we investigate the bin packing problem, one
of the oldest and most thoroughly studied problems in computer science [3, 5]. In
particular, we investigate a natural generalization of the classical online bin packing
problem known as online variable-sized bin packing. We show improved upper bounds
and the first lower bounds for this problem and in the process encounter several strange
fractal-like curves.

Problem definition. In the classical bin packing problem, we receive a se-
quence σ of pieces p1, p2, . . . , pN . Each piece has a fixed size in (0, 1]. In a slight
abuse of notation, we use pi to indicate both the ith piece and its size. We have an
infinite number of bins each with capacity 1. Each piece must be assigned to a bin.
Further, the sum of the sizes of the pieces assigned to any bin may not exceed its
capacity. A bin is empty if no piece is assigned to it; otherwise, it is used. The goal
is to minimize the number of bins used.

The variable-sized bin packing problem differs from the classical one in that the
bins do not all have the same capacity. There are an infinite number of bins of each
capacity α1 < α2 < · · · < αm = 1. The goal now is to minimize the sum of the
capacities of the bins used.

In the online versions of these problems, each piece must be assigned in turn,
without knowledge of the next pieces. Since it is impossible in general to produce the
best possible solution when computation occurs online, we consider approximation
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algorithms. Basically, we want to find an algorithm which incurs cost which is within
a constant factor of the minimum possible cost, no matter what the input is. This
constant factor is known as the asymptotic performance ratio.
A bin packing algorithm uses bounded space if it has only a constant number of

bins available to accept items at any point during processing. These bins are called
open bins. Bins which have already accepted some items, but which the algorithm
no longer considers for packing, are closed bins. While bounded space algorithms are
sometimes desirable, it is often the case that unbounded space algorithms can achieve
lower performance ratios.
We define the asymptotic performance ratio more precisely. For a given input

sequence σ, let costA(σ) be the sum of the capacities of the bins used by algorithm A
on σ. Let cost(σ) be the minimum possible cost to pack pieces in σ. The asymptotic
performance ratio for an algorithm A is defined to be

R∞A = lim sup
n→∞

max
σ

{
costA(σ)
cost(σ)

∣∣∣∣ cost(σ) = n
}
.

The optimal asymptotic performance ratio is defined to be

R∞OPT = infA
R∞A .

Our goal is to find an algorithm with asymptotic performance ratio close to R∞OPT.
Previous results. The online bin packing problem was first investigated by

Johnson [9, 10]. He showed that the Next Fit algorithm has performance ratio 2.
Subsequently, it was shown by Johnson et al. that the First Fit algorithm has per-
formance ratio 17

10 [11]. Yao showed that Revised First Fit has performance ratio 5
3

and further showed that no online algorithm has performance ratio less than 3
2 [21].

Brown [1] and Liang [14] independently improved this lower bound to 1.53635. This
was subsequently improved by van Vliet to 1.54014 [19]. Chandra [2] shows that the
preceding lower bounds also apply to randomized algorithms.
Define

ui+1 = ui(ui − 1) + 1, u1 = 2,

and

h∞ =
∞∑
i=1

1

ui − 1 ≈ 1.69103.

Lee and Lee showed that the Harmonic algorithm, which uses bounded space,
achieves a performance ratio arbitrarily close to h∞ [13]. They further showed that no
bounded space online algorithm achieves a performance ratio less than h∞ [13]. A se-
quence of further results has brought the upper bound down to 1.58889 [13, 15, 16, 17].
The variable-sized bin packing problem was first investigated by Friesen and

Langston [7, 8]. Kinnersley and Langston gave an online algorithm with performance
ratio 7

4 [12]. Csirik proposed the Variable Harmonic algorithm and showed that
it has performance ratio at most h∞ [4]. This algorithm is based on the Harmonic
algorithm of Lee and Lee [13]. Like Harmonic, it uses bounded space. Csirik also
showed that if the algorithm has two bin sizes 1 and α < 1 and if it is allowed to
pick α, then a performance ratio of 7

5 is possible [4]. Seiden has recently shown that
Variable Harmonic is an optimal bounded-space algorithm [18].
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The related problem of variable-sized bin covering has been solved by Woeginger
and Zhang [20] and extended by Epstein [6].

Our results. In this paper, we present new algorithms for the variable-sized
online bin packing problem. By combining the upper bounds for these algorithms, we
improve the upper bound for this problem from 1.69103 to 1.63597. Our technique
extends the general packing algorithm analysis technique developed by Seiden [17].
We also show the first lower bounds for variable-sized online bin packing. We focus
on the case in which there are two bin sizes. However, our techniques are applicable
to the general case. We think that our results are particularly interesting because of
the unusual fractal-like curves that arise in the investigation of our algorithms and
lower bounds.

2. Upper bounds. To begin, we present two different online algorithms for
variable-sized bin packing.
We focus in on the case in which there are two bin sizes, α1 < 1 and α2 = 1, and

examine how the performance ratios of our algorithms change as a function of α1.
Since it is understood that m = 2, we abbreviate α1 using α. Both of our algorithms
are combinations of the Harmonic and Refined Harmonic algorithms. Both have
a real parameter µ ∈ ( 13 , 1

2 ). We call these algorithms vrh1(µ) and vrh2(µ). vrh1(µ)
is defined for all α ∈ (0, 1), but vrh2(µ) is defined only for

α > max

{
1

2(1− µ) ,
1

3µ

}
.(2.1)

First, we describe vrh1(µ). Define n1 = 50, n2 = �n1α�, ε = 1/n1, and

T =

{
1

i

∣∣∣∣ 1 ≤ i ≤ n1

}
∪
{
α

i

∣∣∣∣ 1 ≤ i ≤ n2

}
∪ {µ, 1− µ}.

Define n = |T |. Note that it may be that n < n1 + n2 + 2 since T is not a multiset.
Rename the members of T as t1 = 1 > t2 > t3 > · · · > tn = ε. For convenience,
define tn+1 = 0. The interval Ij is defined to be (tj+1, tj ] for j = 1, . . . , n + 1. Note
that these intervals are disjoint and that they cover (0, 1]. A piece of size s has type j
if s ∈ Ij . Define the class of an interval Ij to be α if tj = α/k for some positive
integer k; otherwise, the class is 1.
The basic idea of vrh1 is as follows: When each piece arrives, we determine the

interval Ij to which it belongs. If this is a class 1 interval, we pack the item in a size 1
bin using a variant of Refined Harmonic. If it is a class α interval, we pack the
item in a size α bin using a variant of Harmonic.

vrh1 packs bins in groups. All the bins in a group are packed in a similar fashion.
The groups are determined by the set T . We define

g =

{
3 if α > 1− µ,
2 otherwise.

h =



6 if α/2 > µ,
5 if α > µ and α/2 ≤ µ,
4 otherwise.

Note that these functions are defined so that tg = 1− µ and th = µ. The groups are
named (g, h), 1, . . . , g − 1, g + 1, g + 2, . . . , n.
Bins in group j ∈ {1, 2, . . . , n} \ {g} contain only type j pieces.
Bins in group (g, h) all have capacity 1. Closed bins contain one type g piece and

one type h piece.
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vrh1
Initialize x← 0 and y ← 0.
For each item p:

j ← type of p.
If j = n then pack p using Next Fit in a group n bin.
Else, if j = g then Put(p, (g, h)).
Else, if j = h:

x← x+ 1.
If y < �τx�:

y ← y + 1.
Put(p, (g, h)).

Else Put(p, h).
Else Put(p, j).

Put(p,G)
If there is no open bin in G then allocate a new bin b.
Else, let b be an arbitrary open bin in G.
Pack p in b.

Fig. 2.1. The vrh1(µ) algorithm and the Put subroutine.

Bins in group n all have capacity 1 and are packed using the Next Fit algorithm.
There is always one open bin in group n. When a type n piece arrives, if the piece fits
in the open bin, it is placed there. If not, the open bin is closed, the piece is placed
in a newly allocated open group n bin.

For group j ∈ {1, 2, . . . , n − 1} \ {g}, the capacity of bins in the group depends
on the class of Ij . If Ij has class 1, then each bin has capacity 1, and each closed bin
contains �1/tj� items of type j. Note that tj is the reciprocal of an integer for j �= h,
and therefore �1/tj� = 1/tj . If Ij has class α, then each bin has capacity α, and each
closed bin contains �α/tj� items of type j. Similarly to before, tj/α is the reciprocal
of an integer, and therefore �α/tj� = α/tj . For each of these groups, there is at most
one open bin.

The algorithm has a real parameter τ ∈ [0, 1], which for now we fix to be 1
7 .

Essentially, a proportion τ of the type h items are reserved for placement with type g
items.

A precise definition of vrh1 appears in Figure 2.1. The algorithm uses the sub-
routine Put(p,G), where p is an item and G is a group.

We analyze vrh1 using the technique of weighting systems introduced in [17]. A
weighting system is a tuple (R	,w, ξ), where R

	 is a real vector space, w is a weighting
function, and ξ is a consolidation function. We shall simply describe the weighting
system for vrh1 and assure the reader that our definitions meet the requirements put
forth in [17].

For vrh1, we use � = 3 and define a, b, and c to be orthogonal unit basis vectors.
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The weighting function is

w(x) =




b if x ∈ Ig,
(1− τ)a

2
+ τ c if x ∈ Ih,

ax

1− ε if x ∈ In,
a ti otherwise.

The consolidation function is ξ(xa+y b+z c) = x+max{y, z}. The following lemma
allows us to upper bound the performance of vrh1 using the preceding weighting
system.

Lemma 2.1. For all input sequences σ,

costvrh1(σ) ≤ ξ
(

n∑
i=1

w(pi)

)
+O(1).

Proof. We count the cost for bins in each group.
First, consider bins in group n. Each of these is packed using Next Fit and

contains only pieces of size at most ε. By the definition of Next Fit, each closed bin
contains items of total size at least 1−ε, and there is at most one open bin. Therefore,
the number of bins used is at most

1

1− ε
∑
pi∈In

pi + 1 = a ·
∑
pi∈In

w(pi) +O(1).

Now consider group j with j /∈ {h, (g, h), n}. There is at most one open bin in
this group. The capacity x of each bin is equal to the class of Ij . The number of items
in each closed bin is �x/tj�. Since j /∈ {h, (g, h), n}, we have �x/tj� = x/tj . Putting
these facts together, the cost is at most

∑
pi∈Ij

x

�x/tj� + 1 =
∑
pi∈Ij

tj + 1 = a ·
∑
pi∈Ij

w(pi) +O(1).

Next, consider group h. Let k be the number of type h items in σ. The algorithm
clearly maintains the invariant that �τk� of these items go to group (g, h). The
remainder are packed two to a bin in capacity 1 bins. At most one bin in group h is
open. The total is at most

k − �τk�
2

+ 1 =
∑
pi∈Ih

1− τ
2
+O(1) = a ·

∑
pi∈Ih

w(pi) +O(1).

Finally, consider group (g, h). Let f be the number of type g items in σ. The number
of bins is

max{f, �τk�} = max{f, τk}+O(1) = max

b ·

∑
pi∈Ig

w(pi), c ·
∑
pi∈Ih

w(pi)


+O(1).

Putting all these results together, the total cost is at most

a·
n∑
i=1

w(pi)+max

{
b ·

n∑
i=1

w(pi), c ·
n∑
i=1

w(pi)

}
+O(1) = ξ

(
n∑
i=1

w(pi)

)
+O(1).
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From [17], we also have the following lemma.
Lemma 2.2. For any input σ on which vrh1 achieves a performance ratio of c,

there exists an input σ′ where vrh1 achieves a performance ratio of at least c and
1. every bin in an optimal solution is full, and
2. every bin in some optimal solution is packed identically.
Given these two lemmas, the problem of upper bounding the performance ratio

of vrh1 is reduced to that of finding the single packing of an optimal bin with maxi-
mal weight/size ratio. We consider the following integer program: Maximize ξ(x)/β
subject to

x = w(y) +
n−1∑
j=1

qjw(tj);(2.2)

y = β −
n−1∑
j=1

qj tj+1,(2.3)

y > 0,(2.4)

qj ∈ N for 1 ≤ j ≤ n− 1,(2.5)

β ∈ {1, α},(2.6)

over variables x, y, β, q1, . . . , qn−1. Intuitively, qj is the number of type j pieces in an
optimal bin. y is an upper bound on space available for type n pieces. Note that
strict inequality is required in (2.4) because a type j piece is strictly larger than tj+1.
Call this integer linear program P. The value of P upper bounds the asymptotic
performance ratio of vrh1.
The value of P is easily determined using a branch and bound procedure very

similar to those in [17, 18]. Define

ψi = max

{
(a+ b+ c) ·w(ti), 1

1− ε
}

for 1 ≤ i ≤ n− 1; ψn =
1

1− ε .

Intuitively, ψi is the maximum contribution to the objective function for a type i item
relative to its size. We define π so that

ψπ(1) ≥ ψπ(2) ≥ · · · ≥ ψπ(n).

The procedure is displayed in Figure 2.2. The heart of the procedure is the subroutine
Tryall, which basically finds the maximum weight which can be packed into a bin
of size β. Using π, we try first to include items which contribute the most to the
objective relative to their size. This is a heuristic. The variables v and y keep track
of the weight and total size of items included so far. The variable j indicates that the
current item type is π(j). In the For loop at the end of Tryall, we try each possible
number of type π(j) items, starting with the largest possible number. First packing
as many items as possible is a heuristic which seems to speed up computation. The
current maximum is stored in x. When we enter Tryall, we first compute an upper
bound given the packing so far, which is stored in z. When j = n, this upper bound
is exactly the objective value. If z ≤ x, we do not have to consider any packing
reachable from the current one, and we drop straight through. In the main routine,
we simply initialize x, call Tryall for the two bin sizes, and return x.
Now we describe vrh2(µ). Redefine

T =

{
1

i

∣∣∣∣ 1 ≤ i ≤ n1

}
∪
{
α

i

∣∣∣∣ 1 ≤ i ≤ n2

}
∪ {αµ, α(1− µ)}.
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x← 1.
Tryall(1, 0, 1, 1).
Tryall(1, 0, α, α).
Return x.

Tryall(j,v, y, β)
z ← (

ξ(v) + y ψπ(j)

)
/β.

If z > x then:
If j = n then:

x← z.
Else:

For i← �y/tπ(j)+1� − 1, . . . , 0:
Tryall(j + 1, v+ iw(tπ(j)), y − itπ(j)+1, β).

Fig. 2.2. The algorithm for computing P along with subroutine Tryall.

Define n1, n2, ε, and n as for vrh1. Again, rename the members of T as t1 = 1 >
t2 > t3 > · · · > tn = ε. Equation (2.1) guarantees that 1/2 < α(1 − µ) < α < 1 and
1/3 < αµ < α/2 < 1/2, so we have g = 3 and h = 6. The only difference from vrh1
is that (g, h) bins have capacity α. Otherwise, the two algorithms are identical. We
therefore omit a detailed description and analysis of vrh2.
We display the upper bound on the performance ratio achieved using the best of

vrh1(µ), vrh2(µ), and Variable Harmonic in Figure 4.3. This upper bound is
achieved by optimizing µ for each choice of α. Our upper bound is at most 373

228 <
1.63597 for all α, which is the performance ratio of Refined Harmonic in the classic
bin packing context.

3. Lower bounds. We now consider the question of lower bounds. Prior to this
work, no general lower bounds for variable-sized online bin packing were known.
Our method follows that of Brown [1], Liang [14], and van Vliet [19]. We give

some unknown online bin packing algorithm A one of k possible different inputs.
These inputs are defined as follows: Let ' = s1, s2, . . . , sk be a sequence of item sizes
such that 0 < s1 < s2 < · · · < sk ≤ 1. Let ε be a small positive constant. We define
σ0 to be the empty input. Input σi consists of σi−1 followed by n items of size si+ ε.
Algorithm A is given σi for some i ∈ {1, . . . , k}.
A pattern with respect to ' is a tuple p = 〈size(p), p1, . . . , pk〉, where size(p) is a

positive real number and pi, 1 ≤ i ≤ k, are nonnegative integers such that
k∑
i=1

pi si < size(p).

Intuitively, a pattern describes the contents of some bin of capacity size(p). Define
P(', β) to be the set of all patterns p with respect to ' with size(p) = β. Further
define

P(') =
m⋃
i=1

P(', αi).

Note that P(') is necessarily finite. Given an input sequence of items, an algorithm
is defined by the numbers and types of items it places in each of the bins it uses.
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Specifically, any algorithm is defined by a function Φ : P(') �→ R≥0. The algorithm
uses Φ(p) bins containing items as described by the pattern p. We define φ(p) =
Φ(p)/n.
Consider the function Φ that determines the packing used by online algorithm A

for σk. Since A is online, the packings it uses for σ1, . . . , σk−1 are completely deter-
mined by Φ. We assign to each pattern a class, which is defined as

class(p) = min{i | pi �= 0}.
Intuitively, the class tells us the first sequence σi, which results in some item being
placed into a bin packed according to this pattern. That is, if the algorithm packs
some bins according to a pattern which has class i, then these bins will contain one
or more items after σi. Define

Pi(') = {p ∈ P(') | class(p) ≤ i}.
Then, if A is determined by Φ, its cost for σi is simply

n
∑

p∈Pi(�)
size(p)φ(p).

Since the algorithm must pack every item, we have the following constraints:

n
∑

p∈P(�)

φ(p) pi ≥ n for 1 ≤ i ≤ k.

For a fixed n, define χi(n) to be the optimal offline cost for packing the items in σi.
The following lemma gives us a method of computing the optimal offline cost for each
sequence.

Lemma 3.1. For 1 ≤ i ≤ k, χ∗ = limn→∞ χi(n)/n exists and is the value of the
following linear program: Minimize

∑
p∈Pi(�)

size(p)φ(p)(3.1)

subject to

1 ≤
∑

p∈P(�)

φ(p) pj for 1 ≤ j ≤ i(3.2)

over variables χi and φ(p), p ∈ P(').
Proof. Clearly, the linear program always has a finite value between

∑i
j=1 sj and i.

For any fixed n, the optimal offline solution is determined by some φ. It must satisfy
the constraints of the linear program, and the objective value is exactly the cost
incurred. Therefore, the linear program lower bounds the optimal offline cost. The
linear program is a relaxation in that it allows a fractional number of bins of any
pattern, whereas a legitimate solution must have an integral number. Rounding the
relaxed solution up to get a legitimate one, the change in the objective value is at
most |P(')|/n.
Given the construction of a sequence, we need to evaluate

c = min
A
max

i=1,...,k
lim sup
n→∞

costA(σi)
χi(n)

.
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As n → ∞, we can replace χi(n)/n by χ∗i . Once we have the values χ∗1, . . . , χ∗k, we
can readily compute a lower bound for our online algorithm.

Lemma 3.2. The optimal value of the linear program: Minimize c subject to

c ≥ 1

χ∗i

∑
p∈Pi(�)

size(p)φ(p) for 1 ≤ i ≤ k,

1 ≤
∑

p∈P(�)

φ(p) pi for 1 ≤ i ≤ k
(3.3)

over variables c and φ(p), p ∈ P('), is a lower bound on the asymptotic performance
ratio of any online bin packing algorithm.

Proof. For any fixed n, any algorithm A has some Φ which must satisfy the second
constraint. Further, Φ should assign an integral number of bins to each pattern.
However, this integrality constraint is relaxed, and

∑
p∈Pi(�) size(p)φ(p) is 1/n times

the cost to A for σi as n→∞. The value of c is just the maximum of the performance
ratios achieved on σ1, . . . , σk.
Although this is essentially the result we seek, a number of issues are left to be

resolved.
The first is that these linear programs have a variable for each possible pattern.

The number of such patterns is potentially quite large, and we would like to reduce
the linear program size if possible. We show that this goal is indeed achievable. We
say that a pattern p of class i is dominant if

si +

k∑
j=1

pj sj > size(p).

Let p be a nondominant pattern with class i. There exists a unique dominant pattern q
of class i such that pj = qj for all i �= j. We call q the dominator of p with respect to
class i.

Lemma 3.3. In computing the values of the linear programs in Lemmas 3.1
and 3.2, it suffices to consider only dominant patterns.

Proof. We transform a linear program solution by applying the following operation
to each nondominant pattern p of class i: Let x = φ(p) in the original solution. We
set φ(p) = 0 and increment φ(q) by x, where q is the dominator of p with respect to i.
The new solution remains feasible, and its objective value has not changed. Further,
the value of φ(p) is zero for every nondominant p; therefore, these variables can be
safely deleted.
Given a sequence of item sizes ', we can compute a lower bound Lm(', α1, . . . ,

αm−1) using the following algorithm:
1. Enumerate the dominant patterns.
2. For 1 ≤ i ≤ k, compute χi via the linear program given in Lemma 3.1.
3. Compute and return the value of the linear program given in Lemma 3.2.

Step 1 is most easily accomplished via a simple recursive function. Our concern in
the remainder of the paper shall be to study the behavior of Lm(', α1, . . . , αm−1) as
a function of ' and α1, . . . , αm−1.

4. Lower bound sequences. Up to this point, we have assumed that we were
given some fixed item sequence '. We consider now the question of choosing '. We
again focus on the case in which there are two bin sizes and examine properties
of L2(', α1). We again abbreviate α1 using α and L2 using L.
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To begin, we define the idea of a greedy sequence. Let ε denote the empty
sequence, and let ∧ denote the sequence concatenation operator. The greedy se-
quence Γτ (β) for capacity β with cutoff τ is defined by

γ(β) =
1

� 1
β �+ 1

, Γτ (β) =

{
ε if β < τ ,
γ(β) ∧ Γτ (β − γ(β)) otherwise.

The sequence defines the item sizes which would be used if we packed a bin of ca-
pacity β using the following procedure: At each step, we determine the remaining
capacity in our bin. We choose as the next item the largest reciprocal of an integer
which fits without using the remaining capacity completely. We stop when the re-
maining capacity is smaller than τ . Note that, for τ = 0, we get the infinite sequence.
We shall use Γ as a shorthand for Γ0.
The recurrence ui described in section 1, which is found in connection with

bounded-space bin packing [13], gives rise to the sequence

1

ui
=
1

2
,
1

3
,
1

7
,
1

43
,
1

1807
, . . . .

This turns out to be the infinite greedy sequence Γ(1). Somewhat surprisingly, it is
also the sequence used by Brown [1], Liang [14], and van Vliet [19] in the construction
of their lower bounds. In essence, they analytically determine the value of L1(Γτ (1)).
Liang and Brown lower bound the value, while van Vliet determines it exactly.
This well-known sequence is our first candidate. Actually, we use the first k item

sizes in it, and we resort them so that the algorithm is confronted with items from
smallest to largest. In general, this resorting seems to be a good heuristic since the
algorithm has the most decisions to make about how the smallest items are packed
but, on the other hand, has the least information about which further items will be
received. The results are shown in Figure 4.1.
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Examining Figure 4.1, one immediately notices that L(Γτ (1), α) exhibits some
very strange behavior. The curve is highly discontinuous. Suppose we have a finite
sequence ', where each item size is a continuous function of α ∈ (0, 1). Tuple p is
a potential pattern if there exists an α ∈ (0, 1) such that p is a pattern. The set of
breakpoints of p with respect to ' is defined to be

B(p, ') =

{
α ∈ (0, 1)

∣∣∣∣∣
k∑
i=1

pi si = size(p)

}
.

Let P∗ be the set of all potential patterns. The set of all breakpoints is
B(') =

⋃
p∈P∗

B(p, ').

Intuitively, at each breakpoint, some combinatorial change occurs, and the curve may
jump. In the intervals between breakpoints, the curve behaves nicely as summarized
by the following lemma.

Lemma 4.1. Let ' be a finite item sequence with each item size a continuous
function of α ∈ (0, 1). In any interval I = (�, h) which does not contain a breakpoint,
L(', α) is continuous. Furthermore, for all α ∈ I,

L(', α) ≥ min
{
�+ h

2h
,
2�

�+ h

}
L
(
', 1

2 (�+ h)
)
.

This lemma follows as a corollary from the following lemma.
Lemma 4.2. Let ' be a finite item sequence with each item size a continuous

function of α ∈ (0, 1). Let I be any interval which does not contain a breakpoint, and
let α be any point in I. The following two results hold:

1. If δ > 0 is such that α+ δ ∈ I, then

L(', α+ δ) ≥
(
1− δ

α+ δ

)
L(', α).

2. If δ > 0 is such that α− δ ∈ I, then

L(', α− δ) ≥
(
1− δ

α

)
L(', α).

Proof. We first prove statement 1. Denote by χ∗i (x) the value of χ
∗
i at α = x.

For 1 ≤ i ≤ k, we have

χ∗i (α+ δ) ≤
α+ δ

α
χ∗i (α).

To see this, note that any feasible Φ at α is also feasible at α+ δ since both points are
within I and (3.2) does not change within this interval. Each term in (3.1) increases
by at most (α + δ)/α. Now consider the linear program of Lemma 3.2. Consider
some arbitrary feasible solution φ at α. At α+ δ, this solution is still feasible (except
that possibly c must increase). In the sum 1/χ∗i

∑
p∈Pi(�) size(p)φ(p), the factor 1/χ

∗
i

decreases by at most α/(α+ δ), and size(p) cannot decrease.
Now consider statement 2. The arguments are quite similar. For 1 ≤ i ≤ k, we

have

χ∗i (α− δ) ≤ χ∗i (α).
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Again, a feasible solution remains feasible. Further, its objective value (3.1) cannot
increase. Considering the linear program of Lemma 3.2, we find that, for each fea-
sible solution, each sum 1/χ∗i

∑
p∈Pi(�) size(p)φ(p) decreases by a factor of at most

(α− δ)/α.
Considering Figure 4.1 again, there are sharp drops in the lower bound near the

points 1
3 ,

1
2 , and

2
3 . It is not hard to see why the bound drops so sharply at those points.

For instance, if α is just larger than 1
2+ε, then the largest items in Γ(1) can each be put

in their own bin of size α. If α ≥ 2
3 +2ε, two items of size

1
3 + ε can be put pairwise in

bins of size α. In short, in such cases, the online algorithm can pack some of the largest
elements in the list with very little wasted space—hence the low resulting bound.

This observation leads us to try other sequences in which the last items cannot be
packed well. A first candidate is the sequence α,Γ(1−α). As expected, this sequence
performs much better than Γ(1) in the areas described above.

It is possible to find further improvements for certain values of α. For instance, the
sequence α/2,Γ(1−α/2) also works well in some places, and we used other sequences
as well. We give two examples in Figure 4.2.

0 0.2 0.4 0.6 0.8 1
α

1.1

1.2

1.3

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1
α

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 4.2. Two lower bound sequences for τ = 1/1000 : On the left is α,Γτ (1 − α), and on the
right is α

2
,Γτ (1− α

2
).

As a general guideline for finding sequences, items should not fit too well in either
bin size. If an item has size x, then min{1 − � 1

x�x, α − �αx �x} should be as large as
possible. In areas where a certain item in a sequence fits very well, that item should
be adjusted (e.g., use an item 1/(j + 1) instead of the item 1/j), or a completely
different sequence should be used. (This helps explain why the algorithms have a low
competitive ratio for α close to 0.7: in that area, this minimum is never very large.)

Furthermore, as in the classical bin packing problem, sequences that are bad
for the online algorithm should have very different optimal solutions for each prefix
sequence. Finally, the item sizes should not increase too quickly or too slowly: If
items are very small, the smallest items do not affect the online performance much,
while if items are close in size, the sequence is easy because the optimal solutions for
the prefixes are alike.

In addition to the three sequences already described, namely, the greedy sequence,
α,Γ(1 − α), and α/2,Γ(1 − α/2), we have found that the following sequences yield
good results in restricted areas: α, 1

3 ,
1
7 ,

1
43 ;

1
2 ,

1
4 ,

1
5 ,

1
21 ; and

1
2 ,

α
2 ,

1
9 ,Γτ (

7
18 − α

2 ).

Using Lemma 4.2, we obtain the following main theorem of this section.

Theorem 4.3. Any online algorithm for the variable-sized bin packing problem
with m = 2 has asymptotic performance ratio at least 495176908800/370749511199 >
1.33561.
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0 0.2 0.4 0.6 0.8 1
α

1.3

1.4

1.5

1.6

0.6 0.65 0.7 0.75 0.8
α

1.35

1.4

1.45

1.5

1.55

Fig. 4.3. The best upper and lower bounds for variable-sized online bin packing. The bottom
figure is a closeup of [.6, .8]. The upper bound is best of the vrh1, vrh2, and Variable Harmonic
algorithms.
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Proof. First, note that, for α ∈ (0, 1/43], the sequence 1
2 ,

1
3 ,

1
7 ,

1
43 yields a lower

bound of 217/141 > 1.53900 as in the classic problem: Bins of size α are of no use.
We use the sequences described in the preceding paragraphs. For each sequence ',

we compute a lower bound on (1/43, 1) using the following procedure.
Define ε = 1/10000. We break the interval (0, 1) into subintervals using the

lattice points ε, 2ε, . . . , 1 − ε. To simplify the determination of breakpoints, we use
a constant sequence for each subinterval. This constant sequence is fixed at the
upper limit of the interval. That is, throughout the interval [�ε, �ε + ε), we use the
sequence '|α=	ε+ε. Since the sequence is constant, a lower bound on the performance
ratio of any online bin packing algorithm with α ∈ [�ε, �ε+ ε) can be determined by
the following algorithm:

1. '′ ← '|α=	ε+ε.
2. Initialize B ← {�ε, �ε+ ε}.
3. Enumerate all the patterns for '′ at α = �ε+ ε.
4. For each pattern:
(a) z ←∑k

i=1 pi si.
(b) If z ∈ (�ε, �ε+ ε), then B ← B ∪ {z}.

5. Sort B to get b1, b2, . . . , bj .
6. Calculate and return the value:

min
1≤i<j

min

{
bi + bi+1

2bi+1
,
2bi

bi + bi+1

}
L
(
'′, 1

2 (bi + bi+1)
)
.

We implemented this algorithm in Mathematica and used it to find lower bounds
for each of the aforementioned sequences. The results are shown in Figures 4.2
and 4.3. The lowest lower bound is 495176908800/370749511199 in the interval
[0.7196, 0.7197).

5. Conclusions. We have shown new algorithms and lower bounds for variable-
sized online bin packing with two bin sizes. By combining these algorithms with
Variable Harmonic, choosing for each size α of the second bin the best algorithm
for that size, we find an algorithm with asymptotic performance ratio of at most
373
228 < 1.63597 for all α. The best previous upper bound was h∞ ≈ 1.69103.
The largest gap between the performance of the algorithm and the lower bound is

0.18193 achieved for α = 0.9071. The smallest gap is 0.03371 achieved for α = 0.6667.
Note that, for α ≤ 1

2 , there is not much differing from the classical problem: having
the extra bin size does not help the online algorithm much. To be more precise, it
helps about as much as it helps the offline algorithm.
Our work raises the following questions: Is there a value of α where it is possible

to design a better algorithm and show a matching lower bound? Or, can a lower
bound be shown anywhere that matches an existing algorithm? Note that at the
moment there is also a small gap between the competitive ratio of the best algorithm
and the lower bound in the classical bin packing problem.
Another interesting open problem is analyzing variable-sized bin packing with an

arbitrary number of bin sizes.
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ON LOCAL SEARCH AND PLACEMENT OF METERS IN
NETWORKS∗
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Abstract. This work is motivated by the problem of placing pressure-meters in fluid networks.
The problem is formally defined in graph-theoretic terms as follows. Given a graph, find a cotree
(complement of a tree) incident upon the minimum number of vertices. We show that this problem
is NP-hard and MAX SNP-hard. We design an algorithm with an approximation factor of 2 + ε
for this problem for any fixed ε > 0. This approximation bound comes from the analysis of a local
search heuristic, a common practical optimization technique that does not often allow formal worst-
case analysis. The algorithm is made very efficient by finding restrictive definitions of the local
neighborhoods to be searched. We also exhibit a polynomial time approximation scheme for this
problem when the input is restricted to planar graphs.

Key words. local search, approximation algorithms, feedback sets, pressure-meters
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1. Introduction. To measure flow through edges of a fluid network, one can
install flow-meters on all edges. However, one does not need to install flow-meters
on all the edges in the network. By installing flow-meters on edges of any cotree1

[16] (see Figure 1.1), we can infer the flow on edges of the spanning tree due to flow
conservation [21]. This requires that we install exactly |E| − (|V | − 1) flow-meters,
where |E| is the number of edges and |V | is the number of vertices, since every cotree
has |E| − (|V | − 1) edges in a connected network. Since “the cost of flow meters is
several times the cost of pressure meters” [21], another option is to install pressure-
meters at nodes of the network. A pressure-meter measures fluid pressure at a node
of the network, and one can compute the flow on an edge by measuring the pressure
reading on both of the incident nodes (see [19, 20]). One option would be to place a
pressure-meter at each node of the network. However, this is not essential. Since we
need only to compute the flow on edges of a cotree, we are looking for a cotree that is
incident on as few vertices as possible (to minimize cost). If we place pressure-meters
at the nodes incident on the edges of the cotree, we can compute the flow on all cotree
edges and infer the flow on the remaining edges of the network. In Figure 1.2, we
show a network. Assume that we know the inflow and outflow from the network.
By measuring the pressure reading at the marked vertices, we can compute the flow
on the edges that are shown. Using this information, we can infer the flow on the
remaining edges of the network.
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Graph Cotree with cost 4Cotree with cost 5

Tree edges

Cotree edges

Fig. 1.1. A simple example to show two different cotrees.

We can also express this problem in “standard” optimization nomenclature as
follows: A feedback edge set (FES) is a subset of edges in a graph whose deletion from
the graph makes the graph acyclic. In other words, each cycle in the graph is required
to have at least one edge from the FES. In graph-theoretic terms, minimizing the
number of pressure-meters leads to the following optimization problem. The minimum
vertex feedback edge set (VFES) problem is defined as follows: Given an undirected
graph, find an FES incident upon the minimum number of vertices. We show that this
problem is NP-hard and MAX SNP-hard and develop an approximation algorithm for
it that is fast and practical and that delivers solutions that are guaranteed to have
cost at most 2 + ε times optimal (for any fixed ε > 0).

The complement problem to the minimum VFES problem is the full degree span-
ning tree (FDST) problem [18, 21, 11, 10], namely that of computing a spanning tree
T in a connected graph G = (V,E) so as to maximize the number of vertices of full
degree. These are vertices whose degree in the tree T is the same as their degree in
the graph G. In other words, the vertices that are incident to the edges in E \ T are
exactly the vertices that do not have full degree in T . Thus, if K is the maximum
number of full degree vertices in some spanning tree T in G, then |V | −K is the cost
of the minimum VFES. The savings of this solution, compared to installing pressure-
meters at every vertex, is exactly the number of full degree vertices in a spanning tree
since these vertices have zero degree in the corresponding FES and we do not have
to install pressure-meters at these vertices. Hence maximizing the number of vertices
of full degree maximizes savings. One pressure-meter is installed at each vertex that
does not have full degree; by using these meters, we can compute the flow on each edge
in the cotree and then infer the flow on each edge in the tree due to flow conservation.

The FDST problem was recently studied by Pothof and Schut [21], Broersma et
al. [11], and Bhatia et al. [10]. The problem was introduced by Pothof and Schut
[21], who gave a simple heuristic for it. In [10], it was shown that, for the case of
general graphs, an approximation factor of Θ(

√
n) can be obtained using a very simple

algorithm called the Greedy Star-Insertion Algorithm. Using H̊astad’s result on the
hardness of approximating clique, it was also shown that, if there is a polynomial
time approximation algorithm for the FDST problem with a factor of O(n

1
2−ε), then

NP = coR [10]. For the case of planar graphs, a polynomial time approximation
scheme (PTAS) was presented [10]. Independently, Broersma et al. [11] developed a
PTAS for planar graphs and showed that, for special classes of graphs such as bounded
treewidth graphs and cocomparability graphs, the problem can be solved optimally
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Fig. 1.2. Figure to illustrate pressure-meters.

in polynomial time.
Local search is widely used as a general approach to tackle hard optimization

problems. Typically, each instance of the optimization problem is associated with a
set of feasible solutions, together with a cost function, and the objective is to find
a solution of minimum cost. To derive a local search algorithm, one superimposes
a “local search neighborhood”; i.e., for each solution, we define a neighborhood of
solutions that are “close” to it. We start with some initial solution. The algorithm
iteratively checks to see whether or not we can “move” from the current solution to
another solution in its neighborhood with lower cost, and if so, we move to the lower
cost solution until we reach a locally optimal solution, a solution whose cost is as low
as any other in its local search neighborhood.

Even though local search is a powerful practical tool for optimization, there are not
many problems for which local search leads to good worst-case approximation factors.
In fact, often, when it does lend itself to worst-case analysis, the bounds that we obtain
are significantly worse than the worst-case approximation bounds that we can obtain
by other methods. However, since local search is a powerful optimization method
and relatively simple to implement, it is interesting to analyze local search algorithms
as they enhance our understanding of the problems we are studying. For example,
for the traveling salesman problem (with triangle inequality), an analysis of the local
search method done by Chandra, Karloff, and Tovey [12] shows an approximation
factor of 4

√
n for 2-exchange, with improvements for Euclidean instances.

A feedback vertex set (FVS) is a subset of vertices in the graph whose deletion
from the graph makes the graph acyclic. In other words, each cycle in the graph
is required to have at least one vertex from the FVS. Minimum vertex feedback set
problems are NP-hard, and approximation algorithms for them have been widely
studied. The first constant approximation algorithm for unweighted FVSs was given
by Bar-Yehuda et al. [5]. They also gave a constant approximation algorithm for the
weighted case for planar graphs and an O(log n) approximation algorithm for general
graphs. For planar graphs, there is a constant factor approximation algorithm due to
Goemans and Williamson [15] and recently a PTAS due to Kleinberg and Kumar [17].
For general graphs (weighted case), a 2 approximation algorithm was developed by
Becker and Geiger [6] and Bafna, Berman, and Fujito [3] (see also Chudak et al. [13]).

On the other hand, for undirected graphs, the FES problem has largely been
ignored since an FES is the complement of a spanning tree (cotree) and both the
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maximization and minimization versions can be solved in polynomial time. However,
in our problem, we need to find an FES so as to minimize the number of vertices
incident on the edges in the FES. We show that this problem is NP-hard as well as
MAX SNP-hard. Approximation algorithms for feedback arc problems on directed
graphs were given by Even et al. [14].

We study the minimum VFES problem and show that the local search method
applied to this problem yields a good approximation algorithm. The local search
neighborhood for a given FES is defined by a constant k that allows us to “move”
to any other FES that differs from the first one on fewer than k edges. The main
difficulty with making this approach practical is that we need to examine all possible
changes, and this is not practical even for small values of k. The naive upper bound
on the size of the neighborhood we have to search for an improvement is O(mknk),
where m is the number of edges in the graph and n is the number of vertices. However,
quite surprisingly, we are able to show that we can refine the search so that we do
not need to search the entire neighborhood for a better solution. We can implement
each step of the local search in time O(n2 + nf(k)), where f(k) is a function only of
k and not of the size of the graph. This makes the local search practical. Moreover,
we can show that the cost of the solution produced by local search is at most 2 + 1

k
times the cost of the optimal solution. (In fact, we found that even for k = 2 this
led to a very fast algorithm that we tested on several random planar and nonplanar
graphs generated using the Stanford Graphbase and LEDA [9]. In these instances,
the algorithm found the optimal solution in each case.)

2. Main results. We show that the minimum VFES problem is NP-hard and
MAX SNP-hard. We show that taking any minimal FES already yields a 3 approx-
imation to the VFES problem. We then show that a local search method gives an
approximation factor of 2 + ε for any fixed ε > 0 for the minimum VFES problem.
However, the running time of this algorithm is O(nO(1/ε)). Since this algorithm is not
practical, we develop a restricted local search algorithm that restricts the local search
neighborhood, which yields a significantly improved running time of O(n3 +n2f( 1

ε )),
and actually yields a practical algorithm with the same approximation guarantee.
(Here f is an exponential function but has no dependence on n.) We also show that,
for planar graphs, we can design a PTAS. In other words, for any fixed ε > 0, we
obtain a 1 + ε approximation in polynomial time.

3. Hardness results.

Theorem 3.1. The minimum VFES problem is MAX SNP-hard and NP-hard.

Proof. In Lemma 3.2, we show that there is a polynomial time reduction from the
independent set problem to the complement of the minimum VFES problem, namely,
the FDST problem, such that there is an independent set of size I in a graph G
with n nodes and m edges, if and only if there is an FDST solution of size I + 1
in a graph H with N = m + n + 3 nodes. This implies that G has a vertex cover
of size V C if and only if H has a solution to the minimum VFES problem of size
N − (n− V C + 1) = m + V C + 2.

The vertex cover problem is MAX SNP-hard for graphs in which all degrees are
bounded by 3 [1]. Let G be one such graph. Then any vertex cover of G has size
V C ≥ m/3. Let V C∗ be the size of the optimal vertex cover of G, and let OPT be
the size of the optimal solution to the minimum VFES problem on H. Similarly, let
V C and V FES be the size of a vertex cover of G and the size of the corresponding
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minimum VFES on H respectively. Then it follows (assuming m > 0) that

OPT ≤ m + V C∗ + 2 ≤ 4V C∗ + 2 ≤ 6V C∗.

Also,

|V FES −OPT | = |m + V C + 2− (m + V C∗ + 2)| = |V C − V C∗|.
Thus a 1+ε approximation algorithm for the minimum VFES can be used to construct
a 1+6ε approximation algorithm for the bounded degree vertex cover problem. Hence
the minimum VFES problem is MAX SNP-hard.

The following lemma is based on the NP-completeness proof of the FDST problem
[10].

Lemma 3.2. There is a polynomial time reduction from the independent set
problem on a graph G with n nodes and m edges to the FDST problem on a graph H
with m+ n+ 3 nodes such that there is an independent set of size I in G if and only
if there is an FDST of size I + 1 in H.

Proof. Given a graph G, an input instance of the independent set problem (we
will assume without loss of generality that G has at least two edges, has no isolated
vertices, and has a maximum independent set of size at least 3), we create an instance
of the FDST problem as follows. Graph H can be viewed as a four-layer graph whose
edges connect only vertices in adjacent layers. Hence H is bipartite. Layer one consists
of just one vertex a. Layer two has one vertex for every vertex of G, and every vertex
in the second layer is connected to a. Layer three has one vertex for every edge of
G, and if (u, v) is an edge in G, then the corresponding vertex in the third layer is
connected to the vertices in layer two, corresponding to the vertices u and v of G.
Finally, layer four has two vertices b and c, which are both connected to every vertex
in the third layer.

Let T be a feasible solution to the FDST problem for graph H. First, note that
if any two vertices have at least two common neighbors in H, then they both cannot
have full degree in T . Hence only one vertex from among {b, c} might have full degree
in T . This is because G has at least two edges, and hence b and c have at least two
common neighbors. Similarly, at most one vertex in the third layer of H has full
degree in T . This is because both b and c are in the neighborhood of every vertex in
the third layer of H. If vertex a has full degree in T , then none of the vertices in the
third layer of H have full degree in T . Vertex a and any vertex in layer three have
two common neighbors in layer two. Finally, note that all vertices in the second layer
with full degree in T must form an independent set in G.

The above implies that, if G has an independent set of size I, then there is a
feasible solution of size I +1 to the FDST problem for the graph H. In this solution,
vertex a and the vertices in the independent set have full degree. Similarly, if there is a
feasible solution to the FDST problem for the graph H of size I+1, then if b or c have
full degree (only one of them can be a full degree vertex), then no pair of vertices in
the second layer can have full degree. To see this, suppose that there are two vertices
in the second layer that have full degree. Note that each one of them has neighbors
in layer three since there are no isolated vertices in G. They also have edges to a. By
the assumption that one of b or c has full degree, this would thus imply the presence
of a cycle in the solution to the FDST, which is a contradiction. We cannot pick more
than one full degree vertex in layer three in any case, and we also can only pick vertex
a or a vertex in layer three of full degree but not both. Therefore, we will be able
to pick at most three vertices of full degree. Hence at least I vertices in layer two
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Fig. 4.1. Example showing black and white vertices.

have full degree in this feasible solution and therefore G has an independent set of
size I.

4. The minimum VFES problem. In this section, we consider the minimum
VFES problem, namely, to find an FES incident on the minimum number of vertices.
Any minimal FES is also a cotree.

We show that iteratively deleting any edge from a cycle in the graph G = (V,E)
yields an approximation algorithm with a performance ratio of 3. We then improve
the solution by applying a “local-improvement” strategy and prove that this is a 2+ ε
approximation for any fixed ε > 0. We will also assume that our input graph is
connected.

Let S be any subset of edges. Let V (S) be the subset of vertices in G incident
on edges in S. Let COPT be the edges of a minimum VFES (cotree). Let W (white
vertices) be V (COPT ). Let B (black vertices) be the set of remaining vertices, V \W .
Edges of G incident to at least one black vertex are colored black and all remaining
edges are colored white. (See Figure 4.1(a) for a minimum cotree and Figure 4.1(b)
for the colors of edges.) The set of black edges induces a forest FB in G. We refer to
the set of white edges as EW .

We first prove the following theorem about minimal FESs.
Theorem 4.1. Any minimal FES gives a 3 approximation to the VFES problem.
Proof. Let S be a minimal FES. Let Sw = S∩EW and Sb = S\Sw. We prove that

|V (S)| ≤ 3|V (COPT )| − 2 as follows. Since |V (EW )| = |W | = |V (COPT )|, we have
|V (Sw)| ≤ |V (COPT )|. The proof of the following inequality is given in Lemma 4.2:

|Sb| ≤ |V (COPT )| − 1.

Since the number of vertices that can be incident on any set of edges is at most
twice the number of edges, we conclude that

|V (Sb)| ≤ 2(|V (COPT )| − 1).

Thus |V (S)| ≤ |V (Sw)|+ |V (Sb)| ≤ 3|V (COPT )| − 2.
Lemma 4.2. Let S be a minimal FES and Sb the set of black edges in this set;

then

|Sb| ≤ |V (COPT )| − 1.
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Fig. 4.2. Example to show that factor 3 bound is tight.

Proof. Recall that the black edges form a forest FB . Any black edge e ∈ Sb is
essential to a minimal FES. In other words, the introduction of edge e into E\S would
create a cycle Ce. Ce contains only edges in E \S, except for edge e. Since every cycle
in G has at least one white edge, Ce must also have two white vertices incident to
this white edge. Walking around the cycle from e in both directions, we stop when we
first encounter a white vertex. (We will stop at two distinct white vertices.) Consider
FB \ Sb; edge e connects two components, each of which must contain at least one
white vertex. If |Sb| ≥ |V (COPT )|, then there are at least |V (COPT )| + 1 distinct
components in FB \Sb. In the forest FB , there are exactly |V (COPT )| white vertices;
thus one edge in Sb connects two components such that one component contains no
white vertex, which is a contradiction.

It is possible to make examples that show that this bound is tight (see Figure 4.2).
If there are k vertices in the optimal cotree, then a minimal solution may have up to
k + 2(k − 1) vertices.

4.1. Local improvement. We can apply the following local-improvement strat-
egy to our minimal FES S. Let k be � 1ε �. We will show that we can prove an ap-
proximation bound of 2 + 1

k using a simple local search algorithm. Replace a set of
at most k − 1 edges from S to get another FES with lower cost (cost is the number
of vertices incident to the edges in the FES). Keep doing this until no reduction in
cost is possible. This new solution will be referred to as Sk. This can be done for any
fixed k > 0. (For k = 1, this is simply any minimal FES.)

We call this the k-Local-Improvement Algorithm.
k-Local Improvement(G)—
1. Pick an arbitrary cotree S (of size |E| − (|V | − 1)).
2. while there exists a cotree S′ such that

|V (S′)| < |V (S)| and |S⋂S′| > |S| − k do
3. S ← S′.
4. Sk ← S.
5. end

We can partition the solution Sk obtained by the algorithm into two sets as
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Fig. 4.3. Figure to show full and nonfull black components.

before—white edges Skw and black edges Skb . The edges in Skb form a collection of
connected components. Let C = {Ci|Ci is a component of black edges from Skb }.

For each black component Ci that shares at least one white vertex with Skw,
|Vb(Ci)| ≤ |E(Ci)|, where Vb(Ci) denotes the black vertices of Ci. A black component
that does not share any vertices with Skw is called a full black component. In Fig-
ure 4.3, we show three black components: {a, b}, {e, f, i}, and {d, n}. The first two
components are full black components. The third component shares a white vertex
(n) with an edge in Skw.

A full black component may have all black vertices or may have white vertices in
W \ V (Skw). We call a full black component Ci small if it has at most k − 1 edges.
The other full black components in C are referred to as large. Csmall is the set of small
full black components. Clarge is the set of large full black components. The remaining
components are referred to as Cnonfull.

The proof of the main theorem relies on a lemma bounding the number of small
full black components |Csmall| by |W | − |V (Skw)| (Lemma 4.6). We will prove this
lemma next.

Root each black tree in FB at an arbitrary black vertex, and orient all edges away
from the root (see Figure 4.4). Let Ci be a small (full) black component in Sk rooted
at ri.

Number the vertices in Ci as ui1, . . . , u
i
pi+1. Let e be the (oriented) edge (uij , u

i
k).

Let Shadow(i, e) be the set of white vertices reachable from uik by following a directed
path of zero or more black edges that are in FB \Sk. The vertices in Shadow(i, e) are
descendants of uik in the rooted black forest FB .

Let Shadow(Ci) = ∪e∈CiShadow(i, e). Note that Shadow(Ci) is the set of white
vertices that are reachable from vertices in Ci − {ri} by following a directed path of
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Fig. 4.4. Example showing black components.

black edges that are in FB \ Sk.
Lemma 4.3. For any full black component Ci and e ∈ Ci, we have Shadow(i, e) �=

∅.
Proof. Consider an (oriented) edge e = (uij , u

i
k) ∈ Ci. If uik ∈ W , then clearly

Shadow(i, e) �= ∅. Now assume that uik ∈ B. If we add edge e to E \Sk, we get a cycle
Ce with a white edge on it connecting two white vertices. Note that all the edges in
FB incident on uik except for the edge from the parent uij are oriented away from uik.

Consider the first white vertex on the path in Ce from node uik to uij avoiding e; we

take edges from FB \ Sk before reaching this white vertex. Thus there is a directed
path of zero or more black edges from uik using edges from FB \ Sk to some white
vertex.

Lemma 4.4. For each pair of black components Ci and Cj, Shadow(Ci) and
Shadow(Cj) are disjoint.

Proof. Suppose (for the sake of contradiction) that w ∈ Shadow(Ci)
⋂

Shadow(Cj).
By the definition of Shadow, ∃u ∈ Ci−{ri} (and ∃v ∈ Cj −{rj}) such that there is a
directed path of black edges in FB \Sk from u (and v) to w. Since w is a descendant of
both u and v in the black tree FB , one of {u, v} is a descendant of the other. Assume
that u is an ancestor of v. The unique path from u to w in FB includes the tree path
from u to v and the path from v to w. Since the edge joining v to its parent is in Cj
and in Sk, at least one edge along this path is not in the set FB \ Sk, and thus w is
not in the shadow of u.

Consider a small (full) black component Ci with pi(< k) edges.

Lemma 4.5. For each small (full) black component Ci, Shadow(Ci) contains at
least one vertex in W \ V (Skw).

Proof. Assume for the sake of contradiction that all the vertices in Shadow(Ci) are
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in V (Skw). This means that each of these nodes is incident to at least one white edge
in Sk. Adding a new edge to the cotree that is incident on a vertex in Shadow(Ci)
can only increase the cost of the solution by at most one since one end point of such
an edge is already incident to some white edge in the cotree. Let TSk be the tree
corresponding to E \ Sk. We call Ri a replacement set for Ci if TSk ∪ Ci \ Ri is a
spanning tree in G. We now show that we can find a valid replacement set Ri for Ci
of cost at most pi. By this replacement, we will obtain a strictly better solution since
Ci is incident to pi+1 vertices, and Ri has cost pi. This exchange involves a set of at
most k − 1 edges, contradicting the assumption that we have a solution that cannot
be locally improved.

We now show how to find the set Ri. Note that the solution Sk is minimal, and
the introduction of any edge from Sk into the tree formed by E \ Sk will create a
cycle.

Initially, Ri = ∅ and T = TSk . As we add edges from Ci to T , we will delete
edges from T to maintain a tree. These deleted edges will be added to Ri to form the
replacement set for Ci. We process the edges of Ci as we encounter them in a preorder
traversal of Ci from ri. Assume that we are processing the edge e = (uij , u

i
k) ∈ Ci

(oriented downward (away from the root)). If we add the edge e to T , we get a cycle
Ce. We follow the path in Ce starting from uik and going away from uik and stop at
the first white edge (ue, ve). By Lemma 4.3, such an edge will be encountered. If
ue ∈ Ci, then this cannot be a full black component since ue ∈ V (Skw), and we obtain
a contradiction. Since ue ∈ Shadow(i, e), it is in V (Skw) and does not cost anything.
The edge (ue, ve) is the replacement edge for e and costs at most one. We add e to T
and remove (ue, ve) from T and add (ue, ve) to Ri. We repeat this until we find all
the replacement edges for Ci.

Lemma 4.6. The number of small (full) black components in Sk is at most
|W | − |V (Skw)|.

Proof. We charge each small black component Ci to a vertex in W \ V (Skw) that
also belongs to Shadow(Ci). Since the shadows are disjoint (Lemma 4.4), each node
in W \ V (Skw) is charged at most once, and the lemma follows.

Theorem 4.7. The k-Local-Improvement Algorithm obtains a solution that is at
most 2 + 1

k times the optimal solution. This algorithm runs in polynomial time for
any fixed k > 0.

Proof. We bound the number of small full black components |Csmall| by |W | −
|V (Skw)| (Lemma 4.6). For each large full black component Ci, the number of vertices

|V (Ci)| = |E(Ci)|+ 1 ≤ |E(Ci)|+ E(Ci)
k ≤ k+1

k |E(Ci)|.

For each black component with at least one white vertex also in V (Skw), we have
|Vb(Ci)| ≤ |E(Ci)|.
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|V (Skb ) \ V (Skw)| =
∑

Ci∈Csmall

|V (Ci)|+
∑

Ci∈Clarge
|V (Ci)|+

∑
Ci∈Cnonfull

|Vb(Ci)|

≤
∑

Ci∈Csmall

(|E(Ci)|+ 1) +
∑

Ci∈Clarge

k + 1

k
|E(Ci)|+

∑
Ci∈Cnonfull

|E(Ci)|

≤ |Csmall|+
∑

Ci∈Csmall

|E(Ci)|+
∑

Ci∈Clarge

k + 1

k
|E(Ci)|

+
∑

Ci∈Cnonfull
|E(Ci)|.

By Lemma 4.6, we get

|V (Skb ) \ V (Skw)| ≤ |W | − |V (Skw)|+
∑
Ci∈C

k + 1

k
|E(Ci)|.

Note that

|V (Sk)| = |V (Skw)|+ |V (Skb ) \ V (Skw)|.
Using the bound on |V (Skb ) \ V (Skw)| obtained above, we get

|V (Sk)| ≤ |V (Skw)|+ |W | − |V (Skw)|+ k + 1

k

∑
Ci∈C

|E(Ci)|.

By Lemma 4.2, since Skb is also a subset of a minimal cotree, we can bound
∑
Ci∈C |E(Ci)|

by |V (COPT )| − 1.

|V (Sk)| ≤ |W |+ k + 1

k
(|V (COPT )| − 1)

= |V (COPT )|+ k + 1

k
(|V (COPT )| − 1).

This gives us a 2 + 1
k approximation to VFES.

A naive bound on the running time of the algorithm can be computed as follows.
There are at most n iterations since in each iteration our cost decreases by at least
one. To implement an iteration, we have to try subsets of at most k−1 edges from our
cotree and try to replace them by another subset of the same size such that we obtain
a cotree with lower cost. An easy bound on the running time for a single iteration is
O(mk−1nk).

Since this algorithm is not very practical, we show how to modify the algorithm
to obtain an efficient implementation.

4.2. Restricted local improvement. We show that we can obtain the 2 + 1
k

bound by modifying the algorithm to improve only “small trees.” In other words,
once we have a cotree S (corresponding to tree T ), we can consider its connected
components and try to reduce |V (S)| by eliminating only small trees (of size < k)
from S. We check to see if we can delete the edges of a small tree Ts from S (this
will create cycles in T ∪ Ts) and then find a set of edges to add to S so that we again
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get a cotree. If this replacement reduces the cost of the cotree, we perform this step.
Keep doing this until either no small trees are left or we cannot get a reduction in the
number of vertices that are incident to the edges in the cotree.

Theorem 4.8. The Restricted-Local-Improvement Algorithm obtains a solution
that is at most 2 + 1

k times the optimal solution.

Proof. The proof of this theorem is essentially the same as the proof of the k-
Local-Improvement Algorithm. Basically, we observe that the only place where we
actually use any specific property of the k-Local-Improvement Algorithm is in the
proof of Lemma 4.5. This proof assumes only that components of the solution that
are trees are chosen as candidates to be eliminated during the local search. Hence the
same bound as in Theorem 4.7 follows.

This method can be implemented in O(nk+2) time as follows: We show that each
iteration can be implemented in O(nk+1) time, and there are at most n iterations.
There are only O(n) possible “small trees” to eliminate. For each small tree, we
have to find a valid replacement set—this takes O(nk) time since there are O(nk−1)
possible replacement steps, and checking each one takes O(n) time. Thus this gives a
bound of O(nk+1) for each iteration. The cost is measured as the number of vertices
incident to the set of edges in our subset of edges. The initial cost of the cotree is
at most n, the number of vertices. Since in each iteration this cost decreases by at
least one, we have at most n iterations (there could be far fewer in practice) giving
the overall bound of O(nk+2).

The key difficulty is in implementing the replacement step efficiently. The naive
implementation takes O(nk+1) time as we just observed. We now give an algorithm
whose complexity (per iteration) is O(n2 + nf(k)), where f(k) is an exponential
function in k. The key point is that this algorithm is practical, whereas the previous
one is not practical. This improvement is obtained by showing that we need only to
“search” for an improvement by restricting our search space to a very small number of
possibilities. This gives an overall bound of O(n3 + n2f(k)) for the entire algorithm.

We now focus on the implementation of a single iteration of the algorithm. Sup-
pose we have a current cotree S, and let T be the tree E \ S. Let Ts be a tree with
+ ≤ k − 1 edges in the graph (V, S). Our goal is to try to find a “replacement” set of
+ edges R such that (S \ Ts) ∪R is a cotree or, equivalently, (T ∪ Ts) \R is a tree. If
the cost of (S \ Ts) ∪ R is lower than the cost of S, we obtain a local improvement
(reduction in cost).

Each edge e ∈ Ts induces a cycle in T . Path P (T, e) is obtained by removing e
from this cycle. Let T be the subtree of T defined by taking the union of the + paths
P (T, e) for each e ∈ Ts. Clearly, R ⊆ T . Figure 4.5 shows the tree T along with a tree
Ts ⊆ S (of three edges in this case) and the corresponding paths P (T, e). Our goal is
to find a replacement set R of lower cost. Observe that, since we need to “destroy”
the + cycles that are created when we add the + edges of Ts to T , we are restricted to
picking edges from T to obtain the set R. We now show that, even though T can be
large, we can find a subtree T ′ of size O(+) such that if a replacement set R of lower
cost exists, then a replacement set of edges chosen from T ′ can be found.

We now define tree T ′. Consider Ts ∪ T . Mark the vertices of Ts as “special”
and all the vertices in T \ Ts with degree three or more in the tree T as “special.”
(Special vertices are shown as the circled vertices in Figure 4.5.) We can now think
of T as a “tree-like” structure on “special” vertices, where we have paths connecting
the “special” vertices. If Ts has + edges, then there are at most 2+ special vertices,
and thus there are at most 2+− 1 “paths” in T connecting the special vertices. (This
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Fig. 4.5. Figure to show T .

will be proven formally in Lemma 4.10.) If any “path” between two special vertices
has five or more edges, then we will “shrink” this to a path of length at most four.
(This will be shown later.) This will ensure that each path has a constant number
of edges, and thus the size of the entire tree T ′ is O(+). Each “path” between two
special vertices is also referred to as a “link.”

The cost of the + edges in Ts is exactly ++1. The vertices in V (S \ Ts) are called
marked. All other vertices are unmarked. Our goal is to pick a replacement set R of
cost at most +. Our replacement set of edges is incident on marked and unmarked
vertices, but only the unmarked vertices cost 1, while the marked vertices cost 0 since
these nodes are already incident on edges in S \ Ts. To do this, we will enumerate
over subsets of size + from T ′. For each candidate set, we will check if it is a valid
replacement set and compute the cost of the new cotree. If the cost of the new cotree
is lower, we perform the replacement. It should now be clear that the function f is
the number of ways of choosing + edges from the 2+−1 links so that they form a valid
replacement set.

Lemma 4.9. If a replacement set R of cost lower than the cost of Ts exists, then
there exists a replacement set of edges chosen from T ′ of the same cost as R.

Proof. We first make some observations about the replacement set R. In the
replacement set R, at most one edge can be chosen from each link. Let the path
P = [v0, . . . , vk] (see Figure 4.6) be the path corresponding to a link. If k ≤ 4, we
do not change the link. (This link has at most four edges.) If k > 4, we will define
a new compressed link for T ′ based on the subset of marked vertices on path P . If
there is a replacement set R in T , then picking the corresponding edge from T ′ yields
a replacement set of the same cost.

If there is no marked vertex on P and R chooses an edge from P , then, without
loss of generality, R picks an edge incident to v0 or vk. We can compress this path to
a path with two edges.

If there exists a pair of adjacent marked vertices on P and R picks an edge from
P , then, without loss of generality, we may assume that R picks the edge between a
pair of marked vertices. This can be shown by arguing that, if R does not pick an
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v0 vk

Fig. 4.6. A long path that will be compressed.

Fig. 4.7. Compressing a link when there is an adjacent pair of marked vertices.

adjacent pair of marked vertices, then we can change R to another valid replacement
set which uses the adjacent marked pair without increasing its cost. See Figure 4.7 to
see the “compression” of a long path to a short path. In case (A), the marked pair is
an internal pair on the path, and, in case (B), it is an end pair on the path. In either
case, we perform the transformation as shown in Figure 4.7. We leave it to the reader
to see that a replacement set of edges in T can be translated to a replacement set of
edges in T ′ with no increase in cost.

If there exists at least one marked vertex on P but no adjacent pair of marked
vertices and R chooses an edge from P , then, without loss of generality, R picks an edge
that is incident on a marked vertex. In each case, it can be verified that we preserve
the cost of the set R in T when we consider the corresponding replacement set R′ in
T ′. Figure 4.8 shows how we compress the link. In each case, it can be verified that we
preserve the cost of the set R in T when we consider the corresponding replacement
set R′ in T ′. We consider all cases based on the status of the vertices marked “s.” We
do not show the symmetric cases and the cases when an adjacent marked pair exists.
The proof for each case is left to the reader.

Lemma 4.10. The size of T ′ is O(+).

Proof. In T ′ there are at most 2+ special vertices. This can easily be proven by
induction on the number of edges in Ts. If Ts has one edge, then it creates exactly
two marked vertices. Consider Ts, and delete an edge incident to a leaf vertex of Ts.
This has +−1 edges and thus 2(+−1) special vertices. When we add the leaf edge, we
create one more special vertex (the leaf vertex) and possibly one more vertex whose
degree becomes three.

Thus in T there are at most 2+− 1 “links,” where a “link” is a maximal sequence
of degree two vertices. Each link is a sequence of at most four edges, hence the number
of edges in T ′ is at most 4(2+− 1), which is O(+).
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Fig. 4.8. Compressing a link when there is no adjacent pair of marked vertices.

5. Planar graphs. In this section, we give a (1 + ε) approximation for the
VFES problem for any fixed ε > 0 (also referred to as a PTAS). A PTAS for the
VFES problem requires two steps. First, we preprocess the graph to compute its
2-edge connected components. We can work with each 2-edge connected component
separately since the edges that are cut-edges (bridges) cannot be on any cycle. We
then preprocess the graph to eliminate adjacent pairs of degree two vertices and then
prove that, in the resulting graph, the optimal solution has size Ω(n′), where n′ is the
number of vertices, after the elimination of adjacent pairs of vertices with degree two.
We then explain the necessary modifications to Baker’s schema for generating a PTAS
by using optimal solutions for k-outerplanar graphs [4]. Baker’s schema requires an
optimal solution to a version of the VFES problem when restricted to k-outerplanar
graphs; this is assumed to be available as a subroutine here and is presented explicitly
in section 6.

We first show that the optimal solution has size Ω(n′). Observe that a maximal
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sequence of degree two vertices can be contracted into a sequence containing only one
degree two vertex without changing the cost of the optimal solution. We then prove
that the number of edges in the graph is at least 6

5n
′, and hence any FES must have

at least n′
5 edges.

Lemma 5.1. If G is a 2-edge connected graph with n′ vertices and has no adjacent
vertices of degree 2, then the number of edges is at least 6

5n
′.

Proof. Let ni be the number of vertices of degree i. Since the graph is 2-edge
connected, n1 = 0. (Each vertex has degree at least 2.) Since there is no edge between
two vertices of degree 2, we have |E| ≥ 2n2. If n2 ≥ 3

5n
′, then we immediately obtain

|E| ≥ 6
5n
′. Hence we assume that n2 ≤ 3

5n
′. Note that 2|E| = ∑n−1

i=2 ini. Hence

|E| =∑n−1
i=2

i
2ni. Since

∑n−1
i=3 ni = n′ − n2, |E| ≥ n2 +

∑n−1
i=3

3
2ni = n2 + 3

2 (n
′ − n2).

We obtain |E| ≥ 3
2n
′ − 1

2n2 ≥ 6
5n
′.

Baker gives a framework which constructs a PTAS using optimal solutions for
k-outerplanar graphs—planar graphs where all nodes have a path of length less than
or equal to k to a node on the outermost face [4].

Fix a planar embedding of the graph. Let d(v) equal the shortest path length
from v to any node on the outer face of G. This scheme creates a collection of
k decompositions of the planar graph G into a set of k-outerplanar graphs. For
each value of i = 0 . . . (k − 1), we generate the ith decomposition as follows: delete
edges that connect nodes with label d(v) − 1 and d(v), where d(v) is congruent to
i(mod k). For example, for i = 0, we delete edges connecting nodes with d(v) value
k − 1 and k, 2k − 1 and 2k, etc. After we delete these edges, we are left with a
graph Gi, which is a collection of connected components that are each k-outerplanar.
We obtain the optimal solution for Gi by running a linear time algorithm for each
connected component (see section 6). This optimal VFES for the graph Gi can be
extended to become an FES for the input graph G by including a subset of the edges
deleted earlier, with an additional cost less than or equal to the number of nodes with
label d(v)− 1 and d(v), where d(v) is congruent to i(mod k). Define the set of nodes
with these labels to be Ri; then the cost of our solution is at most |OPT |+ |Ri|.

A given partition of G into a collection of k-outerplanar graphs Gi will have a
solution of size at most |OPT |+ |Ri|, where Ri is the set of “boundary” nodes in Gi.

If, for all i, |Ri| > 2n′
k , then

∑
ieven |Ri| > n′, which is a contradiction. Therefore, for

some i, we obtain a solution of size at most |OPT |+ 2n′
k .

By Lemma 5.1, the optimal FES must have at least n′
5 edges. Since the graph is

planar, these edges must be incident on Ω(n′) vertices; |OPT | ≥ cn′ for some constant
c. Our solution cost is at most OPT + 2OPT

kc ≤ OPT (1 + 2
kc ). By setting k = 2

cε , we
get a bound of (1 + ε)OPT .

6. k-outerplanar and treewidth-bounded graphs. In this section, we give
a linear time algorithm for treewidth-bounded graphs. (If the graph has treewidth k,
then the time required for the algorithm to run will be exponential in k but linear
in the size of the graph.) Bodlaender [7] proves that any k-outerplanar graph has
treewidth at most 3k − 1. Since our graph Gi consists of a collection of connected
components, each of treewidth 3k − 1, we can run this algorithm on each component
separately and take the union of the solutions we obtain. These algorithms rely on a
tree-decomposition of a graph, which we define for completeness.

Definition 6.1. Let G = (V,E) be a graph. A tree-decomposition of G is a
pair ({Xi | i ∈ I}, T = (I, F )), where {Xi | i ∈ I} is a family of subsets of V and
T = (I, F ) is a tree with the following properties:
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1.
⋃
i∈I Xi = V.

2. For every edge e = (v, w) ∈ E, there is a subset Xi, i ∈ I, with v ∈ Xi and
w ∈ Xi.

3. For all i, j, k ∈ I, if j lies on the path from i to k in T, then Xi

⋂
Xk ⊆ Xj.

The treewidth of a tree-decomposition ({Xi | i ∈ I}, T ) is maxi∈I{|Xi| − 1}. The
treewidth of a graph is the smallest value k such that the graph has a tree-decomposition
with treewidth k.

Many problems are known to have linear time algorithms on graphs with constant
treewidth, and there are frameworks for automatically generating a linear time algo-
rithm, given a problem specification in a particular format [2, 8]. The VFES problem
can be expressed in the formalism of Borie, Parker, and Tovey [8] as follows: given
input graph G = (V,E), find min |V1| [Forest(V,E \ E′), Inc(E′, V1)], which states
that we want to minimize the set of nodes incident upon a set of edges whose removal
makes the graph a forest. Forest(V,E \E′) and Inc(E′, V1) are predicates that spec-
ify that the edges induced by the set E \E′ form a forest and V1 is the set of vertices
incident on the edges in E′.
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LOWER BOUNDS FOR MATRIX PRODUCT IN BOUNDED DEPTH
CIRCUITS WITH ARBITRARY GATES∗
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Abstract. We prove superlinear lower bounds for the number of edges in constant depth circuits
with n inputs and up to n outputs. Our lower bounds are proved for all types of constant depth
circuits, e.g., constant depth arithmetic circuits and constant depth Boolean circuits with arbitrary
gates. The bounds apply for several explicit functions and, most importantly, for matrix product.
In particular, we obtain the following results:

1. We show that the number of edges in any constant depth arithmetic circuit for matrix
product (over any field) is superlinear in m2 (where m×m is the size of each matrix). That
is, the lower bound is superlinear in the number of input variables. Moreover, if the circuit
is bilinear, the result applies also for the case in which the circuit gets any product of two
linear functions for free.

2. We show that the number of edges in any constant depth arithmetic circuit for the trace of
the product of three matrices (over fields with characteristic 0) is superlinear in m2. (Note
that the trace is a single-output function.)

3. We give explicit examples for n Boolean functions f1, . . . , fn, such that any constant depth
Boolean circuit with arbitrary gates for f1, . . . , fn has a superlinear number of edges. The
lower bound is also proved for circuits with arbitrary gates over any finite field. The bound
applies for matrix product over finite fields as well as for several other explicit functions.

Key words. bounded depth circuits, matrix products, lower bounds, superconcentrators
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1. Introduction. Exponential lower bounds are well known for constant depth
Boolean circuits over the base {AND,OR,NOT} [Ajt83, FSS81, Yao85, H̊as86]. How-
ever, for many other types of constant depth circuits, almost nothing is known. In
this work, we prove superlinear lower bounds for the number of edges in constant
depth circuits with n inputs and up to n outputs. Our lower bounds are proved for all
models of Boolean and arithmetic circuits and, in particular, for Boolean circuits with
arbitrary gates. The bounds apply for several explicit functions and, in particular,
for matrix product.

In general, our lower bound for circuits of depth d ≥ 2 is Ω(n ·λd(n)), where λd(n)
is a slowly growing function. Our main method is a graph theoretic argument that
analyzes certain superconcentration properties of the circuit as a graph. Hence the
same lower bounds are obtained for all types of circuits. Our results and proof methods
are related to the works of [DDPW83, Pud94], where lower bounds of Ω(n·λd(n)) were
proved for the size of superconcentrators. Pudlak used similar methods to prove lower
bounds of Ω(n · λd(n)) for the number of edges in constant depth arithmetic circuits
with n inputs and up to n outputs over fields with characteristic 0 [Pud94]. Pudlak’s
results hold for the parallel prefix problem as well as for other explicit functions.

In all that follows, the size of a circuit means the number of edges in it.
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1.1. Matrix product. Matrix product is among the most studied computa-
tional problems. Surprising upper bounds of O(m2+ε) (where ε < 1 and m×m is the
size of each matrix) were obtained by Strassen in [Str69] and improved in many other
works (see [Gat88] for a survey). The only known lower bound, however, is a lower
bound of 2.5 ·m2 for the number of products needed [Bsh89, Bla99]. In particular,
the following problem is still open: Can matrix product be computed by circuits of
size O(m2)? Nontrivial size-depth tradeoffs for matrix product are also unknown. In
particular, the following problem is still open: Can matrix product be computed by
circuits of size O(m2) and logarithmic depth? In this work, we prove that matrix
product cannot be computed by circuits of size O(m2) and constant depth.

The standard computational model for matrix product is by arithmetic circuits
over some field F . Usually, it is assumed that the circuits are bilinear; that is, product
gates are applied only on two linear functions, where the first function is linear in
the variables of the first matrix and the second function is linear in the variables
of the second matrix. Such an assumption can be made without loss of generality
if the field F is of characteristic 0. For fields of characteristic different than 0, the
nonbilinear case is also interesting. Note, however, that all known upper bounds for
matrix product (over any field) are by bilinear circuits.

In the bilinear case, our lower bound proof also works if the circuit gets any
product of two linear functions for free. That is, the lower bound is proven for the
number of edges above the product gates. We prove that if the circuit is of depth 1
above these products (i.e., total depth 3), it is of size Ω(m3). For d ≥ 2, we prove
that if the circuit is of depth d above the products (i.e., total depth d+2), it is of size
Ω(m2 · λd(m)). In the general (nonbilinear) case for fields of characteristic different
than 0, our lower bound is Ω(m3) for circuits of depth 1 and Ω(m2 ·λd(m)) for circuits
of depth d ≥ 2. The last lower bound is a special case of a more general lower bound
for circuits with arbitrary gates over finite fields. That lower bound is discussed in
subsection 1.2.

1.2. Circuits with arbitrary gates. In a Boolean circuit with arbitrary gates,
we allow each gate (of fanin k) to compute an arbitrary function g : {0, 1}k → {0, 1}.
In this work, we give explicit examples for (up to) n Boolean functions f1, . . . , fn,
such that any constant depth Boolean circuit with arbitrary gates for f1, . . . , fn is
of superlinear size. (As before, the bound for depth d ≥ 2 is Ω(n · λd(n)).) The
bound holds for matrix product over GF (2) (where the dimension of each matrix is
m =

√
n/2) as well as for matrix product over other finite fields (where, say, each

field element is represented by its bits). The bound also holds for the parallel prefix
problem and for other problems from [Pud94].

Previously, Impagliazzo, Paturi, and Saks [IPS97] had considered the case of cir-
cuits with arbitrary monotone gates and negations (including the case of threshold
circuits). In this model, they proved superlinear lower bounds for constant depth
circuits for a single Boolean function, parity. In contrast, our bounds apply to cir-
cuits with completely general gates but give only lower bounds for multiple output
functions.

The above results for Boolean circuits with arbitrary gates can be generalized to
circuits over larger domains. Let F be some fixed finite set (e.g., some fixed finite
field), and assume that the input variables range over F (or over a subset of F ).
A circuit with arbitrary gates over F allows each gate (of fanin k) to compute an
arbitrary function g : F k → F . By a reduction to the Boolean case, we get explicit
examples for (up to) n functions f1, . . . , fn, such that any constant depth circuit with
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arbitrary gates over F for f1, . . . , fn is of superlinear size. (As before, the bound for
depth d ≥ 2 is Ω(n · λd(n)).) In particular, this gives lower bounds for circuits with
arbitrary gates over any finite field F . The bound holds for matrix product over F
as well as for many other functions.

1.3. Arithmetic circuits. In arithmetic circuits, the allowed gates are product
and addition over a field F . Constants in the field are also allowed. Arithmetic
circuits compute polynomials in the ring F [x1, . . . , xn] (where x1, . . . , xn are the input
variables for the circuit), and we would like to give explicit examples for polynomials
that are hard to compute. Note that for finite fields the representation of a function
f : Fn → F as a polynomial is not unique (since for every i we have the equation
xpi = xi, where p �= 0 is the characteristic of the field). Usually, it is required only
that the circuit compute the given polynomials as functions; that is, the circuit may
compute other polynomials that represent the same functions.

Lower bounds for the size of arithmetic circuits for explicit polynomials are
known only if we allow polynomials with large degree or large coefficients (see, e.g.,
[Str73, BS82]). However, if we limit the degree and the coefficients to be of size O(1),
then no nontrivial lower bound is known. For constant depth arithmetic circuits, expo-
nential lower bounds are known for fields F with characteristic p = 2 [Razb87, Smo87].
For other finite characteristics, exponential lower bounds are known only for depth 3
[GK98, GR98] (and, for depth larger than 3, no nontrivial lower bound was known).
For characteristic 0, the best lower bounds for depth 3 are the almost quadratic bounds
of Ω(n2−ε) [SW99].

In this work, we get (for any field F ) explicit examples for (up to) n polynomials
f1, . . . , fn such that any constant depth arithmetic circuit (over F ) for f1, . . . , fn is of
superlinear size. One such example is matrix product (over F ). For finite fields (and
hence also for any field with characteristic different than 0), this follows by the general
lower bound for circuits with arbitrary gates over F , as discussed in subsection 1.2.
For fields with characteristic 0, this follows from the bilinear lower bound for matrix
product, as discussed in subsection 1.1. Similar bounds for fields with characteristic 0
were previously proved by Pudlak [Pud94]. Pudlak gives explicit examples for n linear
functions f1, . . . , fn such that any constant depth arithmetic circuit with linear gates
(i.e., products are not allowed) for f1, . . . , fn is of superlinear size. (Over fields with
characteristic 0, the assumption that all the gates in the circuit are linear can be made
without loss of generality.)

For fields with characteristic 0, our results (as well as Pudlak’s results) also give
explicit examples for one polynomial h = f1 · y1 + · · ·+ fn · yn (in the input variables
x1, . . . , xn, y1, . . . , yn) such that any constant depth arithmetic circuit for h is of su-
perlinear size. This follows easily by the result of [BS82] and was noted to us by Toni
Pitassi and Avi Wigderson.

1.4. Methods and related work. Our main lemma gives an analysis of the
structure of a constant depth circuit as a graph. Let G be a directed acyclic graph.
Denote by VG the set of all nodes of G. Denote by IG the set of all nodes of indegree 0
(inputs) and by OG the set of all nodes of outdegree 0 (outputs). The depth of G
is the length of the longest directed path in G. Roughly speaking, the main lemma
shows that if G is of depth d and has fewer than n · λd(n) edges (where, for each
1 ≤ d, λd(n) is a slowly growing function of n), then one can remove from G a set
of ε · n inputs and ε · n outputs (for some small constant ε) and a small number of
intermediate nodes, such that, in the new graph, the total number of directed paths
from IG to OG is small.
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Lemma 1.1. For any 0 < ε < 1/400 and any directed acyclic graph G of depth d,
with more than n vertices and less than ε · n · λd(n) edges, the following is satisfied.

For some k, such that
√

n ≤ k = o(n), there exist subsets I ⊂ IG, O ⊂ OG, and
V ⊂ VG, such that |I|, |O| ≤ 5ε · d · n, |V | = k, and the total number of directed paths
from IG \ I to OG \O that do not pass through nodes in V is at most ε · n2/k.

Lemma 1.1 is restated (in a slightly more general form) as Corollary 3.12.
The main lemma is used to transform any circuit of depth d and size less than

εnλd(n) into a new circuit of depth 1 (and relatively small size). This is done by
removing from the original circuit 5εdn inputs, 5εdn outputs, and a small number of
intermediate nodes. The lower bounds then follow by a rigidity argument in the spirit
of Valiant’s approach [Val77].

As mentioned before, similar methods were previously used to prove lower bounds
for superconcentrators [DDPW83, Pud94] and for constant depth arithmetic cir-
cuits over fields with characteristic 0 [Pud94]. In particular, methods similar to
our main lemma are implicit in [Pud94] (although the presentation there is differ-
ent). Versions of these methods appeared already in [DDPW83]. One can think of
Lemma 1.1 also as a generalization of the lower bounds for superconcentrators given
in [DDPW83, Pud94]. In fact, all these lower bounds follow easily by a reduction to
Lemma 1.1. Our proof for Lemma 1.1 relies on [Pud94].

1.5. Organization of the paper. In section 2, we give the definition of the
functions λd(n) and prove some simple properties of these functions. In section 3, we
give the proof of Lemma 1.1. In section 4, we prove our results for bilinear arithmetic
circuits. In section 5, we prove our results for Boolean circuits with arbitrary gates
and for circuits with arbitrary gates over finite fields.

2. Slowly growing functions. In this section, we define the functions λd(n)
and we prove some easy properties of them. We start with a definition of the “star”
operator.

Definition 2.1. For a function f , define f (i) to be the composition of f with
itself i times; i.e., f (i) = f ◦ f ◦ · · · ◦ f i times, f (1) = f .

For a function f : N → N such that f(n) < n for n > 0, define

f∗(n) = min{ i | such that f (i)(n) ≤ 1}.

We will need the following properties of f∗ (taken from [Pud94]).
Claim 2.2 (see [Pud94]). Suppose f(n) ≤ �√n�. For every n ≥ 0, we have

1. f(i)(n)
f(i+1)(n)

≥ f (i+1)(n) for every i > 0 (provided that the denominator is not 0),

2. f (i)(n) ≥ f∗(n)
2 for every i ≤ f∗(n)

2 .
The proof is taken from [Pud94] as well.
Proof.
1.

f (i)(n)

f (i+1)(n)
≥ f (i)(n)

�
√

f (i)(n)� ≥
√

f (i)(n) ≥ f (i+1)(n).

2. From (1) it follows that, if f (i+1)(n) > 1, then f (i)(n) > f (i+1)(n). Therefore,

f(n) > f (2)(n) > · · · > f (f∗(n))(n).

Since the values of f are integers, the result follows.
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Our lower bounds will be expressed in terms of the following set of slowly growing
functions.

Definition 2.3. Let

λ1(n) = �
√

n�,

λ2(n) = �log n�,

λd(n) = λ∗d−2(n).

Some easy-to-verify properties of these functions are the following.
Claim 2.4.
1. Each λi(n) is a monotone increasing function tending to infinity with n.
2. For i ≥ 2, λ2i(n) = Θ(λ2i+1(n)).
3. For i ≥ 2 and n large enough, λi(n) ≤ �

√
n
2 �.

Proof.
1. The fact that λi is increasing is immediate from the fact that λ1 and λ2 are.
2. Notice that λ3(n) = Θ(log logn). Since log logn = log(2)(n), we have λ4(n) =

Θ(λ5(n)). Using induction, we get the desired result.
3. Clearly λ2(n), λ3(n) ≤

√
n
2 for n large enough. Assume that λj(n) ≤

√
n
2 .

We have
√

n

2
≥ λj(n) ≥ (λ

(2)
j (n))2 ≥ 1

4
(λj+2(n))

2;

hence

λj+2(n) ≤ (8n)
1
4 ≤

√
n

2

for n large enough.

3. Superconcentration properties of graphs. In this section, we prove our
main lemma on graphs and several stronger versions of it. The lemma will be used to
analyze the structure of a constant depth circuit as a graph. For simplicity, we prove
here the lemma for leveled graphs. The general case follows easily by a reduction to
the leveled case. Let G = (VG, EG) be a leveled graph of depth d. The number of
levels in G is hence d+ 1, and all edges in the graph are between vertices of adjacent
levels. In all the following, we allow all graphs to be multigraphs.

We will use the following notation: We denote by L0, . . . , Ld the levels of G; that
is, Li is the set of vertices at level i. The set of vertices L0 is also denoted by IG (and
we call these vertices inputs). The set of vertices Ld is also denoted by OG (and we
call these vertices outputs).

Let U ⊂ VG be a set of vertices. We denote by E(U) the set of edges that touch
vertices in U . We denote by Γ(U) the set of neighbors of U . We denote by maxdeg(U)
the maximal degree of a vertex in U . For subsets I ⊂ IG, O ⊂ OG, V ⊂ VG, we denote
by PG[I,O, V ] the total number of paths of length d between I and O that do not
pass through vertices in V .

Since our results are expressed as functions of the λd’s, all our results hold when-
ever n is large enough. So, from now on, we assume that n is large enough.
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3.1. Depth 2. We will prove the main lemma for graphs of depth 2. We will
start by proving a stronger lemma (Lemma 3.1). The main lemma (for depth 2) will
then follow as Corollary 3.3. These lemmas are not needed for the proofs for higher
depth. Nevertheless, the methods used here give some hints for the proofs needed for
the general case.

Lemma 3.1. Let ε > 0, and let 1 ≤ k ≤ n. Let G be a leveled graph of depth 2
with at most εnλ2(

n
k ) edges. Assume that |L1| ≥ k. Then there exists a set V ⊂ L1

of size k ≤ |V | ≤ √kn such that

PG[IG, OG, V ] ≤ 100ε2n2

|V | .

For the proof of Lemma 3.1, we will need Lemma 3.2. For the proof of Lemma 3.2,
the reader is referred to [Pud94, Lemma 4].

Lemma 3.2 (see [Pud94]). Let c1 ≥ c2 ≥ · · · ≥ ct ≥ 0 be a sequence of real
numbers, and let p, q be two integers such that 1 ≤ p ≤ q ≤ t. If, for every p ≤ l ≤ q,

t∑
i=l

ci
2 ≥ 1

l
,

then

t∑
i=1

ci ≥ 1

2
log

(
q

p

)
.

Proof of Lemma 3.1. Denote m = |L1|. Let v1, v2, . . . , vm be the vertices of L1,
ordered according to their degree, from highest to lowest. That is, for every i,
deg(vi) ≥ deg(vi+1). For every k ≤ l ≤ √nk, denote Vl = {v1, . . . , vl}. Then,
for every such l,

PG[IG, OG, Vl] ≤
m∑

i=l+1

(deg(vi))
2.

Let ci =
deg(vi)
10εn . Then

m∑
i=1

ci =
1

10εn

m∑
i=1

deg(vi) =
1

5εn
|EG| ≤ 1

5

⌈
log
(n

k

)⌉
<

1

2
log

(√
n√
k

)
=

1

2
log

(√
nk

k

)
.

Therefore, by Lemma 3.2, for some k ≤ l ≤ √nk,

m∑
i=l

ci
2 <

1

l
.

Hence

PG[IG, OG, Vl] ≤
m∑
i=l

(deg(vi))
2 = (100ε2n2)

m∑
i=l

c2
i ≤

100ε2n2

l
=

100ε2n2

|Vl| .

As a corollary, we obtain our main lemma for d = 2.
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Corollary 3.3. Let G be a leveled graph of depth 2 with at most εnλ2(n) edges
for some 0 < ε < 1/400. Assume that |L1| ≥

√
n. Then there exists a set V ⊂ L1 of

size
√

n ≤ |V | ≤ n
3
4 such that

PG[IG, OG, V ] ≤ εn2

|V | .

Proof. Note that

εnλ2(n) ≤ 2εnλ2

(
n√
n

)
.

By Lemma 3.1 with k =
√

n, there is a set V ⊂ L1 of size
√

n ≤ |V | ≤ n
3
4 such that

PG[IG, OG, V ] ≤ 100(2ε)2n2

|V | ≤ εn2

|V | .

3.2. Reducing the depth by 2. Roughly speaking, the main lemma shows
that, if G has a small number of edges, then one can remove from G a small set J of
inputs and outputs and a small set V of other vertices, such that the total number
of paths of length d from IG \ J to OG \ J that do not pass through vertices in V is
small (i.e., PG[ IG \ J, OG \ J, V ] is small).

The proof is by induction on the depth, and it uses a specific way to reduce the
depth by 2: Given a partition (A,B,C) of L1 ∪Ld−1, we will eliminate L1 ∪Ld−1 by

1. removing A,
2. removing all neighbors of B among IG ∪OG, and
3. adding an edge between vertices from IG and L2 that are connected through C

(and the same with Ld−2 and OG) and then removing C.
This leads us to the following definition.

Definition 3.4. Let G be a leveled graph of depth d ≥ 3. Let (A,B,C) be a
partition of L1 ∪ Ld−1. The graph Ĝ of depth d− 2 is defined in the following way:
The inputs of Ĝ are

IĜ = IG \ Γ(B).

The outputs of Ĝ are

OĜ = OG \ Γ(B).

The d− 1 levels of Ĝ are

IĜ, L2, . . . , Ld−2, OĜ

(note that, for d = 3, the levels of Ĝ are just IĜ, OĜ). The edges between the levels
L2, . . . , Ld−2 are the same as they are in G. The other edges are defined in the
following way:

• For d > 3, we have to define the edges between IĜ and L2 and between
Ld−2 and OĜ. For every v, c, w such that v ∈ IĜ, c ∈ C, w ∈ L2, and there

are edges (v, c), (c, w) in G, we add the edge (v, w) to Ĝ (i.e., we replace
every such path of length 2 with an edge). In the same way, for every v, c, w
such that v ∈ Ld−2, c ∈ C, w ∈ OĜ, and there are edges (v, c), (c, w) in G,

we add the edge (v, w) to Ĝ.
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• For d = 3, we have to define the edges between IĜ and OĜ. This case is
slightly different because we do not have a level between L1 and L2 to absorb
the new edges. So instead, for every path of length 3 (v, c1, c2, w), such that
v ∈ IĜ, w ∈ OĜ, and c1, c2 ∈ C, we put an edge (v, w) in Ĝ.

Clearly Ĝ is a function of G,A,B,C. For convenience, we will use the notation Ĝ
instead of Ĝ(G,A,B,C).

Obviously, Ĝ is a multigraph of depth d−2. In the construction of Ĝ, we replaced
each path of length 2 through C (or a path of length 3 in the case in which d = 3)
with an edge. Therefore, we have the following easy corollary. The corollary shows
that the number of relevant paths in the graph Ĝ is the same as it is in the graph G
after removing the sets A and Γ(B). Hence, in order to count the paths in G, it is
enough to count the corresponding paths in Ĝ. This easy observation makes the use
of induction possible.

Proposition 3.5. Let G,A,B,C, Ĝ be as in Definition 3.4. Then the following
hold:

1. PG[ IG \ Γ(B), OG \ Γ(B), A] = PĜ[IĜ, OĜ, ∅].
2. More generally, for any set of vertices V̂ ⊂ L2 ∪ · · · ∪ Ld−2 and any set of
inputs and outputs Ĵ ⊂ IĜ ∪OĜ,

PG[ IG \ (Ĵ ∪ Γ(B)), OG \ (Ĵ ∪ Γ(B)), V̂ ∪A] = PĜ[ IĜ \ Ĵ , OĜ \ Ĵ , V̂ ].

As mentioned above, we will prove the main lemma by induction. In each step,
we reduce the depth by 2 by removing a set A of intermediate vertices and a set Γ(B)
of inputs and outputs. The final set V will be the union of the sets A from all steps
of the induction, and the final set J will be the union of the sets Γ(B) from all these
steps.

In each step of the induction, we assume that the graph G has a relatively small
number of edges. We would like to make sure that Ĝ also has a small number of edges.
The next lemma shows that, given certain bounds for |A|, maxdeg(C), and |EG|, one
can bound the number of edges in Ĝ. The idea of the proof is that the only edges
that we add to Ĝ are related to paths through C. Therefore (roughly), we can bound
|EĜ| by |EG| ·maxdeg(C). Note that we assume here the bound

|EG| ≤ εnλd

(n

k

)

for some k ≥ 1. This is more general than the original assumption |EG| ≤ εnλd(n).
The reason that we need a more general assumption is that the graph G may be
a graph that was obtained after several steps of reduction (rather than the original
graph). Roughly, the parameter k corresponds to the number of intermediate vertices
that were already removed from the original graph (the set V in the statement of the
lemma). Since we think of the set A as being removed from the graph as well (and
being added to the set V ), the bound that we want for |EĜ| is

|EĜ| ≤ εnλd−2

(
n

k + |A|
)

.

Lemma 3.6. Let G,A,B,C, Ĝ be as in Definition 3.4. Let 0 < ε < 1/3 and
1 ≤ k ≤ ε2n. Assume that

|EG| ≤ εnλd

(n

k

)
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and that, for some integer 1 ≤ i ≤ λd(
n
k )

2 − 3, we have
1. |A| ≤ 2εn

λ
(i)

d−2
(nk )

and

2. maxdeg(C) ≤ λ
(i+3)
d−2 (nk ).

Then

|EĜ| ≤ εnλd−2

(
n

k + |A|
)

.

The proof is by a straightforward calculation using Claims 2.2 and 2.4.
Proof. Since k ≤ ε2n, we have

kλ
(i)
d−2

(n

k

)
≤ kλ1

(n

k

)
≤ k

√
n

k
< εn;

therefore,

k + |A| ≤ k +
2εn

λ
(i)
d−2(

n
k )

=
kλ

(i)
d−2(

n
k ) + 2εn

λ
(i)
d−2(

n
k )

<
3εn

λ
(i)
d−2(

n
k )

<
n

λ
(i)
d−2(

n
k )

.

We now have two different cases that follow from the construction in Definition 3.4:
1. d > 3. From the construction of Ĝ, we get that the degree of each vertex in

L2 ∪ Ld−2 has increased by a factor of maxdeg(C) at most. Therefore, we
have

|EĜ| ≤ |EG| ·maxdeg(C) ≤ εnλd

(n

k

)
λ

(i+3)
d−2

(n

k

)

≤ 2εn
(
λ

(i+3)
d−2

(n

k

))2

≤ εnλ
(i+2)
d−2

(n

k

)
≤ εnλ

(2)
d−2

(
n

k + |A|
)

< εnλd−2

(
n

k + |A|
)

(where all inequalities are due to Claims 2.2 and 2.4 and the bound that we
proved on k + |A|).

2. d = 3. Since we dropped L1 ∪ L2, the set of inputs and outputs now absorbs
both the edges of C ∩ L1 and the edges of C ∩ L2, so we have

|EĜ| ≤ |EG| ·maxdeg(C)2 ≤ εnλd

(n

k

)(
λ

(i+3)
d−2

(n

k

))2

≤ 1

2
εnλd

(n

k

)
λ

(i+2)
d−2

(n

k

)
≤ 1

2
εnλ

(i+1)
d−2

(n

k

)

≤ 1

2
εnλd−2

(
n

k + |A|
)

(where, as before, all inequalities are due to Claims 2.2 and 2.4 and the bound
that we proved on k + |A|).
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So far, we have presented the construction of Ĝ from G, given an arbitrary parti-
tion (A,B,C). In order to maintain the bound on the number of edges of Ĝ, we need
A,C to satisfy the conditions of Lemma 3.6. Also, we need Γ(B) to be not too large
in order to make sure that the total number of inputs and outputs removed in the
process is small. The next lemma shows how to partition L1 ∪Ld−1 into suitable sets
(A,B,C). The way it is done is by first ordering the vertices in L1∪Ld−1 according to
their degrees (from highest to lowest) and then finding appropriate numbers r1 > r2,
such that A will be the set of vertices with degree larger than r1, B will be the set of
vertices with degree larger than r2 and at most r1, and C will be the set of vertices
with degree at most r2.

Lemma 3.7. Let G be a leveled graph of depth d ≥ 3, such that |EG| ≤ εnλd(r)
for large enough r (more accurately, we need λd(r) > 72). Then there exist a partition
(A,B,C) of L1 ∪ Ld−1 and 1 ≤ i ≤ λd(r)/2− 3 with the following properties:

1. |A| ≤ 2εn

λ
(i)

d−2
(r)
,

2. |Γ(B)| ≤ 9εn,

3. maxdeg(C) ≤ λ
(i+3)
d−2 (r).

Proof. Denote

W0 = {v ∈ L1 ∪ Ld−1 | deg(v) > λd−2(r)}
and, for i ≥ 1,

Wi = {v ∈ L1 ∪ Ld−1 | λ
(i)
d−2(r) ≥ deg(v) > λ

(i+1)
d−2 (r)}.

Claim 3.8. For every 1 ≤ i ≤ λd(r)/2− 3,

|W0 ∪W1 ∪ · · · ∪Wi−1| ≤ 2εn

λ
(i+1)
d−2 (r)

.

Proof. The proof follows from the fact that the degree of each vertex in W0 ∪
W1 ∪ · · · ∪Wi−1 is at least λ

(i)
d−2(r). If the claim were not true, we would have had

|EG| ≥ |E(W0 ∪W1 ∪ · · · ∪Wi−1)|λ(i)
d−2(r) ≥

2εn

λ
(i+1)
d−2 (r)

λ
(i)
d−2(r)

≥ 2εnλ
(i+1)
d−2 (r) ≥ εnλd(r),

in contradiction.
Claim 3.9. For some 0 ≤ i ≤ λd(r)/2− 4,

|E(Wi ∪Wi+1 ∪Wi+2 ∪Wi+3)| ≤ 9εn.

Proof. The proof follows from the bound on |EG|. Since |EG| ≤ εnλd(r), we must
have

λd(r)/2−4

4∑
i=0

|E(W4i ∪W4i+1 ∪W4i+2 ∪W4i+3)| ≤ εnλd(r).

If each of the sets E(W4i ∪W4i+1 ∪W4i+2 ∪W4i+3) were of size larger than 9εn, then
we would have had

|EG| ≥ 9εn
λd(r)/2− 4

4
> εnλd(r)
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(for large enough r), in contradiction.

Fix i′ to be such that Claim 3.9 is satisfied for i′. The proof of the lemma now
follows for i = i′ + 1 by taking

1. A = W0 ∪W1 ∪ · · · ∪Wi′−1,
2. B = Wi′ ∪Wi′+1 ∪Wi′+2 ∪Wi′+3,
3. C = (L1 ∪ Ld−1) \ (A ∪B).

3.3. Depth 3. The induction that we are about to perform on the depth will
end with a graph of depth 2 or 3 (without loss of generality, 3). We will now give the
proof of the main lemma for the special case in which d = 3. As mentioned before,
we need a more general lemma that assumes a more general bound for the number of
edges in the graph.

The proof for d = 3 already gives the main idea of the proof for the general case.
First, we partition L1∪L2 into three sets (A,B,C) as described before. The partition
(A,B,C) will satisfy the following: The first set A is small, the second set B is not
connected to many inputs and outputs, and each vertex in the third set C has small
degree. We then reduce the depth of the graph to 1, using Definition 3.4. Thus we get
a graph, Ĝ, with the same number of input-output paths, between IĜ and OĜ. Since

Ĝ is a graph of depth 1, the number of such paths is simply the number of edges.
The last step would be to calculate the number of edges in Ĝ, which is done using
Lemma 3.6.

Lemma 3.10. Let 0 < ε < 1/3. Let 0 < β and 0 < α satisfy

α < ε2 and
4ε

λ3(
1
α )

< β.

Let G be a leveled graph of depth 3 with at most εnλ3(
n
k ) edges for some 1 ≤ k ≤ αn.

Then there exists a partition (A,B,C) of L1 ∪ L2 such that

1. |A| < βn,
2. |Γ(B)| ≤ 9εn,
3. PG[ IG \ Γ(B), OG \ Γ(B), A] ≤ εnλ1(

n
k+|A| ).

Proof. By Lemma 3.7, we can partition L1 ∪ L2 into three sets (A,B,C) such
that, for some 1 ≤ i ≤ λ3(

n
k )/2− 3, we have

1. |A| ≤ 2εn

λ
(i)
1 (nk )

≤ 2εn

λ
(i)
1 ( 1

α )
≤ 4εn

λ3(
1
α )

< βn,

2. |Γ(B)| ≤ 9εn,

3. maxdeg(C) ≤ λ
(i+3)
1 (nk ).

Let Ĝ be as in Definition 3.4 (with respect to (A,B,C)). By Proposition 3.5,

PG[ IG \ Γ(B), OG \ Γ(B), A] = PĜ[IĜ, OĜ, ∅].

Since Ĝ is of depth 1, the right-hand side equals |EĜ|. By Lemma 3.6,

|EĜ| ≤ εnλ1

(
n

k + |A|
)

.

Hence

PG[ IG \ Γ(B), OG \ Γ(B), A] ≤ εnλ1

(
n

k + |A|
)

.
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3.4. Higher depth. We are now ready to state and prove our main lemma. As
mentioned above, we actually prove a stronger lemma that will be needed for the
induction. The main lemma will then follow as an easy corollary. First, note that
the functions λd(n) satisfy λ2i(n) = Θ(λ2i+1(n)) for 2 ≤ i. Hence we can assume
without loss of generality that the depth d is odd; otherwise, we can just increase
the depth by 1. (We could not prove better results for the even levels because of the
constructions given in [DDPW83].)

Lemma 3.11. Let 0 < ε < 1/3. For any odd integer 3 ≤ d and 0 < β < 1, there
exists 0 < α = α(d, β) such that, if 1 ≤ k ≤ αn and G is a leveled graph of depth d,
with at most εnλd(

n
k ) edges, then there exist a set V of vertices and a set J of inputs

and outputs such that
1. |V | ≤ βn,
2. |J | ≤ 5εdn,
3. PG[ IG \ J, OG \ J, V ] ≤ εnλ1(

n
k+|V | ).

Proof. The proof is by induction on d. The base case d = 3 was proved in
Lemma 3.10. So assume that, for any 0 < β < 1 and any integer 0 < l, α(d − 2l, β)
exists. Let α satisfy the following:

α +
4ε

λd(
1
α )

< α

(
d− 2,

β

2

)
and

β

2
+

4ε

λd(
1
α )

< β.

Clearly such an α exists. Take α(d, β) = α. Let G be a leveled graph of depth d,
with at most εnλd(

n
k ) edges, for 1 ≤ k ≤ αn. Let (A,B,C) be the partition of

L1 ∪Ld−1 from Lemma 3.7. Let Ĝ be the depth d− 2 graph defined in Definition 3.4
(with respect to (A,B,C)). Then, by Lemma 3.6,

|EĜ| ≤ εnλd−2

(
n

k + |A|
)

.

Also, for some

1 ≤ i ≤ 1

2
λd−2

(n

k

)
− 3,

we have that

|A| ≤ 2εn

λ
(i)
d−2(

n
k )
≤ 2εn

λ
(i)
d−2(

1
α )
≤ 4εn

λd(
1
α )

.

Therefore,

k + |A| ≤ αn +
4εn

λd(
1
α )
≤ α

(
d− 2,

β

2

)
· n.

Hence the inductive assumption holds for Ĝ with parameters d − 2 and β
2 . We

get that, for Ĝ, there exist a set V̂ of vertices and a set Ĵ of inputs and outputs such
that

1. |V̂ | ≤ β
2 n,
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2. |Ĵ | ≤ 5ε(d− 2)n,
3. PĜ[ IĜ \ Ĵ , OĜ \ Ĵ , V̂ ] ≤ εnλ1(

n
k+|A|+|V̂ | ).

Define V = V̂ ∪A and J = Ĵ ∪ Γ(B). We have that

|V | = |V̂ |+ |A| ≤ β

2
n +

4εn

λd(
1
α )
≤ βn.

Since |Ĵ | ≤ 5ε(d− 2)n and |Γ(B)| ≤ 9εn, we have that |J | ≤ 5εdn.
Finally, by Proposition 3.5,

PG[ IG \ J, OG \ J, V ] = PĜ[ IĜ \ Ĵ , OĜ \ Ĵ , V̂ ]

≤ εnλ1

(
n

k + |A|+ |V̂ |

)
= εnλ1

(
n

k + |V |
)

.

Our main lemma is now stated as the following corollary. Note that the require-
ment ε < 1/400 is needed only for the case in which d = 2. (A weaker requirement is
needed for d > 2.)

Corollary 3.12. Let 0 < β < 1. Let G be a leveled graph of constant depth
d ≥ 2, with more than n vertices and less than εnλd(n) edges, for some 0 < ε < 1/400
and n sufficiently large. Then there exist a set V of vertices and a set J of inputs and
outputs such that

1.
√

n ≤ |V | ≤ βn,
2. |J | ≤ 5εdn,

3. PG[ IG \ J, OG \ J, V ] ≤ ε n
2

|V | .
Proof. First note that (as mentioned above) Lemma 3.11 is correct also for even

depth if we just require ε to be slightly smaller (a factor of 2 or 3 is enough). Since
here we require ε < 1/400, we can apply Lemma 3.11 for any depth larger than 2.

We apply Lemma 3.11 with k = 1. If |V | ≥ √n, we are done. Otherwise, just
add arbitrary vertices to V . Call the resulting set V ′. We have

PG[ IG \ J, OG \ J, V ′] ≤ PG[ IG \ J, OG \ J, V ]

≤ εnλ1

(
n

1 + |V |
)
≤ εn

√
n

1 + |V | = ε
n2√

n(1 + |V |) ≤ ε
n2

|V ′| .

This completes the proof for depth higher than 2. For d = 2, the corollary was already
stated as Corollary 3.3.

3.5. Graphs for matrix product. As mentioned in the introduction, the main
function that we concentrate on in this work is matrix product. A circuit for matrix
product has 2m2 inputs and m2 outputs, where m is the dimension of each matrix.
Therefore, we will assume here that our graph has 2m2 inputs and m2 outputs and
that the outputs are ordered as a matrix. We will refer to such a graph as a graph
for matrix product. For convenience, we will prove a lemma that will be specific for
such graphs. The proof will follow easily by Corollary 3.12.

Denote by Oi the outputs in the ith column of the output matrix. Denote by [m]
the set {1, . . . ,m}. We think of [m] as the set of all output columns. For a subset
D ⊂ [m], denote by OD the outputs in all the columns in D. That is, OD = ∪i∈DOi.
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Roughly, our lemma will state that, after removing from the graph a small set
I of inputs, a small set O of outputs, and a set V of size k of intermediate nodes,
one can find a set D of 10k/m output columns such that there are no paths between
the inputs and the outputs in OD. For simplicity, we will not state the lemma for a
general constant ε, and we will just fix some constant that will be good enough.

Lemma 3.13. Let G be a leveled graph for matrix product, of constant depth
d ≥ 2, with less than εm2λd(m

2) edges, for ε = 1/(1000 ·d). Then, for any 0 < β < 1,
there exist sets V ⊂ VG, D ⊂ [m], O ⊂ OD, I ⊂ IG such that the following hold:

1. m ≤ |V | ≤ βm2.

2. |D| ≥ 10|V |
m .

3. For every i ∈ D, |Oi ∩O| < 1
10m.

4. |I| < 1
10m2.

5. PG[ IG \ I, OD \O, V ] = 0.
Proof. Let V, J be the sets guaranteed by Corollary 3.12 with n = m2. Define

Ĩ = J ∩ IG and Õ = J ∩OG, and let k = |V |. Then
1. m ≤ |V | = k ≤ βn (hence requirement 1 is satisfied),
2. |Ĩ|, |Õ| ≤ (1/200) ·m2,

3. PG[ IG \ Ĩ , OG \ Õ, V ] ≤ εm
4

k .

Denote by D̃ the set of all i ∈ [m] such that |Oi ∩ Õ| < (1/100) ·m. Then, by the
bound we have on |Õ|, we know that

|D̃| ≥ (1/2) ·m.

For every i ∈ D̃, let P (i) be the total number of paths between outputs in
Oi \ Õ and inputs in IG \ Ĩ that do not pass through V . Denote by D the set of
�10k/m� indices i with the smallest P (i). (Then, by the definition of D, requirement 2
is satisfied.) Denote O = Õ ∩ OD. (Then, by the fact that D ⊂ D̃, requirement 3 is
satisfied.) Since

∑
i∈D̃

P (i) ≤ PG[ IG \ Ĩ , OG \ Õ, V ] ≤ ε
m4

k
,

we have

∑
i∈D

P (i) ≤ |D||D̃|
∑
i∈D̃

P (i) ≤ �10k/m�
m/2

· εm
4

k
< (1/50) ·m2.

Hence, if we denote by Î the set of all inputs that are connected by a path (that do
not pass through V ) to some output in OD \O, we have

|Î| < (1/50) ·m2.

Denote I = Ĩ∪ Î. (Then, by the bounds we have on |Ĩ|, |Î|, requirement 4 is satisfied.)
By the definition of Î, all paths between OD \O and IG \ I pass through V . (Hence
requirement 5 is satisfied.)

4. Arithmetic model. In this section, we present our results for bilinear arith-
metic circuits. An arithmetic circuit is a directed acyclic graph as follows. Nodes of
indegree 0 are called inputs and are labeled with input variables. Nodes of outdegree 0
are called outputs. Each edge is labeled with a constant from the field, and each node
other than an input is labeled with one of the following operations: {+ , · }. (In the
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first case the node is a plus gate and in the second case a product gate.) The compu-
tation is done in the following way: An input just computes the value of the variable
that labels it. Then, if v1, . . . , vk are the vertices that fan into v, then we multiply
the result of each vi by the value of the edge that connects it to v. If v is a plus gate,
we sum all the results; otherwise, v is a product gate, and we multiply all the results.
Obviously, each node in the circuit computes a polynomial in the input variables.

In this section, we prove lower bounds on the size of circuits computing the
product of two m×m matrices. The input is of size n = 2m2, and it consists of two
m×m matrices X,Y . The output is the matrix Z = X ·Y ; i.e., there are m2 outputs,
and the (i, j)th output is

zi,j =

m∑
k=1

xi,k · yk,j .

Each output zi,j is hence a bilinear form in X and Y .

Since the product of two matrices is a bilinear form, it is natural to consider
bilinear arithmetic circuits for it. A bilinear arithmetic circuit is an arithmetic circuit
with the additional restriction that a product gate is allowed only to compute the
product of two linear functions—one in the variables of X and the other in the vari-
ables of Y . Thus bilinear circuits have the following structure: First, there are many
plus gates computing linear forms in X and linear forms in Y . Then there is one level
of product gates which compute bilinear forms, and, finally, there are many plus gates
that eventually compute the outputs. We will now define the size and depth of the
circuit.

Definition 4.1. For a bilinear circuit C, we denote by s(C) (the size of C) the
number of edges between the product gates and the outputs. We denote by d(C) (the
depth of C) the length of the longest directed path from a product gate to an output.

Note that these definitions ignore all gates and edges below the product gates
(i.e., between the inputs and the products). That is, we allow the circuit to get for
free any number of linear functions in the variables of X, and any number of linear
functions in the variables of Y . We count only the size and depth above the product
gates.

The requirement that the circuit is bilinear seems restrictive. It is easy to show,
however, that over fields of characteristic 0, the bilinearity assumption does not change
(up to a constant factor) the size and the depth of the circuit. More accurately, by
paying a constant factor in the size and in the depth, we can transform any arithmetic
circuit computing a bilinear form into an equivalent bilinear circuit. Roughly, this
is done in the following way: Since the circuit computes polynomials of degree two,
it does not really need to keep track of any monomial of higher degree. Therefore,
we need only keep track of monomials of degree one or two, and we can do that by
replacing each gate by a constant number of new gates (at most 5 new gates) that
satisfy the bilinearity assumption. Thus we have the following proposition.

Proposition 4.2. If a set of bilinear forms is computed by an arithmetic circuit
of depth d and size s over a field of characteristic 0, then there is a bilinear circuit of
depth 3d and size 5s over the same field computing the same set of bilinear forms.

Over finite fields, the bilinearity assumption may be restrictive. We prove lower
bounds for the general case of arithmetic circuits over finite fields in section 5. It
is also worth noting that all known algorithms for matrix product are by bilinear
arithmetic circuits.
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Our main tool in proving our lower bounds is Lemma 3.13. Since that lemma is
stated for leveled graphs, we would like our circuit to be leveled. We hence assume
that our circuit is a leveled bilinear arithmetic circuit. Since we consider leveled
circuits, the depth of the circuit is just the number of levels above the product gates.
Our main result in this section is the following lower bound.

Theorem 4.3. Any leveled bilinear arithmetic circuit C of depth d, for the
product of two m×m matrices, is of size

s(C) =

{
Ω(m3), d = 1,
Ω( 1

dm
2λd(m

2)), d > 1.

In order to prove lower bounds for a nonleveled bilinear circuit, we just level it.
We can do that by increasing its size by a factor of d. We can then use the lower
bounds for leveled circuits. We hence have the following corollary.

Corollary 4.4. Any bilinear arithmetic circuit C of depth d, for the product of
two m×m matrices, is of size

s(C) =

{
Ω(m3), d = 1,
Ω( 1

d2 m
2λd(m

2)), d > 1.

In particular, this gives the following size-depth tradeoff: there is no linear size
and constant depth bilinear arithmetic circuit for the product of two matrices. Note
that the theorem is valid for any field. It just needs the bilinearity assumption.

After proving the main theorem, we will use the result of Baur and Strassen [BS82]
to prove a lower bound on the size of bounded depth arithmetic circuits for the trace
of the product of three matrices:

m∑
i,j,k=1

xi,j · yj,k · zk,i,

which is a function with a single output.
Let us start with bilinear circuits of depth 1. The structure of such circuits is

very simple. First, they compute linear forms. Then there is one level of product
gates computing bilinear forms. Finally, there is one level of m2 plus gates computing
the outputs. For the proof, we will use the following notation:

Oj = {zi,j | i ∈ {1, . . . ,m}};

i.e., Oj denotes the set of outputs of the jth column of the output matrix.
Theorem 4.5. Any leveled bilinear circuit C of depth 1, for the product of two

m×m matrices, is of size

s(C) = Ω(m3).

Proof. Since the circuit is of depth 1, the outputs come right after the product
gates. Each output is computed by a plus gate that adds the results of the product
gates that are connected to it. We will show that there are at least m2 edges connected
to each output column Oj . Hence, since there are m output columns, the result
follows.

Assume, for a contradiction, that an output column Oj is connected to r < m2

product gates. Denote the functions computed by these gates by M1, . . . ,Mr. For
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each Mk, denote by Lk,1(X), Lk,2(Y ) the two linear functions that it multiplies. That
is,

Mk(X,Y ) = Lk,1(X) · Lk,2(Y ).

Since r < m2, we can find a substitution for the matrix X such that the following
hold:

1. X �= 0.
2. For every 1 ≤ k ≤ r, Lk,1(X) = 0.

Hence, for every 1 ≤ k ≤ r,

Mk(X,Y ) = 0.

Therefore, Oj = 0, no matter what Y is. On the other hand, X �= 0, and hence we
can find a substitution for the matrix Y such that no column of X · Y is all zero (a
contradiction).

The main idea of the proof for depth 1 was the following: if there is a small
number of edges in the circuit, then one can find a substitution for the matrix X
such that a large number of outputs are forced to be 0 (no matter what Y is). The
main idea of the proof for larger depth is the following: First, apply Lemma 3.13 to
transform the circuit into a circuit of depth 1. This is done by removing from the
circuit a certain number of inputs, outputs, and intermediate gates. Then use the
argument for depth 1. However, since we remove from the circuit a certain number
of nodes, we will need a more general argument. Roughly, we will need to generalize
the proof for depth 1 to the case in which X and Y are restricted to certain subspaces
of matrices. We will show that even if X and Y are restricted to (not too small)
subspaces, their product still cannot be computed by a small circuit of depth 1. We
will use the following notation.

Definition 4.6. For a matrix X, denote by (X)j the jth column of X. For a
linear subspace of matrices A, denote

(A)j = {(X)j | X ∈ A}.
Since A is a linear subspace, so is (A)j.

We clearly have the following proposition.
Proposition 4.7. For any linear subspace of matrices A,

dim(A) ≤
m∑
j=1

dim((A)j).

We will also need the following lemma. Roughly, the lemma claims that if X is
a matrix of large rank and B is a subspace of matrices of high dimension, then for
many columns j, dim({(X · Y )j | Y ∈ B}) is high.

Lemma 4.8. Let X be an m×m matrix of rank ≥ 2
3m. Let B be a linear subspace

of m ×m matrices such that dim(B) ≥ m2 − k. Then, for any subset of columns D
of size |D| ≥ 10k

m , there exists a column j ∈ D such that

dim({(X · Y )j | Y ∈ B}) ≥ m

2
.

Proof. Let D be a subset of columns such that |D| ≥ 10k
m . We first show that

there is a column j ∈ D such that dim((B)j) ≥ 9
10m. If this were not the case, then
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by Proposition 4.7 we would have had

m2 − k ≤ dim(B) ≤ |D|
(

9

10
m− 1

)
+ (m− |D|)m = m2 − m

10
|D| − |D| < m2 − k.

Let j ∈ D be such that dim((B)j) ≥ 9
10m. Since rank(X) ≥ 2

3m, we have

dim({(X · Y )j | Y ∈ B}) = dim({X · v | v ∈ (B)j}) ≥ rank(X)− (m− dim((B)j))

≥ 2

3
m− 1

10
m >

m

2
.

In the proof for depth 1, we had X �= 0. Since, in the proof for higher depth,
Y will be restricted to a subspace of matrices, we will need X to satisfy a stronger
condition. Namely, we need X to be of high rank. However, X itself will also be
restricted to a subspace of matrices. Therefore, we want to show that in any subspace
(of matrices) of high dimension, there is a matrix of high rank.

Lemma 4.9. In any subspace of m×m matrices of dimension larger than (2mr−
r2 + m), there is a matrix of rank at least r.

Proof. We have two different proofs. The first is for finite fields, and the second
is for fields of characteristic 0. We wish to compare the number of matrices with rank
at most r to the number of matrices in our linear subspace. If we prove that the
number of matrices in the linear subspace is larger, then it must contain a matrix of
rank larger than r.

• Assume that F is a finite field. Denote |F | = q. The number of elements in a

subspace of dimension larger than (2mr− r2 +m) is larger than q2mr−r2+m.
We will now count the number of m×m matrices with rank at most r. Note
that, for every such matrix, there are r rows such that every row in the matrix
is in their linear span. There are

(
m
r

)
possible ways to choose these r rows.

There are qmr possible ways to choose the r vectors for these rows. Every
other row is in the linear span of these r rows, so it can be one of qr vectors.
Therefore, the number of matrices of rank at most r is bounded from above
by (

m

r

)
qmr(qr)m−r < q2mr−r2+m.

• Assume that F is a field of characteristic 0. Instead of counting, we will
consider the dimension of the variety of matrices with rank at most r. The
same argument as above shows that this variety is included in the union of(
m
r

)
varieties, each of dimension at most mr+ r(m− r). (As before, mr is for

the freedom of choice of the first r vectors, and r(m− r) is for spanning the
other m−r rows.) Therefore, the dimension is 2mr−r2 < 2mr−r2+m.

Before giving the formal proof for Theorem 4.3, let us first give a sketch of this
proof. Let C be a leveled bilinear arithmetic circuit of depth d for the product of two
m×m matrices. Let G be the leveled graph of depth d, corresponding to the graph
of the circuit between the product gates and the outputs (i.e., the product gates are
the inputs of the graph, the outputs are the outputs of the graph, and the levels of
the circuit between the product gates and the outputs are the levels of the graph).
We would like to prove that

s(C) ≥ Ω

(
1

d
m2λd(m

2)

)
.
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Assume for a contradiction that s(C) < 1
1000dm

2λd(m
2) or, in other words,

|EG| < 1

1000d
m2λd(m

2).

By Lemma 3.13, we can find a set of columns D and three sets of vertices V, I,O in
the graph G such that the following hold:

• m ≤ |V | = k ≤ 1
10m2.

• I is a small set of inputs.
• D is a set of � 10km � output columns.
• For every i ∈ D, |Oi ∩O| is small (where Oi is the ith output column).
• All the paths from OD \O to the inputs pass through V or reach I.

We will derive a contradiction in four steps:
1. Since I is a small set of product gates, we can find a subspace of matrices A

such that, for every matrix X in A, all the gates in I output 0. The matrix X
will be restricted to the subspace A.

2. Note that once a matrix X is fixed, the nodes of V just compute linear
functions in the variables of Y . Therefore, for every matrix X ∈ A, we can
find a subspace of matrices BX such that, for every pair (X ∈ A, Y ∈ BX),
all the gates in V output zero. Since V is a small set, the dimension of BX is
high. The matrix Y will be restricted to the subspace BX .

3. The subspace A is of high dimension, and for every X the subspace BX is of
high dimension. Therefore, we can find X ∈ A such that dim((X · BX)j) is
large for some j ∈ D. (This will follow from Lemmas 4.8 and 4.9.)

4. Since we restrict X ∈ A and Y ∈ BX , all the gates in V and I output zero.
Therefore, X ·Y is computed by a circuit with no paths between OD \O and
IG \ I. Hence all the outputs in OD \O must give zero. Because of the third
step, this is a contradiction.

Let us now give the formal proof.
Proof of Theorem 4.3. We already gave the proof for d = 1, so assume d > 1.

Assume for a contradiction that we have a leveled bilinear arithmetic circuit C of
depth d for the product of two m×m matrices such that

s(C) <
1

1000d
m2λd(m

2).

Let G be the leveled graph of depth d between the product gates and the outputs
of C (as explained above).

As before, denote by Oj the jth output column. As before, for a set D ⊂ [m], we
denote OD = ∪i∈DOi. By Lemma 3.13, there exist sets V ⊂ VG, D ⊂ [m], O ⊂ OD,
and I ⊂ IG such that the following hold:

1. m ≤ |V | ≤ 1
10m2.

2. |D| ≥ 10|V |
m .

3. For every i ∈ D, |Oi ∩O| < 1
10m.

4. |I| < 1
10m2.

5. PG[ IG \ I, OD \O, V ] = 0.
Denote k = |V |. Hence we have a set of outputs OD consisting of at least 10k

m out-
put columns such that each of the output columns in OD has a small intersection
with O, and there are no paths between OD \O and IG\I that do not pass through V .

In the circuit C, the set I is just a set of product gates. Since

|I| < 1

10
m2,
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we can find a subspace of matrices A of dimension

dim(A) ≥ m2 − |I| > 9

10
m2

such that, for every X ∈ A, all the product gates in I give zero.
Assume that a matrix X is fixed. All the functions computed by the vertices of V

are now linear functions in the variables of Y . Therefore, for every matrix X, there is
a subspace of matrices BX such that, for every Y ∈ BX , all the gates in V give zero,
and such that

dim(BX) ≥ m2 − |V | = m2 − k.

Since

dim(A) ≥ 9

10
m2,

by Lemma 4.9 we can find a matrix X ∈ A such that rank(X) ≥ 2
3m. We fix this X.

Since |D| ≥ 10k
m and dim(BX) ≥ m2 − k, we can apply Lemma 4.8 to get a column

j ∈ D such that

dim((X · BX)j) ≥ m

2
.

On the other hand, for X ∈ A and Y ∈ BX , all the product gates in I and all
the gates in V output zero. Since all the paths to OD \ O pass through V or I, we
get that, for every X ∈ A and Y ∈ BX , all the outputs in OD \ O must give zero.
Therefore, for every j ∈ D,

dim((X · BX)j) ≤ |Oj ∩O| < m

10

(a contradiction).
Theorem 4.3 gives a superlinear lower bound for a multioutput function. The

following theorem of [BS82] (it is an immediate corollary of the results presented
there) shows that we can also obtain a superlinear lower bound for a single-output
function.

Theorem 4.10 (see [BS82]). Suppose that f(x1, . . . , xn) is computed by an arith-
metic circuit of size s and depth d over a field of characteristic 0; then there is an
arithmetic circuit of size 3s and depth 2d that computes f, ∂f∂x1

, . . . , ∂f
∂xn

.
(Note that in this theorem the size and depth of a circuit are just the usual size

and depth; i.e., the size is the number of edges, and the depth is the length of the
longest directed path.)

Consider the function

f(X,Y, Z) =
m∑
i=1

m∑
j=1

m∑
k=1

xi,jyj,kzk,i = trace(X · Y · Z),

where X,Y, Z are m×m matrices. Notice that

∂f

∂zk,i
=

m∑
j=1

xi,jyj,k = (X · Y )i,k.
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Therefore, the partial derivatives of f with respect to the Zk,i’s are the outputs of the
product of two matrices. If we take into account the price that we have to pay when
transforming a circuit into a bilinear leveled one, we get the following theorem.

Theorem 4.11. Every arithmetic circuit C of depth d that computes the trace of
the product of three m×m matrices over a field of characteristic 0 is of size

Ω

(
1

d2
m2λ6d(m

2)

)
.

We can also generalize this result for circuits over finite fields, but we must make
another assumption: the circuit computes

m∑
i=1

m∑
j=1

m∑
k=1

xi,j · yj,k · zk,i

as a polynomial and not as a function. As mentioned in the introduction, over finite
fields there are many polynomials that represent the same function. For example,
xp − x = 0 over a field with p elements. Therefore, we demand that the circuit
computes this exact polynomial. In this case, we can apply the theorem of Baur and
Strassen as before and get the same lower bound as in the case of characteristic 0.

5. Circuits with arbitrary gates. In this section, we prove lower bounds for
circuits with arbitrary gates over finite fields. Since the proofs are similar for all finite
fields, we will detail only the proofs for the field GF (2), that is, the Boolean case.
The proofs for other fields are only sketched.

A Boolean circuit with arbitrary gates is a directed acyclic graph as follows.
Nodes of indegree 0 are called inputs and are labeled with input variables. Nodes
of outdegree 0 are called outputs. All nodes other than the inputs are labeled with
arbitrary Boolean functions. That is, if v is a node of indegree k, then v is labeled
with some function

gv : {0, 1}k → {0, 1}.1

The inputs to the circuit are Boolean variables, and each node in the circuit computes
in a natural way a Boolean function in the original input variables. The size of a
circuit C is denoted by size(C) and is defined to be the number of edges in it. The
depth of a circuit is defined to be the length of the longest directed path from an
input to an output in the circuit. Note that the standard definition of a Boolean
circuit requires gv ∈ {∨, ∧, ¬}. Our definition is more general and allows gv to be
any function.

The model of Boolean circuits with arbitrary gates includes all other models
of Boolean circuits, e.g., standard Boolean circuits, Boolean circuits with threshold
gates, Boolean circuits with MODP gates, etc. For some of these models, almost
nothing is known. For example, for constant depth threshold circuits, only slightly
superlinear lower bounds are known [IPS97]. (Exponential lower bounds are known
for depth 2 [HMPST87].)

We will mainly concentrate on matrix product over GF (2). Our main result in
this section is the following lower bound.

1Since gv is not necessarily a symmetric function, we need to order the inputs to v so we know
which input is the first variable of gv , etc.
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Theorem 5.1. Any leveled Boolean circuit with arbitrary gates, C, of depth d,
for the product of two m×m Boolean matrices over GF (2), is of size

size(C) =

{
Ω(m3), d = 1,
Ω( 1

dm
2λd(m

2)), d > 1.

As before, in order to prove lower bounds for a nonleveled circuit, we just level
it. We can do that by increasing its size by a factor of d. We can then use the lower
bounds for leveled circuits. We hence have the following corollary.

Corollary 5.2. Any Boolean circuit with arbitrary gates, C, of depth d, for the
product of two m×m Boolean matrices over GF (2), is of size

size(C) =

{
Ω(m3), d = 1,
Ω( 1

d2 m
2λd(m

2)), d > 1.

Our proof for these lower bounds is quite general and can be applied to many
other functions. In particular, the lower bound applies also for the following functions:

1. The product of two m ×m matrices over GF (p), where each element of the
field is represented by �log p� bits.

2. All the functions considered in [Pud94], e.g., the parallel prefix linear trans-
formation over GF (2).

As mentioned above, we define a similar model of circuits with arbitrary gates
over any finite field. We prove similar lower bounds for this model for any finite field.
In particular, for the field GF (p), we prove a lower bound for the product of two
m×m matrices, where the inputs take values in the field.

Let us start with a short sketch of the proof of Theorem 5.1. As before, the proof
is based on Lemma 3.13. In all that follows, we use the notation of subsection 3.5.
We will apply Lemma 3.13 on the circuit C. By Lemma 3.13, there is a set of columns
D ⊂ [m] and small sets of vertices I,O, V such that I is a set of inputs, O is a set of
outputs, V is a set of intermediate gates, and

PG[ IG \ I, OD \O, V ] = 0

(where OD is the set of outputs corresponding to the set of columns D). The values
of the outputs in OD \O are hence determined by the outputs of the gates in V and
by the values of the inputs in I. Therefore, for any fixed assignment for the inputs
in I, the total number of possible values that the outputs in OD \ O can take is at
most 2|V | (which is the total number of values that the gates in V can output). Since
V is a small set, 2|V | is a relatively small number, and we conclude that, for any fixed
assignment for the inputs in I, the outputs in OD \ O can get only a small number
of values. We will derive a contradiction by finding a fixed assignment for the inputs
in I such that the outputs in OD \O can get many values.

Let us describe our assignment for I. First, we fix Y to be a matrix in which any
minor of size m

2 × |D| is of high rank. Therefore, there will be many vectors in the
image of any such minor. After fixing Y , we set to zero all the inputs in I that come
from the matrix X. That is, we allow X to be any matrix in which this certain set
of entries is zero (the entries that appear in I). Since I is a relatively small set, there
are many such matrices. More accurately, the set of all such matrices forms a linear
subspace of dimension ≥ m2 − |I|. The last step will be to show that, after fixing Y
as above and after fixing to 0 all the inputs in I that come from X, there are still
many possibilities for the product X · Y . In particular, we will get that the number
of possible values for the outputs in OD \O is larger than 2|V |.
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Thus the first step is to show that there is a matrix Y , in which any minor of
size m

2 × |D| is of high rank. Note that it is not hard to prove that there exists a
matrix Y , in which any such minor is of maximal rank. For our proof, however, it
will be enough to have the weaker requirement that any such minor is of high rank.

Definition 5.3. Let Y = (yi,j) be an m×m matrix. For sets α, β ⊂ [m], denote

(Y )α,β = (yi,j) such that i ∈ α, j ∈ β;

i.e., (Y )α,β is the minor of Y with the set of rows α and the set of columns β.
Claim 5.4. For any m > 40 and l ≤ m

2 , there exists an m × m matrix Y
(over GF (2)) such that, for any α, β ⊂ [m], with |α| = �m2 � and |β| = l,

rank((Y )α,β) ≥ l

2
.

Proof. We assume for convenience that m, l are even numbers. We will show
that a random matrix Y satisfies the requirement of the lemma (with high proba-
bility). Let us first calculate the probability that a certain minor of size m

2 × l is of

rank ≤ l
2 . As in the proof of Lemma 4.9, the number of m2 × l matrices of rank ≤ l

2
is at most (

l
l
2

)
· 2m2 · l2 · 2 l2 ·(l− l

2 ) < 2
1
4ml+

1
4 l

2+l.

Therefore, the probability that a certain minor of size m
2 × l is of rank ≤ l

2 is at most

2
1
4ml+

1
4 l

2+l · 2−m2 l = 2−( 1
4ml− 1

4 l
2−l).

Hence, if Y is a random matrix, the probability that some m
2 × l minor is of rank ≤ l

2
is at most (

m
m
2

)
·
(

m

l

)
· 2−( 1

4ml− 1
4 l

2−l) ≤ 2−( 1
4ml− 1

4 l
2−l−2m) < 1.

Consequently, there is an m × m matrix Y , in which every m
2 × l minor is of rank

> l
2 .
For a set of coordinates β ⊂ [m] and an m-vector v, denote by vβ the restriction

of v to β; i.e.,

vβ = (vi)i∈β .

For a set of coordinates α ⊂ [m], denote by Vα the subspace of all vectors that have
the value 0 in all the coordinates outside α; i.e.,

Vα = {v ∈ {0, 1}m | ∀i ∈ [m] \ α, vi = 0}.
We will now prove that, if Y is the matrix guaranteed by Claim 5.4 for l = |β|, then
for every vector space Vα of high dimension, there are many different vectors in the
set

{(v · Y )β | v ∈ Vα}.
Claim 5.5. Let β ⊂ [m] be such that |β| ≤ m

2 . Let α ⊂ [m] be such that
|α| = �m2 �. Let Y be an m×m matrix that satisfies the requirement of Claim 5.4 for
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l = |β|. Then the number of different vectors of the form (v · Y )β, where v ∈ Vα, is
at least 2

|β|
2 .

Proof. Since Y satisfies the requirement of Claim 5.4 for l = |β|, the minor (Y )α,β
is of rank at least |β|/2. Hence the image of this minor is of dimension at least |β|/2.
The image of this minor is just the set of all vectors of the form (v ·Y )β , where v ∈ Vα.
Hence this set is of size at least 2

|β|
2 .

We are now ready to give the proof of Theorem 5.1.
Proof of Theorem 5.1. For d = 1, the proof is trivial by the observation that

every output column depends on all the variables in X. For larger depth, assume
for a contradiction that size(C) < (1/1000d) ·m2λd(m

2). Let G be the graph of the
circuit. By Lemma 3.13, there exist sets V ⊂ VG, D ⊂ [m], O ⊂ OD, I ⊂ IG, such
that the following hold:

1. m ≤ |V | = k ≤ 1
30m2.

2. |D| = � 10km � < m
2 .

3. For every i ∈ D, |Oi ∩O| < 1
10m.

4. |I| < 1
10m2.

5. PG[ IG \ I, OD \O, V ] = 0.
Since PG[ IG \ I, OD \O, V ] = 0, the values of the outputs in OD \O are determined
by the outputs of the gates in V and by the inputs in I.

Fix Y to be a matrix in which every �m2 � × |D| minor is of rank higher than |D|2 .
(By Claim 5.4, there exists such a matrix.) Denote by IX the set of inputs in I that
are variables of X. Obviously,

|IX | ≤ |I| < 1

10
m2.

Fix all the input variables in IX to be 0. Since all the inputs in I are now fixed, the
values of the outputs in OD \O are determined by the outputs of the gates in V . Since
there are at most 2k possible values for the outputs of the gates in V , we conclude
that, after fixing Y and IX as above, the outputs in OD\O can get at most 2k different
values.

On the other hand, we fixed only less than 1
10m2 of the entries of X. Therefore,

the number of rows of X, in which we fixed at most m
2 entries, is at least 8

10m. For
each one of these rows, we can apply Claim 5.5 (with β = D) and conclude that the

outputs in the corresponding row in OD can get at least 2
|D|
2 possible values. Since

the value of each of these 8
10m rows of X is independent of the values of the other

rows, we conclude that the total number of different values that the outputs in OD

can get is at least

2
|D|
2 · 8

10m = 2
4
10 ·|D|·m.

Since, for every i ∈ D, |Oi ∩O| < 1
10m, we get that

|O| < 1

10
· |D| ·m.

Hence the outputs in O can get at most

2
1
10 ·|D|·m

different values. Therefore, the outputs in OD \O can get at least

2
4
10 ·|D|·m / 2

1
10 ·|D|·m = 2

3
10 ·|D|·m ≥ 23k
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different values (a contradiction).

As mentioned above, we can also obtain similar lower bounds for circuits with arbi-
trary gates over any finite field. A circuit with arbitrary gates over a finite field GF (p)
is defined similarly to a circuit with arbitrary gates over GF (2). The only difference
is that the inputs take values in GF (p), and every gate of indegree k is labeled with

an arbitrary function from GF (p)
k
to GF (p). Note that, in particular, this model

includes the model of arithmetic circuits over GF (p).

Theorem 5.6. Any circuit C with arbitrary gates over GF (p), where p is con-
stant, of depth d for the product of two m×m matrices over GF (p) is of size

size(C) =

{
Ω(m3), d = 1,
Ω( 1

d2 m
2λd(m

2)), d > 1.

The proof is similar to the proof of Theorem 5.1 with some minor modifications:
We prove a version of Claim 5.4 to get a matrix with the same properties over GF (p).
Then we prove a version of Claim 5.5 for GF (p). (Both proofs are similar to the orig-
inal proofs.) We then repeat the proof of Theorem 5.1 to get Theorem 5.6. (We have
to make some minor changes; e.g., the outputs of the gates in V can get p|V | different
values (rather than 2|V |), etc.)

We can also prove similar lower bounds for Boolean circuits with arbitrary gates
for the product of two m ×m matrices over the field GF (p), where each element of
the field is represented by �log p� bits. (Note that the input to the circuit is of size
2m2�log p�.) One way of proving this lower bound is by a reduction to Theorem 5.6.
Just observe that {0, 1} ⊂ GF (p), and hence any Boolean circuit (with arbitrary
gates) can be viewed as a circuit with arbitrary gates over GF (p). Another way of
proving this lower bound is by proving a version of Lemma 3.13 with different param-
eters (because of the �log p� factor), and then we can repeat the proof of Theorem 5.1
with minor modifications.

Theorem 5.7. Any Boolean circuit with arbitrary gates, C, of depth d, for the
product of two m×m matrices over GF (p) (p is constant), is of size

size(C) =

{
Ω(m3), d = 1,
Ω( 1

d2 m
2λd(m

2)), d > 1.
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Abstract. We consider the problem of dualizing a monotone CNF (equivalently, computing
all minimal transversals of a hypergraph) whose associated decision problem is a prominent open
problem in NP-completeness. We present a number of new polynomial time, respectively, output-
polynomial time results for significant cases, which largely advance the tractability frontier and
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1. Introduction. Recall that the prime conjunctive normal form (CNF) of a
monotone Boolean function f is the unique formula ϕ =

∧
c∈S c in conjunctive normal

form, where S is the set of all prime implicates of f , i.e., minimal clauses c which are
logical consequences of f . In this paper, we consider the following problem.

Problem Dualization

Input: The prime CNF ϕ of a monotone Boolean function f = f(x1, . . . , xm).

Output: The prime CNF ψ of its dual fad = f(x1, . . . , xm).

It is well known that Dualization is equivalent to the Transversal Compu-
tation problem, which requests to compute the set of all minimal transversals (i.e.,
minimal hitting sets) of a given hypergraph H, in other words, the transversal hy-
pergraph Tr(H) of H. Actually, these problems can be viewed as the same problem
if the clauses in a monotone CNF ϕ are identified with the sets of variables they
contain. Dualization is a search problem; the associated decision problem Dual is
to decide whether two given monotone prime CNFs ϕ and ψ represent a pair (f, g)
of dual Boolean functions. Analogously, the decision problem Trans-Hyp associated
with Transversal Computation is deciding, given hypergraphs H and G, whether
G = Tr(H).

Dualization and several problems which are like transversal computation known
to be computationally equivalent to problem Dualization (see [15]) are of interest
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in various areas such as database theory (e.g., [39, 50]), machine learning and data
mining (e.g., [7, 8, 10, 25]), game theory (e.g., [26, 43, 44]), artificial intelligence (e.g.,
[21, 30, 32, 45]), mathematical programming (e.g., [5]), and distributed systems (e.g.,
[18, 27]), to mention a few.

While the output CNF ψ can be exponential in the size of ϕ, it is currently
not known whether ψ can be computed in output-polynomial (or polynomial total)
time, i.e., in time polynomial in the combined size of ϕ and ψ. Any such algorithm
for Dualization (or for Transversal Computation) would significantly advance
the state of the art of several problems in the above application areas. Similarly, the
complexity of Dual (equivalently, Trans-Hyp) has been open for more than 20 years
now (cf. [3, 15, 28, 29, 34]).

Note that Dualization is solvable in polynomial total time on a class C of hy-
pergraphs iff Dual is in PTIME for all pairs (H,G), where H ∈ C [3]. Dual is known
to be in co-NP, and the best currently known upper time-bound is quasi-polynomial
time [17, 19, 48]. Determining the complexities of Dualization and Dual, and of
equivalent problems such as the transversal problems, is a prominent open problem.
This is witnessed by the fact that these problems are cited in a rapidly growing body
of literature and have been referenced in various survey papers and complexity theory
retrospectives, e.g., [28, 35, 40].

Given the importance of monotone dualization and equivalent problems for many
application areas, and given the long-standing failure to settle the complexity of these
problems, emphasis was put on finding tractable cases of Dual and corresponding
polynomial total time cases ofDualization. In fact, several relevant tractable classes
were found by various authors; see, e.g., [4, 6, 9, 12, 10, 14, 15, 20, 37, 38, 42, 41] and
references therein. Moreover, classes of formulas were identified on which Dualiza-
tion is not just polynomial total time, but where the conjuncts of the dual formula
can be enumerated with incremental polynomial delay, i.e., with delay polynomial in
the size of the input plus the size of all conjuncts so far computed, or even with poly-
nomial delay, i.e., with delay polynomial in the input size only. On the other hand,
there are also results which show that certain well-known algorithms forDualization
are not polynomial total time. For example, [15, 42] pointed out that a well-known
sequential algorithm, in which the clauses ci of a CNF ϕ = c1 ∧ · · · ∧ cm are processed
in order i = 1, . . . ,m, is not polynomial total time in general. Most recently, [47]
showed that this holds even if an optimal ordering of the clauses is assumed (i.e., they
may be arbitrarily arranged for free).

Main goal. The main goal of this paper is to present important new polynomial
total time cases of Dualization and, correspondingly, PTIME solvable subclasses of
Dual which significantly improve previously considered classes. Toward this aim, we
first present a new algorithm Dualize and prove its correctness. Dualize can be
regarded as a generalization of a related algorithm proposed by Johnson, Yannakakis,
and Papadimitriou [29]. Like other dualization algorithms, Dualize reduces the
original problem by self-reduction to smaller instances. However, the subdivision
into subproblems proceeds according to a particular order, which is induced by an
arbitrary fixed ordering of the variables. This, in turn, allows us to derive some
bounds on intermediate computation steps which imply that Dualize, when applied
to a variety of input classes, outputs the conjuncts of ψ with polynomial delay or
incremental polynomial delay. In particular, we show positive results for the following
input classes.

Degenerate CNFs. We generalize the notion of k-degenerate graphs [51] to hyper-
graphs and define k-degenerate monotone CNFs, respectively, hypergraphs. A mono-
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tone CNF is k-degenerate if there exists a variable ordering x1, . . . , xn such that,
for i = 1, 2, . . . , n, the number of clauses which contain xi and, apart from it, only
variables from x1, . . . , xi−1 is at most k. We prove that, for any constant k, Du-
alize works with polynomial delay on k-degenerate CNFs. Moreover, it works in
output-polynomial time on O(log n)-degenerate CNFs.

Read-k CNFs. A CNF is read-k if each variable appears at most k times in it.
We show that, for read-k CNFs, problem Dualization is solvable with polynomial
delay if k is constant and in total polynomial time if k = O(log ‖ϕ‖). Our result for
constant k significantly improves upon the previous best-known algorithm [10], which
has a higher complexity bound, is not polynomial delay, and outputs the clauses of ψ
in no specific order. The result for k = O(log ‖ϕ‖) is a nontrivial generalization of
the result in [10], which was posed as an open problem [13].

Acyclic CNFs. There are several notions of hypergraph, respectively, monotone
CNF acyclicity [16], where the most general and well-known is α-acyclicity. As shown
in [15], Dualization is polynomial total time for β-acyclic CNFs; β-acyclicity is the
hereditary version of α-acyclicity and far less general. A similar result for α-acyclic
prime CNFs was left open. (For nonprime α-acyclic CNFs, this is trivially as hard as
the general case.) In this paper, we give a positive answer and show that, for α-acyclic
(prime) ϕ, Dualization is solvable with polynomial delay.

Formulas of bounded treewidth. The treewidth [46] of a graph expresses its de-
gree of cyclicity. Treewidth is an extremely general notion, and bounded treewidth
generalizes almost all other notions of near-acyclicity. Following [11], we define the
treewidth of a hypergraph, respectively, monotone CNF ϕ, as the treewidth of its
associated (bipartite) variable-clause incidence graph. We show that Dualization is
solvable with polynomial delay (exponential in k) if the treewidth of ϕ is bounded by
a constant k and in polynomial total time if the treewidth is O(log log ‖ϕ‖).

Recursive applications of Dualize and k-CNFs. We show that if Dualize is
applied recursively and the recursion depth is bounded by a constant, then Dual-
ization is solved in polynomial total time. We apply this to provide a simpler proof
of the known result [6, 15] that monotone k-CNFs (where each conjunct contains at
most k variables) can be dualized in output-polynomial time.

After deriving the above results, we turn our attention in section 5 to the funda-
mental computational nature of problems Dual and Trans-Hyp in terms of com-
plexity theory.

Limited nondeterminism. In a landmark paper, Fredman and Khachiyan [17]
proved that problem Dual can be solved in quasi-polynomial time. More precisely,
they first gave an Algorithm A solving the problem in nO(log2 n) time and then a
more complicated Algorithm B whose runtime is bounded by n4χ(n)+O(1), where χ(n)
is defined by χ(n)χ(n) = n. As noted in [17], χ(n) ∼ log n/ log log n = o(log n);
therefore, duality checking is feasible in no(log n) time. This is the best upper bound
for problem Dual so far and shows that the problem is most likely not NP-complete.

A natural question is whether Dual lies in some lower complexity class based
on other resources than just runtime. In the present paper, we advance the com-
plexity status of this problem by showing that its complement is feasible with limited
nondeterminism, i.e, by a nondeterministic polynomial time algorithm that makes
only a polylogarithmic number of guesses. For a survey on complexity classes with
limited nondeterminism and for several references, see [22]. We first show by us-
ing a simple but effective technique, which succinctly describes computation paths,
that testing nonduality is feasible in polynomial time with O(log3 n) nondeterministic
steps. We then observe that this approach can be improved to obtain a bound of
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O(χ(n) · log n) = O(log2 n/ log log n) nondeterministic steps. This result is surpris-
ing because most researchers dealing with the complexity of Dual and Trans-Hyp
believed so far that these problems are completely unrelated to limited nondeterminism.

We believe that the results presented in this paper are significant, and we are
confident that they will be proven useful in various contexts. First, we hope that the
various polynomial/output-polynomial cases of the problems which we identify will
lead to better and more general methods in various application areas (as we show, e.g.,
in learning and data mining [10]) and that, based on the algorithm Dualize or some
future modifications, further relevant tractable classes will be identified. Second, we
hope that our discovery on limited nondeterminism will provide a new momentum to
complexity research on Dual and Trans-Hyp and will push toward settling these
long-standing open problems.

The rest of this paper is structured as follows. The next section provides some
preliminaries and introduces notation. In section 3, we present our Algorithm Dual-
ize for dualizing a given monotone prime CNF. After that, we exploit this algorithm
in section 4 to derive a number of polynomial instance classes of the problems Dual-
ization and Dual. In section 5, we then show that Dual can be solved with limited
nondeterminism.

2. Preliminaries and notation. A Boolean function (in short, function) is a
mapping f : {0, 1}n → {0, 1}, where v ∈ {0, 1}n is called a Boolean vector (in short,
vector). As usual, we write g ≤ f if f and g satisfy g(v) ≤ f(v) for all v ∈ {0, 1}n, and
g < f if g ≤ f and g = f . A function f is monotone (or positive) if v ≤ w (i.e., vi ≤ wi
for all i) implies f(v) ≤ f(w) for all v, w ∈ {0, 1}n. Boolean variables x1, x2, . . . , xn
and their complements x̄1, x̄2, . . . , x̄n are called literals. A clause (resp., term) is a
disjunction (resp., conjunction) of literals containing at most one of xi and x̄i for each
variable. A clause c (resp., term t) is an implicate (resp., implicant) of a function f
if f ≤ c (resp., t ≤ f); moreover, it is prime if there is no implicate c′ < c (resp., no
implicant t′ > t) of f and monotone if it consists only of positive literals. We denote
by PI (f) the set of all prime implicants of f .

A conjunctive normal form (CNF) (resp., disjunctive normal form (DNF)) is a
conjunction of clauses (resp., disjunction of terms); it is prime (resp., monotone) if
all its members are prime (resp., monotone). For any CNF (resp., DNF) ρ, we denote
by |ρ| the number of clauses (resp., terms) in it. Furthermore, for any formula ϕ, we
denote by V (ϕ) the set of variables that occur in ϕ and by ‖ϕ‖ its length, i.e., the
number of literals in it. We occasionally view CNFs ϕ also as sets of clauses, and
clauses as sets of literals, and use respective notation (e.g., c ∈ ϕ, x1 ∈ c, etc.).

As is well known, a function f is monotone iff it has a monotone CNF. Fur-
thermore, all prime implicants and prime implicates of a monotone f are monotone,
and it has a unique prime CNF, given by the conjunction of all its prime implicates.
For example, the monotone f such that f(v) = 1 iff v ∈ {(1100), (1110), (1101),
(0111), (1111)} has the unique prime CNF ϕ = x2(x1 ∨ x3)(x1 ∨ x4).

Recall that the dual of a function f , denoted fd, is defined by fd(x) = f(x),
where f and x are the complements of f and x, respectively. By definition, we have
(fd)d = f . From De Morgan’s law, we obtain a formula for fd from any one of f
by exchanging ∨ and ∧ as well as the constants 0 and 1. For example, if f is given
by ϕ = x1x2 ∨ x1(x3 ∨ x4), then fd is represented by ψ = (x1 ∨ x2)(x1 ∨ x3x4). For
a monotone function f , let ψ =

∧
c∈C(

∨
xi∈c xi) be the prime CNF of fd. Then, by

De Morgan’s law, f has the (unique) prime DNF ρ =
∨
c∈C(

∧
xi∈c xi); in the previous

example, ρ = x1x2 ∨ x2x3x4. Thus we will regard Dualization also as the problem
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of computing the prime DNF of f from the prime CNF of f .

3. Ordered transversal generation. In what follows, let f be a monotone
function, and let

ϕ =
m∧
i=1

ci(1)

be a monotone CNF of it, where we assume without loss of generality that all vari-
ables xj (j = 1, 2, . . . , n) appear in ϕ. Let ϕi (i = 0, 1, . . . , n) be the CNF obtained
from ϕ by fixing variables xj = 1 for all j with j ≥ i+1. By definition, we have ϕ0 = 1
(truth) and ϕn = ϕ. For example, consider ϕ = (x1∨x2)(x1∨x3)(x2∨x3∨x4)(x1∨x4).
Then we have ϕ0 = ϕ1 = 1, ϕ2 = (x1 ∨ x2), ϕ3 = (x1 ∨ x2)(x1 ∨ x3), and ϕ4 = ϕ.
Similarly, for a monotone DNF

ψ =
k∨
t=1

ti(2)

of f , we denote by ψi the DNF obtained from ψ by fixing variables xj = 1 for all j
with j ≥ i+ 1. Clearly, we have ϕi ≡ ψi; i.e., ϕi and ψi represent the same function
denoted by fi.

Proposition 3.1. Let ϕ and ψ be any CNF and DNF for f , respectively. Then,
for all i ≥ 0, (a) ‖ϕi‖ ≤ ‖ϕ‖ and |ϕi| ≤ |ϕ|, and (b) ‖ψi‖ ≤ ‖ψ‖ and |ψi| ≤ |ψ|.

Denote by ∆i (i = 1, 2, . . . , n) the CNF consisting of all the clauses in ϕi but not
in ϕi−1. For the above example, we have ∆

1 = 1, ∆2 = (x1∨x2), ∆
3 = (x1∨x3), and

∆4 = (x2 ∨ x3 ∨ x4)(x1 ∨ x4). Note that ϕi = ϕi−1 ∧∆i; hence, for all i = 1, 2, . . . , n,
we have

ψi ≡ ψi−1 ∧∆i ≡
∨

t∈PI (fi−1)

(t ∧∆i).(3)

Remark 3.1. Let Γi denote the prime DNF for ∆i. For k-degenerate monotone
CNFs, the inequalities |ψi| ≤ |ψ| and |Γi| ≤ nk readily imply in light of (3) that such
CNFs can be dualized in output-polynomial time by simply multiplying the clauses
in all ∆i and combining them in the order specified by their highest-rank variables.
However, we shall present a faster algorithm.

Let ∆i[t] for i = 1, . . . , n denote the CNF consisting of all the clauses c such that
c contains no literal in ti−1 and c ∨ xi appears in ∆i. For example, if t = x2x3x4

and ∆4 = (x2 ∨ x3 ∨ x4)(x1 ∨ x4), then ∆4[t] = x1. It follows from (3) that, for all
i = 1, 2, . . . , n,

ψi ≡
∨

t∈PI (fi−1)

(
(t ∧∆i[t]) ∨ (t ∧ xi)

)
.(4)

In what follows, let ϕ and ψ be the prime CNF and prime DNF of f , respectively.
Lemma 3.2. For every term t ∈ PI (fi−1), let gi,t be the function represented

by ∆i[t]. Then |PI (gi,t)| ≤ |ψi| ≤ |ψ|.
Proof. Let V = {x1, x2, . . . , xn}, and let s ∈ PI (gi,t). Then, by (4), t ∧ s is

an implicant of ψi. Hence some ts ∈ PI (fi) exists such that ts ≥ t ∧ s. Note that
V (t) ∩ V (∆i[t]) = ∅, t and ∆i[t] have no variable in common, and hence we have
V (s) ⊆ V (ts) (⊆ V (s) ∪ V (t)), since otherwise there exists a clause c in ∆i[t] such
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that V (c) ∩ V (ts) = ∅, which is a contradiction. Thus V (ts) ∩ V (∆i[t]) = V (s).
For any s′ ∈ PI (gi,t) such that s = s′, let ts, ts

′ ∈ PI (fi) such that ts ≥ t ∧ s and

ts
′ ≥ t ∧ s′, respectively. By the above discussion, we have ts = ts

′
. This completes

the proof.
We now describe our Algorithm Dualize for generating PI (f). It is inspired by

a similar graph algorithm of Johnson, Yannakakis, and Papadimitriou [29] and can
be regarded as a generalization.

Algorithm Dualize

Input: The prime CNF ϕ of a monotone function f .
Output: The prime DNF ψ of f , i.e., all prime implicants of f .

Step 1:

compute the smallest prime implicant tmin of f and set Q := { tmin };
Step 2:

while Q �= ∅ do begin
remove the smallest t from Q and output t;
for each i with xi ∈ V (t) and ∆i[t] �= 1 do begin

compute the prime DNF ρ(t,i) of the function represented by ∆i[t];
for each term t′ in ρ(t,i) do begin

if ti−1 ∧ t′ is a prime implicant of fi then begin
compute the smallest prime implicant t∗ of f such that t∗i = ti−1 ∧ t′;
Q := Q ∪ {t∗}

end{if}
end{for}

end{for}
end{while}

Here, we say that term s is smaller than term t if
∑
xj∈V (s) 2

n−j <
∑
xj∈V (t) 2

n−j ;
i.e., as vector, s is lexicographically smaller than t.

Theorem 3.3. Algorithm Dualize correctly outputs all t ∈ PI (f) in increasing
order.

Proof. First note that the term t∗ inserted in Q when t is output is larger than t.
Indeed, t′ (= 1) and ti−1 are disjoint and V (t′) ⊆ {x1, . . . , xi−1}. Hence every term in
Q is larger than all terms already output, and the output sequence is increasing. We
show by induction that, if t is the smallest prime implicant of f that was not output
yet, then t is already in Q. This clearly proves the result.

Clearly, the above statement is true if t = tmin . Assume now that t = tmin is the
smallest among the prime implicants not output yet. Let i be the largest index such
that ti is not a prime implicant of fi. This i is well defined since otherwise t = tmin

must hold, which is a contradiction. Now we have (1) i < n and (2) i+1 /∈ V (t), where
(1) holds because tn (= t) is a prime implicant of fn (= f) and (2) follows from the
maximality of i. Let s ∈ PI (fi) such that V (s) ⊆ V (ti), and let K = V (ti) − V (s).
Then K = ∅ holds, and since xi+1 /∈ V (t), the term t′ =

∧
xj∈K xj is a prime

implicant of ∆i+1[s]. There exists s′ ∈ PI (f) such that s′i = s and xi+1 ∈ V (s′)
since s ∧ xi+1 ∈ PI (fi+1). Note that ∆i+1[s] = 0. Moreover, since s′ is smaller
than t, by induction s′ has already been output. Therefore, t′ =

∧
xj∈K xj has been

considered in the inner for-loop of the algorithm. Since s′i ∧ t′ (= ti = ti+1) is a prime
implicant of fi+1, the algorithm has added the smallest prime implicant t∗ of f such
that t∗i+1 = ti+1. We finally claim that t∗ = t. Otherwise, let k be the first index



520 THOMAS EITER, GEORG GOTTLOB, AND KAZUHISA MAKINO

in which t∗ and t differ. Then k > i + 1, xk ∈ V (t), and xk /∈ V (t∗). However, this
implies tk /∈ PI (fk), contradicting the maximality of i.

Remark 3.2. (1) The decomposition rule (4) was already used in [34]. (2) In
Step 1, we could generate any prime implicant t of f and choose then a lexicographic
term ordering inherited from a dynamically generated variable ordering. In Step 2,
it is sufficient that any monotone DNF τ(t,i) of the function represented by ∆i[t] is
computed, rather than its prime DNF ρ(t,i). This might make the algorithm faster.

Let us consider the time complexity of Algorithm Dualize. We store Q as a
binary tree, where each leaf represents a term t and the left (resp., right) son of a
node at depth j − 1 ≥ 0, where the root has depth 0 and encodes xj ∈ V (t) (resp.,
xj /∈ V (t)). In Step 1, we can compute tmin in O(‖ϕ‖) time and initialize Q in
O(n) time.

As for Step 2, let T(t,i) be the time required to compute the prime DNF ρ(t,i)

from ∆i[t]. By analyzing its substeps, we can see that each iteration of Step 2 requires∑
xi∈V (t)(T(t,i) + |ρ(t,i)| ·O(‖ϕ‖)) time.
Indeed, we can update Q (i.e., remove the smallest term and add t∗) in O(n) time.

For each t and i, we can construct ∆i[t] in O(‖ϕ‖) time. Moreover, we can check
whether ti−1 ∧ t′ is a prime implicant of fi, and, if so, we can compute the smallest
prime implicant t∗ of f such that t∗i = ti−1 ∧ t′ in O(‖ϕ‖) time; note that t∗ is
the smallest prime implicant of the function obtained from f by fixing xj = 1 if
xj ∈ V (ti ∧ t′) and 0 if xj /∈ V (ti ∧ t′) for j ≤ i.

Hence we have the following result.

Theorem 3.4. The output delay of Algorithm Dualize is bounded by

max
t∈PI (f)


 ∑
xi∈V (t)

(T(t,i) + |ρ(t,i)| ·O(‖ϕ‖))

(5)

time, and Dualize needs in total time

∑
t∈PI (f)

∑
xi∈V (t)

(T(t,i) + |ρ(t,i)| ·O(‖ϕ‖)).(6)

If the T(t,i) are bounded by a polynomial in the input length, then Dualize be-
comes a polynomial delay algorithm since |ρ(t,i)| ≤ T(t,i) holds for all t ∈ PI (f) and
xi ∈ V (t). On the other hand, if they are bounded by a polynomial in the combined
input and output length, then Dualize is a polynomial total time algorithm, where
|ρ(t,i)| ≤ |ψ| holds from Lemma 3.2. Using results from [3], we can construct from
Dualize an incremental polynomial time algorithm for Dualization, which, how-
ever, might not output PI (f) in increasing order. Summarizing, we have the following
corollary.

Corollary 3.5. Let T = max{T(t,i) | t ∈ PI (f), xi ∈ V (t)}. Then,
(i) if T is bounded by a polynomial in n and ‖ϕ‖, then Dualize is an O(n‖ϕ‖T )

polynomial delay algorithm;
(ii) if T is bounded by a polynomial in n, ‖ϕ‖, and ‖ψ‖, then Dualize is an

O(n · |ψ| · (T + |ψ| · ‖ϕ‖)) polynomial total time algorithm; moreover, Dualization
is solvable in incremental polynomial time.

In the next section, we identify sufficient conditions for the boundedness of T and
fruitfully apply them to solve open problems and improve previous results.
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4. Polynomial classes.

4.1. Degenerate CNFs. We first consider the case of small ∆i[t]. General-
izing a notion for graphs (i.e., monotone 2-CNFs) [51], we call a monotone CNF ϕ
k-degenerate if there exists a variable ordering x1, . . . , xn in which |∆i| ≤ k for all
i = 1, 2, . . . , n. We call a variable ordering x1, . . . , xn smallest last as in [51] if xi
is chosen in the order i = n, n − 1, . . . , 1, such that |∆i| is smallest for all vari-
ables that were not chosen. Clearly, a smallest last ordering gives the least k such
that ϕ is k-degenerate. Therefore, we can check for every integer k ≥ 1 whether
ϕ is k-degenerate in O(‖ϕ‖) time. If this holds, then we have |ρ(t,i)| ≤ nk and

T(t,i) = O(knk+1) for every t ∈ PI (f) and i ∈ V (t) (for T(t,i), apply the distributive
law to ∆i[t], and remove terms t, where some xj ∈ V (t) has no c ∈ ∆i[t] such that
V (t) ∩ V (c) = {xj}). Thus Theorem 3.4 implies the following.

Theorem 4.1. For k-degenerate CNFs ϕ, Dualization is solvable with O(‖ϕ‖ ·
nk+1) polynomial delay if k ≥ 1 is constant.

Applying the result of [36] that log-clause CNF is dualizable in incremental poly-
nomial time, we obtain a polynomiality result also for nonconstant degeneracy.

Theorem 4.2. For O(log ‖ϕ‖)-degenerate CNFs ϕ, problem Dualization is
solvable in polynomial total time.

In the following, we discuss several natural subclasses of degenerate CNFs.

4.1.1. Read-bounded CNFs. A monotone CNF ϕ is called read-k if each vari-
able appears in ϕ at most k times. Clearly, read-k CNFs are k-degenerate, and in fact
ϕ is read-k iff it is k-degenerate under every variable ordering. By applying Theorems
4.1 and 4.2, we obtain the following result.

Corollary 4.3. For read-k CNFs ϕ, problem Dualization is solvable
(i) with O(‖ϕ‖ · nk+1) polynomial delay if k is constant and
(ii) in polynomial total time if k = O(log ‖ϕ‖).

Note that Corollary 4.3.(i) trivially implies that Dualization is solvable in
O(|ψ| · nk+2) time for constant k since ‖ϕ‖ ≤ kn. This improves upon the previ-
ous best known algorithm [10], which is only O(|ψ| ·nk+3) time, not polynomial delay,
and outputs PI (f) in no specific order. Corollary 4.3 (ii) is a nontrivial generalization
of the result in [10], which was posed as an open problem [13].

4.1.2. Acyclic CNFs. Like in graphs, acyclicity is appealing in hypergraphs,
respectively, monotone CNFs, from a theoretical as well as a practical point of view.
However, there are many notions of acyclicity for hypergraphs (cf. [16]) since different
generalizations from graphs are possible. We refer to α-, β-, γ-, and Berge-acyclicity
as stated in [16], for which the following proper inclusion hierarchy is known:

Berge-acyclic ⊆ γ-acyclic ⊆ β-acyclic ⊆ α-acyclic.

The notion of α-acyclicity came up in relational database theory. A monotone CNF ϕ
is α-acyclic iff ϕ = 1 or is reducible by the Graham–Yu–Ozsoyoglu-reduction (GYO-
reduction) [24, 52], i.e., repeated application of one of the following two rules to 0
(i.e., the empty clause):

(1) If variable xi occurs in only one clause c, remove xi from c.
(2) If distinct clauses c and c′ satisfy V (c) ⊆ V (c′), remove c from ϕ.

Note that α-acyclicity of a monotone CNF ϕ can be checked, and a suitable GYO-
reduction can be output, in O(‖ϕ‖) time [49]. A monotone CNF ϕ is β-acyclic iff every
CNF consisting of clauses in ϕ is α-acyclic. As shown in [15], the prime implicants
of a monotone f represented by a β-acyclic CNF ϕ can be enumerated (and thus
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Dualization solved) in p(‖ϕ‖) · |ψ| time, where p is a polynomial in ‖ϕ‖. However,
the time complexity of Dualization for the more general α-acyclic prime CNFs was
left as an open problem. We now show that it is solvable with polynomial delay by
showing that α-acyclic CNFs are 1-degenerate.

Let ϕ = 1 be a prime CNF. Let a = a1, a2, . . . , aq be a GYO-reduction for ϕ,
where a� = xi if the %th operation removes xi from c and where a� = c if it removes
c from ϕ. Consider the unique variable ordering b1, b2, . . . , bn such that bi occurs
after bj in a for all i < j. For example, let ϕ = c1c2c3c4, where c1 = (x1 ∨ x2 ∨ x3),
c2 = (x1 ∨ x3 ∨ x5), c3 = (x1 ∨ x5 ∨ x6), and c4 = (x3 ∨ x4 ∨ x5). Then ϕ is α-acyclic
since it has the GYO-reduction

a1 = x2, a2 = c1, a3 = x4, a4 = x6, a5 = c4, a6 = c3, a7 = x1, a8 = x3, a9 = x5.

From this sequence, we obtain the variable ordering

b1 = x5, b2 = x3, b3 = x1, b4 = x6, b5 = x4, b6 = x2.

As easily checked, this ordering shows that ϕ is 1-degenerate. Under this ordering,
we have ∆1 = ∆2 = 1, ∆3 = (x1 ∨ x3 ∨ x5), ∆

4 = (x1 ∨ x5 ∨ x6), ∆
5 = (x3 ∨ x4 ∨ x5),

and ∆6 = (x1 ∨ x2 ∨ x3). This is not accidental.
Lemma 4.4. Every α-acyclic prime CNF is 1-degenerate.
Note that the converse is not true; i.e., there exists a 1-degenerate CNF that is

not α-acyclic. For example, ϕ = (x1 ∨x2 ∨x3)(x1 ∨x2 ∨x4)(x2 ∨x3 ∨x4 ∨x5) is such
a CNF. Lemma 4.4 and Theorem 4.1 imply the following result.

Corollary 4.5. For α-acyclic CNFs ϕ, problem Dualization is solvable with
O(‖ϕ‖ · n2) delay.

Observe that, for a prime α-acyclic ϕ, we have |ϕ| ≤ n. Thus, if we slightly
modify Algorithm Dualize to check ∆i = 1 in advance (which can be done in linear
time in a preprocessing phase) such that such ∆i need not be considered in Step 2,
then the resulting algorithm has O(n · |ϕ| · ‖ϕ‖) delay. Observe that the algorithm
in [15] solves, minorly adapted for enumerative output, Dualization for β-acyclic
CNFs with O(n · |ϕ| · ‖ϕ‖) delay. Thus the above modification of Dualize is of the
same order.

4.1.3. CNFs with bounded treewidth. A tree decomposition (of type I) of a
monotone CNF ϕ is a tree T = (W,E), where each node w ∈W is labeled with a set
X(w) ⊆ V (ϕ) under the following conditions:

1.
⋃
w∈W X(w) = V (ϕ);

2. for every clause c in ϕ, there exists some w ∈W such that V (c) ⊆ X(w); and
3. for any variable xi ∈ V , the set of nodes {w ∈ W | xi ∈ X(w)} induces a

(connected) subtree of T .
The width of T is maxw∈W |X(w)| − 1, and the treewidth of ϕ, denoted by Tw1(ϕ),
is the minimum width over all its tree decompositions.

Note that the usual definition of treewidth for a graph [46] results in the case in
which ϕ is a 2-CNF. Similarly to acyclicity, there are several notions of treewidth
for hypergraphs, respectively, monotone CNFs. For example, tree decomposition of
type II of CNF ϕ =

∧
c∈C c is defined as type-I tree decomposition of its incident

2-CNF (i.e., graph) G(ϕ) [11, 23]. That is, for each clause c ∈ ϕ, we introduce a new
variable yc and construct G(ϕ) =

∧
xi∈c∈ϕ(xi ∨ yc). (Here, xi ∈ c denotes that xi

appears in c.) Let Tw2(ϕ) denote the type-II treewidth of ϕ.
Proposition 4.6. For every monotone CNF ϕ, it holds that Tw2(ϕ) ≤ Tw1(ϕ)+

2Tw1(ϕ)+1.
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Proof. Let T = (W,E), X : W → 2V be any tree decomposition of ϕ having
width Tw1(ϕ). Introduce for all c ∈ ϕ new variables yc, and add yc to every X(w)
such that V (c) ⊆ X(w). Clearly, the result is a type-I tree decomposition of G(ϕ)
and thus a type-II tree decomposition of ϕ. Since at most 2|X(w)| many yc are added
to X(w) and |X(w)| − 1 ≤ Tw1(ϕ) for every w ∈W , the result follows.

This means that if Tw1(ϕ) is bounded by some constant, then so is Tw2(ϕ).
Moreover, Tw1(ϕ) = k implies that ϕ is a k-CNF; we discuss k-CNFs in section 4.2
and consider only Tw2(ϕ) here. The following proposition states some relationships
between type-II treewidth and other restrictions of CNFs from above.

Proposition 4.7. The following properties hold for type-II treewidth.

(i) There is a family of monotone prime CNFs ϕ such that Tw2(ϕ) is bounded
by a constant, but ϕ is not k-CNF for any constant k.

(ii) There is a family of monotone prime CNFs ϕ such that Tw2(ϕ) is bounded
by a constant, but ϕ does not have bounded read.

(iii) There is a family of α-acyclic prime CNFs ϕ such that Tw2(ϕ) is not bounded
by any constant. (This is a contrast to the graph case that a graph is acyclic
if and only if its treewidth is 1.)

Proof. (i) For example, ϕ = (
∨
xi∈V xi) has Tw2(ϕ) = 1, since it has a tree

decomposition T = (W,E) with X : W → 2V defined by W = {1, 2, . . . , n}, E =
{(w,w+1), w = 1, 2, . . . , n−1}, and X(w) = {xw, yc}, w ∈W , where c = (

∨
xi∈V xi).

However, it is not an (n−1)-CNF (but an n-CNF). On the other hand, by Lemma 4.8,
we can see that there is a family of monotone prime CNFs ϕ such that Tw2(ϕ) is not
bounded by any constant, but ϕ is k-CNF for some constant k.

(ii) For example, let ϕ be a CNF containing n − 1 clauses ci = (x1 ∨ xi),
i = 2, 3, . . . , n. Then ϕ has Tw2(ϕ) = 1, since it has a tree decomposition T =
(W,E) with X : W → 2V defined by W = {(ci, x1), (ci, xi), i = 2, 3, . . . , n}, E =
{((ci, x1), (ci+1, x1)), i = 2, 3, . . . , n − 1} ∪ {((ci, x1), (ci, xi)), i = 2, 3, . . . , n}, and
X((ci, xk)) = {yci , xk}, (ci, xk) ∈W . However, it is not read-(n−2) (but read-(n−1)).

(iii) For example, let ϕ be a CNF on V = {x1, x2, . . . , x2n} containing n clauses
ci = (xi ∨

∨
j≥n+1 xj) for i = 1, . . . , n. Then ϕ is α-acyclic. We claim that Tw2(ϕ) ≥

n − 1. Let us assume that there exists a tree T = (W,E) with X : E → 2V that
shows Tw2(ϕ) ≤ n−2, where T is regarded as a rooted tree. Let Ti = (Wi, Ei) be the
subtree of T induced by Wi = {w ∈W | yci ∈ X(w)}, and let ri be its root. Consider
the case in which Wi and Wj are disjoint for some i and j. Suppose that rj is an
ancestor of ri. Since |X(ri)| ≤ Tw2(ϕ)+1 ≤ n−1, there exists a node xn+k ∈ V such
that 1 ≤ k ≤ n and xn+k /∈ X(ri). However, since the incident graph of ϕ contains
two edges (xn+k, yci) and (xn+k, ycj ), we have xn+k ∈

⋃
w∈Wi−{ri}X(w) and xn+k ∈⋃

w∈Wj
X(w). This is a contradiction to the condition that {w ∈ W | xn+k ∈ X(w)}

is connected. Similarly, we can prove our claim when Ti and Tj are disjoint, but rj is
not an ancestor of ri.

We thus consider the case in which Wi ∩Wj = ∅ holds for any i and j. Since
the Ti’s are trees, the family of Wi, i = 1, 2, . . . , n, satisfies the well-known Helly
property; i.e., there exists a node w in

⋂n
i=1 Wi. X(w) must contain all yci ’s. This

implies |X(w)| ≥ n, which is a contradiction.

As we show now, bounded treewidth implies bounded degeneracy.

Lemma 4.8. Let ϕ be any monotone CNF with Tw2(ϕ) = k. Then ϕ is 2k-
degenerate.

Proof. Let T = (W,E) with X : W → 2V show Tw2(ϕ) = k. From this,
we reversely construct a variable ordering a = a1, . . . , an on V = V (ϕ) such that
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|∆i| ≤ 2k for all i.

Set i := n. Choose any leaf w∗ of T , and let p(w∗) be a node in W ad-
jacent to w∗. If X(w∗) \ X(p(w∗)) ⊆ {yc | c ∈ ϕ}, then remove w∗ from T .
On the other hand, if (X(w∗) \ X(p(w∗))) ∩ V = {xj1 , . . . , xj�}, where % ≥ 1 (in
this case, only X(w∗) contains xj1 , . . . , xj�), then define ai+1−h = xjh for h =
1, . . . , %, and update i := n − %, X(w∗) := X(w∗) \ {xj1 , . . . , xj�}, and X(w) :=
X(w) \ {yc | c ∈ ϕ, V (c) ∩ {xj1 , . . . , xj�} = ∅} for every w ∈ W . Let a be completed
by repeating this process.

We claim that a shows that |∆i| ≤ 2k for all i = 1, . . . , n. To see this, let w∗

be chosen during this process, and assume that ai ∈ X(w∗) \ X(p(w∗)). Then, by
induction on the (reverse) construction of a, we obtain that, for each clause c ∈ ∆i,
we must have either (a) yc ∈ X(w∗) or (b) V (c) ⊆ X(w∗). The latter case may arise
if in previous steps of the process some descendant d(w∗) of w∗ was removed which
contains yc such that yc does not occur in w∗; however, in this case V (c) ⊆ X(w)
must be true on every node on the path from d(w∗) to w∗.

Now let q = |X(w∗) \ V |. Since |X(w∗) \ {ai}| ≤ k, we have

|∆i| ≤ q + 2k−q ≤ 2k.

This proves the claim.

Corollary 4.9. For CNFs ϕ with Tw2(ϕ) ≤ k, Dualization is solvable

(i) with O(‖ϕ‖ · n2k+1) polynomial delay if k is constant and (ii) in polynomial total
time if k = O(log log ‖ϕ‖).

4.2. Recursive application of AlgorithmDualizeDualizeDualize. AlgorithmDualize com-
putes in Step 2 the prime DNF ρ(t,i) of the function represented by ∆

i[t]. Since ∆[t] is
the prime CNF of some monotone function, we can recursively apply Dualize to ∆i[t]
for computing ρ(t,i). Let us call this variant R-Dualize. Then we have the following
result.

Theorem 4.10. If its recursion depth is d, R-Dualize solves Dualization in
O(nd−1 · |ψ|d−1 · ‖ϕ‖) time.

Proof. If d = 1, then ∆i[tmin ] = 1 holds for tmin and every i ≥ 1. This means
that PI (f) = {tmin} and ϕ is a 1-CNF (i.e., each clause in ϕ contains exactly one
variable). Thus, in this case, R-Dualize needs O(n) time. Recall that Algorithm
Dualize needs, by (6), time

∑
t∈PI (f)

∑
xi∈V (t)(T(t,i) + |ρ(t,i)| · O(‖ϕ‖)). If d = 2,

then T(t,i) = O(n) and |ρ(t,i)| ≤ 1. Therefore, R-Dualize needs time O(n · |ψ| · ‖ϕ‖).
For d ≥ 3, Corollary 3.5.(ii) implies that R-Dualize needs O(nd−1 · |ψ|d−1 · ‖ϕ‖)
time.

Recall that a CNF ϕ is called k-CNF if each clause in ϕ has at most k liter-
als. Clearly, if we apply Algorithm R-Dualize to a monotone k-CNF ϕ, the re-
cursion depth of R-Dualize is at most k. Thus we obtain the following result; it
re-establishes, with different means, the main positive result of [6, 15].

Corollary 4.11. R-Dualize solves Dualization in O(nk−1 · |ψ|k−1 · ‖ϕ‖)
time, i.e., in polynomial total time for monotone k-CNFs ϕ where k is constant.

5. Limited nondeterminism. In the previous section, we discussed polynomial
cases of monotone dualization. In this section, we now turn to the issue of the precise
complexity of this problem. For this purpose, we consider the decision problem Dual,
i.e., decide whether given monotone prime CNFs ϕ and ψ represent dual Boolean
functions instead of the search problem Dualization.
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It appears that problem Dual can be solved with limited nondeterminism, i.e.,
with polylog many guessed bits by a polynomial time nondeterministic Turing ma-
chine. This result might bring new insight toward settling the complexity of the
problem.

We adopt Kintala and Fischer’s terminology [33] and write g(n)-P for the class
of sets accepted by a nondeterministic Turing machine in polynomial time making at
most g(n) nondeterministic steps on every input of length n. For every integer k ≥ 1,
define βkP =

⋃
c (c log

k n)-P. The βP Hierarchy consists of the classes

P = β1P ⊆ β2P ⊆ · · · ⊆
⋃
k

βkP = βP

and lies between P and NP. The βkP classes appear to be rather robust; they are
closed under polynomial time and logspace many-one reductions and have complete
problems (cf. [22]). The complement class of βkP is denoted by co-βkP.

We start in section 5.1 by recalling Algorithm A of [17], reformulated for CNFs and
by analyzing A’s behavior. The proof that A can be converted to an algorithm that
uses log3 n nondeterministic bit guesses, and that Dual is thus in co-β3P, is rather
easy and should give the reader a sense of how our new method of analysis works.
In section 5.2, we use basically the same technique for analyzing the more involved
Algorithm B of [17]. Using a modification of this algorithm, we show that Dual is
in co-β2P. We also prove the stronger result that the complement of Dual can be
solved in polynomial time with only O(χ(n) · log(n)) nondeterministic steps (= bit
guesses). Finally, section 5.3 shows that membership in co-β2P can alternatively be
obtained by combining the results of [17] with a theorem of Beigel and Fu [2].

5.1. Analysis of Algorithm A of Fredman and Khachiyan. The first al-
gorithm in [17] for recognizing dual monotone pairs is as follows.

Algorithm A (reformulated for CNFs1).

Input: Monotone CNFs ϕ, ψ representing monotone f , g s.t. V (c) ∩ V (c′) �= ∅
for all c ∈ ϕ, c′ ∈ ψ.

Output: yes if f = gd, and otherwise a vector w of form w = (w1, . . . , wm) such that

f(w) �= gd(w).

Step 1:

Delete all redundant (i.e., nonminimal) clauses from ϕ and ψ.

Step 2:

Check that (1) V (φ) = V (ψ), (2) maxc∈ϕ |c| ≤ |ψ|, (3) maxc′∈ψ |c′| ≤ |ϕ|, and

(4) Σc∈ϕ 2−|c| + Σc′∈ψ 2−|c
′| ≥ 1. If any of conditions (1)–(4) fails, f �= gd and

a witness w is found in polynomial time (cf. [17]).

Step 3:

If |ϕ| · |ψ| ≤ 1, test duality in O(1) time.

Step 4:

If |ϕ| · |ψ| ≥ 2, find the lowest index variable xi which occurs in ϕ or ψ
with frequency ≥ 1/ log(|ϕ|+ |ψ|).
Let

ϕ0 = {c− {xi} | xi ∈ c, c ∈ ϕ}, ϕ1 = {c | xi /∈ c, c ∈ ϕ},

1In [17], duality is tested for DNFs, while our problem Dual speaks about CNFs; this is insignif-
icant since DNFs are trivially translated to CNFs for this task and vice versa (cf. section 2).
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ψ0 = {c′ − {xi} | xi ∈ c′, c′ ∈ ψ}, ψ1 = {c′ | xi /∈ c′, c′ ∈ ψ}.
Call Algorithm A on the two pairs of forms

(A.1) (ϕ1, ψ0 ∧ ψ1) and (A.2) (ψ1, ϕ0 ∧ ϕ1).

If both calls return yes, then return yes (as f = gd); otherwise, we obtain w

such that f(w) �= gd(w) in polynomial time (cf. [17]).

We observe that, as noted in [17], the binary length of any standard encoding of
the input ϕ,ψ to Algorithm A is polynomially related to |ϕ|+ |ψ| if Step 3 is reached.
Thus, for our purpose, we consider |ϕ|+ |ψ| to be the input size.

Let ϕ∗, ψ∗ be the original input for A. For any pair (ϕ,ψ) of CNFs, define its
volume by v = |ϕ| · |ψ|, and let ε = 1/ log n, where n = |ϕ∗|+ |ψ∗|. As shown in [17],
Step 4 of Algorithm A divides the current (sub)problem of volume v = |ϕ| · |ψ| by self-
reduction into subproblems (A.1) and (A.2) of respective volumes, assuming without
loss of generality that xi frequently occurs in ϕ (otherwise, swap ϕ and ψ):

|ϕ1| · |ψ0 ∧ ψ1| ≤ (1− ε) · v,(7)

|ϕ0 ∧ ϕ1| · |ψ1| ≤ |ϕ| · (|ψ| − 1) ≤ v − 1.(8)

Let T = T (ϕ,ψ) be the recursion tree generated by A on input (ϕ,ψ). In T , each
node u is labeled with the respective monotone pair, denoted by I(u); thus, if r is the
root of T , then I(r) = (ϕ,ψ). The volume v(u) of node u is defined as the volume of
its label I(u).

Any node u is a leaf of T if Algorithm A stops on input I(u) = (ϕ,ψ) during
Steps 1–3; otherwise, u has a left child ul and a right child ur corresponding to
(A.1) and (A.2), i.e., labeled (ϕ1, ψ0 ∧ ψ1) and (ψ1, ϕ0 ∧ ϕ1), respectively. Without
loss of generality, ul is the “high frequency move” by the splitting variable.

We observe that every node u in T is determined by a unique path from the root
to u in T and thus by a unique sequence seq(u) of right and left moves starting from
the root of T and ending at u. The following key lemma bounds the number of moves
of each type for certain inputs.

Lemma 5.1. Suppose |ϕ∗|+ |ψ∗| ≤ |ϕ∗| · |ψ∗|. Then for any node a in T , seq(a)
contains at most v∗ right moves and at most log2 v∗ left moves, where v∗ = |ϕ∗|·|ψ∗|.

Proof. By (7) and (8), each move decreases the volume of a node label. Thus
the length of seq(u), and in particular the number of right moves, is bounded by v∗.
To obtain the better bound for the left moves, we will use the following well-known
inequality:

(1− 1/y)y ≤ 1/e for y ≥ 1.(9)

In fact, the sequence (1− 1/yi)
yi for any 1 ≤ y1 < y2 < · · · monotonically converges

to 1/e from below. By (7), the volume v(u) of any node u such that seq(u) contains
log2 v∗ left moves is bounded as follows:

v(u) ≤ v∗ · (1− ε)log
2 v∗ = v∗ · (1− 1/ log n)log

2 v∗ .

Since n = |ϕ∗|+ |ψ∗| ≤ |ϕ∗| · |ψ∗| = v∗ and because of (9), it follows that

v(u) ≤ v∗ · ((1− 1/ log v∗)log v
∗)log v∗

≤ v∗ · (1/e)log v∗ = v∗/(elog v∗) < v∗/(2log v∗) = 1.
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Thus umust be a leaf in T . Hence, for every u in T , seq(u) contains at most log2 v∗ left
moves.

Theorem 5.2. Problem Dual is in co-β3P.
Proof. Instances such that either c ∩ c′ = ∅ for some c ∈ ϕ∗ and c′ ∈ ψ∗,

the sequence seq(u) is empty, or |ϕ∗| + |ψ∗| > |ϕ∗| · |ψ∗| are easily recognized and
solved in deterministic polynomial time. In the remaining cases, if f = gd, then
there exists a leaf u in T labeled by a nondual pair (ϕ′, ψ′). If seq(u) is known,
we can compute, by simulating Algorithm A on the branch described by seq(u),
the entire path u0, u1, . . . , ul = u from the root u0 to u with all labels I(u0) =
(ϕ∗, ψ∗), I(u1), . . . , I(ul) and check that I(ul) is nondual in Steps 2 and 3 of Algo-
rithm A in polynomial time. Since the binary length of any standard encoding of
(ϕ∗, ψ∗) is polynomially related to n = |ϕ∗| + |ψ∗| if seq(u) is nonempty, to prove
the result, it is sufficient to show that seq(u) can be constructed in polynomial time
from O(log3 v∗) suitably guessed bits. To see this, let us represent every seq(u) as a
sequence seq∗(u) = [%0, %1, %2, . . . , %k], where %0 is the number of leading right moves
and %i is the number of consecutive right moves after the ith left move in seq(u) for
i = 1, . . . , k. For example, if seq(u) = [r, r, l, r, r, r, l], then seq∗(u) = [2, 3, 0]. By
Lemma 5.1, seq∗(u) has length at most log2 v∗ + 1. Thus seq∗(u) occupies in binary
only O(log3 v) bits; moreover, seq(u) is trivially computed from seq∗(u) in polynomial
time.

5.2. Analysis of Algorithm B of Fredman and Khachiyan. The aim of the
above proof was to exhibit a new method of algorithm analysis that allows us to show
with very simple means that duality can be polynomially checked with limited non-
determinism. By applying the same method of analysis to the slightly more involved
Algorithm B of [17] (which runs in n4χ(n)+O(1) time, and thus in no(log n) time), we
can sharpen the above result by proving that deciding whether monotone CNFs ϕ
and ψ are nondual is feasible in polynomial time with O(χ(n) · log n) nondeterministic
steps; consequently, the problem Dual is in co-β2P.

Like Algorithm A, Algorithm B uses a recursive self-reduction method that de-
composes its input, a pair (ϕ,ψ) of monotone CNFs, into smaller input instances for
recursive calls. Analogously, the algorithm is thus best described via its recursion
tree T , whose root represents the input instance (ϕ∗, ψ∗) (of size n), whose intermedi-
ate nodes represent smaller instances, and whose leaves represent those instances that
can be solved in polynomial time. Like for Algorithm A, the nodes u in T are labeled
with the respective instances I(u) = (ϕ,ψ) of monotone pairs. Whenever there is a
branching from a node u to children, then I(u) is a pair of dual monotone CNFs iff
I(u′) for each child u′ of u in T is a pair of dual monotone CNFs. Therefore, the
original input (ϕ∗, ψ∗) is a dual monotone pair iff all leaves of T are labeled with dual
monotone pairs.

Rather than describing Algorithm B in full detail, we confine ourselves here to
recalling those features which are relevant for our analysis. In particular, we will
describe some essential features of its recursion tree T .

For each variable xi occurring in ϕ, the frequency εϕi of xi with respect to ϕ is

defined as εϕi = |{c∈ϕ : xi∈c}|
|ϕ| , i.e., as the number of clauses of ϕ containing xi divided

by the total number of clauses in ϕ. Moreover, for each v ≥ 1, let χ(v) be defined by
χ(v)χ(v) = v.

Let v∗ = |ϕ∗||ψ∗| denote the volume of the input (= root) instance (ϕ∗, ψ∗). For
the rest of this section, we assume that |ϕ∗|+ |ψ∗| ≤ |ϕ∗| · |ψ∗|. In fact, in any instance
which violates this inequality, either ϕ∗ or ψ∗ has at most one clause; in this case,
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Dual is trivially solvable in polynomial time.
Algorithm B first constructs the root r of T and then recursively expands the

nodes of T . For each node u with label I(u) = (ϕ,ψ), Algorithm B does the following.
The algorithm first performs a polynomial time computation, which we shall refer

to as LCheck(ϕ,ψ) here, as follows. LCheck(ϕ,ψ) first eliminates all redundant
(i.e., nonminimal) clauses from ϕ and ψ and then tests whether at least one of the
following conditions is violated:

1. V (ϕ) = V (ψ);
2. maxc∈ϕ |c| ≤ |ψ| and maxc∈ψ |c| ≤ |ϕ|;
3. min( |ϕ|, |ψ| ) > 2.

If LCheck(ϕ,ψ) = true, then u is a leaf of T (i.e., not further expanded); whether
I(ϕ,ψ) is a dual monotone pair is then decided by some procedure Test(ϕ,ψ) in
polynomial time. In case Test(ϕ,ψ) returns false, the original input (ϕ∗, ψ∗) is
not a dual monotone pair, and Algorithm B returns false. Moreover, in this case a
counterexample w to the duality of ϕ∗ and ψ∗ is computable in polynomial time from
the path leading from the root r of T to u.

If LCheck(ϕ,ψ) returns false, Algorithm B chooses in polynomial time some

appropriate variable xi such that εϕi > 0 and εψi > 0 and creates two or more
children of u by deterministically choosing one of three alternative decomposition
rules, (i), (ii), or (iii). Each rule decomposes I(u) = (ϕ,ψ) into smaller instances,
whose respective volumes are summarized as follows. Let, as for Algorithm A, ϕ0 =
{c− {xi} | xi ∈ c, c ∈ ϕ}, ϕ1 = {c | xi /∈ c, c ∈ ϕ}, ψ0 = {c′ − {xi} | xi ∈ c′, c′ ∈ ψ},
and ψ1 = {c′ | xi /∈ c′, c′ ∈ ψ}. Furthermore, define ε(v) = 1/χ(v) for any v > 0.
Rule (i) If εϕi ≤ ε(v(u)), then I(u) is decomposed into:

(a) one instance (ϕ1, ψ0 ∧ ψ1) of volume ≤ (1− εϕi ) · v(u);
(b) |ψ0| instances I1, . . . , I|ψ0| of volume ≤ εϕi · v(u) each. Each such in-

stance Ij corresponds to one clause of ψ0 and can thus be identified as
the jth clause of ψ0 with an index j ≤ |ψ0| < n (recall that n denotes
the size of the original input).

Rule (ii) If εϕi > ε(v(u)) ≥ εψi , then I(u) is decomposed into:

(a) one instance (ψ1, ϕ0 ∧ ϕ1) of volume ≤ (1− εψi ) · v(u);
(b) |ϕ0| instances I1, . . . , I|ϕ0| of volume ≤ εψi · v(u) each. Each such in-

stance Ij corresponds to one clause of ϕ0 and can be identified by an
index j ≤ |ϕ0| < v∗.

Rule (iii) If both εϕi > ε(v(u)) and εψi > ε(v(u)), then I is decomposed into:
(c0) one instance of volume ≤ (1− εϕi ) · v(u), and
(c1) one instance of volume ≤ (1− εψi ) · v(u).

Algorithm B returns true iff Test(I(u)) returns true for each leaf u of the recur-
sion tree. This concludes the description of Algorithm B.

For each node u and child u′ of u in T , we label the arc (u, u′) with the precise type
of rule that was used to generate u′ from u. The possible labels are thus (i.a), (i.b),
(ii.a), (ii.b), (iii.c0), and (iii.c1). We call (i.a) and (ii.a) a-labels, (i.b) and (ii.b) b-labels,
and (iii.c0) and (iii.c1) c-labels. Any arc with a b-label is in addition labeled with the
index j of the respective instance Ij in the decomposition, which we refer to as the
j-label of the arc.

Definition 5.1. For any node u of the tree T , let seq(u) denote the sequence of
all edge-labels on the path from the root r of T to u.

Clearly, if seq(u) is known, then the entire path from r to u including all node-
labels (in particular, the one of u) can be computed in polynomial time. Indeed,
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the depth of the tree is at most v∗, and adding a child to a node of T according to
Algorithm B is feasible in polynomial time.

The following lemma bounds the number of various labels which may occur
in seq(u).

Lemma 5.3. For each node u in T , seq(u) contains at most
(i) v∗ many a-labels,
(ii) log v∗ many b-labels, and
(iii) log2 v∗ many c-labels.
Proof. (i) Let us consider rule (i.a) first. Given that εϕi > 0, xi effectively

occurs in some clause of ϕ. Thus |ϕ1| < |ϕ|. Moreover, by definition of ψ0 and ψ1,
|ψ0 ∧ ψ1| ≤ |ψ|. Thus we have |ϕ1| · |ψ0 ∧ ψ1| < |ϕ| · |ψ|. It follows that whenever
rule (i.a) is applied, the volume decreases (at least by 1). The same holds for rule (ii.a)
by a symmetric argument. Since no rule ever increases the volume, there are at most
v∗ applications of an a-rule.

(ii) Assume that rule (i.b) is applied to generate a child t′ of node t. By condition 3
of LCheck, v(t) > 4. Therefore, χ(v(t)) > 2, and thus εϕi ≤ ε(v(t)) < 1/2. It follows
that v(t′) < v(t)/2. The same holds if t′ results from t via rule (ii.b). Because no rule
ever increases the volume, any node generated after (among others) log v∗ applications
of a b-rule has volume ≤ 1 and is thus a leaf in T .

(iii) If a c-rule is applied to generate a child t′ of a node t, and since ε(v(t)) >
ε(v∗) > 1/ log v∗, the volume of v(t) decreases at least by factor (1 − 1/ log v∗).
Thus the volume of any node u which results from t after log v∗ applications of a
c-rule satisfies v(u) ≤ v(t)(1 − 1/ log v∗)log v

∗ ≤ v(t)/e by (9); i.e., the volume has
decreased by more than half. Thus any node u resulting from the root of T after
log2 v∗ applications of a c-rule satisfies v(u) ≤ v∗ · ( 1

2 )
log v∗ = 1; that is, u is a leaf

in T .
Theorem 5.4. Deciding whether monotone CNFs ϕ and ψ are nondual is feasible

in polynomial time with O(log2 n) nondeterministic steps, where n = |ϕ|+ |ψ|.
Proof. As in the proof of Theorem 5.2, we use a compact representation seq∗(u)

of seq(u). However, here the definition of seq∗ is somewhat more involved.
1. seq∗(u) contains all b-labels of seq(u), which are the anchor elements of

seq∗(u). Every b-label is immediately followed by its associated j-label, i.e., the
label specifying which of the (many) b-children is chosen. We call a b-label and its
associated j-label a bj-block.

2. At the beginning of seq∗(u), as well as after each bj-block, there is an ac-block.
The first ac-block in seq∗(u) represents the sequence of all a- and c-labels in seq(u)
preceding the first b-label in seq(u), and the ith ac-block in seq∗(u), i > 1, represents
the sequence of the a- and c-labels (uninterrupted by any other label) following the
(i− 1)st bj-block in seq(u).

Each ac-block consists of an α-block followed by a γ-block, where
(i) the α-block contains, in binary, the number of a-labels in the ac-block, and
(ii) the γ-block contains all c-labels (single bits) in the ac-block, in the order they

appear.
For example, if s = “(i.a), (ii.a), c0, (ii.a), c1, c0, (i.a)” is a maximal ac-subse-

quence in seq(u), then its corresponding ac-block in seq∗(u) is “10, c0, c1, c0,” where
10 (= 4) is the α-block (stating that there are four a-labels) and “c0, c1, c0” is the
γ-block enumerating the c-labels in s in their correct order.

The following facts are now the key to the result.
Fact A. Given φ∗, ψ∗, and a string s, it is possible to compute in polynomial

time the path r = u0, u1, . . . , ul = u from the root r of T to the unique node u in T
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such that s = seq∗(u) and all labels I(ui), or to tell that no such node u exists (i.e.,
s = seq∗(u) for every node u in T ).

This can be done by a simple procedure, which incrementally constructs u0, u1,
etc. as follows.

Create the root node r = u0, and set I(u0) = (φ∗, ψ∗) and t := 0. Generate
the next node ut+1 and label it, while processing the main blocks (ac-blocks and
bj-blocks) in s in order as follows.

ac-block. Suppose the α-block of the current ac-block has value nα and the γ-block
contains labels γ1, . . . , γk. Set up counters p := 0 and q := 0, and while p < nα or
q < k, do the following.

If LCheck(I(ut)) = true, then flag an error and halt, as s = seq∗(u) for every
node u in T . Otherwise, determine the rule type τ ∈ {(i), (ii), (iii)} used by Algo-
rithm B to (deterministically) decompose I(ut).

1. If τ ∈ {(i), (ii)} and p < nα, then assign I(ut+1) the a-child of I(ut) according
to Algorithm B, and increment p and t by 1.

2. If τ = (iii) and q < k, then increment q by 1, assign I(ut+1) the γq-child
of I(ut) according to Algorithm B, and increment t by 1.

3. In all other cases (i.e., either τ ∈ {(i), (ii)} and p ≥ nα or τ = (iii) and q ≥ k),
flag an error and halt, since s = seq∗(u) for every node u in T .

bj-block. Determine the rule type τ ∈ {(i), (ii), (iii)} used by Algorithm B to
(deterministically) decompose I(ut). If τ = (iii), then flag an error and halt since
s = seq∗(u) for every node u in T . Otherwise, assign I(ut+1) the j′th (τ .b)-child
of I(ut) according to rule (τ .b) of Algorithm B, where j′ is the j-label of the current
bj-block.

Clearly, this procedure outputs in polynomial time the desired labeled path from
r to u or flags an error if s = seq∗(u) for every node u in T .

Let us now bound the size of seq∗(u) in terms of the original input size v∗.
Fact B. For any u in T , the size of seq∗(u) is O(log2 v∗).
By Lemma 5.3 (ii), there are < log v∗ bj-blocks. As already noted, each bj-block

has size O(log v∗); thus the total size of all bj-blocks is O(log2 v∗). Next, there are
at most log v∗ many ac-blocks and thus α-blocks. Each α-block encodes a number
of < v∗ a-rule applications (see Lemma 5.3.(i)) and thus uses at most log v∗ bits.
The total size of all α-blocks is thus at most log2 v∗. Finally, by Lemma 5.3 (iii),
the total size of all γ-blocks is at most log2 v∗. Overall, this means that seq∗(u) has
size O(log2 v∗).

To prove that Algorithm B rejects input (ϕ∗, ψ∗), it is thus sufficient to guess
seq∗(u) for some leaf u in T , to compute in polynomial time the corresponding path
r = u0, u1, . . . , ul = u, and to verify that LCheck(I(u)) = true but Test(I(u)) =
false. Therefore, nonduality of φ∗ and ψ∗ can be decided in polynomial time with
O(log2 v∗) bit guesses. Given that v∗ ≤ n2, the number of guesses is O(log2 n2) =
O(log2 n).

The following result is an immediate consequence of this theorem.
Corollary 5.5. Problem Dual is in co-β2P and solvable in deterministic

nO(log n) time, where n = |ϕ|+ |ψ|.
(Note that yes-instances of Dual must have size polynomial in n since dual

monotone pairs (ϕ,ψ) must satisfy conditions (2) and (3) in Step 2 of Algorithm A.)
We remark that the proofs of Lemma 5.3 and Theorem 5.4 did not stress the fact that
ε(v) = 1/χ(v); the proofs go through for ε(v) = 1/ log v as well. Thus the use of the
χ-function is not essential for deriving Theorem 5.4.
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However, a tighter analysis of the size of seq∗(u) stressing χ(v) yields a better
bound for the number of nondeterministic steps. In fact, we show in the next result
that O(χ(n) · log n) bit guesses are sufficient. Note that χ(n) = o(log n); thus the
result is an effective improvement. Moreover, it also shows that Dual is most likely
not complete for co-β2P.

Theorem 5.6. Deciding whether monotone CNFs ϕ and ψ are nondual is feasible
in polynomial time with O(χ(n) · log n) nondeterministic steps, where n = |ϕ|+ |ψ|.

Proof. In the proof of Theorem 5.4, our estimates of the components of seq∗(u)
were rather crude. With more effort, we establish the following.

Fact C. For any u in T , the size of seq∗(u) is O(χ(v∗) · log(v∗)).
Assume node u′ in T is a child of u generated via a b-rule. The j-label of the

arc (u, u′) serves to identify one clause of I(u). Clearly, there are no more than
v(u) such clauses. Thus log v(u) bits suffice to represent any j-label.

Observe that if u is a node of T , then any path π from u to a node w in T
contains at most v(u) nodes since the volume always decreases by at least 1 in each
decomposition step. Thus the number of a-labeled arcs in π is bounded by v(u) and
not just by v∗ (= v(r)).

For each node u and descendant w of u in T , let

f(u,w) =
∑

u′∈B(u,w)

log v(u′),

where B(u,w) is the set of all nodes t on the path from u to w such that the arc from
t to its successor on the path is b-labeled.

By what we have observed, the total size of all encodings of j-labels in seq∗(u) is at
most f(v∗, u), and the size of all α-blocks in seq∗(u) is at most log(v∗)+f(v∗, u), where
the first term takes care of the first α-block and the second of all other α-blocks. There-
fore, the total size of all α-blocks and all bj-blocks in seq∗(u) is O(f(v∗, u)+ log(v∗)).

We now show that, for each node u and descendant w of u in T , it holds that

f(u,w) ≤ log(v(u)) · χ(v(u)).

The proof is by induction on the number |B(u,w)| of b-labeled arcs on the path π
from u to w. If |B(u,w)| = 0, then obviously f(u,w) = 0 ≤ v(u).

Assume the claim holds for |B(u′, w)| ≤ i, and consider |B(u,w)| = i + 1. Let
t be the first node on π contained in B(u,w), and let t′ be its child on π. Clearly,
f(u,w) = f(t, w), and thus we obtain

f(u,w) = log(v(t)) + f(t′, w)

≤ log(v(t)) + log(v(t′)) · χ(v(t′)) (induction hypothesis)

≤ log(v(t)) + (log(v(t))− log(χ(v(t)))) · χ(v(t))
(as v(t′) ≤ v(t)

χ(v(t)) , χ(v(t
′)) ≤ χ(v(t)) )

= log(v(t)) · χ(v(t)) (as log(χ(y)) · χ(y) = log y for all y).

Thus f(u,w) ≤ log(v(u)) · χ(v(u)). This concludes the induction and proves the
claim.

Finally, we show that the total size of all γ blocks in seq∗(u), i.e., the number of
all c-labels in seq(u), is bounded by χ(v∗) · log(v∗) < log2 v∗. Indeed, assume a c-rule
is applied to generate a child t′ of any node t, and let v = v(t), v′ = v(t′). Since
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εϕi > ε(v) and εψi > ε(v), we have v′ < (1 − ε(v)) · v. Since χ(v∗) > χ(v), we have
ε(v) = 1/χ(v) > 1/χ(v∗), and thus

v′ <
(
1− 1

χ(v∗)

)
· v.

Hence any node in T resulting after χ(v∗) · log(v∗) applications of a c-rule has volume
at most

v∗ ·
(
1− 1

χ(v∗)

)χ(v∗)·log v∗
= v∗ ·

[(
1− 1

χ(v∗)

)χ(v∗)]log v∗
≤ v∗ ·

(
1

e

)log v∗

≤ 1

(cf. also (9)). Consequently, along each branch in T there must be no more than
χ(v∗) · log v∗ applications of a c-rule. In summary, the total sizes of all α-blocks, all
γ-blocks, and all encodings of j-labels in seq∗(u) are all bounded by χ(v∗) · log v∗.
This proves Fact C.

As a consequence, nonduality of a monotone pair (ϕ∗, ψ∗) can be recognized in
polynomial time with O(χ(v∗) · log v∗) many bit guesses. As already observed in
the last lines of [17], we have χ(v∗) < 2χ(n). Furthermore, v∗ ≤ n2; thus log v∗ ≤
2 log n. Hence nonduality of (ϕ∗, ψ∗) can be recognized in polynomial time with
O(χ(n) · log(n)) bit guesses.

Corollary 5.7. Problem Dual is solvable in deterministic nO(χ(n)) time, where
n = |ϕ|+ |ψ|.

Remark 5.1. Note that the sequence seq(u) describing a path from the root
of T to a “failure leaf” with label I(u) = (ϕ′, ψ′) describes a choice of values for
all variables in V (ϕ ∧ ψ) \ V (ϕ′ ∧ ψ′). By completing it with values for V (ϕ′ ∧ ψ′)
that show nonduality of (ϕ′, ψ′), which is possible in polynomial time, we obtain in
polynomial time from seq(u) a vector w such that f(w) = gd(w). It also follows from
the proof of Theorem 5.6 that a witness w for f = gd (if one exists) can be found in
polynomial time with O(χ(n) · log n) nondeterministic steps.

5.3. Application of Beigel and Fu’s results. While our independently devel-
oped methods substantially differ from those in [1, 2], membership of problem Dual
in co-β2P may also be obtained by exploiting Beigel and Fu’s Theorem 8 in [1] (or,
equivalently, Theorem 11 in [2]). They show how to convert certain recursive algo-
rithms that use disjunctive self-reductions, have runtime bounded by f(n), and fulfill
certain additional conditions into polynomial algorithms using log(f(n)) nondeter-
ministic steps (cf. [2, Section 5]).

Let us first introduce the main relevant definitions of [1]. Let ‖y‖ denote the size
of a problem instance y.

Definition 5.2 (see [1]). A partial order ≺ (on problem instances) is polynomi-
ally well founded if there exists a polynomial bounded function p such that

• ym ≺ · · · ≺ y1 ⇒ m ≤ p(‖y1‖) and
• ym ≺ · · · ≺ y1 ⇒ ‖ym‖ ≤ p(‖y1‖).

For technical simplicity, [1] considers only languages (of problem instances) con-
taining the empty string, Λ.

Definition 5.3 (see [1]). A disjunctive self-reduction (for short, d-self-reduction)
for a language L is a pair 〈h,≺〉 of a polynomial time computable function h(x) =
{x1, . . . , xm} and a polynomially well-founded partial order ≺ on problem instances
such that

1. Λ is the only minimal element under ≺;
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2. for all x = Λ, x ∈ L ≡ h(x) ∩ L = ∅;
3. for all x, xi ∈ h(x)⇒ xi ≺ x.
Definition 5.4 (see [1]). Let 〈h,≺〉 be a d-self-reduction, and let x be a problem

instance.
1. Th,≺(x) is the unordered rooted tree that satisfies the following rules: (1) the
root is x; (2) for each y, the set of children of y is h(y).

2. |Th,≺(x)| is the number of leaves in Th,≺(x).
Definition 5.5 (see [1]). Let T be a polynomial time computable function. A

language L is in REC(T (x)) if there is a d-self-reduction 〈h,≺〉 for L such that, for
all x,

1. |Th,≺(x)| ≤ T (x), and
2. T (x) ≥∑xi∈h(x) T (xi).

Let T (x)-P denote the set of all (languages of) problems whose yes-instances x
are recognizable in polynomial time with T (x) nondeterministic bit guesses.

Theorem 5.8 (see [1]). REC(T (x)) ⊆ �log T (x)�-P.
We now show that Theorem 5.8, together with Fredman’s and Khachiyan’s proof

of the deterministic complexity of Algorithm B, can be used to prove that problem
Dual is in co-β2P.

Let L denote the set of all nondual monotone pairs (ϕ,ψ) plus Λ. Let us iden-
tify each monotone pair (ϕ,ψ) which satisfies LCheck(ϕ,ψ) but does not satisfy
Test(ϕ,ψ) with the “bottom element” Λ. Thus, if a node in the recursion tree T has
a child labeled with such a pair, then the label is simply replaced by Λ.

Let us define the order ≺ on monotone pairs plus Λ as follows: J ≺ I if I = J
and either J = Λ or J labels a node of the recursion tree generated by Algorithm B
on input I. It is easy to see that both conditions of Definition 5.2 apply; therefore, ≺
is polynomially well founded. In fact, we may define the polynomial p by the identity
function; since the sizes of the instances in the recursion tree strictly decrease on each
path in T , the two conditions hold.

Define h as the function which associates with each monotone pair I = (ϕ,ψ)
those instances that label all children of the root by Algorithm B on input I. Clearly
h satisfies all three conditions of Definition 5.3, and hence 〈h,≺〉 is a d-self-reduction
for L.

Let T be the function which to each instance I associates v(I)log v(I). (Recall that
v(I) denotes the volume of I.) It is now sufficient to check that conditions 1 and 2 of
Definition 5.5 are satisfied and to ensure that Theorem 5.8 can be applied.

That item 1 of Definition 5.5 is satisfied follows immediately from Lemma 5
in [17], which states that the maximum number of recursive calls of Algorithm B on
any input I of volume v is bounded by vχ(v) (≤ vlog v). Retain, however, that the
proof of this lemma is noticeably more involved than our proof of the membership of
Dual in co-β2P.

To verify item 2 of Definition 5.5, it is sufficient to prove that for a volume v > 4
of any input instance to Algorithm B, it holds that

vlog v ≥ (v − 1)log(v−1) +
v

3
·
(v
2

)log v
2

, and(10)

vlog v ≥ 2(α · v)log(α·v), where α = 1− 1/ log v;(11)

here, (10) arises from the rules (i), (ii), and (11) from rule (iii). As for (10), the child
of u from (i.a), respectively, (ii.a), has volume at most v − 1, and there are at most
v/3 many children from (i.b), respectively, (ii.b), since min(|ϕ|, |ψ|) > 2 (recall that
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v = |ϕ| · |ψ|); furthermore, each such child has volume ≤ ε(v) · v ≤ 1
2v. In the case

of (11), the volume of each child of u is bounded by (1− ε(v)) · v ≤ (1− 1/ log v) · v;
note also that vlog v monotonically increases for v > 4. To see (10), we have

(v − 1)log(v−1) + v
3 · (v2 )log

v
2 ≤ (v − 1)log v + v

3 · v
log v−1

2log v−1

= vlog v · (1− 1
v )

log v + 2·vlog v
3·v

≤ vlog v · (1− 1
v +

2
3·v )

= vlog v · (1− 1
3·v )

< vlog v;

to show (11), note that

2(α · v)log(α·v) = 2αlog v+logα · vlog v+logα

≤ 2( 1
e · αlogα) · vlog v+logα (αlog v ≤ 1/e by (9) )

= 2
e · (α · v)logα · vlog v

≤ 2
e · vlog v ( (α · v)logα ≤ 1, i.e., logα · (logα+ log v) ≤ 0,

since −1 < logα ≤ 0 and log v > 2)

< vlog v.

We can thus apply Theorem 5.8 and conclude that the complement of Dual is
in �log T (x)�-P and thus also in β2P.

The advantage of Beigel and Fu’s method is its very abstract formulation. The
method has two disadvantages, however, that are related to the two items of Defini-
tion 5.5.

The first item requires that T (x) is at least the number of leaves in the tree for x.
In order to show this, one must basically prove a deterministic time bound for the
considered algorithm (or at least a bound of the number of recursive calls for each
instance, which is often tantamount to a time bound). The method does not suggest
how to do this but presupposes that such a bound exists. (In the present case, this
was done by Fredman and Khachiyan in a nontrivial proof.) The second item requires
proving that the T -value of any node x in the recursion tree is at least the sum of
the T -values of its children. This may be hard to show in many cases and does not
necessarily hold for every upper bound T .

Our method instead does not require an a priori time bound but directly con-
structs a nondeterministic algorithm from the original deterministic algorithm, which
lends itself to a simple analysis that directly leads to the desired nondeterministic time
bound. The deterministic time bound follows as an immediate corollary. It turns out
(as exemplified by the very simple proof of Theorem 5.4) that the analysis involved
in our method can be simpler than an analysis according to previous techniques.

6. Conclusion. We have presented several new cases of the monotone dualiza-
tion problem which are solvable in output polynomial time. These cases generalize
some previously known output polynomial cases. Furthermore, we have shown by
rather simple means that nondual monotone pairs (ϕ,ψ) can be recognized, using
a nondeterministic variant of Fredman and Khachiyan’s Algorithm B [17] in poly-
nomial time with O(log2 n) many bit guesses, which places problem Dual in the
class co-β2P. In fact, a refined analysis revealed that this is feasible in polynomial
time with O(χ(n) · log n) = O(log2 n/ log log n) many bit guesses.
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While our results document progress on Dual and Dualization and reveal
novel properties of these problems, the question of whether dualization of monotone
pairs (ϕ,ψ) is feasible in polynomial time remains open. It would be interesting to
see whether the amount of guessed bits can be further significantly decreased, e.g., to
O(log log n · log n) many bits.

Note added in proof. Independently, Dimitris J. Kavvadias and Elias C.
Stavropoulos have shown that Dualization can be solved with limited nondeter-
minism using O(log2 n) deterministic steps in polynomial time (see [31]).
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Abstract. We consider a new model for computing with uncertainty. It is desired to compute a
function f(X1, . . . , Xn), where X1, . . . , Xn are unknown but guaranteed to lie in specified intervals
I1, . . . , In. It is possible to query the precise value of any Xj at a cost cj . The goal is to pin
down the value of f to within a precision δ at a minimum possible cost. We focus on the selection
function f which returns the value of the kth smallest argument. We present optimal offline and
online algorithms for this problem.
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1. Introduction. Consider the following model for computing with uncertainty.
We wish to compute a function f(X1, . . . , Xn) over n real-valued arguments. The val-
ues of the variables X1, . . . , Xn are not known in advance; however, we are provided
with real intervals I1, . . . , In along with a guarantee that, for each j, Xj ∈ Ij . Fur-
thermore, it is possible to query the true value xj of each Xj at a cost cj . The goal
is to pin down the value of f into an interval of size δ ≥ 0. Thus we are faced with
the following optimization problem: Given a function f , precision parameter δ, real
intervals I1, . . . , In, and query costs c1, . . . , cn, pin down the value of f to an interval
of size δ using a set of queries of minimum total cost. Note that there are two natural
versions of this problem: in the online version, the sequence of queries is chosen adap-
tively in that each successive query is answered before the next one is chosen; and, in
the offline version, where the entire set of queries must be specified completely before
the answers are provided, it must be guaranteed that f can be pinned down as desired
regardless of the results of the queries.

This model is motivated by the work of Olston and Widom [4] on query processing
over replicated databases, where local cached copies of databases are used to support
quick processing of queries at client sites. Each data value cached at a client has a
corresponding master copy maintained by a remote database where all the updates
take place. The frequency of updates makes it infeasible to maintain consistency
between the cached copies and master copies, and the data values in the cache are
likely to become stale and drift from the master values. However, the clients store for
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each cached data value an interval that is guaranteed to contain the master value. In
processing an aggregation query at a client cache, it is desired to compute a function
f defined over the data values to within a specified precision δ. For each data value
Xj , it is possible to query the master copy for the exact value, incurring a cost, rather
than use the interval Ij at the cached copy. In some cases, the cost to query the master
copy of any data value is the same, but in other cases, the master copies are spread
across multiple remote databases, each with a different access cost that is typically
predictable and static. In general, querying the master copy of each data value Xj

incurs a potentially different static cost cj . The goal then is to compute the result of
an aggregation query to within the desired precision at the minimum possible total
cost. Systems considerations sometimes make it desirable to perform all queries to
the master copy en masse, motivating the offline version of the problem.

Olston and Widom [4] considered functions f which are simple aggregation func-
tions, including

SUM

(
f(X1, . . . , Xn) =

∑
j=1,n

Xj

)
,

MIN(f(X1, . . . , Xn) = min
j=1,n

Xj), and

MAX(f(X1, . . . , Xn) = max
j=1,n

Xj).

It was observed that the SUM problem is isomorphic to the knapsack problem [2]:
Consider the set of Xj ’s that are not queried; clearly, the sum of the corresponding
interval sizes must be at most δ, and the objective function is equivalent to maximizing
the corresponding costs. The case of the selection function, i.e., where the function f
returns the value of its kth smallest argument, and particularly the median, was left
open.

In this paper, we resolve the complexity of the problem of computing the median
(and, in general, the kth smallest element) under the model of computing with uncer-
tainty, in both the offline and the online settings. We begin by expressing the offline
selection problem in terms of an integer linear program (section 3). Not only is this
integer program’s structure critical to the development of our offline algorithms, but
it also helps provide a useful lower bound for the online selection problem. Based on
these insights, we provide a polynomial-time algorithm for the offline case with unit
costs and a general offline algorithm with running time exponential in k (section 4).
Then we apply this tool to the development of an optimal online algorithm and pro-
vide a tight relationship between the performance of the optimal online and offline
algorithms (section 5). We extend our results to obtaining a polynomial-time algo-
rithm for the general offline case based on the use of linear programming (section 6).
We also present a simple approximation algorithm that does not rely on linear pro-
gramming. Finally, we define a class of problems called interval problems and show
that this is equivalent to the offline median problem and includes weighted bipartite
matching as a special case (section 7). It also turns out that our offline selection
problem can be expressed as a min-cost network flow problem (section 7). Finally, we
demonstrate that a mild generalization of our selection problem is NP-hard.

2. Preliminaries. An instance of the selection problem consists of n intervals
I1, I2, . . . , In, an associated real cost cj ≥ 0 for each interval Ij = [l(Ij), r(Ij)], an
integer 1 ≤ k ≤ �n2 �, and a value δ ≥ 0. Each interval Ij has an unknown point pj .
The aim is to estimate the value of the kth smallest pj with precision δ. An algorithm



540 FEDER, MOTWANI, PANIGRAHY, OLSTON, AND WIDOM

can query an interval Ij , paying cost cj , and obtain the point pj . The interval Ij is
then replaced with the interval I ′j = [pj , pj ]. At any point in time, for the current
intervals Ij , the kth smallest point can be pinned down into an interval [l, r].

Lemma 2.1. Given the intervals Ij, the kth smallest point must lie in the interval
[l, r], where l is the kth smallest l(Ij), and r is the (n− k + 1)th largest r(Ij).

Note that this is the smallest interval to which the kth smallest point can be
pinned, in the absence of any other information.

When the algorithm terminates, we must have r − l ≤ δ. We seek an algorithm
that minimizes the worst-case total cost to achieve this bound. In the unit-cost case,
all cj = 1, and the aim is to minimize the number of intervals queried. Two special
cases of interest seek the smallest element, with k = 1, or the median of the elements,
with n odd and k = �n2 �. The special case in which k = 1 has been addressed in
[4] and turns out to have linear complexity. There are two variants of the problem
we are interested in. In the online version of the problem that was stated above,
we can use the points returned by previous queries to decide which interval to query
next. We are also interested in the offline problem, where the algorithm must decide
which intervals to query at the same time and guarantee that, regardless of the points
obtained in these queries, the estimate [l, r] will have r − l ≤ δ.

3. An integer programming formulation. We shall express the offline prob-
lem as an integer linear program. The structure of this integer program is critical
to the development of our algorithms; also, we obtain from the constraints of this
integer program a lower bound on the worst-case online cost. The integer program
has a variable xj ∈ {0, 1} that expresses whether the interval Ij is queried. The aim is
then to minimize

∑
cjxj . To describe the constraints, we introduce some terminology.

Consider an interval O = [l(O), r(O)] of size |O| = r(O) − l(O) > δ. Let a be the
number of Ij with l(Ij) ≤ l(O), and let b be the number of Ij with r(Ij) ≥ r(O). If
a ≥ k and b ≥ n−k+1, then we say that O is an obstruction. We shall show that, for
all obstructions O, the offline algorithm must satisfy

∑
xj ≥ a+ b−n, where the sum

is over the xj such that Ij contains O. That is, at least a+ b− n intervals containing
O must be queried in order to guarantee the bound δ on the final estimate.

To obtain a finite number of constraints, we introduce some additional terminol-
ogy. A proper obstruction is an obstruction O such that, for some input intervals
Ij , Ij′ , we have l(O) = l(Ij) and r(O) = r(Ij′). A minimal proper obstruction is a
proper obstruction that does not contain any other proper obstructions. The integer
program is then to minimize

∑
cjxj , with xj ∈ {0, 1}, subject to the constraint that

for each minimal proper obstruction Oi,
∑

xj ≥ ai + bi − n, where the sum is over
the xj such that Ij contains Oi. Notice that there are at most k minimal proper
obstructions, since r(Oi) must be one of the k smallest r(Ij).

It will sometimes be convenient, for an obstruction O, to write a+ b− n = d− e,
where d is the number of Ij containing O, and e is the number of Ij inside O, that
is, with l(Ij) > l(O) and r(Ij) < r(O). To see why this equality holds, write it
as n = a + b − d + e; that is, the n intervals can be counted as a intervals with
l(Ij) ≤ l(O) and b intervals with r(Ij) ≥ r(O), subtracting the d intervals that satisfy
both conditions and adding the e intervals that satisfy neither condition.

For the online problem, we let V be the maximum over all minimal proper ob-
structions Oi of the minimum of

∑
cjxj with

∑
xj = ai+ bi−n, where the sums are

over the xj with Ij containing Oi. That is, for each minimal proper obstruction Oi,
we determine the sum of the (ai+ bi−n) smallest costs of intervals containing Oi and
find the worst such Oi.
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Proposition 3.1. The integer program solves the offline selection problem. The
quantity V is a lower bound on the maximum total cost for the online selection prob-
lem.

Proof. Say that a choice of queried intervals Ij clears an obstruction O if, regard-
less of the points pj returned for the queried intervals, the interval O will no longer
be an obstruction after the queried Ij are replaced by I ′j = [pj , pj ]. We show that
O is cleared if and only if

∑
xj ≥ a + b − n, where the sum is over the intervals Ij

containing O.
If
∑

xj ≤ a + b − n − 1 = (a − k) + (b − (n − k + 1)), then for each Ij queried
not containing O, we can return pj = l(Ij) if r(Ij) < r(O) and return pj = r(Ij)
otherwise, with l(Ij) > l(O). Clearly, this choice of pj does not decrease the values
a, b for O. For the Ij queried containing O, we can return pj = l(Ij) for at most
b− (n− k+ 1) of them and return pj = r(Ij) for at most a− k of them. Then O will
still be an obstruction, since there will be still at least k intervals with l(I ′j) ≤ l(O),
and at least n − k + 1 intervals with r(I ′j) ≥ r(O). That is, the obstruction is not
cleared.

For the converse, suppose
∑

xj ≥ a + b − n = (a − k) + (b − (n − k + 1)) + 1.
Then in each queried interval Ij containing O, either a decreases by 1 if pj > l(O)
or b decreases by 1 if pj < r(O). Thus, in the end, we will have either a′ < k or
b′ < n − k + 1, so O will no longer be an obstruction. That is, the obstruction is
cleared. This completes the proof of the equivalence.

A choice of intervals to be queried solves the offline problem if and only if it clears
all obstructions. We show that it is sufficient to consider minimal proper obstructions.
For an obstruction O, the smallest proper obstruction O′ containing it has a′ = a, b′ =
b, and the intervals Ij containing O are the same as those containing O′. Therefore,
the linear constraints for O and O′ are the same, and it is sufficient to consider proper
obstructions. If an obstruction is cleared, then every obstruction containing it is also
cleared, so it is sufficient to consider minimal proper obstructions. This completes
the proof of the characterization of the offline problem as an integer program.

We prove the lower bound V for the online problem. Let O be an obstruction
giving the value V . In the proof that if

∑
xj ≤ a + b − n − 1, then the obstruc-

tion is not cleared, we could have chosen the points returned for the queries one by
one, as the queried intervals are chosen, that is, in an online fashion. Therefore, we
must have

∑
xj ≥ a+ b−n, paying for the a+ b−n intervals of least cost containing

O.

4. Offline problem with unit costs. We now show how to solve the offline
problem efficiently, in the unit-cost case, using the integer program described above.
List the minimal proper obstructions in order, letting O1 < O2 if l(O1) < l(O2) and
r(O1) < r(O2). For the leftmost minimal proper obstruction O1, since all the intervals
Ij containing it have the same cost, we can greedily select Ij with r(Ij) as large as
possible, so as to cover as many Oj as possible with it, until we have chosen a1+b1−n
intervals containing O1. We then move on to O2, with O1 already covered, and choose
additional intervals to cover O2 as needed, again with their right endpoint as far to
the right as possible, until we have chosen at least a2 + b2 − n intervals to cover O2.
We proceed in this fashion, satisfying the constraints on minimal proper obstructions
in order, from left to right.

Theorem 4.1. In the unit-cost case, the integer program that characterizes the
offline selection problem can be solved in polynomial time by a greedy algorithm.

This approach does not seem to work in the general offline case with arbitrary
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costs, since longer intervals might have a larger cost, so that it is not clearly an
advantage to choose them. However, we can obtain an exponential-time algorithm
as follows. Let r be the (n − k + 1)th largest r(Ij). At most k − 1 intervals Ij have
r(Ij) < r. Call these the special intervals, and choose which ones will be queried in
all possible ways, that is, 2k−1 ways. All obstructions have r(O) ≤ r, so we can again
examine the minimal proper obstructions in order from left to right, covering them
with intervals Ij of least possible cost which are not special, using as many intervals
as needed. The right endpoint of intervals that are not special does not matter, since
it is at least r.

This gives an algorithm with a time bound of 2kpoly(n). A tighter time bound
follows from observing that there are at most k minimal proper obstructions Oi, and
by writing ai + bi − n = di − ei, we observe that the number ei of intervals inside Oi

is at most k − 1, so at most k − 1 intervals containing Oi will not be queried. We
can then just identify the at most k − 1 intervals of largest cost that are not special
and have Oi as the first minimal proper obstruction they cover. That is, after poly(n)
preprocessing time, each of the 2k−1 cases involves at most k obstructions and k2

identified intervals, so it uses poly(k) time.
Theorem 4.2. With arbitrary costs, the integer program that characterizes the

offline selection problem can be solved in time poly(n) + 2kpoly(k).
A different approach will later enable us to obtain a polynomial-time algorithm

for the general offline case.

5. The online problem. We now turn to the online problem and consider an
algorithm for the general case with arbitrary costs. The greedy algorithm is as follows.
Determine the interval [l, r], where l is the kth smallest l(Ij) and r is the (n−k+1)th
largest r(Ij). If r − l ≤ δ, then we are done. Otherwise, [l, r] is an obstruction O.
Query the Ij containing O of least cost. Once the point pj is obtained, replace Ij by
I ′j = [pj , pj ], and go back to the beginning of the algorithm.

Consider an execution of the greedy algorithm. Let O1, O2,. . . , Os be the se-
quence of obstructions obtained, with Ot containing Ot+1. For the last obstruction
Os, let H be the set of the as + bs − n intervals of least cost containing Os. Clearly,
the total cost of H is at most V , the lower bound established in section 6. We show
that the interval queried at stage t with 1 ≤ t ≤ s is in H, completing the proof.

The proof is by induction on t. Since the intervals in H clear the obstruction
Os, they also clear the obstruction Ot which contains Os. In fact, the intervals in
H containing Ot clear the obstruction Ot because only containing intervals matter in
clearing an obstruction. By inductive hypothesis, the t−1 intervals previously queried
are in H. However, these t− 1 intervals have not cleared Ot. Therefore, H must have
some interval containing Ot other than the t−1 intervals previously queried, and such
an interval in H of least cost c will be queried. In the case in which there are also
intervals of cost c not in H (that is, c is the largest cost in H), then an interval of
cost c not in H may be queried; however, in that case, we can change H by switching
this interval for the interval of cost c containing Ot in H without increasing the total
cost of H.

Theorem 5.1. With arbitrary costs, the greedy polynomial online selection algo-
rithm achieves the cost V of Proposition 3.1, and is therefore optimal.

We will now compare the performance of the offline algorithm with the worst-case
performance of the online algorithm, both in the unit-cost case and in the general case
with arbitrary costs. For the unit-cost case, we will transform the problem as follows.

Let P be an instance of the problem. Suppose P contains two intervals I1 and I2
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with I2 inside I1, that is, l(I1) < l(I2) and r(I2) < r(I1). We construct a new instance
P ′ by replacing these two intervals by I ′1 = [l(I1), r(I2)] and I ′2 = [l(I2), r(I1)]. We

repeatedly perform this transformation until we obtain an instance P̂ with no interval
inside another interval.

We first look at the offline problem. Consider the optimal solution for P ′. If both
I ′1 and I ′2 are queried in this solution, obtain a candidate solution for P by querying
both I1 and I2. If only one of I ′1 or I ′2 is queried, then query only I1. If neither I ′1
nor I ′2 is queried, then query neither I1 nor I2.

Since P and P ′ have the same left and right endpoints of intervals, the minimal
proper obstructions O are the same for P and P ′ and have the same value of a+b−n.
Suppose O is such an obstruction. If both I ′1 and I ′2 contain O, then both I1 and I2

contain O; and if only one of I ′1 and I ′2 contain O, then I1 contains O. Therefore, the
candidate solution for P is indeed a solution with the same cost (number of queried
intervals) as the solution for P ′.

Consider now the online problem. Here, the worst-case performance is given by
the minimal proper obstruction O with the largest value a+ b− n. This value, as we
said before, is the same for P and P ′.

Proposition 5.2. Consider the unit-cost case. For the offline selection problem,
the performance on P̂ is at least as bad as the performance on P . For the online
selection problem, the worst-case performance is the same for P̂ as for P .

We can now compare the performance of the optimal offline algorithm with the
worst-case performance of the optimal online algorithm.

Theorem 5.3. The worst-case performance ratio between offline and online se-
lection algorithms is 2k−1

k < 2 in the unit-cost case. Therefore, both algorithms have
the same performance for the smallest element problem, while the ratio for the median
problem is 2n

n+1 . In the case of arbitrary costs, the worst-case ratio equals k.

Proof. We begin with the unit-cost case. By the preceding proposition, it is
sufficient to consider an instance P̂ with no interval inside another interval. The
intervals can then be ordered from left to right, breaking ties between identical inter-
vals arbitrarily, and letting otherwise I1 < I2 if l(I1) ≤ l(I2) and r(I1) < r(I2) or if
l(I1) < l(I2) and r(I1) ≤ r(I2).

Let I1, I2, . . . , In be the intervals in this order. Consider the interval Ik. Clearly
Ik is also the largest obstruction, and so all minimal proper obstructions are contained
in it. We can assume |Ik| > δ; otherwise, no queries are needed. Since no interval is
inside an obstruction, all intervals containing an obstruction will be queried. Let Ik−s
be the first Ij with j ≤ k such that r(Ij) − l(Ik) > δ. Similarly, let Ik+t be the last
Ij with j ≥ k such that r(Ik)− l(Ij) > δ. Clearly 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ n− k.

The intervals preceding Ik−s do not contain any obstruction and will therefore
not be queried by either algorithm. Similarly, the intervals following Ik+t will not
be queried by either algorithm. The intervals from Ik−s to Ik+t contain at least one
obstruction and will therefore be queried by the offline algorithm. Therefore, the
offline algorithm makes s+ t+ 1 queries.

For the online algorithm, it is sufficient to consider the minimal proper obstruc-
tion with the largest number of intervals containing it. The first minimal proper
obstruction is contained at least in the intervals from Ik−s to Ik. The last minimal
proper obstruction is contained at least in the intervals from Ik to Ik+t. Thus the on-
line algorithm makes at least max(s, t)+1 queries in the worst case, and this quantity
is the worst case when the Ij with j < k do not intersect the Ij with j > k.

The ratio s+t+1
max(s,t)+1 with 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ n − k is maximized at
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s = t = k − 1, and it then equals 2k−1
k .

Consider next the case of arbitrary costs. Since the performance of the online
algorithm is given by the worst constraint for a single minimal proper obstruction
and there are at most k such obstructions, the ratio is at most k. An example that
achieves k has n = 2k − 1 and consists of k disjoint intervals Ij of unit-cost plus
k− 1 intervals I ′j of zero cost, with the I ′j containing all the Ij . The offline algorithm
will have to query all the intervals, incurring cost k with the intervals Ij . The online
algorithm queries the I ′j first and, depending on the resulting answers, determines
which single Ij to query, with total cost 1.

6. Offline problem with arbitrary costs. The earlier algorithm for the of-
fline selection problem with arbitrary costs has complexity exponential in k. We now
provide a polynomial-time algorithm for this problem, but this algorithm is noncom-
binatorial and relies on linear programming.

The polytope of the offline selection problem is defined by replacing in the integer
program the conditions xj ∈ {0, 1} with linear constraints 0 ≤ xj ≤ 1, with the
remaining linear constraints being the same.

Theorem 6.1. The vertices of the polytope of the offline selection problem are
all integer vertices (i.e., 0–1 vertices). Therefore, with arbitrary costs, the problem
can be solved in polynomial time by linear programming.

Proof. Consider a vertex x of the polytope. If some xj is either 0 or 1 for x,
then use this value in the constraints where xj occurs. We are thus left with some h
variables with 0 < xj < 1. Since x is a vertex of the polytope, there must be some h
constraints satisfied with equality that define x uniquely. The corresponding h-by-h
square matrix M is a 0–1 matrix M , with the property that, for every column of M ,
the value 1 occurs in consecutive rows, since a variable xj occurs in consecutive linear
constraints. We show that the determinant of such a matrix M is either 0, 1, or −1.
Therefore, the solution must be an integer; that is, all xj for the vertex x are either
0 or 1, completing the proof of optimality.

Assume M has a nonzero determinant. Then some column must have a 1 in the
first row. Consider the column with a 1 in the first row that has the least number
r of 1’s; say it is the first column. Then the 1’s in the first column occur in rows
1, 2, . . . , r. After subtracting the first row from rows 2, . . . , r, we can remove the
first row and the first column and argue inductively for the resulting submatrix M ′.
Notice that the only columns affected by the subtraction are the columns that have a
1 in the first row. These columns, however, have a 1 in rows 1, 2, . . . , r by the choice
of the first column. For such a column, after the subtraction, the 1’s in rows 2, . . . , r
become 0’s, and after the first row is removed, the remaining 1’s in the column will
be in consecutive rows. Therefore, the matrix M ′ has the property of consecutive 1’s
in each column, and the induction goes through.

A linear programming algorithm that finds a vertex of the polytope minimizing
the objective function

∑
cjxj thus solves the problem.

Unfortunately, a linear programming algorithm is not very practical for the ap-
plications at hand. It therefore becomes interesting to seek a combinatorial algorithm
that is polynomial-time. As shown in the next section, the weighted bipartite match-
ing problem is a special case of our offline selection problem, and therefore we cannot
really hope for a simple combinatorial algorithm. In practice, it might be better to
use the following approximation algorithm.

Theorem 6.2. The offline selection problem with arbitrary costs has a 2 log2 k-
approximation polynomial-time algorithm.
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Proof. Construct a binary tree whose leaves are the minimal proper obstructions
O1, O2, . . . , Ok′ in left to right order, with k′ ≤ k. Place an interval at a node q if
the minimal proper obstructions it contains, Os, Os+1, . . . , Ot, are precisely the leaves
below node q.

Unfortunately, not all intervals correspond to a single node; we argue that in
general, the minimal proper obstructions covered by an interval can be decomposed
into at most 2 log2 k groups, with each group corresponding to a single node q. To
show this, let Pi be the set of nodes on the path from the root to the leaf Oi, and
consider in particular Ps−1 and Pt+1, which are taken to be empty if s = 1 or t = k′,
respectively. Then the nodes selected are precisely the nodes q not on Ps−1 such that
q is the right child of a node on Ps−1−Pt+1 plus the nodes q not on Pt+1 such that q
is the left child of node on Pt+1−Ps−1. If the binary tree is chosen to be balanced, the
bound of 2 log2 k on the number of nodes q selected follows. (By carefully choosing
the binary tree, the bound can be improved by an asymptotic factor of 2.)

The algorithm then represents each interval by at most 2 log2 k intervals at nodes
q, each with the same cost as the original interval. This may increase the cost of an
optimal solution by a factor of 2 log2 k. The algorithm then solves the problem with
each interval at a single node q in polynomial time.

The algorithm computes at each node q, starting at the leaves Oi and moving up
to the root, how to select intervals at node q so as to leave a requirement of r intervals
having to be chosen at nodes higher than q, on the path from the root to q, for all
possible values r, which we call the demand at node q. Initially, at a leaf Oi, before
choosing which intervals to select at Oi, we have r = ai + bi − n. Suppose a node q
has inherited demands of r′ and r′′ from its children and wishes to achieve demand
r ≤ max(r′, r′′) to pass on to its parent. (At a leaf, there is a single inherited demand
r′ as described above.) Then we must select the max(r′, r′′)− r intervals of least cost
at q. For a given r, we carry out the calculation of total cost with the possible choices
of r′, r′′, and select the one that gives the least total cost for the intervals chosen at
q and its descendants, for the demand r under consideration. At the root, we force
r = 0, since no demand can be satisfied at nodes higher than the root.

7. Interval problems and weighted bipartite matching. We now examine
the expressive power of the offline selection problem. Specifically, we define the notion
of an “interval problem,” show that it is equivalent to the offline median problem,
and show that it includes weighted bipartite matching as a special case. It turns out
that every interval problem can be expressed as a min-cost network flow problem [3].
This allows us to apply combinatorial algorithms for min-cost flow to our selection
problem. We will also show that a mild generalization of the interval problem is in
fact NP-hard.

Definition 7.1. Define an interval problem to be to minimize
∑

cjxj with
xj ∈ {0, 1} subject to k constraints

∑
Si

xj ≥ fi, with the property that each xj occurs
in consecutive constraints.

We know that the offline selection problem is an interval problem. We now show
the converse. The median problem will have δ = 1 − 1

2(k+1) and k minimal proper

obstructions Oi = [i − 1, i] for 1 ≤ i ≤ k. If a variable xj occurs in constraints
s, s+ 1, . . . , t, then we represent it by the interval Ij = [s− 1, t]. We must also have
fi = ai + bi − n = di − ei, with ai, bi ≥ �n2 �. In order to have fi = di − ei, where di
is the number of variables in the constraint and ei is the number of intervals inside
Oi, we put ei single-point intervals Ij = [pj , pj ] inside Oi at i − i

k+1 . To make Oi a
proper obstruction, we add a zero-cost interval Ij = Oi. To ensure that ai, bi ≥ �n2 �,
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we add a sufficiently large number of zero-cost intervals Ij = [0, k]. It is then clear
that the Oi will be the minimal proper obstructions and will give the corresponding
constraint when the zero-cost intervals that were added are selected.

Proposition 7.2. Every interval problem is an offline median problem.

We may sometimes want to force a constraint
∑
Si

xj ≥ fi to hold with equality.
To achieve this, we choose a large L >

∑
cj and add L

∑
Si

xj to the objective
function. If the constraint can be satisfied with equality, this will be forced by the
minimization, making the added term equal to Lfi. The same L can be used to force
several different constraints to hold with equality, when this is feasible.

It turns out that every interval problem can be expressed as a min-cost network
flow problem and vice versa [3]. We now prove a simpler statement.

Theorem 7.3. The interval problem can express the weighted bipartite matching
problem.

Proof. The case in which all constraints must hold with equality can express the
minimum cost bipartite perfect matching problem. To see this, consider a bipartite
graph G, with k vertices on each side and costs on the edges, that has a perfect
matching; we seek a minimum cost perfect matching. Let 1, 2, . . . , k be the k vertices
on the left, and let 1′, 2′, . . . , k′ be the k vertices on the right. The corresponding
interval problem will have 2k constraints corresponding to these vertices, in the order
1, 2, . . . , k, k′, . . . , 2′, 1′. An edge from i to j′ will correspond to a variable occurring
in the constraints from i to j′ in this order. To force exactly one of the edges incident
to vertex 1 to be selected, we use the bound f1 = 1 for the first constraint, with
equality. To force exactly one additional edge incident to vertex 2 to be selected, we
use the bound f2 = 2 for the second constraint, with equality. In general, we have
fi = fi′ = i, with equality. This completes the representation.

Consequently, the weighted bipartite matching problem is a special case of the
weighted offline median problem. We use this expressiveness of the weighted offline
median problem to show that a slight generalization is computationally hard.

The median problem with multiplicities is the median problem with the additional
provision that some specified intervals, when queried, return two points instead of just
one. This is like having, in the median problem, pairs of identical intervals that must
be simultaneously queried or not queried.

Theorem 7.4. The weighted offline median problem with multiplicities is NP-
complete.

Proof. The problem corresponds as before to a general interval problem, except
that now, for some of the variables, the quantity 2xj instead of xj appears in the con-
straints. We can again force equality to hold in the constraints by using appropriate
costs. The special case of bipartite matching from before now generalizes to a bipar-
tite flow problem. In this problem, vertices on the left have a given supply amount,
vertices on the right have a given demand amount, and vertices on the left are joined
to vertices on the right by edges of capacity 1 or 2. The supplies and demands must
be satisfied by sending flow across the edges but in such a way that the flow across
an edge is either zero or the full capacity of the edge.

We show that this bipartite flow problem is NP-complete. The reduction is from
3SAT. In fact, we assume that every variable x in the 3SAT instance occurs at most
twice as a positive literal x and at most twice as a negative literal x. Every 3SAT
instance can be made to satisfy this assumption by replacing every variable with
several variables forced to be equal by a cycle of implications; the implications in the
cycle account for one positive and one negative occurrence, so each variable in the
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cycle can be used again, once as positive and once as negative.
To express such a 3SAT instance as a bipartite flow problem, we put a vertex

on the right for each literal x or x, with demand 2. We put a vertex on the left for
each clause, with supply 1, and with three capacity 1 edges joining it to the literals
occurring in the clause on the right. Thus the supply 1 must be sent to one of the
three literals occurring in the clause, which we can take to be a satisfying literal for
the clause. Notice that the demand bound of 2 will hold, since no literal occurs in
more than two clauses. We must ensure that complementary literals are not both
chosen as satisfying literals. To achieve this, we put a vertex on the left for each
variable x, with supply 2, and with capacity 2 edges joining it to both literals x and
x. Thus only one of the two literals will have demand left to be chosen by the clauses
on the left. Thus the supply on the left can be sent while satisfying the demand
bounds on the right if and only if the instance has a solution. It then remains to force
the demands of 2 to be met exactly, and this is done by providing additional 2v − w
units of supply to be sent along capacity 1 edges to any vertex on the right, where v
is the number of variables and w is the number of clauses. This completes the proof
of NP-completeness.

It is natural to consider the related problem, where, when an interval Ij is queried,
instead of returning a single point pj in Ij , we obtain a subinterval of Ij of length at
most δ′. If the new parameter δ′ satisfies δ′ ≤ δ, where δ is the parameter for the
required precision as before, then all the results obtained above go through (unit-cost
or arbitrary cost, online or offline), since an obstruction O has length greater than δ,
so that an interval containing it will no longer contain it after the interval length is
reduced to at most δ′. On the other hand, if δ′ > δ, then the problem has no solution
(unless no queries are needed), since queried intervals Ij can be answered so as to still
contain a sufficiently small obstruction O.
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1. Introduction. A customary approach in computer algebra is to perform com-
putations with rational numbers modulo a large integer q (a prime, prime power, or
product of several selected primes) and then to reconstruct the rational output from
its value modulo q [GG99]. In particular, the modular rational number reconstruction
is the final stage of the solution of a nonsingular linear system of n equations by means
of p-adic lifting [MC79], [D82], [P02] (see [GG99], [S86], [UP83], [Z93], [HW60] for
other important applications).

Problem 1.1 (modular rational number reconstruction). Compute a pair of
integers (η, δ) from three positive integers m,n, k such that

|η| < k < m, 1 ≤ δ ≤ m/k, η = nδ mod m.(1.1)

Problem 1.1a. Compute all coprime solutions (η, δ) to Problem 1.1.
There always exists a solution to Problem 1.1. There are at most two solutions

to Problem 1.1a, and at most one of them satisfies |η| < k/2 [GG99, Theorem 5.26].
To ensure unique correct reconstruction of η and δ, having some upper bounds on |η|
and δ (e.g., Hadamard’s bound applies to the coordinates of the rational solution to a
linear system of equations), we may double the available bound k on |η|, compute one
solution to (1.1), and either output it if |η| < k/2 or otherwise compute and output
the other solution.

A related problem of numerical rational number reconstruction or rational round-
off is the problem of computing the best rational approximation s/t to a given rational
n/m such that 1 ≤ t ≤ k.

Problem 1.2 (rational roundoff). Compute all rational numbers s/t from three
positive integers m,n, k such that

1 ≤ t ≤ k, |s/t− n/m| is minimal.(1.2)
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Problem 1.2 is closely related to computing Diophantine approximations to a real
number [HW60], [H82], [GG99] and extends the following problem.

Problem 1.2a (see [UP83]). Given a rational number α = m/n and a natural
number k, find a rational number p/q such that 1 ≤ q ≤ k and |α− p/q| < 1/(2k2).

Problem 1.2a may have no solution, but the solution is unique if it exists. In
section 5, we show that the solution to Problem 1.2 is also unique.

Dirichlet [D1842] showed that, for any real numbers α and 0 < ε ≤ 1, there exist
integers p and q such that |α − p/q| < ε/q and 1 ≤ q ≤ ε−1. In particular, let pi/qi
be the ith convergent of α (i.e., the ith term in the continued fraction approximation
for α); then |α − pi/qi| ≤ 1/(qiqi+1) < 1/q2

i [HW60], [H82]. Furthermore, Hurwitz
[H1891] showed that at least one of the two consecutive convergents of α satisfies
|α−p/q| < 1/(2q2), and at least one of the three consecutive convergents of α satisfies
|α−p/q| < 1/(

√
5q2). On the other hand, Legendre [L1798] showed that if |α−p/q| <

1/(2q2), then p/q is a convergent of α. Therefore, Problems 1.2 and 1.2a are reduced
to computing the convergents of α.

The common approach to the solution of the problems of modular and numerical
rational number reconstruction is by applying the extended Euclidean algorithm to
m and n [HW60]. Hereafter, we refer to this algorithm as the EEA and we seek
faster solution algorithms based on accelerating the EEA. The algorithm produces
a sequence of triples (rj , sj , tj), j = 1, . . . , l (notation used in [GG99]; see our Re-
mark 2.10). In our case, we need only the triples (rj−1, sj−1, tj−1) and (rj , sj , tj)
for a specially selected j. Extension from computing these triples to the solution to
Problems 1.1 and 1.1a is shown in full detail in [GG99, Theorem 5.26]. We show an
alternative approach, which is more directly related to our modification of the EEA.
We also extend the known reduction of the Diophantine approximation to the EEA
to solve Problem 1.2. Our main result, however, is the acceleration of the EEA and
consequently the solution of all the listed problems. The known algorithms compute
the desired pair of the EEA triples and thus solve Problems 1.1, 1.1a, 1.2, and 1.2a
by using

f(d) = O(d2)

bit operations, where d = �log2 m�, m ≥ n. We speed up the computation by the
factor of almost d; that is, we decrease the above bit cost bound to the level

ρ(d) = O(µ(d) log d),(1.3)

provided that µ(d) bit operations are sufficient to multiply two integers modulo 2d+1,
and (see [SS71]) we have

µ(d) = O((d log d) log log d).(1.4)

A similar acceleration is known for the Euclidean algorithm applied to polynomials
[M73], [AHU74], [BGY80], but in the integer case a well-known additional difficulty is
due to the carries. Among the known methods, only the Knuth–Schönhage algorithm
[S71] has settled the problem for integers but only in the special case in which j = l
and the triple (rl, sl, tl) terminates the Euclidean algorithm, that is, where rl is the
gcd. In our work, we were motivated by the following excerpt from [GG99, p. 305] on
the EEA for integers:

The method also works for integers, although there are some com-
plications due to the carries,
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and by the recent comments of expert Joachim von zur Gathen on the state of the
art which he sent by email to one of the present authors:

Yes, I suppose rational number reconstruction can be done in time
O(m(n) log n) for n-bit numbers and a given upper bound on the de-
nominator. This is alluded to in [GG99], as you observed. But we
do not give a proof, and I do not know any rigorous proof in the lit-
erature. I can imagine roughly what needs to be done, but it will be
quite messy.

In the next sections, we clear the cited mess and come out with a desired al-
gorithm, which solves the gcd problem as a special case (see Remark 4.3(ii)). Our
construction relies on computing a matrix sequence {Qi, i = 0, 1, . . . }, which repre-
sents the quotients and cofactors computed in the EEA, rather than on computing
just the remainder sequence {ri, i = 0, 1, . . . }. This enables a simpler control over
the growth of the magnitude of the entries of the Qi than we would have had over
the decrease of the ri.

We organize our paper as follows. After some preliminaries in the next section,
we prove our technical results on the EEA in section 3. In section 4, we present our
main algorithm. In section 5, we apply it to accelerate the modular and numerical
rational number reconstruction. Our proof of our main result is substantially simpler
than in the proceedings version [PW02].

2. Some basic results. Hereafter, we write log to replace log2 unless specified
otherwise.

Definition 2.1. Z is the ring of integers. �x� and 
x� are two integers closest
to a real number x such that �x� ≤ x ≤ 
x�. {x} = x − �x�. |A| = maxi,j |ai,j | for
any real matrix A = (ai,j)i,j. m mod n is defined to be m − n�m/n� for m,n ∈ Z,
and n > 0.

Algorithm 2.2 (Euclidean algorithm).
Input: A pair of natural numbers (m,n), m ≥ n.
Output: gcd(m,n).
Computation: Write r0 = m, r1 = n. Compute

ri+1 = ri−1 mod ri

for i = 1, 2, . . . , l until rl+1 = 0. Output rl.
Definition 2.3. Let ( ri−1

ri
) = Pi(

ri
ri+1

), where

Pi =

(
qi 1
1 0

)
, qi = �ri−1/ri�, i = 1, 2, . . . , l,(2.1)

Qi =

(
ai bi
ci di

)
= P1P2 · · ·Pi, i = 1, 2, . . . , l,(2.2)

Q0 =

(
1 0
0 1

)
, Ql+1 =

(∞ ∞
∞ ∞

)
.

The sequence {ri}li=0 is called the remainder sequence, and the sequence {Qi}li=0 is
called the matrix sequence. The extended Euclidean algorithm (EEA) outputs both
sequences {ri}li=0 and {Qi}li=0 (see Remark 2.10).
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For a given pair (m,n) and the sequence {Qi}, we can immediately compute the
sequence {ri} because

detPi = −1, detQi = (−1)i,(2.3) (
m
n

)
= Qi

(
ri

ri+1

)
, Q−1

i = (−1)i
(

di −bi
−ci ai

)
(2.4)

for all i = 1, 2, . . . , l.
Our main task is to solve the following problem.
Problem 2.4 (selected output of the EEA).
Input: Integers m,n, h such that m ≥ n ≥ 1, h ≥ 0.
Output: The unique Qi such that |Qi| ≤ 2h < |Qi+1|.
In the remaining part of this section, we state some simple auxiliary properties

of the remainders ri and the matrices Qi.
Theorem 2.5. ri > ri+1 > 0, ri ≥ ri+1 + ri+2 for i = 0, 1, . . . , l − 1.
Theorem 2.6 (cf. Definition 2.3 for ai, bi, ci, qi).
(i) bi = ai−1, di = ci−1 for i = 1, 2, . . . , l.
(ii) ai = ai−1qi + ai−2 > ai−1, ci = ci−1qi + ci−2 > ci−1 for i = 2, 3, . . . , l.
(iii) ai−2 = ai mod ai−1, ci−2 = ci mod ci−1 for i = 3, 4, . . . , l.
(iv) a0 > c0, a1 ≥ c1, ai > ci for i = 2, 3, . . . , l.
Corollary 2.7. Qi−1 can be computed from Qi by Theorem 2.6 (i), (iii).
Corollary 2.8.
(i) |Qi| = ai for i = 0, 1, . . . , l.
(ii) |Qi| ≥ |Qi−1|+ |Qi−2| for i = 2, 3, . . . , l.
Corollary 2.9. m/2 < ri|Qi| ≤ m for i = 0, 1, . . . , l.
Remark 2.10. Note an equivalent customary representation of the EEA’s output

by the sequences {ri}, {si}, {ti} (with the notation in [GG99]), where si = (−1)idi,
ti = (−1)i−1bi.

Remark 2.11. By Corollary 2.9, we have |Qi| ≤ m for i ≤ l, so it is sufficient to
consider Problem 2.4 for h ≤ d + 1, d = �logm�.

Remark 2.12. The remainder ri defined by (2.4) for the solution Qi of Problem
2.4 equals the gcd of m and n if and only if Qi+1 = (∞ ∞

∞ ∞ ), which is always the case
for h = d + 1.

3. The EEA for a modified input. To accelerate the solution of Problem 2.4,
we apply the divide-and-conquer techniques. Roughly, the idea is to solve Problem
2.4 in two steps. In each step, Problem 2.4 is solved for h replaced by �h/2�, and the
output of the first step is used as the input of the second step. We are going to show
that

(i) this leads to the same desired output, and
(ii) the computational cost of the reduction to the pair of half-size problems is

small.
A basic observation is that the matrix sequence {Qi} depends only on the quotient

m/n. That is, for another input values m∗ and n∗ such that m∗/n∗ = m/n, the
Euclidean algorithm computes the same matrices Q∗i = Qi for all i. A relatively
small perturbation of the quotient m/n should not affect the first several terms of the
sequence {Qi}, using which is enough to solve the problem for smaller h. That is, we
may replace m and n by smaller integers m∗ and n∗ provided that m∗/n∗ ≈ m/n. For
the input values m∗ and n∗, we denote by {r∗i } the remainder sequence and by {Q∗i }
the matrix sequence. Next, we specify some bounds on the allowed perturbations of
m/n for which Qi = Q∗i and then state our main theorem.
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Theorem 3.1. Suppose m∗ = �m/λ� and n∗ = �n/λ� for a positive integer λ.
For any given integer i, if

r∗i+2 ≥ |Q∗i+1| or ri+2 ≥ λ|Qi+1|,
then Qi = Q∗i .

Proof. (i) Suppose r∗i+2 ≥ |Q∗i+1|. Write (ujvj ) = Q∗j
−1(mn ) for j = 0, 1, . . . , i + 1.

Then we have (
uj+1

vj+1

)
=

(
0 1
1 −q∗j+1

)(
uj
vj

)
.

Therefore, uj+1 = vj for j = 0, 1, . . . , i. Furthermore, extending (2.4) to (m∗, n∗), we
obtain that (

r∗j
r∗j+1

)
= Q∗j

−1

(
m∗

n∗

)
,

(
uj
vj

)
=

(
r∗j

r∗j+1

)
λ + Q∗j

−1

(
m−m∗λ
n− n∗λ

)
.

By (2.4) we also know that, in each row of Q∗j
−1, one of the entries is nonnegative,

and another is nonpositive, and their absolute values are bounded by |Q∗j−1| in the
first row and by |Q∗j | in the second row. Therefore, we have

vj > (r∗j+1 − |Q∗j |)λ
and

uj − vj > (r∗j − |Q∗j−1|)λ− (r∗j+1 + |Q∗j |)λ ≥ (r∗j+2 − |Q∗j+1|)λ.
So, by assumption, uj > vj > 0 for j = 1, 2, . . . , i. Now we have u0 = m, u1 = n,
uj+1 = uj−1 mod uj for j = 1, 2, . . . , i. So uj = rj and Qj = Q∗j for j = 0, 1, . . . , i.

(ii) Suppose ri+2 ≥ λ|Qi+1|. Write (xjyj ) = Q−1
j (m

∗

n∗ ) for j = 0, 1, . . . , i + 1. Then

we have (
xj+1

yj+1

)
=

(
0 1
1 −qj+1

)(
xj
yj

)
.

Therefore, xj+1 = yj for j = 0, 1, . . . , i. Furthermore, by (2.4), we extend the above
expression for xj and yj as follows:

(
xj
yj

)
=

(
rj

rj+1

)
λ−1 −Q−1

j

(
m/λ−m∗

n/λ− n∗

)
.

Now, similarly as in part (i), we deduce that yj > rj+1λ
−1 − |Qj | and xj − yj >

(rjλ
−1 − |Qj−1|)− (rj+1λ

−1 + |Qj |) ≥ (rj+2λ
−1 − |Qj+1|). So, by assumption, xj >

yj > 0 for j = 1, 2, . . . , i. Now we have x0 = m∗, x1 = n∗, xj+1 = xj−1 mod xj for
j = 1, 2, . . . , i. So xj = r∗j and Qj = Q∗j for j = 0, 1, . . . , i.

Corollary 3.2. Suppose m∗ = �m/λ�, n∗ = �n/λ� for a positive integer λ. For
any given integer i, if

m∗ ≥ 2|Q∗i+2| · |Q∗i+1| or m ≥ 2λ|Qi+2| · |Qi+1|,
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then Qi = Q∗i .
Proof. Combine the assumed bound on m∗ and m with the first inequality of

Corollary 2.9 extended also to m∗, r∗i , Q
∗
i , and arrive at the bounds on r∗i+2 and ri+2

in Theorem 3.1.
Theorem 3.3 (main theorem). Suppose m∗ = �m/λ�, n∗ = �n/λ� for a positive

integer λ, and K is a given positive integer such that m∗ ≥ 2K2. If |Q∗i | ≤ K <
|Q∗i+1|, then Qj = Q∗j for all j ≤ i − 2 and |Qj | ≤ K < |Qj+1| for some j such that
i− 2 ≤ j ≤ i + 2.

Proof. By Corollary 3.2, we have Qj = Q∗j for j ≤ i− 2. If |Qi+3| > K, then we

are done. Otherwise, we have m ≥ λm∗ ≥ 2λK2 ≥ 2λ|Qi+3|2. By applying Corollary
3.2 again, we obtain Qi+1 = Q∗i+1, Qi = Qi.

4. Our main algorithm.
Algorithm 4.1 (selected output of the EEA).
Input: A triple of integers (m,n, h) such that m ≥ n > 0, h ≥ 0.
Output: The unique matrix Qk such that |Qk| ≤ 2h < |Qk+1|.
Computation: Let d = �logm�.
1. When h ≤ �d/2� − 1, let λ = 2d−2h−1, m∗ = �m/λ�, and n∗ = �n/λ�; then

22h+1 ≤ m∗ ≤ m/2. We first apply the algorithm to the input (m∗, n∗, h) and
have the output Q∗i . Theorem 3.3 for K = 2h implies that Qi−2 = Q∗i−2 and
|Qk| ≤ 2h < |Qk+1| for some i−2 ≤ k ≤ i+2. We may compute Qi−2 = Q∗i−2

from Q∗i (cf. Corollary 2.7) and then find Qk in a few Euclidean steps.
2. When �d/2� ≤ h ≤ d− 1, we first apply the algorithm to find |Qi| ≤ 2�h/2� <
|Qi+1|. Next we apply the algorithm again for the input (ri, ri+1, �h/2�)
and have the output Q̃j. Now we have Qi+j = QiQ̃j, |Qi+j | < 2h+1, and
|Qi+j+2| > 2h−1. Then |Qk| ≤ 2h < |Qk+1| for some i+ j−2 ≤ k ≤ i+ j+2,
and we may find Qk in a few Euclidean steps.

3. When h ≥ d, we first apply the algorithm to find |Qi| ≤ 2d−1 < |Qi+1|. Then
|Qk| ≤ 2h < |Qk+1| for some i ≤ k ≤ i + 4, and we may find Qk in a few
Euclidean steps.

Theorem 4.2. Let f(d, h) be the bit cost of performing Algorithm 4.1 for the
input (m,n, h), where d = �logm�. Then we have

f(d, h) = O(µ(d) log h)

for µ in (1.4).
Proof. By inspection of the algorithm, we have

f(d, h) =




f(2h + 1, h) + O(µ(d)) if h ≤ �d2� − 1,

f(d, �h2 �) + f(d− �h2 �, �h2 �) + O(µ(d))

if �d2� ≤ h ≤ d− 1,

f(d, d− 1) + O(µ(d)) if h ≥ d.

Let us write F (h) = f(2h + 1, h). Then

F (h) = 2F (�h/2�) + O(µ(2h)),

and we obtain that

F (h) = O(µ(2h) log h).
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By recursively combining this bound with the above expressions for f(d, h), we obtain

f(d, h) =

1+�log h�∑
i=1

(F (�h/2i�) + O(µ(d))) = O(µ(d) log h).

Remark 4.3.
(i) We may easily extend Algorithm 4.1 to compute the matrix Qi (at the bit

cost O(µ(d) log logK)), such that |Qi| ≤ K < |Qi+1| for any real K ≥ 1, not
just for K = 2h.

(ii) Due to Remark 2.12, we may also easily extend Algorithm 4.1 to find the
remainder ri (at the bit cost O(µ(d) log log(m/K)), such that ri ≥ K > ri+1

for any real 1 ≤ K ≤ m. By choosing K = 1, we compute ri = gcd(m,n).

5. Applications to rational number reconstruction. Let us next extend
Algorithm 4.1 to solve Problems 1.1, 1.1a, 1.2, and 1.2a of rational number recon-
struction.

Solution of Problems 1.1 and 1.1a. Note that (cf. (2.4))(
ri

ri+1

)
= Q−1

i

(
m
n

)
= (−1)i

(
di −bi
−ci ai

)(
m
n

)
.

Therefore,

(−1)iri+1 = nai mod m for all i.

Let i be such that ai ≤ m/k < ai+1.
1. Since ai ≤ m/k and ri+1 ≤ m

ai+1
< k, we obtain a solution

(
(−1)iri+1, ai

)
to

Problem 1.1.
2. Suppose Problem 1.1a has a solution (η, δ) such that η/δ = (−1)iri+1/ai;

then (η, δ) =
(
(−1)iri+1, ai

)
and gcd(ri+1, ai) = 1. Indeed, ai divides δ

because nδ−η
m = ciδ

ai
∈ Z and gcd(ai, ci) = 1.

3. Suppose Problem 1.1a has a solution such that η/δ �= (−1)iri+1/ai. Then the
solution is unique. (Indeed, it follows from aiη− (−1)iri+1δ = 0 mod m that
ai(−1)i−1η+ri+1δ = m and (−1)i−1η ≥ 0. Furthermore, if there are two such
solutions (η1, δ1) and (η2, δ2), then η1δ2 − η2δ1 = 0 mod m. So η1δ2 − δ1η2

equals 0,m, or −m. Combine (−1)i−1η1 ≥ 0 and (−1)i−1η2 ≥ 0 to deduce
that only η1δ2 − η2δ1 = 0 can hold.) Since m = airi + ri+1ai−1 by (2.4), we
have ((−1)i−1η − ri)ai = (ai−1 − δ)ri+1. Therefore, (η, δ) =

(
(−1)i−1(ri −

tri+1), ai−1+tai
)
for a real t. Note that ai−1+tai ∈ Z, nδ−ηm = ci−1+tci ∈ Z,

and gcd(ai, ci) = 1, and so t ∈ Z. If ri < k, then (η, δ) =
(
(−1)i−1ri, ai−1

)
defines the unique solution. If ri ≥ k, then by applying the inequalities

|η| < k and δ ≤ m/k, we obtain ri−k
ri+1

< t ≤ m/k−ai−1

ai
. Therefore, the unique

solution must be defined by the unique integer t in the interval(
ri−k
ri+1

, m/k−ai−1

ai

]
.

Corollary 5.1. Problems 1.1 and 1.1a of modular rational number reconstruc-
tion can be solved by using ρ(d) bit operations for ρ in (1.3).

Solution of Problems 1.2 and 1.2a. Recall that ci/ai is the ith continued fraction
approximation of n/m, and | ciai − n

m | < | st − n
m | for all i, s, t, where 1 ≤ t < ai (see

[HW60, Theorem 181]). In particular, | ciai − n
m | < | ci−1

ai−1
− n

m | for all i. Let i be such

that ai ≤ k < ai+1. Suppose

| st − n
m | ≤ | ciai − n

m |, ai < t ≤ k.
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Then

| ciai − s
t | ≤ 2| ciai − n

m | = 2ri+1

aim
< 2

aik

=⇒ |cit− ais| < 2t
k ≤ 2

=⇒ |cit− ais| = 1 = |ciai−1 − aici−1|
=⇒ (s, t) = (ci, ai)τ ± (ci−1, ai−1)

for a real τ . Since t > ai > ai−1 and tci−1 − sai−1 = (aici−1 − ciai−1)τ = (−1)iτ , τ

is a positive integer. Furthermore, observe that ci
ai
− n

m = (−1)i+1ri+1

aim
and ci−1

ai−1
− n

m =

(−1)iri
ai−1m

have opposite signs, and recall that | st − n
m | ≤ | ciai − n

m | < | ci−1

ai−1
− n

m |, so

(s, t) = τ(ci, ai) + (ci−1, ai−1). Therefore, (s, t) is the unique solution to Problem

1.2 for τ = �k−ai−1

ai
�.

Corollary 5.2. Problems 1.2 and 1.2a of rational roundoff can be solved by
using ρ(d) bit operations for ρ in (1.3).
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[HW60] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed.,
Clarendon Press, Oxford, UK, 1960.
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Abstract. Rearrangeable networks can realize each and every permutation in one pass through
the network. Shuffle-exchange networks provide an efficient interconnection scheme for implementing
various types of parallel processes. Whether (2n − 1)-stage shuffle-exchange networks with N = 2n

inputs/outputs are rearrangeable has remained an open question for approximately three decades.
This question has been answered affirmatively in this paper. An important corollary of the main result
is the proof that two passes through an Omega network are sufficient and necessary to implement any
permutation. In obtaining the main results of this paper, frames that look like grids with horizontal
links of different lengths are shown to be remarkable tools for identifying and characterizing the
binary matrix representations of permutations.

Key words. shuffle-exchange network, rearrangeable network, permutations, balanced matrices,
frames
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1. Introduction. An interconnection network (IN) withN = 2n inputs/outputs
is called a rearrangeable network if it realizes each and every one of N ! permutations
in a single pass [9]. It is known that the lower bound for the number of stages of a
symmetrical multistage IN with 2 × 2 switching boxes (SBs) to be rearrangeable is
2n− 1 [10]. The validity of this lower bound for shuffle-exchange (SE) networks can
be established by showing the existence of a permutation which cannot be performed
with less than 2n− 1 stages [2]. The question of whether or not a (2n− 1)-stage SE
network is rearrangeable has remained open for three decades [3, 4, 7, 8, 12, 13, 16,
18, 19, 21, 25, 26, 27]. This paper proves that a (2n− 1)-stage SE network with 2× 2
SBs is rearrangeable.

SE networks, initially proposed by Stone [7], provide an efficient interconnection
scheme for implementing various types of parallel processes [7, 1, 6, 11, 14, 20]. These
networks are constructed of repeated copies of an SE stage which consists of a “perfect
shuffle” interconnection pattern followed by a column of 2×2 SBs [7, 8]. The most used
SE network is the Omega network consisting of n SE stages. For about three decades,
several researchers have been interested in the number of SE stages needed to realize
all N ! permutations. The algorithm proposed by Stone [7] can be used to realize any
permutation on an SE network with n2 stages. Siegel [12] also described an algorithm
for realizing any permutation on a single SE stage in 2n2 passes. Parker [8] showed that
three passes through the Omega network are sufficient to generate any permutation,
and two passes are necessary. Wu and Feng [18] have shown that a (3n − 1)-stage
SE network implements all N ! permutations. The upper bound of (3n − 1) stages
was later reduced to (3n− 3) stages by different researchers (Huang and Tripathi [19]
and Babu and Raghavendra [16]). Using a constructive approach, Raghavendra and
Varma [3] showed that an SE network of five stages with N = 8 inputs/outputs is
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12, 2002; published electronically March 5, 2003.
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†Computer Science and Engineering Department, Arizona State University, Tempe, AZ 85287
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rearrangeable. This has also been proven by Linial and Tarsi [4], who provided the
best previously known upper bound of 3n−4 stages. The rearrangeability of a (2n−1)-
stage SE network was first conjectured by Beneš, and the conjecture was published
in 1975 [26, 27]. Raghavendra [21] surveyed the latest status of the rearrangeability
conjecture of SE networks, along with some claims of unsuccessful proofs made earlier.
Raghavendra [21] also stated that they have shown the rearrangeability of a seven-
stage SE network with 16 inputs by running a program that exhaustively checks all
16! permutations. Kim, Yoon, and Maeng [25] have recently refuted the claim made
by Feng and Seo [24] for proving the rearrangeability conjecture.

To prove the rearrangeability of a (2n−1)-stage SE network, this paper first iden-
tifies the permutations realized by the reverse baseline (RB) network, called RB1:n,
using “frames,” which look like grids with horizontal links of different lengths [22].
Then it is proven that a composite network, called RB1:(n−1)SE1:n (consisting of an
(n − 1)-stage RB network followed by an n-stage SE network), is rearrangeable. Fi-
nally, the functional equivalence of RB1:(n−1)SE1:n and the (2n−1)-stage SE network
is shown.

The remainder of this paper is organized as follows. The basic terminology and
definitions used throughout the paper are introduced in section 2. Basic concepts
and some preliminary results concerning the relationship between frames, balanced
matrices, and some INs are presented in section 3. The objective of section 4 is to
show the rearrangeability of RB1:(n−1)SE1:n. The proof that SE networks with at
least 2n− 1 stages are rearrangeable is presented in section 5. Section 6 is dedicated
to conclusions. The appendix contains some proofs that are omitted earlier.

2. Basic definitions. Throughout this paper, matrices are denoted by single
capital letters, and columns of a matrix are represented by the lower case of the letter
denoting that matrix. Matrix A having N rows and k columns is denoted by AN×k.
However, the columns of a matrix are numbered starting with 1. The rows of any
matrix are labeled in ascending order starting with 0, unless otherwise specified. The
N rows of AN×k can form N/2 pairs such that the row contents of each pair can be
swapped/unswapped independent of the other pairs, without swapping the labels (i.e.,
the order of row labels in AN×k is never changed). To refer to a set of specific columns
of a matrix, the notation Ax:y is used to denote the submatrix that contains those
columns of A whose indices are x, x+ 1, . . . , y, where 1 ≤ x ≤ y; if x happens to be
greater than y, then Ax:y refers to a nil matrix. Unless specifically stated, the number
of the rows of a matrix Ax:y is assumed to be equal to N and N=2

n. AN×k(i) refers
to row i of the matrix AN×k, where 0 ≤ i ≤ N − 1. A permutation on a set X is a
bijection of X onto itself. A permutation f permutes the ordered list 0, 1, . . . , N −1
into f(0), f(1), . . . , f(N − 1).

Definition 2.1 (permutation matrix, identity permutation matrix, reverse per-
mutation matrix). A permutation h is represented by an N × n binary matrix called
a permutation matrix, H, such that its ith row, HN×n(i), is the binary representation
of the integer h(i). The identity permutation matrix, denoted by IN×n, is the matrix
whose ith row is the binary representation of i (this is called a “standard matrix” in
[15]). The reverse permutation matrix, denoted RN×n, is the matrix whose jth column
is the (n+ 1− j)th column of IN×n.

As an example, the identity permutation matrix I8×3, the reverse permutation
matrix R8×3, and a permutation matrix H8×3 are shown below. There is a one-to-one
correspondence between permutations and permutation matrices. For instance, R8×3

represents the permutation r = (0)(1 4)(2)(3 6)(5)(7) in cyclic notation, where we
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transpose 1 and 4, transpose 3 and 6, and keep everything else fixed.

I8×3 =

0

1

2

3

4

5

6

7




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




R8×3 =

0

1

2

3

4

5

6

7




0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1




H8×3 =

0

1

2

3

4

5

6

7




1 1 1

1 0 0

0 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1




If the binary representation of an integer i has the form i1i2 . . . in, then the
shuffle operation cyclically shifts its bits one place left, that is, shuffle(i1i2 . . . in)=
i2i3 . . . ini1. Given that the input and output addresses of an interconnection pattern
with N = 2n inputs/outputs ports have the form i1i2 . . . in, the perfect shuffle connec-
tion performs the transformation shuffle(i1i2 . . . in)= i2i3 . . . ini1, whereas the inverse
perfect shuffle connection performs the transformation inverse− shuffle(i1i2 . . . in)=
ini1i2 . . . in−1. Let γ and γ0 denote a general permutation and the identity permu-
tation, respectively. Also, for 1 ≤ k ≤ n, let γk denote the permutation obtained by
applying the shuffle operation to γk−1; that is, γk = shuffle (γk−1). Note that γn also
becomes the identity permutation, and γn−1 is the inverse-shuffle permutation.

A k-stage IN consists of k columns of SBs, each followed and preceded by links
which form interconnection patterns. A column of IN contains N/2 SBs with two
inputs/outputs, each of which can be set both straight and cross. Figure 2.1 shows
two networks considered in this paper, namely, the RB and the four-stage SE. Network
stages are numbered in ascending order starting with 1 for the leftmost stage. The
inputs of the leftmost stage (i.e., first stage) of any IN are labeled in ascending order
from 0 to N − 1. The inputs of the other stages of any IN except the inverse shuffle-
exchange (ISE) network are also labeled from 0 to N − 1. The inputs of ISEk (i.e.,
stage k of the ISE) are labeled by the permutation γk−1 described above for all i,
0 ≤ i ≤ N − 1. Specifically, the input i of ISEk is labeled by γk−1(i). These input
labels can also be obtained as follows: (1) the inputs of the first stage ISE1 are
numbered from 0 to N −1 in ascending order, (2) all SBs are set straight, and (3) the
input labels of the first stage are propagated through the ISE network to determine
the input labels of SBs in the other stages. For instance, for N = 16, the inputs of
ISE2 are numbered by 0,2,4,6,8,10,12,14,1,3,5,9,11,13, and 15 from top to bottom;
similarly, the inputs of ISE3 are numbered by 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11, and
15.

Definition 2.2 (RB network). An n-stage reverse baseline (RB) network is
the same as the network formed by the last n stages of the Beneš network with N
inputs/outputs. Specifically, for 1 ≤ i ≤ n, stage i of the RB network consists of a
pile of 2n−i copies of the SE stage with 2i inputs/outputs. (An SE stage consists of
a shuffle interconnection pattern followed by a column of 2 × 2 SBs.) Figure 2.1(a)
illustrates an RB network with 16 inputs/outputs.

Definition 2.3 (SE and ISE networks). A shuffle-exchange (SE) network with
N inputs/outputs is constructed of repeated copies of a “perfect shuffle” connection
followed by a column of 2×2 SBs, where the shuffle connection implements the perfect
shuffle permutation. An inverse shuffle-exchange (ISE) network is constructed of
repeated copies of an ISE stage consisting of a column of 2 × 2 SBs followed by an
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Fig. 2.1. (a) An RB network with 16 inputs/outputs. (b) An SE network with 16 inputs/outputs.

“inverse perfect shuffle” connection implementing the inverse shuffle permutation.
Informally, we would obtain the ISE network if data flowed from right to left in the
SE network. Figure 2.1(b) illustrates an SE network.

Definition 2.4 (stages of RB and SE networks). With one exception, a stage in
the RB and SE networks consists of a connection pattern and the following column of
SBs. The exception is the rightmost stage (i.e., the output stage), which consists of the
last column of SBs and both the preceding and succeeding connection patterns. Stages
are labeled from left to right in ascending order starting with 1. The interconnection
pattern of an SE stage is called a shuffle (or perfect shuffle) interconnection pattern
that implements the shuffle permutation. The interconnection pattern of stage i in the
RB network consists of a pile of 2n−i copies of shuffle interconnection patterns with
2i inputs/outputs. See Figure 2.1 for the stages.

An IN with N inputs/outputs and k stages is denoted by both INN×k and IN1:k

for k ≥ 1. The subnetwork that consists of the stages x through y of IN1:k is denoted
by INx:y, where 1 ≤ x ≤ y ≤ k. The notation used for networks is different from that
used for matrices because matrices are always denoted by single letters, as opposed to
the double letters used for INs. In this paper, if the name of an IN has more than one
word, then it is denoted by the upper case form of the first letters of those words.

Definition 2.5 (RB, SE, ISE, composite IN). The symbols RB, SE, and ISE
in this paper refer to the network’s reverse baseline, shuffle-exchange, and inverse
shuffle-exchange, respectively. If an IN is a cascade of different INs, then it is called
a composite IN and is denoted by the concatenation of symbols that represent the INs
in the order they are cascaded.

As an example for a composite network, the notation RB1:nSE1:m, m ≥ 1, de-
notes the network consisting of RB1:n followed by SE1:m. The concept of balanced
matrices was introduced by Linial and Tarsi [4]. Next, we express their definition
using permutations.

Definition 2.6 (balanced matrix). Let N = 2n, n ≥ 1, k ≥ 1, and 1 ≤ m ≤
n. A matrix AN×k containing 0’s and 1’s is balanced only if, for every set of m
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consecutive columns, every m-bit binary number appears 2n−m times in the rows.
This implies that, for k ≥ n, each and every n consecutive column forms the binary
representation of a permutation on the set {0, 1, . . . , N − 1}.

As an example, two balanced matrices D and E are shown below. However, notice
that the matrix [D E] is not balanced because not all three consecutive columns of
[D E] form the binary representation of a permutation on {0, 1, . . . , 7}. For instance,
“001” is repeated on rows 1 and 2 of columns 2, 3, and 4 in [D E].

D = [d1 d2 d3] =

0

1

2

3

4

5

6

7




1 1 1

1 0 0

0 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1




E = [e1 e2] =

0

1

2

3

4

5

6

7




1 0

1 0

1 1

1 1

0 1

0 1

0 0

0 0




A subset M of edges in a graph G is called independent or a matching if no two
edges of M have a vertex in common. A matching M is said to be a perfect matching
if it covers all vertices of G. For more extended discussion of these basic concepts,
the reader is referred to [5].

Definition 2.7 (perfect matching graph of a balanced matrix of order N × (n−
1)). Let A be a balanced matrix of order 2n× (n−1) for n ≥ 2. The perfect matching
graph of A, denoted by PGA, on 2n vertices is a graph whose vertices have degree one
and vertices Vi and Vj are joined by an edge if the ith and jth rows of A are identical.

Note that the perfect matching graph of AN×(n−1) is unique because each (n−1)-
bit row is repeated twice in AN×(n−1). As an example, consider the balanced matrix
E given in the above example. Its perfect matching graph is unique and has four edges
such that each of the following four sets contains the two vertices of an edge: {V0, V1},
{V2, V3}, {V4, V5}, and {V6, V7}. The perfect matching graph corresponding to the
first two columns of the above balanced matrix D also has four edges such that each
of the following four sets contains the two vertices of an edge: {V0, V4}, {V1, V6},
{V2, V5}, and {V3, V7}.

Definition 2.8 (2-labeling). The 2-labeling (or 2-coloring) of a graph refers to
the assignment of integers 0 and 1 to its vertices such that no two adjacent vertices
are assigned the same integer. The integers 0 and 1 that are assigned to two adjacent
vertices are called 2-labels.

Definition 2.9 (agree). A balanced matrix BN×j, j ≥ 1, is said to agree with
a balanced matrix AN×i, i ≥ 1, if the matrix [AN×i BN×j ] is balanced.

Lemma 2.10. Given a balanced matrix AN×(n−1), n ≥ 2, there exist 2N/2 binary
column vectors, say, x’s, each having N/2 0’s and N/2 1’s such that [AN×(n−1) x] is
balanced for each x.

Proof. The unique perfect matching graph, PGA, of AN×(n−1) has N/2 edges.

There are 2N/2 distinct possible 2-labelings of this graph because each pair of adjacent
vertices can be labeled in two different ways (0-1 or 1-0). Each 2-labeling corresponds
to a distinct column of length N with N/2 0’s and N/2 1’s. Thus the total number
of distinct columns that agree with AN×(n−1) is 2

N/2.
Definition 2.11 (forward-routing, reverse-routing). Assume that a setting of

SBs of an interconnection network INN×k realizes the permutation h : i⇒ h(i) for
0 ≤ i ≤ N − 1. When A(i) (i.e., row i of A) is located at input i of INN×k for every
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i, forward-routing matrix A through INN×k with the above setting of SBs generates
a new matrix, denoted AF , at the outputs of INN×k by permuting the rows of A in
accordance with the permutation h such that AF (h(i)) = A(i). Likewise, when A(i)
is located at output i of INN×k for every i, reverse-routing matrix A through INN×k
with the above setting of SBs generates a new matrix, denoted AR, at the inputs of
INN×k by permuting the rows of A in accordance with the inverse of the permutation
h, denoted h−1, such that AR(h−1(i)) = A(i).

In this paper, the following bit-controlled routing scheme is used for routing inputs
of a network to their destinations. The content of row i of a balanced matrix AN×k
is used as the routing tag for the input i. Similar to the labeling scheme of network
stages shown in Figure 2.1, the bits of any routing tag are also labeled from left to
right, starting with 1. The ith bit of the routing tag is used as the control bit in the
following way at the ith stage for setting an SB to which the routing tag is an input:
if the control bit equals 0, then the routing tag is sent to the upper output of the SB;
otherwise, it is sent to the lower output. Because an SB is allowed to be set straight
and cross only in the paper, the control bits of an SB must constitute the set {0, 1}
to avoid having any conflict.

Definition 2.12 (realize, pass). A network INN×k realizes a permutation repre-
sented by AN×n if there is a network switch setting such that input i is sent to output
AN×n(i) for all i = 0, 1, . . . , N − 1. A network INN×k, k ≥ 1 , passes a balanced
matrix BN×k if no conflict occurs in the SBs of the INN×k when BN×k(i) is used as
the routing tag in the way explained above for the ith input of the INN×k.

3. Frames and preliminary results. This section introduces the notion of a
frame and establishes necessary fundamental properties of frames and how they relate
to balanced matrices and INs of interest. Somewhat different versions of some of these
definitions and a motivational example appeared in [22, 23]. Some preliminary results
that will be used throughout the paper are also presented in this section.

Recall that γ and γ0 denote a general permutation and the identity permutation,
respectively. Also, for 1 ≤ k ≤ n, let γk denote the permutation obtained by applying
the shuffle operation to γk−1, that is, γk = shuffle(γk−1).

A frame looks like a grid with horizontal links of different lengths together with a
labeling of the rows and columns. The frame is used to capture constraints that some
rows and columns of balanced matrices need to satisfy in order to be realized by INs.

Definition 3.1 (frame, standard frame, block of a frame). A frame FN×k;γ
consists of k columns labeled fj for 1 ≤ j ≤ k and k ≥ 1 from left to right and N
rows labeled according to a permutation γ such that the label of the ith row from the
top equals γ(i) for all i, 0 ≤ i ≤ N −1. For 1 ≤ j ≤ n−1, column fj consists of 2n−j

blocks of 2j rows (entries) each. For j ≥ n, column fj consists of a single block of N
rows. If γ is the identity permutation (i.e., γ0), then the frame is called the standard
frame and may also be denoted by FN×k, in addition to the notation FN×k;γ0 . In the
graphical representation of a frame, any polygon with four sides and four right angles
is called a block of a frame. (See Figure 3.1 for some frames.)

The notation fij denotes the ith entry of column fj . The notation FN×k;γ(i) is
used to denote the ith row of FN×k;γ . If the number of rows in a frame is not specified,
it is assumed to be equal to N . Therefore, if the number of rows is not specified, the
notation FN×k;γ and F1:k;γ refer to the same frame.

Definition 3.2 (F rN×k;γ , universal frame F
n−1
N×k;γ). Frame F rN×k;γ , r ∈ {0, 1, . . . ,

k−1} and k ∈ {1, 2, . . . , n}, is the same as FN×k;γ except that for j = 1, 2, . . . , r+1,
each column fj of F rN×k;γ consists of 2n−r−1 blocks of 2r+1 rows each (instead of
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Fig. 3.1. Let N = 16. (a) F16×4 = F 0
1:4. (b) F16×7 = F 0

1:7. (c) F16×4;γ1 = F 0
1:4;γ1

. (d)

F 1
16×4;γ1 = F 1

1:4;γ1
. (e) F 2

16×4;γ3 = F 2
1:4;γ3

. (f) The universal frame F 3
16×4;γ0 = F 3

1:4. (g) The
reverse permutation matrix R16×4 = R1:4.

2n−j blocks of 2j rows each). For r = n− 1, the frame Fn−1
N×k;γ is called the universal

frame.

Note that every column of the universal frame is a single block of N rows. (See
Figure 3.1 for some F rN×k;γ and the universal frame.) Also, note that FN×k;γ and
F 0
N×k;γ refer to the same frame.
Definition 3.3 (fit). Let k ≥ 1 and 1 ≤ p ≤ k. Consider a matrix AN×k and

a frame F with N rows and k columns. First, row i of AN×k is placed into the row
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i of F . Then the matrix AN×k is said to fit the frame F if and only if, for all p’s,
each and every one of those p-column blocks whose entries are located in columns f1,
f2, . . . , fp of F contains a balanced matrix.

Note that any balanced matrix of order N × k fits a universal frame with N rows
and k columns because a universal frame requires a matrix to be balanced only.

Example 3.1. Note that the reverse permutation matrix R16×4 shown in Figure
3.1(g) fits F16×4 shown in Figure 3.1(a). However, R16×4 does not fit F16×4;γ1 shown
in Figure 3.1(c) because many blocks of F16×4;γ1 do not contain balanced matrices
when row i of F16×4;γ1 is filled in by row i of R16×4. For instance, in F16×4;γ1 , the
topmost block of f1 does not contain a balanced matrix.

In the remainder of this section, some preliminary results are presented. The
following lemma computes the number of matrices that fit FN×k.

Lemma 3.4. The number of those matrices of order N × k each of which fits
FN×k equals 2Nk/2 for k ≥ 1.

Proof. The first column f1 of FN×k consists of N/2 blocks each having only
two rows. Because each block can constitute the set {0, 1} in two different ways
independently of the other blocks, there exist 2N/2 column vectors that fit the first
column of FN×k. Each of these column vectors, say, x, generates 2N/2 column vectors,
say, y’s, in the sense that each of [x y] fits the first two columns of FN×k. To select
a vector y for column x, N/2 pairs of rows are first determined for x such that two
rows of x form a pair if their contents are the same and their second entries on
column y will belong to the same block of f2 of FN×k. The rows of each pair are
swapped/unswapped independently of the other pairs of rows. Thus each x generates
2N/2 y’s such that any [x y] fits the first two columns of FN×k. Similarly, to select
a vector z for a given balanced matrix [x y], N/2 pairs of rows are first determined
for the matrix [x y] such that two rows of [x y] form a pair if their contents are the
same and their third entries on column z will belong to the same block of f3. The
rows of each pair are swapped/unswapped independently of the other pairs of rows.
Thus each [x y] generates 2N/2 z’s such that any [x y z] fits the first three columns
of FN×k. This generation of column vectors is continued until all matrices that fit
FN×k are generated. Thus the lemma holds.

The following theorem establishes a relation between frames and permutations
that pass RB networks. The basic idea behind the proof of the theorem appears in
[22], and the complete proof is provided in the appendix.

Theorem 3.5. A matrix D1:k = [d1 d2 . . . dk] fits F1:k if and only if D1:k

passes RB1:k, 1 ≤ k ≤ n. Moreover, RB1:k sends its ith input to its jth output, where
j is equal to the sum of (	i/2k
 × 2k) and the value of D1:k(i).

Note that the sum described in Theorem 3.5 is a regular sum in the sense that no
modular arithmetic is needed. Theorem 3.5 implies that, for k = n, a matrix D1:k fits
F1:k if and only if D1:k is realized by RB1:k. It is shown in [4] how balanced matrices
can be used to determine the number of SE stages (or the number of passes through a
single SE stage) necessary to realize a given permutation. Lemma 3.6 below restates
their result using the notation of this paper.

Lemma 3.6 (see [4]). Let MN×m and CN×k be balanced matrices such that
MN×m = [IN×n CN×k], k ≥ 1, and n+k = m. The k-stage SE network (i.e., SE1:k)
realizes the permutation represented only by M(m+1−n):m.

To illustrate Lemma 3.6, consider the identity permutation matrix I8×3 = [i1 i2 i3]
and some balanced matrices M8×4 = [I8×3 i1], M8×5 = [I8×3 i1 i2], and M8×6 =
[I8×3 I8×3]. Because M8×4, M8×5, and M8×6 are balanced, the permutations repre-
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sented in binary by [i2 i3 i1], [i3 i1 i2], and [i1 i2 i3] are realized by the single-stage
SE, two-stage SE, and three-stage SE with N = 8 inputs/outputs, respectively.

Lemma 3.6 can be used to establish the lower bound of 2n − 1 stages for SE
networks as follows. Since M1:m defined in Lemma 3.6 is a balanced matrix, every n
consecutive columns of it form a balanced matrix. Even if only one column vector of a
balanced matrix is already known, no other column of the balanced matrix can be an
arbitrary column vector because each one of them has to form a balanced submatrix
with the fixed column. Therefore, in order for M(m+1−n):m to represent any balanced
matrix of order N × n, it is required that the rightmost column in of I1:n does not
form a balanced submatrix with any column of M(m+1−n):m. This implies that there
must be at least n− 1 column vectors between in and the leftmost column m+1− n
of M(m+1−n):m, which implies that m+ 1− n must be equal to at least the sum of n
and the number of columns of I1:n, that is, m+1−n ≥ 2n. Hence m ≥ 3n− 1. Since
the k-stage SE network realizes the permutation represented by M(m+1−n):m, where
k = m − n, k must be at least 2n − 1. Therefore, an SE network must have at least
2n− 1 stages to be rearrangeable.

The following theorem shows that F1:(n+m−1) can be used to characterize the
permutations realized by RB1:(n−1)SE1:m for m ≥ 1. The proof of this theorem is
provided in the appendix.

Theorem 3.7. A balanced matrix D1:(n+m−1), m ≥ 1, fits the frame F1:(n+m−1)

if and only if D1:(n+m−1) passes the network RB1:(n−1)SE1:m. Moreover, RB1:(n−1)SE1:m

realizes the permutation represented by the last n columns of D1:(n+m−1), denoted by
Dm:(n+m−1).

Now we introduce Figure 3.2 and explain below the basic idea behind Theorem
3.7. Let (xi1x

i
2 . . . x

i
n . . . x

i
n+m−1) denote the row i of a balanced matrix D1:(n+m−1)

fitting F1:(n+m−1), where 0 ≤ i ≤ N − 1. As stated above, Theorem 3.5 implies that,
for k = n, a matrix D1:k fits F1:k if and only if D1:k is realized by RB1:k. Thus any
permutation whose binary representation fits F1:n is realized by RB1:n, and vice versa.
This implies that when (xi1x

i
2 . . . x

i
n) is used as the routing tag of input i of RB1:n,

this routing tag (along with input i) reaches the output with label (xi1x
i
2 . . . x

i
n) of

RB1:n. (Note that the bit x
i
j , 1 ≤ j ≤ n, is used as the control bit for setting SB at

stage j of RB1:n.) This also means that the matrix formed by all the N routing tags
(xi1x

i
2 . . . x

i
n) at the outputs of RB1:n is the identity permutation matrix. Recall that

the last stage of RB1:n is an SE stage, and hence RB1:n is identical to RB1:(n−1)SE1.
Therefore, it follows that the permutation whose binary representation is the same
as the submatrix D1:n of D1:(n+m−1) is realized by RB1:(n−1)SE1, and all the N
routing tags (xi1x

i
2 . . . x

i
n) form the identity permutation matrix at the outputs of

RB1:(n−1)SE1.

When an SE stage is appended to the right of RB1:(n−1)SE1 in order to form
RB1:(n−1)SE1:2, the routing tag (x

i
1x
i
2 . . . x

i
n) is first shuffled through the shuffle pat-

tern to the output with label (xi2x
i
3 . . . x

i
nx

i
1) of the shuffle pattern and is then switched

by the exchange stage to the output with label (xi2x
i
3 . . . x

i
nx

i
n+1) of RB1:(n−1)SE1:2,

where xin+1 is used as the control bit for setting the SB of the exchange stage. Be-
cause Theorem 3.7 guarantees that no conflict occurs in the SBs, the matrix formed
by all the N routing tags (xi2x

i
3 . . . x

i
nx

i
n+1) at the outputs of RB1:(n−1)SE1:2 is now

the identity permutation matrix. This implies that the permutation whose binary
representation is the same as the submatrix D2:(n+1) is realized by RB1:(n−1)SE1:2.
In general, when an SE stage is appended to the right of RB1:(n−1)SE1:(m−1) in
order to form RB1:(n−1)SE1:m, the routing tag (x

i
m−1x

i
m . . . x

i
n+m−2) is first shuffled
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Fig. 3.2. In this figure, N = 8, n = 3, and m = 3. (a) A balanced matrix D1:5 fitting F1:5. (b)
F1:5 along with the matrix D1:5. (c) The network RB1:2SE1:3 realizes the permutation corresponding
to the balanced submatrix D3:5 (i.e., the last n columns of D1:5), where the row i of D1:5 is used
as the routing tag of the input i. Arrows point to the control bits used to set the SBs. The matrices
formed by the routing tags at the stages 4, 5 and the outputs of RB1:2SE1:3 are shown, and each
identity permutation matrix is encircled by a dotted line box. The row labels of matrices that are
formed in every stage of the network are in ascending order from 0 to 7.

through the shuffle pattern to the output with label (ximx
i
m+1 . . . x

i
n+m−2x

i
m−1) of the

shuffle pattern and is then switched by the exchange stage to the output with label
(ximx

i
m+1 . . . x

i
n+m−2x

i
n+m−1) of RB1:(n−1)SE1:m. Because the matrix formed by all

the N routing tags (ximx
i
m+1 . . . x

i
n+m−2x

i
n+m−1) at the outputs of RB1:(n−1)SE1:m is

the identity permutation matrix, the permutation whose binary representation is the
same as the submatrix Dm:(n+m−1) is realized by RB1:(n−1)SE1:m. In other words,
the permutation whose binary representation is the same as the last n columns of
D1:(n+m−1) is realized by RB1:(n−1)SE1:m.

For N = 8 and m = 3, Figure 3.2 shows how the rows of a D1:(n+m−1) are used
as the routing tags of the inputs of RB1:(n−1)SE1:m.

This figure also illustrates how the permutation corresponding to the last n
columns of D1:(n+m−1) is realized by RB1:(n−1)SE1:m. The matrices formed by the
routing tags at the third, fourth, and fifth stages of RB1:2SE1:3 are shown such that
each identity permutation matrix formed by the routing tags is encircled by a dotted
line box. The dotted line box at the outputs of RB1:2SE1:3 contains the last three
columns of the matrix formed by the routing tags. This implies that the permutation
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whose binary representation is D3:5 is realized by RB1:2SE1:3.

4. Rearrangeability of network RB0:(n−1)SE1:n. The main result of this
section, stated in Theorem 4.7, is that RB1:(n−1)SE1:n is rearrangeable. This result
is obtained as follows. Let T denote the set of all those balanced matrices of order
N × (2n − 1), each of which fits F1:(2n−1). Also, let M denote the set of all those
balanced matrices of order N × n, each of which is the same as the last n columns
of at least one member of T . Theorem 3.7 states that RB1:(n−1)SE1:n realizes every
permutation whose binary representation is the same as the last n columns of a
matrix fitting F1:(2n−1), and vice versa. Therefore, to prove that RB1:(n−1)SE1:n is
rearrangeable, it is sufficient to show that the setM contains all N ! balanced matrices
of order N × n. To show this, we introduce three algorithms, namely, COLUMN,
GENERATE-π, and GENERATE-ALL. Algorithm GENERATE-ALL generates all
matrices of T in n−1 steps. In each step, a column vector r of N/2 0’s followed by N/2
1’s is added to the left of every balanced matrix that is generated in the previous step.
(In step 1, the column vector is added to the left of every one of N ! balanced matrices.)
Since prepending the column vector makes some resulting matrices unbalanced, those
unbalanced matrices are removed, and each of the remaining balanced matrices is
reverse-routed through an ISE stage of N/2 switches in 2N/2 ways to generate new
matrices. This reverse-routing is done in the same way as described in algorithms
COLUMN and GENERATE-π. Algorithm COLUMN helps prove that every balanced
matrix of orderN×n is contained in the last n columns of at least one matrix generated
by the reverse-routing. Algorithm GENERATE-π shows that the first n− 1 columns
of every generated matrix fit F1:(n−1).

Now we introduce algorithm COLUMN. Given a balanced matrix BN×(n−1), n ≥
1 and N = 2n, and FN×1 (i.e., the first column of FN×n), algorithm COLUMN shown
in Figure 4.1 determines a column vector V such that V fits FN×1 and the matrix
[V BN×(n−1)] is balanced. Because FN×1 consists of 2

n−1 blocks of two rows each, the
2ith and (2i+ 1)th entries of V constitute the set {0, 1} and hence do not cause any
conflict when they become the control bits of a switch for 0 ≤ i ≤ 2n−1−1. Therefore,
it is shown in Lemma 4.1 that, for 1 ≤ k ≤ n−1, a stage of N/2 switches can partition
any given balanced matrix BN×k into two balanced matrices of order 2n−1 × k, one
of which consists of only those rows of BN×k sent to the upper outputs of switches,
and the other matrix contains only the rows sent to the lower outputs. Corollary
4.2 shows that the reverse order of this partitioning process from the outputs side of
the stage to the inputs side allows any BN×k to be generated. After the proofs of
Lemma 4.1 and Corollary 4.2, an example is introduced to help clarify these proofs
and algorithm COLUMN.

The correctness proof of algorithm COLUMN is as follows. By the definition of
perfect matching, each vertex of a perfect matching graph is incident with one edge
only. Therefore, each vertex of the union of two perfect matching graphs is incident
with two edges that belong to different perfect matching graphs. (The union of two
perfect matching graphs may be regarded as a multigraph.) This means that each
perfect matching graph has an equal number of edges in every cycle of the union
graph. Therefore, each cycle contains an even number of edges, and hence 2-labeling
every cycle is always possible. Because the two integers assigned to the vertices of an
edge in 2-labeling constitute the set {0, 1}, the vector V , whose ith entry equals the
2-label of the vertex i, agrees with B1:(n−1) and fits FN×1.

Lemma 4.1. Consider a frame Fn−2
N×k;γ which is a pile of two universal frames,

namely, upper and lower universal frames denoted UF and LF , respectively, each
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Algorithm COLUMN

Input: A balanced matrix BN×(n−1) and FN×1 = f1.

Output: A vector V that fits FN×1 and a balanced matrix [V BN×(n−1)].

begin

Step 1. Determine the perfect matching graph of B1:(n−1) by joining an edge

between any two vertices that correspond to two identical rows of B1:(n−1).

Step 2. Determine the perfect matching graph of FN×1 by joining an edge

between any two vertices with labels 2m and 2m+1 for m = 0,1, . . . ,2n−1−1.

Step 3. 2-label the union of the perfect matching graphs of B1:(n−1)

and FN×1.

Step 4. Let the integer assigned to the vertex i in 2-labeling be the ith entry

of the vector V (i.e., V (i)) for 0≤ i≤ N−1.

end

Fig. 4.1. Algorithm COLUMN.

having N/2 rows and k columns, where N = 2n and 1 ≤ k ≤ n− 1. Let ISEj denote
an inverse shuffle-exchange (ISE) stage with N inputs/outputs and N/2 switches of
size 2 × 2 each, where j ≥ 1. Then, for any given balanced matrix BN×k fitting the
universal frame Fn−1

N×k, there exists a switch setting of ISEj such that, when BN×k is

forward-routed through ISEj, a matrix fitting Fn−2
N×k;γ is obtained at the outputs side

of ISEj.

Proof. We shall first prove the lemma for k = n − 1. Recall that any balanced
matrix BN×(n−1) fits the universal frame F

n−1
N×(n−1);γ . For a given balanced matrix

BN×(n−1), algorithm COLUMN finds a vector V of N entries such that V fits FN×1

and the matrix [V BN×(n−1)] is balanced. Let the ith entry, 0 ≤ i ≤ N − 1, of V be
the control bit of the ith input of ISEj . Thus, because V fits FN×1, two control bits
of each switch constitute the set {0, 1}. Assume that Bu and Bl denote the matrices
consisting of those rows of BN×(n−1) sent to the upper and lower outputs, respectively,
of switches. So, if V (i) = 0 (respectively, V (i) = 1), then row i of BN×(n−1) will
be forward-routed to the upper (respectively, lower) output of a switch. Because
[V BN×(n−1)] is also balanced, B

u (respectively, Bl) form a balanced matrix of order
2n−1× (n− 1) that fits UF (respectively, LF ). Therefore, the matrix obtained at the
outputs of ISEj fits F

n−2
N×(n−1);γ .

Now, we shall prove the lemma for 1 ≤ k ≤ n − 2. It is shown above that
the lemma holds for k = n− 1. In the above proof, any BN×(n−1) is forward-routed
through ISEj . Now, for any matrix BN×(n−1) that was forward-routed through ISEj ,
remove its rightmost n − k − 1 columns, so that BN×(n−1) is converted to a matrix

BN×k. Similarly, remove the rightmost n−k− 1 columns of Bu, Bl, and Fn−2
N×(n−1);γ .

Notice that the switch settings of ISEj are not changed at all while these columns
are being removed. Therefore, when any balanced matrix BN×k that fits a universal
frame Fn−1

N×k is forward-routed through ISEj , the matrix that was obtained at the
outputs side of ISEj fits F

n−2
N×k;γ .
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Corollary 4.2. Consider the stage ISEj and Fn−2
N×k;γ , described in Lemma 4.1,

where N = 2n and 1 ≤ k ≤ n − 1. Let T denote the set of all those matrices that
fit Fn−2

N×k;γ . When each and every member of T is reverse-routed through ISEj in all

possible 2N/2 ways, all balanced matrices of order N × k that fit a universal frame
Fn−1
N×k;γ are obtained at the inputs side of ISEj. (In reverse-routing of a member, the
contents of rows are swapped/unswapped in every switch independently of the other
switches; this is also true for forward-routing.)

Proof. The proof is by construction. Let BN×k be an arbitrary matrix that fits a
universal frame Fn−1

N×k;γ . BN×k can be constructed by reverse-routing an element of
T through a setting of switches of ISEj . This construction is described below using
Lemma 4.1.

Lemma 4.1 has shown that there exists a switch setting of ISEj such that, when
BN×k is forward-routed through ISEj , a matrix, say, CN×k, fitting Fn−2

N×k;γ is obtained
at the outputs side of ISEj . This implies that, when CN×k is reverse-routed through
the same switch setting of ISEj , BN×k is obtained at the inputs side of ISEj . Because
CN×k fits Fn−2

N×k;γ , CN×k must be a member of T because T denotes the set of all those
matrices that fit Fn−2

N×k;γ . Therefore, when CN×k is reverse-routed through ISEj in
all possible 2N/2 ways, one of the matrices obtained at the inputs side of ISEj is
identical to BN×k.

Example 4.1. Let N = 16. Consider B1:3 shown in Figure 4.2(c). Recall that
any balanced matrix of order 16 × 3 fits the universal frame F 3

1:3 shown in Figure
4.2(a), where row i of B1:3 is placed into row i of the universal frame. Because the
control (or routing) bits of each switch of ISEj must constitute the set {0, 1}, the
input labels of each switch are the labels of the adjacent vertices of a distinct edge
in the perfect matching graph of the switches of ISEj , denoted PGISE and shown
in Figure 4.2(e). The perfect matching graph of B1:3 is shown in Figure 4.2(d). The
union of PGB and PGISE , denoted PGB

⋃
ISE , and its 2-labeling are shown in Figure

4.2(f). The ith entry of vector V obtained from the 2-labeling is the control bit of
the ith input of ISEj . Vector V and the switch settings of ISEj with respect to
vector V are shown in Figures 4.2(g) and 4.2(h), respectively. When row i of the
matrix B1:3 is forward-routed through ISEj according to the setting of the switch
with input i, the resulting matrix fits the frame F 2

1:3;γ shown in Figure 4.2(h). Note
that the upper (respectively, lower) input and the upper (respectively, lower) output
of a switch have the same label. It follows from Corollary 4.2 that, when the resulting
matrix fitting F 2

1:3;γ is reverse-routed through ISEj with the same switch settings,
the original matrix B1:3 is obtained at the inputs side of ISEj .

Recall that RN×n (or R1:n) denotes the reverse permutation matrix. So R1:(n−1)

denotes a matrix consisting of the first n− 1 columns of R1:n. Lemma 4.3 shows that
R1:(n−1) fits F1:(n−1). Figure 4.3 illustrates R1:(n−1) and F1:(n−1) for N = 16.

Lemma 4.3. R1:(n−1) fits F1:(n−1).

Proof. Let 1 ≤ j ≤ n − 1. Let us partition R1:j into 2
n−j submatrices of 2j

rows and j columns each, denoted Rh1:j for h = 0, 1, . . . , 2
n−j − 1, such that the row

labels of Rh1:j consist of all the numbers ranging from h×2j to (h+1)2j −1 inclusive.
Because each Rh1:j is a balanced matrix of order 2

j × j, R1:(n−1) fits F
0
1:(n−1).

4.1. Algorithm GENERATE-π. Let π denote the set of all those balanced
matrices of orderN×(n−1), each of which fits F1:(n−1). Also, let rk denote the kth col-
umn of the reverse permutation matrixR1:(n−1) = [r1 r2 . . . rn−1], where 0 ≤ k ≤ n−1.
We now introduce an algorithm called GENERATE-π, shown in Figure 4.4, to gener-
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Fig. 4.2. (a) A universal frame F 3
1:3 whose rows are filled in by a balanced matrix B1:3 for

N = 16. (b) The N/2 switches of an inverse shuffle-exchange stage ISEj . (c) B1:3, a balanced
matrix. (d) PGB, the perfect matching graph of B1:3. (e) PGISE , the perfect matching graph of
switches of ISEj . (f) PGB

⋃
ISE , where solid and dashed lines represent the edges of PGB and

PGISE , respectively; a possible 2-labeling of PGB
⋃
ISE is shown. (g) Vector V . (h) Switch settings

of ISE with respect to V . The matrix that is obtained at the outputs side by forward-routing B1:3

fits F 2
1:3;γ .

ate all matrices of π in n−1 steps. The kth iteration of the for loop of GENERATE-π
is referred to as the kth step. In each step, N/2 pairs of rows are formed. All those
matrices fitting F1:(n−1) are generated in n − 1 steps by swapping/unswapping the
contents of each pair’s rows independently of the other pairs’ rows. Initially, rn−1 is
placed into fn−1 of F1:(n−1). At the end of step k, column rn−k−1 of R1:(n−1) is in-
serted into column fn−k−1 of F1:(n−1), which amounts to saying that rn−k−1 is placed
to the left of every matrix that has been generated so far. In step 1, all the generated
matrices have single columns; that is, they are indeed just column vectors. In step 2,
all matrices have two columns, and in step n− 1 every matrix has n− 1 columns.
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Fig. 4.3. N = 16. (a) R1:3, the first three columns of the reverse permutation matrix. (b) F1:3
containing R1:3. (c) F1:3 containing the third column of R1:3.

As an alternative way of generating all matrices fitting F1:(n−1), we could have ini-

tially placed all columns of R1:(n−1) into F1:(n−1) and then generated all 2
N(n−1)/2 ma-

trices fitting F1:(n−1). However, the above method is adopted in algorithm GENERATE-
π since algorithm GENERATE-ALL (to be introduced later in this section) uses the
same method in generating the first n − 1 columns of matrices. An example is pro-
vided first to illustrate the algorithm for N = 16, and then Lemma 4.4 is presented
to show its correctness.

Example 4.2. This example describes how algorithm GENERATE-π works for
N = 16. Initially, both π0 and F1:3 contain only r3 of R1:3. Figure 4.3(c) illustrates
that column f3 of F1:3 contains r3. The sets π1, π2, . . . , πn−1 are initially empty sets.
In the first step, each of the following eight sets contains the row labels of a pair of r3:
{0, 4}, {1, 5}, {2, 6}, {3, 7}, {8, 12}, {9, 13}, {10, 14}, and {11, 15}. By swapping and
unswapping the rows’ contents of each pair independently of the contents of the other
pairs of rows, r3 generates 2

8 matrices of single columns. These generated matrices
are inserted into π1. In line 12 of GENERATE-π, column r2 is placed to the left of
each and every matrix of π1.

In the second step, each of the following eight sets contains the row labels of a
pair of any matrix of π1: {0, 2}, {1, 3}, {4, 6}, {5, 7}, {8, 10}, {9, 11}, {12, 14}, and
{13, 15}. By swapping and unswapping the rows’ contents of each pair independently
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Algorithm GENERATE-π
Input: R1:(n�1) and F1:(n�1).

Output: All balanced matrices fitting F1:(n�1).

begin

1. Let π0 denote a set containing only column rn�1 of R1:(n�1).

2. Insert column rn�1 of R1:(n�1) into column fn�1 of F1:(n�1).

3. for k 1 to n�1 do

4. Let πk be an empty set.

5. while πk�1 is not empty do

6. Remove a member of πk�1 and denote it by Ck�1
(n�k):(n�1) having

N rows and k columns.

7. Determine those 2n�1 pairs of rows in Ck�1
(n�k):(n�1) such that

the row labels i = (i1i2 : : : in) and j = ( j1 j2 : : : jn) of each pair are

identical in their binary representation except that bits ik+1

and jk+1 are different.

8. Generate all those 2N=2 balanced matrices by swapping/unswapping

the contents of each pair’s rows of Ck�1
(n�k):(n�1) independently of

the other pairs of rows. (Note that the row labels are

never swapped). Denote each generated matrix by Ck
(n�k):(n�1).

9. Insert all the generated matrices into πk.

10. endwhile

11. if k < n�1 then

12. Append (or place) column rn�k�1 of R1:(n�1) to the left of

each member of πk, so that rn�k�1 now becomes its first column.

13. Insert column rn�k�1 of R1:(n�1) into column fn�k�1 of F1:(n�1).

14. endif

15. endfor

16. Let πbe identical to πn�1.

Comment: πn�1 consists of all matrices fitting F1:(n�1).

end

Fig. 4.4. Algorithm GENERATE-π.

of the contents of the other pairs of rows, any matrix of π1 generates new 2
8 matrices.

In line 12 of GENERATE-π, column r1 is placed to the left of each and every matrix
of π2. In the third step, each of the following eight sets contains the row labels of a
pair of any matrix of π2: {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, and
{14, 15}. Each matrix of π2 generates new 2

8 matrices fitting F1:3. All these new
generated matrices become the members of π3.

Lemma 4.4. A matrix of order N × (n− 1) fits F1:(n−1) if and only if the matrix
is in the set πn−1 generated in algorithm GENERATE-π.

Proof. Let x1:(n−1) = (x1x2 . . . xn−1) and y1:(n−1) = (y1y2 . . . yn−1) denote the
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contents of rows i = (i1i2 . . . in) and j = (j1j2 . . . jn), respectively, of R1:(n−1), where
i and j are row labels. Because the row labels of F1:(n−1) and any matrix of πk,
1 ≤ k ≤ n − 1, are in ascending order from 0 to N − 1, the binary representation of
the row labels form the identity permutation matrix I1:n. By Definition 2.1, I1:n is
the matrix whose (k + 1)th column is the (n − k)th column of R1:(n−1). Therefore,
if the row labels i and j are identical in their binary representation except that their
(k + 1)th bits (i.e., bits ik+1 and jk+1) are different, then row contents x1:(n−1) and
y1:(n−1) are identical except that their (n − k)th bits (i.e., bits xn−k and yn−k) are
different.

Because the lemma considers the members of πn−1, we can assume that all
columns of R1:(n−1) are inserted into F1:(n−1). (Note that when columns of R1:(n−1)

are inserted one by one into F1:(n−1), R1:(n−1) is inserted into F1:(n−1) eventually.)
Recall from Lemma 4.3 that R1:(n−1) fits F1:(n−1). When the contents x1:(n−1) and

y1:(n−1) of a pair of C
k−1
(n−k):(n−1) are swapped (without swapping the row labels), bits

xn−m and yn−m change their positions within the same block of column n − m of
F1:(n−1), for each and every m, 1 ≤ m ≤ k. Therefore, when the contents x1:(n−1)

and y1:(n−1) of a pair of C
k−1
(n−k):(n−1) are swapped independently of the other pairs

of rows, the difference between bits xn−m and yn−m does not prevent the generated
matrix from fitting F1:(n−1). Thus, any C

n−1
1:(n−1) of πn−1 fits F1:(n−1).

We will now show that any matrix that fits F1:(n−1) is contained in the set πn−1.

Let An−1
1:(n−1) be an arbitrary matrix that fits F1:(n−1). To show that A

n−1
1:(n−1) is

contained in πn−1, A
n−1
1:(n−1) can be converted to R1:(n−1) by backtracking operations

of algorithm GENERATE-π from step n − 1 to step 1 as follows. In the first step,
An−1

1:(n−1) can be converted to a matrix [r1 A
n−2
2:(n−1)] by swapping/unswapping the

rows’ contents as in line 8 of GENERATE-π for k = n − 1. In the second step,
[r1 A

n−2
2:(n−1)] can be converted to a matrix [r1r2 A

n−3
3:(n−1)] by swapping/unswapping

the rows’ contents as in line 8 of GENERATE-π for k = n− 2. In the (n− 1)th step,
[r1r2 . . . rn−2 A

1
(n−1):(n−1)] can be converted to a matrix [r1r2 . . . rn−1] = R1:(n−1) by

swapping/unswapping the rows’ contents as in line 8 of GENERATE-π for k = 1.
Thus An−1

1:(n−1) can be generated by algorithm GENERATE-π by starting with rn−1

and then producing A1
(n−1):(n−1), A

2
(n−2):(n−1), . . . , A

n−1
1:(n−1) in order. Also, it is shown

in the previous paragraph that any matrix of πn−1 fits F1:(n−1). Note that πn−1

consists of 2N(n−1)/2 matrices because each matrix of πk−1 in step k of GENERATE-
π generates new 2N/2 matrices that become the members of πk. Because it is shown
in Lemma 3.4 that the maximum number of matrices fitting F1:(n−1) is 2

N(n−1)/2,

πn−1 consists precisely of those 2
N(n−1)/2 matrices that fit F1:(n−1).

Swapping and unswapping the contents of a pair’s rows of a matrix are equivalent
to routing the contents in two different ways through a switch of size (2× 2) that can
be set cross or straight independently of other switches, where swapping and unswap-
ping correspond to setting the switch to cross and straight, respectively. Algorithm
GENERATE-π can be easily implemented by an (n− 1)-stage ISE network (denoted
ISE1:(n−1)) in which the label of output i is equal to the inverse shuffle-permutation
γn−1(i), and the inputs are labeled by γ0 as usual in ascending order from 0 to N −1.
An ISE with such input and output labels is shown in Figure 4.5 for N = 16. The
n − 1 stages of the ISE network are denoted by ISE1, ISE2, . . . , ISEn−1 from the
leftmost stage to the rightmost stage, respectively. Note that the label of input i of
ISEk is equal to γk−1(i), which is defined in the beginning of section 3. Algorithm
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Fig. 4.5. The inverse-shuffle exchange network ISE1:(n−1) for N = 16. The stages are labeled
from left to right. As explained in section 2, input i of ISEj is labeled by γj−1(i) for all i, 0 ≤ i ≤
N − 1. Algorithm GENERATE-π is implemented as follows: (1) reverse-route column r3 through
ISE3 in all switch settings; (2) insert r2 to the left of any column vector that is obtained at the
inputs of ISE3, and reverse-route each of the resulting two-column matrices through ISE2 in all
switch settings; (3) insert r1 to the left of any two-column matrix that was obtained at the inputs
of ISE2, and reverse-route each of the resulting three-column matrices through ISE1 in all switch
settings. Finally, all matrices that fit F 0

1:3 are obtained at the inputs side of ISE1.

GENERATE-π is implemented by ISE1:(n−1) as follows. In the first step, the entries
of column rn−1 are reverse-routed through the stage ISEn−1 from its outputs to in-
puts in all possible 2N/2 settings of switches. In the second step, column rn−2 is first
placed to the left of each generated column vector, and then the resulting matrix is
reverse-routed through ISEn−2 in all possible 2

N/2 different ways. In general, in the
kth step, column rn−k is first placed to the left of each generated matrix that is avail-
able at the outputs side of ISEn−k, and then the resulting matrix is reverse-routed
through ISEn−k in all possible ways. Notice that those two entries of rn−k that are
reverse-routed through the same switch of ISEn−k constitute the set {0, 1}, thereby
forming a pair of rows mentioned in GENERATE-π. The pairs of row labels that are
formed in step k of GENERATE-π are the same as the pairs of row labels formed
by the switches of ISEn−k. Thus the set of all those matrices that are generated by
reverse-routing rn−1, rn−2, . . . , r1 through ISE1:(n−1) in the way described above is
identical to the set πn−1.

4.2. Algorithm GENERATE-ALL and rearrangeability of RB1:(n−1)SE1:n.
Let S denote the set of all N ! distinct balanced matrices of order N × n. Also, let
T denote the set of all those balanced matrices of order N × (2n− 1), each of which
fits F 0

1:(2n−1) (or denoted F1:(2n−1)). We now aim to show that each member of S
appears as the last n columns of at least one member of T . Specifically, we show
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that for any balanced matrix, say, B1:n, of S, there exists at least one C
n−1
1:(n−1) fitting

F1:(n−1) such that the matrix [C
n−1
1:(n−1) B1:n] is balanced. We propose another algo-

rithm, called GENERATE-ALL, to generate all matrices fitting the frame F1:(2n−1) in
n− 1 steps. Each step has two objectives. The first objective is to keep guaranteeing
that the submatrices formed by the last n columns of all matrices generated in each
step constitute the set S, starting with the set S initially. The second objective is to
gradually generate all those matrices fitting F1:(n−1) in the same way that algorithm

GENERATE-π generates them and to guarantee that [Cn−1
1:(n−1) B1:n] is balanced.

Algorithm GENERATE-ALL is presented next, where the kth iteration of the for
loop is referred to as step k. To show the steps of GENERATE-ALL for N = 16, an
example is provided just after the algorithm.

Algorithm GENERATE-ALL.
Input: A set of all N ! distinct balanced matrices of order N ×n. An (n− 1)-stage

inverse-shuffle exchange ISE1:(n−1) network such that the label of input i
of ISEk is equal to γk−1(i) and the label of output i of ISEk is γk(i).

Output: All those balanced matrices of order N×(2n−1) that fit F1:(2n−1) such that
each balanced matrix of order N × n appears in the last n columns of at
least one of them. The sets αn−1 and βn−1 are generated. αn−1 contains all
balanced matrices that fit F1:(2n−1). βn−1 contains every distinct submatrix
that is formed by the last n columns of each member of αn−1.

begin
1. Let α0 denote the set of all N ! distinct balanced matrices of order N × n such

that rows are labeled by the inverse-shuffle permutation γn−1. A member of α0

is denoted by A0
n:(2n−1) whose columns are labeled by n, n+ 1, . . . , 2n− 1 from

left to right. Let β0 be identical to α0.
2. Let αk and βk be empty sets for each and every k, 1 ≤ k ≤ n− 1.
3. for k ← 1 to n− 1 do
4. Let Ak−1

(n−k+1):(2n−1) denote a member of αk−1. Insert column rn−k to the left

of each Ak−1
(n−k+1):(2n−1) such that the ith entry of rn−k is placed to the left of

the ith row of Ak−1
(n−k+1):(2n−1). If the resulting matrix [rn−k A

k−1
(n−k+1):(2n−1)]

is balanced, then keep it in αk−1; otherwise, remove it from αk−1.
5. while αk−1 is not empty do
6. Pick up a member [rn−k Ak−1

(n−k+1):(2n−1)] of αk−1 and remove it from αk−1.

7. Generate 2N/2 matrices by reverse-routing the contents of all rows of
[rn−k Ak−1

(n−k+1):(2n−1)] through in all 2
N/2 switch settings of stage ISEn−k.

Note that in reverse-routing, the matrix row with label γn−k(i) is reverse-
routed through output i of stage ISEn−k.

8. Insert each generated matrix, denoted Ak(n−k):(2n−1), into αk. Also, insert

the submatrix Akn:(2n−1) of each A
k
(n−k):(2n−1) into βk if the submatrix is not

already a member of βk.
9. endwhile
10. endfor
end

Before introducing formal proofs related to the identification and combinatorial
properties of the matrices generated by algorithm GENERATE-ALL, an example is
presented next to show how algorithm GENERATE-ALL generates matrices.

Example 4.3. Let N = 16 and n = 4. All those matrices fitting F 0
1:7 are generated

in three steps. To illustrate how GENERATE-ALL works, Figures 4.6, 4.7, and 4.8,
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Fig. 4.6. The implementation of the first step of GENERATE-ALL for N = 16.

corresponding to steps 1, 2, and 3, respectively, will be discussed in this example. In
step k, stage ISEn−k is used.

Initially, α0 contains all 16! balanced matrices of order 16× 4. In step 1, column
r3 is placed to the left of every member of α0 such that the ith entry of r3 is placed
to the left of the ith row of each member of α0, as shown in Figure 4.6(a). If the
resulting matrix is balanced, then it remains in α0; otherwise, it is removed from α0.
In particular, every matrix that fits F 2

4:7 remains balanced when r3 is inserted to the
left; thus all these matrices remain in α0. (F

2
4:7 consists of a pile of two universal

frames each having N/2 rows and n − 1 columns, followed by a single block of N
rows, as shown in Figure 4.6 for N = 16.) Then each member of the latest α0 is
reverse-routed through ISE3 in all 2

16/2 different ways, and the matrices that are
obtained at the inputs side of ISE3 constitute the set α1. Each member of α1 fits the
frame shown in Figure 4.6(b). All submatrices of order N ×n that are formed by the
last n columns of every member of α1 are inserted into β1. It will be shown later that
β1 contains all N ! balanced matrices of order N × n. Note that each of the following
eight sets contains the input/output labels of a switch of ISE3: {0, 4}, {8, 12}, {1, 5},
{9, 13}, {2, 6}, {10, 14}, {3, 7}, and {11, 15}. These eight sets are also the same as the
sets of eight row pairs of column r3 that are formed in algorithm GENERATE-π.

In step 2, the frames and matrices of α1 that are obtained at the end of step 1
are now located at the outputs side of ISE2, as shown in Figure 4.7(a). Column r2 is
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Fig. 4.7. The implementation of the second step of GENERATE-ALL for N = 16.

placed to the left of every member of α1. If the resulting matrix is balanced, then it
remains in α1; otherwise, it is removed from α1. Then each member of the latest α1

is reverse-routed through ISE2 in all 2
16/2 different ways, and the matrices that are

obtained at the inputs side of ISE2 constitute the set α2. Each member of α2 fits the
frame shown in Figure 4.7(b). All submatrices that are formed by the last n columns
of every member of α2 are inserted into β2. It will be shown later that β2 contains
all N ! balanced matrices of order N × n. Note that each of the following eight sets
contains the input/output labels of a switch of ISE2: {0, 2}, {4, 6}, {8, 10}, {12, 14},
{1, 3}, {5, 7}, {9, 11}, and {13, 15}. These eight sets are the same as the sets of eight
pairs of column r2 that are formed in algorithm GENERATE-π.

In step 3, column r1 is placed to the left of each member of α2, as shown in
Figure 4.8(a). If the resulting matrix is balanced, then it remains in α2; otherwise,
it is removed from α2. Then each member of the latest α2 is reverse-routed through
ISE1 in all 2

16/2 different ways, and the matrices that are obtained at the inputs side
of ISE1 constitute the set α3. Each member of α3 fits the frame F

0
1:7 shown in Figure

4.8(b). All submatrices that are formed by the last n columns of every member of α3

are inserted into β3. It will be shown later that β3 contains all N ! balanced matrices
of order N × n. Note that each of the following eight sets contains the input/output
labels of a switch of ISE1: {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, and
{14, 15}. These eight sets are the same as the sets of eight pairs of column r1 that
are formed in algorithm GENERATE-π.

Lemma 4.5 shows that An−1
1:(2n−1) fits F1:(2n−1); that is, A

n−1
1:(2n−1) is balanced, and
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Fig. 4.8. The implementation of the third step of GENERATE-ALL for N = 16.

An−1
1:(n−1) fits F1:(n−1). Theorem 4.6 proves that βk contains any balanced matrix of

order N × n.
Lemma 4.5. Any member An−1

1:(2n−1) of the set αn−1 fits F1:(2n−1).

Proof. Let M1:(2n−1) be a matrix of order N × (2n− 1) whose first n− 1 columns
(i.e., M1:(n−1)) fit F1:(n−1). By the definition of fit (Definition 3.3), in order for a
matrix to fit a frame, each p-column block of the frame is required to contain a
balanced matrix when row i of the matrix is placed into row i of the frame. Note
that each column of the subframe Fn:(2n−1) of F1:(2n−1) is a single block of N entries.
Therefore, when Fn:(2n−1) is appended to the right of F1:(n−1) to form F1:(2n−1), the
columns of Fn:(2n−1) require the above matrix M1:(2n−1) to be balanced only. (Recall
from Definition 2.6 that a matrix having more than n columns is balanced if each and
every n consecutive column forms a balanced matrix.) This implies that, in order
for a matrix An−1

1:(2n−1) to fit F1:(2n−1), the following two conditions are necessary and

sufficient: (1) An−1
1:(n−1) fits F1:(n−1), and (2) A

n−1
1:(2n−1) is balanced.

We shall first show that the first condition holds. Note that input labels of a
switch of ISEn−k are the same as the row labels of a pair of Ck−1

(n−k):(n−1) gener-

ated in step k of GENERATE-π. Also, reverse-routing the contents of a pair’s rows
through a switch in two different ways independently of other switches is equivalent
to swapping/unswapping the contents of the pair’s rows independently of other pairs.
In addition, the first n − 1 columns of any An−1

1:(2n−1) are generated in n − 1 steps by
first inserting column rn−k of the reverse permutation matrix into fn−k in step k and
then reverse-routing the rows of the existing matrix through ISEn−k. This implies
that any submatrix An−1

1:(n−1) is generated in GENERATE-ALL in the same way as
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any Cn−1
1:(n−1) is generated in GENERATE-π. Hence it follows from Lemma 4.4 that

An−1
1:(n−1) fits F

0
1:(n−1). Thus the first condition holds.

When the rows of a balanced matrix are swapped/unswapped arbitrarily, the
resulting matrix is still balanced. After inserting column rn−k to the left of each
member of αk−1 in the beginning of step k, those resulting matrices that happen
to be unbalanced are removed from αk−1. Thus only balanced matrices are reverse-
routed through ISEn−k in step k. Reverse-routing a matrix just swaps/unswaps the
contents of rows, which does not make a balanced matrix unbalanced. Therefore,
all the matrices of αk that are obtained at the inputs side of ISEn−k in step k are
balanced. Hence any An−1

1:(2n−1) is balanced, and the second condition holds as well.

Therefore, An−1
1:(2n−1) fits F1:(2n−1).

In the beginning of every step of algorithm GENERATE-ALL, βk−1 contains
every balanced matrix of order N × n. However, then rn−k is inserted to the left of
each member of αk−1, and the resulting unbalanced matrices are removed from αk−1.
Because the operation of inserting column rn−k to the left of each member of αk−1

starts with step 1, Theorem 4.6 treats step 1 as a “special” case. The proof of step
1 is “easier” because it follows directly from Corollary 4.2. However, the other steps
make use of the results of both Corollary 4.2 and algorithm GENERATE-π.

Theorem 4.6. The set βk contains all N ! balanced matrices of order N × n for
each k, 1 ≤ k ≤ n− 1.

Proof. βk is the set of all those balanced matrices of order N × n, each of which
appears in the last n columns of at least one member of αk. Thus a member of βk is
denoted by the submatrix Akn:(2n−1).

Proof of Step 1. Let k = 1. Initially, α0 denotes a set containing any balanced
matrix of order N × n. Specifically, α0 contains any balanced matrix fitting the
universal frame Fn−1

n:(2n−1);γn−1
. When rn−1 is inserted to the left of each member

A0
n:(2n−1) of α0, we examine whether any submatrix [rn−1 A

0
n:(2n−2)] is a balanced

matrix. Those matrices A0
n:(2n−1) for which [rn−1 A

0
n:(2n−2)] is not balanced are

removed from α0. Now let us identify those matrices that are not removed from
α0. Note that the upper 2

n−1 entries of rn−1 are 0’s, and the lower 2
n−1 entries are

1’s. The 2n−1 0’s of rn−1 require that any (n − 1)-bit row must appear only once
in the upper 2n−1 rows of the submatrix A0

n:(2n−2) so that [rn−1 A
0
n:(2n−2)] becomes

a balanced matrix. Likewise, the 2n−1 1’s of rn−1 require that any (n − 1)-bit row
must appear only once in the lower 2n−1 rows of the submatrix A0

n:(2n−2) so that

[rn−1 A
0
n:(2n−2)] becomes a balanced matrix. Because this is the only constraint

imposed by rn−1, any balanced matrix of order 2
n−1 × (n − 1) can occur in the

upper 2n−1 rows of the submatrix A0
n:(2n−2) as well as in the lower 2

n−1 rows of

the submatrix A0
n:(2n−2). This amounts to saying that the latest α0 contains any

matrix fitting Fn−2
n:(2n−2);γn−1

which consists of a pile of two universal frames, denoted

UFn:(2n−2) and LFn:(2n−2), each having 2
n−1 rows and n − 1 columns. When each

matrix of the latest α0 is reverse-routed through ISEn−1 in all 2
N/2 different ways,

all matrices that are obtained at the inputs side of ISEn−1 constitute the set α1. In
the reverse-routing of all matrices, note that a distinct row label of UFn:(2n−2) and a
distinct row label of LFn:(2n−2) are paired and connected to the outputs of the same

switch. Therefore, it follows from Corollary 4.2 that Fn−2
n:(2n−2);γn−1

is converted to the

universal frame Fn−1
n:(2n−2);γn−2

, and, therefore, any submatrix fitting Fn−1
n:(2n−1);γn−2

is

obtained at the inputs side of ISEn−1. Therefore, β1 contains every balanced matrix
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of order N × n. Thus the theorem holds for k = 1.
Proof of Steps 2 to n− 1. Let 2 ≤ k ≤ n− 1. It is shown above that the theorem

holds for β1. Because steps 2 to n− 1 are implemented successively, we assume that
the theorem holds for βk−1 and show that it holds for βk as well. When rn−k is
inserted to the left of each member Ak−1

(n−k+1):(2n−1) of αk−1 in the beginning of step

k (line 4 of algorithm GENERATE-ALL), the submatrix [rn−k Ak−1
(n−k+1):(n−1)] auto-

matically becomes balanced because Ak−1
(n−k+1):(n−1) has been constructed by reverse-

routing columns rn−1, rn−2, . . . , rn−k+1 through ISEn−1, ISEn−2, . . . , ISEn−k+1

in the way explained earlier for the implementation of algorithm GENERATE-π.
(Ak−1

(n−k+1):(n−1) fits F
0
1:(k−1);γn−k , and eventually A

n−1
1:(n−1) fits F

0
1:(n−1) as shown in the

proof of Lemma 4.5.) Thus, when rn−k is inserted to the left of each Ak−1
(n−k+1):(2n−1),

[rn−k Ak−1
(n−k+1):(n−1)] is always balanced, and, therefore, the set of submatrices

Ak−1
(n−k+1):(n−1) remains the same when column rn−k is inserted. Thus rn−k can lead

only the set of submatrices Ak−1
n:(2n−k−1) to be changed.

In order for the matrix [rn−k Ak−1
(n−k+1):(2n−k−1)] to be balanced, the following

must be satisfied: (1) any (n − 1)-bit row must appear once in the upper 2n−1 rows
of any submatrix Ak−1

(n−k+1):(2n−k−1) because the upper 2
n−1 entries of rn−k are all

0’s, and (2) any (n − 1)-bit row must appear once in the lower 2n−1 rows of any
submatrix Ak−1

(n−k+1):(2n−k−1) because the lower 2
n−1 entries of rn−k are all 1’s. Thus

rn−k requires both the upper 2n−1 rows and the lower 2n−1 rows of any submatrix
Ak−1
n:(2n−k−1) to have a balanced matrix of order 2

n−1× (n− k). However, (1) prior to
insertion of rn−k, the set of submatrices Ak−1

n:(2n−k−1) contained every balanced matrix

of order N×(n−k) because the set βk−1 contains any balanced matrix of order N×n,
and (2) it is shown above that rn−k affects only the set of submatrices Ak−1

n:(2n−k−1).

Therefore, after inserting column rn−k, any balanced matrix of order 2n−1 × (n− k)
can occur in the upper 2n−1 rows of the submatrix Ak−1

n:(2n−k−1) as well as in the lower

2n−1 rows of the submatrix Ak−1
n:(2n−k−1). This amounts to saying that the set of all

submatrices Ak−1
n:(2n−k−1) contains any matrix fitting a frame F

n−2
n:(2n−k−1);γn−k

, which

consists of a pile of two universal frames, denoted UFn:(2n−k−1) and LFn:(2n−k−1),
each having N/2 rows and n − k columns. When each matrix of the latest αk−1

is reverse-routed through ISEn−k in all 2N/2 different ways, all matrices that are
obtained at the inputs side of ISEn−1 constitute the set αk. In the reverse-routing
of all matrices, note that a distinct row label of UFn:(2n−k−1) and a distinct row
label of LFn:(2n−k−1) are paired and connected to the outputs of the same switch.

Therefore, it follows from Corollary 4.2 that Fn−2
n:(2n−k−1);γn−k

is converted to the

universal frame Fn−1
n:(2n−k−1);γn−k−1

and, therefore, any submatrix fitting the universal

frame Fn−1
n:(2n−1);γn−2

is obtained at the inputs side of ISEn−k. Therefore, βk contains
every balanced matrix of order N × n. Thus the theorem holds for any k.

The purpose of obtaining all the results so far in this section is to help prove that
RB1:(n−1)SE1:n is a rearrangeable network.

Theorem 4.7. RB1:(n−1)SE1:n is a rearrangeable network.

Proof. Lemma 4.5 has shown that any An−1
1:(2n−1) of αn−1 fits F1:(2n−1). Therefore,

it follows from Theorem 3.7 that any An−1
1:(2n−1) passes the network RB1:(n−1)SE1:n,

and the network RB1:(n−1)SE1:n realizes the permutation represented by the subma-
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trix An−1
n:(2n−1). Because A

n−1
n:(2n−1) is a member of βn−1 and Theorem 4.6 has shown

that βn−1 contains every balanced matrix of order N × n, the network realizes any
permutation. Thus RB1:(n−1)SE1:n is rearrangeable.

5. Rearrangeability of SE networks. In this section, the rearrangeability of
SE1:(2n−1) is proven in Theorem 5.2. As a corollary to this result, it is shown in
Corollary 5.3 that two passes through an Omega network are sufficient to realize any
permutation. Before proceeding to the proofs of these theorems, a preliminary result
concerning the functional equivalence of RB1:n and SE1:n is introduced.

Two INs are functionally equivalent if they realize the same set of permutations,
whereas two INs are topologically equivalent if the graphs corresponding to their
topologies are isomorphic. (Two graphs are isomorphic if there exists a bijection
from the vertices of one of these graphs into the vertices of the other one such that
the relationship of adjacency is preserved [5].) Given a set of topologically equivalent
networks, one can rename the inputs and/or outputs of one of these networks to sim-
ulate any other network in the set. In [13, 17], it is shown that RB1:n and SE1:n are
topologically equivalent. Lemma 5.1 shows that they can also be made functionally
equivalent by relabeling their inputs. Its proof is provided in the appendix.

Lemma 5.1. RB1:n and SE1:n are functionally equivalent if the ith input of one
of them is relabeled by the value of RN×n(i), where 0 ≤ i ≤ N − 1.

Theorem 5.2. The (2n− 1)-stage SE network, SE1:(2n−1), is rearrangeable.

Proof. Let IPa be an interconnection pattern such that its inputs are labeled
from 0 to N − 1 in ascending order, and the label of its ith output is equal to the
value of RN×n(i), where 0 ≤ i ≤ N − 1. So IPa implements a permutation, say,
r, that sends (or maps) the input i to the output whose value equals RN×n(i). By
Lemma 5.1, IPaRB1:n is functionally equivalent to SE1:n. Therefore, SE1:(2n−1) is
functionally equivalent to IPaRB1:nSE1:(n−1). Also, because RB1:nSE1:(n−1) is iden-
tical to RB1:(n−1)SE1:n, SE1:(2n−1) is functionally equivalent to IPaRB1:(n−1)SE1:n.
Let S and T be the set of permutations realized by SE1:(2n−1) and RB1:(n−1)SE1:n

networks, respectively. It follows that S = r × T . Because RB1:(n−1)SE1:n is re-
arrangeable by Theorem 4.7, T contains N ! distinct permutations. When each of
the N ! distinct permutations is multiplied by the same permutation r, the set of N !
permutations is mapped onto itself. Therefore, SE1:(2n−1) is rearrangeable.

Corollary 5.3. For k ≥ 0, SE1:(2n+k) is rearrangeable.

Proof. Assume that all the switches of the subnetwork SE2n:(2n+k) are always set
straight. This leads SE2n:(2n+k) to be functionally equivalent to an interconnection
pattern, and hence it always realizes the same permutation, say, b. Thus the set
of permutations realized by SE1:(2n+k) is obtained by multiplying each and every
permutation realized by SE1:(2n−1) by b. By Theorem 5.2, the cardinality of the set
of the permutations realized by SE1:(2n−1) is N !. Because multiplying each and every
member of the set of N ! permutations by the same permutation b results in N ! distinct
permutations, SE1:(2n+k) is rearrangeable.

Corollary 5.3 implies that two passes through an Omega network are sufficient
to realize any permutation due to the fact that the network obtained by cascading
two Omega networks in serial is the same as SE1:2n. This implies that a network
consisting of two cascaded butterflies is, in general, rearrangeable.

6. Conclusions. This paper has proven that the (2n−1)-stage SE network with
2n inputs and 2n outputs is a rearrangeable network; that is, it can realize each and
every one of 2n! permutations in a single pass through the network. The paper has also
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shown that two passes through the Omega network are sufficient to implement any
permutation. In obtaining these results, permutations realized by some multistage INs
are identified using the notion of balanced matrices and frames. We have shown that
frames are a very useful tool in identifying and characterizing permutations realized
by multistage INs.

Appendix.
Proof of Theorem 3.5. Recall that a matrix has N = 2n rows, unless otherwise

stated. (⇒) It is shown that (1) if D1:k fits F1:k, then D1:k passes RB1:k, and (2)
RB1:k sends its ith input to its jth output, where j is equal to the sum of (	i/2k
×2k)
and the value of D1:k(i). The proof is by induction on k.

Basis step. Let k = 1. By definition, f1 contains 2
n−1 blocks, each of size 2. By

induction hypothesis, D1:k fits F1:k, which implies that the leftmost column d1 fits
f1. Therefore, the 2rth and (2r + 1)th entries of d1 constitute the set {0, 1}, where
0 ≤ r ≤ 2n−1 − 1. Hence, when the 2rth and (2r + 1)th entries of d1 are used as the
control bits to set the rth SB of RB1:1, no conflict occurs, and RB1:1 sends its ith
input to its jth output, where j is equal to the sum of (	i/2
 × 2) and the value of
the ith entry of d1, where 0 ≤ i ≤ N − 1.

Induction step. Let 2 ≤ k ≤ n. Assuming that the theorem holds for k− 1 in the
(⇒) direction, it is shown next that the theorem also holds for k in the (⇒) direction.

Note that RB1:m (k − 1 ≤ m ≤ k) consists of a pile of 2n−m copies of RB2m×m.
Let RBa and RBb denote the top two RB2k−1×(k−1)’s of RB1:(k−1). Also, let RB2k×k
denote the topmost RB2k×k of RB1:k. By induction hypothesis, D1:(k−1) passes

RB1:(k−1). This implies that, for 0 ≤ p ≤ 2k−1 − 1, the first (k − 1) entries of
the row that is sent to the pth output of RBa are the same as the first (k− 1) entries
of the row that is sent to the pth output of RBb. Also, if D1:k fits F1:k, the kth entries
of those two rows sent to the pth outputs of RBa and RBb constitute the set 0, 1.
Moreover, those two rows enter the pth SB of the last SE stage of RB2k×k, and their
kth entries are the control bits of the SB. Hence no conflict occurs in the switches of
the last stage of RB2k×k, and RB2k×k sends its hth input to the output whose value
is equal to the contents of D1:k(h), where 0 ≤ h ≤ 2k − 1. Because this holds for
every RB2k×k of RB1:k, the theorem also holds for k in the (⇒) direction.

(⇐) It is shown that, if D1:k passes RB1:k, then D1:k fits F1:k. The proof is by
induction on k.

Basis step. Let k = 1. The fact that d1 passes RB1 implies that no conflict occurs
in the SBs of RB1 when the ith entry of d1 is used as the control bit for the ith input
of RB1 in setting its rth SB. Because the control bits of the rth SB of RB1 constitute
the set {0, 1} and fit the rth block of f1, d1 fits f1.

Induction step. Let 2 ≤ k ≤ n. Assuming that the theorem holds for k− 1 in the
(⇐) direction, it is shown next that the theorem also holds for k in the (⇐) direction.

As explained above, the rows that are sent to the pth outputs of RBa and RBb

enter the pth SB of the last SE stage of RB2k×k, and their kth entries are used as
the control bits for the SB. So, if D1:k passes RB1:k, then the kth entries of those two
rows of D1:k that enter an SB of RB1:k must constitute the set {0, 1} to avoid having
a conflict in the SB. Therefore, D1:k fits F1:k.

Proof of Theorem 3.7. Because the last stage of RB1:n is an SE stage, the network
RB1:nSE1:(m−1) is the same as the network RB1:(n−1)SE1:m. Therefore, the theorem
can be equivalently restated by substituting RB1:nSE1:(m−1) for RB1:(n−1)SE1:m as
follows: a balanced matrix D1:(n+m−1), m ≥ 1, fits the frame F1:(n+m−1) if and only
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if D1:(n+m−1) passes the network RB1:nSE1:(m−1), where SE1:(m−1) is assumed to be
nil if m = 1. Moreover, RB1:nSE1:(m−1) realizes the permutation represented by the
last n columns of D1:(n+m−1), denoted by Dm:(n+m−1). This is proven next.

(⇒) It is shown that if D1:(n+m−1) fits F1:(n+m−1), then D1:(n+m−1) passes
RB1:nSE1:(m−1), and the permutation represented in binary byDm:(n+m−1) is realized
by RB1:nSE1:(m−1).

Because D1:(n+m−1) fits F1:(n+m−1) by hypothesis, D1:n fits F1:n. Assume RB1:n

maps the matrix D1:(n+m−1) located at the inputs side into the matrix D
∗
1:(n+m−1)

located at the outputs side when D1:(n+m−1)(i), 0 ≤ i ≤ N − 1, is used as the routing
tag for the ith input of RB1:n. Theorem 3.5 has shown that any balanced matrix D1:n

fitting the frame F1:n passes the network RB1:n. So RB1:n maps any D1:n fitting the
frame F1:n to I1:n. This implies that, when D1:(n+m−1)(i) is used as the routing tag
for the ith input of RB1:nSE1:(m−1), the submatrix D

∗
1:n of D

∗
1:(n+m−1) is the same as

the identity permutation matrix I1:n. Therefore, D
∗
1:(n+m−1) is equal to the balanced

matrix [I1:n D
∗
(n+1):(n+m−1)]. By Lemma 3.6, SE1:(m−1) realizes the permutation

represented by D∗m:(n+m−1), and no conflict occurs in the SBs of SE1:(m−1) when

D∗(n+1):(n+m−1)(i) is used as the routing tag for the ith input of SE1:(m−1). Therefore,

D1:(n+m−1) passes RB1:nSE1:(m−1). Also, if the entries of D1:(n+m−1)(i) are denoted
in binary by (xi1x

i
2 . . . x

i
n . . . x

i
n+m−1), then RB1:nSE1:(m−1) sends D1:(n+m−1)(i) to

the output whose value equals (ximx
i
m+1 . . . x

i
n+m−1). This means that the permuta-

tion represented by Dm:(n+m−1) is realized by RB1:nSE1:(m−1).

(⇐) It is shown that, if D1:(n+m−1) passes RB1:nSE1:(m−1), then D1:(n+m−1) fits
F1:(n+m−1), andRB1:nSE1:(m−1) realizes the permutation represented byDm:(n+m−1).

In order for a matrix of order N× (n+m−1) to fit F1:(n+m−1), the two necessary
and sufficient conditions are (1) the matrix is balanced, and (2) the first n−1 columns
of the matrix fit F1:(n−1). As for D1:(n+m−1), it is a given balanced matrix. Because
D1:(n+m−1) passes RB1:nSE1:(m−1) by hypothesis, the submatrix D1:n of D1:(n+m−1)

passes RB1:n. So, by Theorem 3.5, the submatrix D1:n fits F1:n, which implies that
D1:(n−1) fits F1:(n−1). So D1:(n+m−1) satisfies the above two conditions, and hence it
fits F1:(n+m−1).

The first part (⇒) of the proof has shown that the permutation represented by
Dm:(n+m−1) is realized by RB1:nSE1:(m−1) if D1:(n+m−1) fits F1:(n+m−1). Because it
is shown above that D1:(n+m−1) fits F1:(n+m−1), RB1:nSE1:(m−1) realizes the permu-
tation represented by Dm:(n+m−1).

Proof of Lemma 5.1. We begin by showing first that, if [R1:n D1:n] is balanced,
then D1:n fits F1:n. Let 1 ≤ j ≤ n. Partition the balanced matrix [R(j+1):n D1:j ] into

2n−j submatrices Sh2j×n = [Rh(j+1):n D
h
1:j ], 0 ≤ h ≤ 2n−j−1, such that each of Sh2j×n,

Rh(j+1):n, and D
h
1:j contains 2

j rows whose labels belong to the rows of the same block

under column fj of F1:n, where the row labels of S
h
2j×n, R

h
(j+1):n, and D

h
1:j consist of

the numbers h×2j to [(h+1)×2j ]−1 inclusive. (As an example, for n = 3 and j = 1,
the row labels of submatrices R0

2:3, R
1
2:3, R

2
2:3, and R

3
2:3, form the sets {0, 1}, {2, 3},

{4, 5}, and {6, 7}, respectively. (As an example, for n = 3 and j = 2, the row labels
of submatrices R0

3:3 and R
1
3:3 form the sets {0, 1, 2, 3} and {4, 5, 6, 7}, respectively.)

It follows from the definition of the reverse permutation matrix R1:n (Definition 2.1)
that the row contents of Rh(j+1):n are identical. Moreover, since [R1:n D1:n] is balanced

by hypothesis, [R(j+1):n D1:j ] must also be balanced because of the definition of a

balanced matrix. Therefore, Dh1:j must be a balanced matrix of order 2
j × j (because

Rh(j+1):n are identical as mentioned above). Since this is true for all values of j and
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h, it follows from the definitions of F1:n and “fit” that D1:n fits F1:n.

By Theorem 3.5, a matrix D1:n fits F1:n if and only if the matrix D1:n is realized
by RB1:n. Also, it is shown above that, if [R1:n D1:n] is balanced, then D1:n fits F1:n.
Therefore, if [R1:n D1:n] is balanced, then D1:n is realized by RB1:n. On the other
hand, it follows from Lemma 3.6 that if [I1:n D1:n] is balanced, then D1:n is realized
by SE1:n.

Relabeling the ith input of RB1:n (respectively, SE1:n) by the value of R1:n(i) is
equivalent to moving the row of R1:n (respectively, I1:n) with a label equal to R1:n(i)
to the location of the ith row. Also, note that if R1:n(i) = j, then R1:n(j) = i for
0 ≤ i, j ≤ N − 1. Therefore, the rearrangement of the rows of R1:n and I1:n due to
relabeling results in the matrices I1:n and R1:n, respectively. This implies that, after
the relabeling, the matrix [I1:n D1:n] (respectively, [R1:n D1:n]) must be balanced in
order for a given matrix D1:n to be realized by RB1:n (respectively, SE1:n). Thus
relabeling the inputs of RB1:n and SE1:n in the way described above enables them to
exactly simulate each other. It follows that the lemma holds.
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[9] V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press, New York, 1965.

[10] A. Waksman, A permutation network, J. ACM, 15 (1969), pp. 159–163.
[11] C. P. Kruskal and M. Snir, A unified theory of interconnection network structure, Theoret.

Comput. Sci., 48 (1986), pp. 75–94.
[12] H. J. Siegel, The universality of various types of SIMD machine interconnection networks, in

Proceedings of the 4th Annual Symposium on Computer Architecture, Silver Spring, MD,
1977, pp. 70–79.



REARRANGEABILITY OF SHUFFLE-EXCHANGE NETWORKS 585

[13] C. Wu and T. Y. Feng, On a class of multistage interconnection networks, IEEE Trans.
Comput., 29 (1980), pp. 696–702.

[14] T. Lang, Interconnections between processors and memory modules using the shuffle-exchange
network, IEEE Trans. Comput., 25 (1976), pp. 496–503.

[15] T. Etzion and A. Lempel, An efficient algorithm for generating linear transformations in a
shuffle-exchange network, SIAM J. Comput., 15 (1986), pp. 216–221.

[16] C. S. Babu and C. S. Raghavendra, On the invariants of shuffle/exchange networks, in
Proceedings of the 1st IEEE Symposium on Parallel and Distributed Processing, IEEE
Computer Society, Los Alamitos, CA, 1989, pp. 249–256.

[17] A. Y. Oruc and M. Y. Oruc, Equivalence relations among interconnection networks, J. Par-
allel Distributed Comput., 2 (1985), pp. 30–49.

[18] C. Wu and T.-Y. Feng, The universality of the shuffle-exchange network, IEEE Trans. Com-
put., 30 (1981), pp. 324–331.

[19] S. T. Huang and S. K. Tripathi, Finite state model and compatibility theory: New analysis
tools for permutation networks, IEEE Trans. Comput., 35 (1986), pp. 591–601.

[20] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir,
The NYU ultracomputer—designing an MIMD shared memory parallel computer, IEEE
Trans. Comput., 32 (1983), pp. 175–189.

[21] C. S. Raghavendra, On the rearrangeability conjecture of (2log2N −1)-stage shuffle/exchange
network, position paper, Computer Architecture Technical Committee Newsletter, Winter
1994–1995, pp. 10–12.

[22] H. Çam and J. A. B. Fortes, Frames: A simple characterization of permutations realized by
frequently used networks, IEEE Trans. Comput., 44 (1995), pp. 695–697.
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Abstract. We propose a fully functional identity-based encryption (IBE) scheme. The scheme
has chosen ciphertext security in the random oracle model assuming a variant of the computational
Diffie–Hellman problem. Our system is based on bilinear maps between groups. The Weil pairing
on elliptic curves is an example of such a map. We give precise definitions for secure IBE schemes
and give several applications for such systems.
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1. Introduction. In 1984, Shamir [41] asked for a public key encryption scheme
in which the public key can be an arbitrary string. In such a scheme, there are four
algorithms: (1) Setup generates global system parameters and a master-key; (2) Extract
uses the master-key to generate the private key corresponding to an arbitrary public
key string ID ∈ {0, 1}∗; (3) Encrypt encrypts messages using the public key ID; and
(4) Decrypt decrypts messages using the corresponding private key.

Shamir’s original motivation for suggesting identity-based encryption (IBE) was
to simplify certificate management in e-mail systems. When Alice sends mail to Bob
at bob@company.com, she simply encrypts her message using the public key string
“bob@company.com.” There is no need for Alice to obtain Bob’s public key certificate.
When Bob receives the encrypted mail, he contacts a third party, which we call the
private key generator (PKG). Bob authenticates himself to the PKG in the same way
he would authenticate himself to a certificate authority (CA) and obtains his private
key from the PKG. Bob can then read his e-mail. Note that, unlike in the existing
secure e-mail infrastructure, Alice can send encrypted mail to Bob even if Bob has
not yet set up his public key certificate. Also note that key escrow is inherent in
identity-based e-mail systems: the PKG knows Bob’s private key. We discuss key
revocation, as well as several new applications for IBE schemes, in the next section.

Since the problem was posed in 1984, there have been several proposals for IBE
schemes [11, 45, 44, 31, 25] (see also [33, p. 561]). However, none of these are fully
satisfactory. Some solutions require that users not collude. Other solutions require the
PKG to spend a long time for each private key generation request. Some solutions
require tamper resistant hardware. It is fair to say that, until the results in [5],
constructing a usable IBE system was an open problem. Interestingly, the related
notions of identity-based signature and authentication schemes, also introduced by
Shamir [41], do have satisfactory solutions [15, 14].
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In this paper, we propose a fully functional IBE scheme. The performance of
our system is comparable to the performance of ElGamal encryption in F

∗
p. The

security of our system is based on a natural analogue of the computational Diffie–
Hellman assumption. Based on this assumption, we show that the new system has
chosen ciphertext security in the random oracle model. Using standard techniques
from threshold cryptography [20, 22], the PKG in our scheme can be distributed so
that the master-key is never available in a single location. Unlike common threshold
systems, we show that robustness for our distributed PKG is free.

Our IBE system can be built from any bilinear map e : G1 × G1 → G2 between
two groups G1,G2 as long as a variant of the computational Diffie–Hellman problem
(CDH) in G1 is hard. We use the Weil pairing on elliptic curves as an example of such
a map. Until recently, the Weil pairing has mostly been used for attacking elliptic
curve systems [32, 17]. Joux [26] recently showed that the Weil pairing can be used
for “good” by using it for a protocol for three party one round Diffie–Hellman key
exchange. Sakai, Ohgishi, and Kasahara [40] used the pairing for key exchange, and
Verheul [46] used it to construct an ElGamal encryption scheme where each public
key has two corresponding private keys. In addition to our IBE scheme, we show how
to construct an ElGamal encryption scheme with “built-in” key escrow, i.e., where
one global escrow key can decrypt ciphertexts encrypted under any public key.

To argue about the security of our IBE system, we define chosen ciphertext secu-
rity for IBE. Our model gives the adversary more power than the standard model for
chosen ciphertext security [37, 2]. First, we allow the attacker to attack an arbitrary
public key ID of her choice. Second, while mounting a chosen ciphertext attack on ID,
we allow the attacker to obtain from the PKG the private key for any public key of
her choice, other than the private key for ID. This models an attacker who obtains a
number of private keys corresponding to some identities of her choice and then tries
to attack some other public key ID of her choice. Even with the help of such queries,
the attacker should have negligible advantage in defeating the semantic security of
the system.

The rest of the paper is organized as follows. Several applications of IBE are dis-
cussed in section 1.1. We then give precise definitions and security models in section 2.
We describe bilinear maps with certain properties in section 3. Our IBE scheme is
presented in section 4 using general bilinear maps. Then a concrete identity-based
system from the Weil pairing is given in section 5. Some extensions and variations
(efficiency improvements, distribution of the master-key) are considered in section 6.
Our construction for ElGamal encryption with a global escrow key is described in sec-
tion 7. Section 8 gives conclusions and some open problems. The appendices contain
a more detailed discussion of the Weil pairing.

1.1. Applications for IBE. The original motivation for IBE is to help the
deployment of a public key infrastructure. In this section, we show several other
unrelated applications.

1.1.1. Revocation of public keys. Public key certificates contain a preset
expiration date. In an IBE system, key expiration can be done by having Alice encrypt
e-mail sent to Bob using the public key “bob@company.com ‖ current-year.” In
doing so, Bob can use his private key during the current year only. Once a year, Bob
needs to obtain a new private key from the PKG. Hence we get the effect of annual
private key expiration. Note that unlike the existing public key infrastructure (PKI),
Alice does not need to obtain a new certificate from Bob every time Bob refreshes his
private key.
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One could potentially make this approach more granular by encrypting e-mail for
Bob using “bob@company.com ‖ current-date.” This forces Bob to obtain a new
private key every day. This might be possible in a corporate PKI, where the PKG
is maintained by the corporation. With this approach, key revocation is very simple:
when Bob leaves the company and his key needs to be revoked, the corporate PKG
is instructed to stop issuing private keys for Bob’s e-mail address. As a result, Bob
can no longer read his email. The interesting property is that Alice does not need to
communicate with any third party certificate directory to obtain Bob’s daily public
key. Hence IBE is a very efficient mechanism for implementing ephemeral public keys.
Also note that this approach enables Alice to send messages into the future: Bob will
only be able to decrypt the e-mail on the date specified by Alice (see [38, 12] for
methods of sending messages into the future using a stronger security model).

Managing user credentials. A simple extension to the discussion above enables
us to manage user credentials using the IBE system. Suppose Alice encrypts mail
to Bob using the public key: “bob@company.com ‖ current-year ‖ clearance=

secret.” Then Bob will only be able to read the e-mail if on the specified date he has
secret clearance. Consequently, it is easy to grant and revoke user credentials using
the PKG.

1.1.2. Delegation of decryption keys. Another application for IBE systems
is delegation of decryption capabilities. We give two example applications. In both
applications, the user Bob plays the role of the PKG. Bob runs the Setup algorithm
to generate his own IBE system parameters params and his own master-key. Here we
view params as Bob’s public key. Bob obtains a certificate from a CA for his public
key params. When Alice wishes to send mail to Bob, she first obtains Bob’s public key
params from Bob’s public key certificate. Note that Bob is the only one who knows
his master-key, and hence there is no key escrow with this setup.

1. Delegation to a laptop. Suppose Alice encrypts mail to Bob using the current
date as the IBE encryption key. (She uses Bob’s params as the IBE system parame-
ters.) Since Bob has the master-key, he can extract the private key corresponding to
this IBE encryption key and then decrypt the message. Now, suppose Bob goes on
a trip for seven days. Normally, Bob would put his private key on his laptop. If the
laptop is stolen, the private key is compromised. When using the IBE system, Bob
could simply install on his laptop the seven private keys corresponding to the seven
days of the trip. If the laptop is stolen, only the private keys for those seven days
are compromised. The master-key is unharmed. This is analogous to the delegation
scenario for signature schemes considered by Goldreich, Pfitzmann, and Rivest [23].

2. Delegation of duties. Suppose Alice encrypts mail to Bob using the subject
line as the IBE encryption key. Bob can decrypt mail using his master-key. Now,
suppose Bob has several assistants each responsible for a different task (e.g., one
is “purchasing,” another is “human-resources,” etc.). Bob gives one private key to
each of his assistants corresponding to the assistant’s responsibility. Each assistant
can then decrypt messages whose subject line falls within its responsibilities, but it
cannot decrypt messages intended for other assistants. Note that Alice obtains only
a single public key from Bob (params), and she uses that public key to send mail with
any subject line of her choice. The mail can be read only by the assistant responsible
for that subject.

More generally, IBE can simplify security systems that manage a large number
of public keys. Rather than storing a big database of public keys, the system can
either derive these public keys from usernames or simply use the integers 1, . . . , n as
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distinct public keys.

2. Definitions. IBE. An IBE scheme E is specified by four randomized algo-
rithms: Setup, Extract, Encrypt, and Decrypt.

Setup takes a security parameter k and returns params (system parameters) and
master-key. The system parameters include a description of a finite message space M
and a description of a finite ciphertext space C. Intuitively, the system parameters
will be publicly known, while the master-key will be known only to the “private key
generator (PKG).”

Extract takes as input params, master-key, and an arbitrary ID ∈ {0, 1}∗ and
returns a private key d. Here ID is an arbitrary string that will be used as a public
key, and d is the corresponding private decryption key. The Extract algorithm extracts
a private key from the given public key.

Encrypt takes as input params, ID, and M ∈M. It returns a ciphertext C ∈ C.
Decrypt takes as input params, C ∈ C, and a private key d. It returns M ∈M.
These algorithms must satisfy the standard consistency constraint; namely, when

d is the private key generated by algorithm Extract when it is given ID as the public
key, then

∀M ∈M : Decrypt(params, C, d) = M, where C = Encrypt(params, ID,M).

Chosen ciphertext security. Chosen ciphertext security (IND-CCA) is the
standard acceptable notion of security for a public key encryption scheme [37, 2, 13].
Hence it is natural to require that an IBE scheme also satisfy this strong notion of
security. However, the definition of chosen ciphertext security must be strengthened a
bit. The reason is that when an adversary attacks a public key ID in an identity-based
system, the adversary might already possess the private keys of users ID1, . . . , IDn
of her choice. The system should remain secure under such an attack. Hence the
definition of chosen ciphertext security must allow the adversary to obtain the private
key associated with any identity IDi of her choice (other than the public key ID
being attacked). We refer to such queries as private key extraction queries. Another
difference is that the adversary is challenged on a public key ID of her choice (as
opposed to a random public key).

We say that an IBE scheme E is semantically secure against an adaptive cho-
sen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary A has a
nonnegligible advantage against the challenger in the following IND-ID-CCA game.

Setup. The challenger takes a security parameter k and runs the Setup algo-
rithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

Phase 1. The adversary issues queries q1, . . . , qm, where query qi is one of the
following:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Ex-
tract to generate the private key di corresponding to the public key 〈IDi〉.
It sends di to the adversary.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm
Extract to generate the private key di corresponding to IDi. It then runs
algorithm Decrypt to decrypt the ciphertext Ci using the private key di. It
sends the resulting plaintext to the adversary.

These queries may be asked adaptively; that is, each query qi may depend on
the replies to q1, . . . , qi−1.
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Challenge. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts M0,M1 ∈M and an identity ID on which it wishes to
be challenged. The only constraint is that ID did not appear in any private
key extraction query in Phase 1.

The challenger picks a random bit b ∈ {0, 1} and sets the challenge ciphertext
to C = Encrypt(params, ID,Mb). It sends C as the challenge to the adversary.

Phase 2. The adversary issues more queries qm+1, . . . , qn, where qi is one of the
following:

– Extraction query 〈IDi〉, where IDi �= ID. The challenger responds as in
Phase 1.

– Decryption query 〈IDi, Ci〉 �= 〈ID, C〉. The challenger responds as in Phase
1.

These queries may be asked adaptively as in Phase 1.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins
the game if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adver-
sary A’s advantage in attacking the scheme E as the following function of the
security parameter k (recall that k is given as input to the challenger):

AdvE,A(k) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
The probability is over the random bits used by the challenger and the adversary.
Using the IND-ID-CCA game, we can define chosen ciphertext security for IBE

schemes. As usual, we say that a function g : R → R is negligible if g(k) is smaller
than 1/f(k) for any polynomial f .

Definition 2.1. We say that the IBE system E is semantically secure against an
adaptive chosen ciphertext attack if for any polynomial time IND-ID-CCA adversary
A the function AdvE,A(k) is negligible. As shorthand, we say that E is IND-ID-CCA
secure.

Note that the standard definition of chosen ciphertext security (IND-CCA) [37, 2]
is the same as above except that there are no private key extraction queries and the
adversary is challenged on a random public key (rather than a public key of her choice).
Private key extraction queries are related to the definition of chosen ciphertext security
in the multiuser settings [7]. After all, our definition involves multiple public keys
belonging to multiple users. In [7], the authors show that that multiuser IND-CCA is
reducible to single user IND-CCA using a standard hybrid argument. This does not
hold in the identity-based settings, IND-ID-CCA, since the adversary gets to choose
which public keys to corrupt during the attack. To emphasize the importance of
private key extraction queries, we note that our IBE system can be easily modified (by
removing one of the hash functions) into a system which has chosen ciphertext security
when private extraction queries are disallowed. However, the scheme is completely
insecure when extraction queries are allowed.

Semantically secure IBE. The proof of security for our IBE system makes use
of a weaker notion of security known as semantic security (also known as semantic
security against a chosen plaintext attack) [24, 2]. Semantic security is similar to
chosen ciphertext security (IND-ID-CCA) except that the adversary is more limited; it
cannot issue decryption queries. For a standard public key system (not an identity-
based system), semantic security is defined using the following game: (1) the adversary
is given a random public key generated by the challenger; (2) the adversary outputs
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two equal-length messages M0 and M1 and receives the encryption of Mb from the
challenger, where b is chosen at random in {0, 1}; (3) the adversary outputs b′ and
wins the game if b = b′. The public key system is said to be semantically secure if
no polynomial time adversary can win the game with a nonnegligible advantage. As
shorthand, we say that a semantically secure public key system is IND-CPA secure.
Semantic security captures our intuition that, given a ciphertext, the adversary learns
nothing about the corresponding plaintext.

To define semantic security for identity-based systems (denoted IND-ID-CPA), we
strengthen the standard definition by allowing the adversary to issue chosen private
key extraction queries. Similarly, the adversary is challenged on a public key ID
of her choice. We define semantic security for IBE schemes using an IND-ID-CPA
game. The game is identical to the IND-ID-CCA game defined above except that the
adversary cannot make any decryption queries. The adversary can only make private
key extraction queries. We say that an IBE scheme E is semantically secure (IND-ID-
CPA) if no polynomially bounded adversary A has a nonnegligible advantage against
the challenger in the following IND-ID-CPA game.

Setup. The challenger takes a security parameter k and runs the Setup algo-
rithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

Phase 1. The adversary issues private key extraction queries ID1, . . . , IDm. The
challenger responds by running algorithm Extract to generate the private key
di corresponding to the public key IDi. It sends di to the adversary. These
queries may be asked adaptively.

Challenge. Once the adversary decides that Phase 1 is over, it outputs two
equal-length plaintexts M0,M1 ∈ M and a public key ID on which it wishes
to be challenged. The only constraint is that ID did not appear in any private
key extraction query in Phase 1. The challenger picks a random bit b ∈ {0, 1}
and sets C = Encrypt(params, ID,Mb). It sends C as the challenge to the
adversary.

Phase 2. The adversary issues more extraction queries IDm+1, . . . , IDn. The
only constraint is that IDi �= ID. The challenger responds as in Phase 1.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins
the game if b = b′.

We refer to such an adversaryA as an IND-ID-CPA adversary. As in the above, the
advantage of an IND-ID-CPA adversary A against the scheme E is the following
function of the security parameter k: AdvE,A(k) =

∣∣Pr[b = b′]− 1
2

∣∣.
The probability is over the random bits used by the challenger and the adversary.

Definition 2.2. We say that the IBE system E is semantically secure if for any
polynomial time IND-ID-CPA adversary A the function AdvE,A(k) is negligible. As
shorthand, we say that E is IND-ID-CPA secure.

One-way IBE. One can define an even weaker notion of security called one-way
encryption (OWE) [16]. Roughly speaking, a public key encryption scheme is a one-
way encryption if, given the encryption of a random plaintext, the adversary cannot
produce the plaintext in its entirety. One-way encryption is a weak notion of security
since there is nothing preventing the adversary from, say, learning half the bits of
the plaintext. Hence one-way encryption schemes do not generally provide secure
encryption. In the random oracle model, one-way encryption schemes can be used for
encrypting session-keys. (The session-key is taken to be the hash of the plaintext.) We
note that one can extend the notion of one-way encryption to identity-based systems
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by adding private key extraction queries to the definition. We do not give the full
definition here since in this paper we use semantic security as the weakest notion of
security. See [5] for the full definition of identity-based one-way encryption and its
use as part of an alternative proof strategy for our main result.

Random oracle model. To analyze the security of certain natural cryptographic
constructions, Bellare and Rogaway introduced an idealized security model called the
random oracle model [3]. Roughly speaking, a random oracle is a function H : X → Y
chosen uniformly at random from the set of all functions {h : X → Y }. (We assume
Y is a finite set.) An algorithm can query the random oracle at any point x ∈ X and
receive the value H(x) in response. Random oracles are used to model cryptographic
hash functions such as SHA-1. Note that security in the random oracle model does
not imply security in the real world. Nevertheless, the random oracle model is a useful
tool for validating natural cryptographic constructions. Security proofs in this model
prove security against attackers that are confined to the random oracle world.

Notation. From here on we use Zq to denote the group {0, . . . , q − 1} under
addition modulo q. For a group G of prime order, we use G

∗ to denote the set
G
∗ = G \ {O}, where O is the identity element in the group G. We use Z

+ to denote
the set of positive integers.

3. Bilinear maps and the bilinear Diffie–Hellman assumption. Let G1

and G2 be two groups of order q for some large prime q. Our IBE system makes use
of a bilinear map ê : G1 ×G1 → G2 between these two groups. The map must satisfy
the following properties:

1. Bilinear. We say that a map ê : G1 × G1 → G2 is bilinear if ê(aP, bQ) =
ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z.

2. Nondegenerate. The map does not send all pairs in G1 × G1 to the identity
in G2. Observe that since G1,G2 are groups of prime order, this implies that
if P is a generator of G1, then ê(P, P ) is a generator of G2.

3. Computable. There is an efficient algorithm to compute ê(P,Q) for any P,Q ∈
G1.

A bilinear map satisfying the three properties above is said to be an admissible
bilinear map. In section 5, we give a concrete example of groups G1,G2 and an admis-
sible bilinear map between them. The group G1 is a subgroup of the additive group
of points of an elliptic curve E/Fp. The group G2 is a subgroup of the multiplicative
group of a finite field F

∗
p2 . Therefore, throughout the paper, we view G1 as an additive

group and G2 as a multiplicative group. As we will see in section 5.1, the Weil pairing
can be used to construct an admissible bilinear map between these two groups.

The existence of the bilinear map ê : G1 × G1 → G2 as above has two direct
implications to these groups.

1. The MOV reduction. Menezes, Okamoto, and Vanstone [32] show that the
discrete log problem in G1 is no harder than the discrete log problem in G2. To see
this, let P,Q ∈ G1 be an instance of the discrete log problem in G1 where both P,Q
have order q. We wish to find an α ∈ Zq such that Q = αP . Let g = ê(P, P ) and
h = ê(Q,P ). Then, by bilinearity of ê, we know that h = gα. By nondegeneracy of ê,
both g, h have order q in G2. Hence we reduced the discrete log problem in G1 to a
discrete log problem in G2. It follows that, for discrete log to be hard in G1, we must
choose our security parameter so that discrete log is hard in G2 (see section 5).

2. Decision Diffie–Hellman is easy. The decision Diffie–Hellman problem (DDH)
[4] in G1 is to distinguish between the distributions 〈P, aP, bP, abP 〉 and 〈P, aP, bP, cP 〉,
where a, b, c are random in Z

∗
q and P is random in G

∗
1. Joux and Nguyen [28] point
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out that DDH in G1 is easy. To see this, observe that, given P, aP, bP, cP ∈ G
∗
1, we

have

c = ab mod q ⇐⇒ ê(P, cP ) = ê(aP, bP ).

The computational Diffie–Hellman problem (CDH) in G1 can still be hard. (CDH in
G1 is to find abP given random 〈P, aP, bP 〉.) Joux and Nguyen [28] give examples of
mappings ê : G1 × G1 → G2, where CDH in G1 is believed to be hard even though
DDH in G1 is easy.

3.1. The bilinear Diffie–Hellman assumption (BDH). Since the DDH in
G1 is easy, we cannot use DDH to build cryptosystems in the group G1. Instead, the
security of our IBE system is based on a variant of the CDH assumption called the
bilinear Diffie–Hellman assumption (BDH).

BDH problem. Let G1,G2 be two groups of prime order q. Let ê : G1×G1 → G2

be an admissible bilinear map, and let P be a generator of G1. The BDH problem
in 〈G1,G2, ê〉 is as follows: Given 〈P, aP, bP, cP 〉 for some a, b, c ∈ Z

∗
q , compute W =

ê(P, P )abc ∈ G2. An algorithm A has advantage ε in solving BDH in 〈G1,G2, ê〉 if

Pr
[A(P, aP, bP, cP ) = ê(P, P )abc

] ≥ ε,

where the probability is over the random choice of a, b, c in Z
∗
q , the random choice of

P ∈ G
∗
1, and the random bits of A.

BDH parameter generator. We say that a randomized algorithm G is a BDH
parameter generator if (1) G takes a security parameter k ∈ Z

+, (2) G runs in poly-
nomial time in k, and (3) G outputs a prime number q, the description of two groups
G1,G2 of order q, and the description of an admissible bilinear map ê : G1×G1 → G2.
We denote the output of G by G(1k) = 〈q,G1,G2, ê〉. The security parameter k is used
to determine the size of q; for example, one could take q to be a random k-bit prime.
For i = 1, 2, we assume that the description of the group Gi contains polynomial time
(in k) algorithms for computing the group action in Gi and contains a generator of
Gi. The generator of Gi enables us to generate uniformly random elements in Gi.
Similarly, we assume that the description of ê contains a polynomial time algorithm
for computing ê. We give an example of a BDH parameter generator in section 5.1.

BDH assumption. Let G be a BDH parameter generator. We say that an
algorithm A has advantage ε(k) in solving the BDH problem for G if, for sufficiently
large k,

AdvG,A(k) = Pr

[
A
(
q,G1,G2, ê,
P, aP, bP, cP

)
= ê(P, P )abc

∣∣∣∣ 〈q,G1,G2, ê〉 ← G(1k),

P ← G
∗
1, a, b, c← Z

∗
q

]
≥ ε(k).

We say that G satisfies the BDH assumption if for any randomized polynomial time
(in k) algorithm A and for any polynomial f ∈ Z[x] we have that AdvG,A(k) < 1/f(k)
for sufficiently large k. When G satisfies the BDH assumption, we say that BDH is
hard in groups generated by G.

In section 5.1, we give some examples of BDH parameter generators that are
believed to satisfy the BDH assumption. We note that Joux [26] (implicitly) used the
BDH assumption to construct a one-round three party Diffie–Hellman protocol. The
BDH assumption is also needed for constructions in [46, 40].

Hardness of BDH. It is interesting to study the relationship of the BDH prob-
lem to other hard problems used in cryptography. Currently, all we can say is that the
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BDH problem in 〈G1,G2, ê〉 is no harder than the CDH problem in G1 or G2. In other
words, an algorithm for CDH in G1 or G2 is sufficient for solving BDH in 〈G1,G2, ê〉.
The converse is currently an open problem: is an algorithm for BDH sufficient for
solving CDH in G1 or in G2? We refer to a recent survey by Joux [27] for a more
detailed analysis of the relationship between BDH and other standard problems.

We note that in all our examples (in section 5.1) the isomorphisms from G1 to G2

induced by the bilinear map are believed to be one-way functions. More specifically,
for a point Q ∈ G

∗
1 define the isomorphism fQ : G1 → G2 by fQ(P ) = ê(P,Q). If any

one of these isomorphisms turns out to be invertible, then BDH is easy in 〈G1,G2, ê〉.
Fortunately, an efficient algorithm for inverting fQ for some fixed Q would imply an
efficient algorithm for deciding DDH in the group G2. In all our examples DDH is
believed to be hard in the group G2. Hence, all the isomorphisms fQ : G1 → G2

induced by the bilinear map are believed to be one-way functions.

4. Our IBE scheme. We describe our scheme in stages. First we give a basic
IBE scheme which is not secure against an adaptive chosen ciphertext attack. The
only reason for describing the basic scheme is to make the presentation easier to
follow. Our full scheme, described in section 4.2, extends the basic scheme to get
security against an adaptive chosen ciphertext attack (IND-ID-CCA) in the random
oracle model. In section 4.3, we relax some of the requirements on the hash functions.

The presentation in this section uses an arbitrary BDH parameter generator G
satisfying the BDH assumption. In section 5, we describe a concrete IBE system using
the Weil pairing.

4.1. BasicIdent. To explain the basic ideas underlying our IBE system, we
describe the following simple scheme, called BasicIdent. We present the scheme by
describing the four algorithms: Setup, Extract, Encrypt, Decrypt. We let k be the
security parameter given to the setup algorithm. We let G be some BDH parameter
generator.

Setup: Given a security parameter k ∈ Z
+, the algorithm works as follows:

Step 1: Run G on input k to generate a prime q, two groups G1,G2 of order q, and
an admissible bilinear map ê : G1 × G1 → G2. Choose an arbitrary generator
P ∈ G1.

Step 2: Pick a random s ∈ Z
∗
q , and set Ppub = sP .

Step 3: Choose a cryptographic hash function H1 : {0, 1}∗ → G
∗
1. Choose a

cryptographic hash function H2 : G2 → {0, 1}n for some n. The security
analysis will view H1, H2 as random oracles.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1×{0, 1}n. The

system parameters are params = 〈q,G1,G2, ê, n, P, Ppub, H1, H2〉. The master-key
is s ∈ Z

∗
q .

Extract: For a given string ID ∈ {0, 1}∗ the algorithm does the following: (1) it
computes QID = H1(ID) ∈ G

∗
1, and (2) it sets the private key dID to be dID = sQID,

where s is the master key.

Encrypt: To encrypt M ∈ M under the public key ID, do the following: (1) compute
QID = H1(ID) ∈ G

∗
1, (2) choose a random r ∈ Z

∗
q , and (3) set the ciphertext to be

C = 〈rP, M ⊕H2(grID)〉, where gID = ê(QID, Ppub) ∈ G
∗
2.
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Decrypt: Let C = 〈U, V 〉 ∈ C be a ciphertext encrypted using the public key ID. To
decrypt C using the private key dID ∈ G

∗
1, compute

V ⊕H2(ê(dID, U)) = M.

This completes the description of BasicIdent. We first verify consistency. When
everything is computed as above, we have the following:

1. During encryption, M is bitwise exclusive-ored with the hash of grID.
2. During decryption, V is bitwise exclusive-ored with the hash of ê(dID, U).

These masks used during encryption and decryption are the same since

ê(dID, U) = ê(sQID, rP ) = ê(QID, P )sr = ê(QID, Ppub)
r = grID.

Thus applying decryption after encryption produces the original message M as re-
quired. Performance considerations of BasicIdent are discussed in section 5. Note that
the value of gID in algorithm Encrypt is independent of the message to be encrypted.
Hence there is no need to recompute gID on subsequent encryptions to the same public
key ID.

Security. Next, we study the security of this basic scheme. The following theo-
rem shows that BasicIdent is a semantically secure IBE scheme (IND-ID-CPA) assuming
BDH is hard in groups generated by G.

Theorem 4.1. Suppose the hash functions H1, H2 are random oracles. Then
BasicIdent is a semantically secure IBE scheme (IND-ID-CPA) assuming BDH is hard
in groups generated by G. Concretely, suppose there is an IND-ID-CPA adversary A
that has advantage ε(k) against the scheme BasicIdent. Suppose A makes at most
qE > 0 private key extraction queries and qH2

> 0 hash queries to H2. Then there is
an algorithm B that solves BDH in groups generated by G with advantage at least

AdvG,B(k) ≥ 2ε(k)

e(1 + qE) · qH2

.

Here e ≈ 2.71 is the base of the natural logarithm. The running time of B is
O(time(A)).

To prove the theorem, we first define a related public key encryption scheme (not
an identity-based scheme) called BasicPub. BasicPub is described by three algorithms:
keygen, encrypt, decrypt.
keygen: Given a security parameter k ∈ Z

+, the algorithm works as follows:

Step 1: Run G on input k to generate two prime order groups G1,G2 and a bilinear
map ê : G1 × G1 → G2. Let q be the order of G1,G2. Choose an arbitrary
generator P ∈ G1.

Step 2: Pick a random s ∈ Z
∗
q , and set Ppub = sP . Pick a random QID ∈ G

∗
1.

Step 3: Choose a cryptographic hash function H2 : G2 → {0, 1}n for some n.

Step 4: The public key is 〈q,G1,G2, ê, n, P, Ppub, QID, H2〉.
The private key is dID = sQID ∈ G

∗
1.

encrypt: To encrypt M ∈ {0, 1}n, choose a random r ∈ Z
∗
q , and set the ciphertext to

C = 〈rP, M ⊕H2(gr)〉, where g = ê(QID, Ppub) ∈ G
∗
2.

decrypt: Let C = 〈U, V 〉 be a ciphertext created using the BasicPub public key
〈q,G1,G2, ê, n, P, Ppub, QID, H2〉. To decrypt C using the private key dID ∈ G

∗
1,

compute

V ⊕H2(ê(dID, U)) = M.
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This completes the description of BasicPub. We now prove Theorem 4.1 in two
steps. We first show that an IND-ID-CPA attack on BasicIdent can be converted to an
IND-CPA attack on BasicPub. This step shows that private key extraction queries do
not help the adversary. We then show that BasicPub is IND-CPA secure if the BDH
assumption holds.

Lemma 4.2. Let H1 be a random oracle from {0, 1}∗ to G
∗
1. Let A be an IND-ID-

CPA adversary that has advantage ε(k) against BasicIdent. Suppose A makes at most
qE > 0 private key extraction queries. Then there is an IND-CPA adversary B that has
advantage at least ε(k)/e(1 + qE) against BasicPub. Its running time is O(time(A)).

Proof. We show how to construct an IND-CPA adversary B that uses A to
gain advantage ε/e(1 + qE) against BasicPub. The game between the challenger
and the adversary B starts with the challenger first generating a random public
key by running algorithm keygen of BasicPub. The result is a public key Kpub =
〈q,G1,G2, ê, n, P, Ppub, QID, H2〉 and a private key dID = sQID. Let q be the order of
G1,G2. The challenger gives Kpub to algorithm B. Algorithm B is supposed to output
two messages M0 and M1 and expects to receive back the BasicPub encryption of Mb

under Kpub, where b ∈ {0, 1}. Then algorithm B outputs its guess b′ ∈ {0, 1} for b.

Algorithm B works by interacting with A in an IND-ID-CPA game as follows (B
simulates the challenger).

Setup. Algorithm B starts by giving algorithm A the BasicIdent system parameters
〈q,G1,G2, ê, n, P, Ppub, H1, H2〉. Here q,G1,G2, ê, n, P , Ppub, H2 are taken from
Kpub, and H1 is a random oracle controlled by B as described below.

H1-queries. At any time algorithm A can query the random oracle H1. To respond
to these queries algorithm B maintains a list of tuples 〈IDj , Qj , bj , cj〉 as explained
below. We refer to this list as the H list

1 . The list is initially empty. When A
queries the oracle H1 at a point IDi, algorithm B responds as follows:

1. If the query IDi already appears on the H list
1 in a tuple 〈IDi, Qi, bi, ci〉, then

Algorithm B responds with H1(IDi) = Qi ∈ G
∗
1.

2. Otherwise, B generates a random coin ∈ {0, 1} so that Pr[coin = 0] = δ for
some δ that will be determined later.

3. Algorithm B picks a random b ∈ Z
∗
q .

If coin = 0, compute Qi = bP ∈ G
∗
1. If coin = 1, compute Qi = bQID ∈ G

∗
1.

4. Algorithm B adds the tuple 〈IDi, Qi, b, coin〉 to the H list
1 and responds to A

with H1(IDi) = Qi.

Note that either way Qi is uniform in G
∗
1 and is independent of A’s current view

as required.

Phase 1. Let IDi be a private key extraction query issued by algorithm A. Algorithm
B responds to this query as follows:

1. Run the above algorithm for responding to H1-queries to obtain a Qi ∈ G
∗
1

such that H1(IDi) = Qi. Let 〈IDi, Qi, bi, coini〉 be the corresponding tuple on
the H list

1 . If coini = 1, then B reports failure and terminates. The attack on
BasicPub failed.

2. We know coini = 0 and hence Qi = biP . Define di = biPpub ∈ G
∗
1. Observe

that di = sQi, and therefore di is the private key associated to the public key
IDi. Give di to algorithm A.

Challenge. Once algorithm A decides that Phase 1 is over, it outputs a public key
IDch and two messages M0,M1 on which it wishes to be challenged. Algorithm B
responds as follows:
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1. Algorithm B gives the challenger M0,M1 as the messages that it wishes to be
challenged on. The challenger responds with a BasicPub ciphertext C = 〈U, V 〉
such that C is the encryption of Mc for a random c ∈ {0, 1}.

2. Next, B runs the algorithm for responding to H1-queries to obtain a Q ∈ G
∗
1

such that H1(IDch) = Q. Let 〈IDch, Q, b, coin〉 be the corresponding tuple on
the H list

1 . If coin = 0, then B reports failure and terminates. The attack on
BasicPub failed.

3. We know coin = 1, and therefore Q = bQID. Recall that when C = 〈U, V 〉,
we have U ∈ G

∗
1. Set C ′ = 〈b−1U, V 〉, where b−1 is the inverse of b mod q.

Algorithm B responds to A with the challenge C ′. Note that C ′ is a BasicIdent
encryption of Mc under the public key IDch as required. To see this, first observe
that, since H1(IDch) = Q, the private key corresponding to IDch is dch = sQ.
Second, observe that

ê(b−1U, dch) = ê(b−1U, sQ) = ê(U, sb−1Q) = ê(U, sQID) = ê(U, dID).

Hence the BasicIdent decryption of C ′ using dch is the same as the BasicPub
decryption of C using dID.

Phase 2. Algorithm B responds to private key extraction queries in the same way it
did in Phase 1.

Guess. Eventually algorithm A produces a guess c′ for c. Algorithm B outputs c′ as
its guess for c.

Claim. If algorithm B does not abort during the simulation, then algorithm A’s
view is identical to its view in the real attack. Furthermore, if B does not abort, then
|Pr[c = c′] − 1

2 | ≥ ε. The probability is over the random bits used by A,B and the
challenger.

Proof of claim. The responses to H1-queries are as in the real attack since each
response is uniformly and independently distributed in G

∗
1. All responses to private

key extraction queries are valid. Finally, the challenge ciphertext C ′ given to A is the
BasicIdent encryption of Mc for some random c ∈ {0, 1}. Therefore, by definition of
algorithm A, we have that |Pr[c = c′]− 1

2 | ≥ ε.

To complete the proof of Lemma 4.2, it remains to calculate the probability that
algorithm B aborts during the simulation. Suppose A makes a total of qE private key
extraction queries. Then the probability that B does not abort in Phases 1 or 2 is δqE .
The probability that it does not abort during the challenge step is 1− δ. Therefore,
the probability that B does not abort during the simulation is δqE (1− δ). This value
is maximized at δopt = 1 − 1/(qE + 1). Using δopt, the probability that B does not
abort is at least 1/e(1 + qE). This shows that B’s advantage is at least ε/e(1 + qE) as
required.

The analysis used in the proof of Lemma 4.2 uses a similar technique to Coron’s
analysis of the full domain hash signature scheme [9]. Next, we show that BasicPub
is a semantically secure public key system if the BDH assumption holds.

Lemma 4.3. Let H2 be a random oracle from G2 to {0, 1}n. Let A be an IND-
CPA adversary that has advantage ε(k) against BasicPub. Suppose A makes a total
of qH2

> 0 queries to H2. Then there is an algorithm B that solves the BDH problem
for G with advantage at least 2ε(k)/qH2

and a running time O(time(A)).

Proof. Algorithm B is given as input the BDH parameters 〈q,G1,G2, ê〉 produced
by G and a random instance 〈P, aP, bP, cP 〉 = 〈P, P1, P2, P3〉 of the BDH problem for
these parameters; i.e., P is random in G

∗
1 and a, b, c are random in Z

∗
q , where q is
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the order of G1,G2. Let D = ê(P, P )abc ∈ G2 be the solution to this BDH problem.
Algorithm B finds D by interacting with A as follows.
Setup. Algorithm B sets Ppub = P1 and QID = P2 and creates the BasicPub public key

Kpub = 〈q,G1,G2, ê, n, P, Ppub, QID, H2〉. Here H2 is a random oracle controlled by
B as described below. Algorithm B gives A the BasicPub public key Kpub. Observe
that the (unknown) private key associated to Kpub is dID = aQID = abP .

H2-queries. At any time, algorithm A may issue queries to the random oracle H2.
To respond to these queries, B maintains a list of tuples called the H list

2 . Each
entry in the list is a tuple of the form 〈Xj , Hj〉. Initially the list is empty. To
respond to query Xi, algorithm B does the following:

1. If the query Xi already appears on the H list
2 in a tuple 〈Xi, Hi〉, then respond

with H2(Xi) = Hi.

2. Otherwise, B just picks a random string Hi ∈ {0, 1}n and adds the tuple
〈Xi, Hi〉 to the H list

2 . It responds to A with H2(Xi) = Hi.

Challenge. Algorithm A outputs two messages M0,M1 on which it wishes to be
challenged. Algorithm B picks a random string R ∈ {0, 1}n and defines C to be
the ciphertext C = 〈P3, R〉. Algorithm B gives C as the challenge to A. Observe
that, by definition, the decryption of C is R⊕H2(ê(P3, dID)) = R⊕H2(D).

Guess. Algorithm A outputs its guess c′ ∈ {0, 1}. At this point, B picks a random
tuple 〈Xj , Hj〉 from the H list

2 and outputs Xj as the solution to the given instance
of BDH.
Algorithm B is simulating a real attack environment for algorithm A (it simu-

lates the challenger and the oracle for H2). We show that algorithm B outputs the
correct answer D with probability at least 2ε/qH2

as required. The proof is based on
comparing A’s behavior in the simulation to its behavior in a real IND-CPA attack
game (against a real challenger and a real random oracle for H2).

LetH be the event that algorithmA issues a query for H2(D) at some point during
the simulation above. (This implies that at the end of the simulation D appears in
some tuple on the H list

2 .) We show that Pr[H] ≥ 2ε. This will prove that algorithm B
outputs D with probability at least 2ε/qH2

. We also study event H in the real attack
game, namely, the event that A issues a query for H2(D) when communicating with
a real challenger and a real random oracle for H2.

Claim 1. Pr[H] in the simulation above is equal to Pr[H] in the real attack.
Proof of claim. Let H� be the event that A makes a query for H2(D) in one of

its first ) queries to the H2 oracle. We prove by induction on ) that Pr[H�] in the real
attack is equal to Pr[H�] in the simulation for all ) ≥ 0. Clearly, Pr[H0] = 0 in both
the simulation and in the real attack. Now suppose that, for some ) > 0, we have
that Pr[H�−1] in the simulation is equal to Pr[H�−1] in the real attack. We show that
the same holds for H�. We know that

Pr[H�] = Pr[H� |H�−1] Pr[H�−1] + Pr[H� | ¬H�−1] Pr[¬H�−1](4.1)

= Pr[H�−1] + Pr[H� | ¬H�−1] Pr[¬H�−1].

We argue that Pr[H� | ¬H�−1] in the simulation is equal to Pr[H� | ¬H�−1] in the real
attack. To see this, observe that as long as A does not issue a query for H2(D), its
view during the simulation is identical to its view in the real attack (against a real
challenger and a real random oracle for H2). Indeed, the public key and the challenge
are distributed as in the real attack. Similarly, all responses to H2-queries are uniform
and independent in {0, 1}n. Therefore, Pr[H� | ¬H�−1] in the simulation is equal to
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Pr[H� | ¬H�−1] in the real attack. It follows by (4.1) and the inductive hypothesis
that Pr[H�] in the real attack is equal to Pr[H�] in the simulation. By induction on
), we obtain that Pr[H] in the real attack is equal to Pr[H] in the simulation.

Claim 2. In the real attack, we have Pr[H] ≥ 2ε.
Proof of claim. In the real attack, if A never issues a query for H2(D), then the

decryption of C is independent of A’s view (since H2(D) is independent of A’s view).
Therefore, in the real attack, Pr[c = c′ | ¬H] = 1/2. By definition of A, we know that
in the real attack |Pr[c = c′] − 1/2| ≥ ε. We show that these two facts imply that
Pr[H] ≥ 2ε. To do so, we first derive simple upper and lower bounds on Pr[c = c′]:

Pr[c = c′] = Pr[c = c′|¬H] Pr[¬H] + Pr[c = c′|H] Pr[H]

≤ Pr[c = c′|¬H] Pr[¬H] + Pr[H] =
1

2
Pr[¬H] + Pr[H] =

1

2
+

1

2
Pr[H],

Pr[c = c′] ≥ Pr[c = c′|¬H] Pr[¬H] =
1

2
− 1

2
Pr[H].

It follows that ε ≤ |Pr[c = c′] − 1/2| ≤ 1
2 Pr[H]. Therefore, in the real attack,

Pr[H] ≥ 2ε.
To complete the proof of Lemma 4.3, observe that by Claims 1 and 2 we know

that Pr[H] ≥ 2ε in the simulation above. Hence, at the end of the simulation, D
appears in some tuple on the H list

2 with probability at least 2ε. It follows that B
produces the correct answer with probability at least 2ε/qH2

as required.
We note that one can slightly vary the reduction in the proof above to obtain

different bounds. For example, in the “Guess” step above, one can avoid having to
pick a random element from the H list

2 by using the random self-reduction of the BDH
problem. This requires running algorithm A multiple times (as in Theorem 7 of [42]).
The success probability for solving the given BDH problem increases at the cost of
also increasing the running time.

Proof of Theorem 4.1. The theorem follows from Lemmas 4.2 and 4.3. Composing
both reductions shows that an IND-ID-CPA adversary on BasicIdent with advantage
ε(k) gives a BDH algorithm for G with advantage at least 2ε(k)/e(1 + qE)qH2

, as
required.

4.2. IBE with chosen ciphertext security. We use a technique due to Fu-
jisaki and Okamoto [16] to convert the BasicIdent scheme of the previous section into
a chosen ciphertext secure IBE system (in the sense of section 2) in the random or-
acle model. Let E be a probabilistic public key encryption scheme. We denote by
Epk(M ; r) the encryption of M using the random bits r under the public key pk.
Fujisaki and Okamoto define the hybrid scheme Ehy as

Ehypk (M) =
〈 Epk(σ;H3(σ,M)), H4(σ)⊕M

〉
.

Here σ is generated at random, and H3, H4 are cryptographic hash functions. Fujisaki
and Okamoto show that if E is a one-way encryption scheme, then Ehy is a chosen ci-
phertext secure system (IND-CCA) in the random oracle model (assuming Epk satisfies
some natural constraints). We note that semantic security implies one-way encryp-
tion, and hence the Fujisaki–Okamoto result also applies if E is semantically secure
(IND-CPA).

We apply the Fujisaki–Okamoto transformation to BasicIdent and show that the
resulting IBE system is IND-ID-CCA secure. We obtain the following IBE scheme
which we call FullIdent. Recall that n is the length of the message to be encrypted.
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Setup. As in the BasicIdent scheme. In addition, we pick a hash function H3 :
{0, 1}n × {0, 1}n → Z

∗
q and a hash function H4 : {0, 1}n → {0, 1}n.

Extract. As in the BasicIdent scheme.

Encrypt. To encrypt M ∈ {0, 1}n under the public key ID, do the following: (1)
compute QID = H1(ID) ∈ G

∗
1, (2) choose a random σ ∈ {0, 1}n, (3) set r =

H3(σ,M), and (4) set the ciphertext to be

C = 〈rP, σ ⊕H2(grID), M ⊕H4(σ)〉, where gID = ê(QID, Ppub) ∈ G2.

Decrypt. Let C = 〈U, V,W 〉 be a ciphertext encrypted using the public key ID. If
U �∈ G

∗
1, reject the ciphertext. To decrypt C using the private key dID ∈ G

∗
1,

do:

1. Compute V ⊕H2(ê(dID, U)) = σ.

2. Compute W ⊕H4(σ) = M .

3. Set r = H3(σ,M). Test that U = rP . If not, reject the ciphertext.

4. Output M as the decryption of C.
This completes the description of FullIdent. Note that M is encrypted as W =

M ⊕ H4(σ). This can be replaced by W = EH4(σ)(M), where E is a semantically
secure symmetric encryption scheme (see [16]).

Security. The following theorem shows that FullIdent is a chosen ciphertext
secure IBE (i.e., IND-ID-CCA), assuming BDH is hard in groups generated by G.

Theorem 4.4. Let the hash functions H1, H2, H3, H4 be random oracles. Then
FullIdent is a chosen ciphertext secure IBE (IND-ID-CCA), assuming BDH is hard in
groups generated by G.

Concretely, suppose there is an IND-ID-CCA adversary A that has advantage ε(k)
against the scheme FullIdent and A runs in time at most t(k). Suppose A makes at
most qE extraction queries, at most qD decryption queries, and at most qH2

, qH3
, qH4

queries to the hash functions H2, H3, H4, respectively. Then there is a BDH algorithm
B for G with running time t1(k), where

AdvG,B(k) ≥ 2FOadv(
ε(k)

e(1+qE+qD) , qH4
, qH3

, qD)/qH2
,

t1(k) ≤ FOtime(t(k), qH4
, qH3

),

where the functions FOtime and FOadv are as defined in Theorem 4.5.
The proof of Theorem 4.4 is based on the following result of Fujisaki and Okamoto

(Theorem 14 in [16]). Let BasicPubhy be the result of applying the Fujisaki–Okamoto
transformation to BasicPub.

Theorem 4.5 (Fujisaki–Okamoto). Suppose A is an IND-CCA adversary that
achieves advantage ε(k) when attacking BasicPubhy. Suppose A has running time
t(k), makes at most qD decryption queries, and makes at most qH3

, qH4
queries to the

hash functions H3, H4, respectively. Then there is an IND-CPA adversary B against
BasicPub with running time t1(k) and advantage ε1(k), where

ε1(k) ≥ FOadv(ε(k), qH4
, qH3

, qD) =
1

2(qH4
+ qH3

)
[(ε(k) + 1)(1− 2/q)qD − 1] ,

t1(k) ≤ FOtime(t(k), qH4
, qH3

) = t(k) + O((qH4
+ qH3

) · n).

Here q is the size of the groups G1,G2, and n is the length of σ.
In fact, Fujisaki and Okamoto prove a stronger result: Under the hypothesis of

Theorem 4.5, BasicPubhy would not even be a one-way encryption scheme. For our
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purposes, the result in Theorem 4.5 is sufficient. To prove Theorem 4.4, we also need
the following lemma to translate between an IND-ID-CCA chosen ciphertext attack on
FullIdent and an IND-CCA chosen ciphertext attack on BasicPubhy.

Lemma 4.6. Let A be an IND-ID-CCA adversary that has advantage ε(k) against
FullIdent. Suppose A makes at most qE > 0 private key extraction queries and at most
qD decryption queries. Then there is an IND-CCA adversary B that has advantage at
least ε(k)

e(1+qE+qD) against BasicPub
hy. Its running time is O(time(A)).

Proof. We construct an IND-CCA adversary B that uses A to gain advantage
ε/e(1 + qE + qD) against BasicPubhy. The game between the challenger and the
adversary B starts with the challenger first generating a random public key by running
algorithm keygen of BasicPubhy. The result is a public key

Kpub = 〈q,G1,G2, ê, n, P, Ppub, QID, H2, H3, H4〉
and a private key dID = sQID. The challenger gives Kpub to algorithm B.

Algorithm B mounts an IND-CCA attack on the key Kpub using the help of algo-
rithm A. Algorithm B interacts with A as follows.
Setup. Same as in Lemma 4.2 (with H3, H4 included in the system parameters given

to A).

H1-queries. These queries are handled as in Lemma 4.2.

Phase 1. Private key queries. These are handled as in Lemma 4.2.

Phase 1. Decryption queries. Let 〈IDi, Ci〉 be a decryption query issued by
algorithm A. Let Ci = 〈Ui, Vi,Wi〉. Algorithm B responds to this query as
follows:

1. Run the above algorithm for responding to H1-queries to obtain a Qi ∈ G
∗
1

such that H1(IDi) = Qi. Let 〈IDi, Qi, bi, coini〉 be the corresponding tuple on
the H list

1 .

2. Suppose coini = 0. In this case, run the algorithm for responding to private key
queries to obtain the private key for the public key IDi. Then use the private
key to respond to the decryption query.

3. Suppose coini = 1. Then Qi = biQID.

– Recall that Ui ∈ G1. Set C ′i = 〈biUi, Vi, Wi〉. Let di = sQi be the (unknown)
FullIdent private key corresponding to IDi. Then the FullIdent decryption of
Ci using di is the same as the BasicPubhy decryption of C ′i using dID. To see
this, observe that

ê(biUi, dID) = ê(biUi, sQID) = ê(Ui, sbiQID) = ê(Ui, sQi) = ê(Ui, di).

– Relay the decryption query 〈C ′i〉 to the challenger and relay the challenger’s
response back to A.

Challenge. Once algorithm A decides that Phase 1 is over, it outputs a public key
IDch and two messages M0,M1 on which it wishes to be challenged. Algorithm B
responds as follows:

1. Algorithm B gives the challenger M0,M1 as the messages that it wishes to
be challenged on. The challenger responds with a BasicPubhy ciphertext C =
〈U, V,W 〉 such that C is the encryption of Mc for a random c ∈ {0, 1}.

2. Next, B runs the algorithm for responding to H1-queries to obtain a Q ∈ G
∗
1

such that H1(IDch) = Q. Let 〈IDch, Q, b, coin〉 be the corresponding tuple on
the H list

1 . If coin = 0, then B reports failure and terminates. The attack on
BasicPubhy failed.
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3. We know coin = 1 and therefore Q = bQID. Recall that when C = 〈U, V,W 〉,
we have U ∈ G

∗
1. Set C ′ = 〈b−1U, V, W 〉, where b−1 is the inverse of b mod q.

Algorithm B responds to A with the challenge C ′. Note that, as in the proof
of Lemma 4.2, C ′ is a FullIdent encryption of Mc under the public key IDch as
required.

Phase 2. Private key queries. Algorithm B responds to private key extraction
queries in the same way it did in Phase 1.

Phase 2. Decryption queries. Algorithm B responds to decryption queries in the
same way it did in Phase 1. However, if the resulting decryption query relayed to
the challenger is equal to the challenge ciphertext C = 〈U, V,W 〉, then B reports
failure and terminates. The attack on BasicPubhy failed.

Guess. Eventually algorithm A produces a guess c′ for c. Algorithm B outputs c′ as
its guess for c.
Claim. If algorithm B does not abort during the simulation, then algorithm A’s

view is identical to its view in the real attack. Furthermore, if B does not abort, then
|Pr[c = c′] − 1

2 | ≥ ε. The probability is over the random bits used by A,B and the
challenger.

Proof of claim. The responses to H1-queries are as in the real attack since each
response is uniformly and independently distributed in G

∗
1. All responses to private

key extraction queries and decryption queries are valid. Finally, the challenge cipher-
text C ′ given to A is the FullIdent encryption of Mc for some random c ∈ {0, 1}.
Therefore, by definition of algorithm A, we have that |Pr[c = c′]− 1

2 | ≥ ε.
It remains to bound the probability that algorithm B aborts during the simulation.

The algorithm could abort for three reasons: (1) a bad private key query fromA during
Phase 1 or 2, (2) A chooses a bad IDch to be challenged on, or (3) a bad decryption
query from A during phase 2. We define three corresponding events.

E1 is the event that A issues a private key query during Phase 1 or 2 that causes
algorithm B to abort.

E2 is the event that A chooses a public key IDch to be challenged on that causes
algorithm B to abort.

E3 is the event that, during Phase 2 of the simulation, Algorithm A issues a
decryption query 〈IDi, Ci〉 so that the decryption query that B would relay
to the BasicPubhy challenger is equal to C. Recall that C = 〈U, V,W 〉 is the
challenge ciphertext from the BasicPubhy challenger.

Claim. Pr[¬E1 ∧ ¬E2 ∧ ¬E3] ≥ δqE+qD (1− δ).
Proof of claim. We prove the claim by induction on the maximum number of

queries qE + qD made by the adversary. Let i = qE + qD, and let E0...i be the event
that E1∨E3 happens after A issues at most i queries. Similarly, let E i be the event that
E1∨E3 happens for the first time when A issues the ith query. We prove by induction
on i that Pr[¬E0...i | ¬E2] ≥ δi. The claim follows because Pr[¬E1 ∧ ¬E2 ∧ ¬E3] =
Pr[¬E1 ∧ ¬E3 | ¬E2] Pr[¬E2] ≥ Pr[¬E1 ∧ ¬E3 | ¬E2](1− δ).

For i = 0, the claim is trivial since by definition Pr[¬E0...0] = 1. Now, suppose
the claim holds for i− 1. Then

Pr[¬E0...i | ¬E2] = Pr[¬E0...i | ¬E0...i−1 ∧ ¬E2] Pr[¬E0...i−1 | ¬E2]

= Pr[¬E i | ¬E0...i−1 ∧ ¬E2] Pr[¬E0...i−1 | ¬E2]

≥ Pr[¬E i | ¬E0...i−1 ∧ ¬E2]δi−1.

Hence it suffices to bound qi = Pr[¬E i | ¬E0...i−1 ∧ ¬E2]. In other words, we bound
the probability that the ith query does not cause E i to happen given that the first
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i− 1 queries did not and given that E2 does not occur. Consider the ith query issued
by A during the simulation. The query is either a private key query for 〈IDi〉 or a
decryption query for 〈IDi, Ci〉, where Ci = 〈Ui, Vi,Wi〉. If the query is a decryption
query, we assume it takes place during Phase 2 since otherwise it has no effect on E3.

Let H1(IDi) = Qi, and let 〈IDi, Qi, bi, coini〉 be the corresponding tuple on the
H list

1 . Recall that when coini = 0, the query cannot cause event E1 to happen.
Similarly, when coini = 0, the query cannot cause event E3 to happen since in this
case B does not relay a decryption query to the BasicPubhy challenger. We use these
facts to bound qi. There are four cases to consider. In the first three cases, we assume
IDi is not equal to the public key IDch on which A is being challenged.
Case 1. The ith query is the first time A issues a query containing IDi. In this case,

Pr[coini = 0] = δ, and hence qi ≥ δ.
Case 2. The public key IDi appeared in a previous private key query. Since by as-

sumption this earlier private key query did not cause E0...i−1 to happen, we
know that coini = 0. Hence we have qi = 1.

Case 3. The public key IDi appeared in a previous decryption query. Since by assump-
tion this earlier decryption query did not cause event E0...i−1 to happen, we
have that either coini = 0 or coini is independent of A’s current view. Either
way, we have that qi ≥ δ.

Case 4. The public key IDi is equal to the public key IDch on which A is being chal-
lenged. Then, by definition, the ith query cannot be a private key query.
Therefore, it must be a decryption query 〈IDi, Ci〉. Furthermore, since E2 did
not happen, we know that coini = 1, and hence B will relay a decryption
query C ′i to the BasicPubhy challenger. Let C ′ be the challenge ciphertext
given to A. By definition we know that Ci �= C ′. It follows that C ′i �= C.
Therefore, this query cannot cause event E3 to happen. Hence in this case
qi = 1.

To summarize, we see that whatever the ith query is, we have that qi ≥ δ.
Therefore, we have that Pr[¬E0...i | ¬E2] ≥ δi as required. The claim now follows by
setting i = qE + qD.

To conclude the proof of Lemma 4.6, it remains to optimize the choice of δ. Since
Pr[¬E1 ∧ ¬E2 ∧ ¬E3] ≥ δqE+qD (1 − δ), the success probability is maximized at
δopt = 1 − 1/(qE + qD + 1). Using δopt, the probability that B does not abort is at
least 1

e(1+qE+qD) . This shows that B’s advantage is at least ε/e(1 + qE + qD) as

required.
Proof of Theorem 4.4. By Lemma 4.6, an IND-ID-CCA adversary on FullIdent

implies an IND-CCA adversary on BasicPubhy. By Theorem 4.5, an IND-CCA adver-
sary on BasicPubhy implies an IND-CPA adversary on BasicPub. By Lemma 4.3, an
IND-CPA adversary on BasicPub implies an algorithm for BDH. Composing all these
reductions gives the required bounds.

4.3. Relaxing the hashing requirements. Recall that the IBE system of sec-
tion 4.2 uses a hash function H1 : {0, 1}∗ → G

∗
1. The concrete IBE system presented

in the next section uses G1 as a subgroup of the group of points on an elliptic curve.
In practice, it is difficult to build hash functions that hash directly onto such groups.
We therefore show how to relax the requirement of hashing directly onto G

∗
1. Rather

than hash onto G
∗
1, we hash onto some set A ⊆ {0, 1}∗ and then use a deterministic

encoding function to map A onto G
∗
1.

Admissible encodings. Let G1 be a group, and let A ∈ {0, 1}∗ be a finite set.
We say that an encoding function L : A→ G

∗
1 is admissible if it satisfies the following
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properties.

1. Computable. There is an efficient deterministic algorithm to compute L(x)
for any x ∈ A.

2. )-to-1. For any y ∈ G
∗
1, the preimage of y under L has size exactly ). In other

words, |L−1(y)| = ) for all y ∈ G
∗
1. Note that this implies that |A| = ) · |G∗1|.

3. Samplable. There is an efficient randomized algorithm LS such that LS(y)
induces a uniform distribution on L−1(y) for any y ∈ G

∗
1. In other words,

LS(y) is a uniform random element in L−1(y).

We slightly modify FullIdent to obtain an IND-ID-CCA secure IBE system where
H1 is replaced by a hash function into some set A. Since the change is so minor, we
refer to this new scheme as FullIdent’.
Setup. As in the FullIdent scheme. The only difference is that H1 is replaced by a

hash function H ′1 : {0, 1}∗ → A. The system parameters also include a description
of an admissible encoding function L : A→ G

∗
1.

Extract, Encrypt. As in the FullIdent scheme. The only difference is that in Step 1
these algorithms compute QID = L(H ′1(ID)) ∈ G

∗
1.

Decrypt. As in the FullIdent scheme.

This completes the description of FullIdent’. The following theorem shows that
FullIdent’ is a chosen ciphertext secure IBE (i.e., IND-ID-CCA), assuming FullIdent is.

Theorem 4.7. Let A be an IND-ID-CCA adversary on FullIdent’ that achieves
advantage ε(k). Suppose A makes at most qH1

queries to the hash function H ′1. Then
there is an IND-ID-CCA adversary B on FullIdent that achieves the same advantage
ε(k) and time(B) = time(A) + qH1

· time(LS)

Proof sketch. Algorithm B attacks FullIdent by running algorithm A. It relays
all decryption queries, extraction queries, and hash queries from A directly to the
challenger and relays the challenger’s response back to A. It behaves differently only
when A issues a hash query to H ′1. Recall that B has access only to a hash function
H1 : {0, 1}∗ → G

∗
1. To respond to H ′1 queries, algorithm B maintains a list of tuples

〈IDj , yj〉 as explained below. We refer to this list as the (H ′1)list. The list is initially
empty. When A queries the oracle H ′1 at a point IDi, algorithm B responds as follows.

1. If the query IDi already appears on the (H ′1)list in a tuple 〈IDi, yi〉, then
respond with H ′1(IDi) = yi ∈ A.

2. Otherwise, B issues a query for H1(IDi), say, H1(IDi) = α ∈ G
∗
1.

3. B runs the sampling algorithm LS(α) to generate a random element y ∈
L−1(α).

4. B adds the tuple 〈IDi, y〉 to the (H ′1)list and responds to A with H ′1(IDi) = y ∈
A. Note that y is uniformly distributed in A as required since α is uniformly
distributed in G

∗
1 and L is an )-to-1 map.

Algorithm B’s responses to all of A’s queries, including H ′1 queries, are identical to
A’s view in the real attack. Hence B will have the same advantage ε(k) in winning
the game with the challenger.

5. A concrete IBE system using the Weil pairing. In this section, we use
FullIdent’ to describe a concrete IBE system based on the Weil pairing. We first review
some properties of the pairing (see the appendix for more details).

5.1. Properties of the Weil pairing. Let p > 3 be a prime satisfying p =
2 mod 3, and let q be some prime factor of p + 1. Let E be the elliptic curve defined
by the equation y2 = x3 +1 over Fp. We state a few elementary facts about this curve
E (see [43] for more information). From here on, we let E(Fpr ) denote the group of
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points on E defined over Fpr .
Fact 1. Since x3 + 1 is a permutation on Fp, it follows that the group E(Fp)

contains p + 1 points. We let O denote the point at infinity. Let P ∈ E(Fp) be a
point of order q, and let G1 be the subgroup of points generated by P .

Fact 2. For any y0 ∈ Fp, there is a unique point (x0, y0) on E(Fp), namely,
x0 = (y2

0 − 1)1/3 ∈ Fp. Hence, if (x, y) is a random nonzero point on E(Fp), then y is
uniform in Fp. We use this property to build a simple admissible encoding function.

Fact 3. Let 1 �= ζ ∈ Fp2 be a solution of x3 − 1 = 0 mod p. Then the map
φ(x, y) = (ζx, y) is an automorphism of the group of points on the curve E. Note that,
for any point Q = (x, y) ∈ E(Fp), we have that φ(Q) ∈ E(Fp2), but φ(Q) �∈ E(Fp).
Hence Q ∈ E(Fp) is linearly independent of φ(Q) ∈ E(Fp2).

Fact 4. Since the points P ∈ G1 and φ(P ) are linearly independent, they generate
a group isomorphic to Zq × Zq. We denote this group of points by E[q].

Let G2 be the subgroup of F
∗
p2 of order q. The Weil pairing on the curve E(Fp2)

is a mapping e : E[q] × E[q] → G2 defined in the appendix. For any Q,R ∈ E(Fp),
the Weil pairing satisfies e(Q,R) = 1. In other words, the Weil pairing is degenerate
on E(Fp) and hence degenerate on the group G1. To get a nondegenerate map, we
define the modified Weil pairing ê : G1 ×G1 → G2 as follows:

ê(P,Q) = e(P, φ(Q)).

The modified Weil pairing satisfies the following properties:
1. Bilinear. For all P,Q ∈ G1 and for all a, b ∈ Z, we have ê(aP, bQ) = ê(P,Q)ab.
2. Nondegenerate. If P is a generator of G1, then ê(P, P ) ∈ F

∗
p2 is a generator

of G2.
3. Computable. Given P,Q ∈ G1, there is an efficient algorithm, due to Miller,

to compute ê(P,Q) ∈ G2. This algorithm is described in the appendix. Its
running time is comparable to exponentiation in Fp.

Joux and Nguyen [28] point out that, although the CDH problem appears to be
hard in the group G1, the DDH problem is easy in G1 (as discussed in section 3).

BDH parameter generator G1. Given a security parameter 2 < k ∈ Z, the
BDH parameter generator picks a random k-bit prime q and finds the smallest prime
p such that (1) p = 2 mod 3, (2) q divides p+ 1, and (3) q2 does not divide p+ 1. We
write p = )q + 1. The group G1 is the subgroup of order q of the group of points on
the curve y2 = x3 + 1 over Fp. The group G2 is the subgroup of order q of F

∗
p2 . The

bilinear map ê : G1 ×G1 → G2 is the modified Weil pairing defined above.
The BDH parameter generator G1 is believed to satisfy the BDH assumption

asymptotically. However, there is still the question of what values of p and q can be
used in practice to make the BDH problem sufficiently hard. At the very least, we
must ensure that the discrete log problem in G1 is sufficiently hard. As pointed out in
section 3, the discrete log problem in G1 is efficiently reducible to discrete log in G2

(see [32, 17]). Hence computing discrete log in F
∗
p2 is sufficient for computing discrete

log in G1. In practice, for proper security of discrete log in F
∗
p2 , one often uses primes

p that are at least 512 bits long (so that the group size is at least 1024 bits long).
Consequently, one should not use this BDH parameter generator with primes p that
are less than 512 bits long.

5.2. An admissible encoding function: MapToPoint. Let G1,G2 be two
groups generated by G1 as defined above. Recall that the IBE system of section
4.2 uses a hash function H1 : {0, 1}∗ → G

∗
1. By Theorem 4.7, it suffices to have a



606 DAN BONEH AND MATTHEW FRANKLIN

hash function H1 : {0, 1}∗ → A for some set A and an admissible encoding function
L : A → G

∗
1. In what follows, the set A will be Fp, and the admissible encoding

function L will be called MapToPoint.
Let p be a prime satisfying p = 2 mod 3 and p = )q − 1 for some prime q > 3.

We require that q does not divide ) (i.e., that q2 does not divide p+ 1). Let E be the
elliptic curve y2 = x3 + 1 over Fp. Let G1 be the subgroup of points on E of order q.
Suppose we already have a hash function H1 : {0, 1}∗ → Fp.

Algorithm MapToPoint works as follows on input y0 ∈ Fp:
1. Compute x0 = (y2

0 − 1)1/3 = (y2
0 − 1)(2p−1)/3 ∈ Fp.

2. Let Q = (x0, y0) ∈ E(Fp), and set QID = )Q ∈ G1.

3. Output MapToPoint(y0) = QID.
This completes the description of MapToPoint.

We note that there are ) − 1 values of y0 ∈ Fp for which )Q = )(x0, y0) = O.
(These are the non-O points of order dividing ).) Let B ⊂ Fp be the set of these
y0. When H1(ID) is one of these ) − 1 values, QID is the identity element of G1.
It is extremely unlikely for H1(ID) to hit one of these points—the probability is
1/q < 1/2k. Hence, for simplicity, we say that H1(ID) outputs elements only in
Fp \B, i.e., H1 : {0, 1}∗ → Fp \B. Algorithm MapToPoint can be easily extended to
handle the values y0 ∈ B by hashing ID multiple times using different hash functions.

Lemma 5.1. MapToPoint : Fp \B → G
∗
1 is an admissible encoding function.

Proof. The map is clearly computable and is an )-to-1 mapping. It remains to
show that L is samplable. Let P be a generator of E(Fp). Given a Q ∈ G

∗
1, the

sampling algorithm LS does the following: (1) pick a random b ∈ {0, . . . , )− 1}, (2)
compute Q′ = )−1 · Q + bqP = (x, y), and (3) output LS(Q) = y ∈ Fp. Here )−1 is
the inverse of ) in Z

∗
q . This algorithm outputs a random element from the ) elements

in MapToPoint−1(Q) as required.

5.3. A concrete IBE system. Using FullIdent’ from section 4.3 with the BDH
parameter generator G1 and the admissible encoding function MapToPoint, we obtain
a concrete IBE system. Note that, in this system, H1 is a hash function from {0, 1}∗
to Fp (where p is the finite field output by G1). The security of the system follows
directly from Theorems 4.4 and 4.7. We summarize this in the following corollary.

Corollary 5.2. The IBE system FullIdent’ using the BDH parameter generator
G1 and the admissible encoding MapToPoint is a chosen ciphertext secure IBE (i.e.,
IND-ID-CCA in the random oracle model) assuming G1 satisfies the BDH assumption.

Performance. Algorithms Setup and Extract are very simple. At the heart of
both algorithms is a standard multiplication on the curve E(Fp). Algorithm Encrypt
requires that the encryptor compute the Weil pairing of QID and Ppub. Note that
this computation is independent of the message to be encrypted and hence can be
done once and for all. Once gID is computed, the performance of the system is almost
identical to standard ElGamal encryption. Decryption is a single Weil pairing com-
putation. We note that the ciphertext length of BasicIdent using G1 is the same as in
regular ElGamal encryption in Fp.

6. Extensions and observations. We briefly describe a few extensions to the
IBE scheme of the previous sections.

Tate pairing and other curves. Our IBE system works with any efficiently
computable bilinear pairing ê : G1 × G1 → G2 between two groups G1,G2 as long
as the BDH assumption holds. Many different curves, or more generally Abelian
varieties, are believed to give rise to such maps. For example, one could use the curve
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y2 = x3 + x over Fp with p = 3 mod 4 and its endomorphism φ : (x, y) → (−x, iy),
where i2 = −1. As another example, Galbraith [18] suggests using supersingular
elliptic curves over a field of small characteristic to reduce the ciphertext size in our
system. More general Abelian varieties are proposed by Rubin and Silverberg [39].
We note that both encryption and decryption in FullIdent can be made faster by using
the Tate pairing on elliptic curves rather than the Weil pairing [19, 1].

Asymmetric pairings. Our IBE system can use slightly more general bilinear
maps, namely, maps of the form ê : G0×G1 → G2, where G0,G1,G2 are three groups
of prime order q. Using the notation of section 4.1, the only change to BasicIdent is that
we take P and Ppub as elements in G0 and let H1 be a hash function H1 : {0, 1}∗ → G

∗
1.

Everything else remains the same. However, to make the proof of security go through
(Lemma 4.2 in particular), we need a different complexity assumption which we call
the co-BDH assumption: given random P, aP, bP ∈ G0 and Q, aQ, cQ ∈ G1, no
polynomial time algorithm can compute ê(P,Q)abc with nonnegligible probability. If
one is willing to accept this assumption, then we can avoid using supersingular curves
and instead use elliptic curves over Fp, p > 3, proposed by Miyaji, Nakabayashi, and
Takano [35]. Curves E/Fp in this family are not supersingular and have the property
that if q divides |E(Fp)|, then E[q] ⊆ E(Fp6). (Recall that E[q] is the group containing
all points in E of order dividing q.) One way to use these curves is to set G1 to be a
cyclic subgroup of E(Fp) of order q and G0 to be a different cyclic subgroup of E(Fp6)
of the same order q. The standard Weil or Tate pairings on G0 ×G1 can be used as
the bilinear map ê. Note that hashing public keys onto G1 ⊆ E(Fp) is easily done.
Alternatively, to reduce the ciphertext size (which contains an element from G0), one
could take G0 as a subgroup of order q of E(Fp) and G1 as a different subgroup of
E(Fp6) of the same order. The question is how to hash public keys into G1. To do
so, let tr : E(Fp6) → E(Fp) be the trace map on the curve, and define G1 to be the
subgroup of E[q] containing all points P whose trace is O, i.e., tr(P ) = O. Then,
given a hash function H : {0, 1}∗ → E[q], we can hash a public key ID into G1 by
computing H1(ID) = 6H(ID) − tr(H(ID)) ∈ G1. Finally, we note that by modifying
the security proof appropriately, one can take G1 = E[q] (a noncyclic group) and then
avoid computing traces while hashing into G1 (see also [18]).

Distributed PKG. In the standard use of an IBE in an e-mail system, the
master-key stored at the PKG must be protected in the same way that the private key
of a CA is protected. One way of protecting this key is by distributing it among differ-
ent sites using techniques of threshold cryptography [20]. Our IBE system supports
this in a very efficient and robust way. Recall that the master-key is some s ∈ Z

∗
q .

In order to generate a private key, the PKG computes Qpriv = sQID, where QID is
derived from the user’s public key ID. This can easily be distributed in a t-out-of-
n fashion by giving each of the n PKGs one share si of a Shamir secret sharing of
s mod q. When generating a private key, each of the t chosen PKGs simply responds

with Q
(i)
priv = siQID. The user can then construct Qpriv as Qpriv =

∑
λiQ

(i)
priv, where

the λi’s are the appropriate Lagrange coefficients.
Furthermore, it is easy to make this scheme robust against dishonest PKGs using

the fact that DDH is easy in G1. During the set-up phase, each of the n PKGs

publishes P
(i)
pub = siP . During a key generation request, the user can verify that the

response from the ith PKG is valid by testing that

ê(Q
(i)
priv, P ) = ê(QID, P

(i)
pub).

Thus a misbehaving PKG will be caught immediately. There is no need for zero-
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knowledge proofs as in regular robust threshold schemes [21]. The PKG’s master-key
can be generated in a distributed fashion using the techniques of [22].

Note that a distributed master-key also enables threshold decryption on a per-
message basis, without any need to derive the corresponding decryption key. For
example, threshold decryption of BasicIdent ciphertext (U, V ) is straightforward if
each PKG responds with ê(siQID, U).

Working in subgroups. The performance of our IBE system (section 5) can be
improved if we work in a small subgroup of the curve. For example, choose a 1024-bit
prime p = 2 mod 3 with p = aq − 1 for some 160-bit prime q. The point P is then
chosen to be a point of order q. Each public key ID is converted to a group point by
hashing ID to a point Q on the curve and then multiplying the point by a. The system
is secure if the BDH assumption holds in the group generated by P . The advantage is
that the Weil computation is done on points of small order and hence is much faster.

IBE implies signatures. Moni Naor has observed that an IBE scheme can
be immediately converted into a public key signature scheme. The reasoning is as
follows. The private key for the signature scheme is the master key for the IBE
scheme. The public key for the signature scheme is the global system parameters
for the IBE scheme. The signature on a message M is the IBE decryption key for
ID = M . To verify a signature, choose a random message M ′, encrypt M ′ using
the public key ID = M , and then attempt to decrypt using the given signature on
M as the decryption key. If the IBE scheme is IND-ID-CCA, then the signature
scheme is existentially unforgeable against a chosen message attack. Note that, unlike
most signature schemes, the signature verification algorithm here is randomized. This
shows that secure IBE schemes incorporate both public key encryption and digital
signatures. We note that the signature scheme derived from our IBE system has some
interesting properties [6].

7. Escrow ElGamal encryption. In this section, we show that the Weil pair-
ing enables us to add a global escrow capability to the ElGamal encryption system.
A single escrow key enables the decryption of ciphertexts encrypted under any pub-
lic key. Paillier and Yung have shown how to add a global escrow capability to the
Paillier encryption system [36]. Our ElGamal escrow system works as follows.

Setup. Let G be some BDH parameter generator. Given a security parameter k ∈ Z
+,

the algorithm works as follows.

Step 1: Run G on input k to generate a prime q, two groups G1,G2 of order q,
and an admissible bilinear map ê : G1×G1 → G2. Let P be a generator of G1.

Step 2: Pick a random s ∈ Z
∗
q , and set Q = sP .

Step 3: Choose a cryptographic hash function H : G2 → {0, 1}n.

The message space is M = {0, 1}n. The ciphertext space is C = G1 × {0, 1}n.
The system parameters are params = 〈q,G1,G2, ê, n, P,Q,H〉. The escrow key is
s ∈ Z

∗
q .

keygen. A user generates a public/private key pair for herself by picking a random
x ∈ Z

∗
q and computing Ppub = xP ∈ G1. Her private key is x, and her public key

is Ppub.

Encrypt. To encrypt M ∈ {0, 1}n under the public key Ppub, do the following: (1)
pick a random r ∈ Z

∗
q , and (2) set the ciphertext to be

C = 〈rP, M ⊕H(gr)〉, where g = ê(Ppub, Q) ∈ G2.



IDENTITY-BASED ENCRYPTION 609

Decrypt. Let C = 〈U, V 〉 be a ciphertext encrypted using Ppub. Then U ∈ G1. To
decrypt C using the private key x, do:

V ⊕H(ê(U, xQ)) = M.

Escrow-decrypt. To decrypt C = 〈U, V 〉 using the escrow key s, do:

V ⊕H(ê(U, sPpub)) = M.

A standard argument shows that assuming that BDH is hard for groups generated
by G the system has semantic security in the random oracle model. (Recall that, since
DDH is easy, we cannot prove semantic security based on DDH.) Yet the escrow agent
can decrypt any ciphertext encrypted using any user’s public key. The decryption ca-
pability of the escrow agent can be distributed using the PKG distribution techniques
described in section 6.

Using a similar hardness assumption, Verheul [46] described an ElGamal encryp-
tion system with nonglobal escrow. Each user constructs a public key with two cor-
responding private keys and gives one of the private keys to the trusted third party.
The trusted third party must maintain a database of all private keys given to it by
the various users.

8. Summary and open problems. We defined chosen ciphertext security for
identity-based systems and proposed a fully functional IBE system. The system has
chosen ciphertext security in the random oracle model assuming BDH, a natural ana-
logue of the CDH problem. The BDH assumption deserves further study considering
the powerful cryptosystems derived from it. For example, it could be interesting to
see whether the techniques of [30] can be used to prove that the BDH assumption is
equivalent to the discrete log assumption on the curve for certain primes p.

Recently, Cocks [8] proposed another IBE system whose security is based on the
difficulty of distinguishing quadratic residues from nonresidues in the ring Z/NZ,
where N is an RSA modulus (i.e., a product of two large primes). Cocks’ system is
somewhat harder to use in practice than the IBE system in this paper. Cocks’ system
uses bit-by-bit encryption and consequently outputs long ciphertexts. Also, encryp-
tion/decryption is a bit slower than the system described in this paper. Nevertheless,
it is encouraging to see that IBE systems can be built using very different complexity
assumptions.

It is an open problem to build chosen ciphertext secure identity-based systems
that are secure in the standard computation model (rather than the random oracle
model). One might hope to use the techniques of Cramer–Shoup [10] to provide
chosen ciphertext security based on DDH. Unfortunately, as mentioned in section 3,
the DDH assumption is false in the group of points on the curve E. However, simple
variants of DDH do seem to hold. In particular, the following two distributions appear
to be computationally indistinguishable: 〈P, aP, bP, cP, abcP 〉 and 〈P, aP, bP, cP, rP 〉,
where a, b, c, r are random in Zq. We refer to this assumption as BDDH. A chosen
ciphertext secure identity-based system strictly based on BDDH would be a plausible
analogue of the Cramer–Shoup system. Building a chosen ciphertext secure IBE
(IND-ID-CCA) in the standard model is currently an open problem.

Appendix A. Definition of the Weil pairing. We define the Weil pairing
and show how to efficiently compute it using an algorithm due to Miller [34]. To be
concrete, we present the algorithm as it applies to supersingular elliptic curves defined
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over a prime field Fp with p > 3. (The curve y2 = x3 + 1 over Fp with p = 2 mod 3
is an example of such a curve.) The definition and algorithm easily generalize to
computing the Weil pairing over other elliptic curves. We state a few elementary
facts about such curves [43].

Fact 1. A supersingular curve E/Fp (with p > 3) contains p+ 1 points in Fp. We
let O denote the point at infinity. The group of points over Fp forms a cyclic group
of order p + 1. Let P ∈ E(Fp) be a point order n, where n divides p + 1.

Fact 2. The group of points E(Fp2) contains a point Q of order n which is
linearly independent of the points in E(Fp). Hence E(Fp2) contains a subgroup which
is isomorphic to the group Z

2
n. The group is generated by P ∈ E(Fp) and Q ∈ E(Fp2).

We denote this group by E[n].
Throughout this section, we let G2 denote the subgroup of F

∗
p2 of order n. We

will be working with the Weil pairing e which maps pairs of points in E[n] to G2, i.e.,
e : E[n]×E[n] → G2. To define the pairing, we review a few basic concepts (see [29,
pp. 243–245]). In what follows, we let P and Q be arbitrary points in E(Fp2).

Divisors. A divisor is a formal sum of points on the curve E(Fp2). We write
divisors as A =

∑
P ap(P ), where aP ∈ Z and P ∈ E(Fp2). For example, A =

3(P1)−2(P2)−(P3) is a divisor. We will consider only divisors A =
∑

P ap(P ), where∑
P ap = 0.

Functions. Roughly speaking, a function f on the curve E(Fp2) can be viewed
as a rational function f(x, y) ∈ Fp2(x, y). For any point P = (x, y) ∈ E(Fp2), we
define f(P ) = f(x, y).

Divisors of functions. Let f be a function on the curve E(Fp2). We define
its divisor, denoted by (f), as (f) =

∑
P ordP (f) · (P ). Here ordP (f) is the order

of the zero that f has at the point P . For example, let ax + by + c = 0 be the
line passing through the points P1, P2 ∈ E(Fp2) with P1 �= ±P2. This line intersects
the curve at a third point P3 ∈ E(Fp2). Then the function f(x, y) = ax + by + c
has three zeroes P1, P2, P3 and a pole of order 3 at infinity. The divisor of f is
(f) = (P1) + (P2) + (P3)− 3(O).

Principal divisors. Let A be a divisor. If there exists a function f such that
(f) = A, then we say that A is a principal divisor. We know that a divisor A =∑

P ap(P ) is principal if and only if
∑

P ap = 0 and
∑

P aPP = O. Note that the
second summation is using the group action on the curve. Furthermore, given a
principal divisor A, there exists a unique function f (up to constant multiples) such
that (A) = (f).

Equivalence of divisors. We say that two divisors A,B are equivalent if their
difference A−B is a principal divisor. We know that any divisor A =

∑
P ap(P ) (with∑

P aP = 0) is equivalent to a divisor of the form A′ = (Q) − (O) for some Q ∈ E.
Observe that Q =

∑
P aPP .

Notation. Given a function f and a divisor A =
∑

P ap(P ), we define f(A)
as f(A) =

∏
P f(P )aP . Note that, since

∑
P aP = 0, we have that f(A) remains

unchanged if instead of f we use cf for any c ∈ Fp2 .
We are now ready to define the Weil pairing of two points P,Q ∈ E[n]. Let AP

be some divisor equivalent to the divisor (P )− (O). We know that nAP is a principal
divisor (it is equivalent to n(P ) − n(O) which is clearly a principal divisor). Hence
there exists a function fP such that (fP ) = nAP . Define AQ and fQ analogously.
The Weil pairing of P and Q is defined as

e(P,Q) =
fP (AQ)

fQ(AP )
.
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This ratio defines the Weil pairing of P and Q whenever it is well defined (no division
by zero occurred). If this ratio is undefined, we use different divisors AP ,AQ to define
e(P,Q).

We briefly show that the Weil pairing is well defined. That is, the value of e(P,Q)
is independent of the choice of the divisor AP as long as AP is equivalent to (P )−(O)
and AP leads to a well-defined value. The same holds for AQ. Let ÂP be a divisor

equivalent to AP , and let f̂P be a function so that (f̂P ) = nÂP . Then ÂP = AP +(g)

for some function g and f̂P = fP · gn. We have that

e(P,Q) =
f̂P (AQ)

fQ(ÂP )
=

fP (AQ)g(AQ)n

fQ(AP )fQ((g))
=

fP (AQ)

fQ(AP )
· g(nAQ)

fQ((g))

=
fP (AQ)

fQ(AP )
· g((fQ))

fQ((g))
=

fP (AQ)

fQ(AP )
.

The last equality follows from the following fact known as Weil reciprocity: for any
two functions f, g, we have that f( (g) ) = g( (f) ). Hence the Weil pairing is well
defined.

Fact A.1. The Weil pairing has the following properties for points in E[n]:
• For all P ∈ E[n], we have e(P, P ) = 1.
• Bilinear: e(P1 + P2, Q) = e(P1, Q) · e(P2, Q) and e(P,Q1 + Q2) = e(P,Q1) ·

e(P,Q2).
• When P,Q ∈ E[n] are collinear, e(P,Q) = 1. Similarly, e(P,Q) = e(Q,P )−1.
• nth root: for all P,Q ∈ E[n], we have e(P,Q)n = 1, i.e., e(P,Q) ∈ G2.
• Nondegenerate in the following sense: if P ∈ E[n] satisfies e(P,Q) = 1 for
all Q ∈ E[n], then P = O.

As discussed in section 5, our concrete IBE scheme uses the modified Weil pairing
ê(P,Q) = e(P, φ(Q)), where φ is an automorphism on the group of points of E.

Tate pairing. The Tate pairing [17] is another bilinear pairing that has the
required properties for our system. We slightly modify the original definition to
fit our purpose. Define the Tate pairing of two points P,Q ∈ E[n] as T (P,Q) =

fP (AQ)
|F∗
p2
|/n

, where fP and AQ are defined as above. This definition gives a com-
putable bilinear pairing T : E[n]× E[n] → G2.

Appendix B. Computing the Weil pairing. Given two points P,Q ∈ E[n],
we show how to compute e(P,Q) ∈ F

∗
p2 using O(log p) arithmetic operations in Fp.

We assume P �= Q. We proceed as follows: pick two random points R1, R2 ∈ E[n].
Consider the divisors AP = (P + R1) − (R1) and AQ = (Q + R2) − (R2). These
divisors are equivalent to (P ) − (O) and (Q) − (O), respectively. Hence we can use
AP and AQ to compute the Weil pairing as

e(P,Q) =
fP (AQ)

fQ(AP )
=

fP (Q + R2)fQ(R1)

fP (R2)fQ(P + R1)
.

This expression is well defined with very high probability over the choice of R1, R2.
(The probability of failure is at most O( log p

p ).) In the rare event that a division by

zero occurs during the computation of e(P,Q), we simply pick new random points
R1, R2 and repeat the process.

To evaluate e(P,Q), it suffices to show how to evaluate the function fP at AQ.
Evaluating fQ(AP ) is done analogously. We evaluate fP (AQ) using repeated doubling.
For a positive integer b, define the divisor

Ab = b(P + R1)− b(R1)− (bP ) + (O).
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It is a principal divisor, and therefore there exists a function fb such that (fb) = Ab.
Observe that (fP ) = (fn) and hence fP (AQ) = fn(AQ). It suffices to show how to
evaluate fn(AQ).

Lemma B.1. There is an algorithm D that given fb(AQ), fc(AQ) and bP, cP, (b+
c)P for some b, c > 0 outputs fb+c(AQ). The algorithm uses only a (small) constant
number of arithmetic operations in Fp2 .

Proof. We first define two auxiliary linear functions g1, g2:
1. Let a1x + b1y + c1 = 0 be the line passing through the points bP and cP . (If

b = c, then let a1x + b1y + c1 = 0 be the line tangent to E at bP .) Define
g1(x, y) = a1x + b1y + c1.

2. Let x+ c2 = 0 be the vertical line passing through the point (b+ c)P . Define
g2(x, y) = x + c2.

The divisors of these functions are

(g1) = (bP ) + (cP ) + (−(b + c)P )− 3(O),

(g2) = ((b + c)P ) + (−(b + c)P )− 2(O).

By definition we have that

Ab = b(P + R1)− b(R1)− (bP ) + (O),

Ac = c(P + R1)− c(R1)− (cP ) + (O),

Ab+c = (b + c)(P + R1)− (b + c)(R1)− ((b + c)P ) + (O).

It now follows that Ab+c = Ab +Ac + (g1)− (g2). Hence

fb+c(AQ) = fb(AQ) · fc(AQ) · g1(AQ)

g2(AQ)
.(B.1)

This shows that to evaluate fb+c(AQ) it suffices to evaluate gi(AQ) for all i = 1, 2
and plug the results into (B.1). Hence, given fb(AQ), fc(AQ) and bP, cP, (b + c)P ,
one can compute fb+c(AQ) using a constant number of arithmetic operations.

We let D(fb(AQ), fc(AQ), bP, cP, (b + c)P
)

= fb+c(AQ) denote the output of
Algorithm D defined in Lemma B.1. Then one can compute fP (AQ) = fn(AQ) using
the following standard repeated doubling procedure. Let n = bmbm−1 . . . b1b0 be the
binary representation of n, i.e., n =

∑m
i=0 bi2

i.
Init: Set Z = O, V = f0(AQ) = 1, and k = 0.
Iterate: For i = m,m− 1, . . . , 1, 0 do:

1: If bi = 1, then do: Set V = D(V, f1(AQ), Z, P, Z + P ), set Z = Z + P , and
set k = k + 1.

2: If i > 0, set V = D(V, V, Z, Z, 2Z), set Z = 2Z, and set k = 2k.

3: Observe that at the end of each iteration we have Z = kP and V = fk(AQ).
Output: After the last iteration, we have k = n, and therefore V = fn(AQ) as

required.
To evaluate the Weil pairing e(P,Q), we run the above algorithm once to compute
fP (AQ) and once to compute fQ(AP ). The Tate pairing is evaluated similarly. Note
that the repeated squaring algorithm needs to evaluate f1(AQ). This is easily done
since the function f1(x, y) (whose divisor is (f1) = (P +R1)− (R1)− (P ) + (O) ) can
be written out explicitly as follows.

1. Let a1x + b1y + c1 = 0 be the line passing through the points P and R1.
Define the function g1(x, y) = a1x + b1y + c1.
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2. Let x + c2 = 0 be the vertical line passing through the point P + R1. Define
the function g2(x, y) = x + c2.

3. The function f1(x, y) is simply f1(x, y) = g2(x, y)/g1(x, y), which is easy to
evaluate in Fp2 .
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3-DIMENSIONAL EUCLIDEAN VORONOI DIAGRAMS OF
LINES WITH A FIXED NUMBER OF ORIENTATIONS∗
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Abstract. We show that the combinatorial complexity of the Euclidean Voronoi diagram of
n lines in R

3 that have at most c distinct orientations is O(c3n2+ε) for any ε > 0. This result
is a step toward proving the long-standing conjecture that the Euclidean Voronoi diagram of lines
in three dimensions has near-quadratic complexity. It provides the first natural instance in which
this conjecture is shown to hold. In a broader context, our result adds a natural instance to the
(rather small) pool of instances of general 3-dimensional Voronoi diagrams for which near-quadratic
complexity bounds are known.

Key words. computational geometry, Voronoi diagrams, arrangements, lines in space
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1. Introduction.
Background. The Voronoi diagram of a set Γ of disjoint objects (“sites”) in some

space under some metric is a subdivision of the space into cells, one cell per site, such
that the cell associated with a site O ∈ Γ comprises the points in space for which O
is closer (under the given metric) than all other sites of Γ.

The study of Voronoi diagrams in the plane has been very extensive over the past
20 years, and the structure of such diagrams is by now thoroughly understood. The
study has covered diagrams for many kinds of sites, and for many kinds of metrics or
distance functions, and has also considered other variants of the problem, such as kth
order diagrams, constrained Delaunay triangulations, and more. Surveys of the state
of the art are given in Aurenhammer and Klein [4] and Fortune [10].

In contrast, Voronoi diagrams in three and higher dimensions have been much less
studied, and many basic problems are still wide open. Most variants of planar Voronoi
diagrams have linear complexity, which is usually a consequence of the planarity of
the diagram. In three dimensions, a prevailing conjecture is that the complexity of
Voronoi diagrams should be in general at most quadratic or near-quadratic in the
number of sites. This is known to hold only for a very few special cases, including
the cases of point sites under the Euclidean metric [16, 21], point sites under any
“polyhedral” metric or distance function (i.e., distance functions induced by a convex
polytope with O(1) facets; see [5, 15, 24] for details), line sites under similar distance
functions [6], and sphere sites under the Euclidean metric [3]. Only very recently,
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the authors [17] have shown this to hold also in the case of arbitrary polyhedral sites
under polyhedral distance functions.

In all the other, “open” cases, cubic or near-cubic upper bounds for the complexity
of 3-dimensional Voronoi diagrams are known. They are a consequence of the repre-
sentation of such diagrams as lower envelopes of trivariate functions, each measuring
the distance from a point in R

3 to one of the sites; see [8] for this representation
and [23] for the bounds just stated. In contrast, only quadratic or near-quadratic
lower bounds for the complexity of 3-dimensional diagrams are known [2, 6].

The case of the Euclidean metric appears to be harder than the case of poly-
hedral metrics (or distance functions), because the trivariate functions that measure
distances are curved (except for the special case of point sites, where they can be
transformed into linear functions), and the constraints that define the diagram are
harder to analyze. The simplest open case of 3-dimensional Euclidean diagrams is
that in which the sites are lines. This specific problem is listed as Problem 3 in
the list of open problems in computational geometry, recently published by Mitchell
and O’Rourke [19]. A recent result that lends credence to the conjecture that the
complexity of such diagrams is near-quadratic is due to Agarwal and Sharir [1], who
showed that the complexity of the union of n infinite congruent cylinders in 3-space
is near-quadratic. The boundary of this union can be interpreted as a cross-section
of the Euclidean Voronoi diagram of the axes of the cylinders, being the locus of
all those points whose distance to the nearest axis has a fixed value (equal to the
common radius of the cylinders). The complicated proof in [1] and the fact that the
result applies merely to a single cross-section of the diagram suggest that the problem
involving the whole Euclidean Voronoi diagram of lines might be particularly hard to
tackle.

Our contribution. In this paper, we obtain the first result toward the described
goal. We study the special case in which the sites are lines that have a fixed number c
of distinct orientations (and the metric is Euclidean). Even this special case is quite
nontrivial to analyze. We show that the complexity of the diagram is O(c3n2+ε)
for any ε > 0, where the constant of proportionality depends on ε. This implies,
in particular, that when the number of distinct orientations in a collection of lines
is constant (that is, c = O(1)), the complexity of its Euclidean Voronoi diagram
is O(n2+ε) for any ε > 0. This completely confirms the above-mentioned conjecture
in this case.

The motivation underlying the study of Voronoi diagrams in computational geom-
etry has always been algorithmic. They provide a natural data structure for handling
a variety of applications, important both in theory and in practice, such as proximity
(nearest neighbor) queries, high-clearance placements and motion planning problems,
clustering and classification problems, and many more (see, among others, the survey
by Aurenhammer and Klein [4] and the book by Okabe et al. [20] for a description of
many of these applications).

There are several general techniques for computing Voronoi diagrams, such as
randomized incremental construction or sweep-based methods, and many more ad hoc
approaches. However, a precursory stage to the design of any algorithm for computing
Voronoi diagrams is obtaining sharp bounds on their complexity. This will serve as a
lower bound for the efficiency of any such algorithm and quite often can be used in
the design of algorithms with roughly the same running time. Nevertheless, most of
the algorithmic study of Voronoi diagrams has been confined to planar diagrams for
the good reason that we are still lacking sharp general bounds for the complexity of
generalized 3-dimensional diagrams.
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The results presented in this paper are an attempt to remedy this situation. The
special case we treat is important because it provides us with one more problem in-
stance where near-quadratic bounds can be established. We hope that the method
developed here will find applications in the analysis of other types of 3-dimensional
Voronoi diagrams (see the remark at the end of section 3) and thereby lead us
further toward the ultimate goal of establishing near-quadratic bounds for general
3-dimensional diagrams, following which near-quadratic algorithms for their construc-
tion will not be too difficult to design.

Moreover, the considered setting of lines with a fixed number of orientations is
interesting in its own right. It is applicable, for example, to the problem of motion
planning, or of finding largest free placements, of a ball amid a collection of “beams”
or “pipes” in 3-space. It is a natural assumption that the beams have only a con-
stant number of orientations. (Typical examples of this setting occur in architectural
design.)

Organization. We first study, in section 2, the special case in which the lines
have at most three distinct orientations. In this special case, we obtain the slightly
improved bound O(nλ5(n)), where λ5(n) = O(n ·α(n)O(α(n))) is the maximum length
of Davenport–Schinzel sequences of order 5 on n symbols, and where α(n) is the
extremely slowly growing inverse Ackermann function (see [23] for details). The case
of four orientations is treated in section 3, and the simple extension to more than four
orientations is described in section 4.

2. The case of two or three orientations. Let L be a set of n lines in 3-space
which have up to three distinct orientations. Thus L can be written as R ∪ B ∪ G,
where all the lines in R (called “red” lines) have the same orientation, and the same
holds for the lines of B (“blue” lines) and those of G (“green” lines).

We adopt a limited general position assumption on L as follows. First, we assume
that each of the collections R, B, and G is in general position in the sense that its
intersection with any fixed generic plane is a collection of points in general position
(that is, it does not contain collinear triples or cocircular quadruples of points or other
degenerate configurations). We also assume that the three vectors that are parallel
to the orientations of the collections R, B, and G do not lie in a common plane.

Before we proceed, we need to mention some basic properties of bisectors and
trisectors of lines, which are, respectively, the loci of points equidistant from two and
three lines. These geometric properties are reported here without proofs, which are
given as an appendix below, in order to maintain the flow of exposition. The main
conclusions from the analysis carried out in the appendix are as follows. A bisector
of two lines is in general a hyperbolic paraboloid, which is a doubly ruled quadratic
surface. (It degenerates to a plane when the two lines are parallel.) A trisector of three
pairwise nonparallel lines is an algebraic curve of degree four and, if nonsingular, has
exactly four components, all unbounded. If two of the three defining lines are parallel,
the trisector becomes a planar conic section (of degree two, consisting of at most two
unbounded components). If all three lines are parallel, the trisector is a line parallel
to them. The fact that no component of any trisector is bounded will be significant
in our analysis. In what follows, we will denote the bisector of two lines e, f by He,f ,
and the trisector of three lines e, f, g will be denoted by τe,f,g.

Denote the Euclidean Voronoi diagram of L by Vor(L). We begin by bounding
the number of its vertices. Let v be such a vertex, incident to the cells of four lines
�1, �2, �3, �4. At least two of them must be of the same color. Suppose first that three
of them are of the same color, say, �1, �2, �3 ∈ R. Project v and all the lines of R
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onto a plane π orthogonal to these lines. Then each line of R projects to a point,
and v projects onto a vertex v∗ of the planar Voronoi diagram of the projected points
within π. The number of such vertex projections v∗ is thus at most 2n−4. Moreover,
the number of vertices v that can project onto the same point v∗ is at most 2n. This
is because the radius r of the ball centered at v and touching �1, �2, �3 is equal to the
radius of the disk within π centered at v∗ and touching the point projections of these
three lines. As we slide a ball of radius r while maintaining contact with �1, �2, �3, we
reach at most 2n placements where it touches a fourth line. Each of these touching
placements in which the ball is not crossed by any other line gives rise to a Voronoi
vertex that projects onto v∗. This implies that the overall number of Voronoi vertices
of the kind under consideration is at most (2n− 4) · 2n = O(n2).

Suppose then that exactly two of the four lines are of the same color, say,
�1, �2 ∈ R, �3 ∈ B, and �4 ∈ G. If we project v and the lines of R onto the same
plane π as above, we obtain that the projection of v lies on a Voronoi edge of the
planar diagram of the point projections of the red lines. The number of such edges
is O(n).

Fix such an edge e, and consider the 2-dimensional slab Σe obtained by sweeping
e in the direction of the red lines; by construction, v ∈ Σe. Moreover, Σe is the locus
of all the centers of balls that touch �1 and �2 and no other red line. Let He denote
the plane containing Σe, and let �0 be the line of intersection between He and the
plane π0 spanned by �1 and �2—this intersection is the midline of the 2-dimensional
slab spanned by �1 and �2. Denote the two halfspaces bounded by π0 as π+

0 and π−0 .
See Figure 1.

�1

�2

Σe

e

�0

p λp

π0

Fig. 1. The bisector of �1 and �2.

Fix a point p ∈ �0, and consider the line λp that passes through p, lies in He, and
is orthogonal to �0. Parametrize λp by a real parameter y, where y = 0 at p, y > 0
within π+

0 , and y < 0 within π−0 . Move a point q along the entire λp in the direction
of increasing y. The ball centered at q and touching �1, �2 has the property that its
intersection with π+

0 keeps expanding during the motion (i.e., any point of π+
0 that

the moving ball meets will remain inside the ball as its center keeps moving in the
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above direction). Similarly, the portion of the moving ball within π−0 keeps shrinking
“into itself.”

Let each line � ∈ B∪G define two rays �+ = �∩π+
0 , �

− = �∩π−0 . With each ray �+

(resp., �−), associate a function ψ
+ (resp., ψ
−) on �0, where ψ
+(p) (resp., ψ
−(p))
for p ∈ �0 is the y-value of the center of the ball that touches �1, �2, and �+ (resp., �−),
where the center lies on λp. The functions ψ
+ , ψ
− are defined (and continuous) when
� does not intersect the disk centered at p, lying in π0, and touching �1 and �2. Hence
the (common) domain of definition of ψ
+ and ψ
− is either the full line �0 if � does
not intersect the 2-dimensional slab spanned by �1 and �2 or the union of two rays
along �0 otherwise.

Denote the collection of the functions ψ
+ (resp., ψ
−) for � ∈ B ∪ G by Ψ+

(resp., by Ψ−). The preceding observations imply that any Voronoi vertex v ∈ Σe
under consideration (two of whose defining lines are in B ∪G) corresponds either to
a vertex of the lower envelope of Ψ+ or to a vertex of the upper envelope of Ψ− or to
an intersection point between the two envelopes.

It is easily seen that any pair of functions of the above kind intersect in at most
four points. Indeed, any such intersection point w is equidistant from �1, �2, and from
two other lines �3, �4 ∈ B ∪G. That is, we have

d2(w, �1)
(
= d2(w, �2)

)
= d2(w, �3) = d2(w, �4).

The squared distance of a point w from a line that passes through a point a and has
unit direction u is

‖w − a‖2 − ((w − a) · u)2,
which is a quadratic polynomial in the coordinates of w. Since w lies on the plane He,
we obtain a system of two quadratic equations in two variables which has at most
four solutions (see also the proof of Lemma 3.1 below).

It is shown, e.g., in [23, Lemma 1.8] that the complexity of the upper or lower
envelope of continuous functions, so that each function is defined on a ray or on
the whole real line, and so that each pair of them intersect in at most four points, is
O(λ5(n)) = O(n·α(n)O(α(n))) [23], where λ5(n) is the maximum length of Davenport–
Schinzel sequences of order 5 on n symbols, and where α(n) is the extremely slowly
growing inverse Ackermann function. As observed above, we can split each partially
defined function in Ψ+∪Ψ− into two functions, each defined over a ray. We thus con-
clude that the number of Voronoi vertices in (the relative interior of) Σe is O(λ5(n)).
Multiplying this bound by the number O(n) of edges e and adding the preceding
bound O(n2) on the number of vertices defined by three lines of the same color, we
conclude that the number of vertices of the diagram Vor(L) is O(nλ5(n)).

We next bound the number of edges of Vor(L). If an edge e is delimited by a
Voronoi vertex v, we charge e to v. By the general position assumption, each v is
charged at most four times, so the number of edges e of this kind is O(nλ5(n)). Let
e be a Voronoi edge that has no incident Voronoi vertex. As mentioned above, the
analysis of trisectors implies that e is not bounded.

Fix two planes π±: z = ±z0 such that each unbounded edge of Vor(L) intersects
at least one of them. (Assuming that the coordinate directions are generic, such planes
exist.) It therefore suffices to bound the complexity of the cross-sections of Vor(L)
with the planes π±. Consider, say, the plane π+. The Voronoi cells in each of the
monochromatic diagrams Vor(R), Vor(B), Vor(G) are unbounded convex prisms,
whose faces are all parallel to the orientation of the respective collection of lines, and
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the overall complexity of each diagram isO(n). Hence, the intersection of π+ with each
of these monochromatic diagrams is a planar convex subdivision of complexity O(n).
The overlay of these cross-sections is a planar convex subdivision of complexity O(n2).
For each cell ξ of the overlay, there exist a fixed red line r, a fixed blue line b, and a
fixed green line g, which are the nearest red, blue, and green lines to any point in ξ,
respectively. It follows that the complexity of the overall diagram Vor(L) within ξ is
bounded by a constant, which implies that the complexity of the diagram within π+

(and, symmetrically, within π−) is O(n2).
This implies that the number of unbounded edges of Vor(L) is O(n2). It is

easily seen that the number of 2-faces of the diagram is proportional to the number
of vertices plus the number of edges plus O(n2). Finally, the number of 3-cells is
only n: Each line has a connected, star-shaped Voronoi cell [18]. Hence we obtain the
following theorem, the main result of this section.
Theorem 2.1. The complexity of the Voronoi diagram of a set of n lines with at

most three distinct orientations is O(nλ5(n)) = O(n2 · α(n)O(α(n))).

3. The case of four orientations. We now assume that the given set L of
lines is the union of four subsets, each consisting of lines at a fixed direction. We
denote these subsets by R (consisting of “red” lines), B (consisting of “blue” lines),
G (consisting of “green” lines), and Y (consisting of “yellow” lines). The proof of the
following elementary geometric fact is provided for completeness.
Lemma 3.1. The maximum number of balls tangent to four given lines in 3-space,

assuming general position, is 8.
Proof. As already noted, the distance d(x, �) between a point x ∈ R

3 and a line �,
passing through a point a and having unit direction u, satisfies

d2(x, �) = ‖x− a‖2 − ((x− a) · u)2,
which is a quadratic function of x. Given four lines �1, �2, �3, �4 in general position,
the center x of a ball that is tangent to all four lines has to satisfy the equations

d2(x, �1) = d2(x, �2) = d2(x, �3) = d2(x, �4).

These are three quadratic equations, so, by Bezout’s theorem [14], the number of
solutions is at most 23 = 8.

The number 8 can be attained: We first give a construction where the lines are
not in general position. Take �1, �2, �3 to be any three nonconcurrent lines in the
xy-plane. They determine four disks D1, D2, D3, D4 in that plane that are tangent to
all three of them, as shown in Figure 2. Take �4 to be any line perpendicular to the
xy-plane, meeting the plane at a point not lying in any of these disks. Fix a disk Di,
and let λi be the z-vertical line passing through the center of Di; this is the locus of
all centers of balls that touch �1, �2, �3 and meet the xy-plane at Di. It is easily seen
that there are exactly two points on λi, symmetric to each other with respect to the
xy-plane, that are centers of balls that also touch �4. For any specific disc Di, this
yields two distinct balls that touch all four lines, giving us eight such balls overall. By
slightly perturbing the lines, we can obtain a construction for lines in general position.
This completes the proof of the lemma.

Let �1, �2, �3, �4 be four given lines of different colors. Let s ≤ 8 denote the number
of balls tangent to all four of them, and let c1, . . . , cs denote the centers of these balls,
sorted in increasing order of their x-coordinate. (The coordinate frame is assumed to
be generic so that no two ci’s have the same x-coordinates.) Define the index ind(ci)
of ci to be min{i− 1, s− i}, so we have 0 ≤ ind(ci) ≤ 3 for each i.
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�1

�2

�3

�4

Fig. 2. Four lines having eight Voronoi vertices.

With each line � ∈ L = R∪B ∪G∪Y we associate the squared distance function
f
: R

3 �→ R, given by f
(x) = d2(x, �). Let EF denote the lower envelope of the set
F = F(L) = {f
 | � ∈ L}. Clearly, the minimization diagram of EF , namely, the
projection of (the graph of) EF onto the xyz-space, is the Voronoi diagram Vor(L)
(see also [8]).

For each point q = (q1, q2, q3, q4) ∈ R
4, define its R-level (resp., B-level, G-level,

Y -level) to be the number of lines � ∈ R (resp., � ∈ B, � ∈ G, � ∈ Y ) whose
corresponding function graphs pass below q; that is, q4 > f
(q1, q2, q3). The combined
level of q is the sum of its red, blue, green, and yellow levels. We denote the graph of
each f
 ∈ F by f̃
. Denote by R̃ the collection of all graphs f̃
 for � ∈ R, and define
B̃, G̃, Ỹ , and L̃ analogously. Let A(L̃) denote the arrangement in R

4 of the graphs f̃

of the functions in L̃. Clearly, for a vertex q of A(L̃), q is a vertex of EF if and only
if the combined level of q is 0.

Let V
(j)
0 (L) (resp., V

(j)
≤k (L)) denote the number of “4-colored” vertices q of A(L̃)

(i.e., vertices incident to a red graph, a blue graph, a green graph, and a yellow graph)

of index ≤ j, whose combined level is 0 (resp., at most k). Put V0(L) = V
(3)
0 (L) and

V≤k(L) = V
(3)
≤k (L). We also put V

(j)
0 (n) = maxL V

(j)
0 (L), where the maximum is

taken over all families L of n lines, each having one of the four given orientations;

V
(j)
≤k (n) is defined analogously. Using the Clarkson–Shor bound on levels [7], we have

V
(j)
≤k (n) = O

(
k4V

(j)
0

(n
k

))
.

As mentioned in section 2 and proven in the appendix, every connected component
of any trisector is unbounded. However, in the proof below, we will not make use
of this property at all. This will be significant when we extend the analysis to more
general setups—see a discussion at the end of this section.

3.1. Irregular vertices. Let v be a 4-colored vertex of the diagram, interpreted
as a vertex of the lower envelope EF , incident to four graphs f̃r, f̃b, f̃g, f̃y for some
r ∈ R, b ∈ B, g ∈ G, and y ∈ Y . The vertex v is incident to four edges of the envelope,
which we denote mnemonically as rbg, rby, rgy, and bgy, where rbg ⊆ τr,b,g denotes

the edge lying on the graphs f̃r, f̃b, f̃g, and similarly for the three other edges. As
noted in [22], at least one of these edges emanates from v in the positive x-direction,
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and at least one edge emanates in the negative x-direction. We call v a regular vertex
if exactly two of these edges emanate from v in the positive x-direction and exactly
two emanate from v in the negative x-direction. Otherwise, we call v irregular.

Lemma 3.2. There are only O(nλ5(n)) irregular vertices.

Proof. Let v be an irregular vertex. If v is not 4-colored, then the claim follows
from Theorem 2.1, so assume that v is 4-colored, and use the above notation to denote
the surfaces and edges incident to v. Suppose, without loss of generality, that three
of the incident edges emanate from v to the left, and assume that they are rbg, rby,
and rgy. In this case (assuming general position), v is a locally x-maximal vertex of
the Voronoi cell V (r) of r. Clearly, each line has a single connected Voronoi cell. In
fact, each cell, star-shaped with respect to its defining line, is also simply connected;
see, e.g., [18].

As shown, e.g., in [12, Lemma 2.4], the number of locally x-extremal points of
a simply connected 3-dimensional region K is proportional to 1 plus the number of
critical points of ∂K (relative to the x-direction). These are points w for which the
cross-section of the interior of K with the yz-parallel plane through w is disconnected
near w but becomes connected (near w) when the plane slightly translates in some
direction. Hence the number of irregular vertices of Vor(L) is proportional to the
number of critical points of cell boundaries plus O(n).

Assuming general position, each critical point w of ∂V (r) is incident to only three
surfaces; it is typically a locally x-extremal point of a Voronoi edge of V (r). Suppose,
without loss of generality, that w is incident to f̃r, f̃b1 , f̃g1 for some b1 ∈ B, g1 ∈ G.
Then w is a locally x-extremal point of (the relative interior of) a Voronoi edge (a
portion of τr,b1,g1) of the 3-colored Voronoi diagram Vor(R∪B∪G). By Theorem 2.1,
the overall number of such features is O(nλ5(n)), and this completes the proof of the
lemma.

3.2. The counting scheme. In light of Lemma 3.2, this section is devoted to
bounding the number of regular vertices of Vor(L). This number is estimated using
a variation of the “counting scheme” technique, as introduced by Halperin and Sharir
[11, 22] (see also [23]).

Let v be a 4-colored regular vertex, incident to f̃r, f̃b, f̃g, f̃y, using the notation
introduced above. Let 0 ≤ j ≤ 3 be the index of v. Without loss of generality,
assume that there are exactly j vertices incident to f̃r, f̃b, f̃g, f̃y to the right (that is,
in the x-increasing direction) of v. By definition, v is incident to two edges of EF
that emanate from it to the right, and to two edges that emanate from it to the
left. Without loss of generality, assume that the edges emanating to the right are rbg
and rby and the edges emanating to the left are rgy and bgy.

Consider the 2-dimensional bisector Hg,y. Denote by Rgy the set of trisectors
τg,y,r′ drawn as curves along Hg,y for red lines r′ ∈ R. Define in an analogous manner
the sets Bgy, Ggy, and Ygy (where the latter two sets exclude the ill-defined trisectors
induced by g and y themselves). Let Agy denote the 2-dimensional arrangement of
the collection Rgy ∪Bgy ∪Ggy ∪Ygy of curves within Hg,y. It follows that there exists
a face of Agy that is also a 2-face of EF on Hg,y, such that v is a locally x-maximal
vertex of that face.

Let γr ∈ Rgy (resp., γb ∈ Bgy) denote the trisector τr,g,y (resp., τb,g,y), regarded
as a curve within Hg,y. If we follow γr from v to the right, we lie, locally near v,

above EF (actually, above f̃b), and similarly for γb (which lies locally above f̃r). See
Figure 3.



624 VLADLEN KOLTUN AND MICHA SHARIR

v
E

γr

γb

Fig. 3. The vertex v on Hg,y—a view from the bottom (in R
4).

3.2.1. Initial counting stages and vertices of index 0 and 1.

Lemma 3.3. V
(0)
0 (n) and V

(1)
0 (n) are bounded by O(nλ5(n)).

Proof. Trace the curve γr from v to the right, and stop as soon as we reach one
of the following critical events along γr:

(a) We reach another intersection of the four graphs f̃r, f̃b, f̃g, f̃y.
(b) We reach a 3-colored vertex.
(c) We reach x = +∞.
(d) We reach a locally x-extremal point of the curve γr.

We refer to events of types (b)–(d) as terminal events.

Perform a similar tracing along γb. Suppose that at least one of the tracings,
say, along γr, reaches a terminal event. The first such event either is a vertex of the
3-colored Voronoi diagram of R∪G∪Y or can be charged to an edge of this diagram.
By Theorem 2.1, the number of such events is thus O(nλ5(n)), and each such event
is uniquely counted by some vertex v. (This follows since between v and the terminal
event we are always above EF .) Hence the number of vertices v that fall in this case
is O(nλ5(n)). In particular, this bounds the number of vertices of index 0.

We may thus assume that the tracing of γr ends at a vertex u, and the tracing of γb
ends at a vertex w, so that both u and w are incident to f̃r, f̃b, f̃g, f̃y (see Figure 4).

Moreover, the portion δ
(1)
r of γr between v and u and the portion δ

(1)
b of γb between

v and w are both x-monotone, and neither of them contains a 3-colored vertex or
another terminal event. In particular, u and w lie to the right of v, the red, green,
and yellow levels of u are all 0, and the blue, green, and yellow levels of w are all 0.

v

u

w

δ
(1)
r

δ
(1)
b

Fig. 4. Tracing from v to the right.

If u = w, then this is a vertex of the diagram (because all its colored levels are 0)
of index at most j − 1 (because it lies to the right of v). The number of vertices v in

this subcase is thus at most V
(j−1)
0 (n). In particular, this is easily seen to imply that
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the number of vertices of index 1 is O(nλ5(n)). We have thus shown the following:

V
(0)
0 (n) = O(nλ5(n)), V

(1)
0 (n) = O(nλ5(n)),

which completes the proof of the lemma.

3.2.2. Subsequent counting stages and vertices of index 2. In what fol-
lows, we assume that j = 2 or 3. In light of the arguments made in the proof of
Lemma 3.3, we may assume that u �= w. Fix some threshold parameter k to be
determined later.

Lemma 3.4. V
(2)
0 (n) is bounded by O(k3nλ5(n) + k2V0(

n
5k )).

Proof. Suppose that the blue (and thus the combined) level of u is at most 4k.
In this case, we charge v to u. The charging is unique, implying that the number of
vertices v in this case is at most

V
(j−1)
≤4k (n) = O

(
k4V

(j−1)
0

( n

4k

))
,

where, as already mentioned, we use the Clarkson–Shor bound on levels [7]. A similar
charging is applied if the level of w is at most 4k. Hence, in what follows, we may
assume that u �= w and that both lie at combined level > 4k.

LetW denote the portion of Hg,y consisting of all points that lie above the graphs
of both fr and fb, and let W0 be the connected component of W whose boundary
contains v. The region W0 is bounded, locally near v and to its right, by the two

arcs δ
(1)
r and δ

(1)
b , and v is a locally leftmost (x-minimal) vertex of W0. Let δ

(2)
b

(resp., δ
(2)
r ) denote the other edge of ∂W0 incident to u (resp., to w). Both δ

(1)
r

and δ
(2)
r are contained in the trisector τr,g,y, although they do not have to lie on

the same component of that curve. Similarly, δ
(1)
b and δ

(2)
b are contained in τb,g,y.

Without loss of generality, we assume that δ
(1)
r lies clockwise to δ

(1)
b (when viewed

from above); see Figure 5 for an illustration of several possible shapes of W0.

Fig. 5. Several possible structures of the region W0. In all cases, at most three vertices of W0

lie to the right of v.
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Let ζ be a vertex of Agy along δ
(1)
r , incident to the graph of some other blue

function fβ . (Recall that, by assumption, all vertices along δ
(1)
r are 4-colored.) Con-

sider the trisector τβ,g,y as a curve γβ within Hg,y, and let δβ denote the connected
component of γβ∩W0 incident to ζ. We say that δβ is a deep arc if it contains at least
k vertices of Agy. If δβ is not deep and it contains a terminal event (namely, it con-
tains a 3-colored vertex, or contains a locally x-extremal point, or reaches x = ±∞),
we call it a terminal arc. Otherwise, we call it shallow. See Figure 6 for a special
case of a shallow arc. Similar notation applies to red arcs that emanate from vertices

of Agy along δ
(1)
b .

v

u

w

δ
(1)
b

δβζ
ζ ′

δ
(1)
r

Fig. 6. A shallow arc that lands back on δ
(1)
r .

Consider the first 4k vertices along δ
(1)
r . (By assumption, δ

(1)
r must contain at

least this many vertices.) If at least 2k of the corresponding arcs δβ are deep, then
collecting the first k vertices along each of these arcs yields a set of at least 2k2 vertices
of Agy within W0, all lying at combined level at most 5k. We claim that each of them
is charged by vertices like v at most a constant number of times. Indeed, let η be
such a vertex, lying on a deep blue arc δβ . Note that the starting point ζ of δβ is at
red level 0, but all points in the relative interior of δβ have strictly positive red levels.
Hence we can trace δβ back from η (there are two possible directions for this tracing)

until we reach the first point ζ at red level 0. The point ζ must lie on δ
(1)
r , and we can

trace δ
(1)
r from ζ backward (to the left) until we reach v—the first vertex at combined

level 0. Hence, using [7], as above, the number of vertices v in this subcase is at most

O

(
1

k2
V≤5k(n)

)
= O

(
k2V0

(
n

5k

))
.

The same bound applies to the number of vertices v for which at least 2k of the first

4k vertices along δ
(1)
b are sources of deep red arcs.

Hence we may assume that, among the first 4k vertices along δ
(1)
r , at least 2k

are sources of shallow or terminal arcs, and similarly for δ
(1)
b . If any of these arcs

is terminal, we charge v to the corresponding terminal event along the arc. We
note that such an event η lies at combined level at most 5k. Hence η is or can be
charged to a (≤ 5k)-level feature of one of the 4-dimensional 3-colored arrangements
A(B̃ ∪ G̃ ∪ Ỹ ), A(R̃ ∪ G̃ ∪ Ỹ ). Moreover, arguing as in the preceding paragraph,
η is charged by vertices like v at most twice. By Theorem 2.1 and [7], the number of
such events η, and thus also the number of vertices v that fall into this subcase, is at
most

O

(
k4 · n

5k
λ5

(
n

5k

))
= O(k2nλ5(n)).
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Hence we may assume that at least 2k of the first 4k vertices along δ
(1)
r are sources

of shallow arcs, and none of these vertices are sources of terminal arcs. Moreover, the

same property holds for δ
(1)
b .

Suppose that one of these shallow arcs, δβ , emanating from δ
(1)
r , terminates also

on δ
(1)
r , as in Figure 6. By definition, δβ does not encounter any blue graph f̃β′ (for

then δβ would contain a 3-colored vertex and thus would be terminal). Hence the
blue level of the terminal endpoint ζ ′ of δβ is equal to the blue level of the starting
point ζ, and all other levels of both endpoints are 0. In this case, we skip the portion

of δ
(1)
r between ζ and ζ ′. More precisely, we modify the tracing procedure used so

far as follows: Trace δ
(1)
r to the right, starting from v, and attempt to collect either

2k deep arcs or a terminal arc or 2k shallow arcs that do not terminate on δ
(1)
r . If

during this tracing we reach a shallow arc δβ that does terminate on δ
(1)
r , we take a

“shortcut” along δβ and continue the tracing of δ
(1)
r from the other endpoint of δβ . It

is clear that this modified process must terminate successfully, or else we would reach

the endpoint u of δ
(1)
r , which then would lie at level ≤ 4k, contrary to assumption.

From now on, we apply a similarly modified tracing procedure to δ
(1)
b as well.

We thus reach the following situation. We have collected at least 2k shallow blue

arcs that emanate from δ
(1)
r and terminate on other red edges of ∂W0 and at least

2k shallow red arcs that emanate from δ
(1)
b and terminate on other blue edges of ∂W0.

The combined level of any point on any of these arcs is at most 5k.

Suppose that one of the shallow blue arcs δβ that emanates from δ
(1)
r terminates

on a (red) edge δ
(3)
r of ∂W0 that does not intersect τb,g,y at all. That is, δ

(3)
r is a

full (bounded or unbounded) component of the trisector τr,g,y, which lies fully above

the graph of fb, as in Figure 7. Let η be the “landing point” of δβ on δ
(3)
r . The

combined level of η is at most 5k. Trace δ
(3)
r from η to the right (i.e., in the positive

x-direction) until we reach a terminal event η′, to which we charge v. (Such an η′

always exists: even if we do not encounter any finite event, we will reach x = +∞,
which is a terminal event, by definition.) Note that η′ is or can be charged to a
feature of the 4-dimensional arrangement A(R̃∪G̃∪ Ỹ ), whose combined level (in this
3-colored arrangement) is at most 5k. Arguing as above, the number of such events
is O(k2nλ5(n)). Here we cannot claim that η′ is uniquely charged by v, but we can
still bound the number of times η′ is charged, as follows.

Fig. 7. Charging v when a shallow arc lands on an edge of W0 that does not meet other such
edges.
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Trace δ
(3)
r back (in the negative x-direction) from η′ (there may be two choices

for r and for δ
(3)
r given a specific η′, since η′ may be a 3-colored vertex) until the first

time we reach a point whose combined level (including the blue level) is at most 5k.
This backward tracing has to succeed: it will reach η or stop earlier. Then any
charging vertex v must be a vertex incident to f̃r, f̃g, f̃y, and to some f̃b1 , from the
at most 5k blue surfaces b1 that lie below the stopping point. In other words, η′ can
be charged at most O(k) times, implying that the number of vertices v that fall into
this subcase is

O(k3nλ5(n)).(1)

A symmetric analysis applies if a shallow red arc lands on a blue edge of ∂W0

which is a full component of τb,g,y. Moreover, the analysis just given also holds if δ
(3)
r

meets f̃b in only one of the two directions from η and extends to infinity in the other
direction. It also holds if, in at least one of the two directions, we meet a terminal
event before meeting f̃b. And it also holds in the symmetric extended cases, in which
the roles of the red and blue colors are interchanged.

The above analysis implies, in particular, that in what follows we may assume

that none of the first 2k shallow arcs that emanate from δ
(1)
r and δ

(1)
b terminate on

a bounded component of ∂W0 that does not meet other components of ∂W0. Note

also that the analysis holds if δ
(3)
r is a bounded component of τr,g,y that lies fully to

the right of v. Indeed, even if such a component does meet f̃b, it must meet it at two
points, both different from u,w and lying to the right of v, which is impossible.

Suppose now that one of the collected blue shallow arcs δβ terminates on δ
(2)
r ,

as in Figure 8. Each of the ≥ 2k red shallow arcs that we have collected along δ
(1)
b

must cross δβ . Indeed, none of these arcs terminate on δ
(1)
b , by construction; they

cannot terminate on δ
(1)
r or on δ

(2)
r , for that would have made them terminal; and, as

argued above, they also do not terminate on an isolated bounded component of ∂W0.
This, however, contradicts the shallowness of δβ , since it cannot contain more than
k crossings with other arcs. We have thus showed that none of the collected blue

shallow arcs terminate on δ
(2)
r . Symmetrically, it can be shown that none of the

collected red shallow arcs terminate on δ
(2)
b .

δ
(1)
r

δ
(1)
b

δ
(2)
r

Fig. 8. A shallow blue arc cannot “intercept,” by terminating on δ
(2)
r , the shallow red arcs

emanating from δ
(1)
b
.

The bounds accumulated so far account for all the vertices v with index at most 2.
Specifically, we have

V
(2)
0 (n) = O

(
k3nλ5(n) + k2V0

( n

5k

))
,
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thereby proving the lemma.

3.2.3. Final counting stages and vertices of index 3.

Lemma 3.5. V
(3)
0 (n) is bounded by

O

((
k2�2 + �3

)
nλ5(n) + V

(2)
0 (n) + k4V

(2)
0

( n

4k

)

+ k2V
(3)
0

( n

5k

)
+ �4V

(2)
0

( n
5�

)
+ k2�2V

(3)
0

( n
6�

))
.

Proof. From now on, we deal with vertices v of index 3. They are treated
by considering a number of possible structures of the region W0 as well as possible
behavior patterns of arcs inside W0 and bounding the maximal number of vertices v
in each case. This will often be performed by charging v to certain features in W0.

We already have sufficient machinery to dispose of vertices v for which δ
(2)
r and δ

(2)
b

meet at a common endpoint, as in Figure 9. The preceding arguments allow us to

assume that there are no shallow arcs that connect δ
(1)
r to δ

(2)
r , or δ

(1)
b to δ

(2)
b , and

that there are no shallow arcs that land on any bounded component of W0 within the

quadrangle formed by δ
(1)
r , δ

(1)
b , δ

(2)
r , and δ

(2)
b . This means that, in this case, unless

u and w have level O(k), we can either collect a terminal arc or at least 2k deep arcs
when sliding from v as above. In other words, we can charge v (almost uniquely)
either to Θ(k2) low-level vertices (at level O(k)) within W0 or to a low-level terminal
event within W0 or to some other vertex of W0 (that is, to u or to w) which lies at
level at most 4k and has a smaller index. Arguing as above, the number of vertices v
that fall into this case is

O
(
k3nλ5(n) + k2V0

( n

5k

)
+ k4V

(2)
0

( n

4k

))
.

We may thus assume that δ
(2)
r and δ

(2)
b do not meet.

δ
(1)
r

δ
(1)
b

δ
(2)
r

δ
(2)
b

v

Fig. 9. The case in which W0 is a quadrangle.

Suppose, without loss of generality, that the vertex u lies to the left of w. Then

any shallow blue arc δβ that emanates from δ
(1)
r must terminate at a point that lies

to the right of v (regardless of whether it extends to the right or to the left); see
Figure 10. This is due to the fact that these arcs are x-monotone. Let η be the

terminal point of δβ , and let δ
(3)
r �= δ

(1)
r , δ

(2)
r denote the red edge of ∂W0 that contains

η. (The preceding analysis implies that we may assume that all shallow blue arcs

that we have collected do land on a new red edge of ∂W0.) Trace δ
(3)
r from η in the
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increasing x-direction. (Note the two different situations that can arise, where we can

turn from δβ to the traced portion of δ
(3)
r either to the left or to the right.1) By the

analysis just given, we may assume that this portion of δ
(3)
r terminates at a vertex t

of W0, incident to f̃r, f̃b, f̃g, f̃y, which lies to the right of v and is different from
u,w. That is, t is the “missing” third sibling vertex of v that lies to the right of v.

Moreover, the portion of δ
(3)
r between η and t contains no terminal event.

Fig. 10. If u lies to the left of w, a shallow arc emanating from δ
(1)
r must terminate to the

right of v. In (a), we make a left turn from δβ to δ
(3)
r at η, and in (b), we make a right turn. In

both cases, δ
(3)
r has to contain a vertex t of W0 in the direction of our tracing.

Suppose first that w lies to the left of t; see Figure 11. There must exist a red

shallow arc δρ that emanates from δ
(1)
b and does not cross δβ (and it also cannot cross

δ
(1)
r , δ

(2)
r , or δ

(3)
r ). Since δρ is x-monotone, it must terminate at a point η′ to the right

of v, regardless of whether it extends to the right or to the left: the concatenation of

δ
(1)
r , δβ , and δ

(3)
r up to t does not allow δρ to reach points left of v because t lies to the

right of w; see Figure 11. The point η′ lies on some blue edge δ
(3)
b �= δ

(1)
b , δ

(2)
b . Tracing

δ
(3)
b from η′ in the positive x-direction, we may assume that it terminates at a vertex
of W0 (the case of a terminal event can be charged as above), which is necessarily t

itself. Moreover, the portion of δ
(3)
b between η′ and t contains no terminal event. We

now note that the red and blue levels of t are both at most k since the red level of η

and the blue level of η′ are at most k and since there are no terminal events on δ
(3)
r

between η and t and on δ
(3)
b between η′ and t. Thus the combined level of t is O(k).

Since t is of index at most 1 (it lies to the right of w) and is uniquely charged by v,
the number of vertices v in this subcase is O(k2nλ5(n)).

Suppose then that w lies to the right of t. If any shallow red arc that emanates

from δ
(1)
b and does not cross δβ terminates to the right of v, we proceed as in the

case, just treated, where t lies to the right of w. The only way in which this does not

occur is when all these shallow red arcs emanate from δ
(1)
b in the negative x-direction,

starting to the right of t and “bypassing” the concatenation of δ
(1)
r , δβ , and δ

(3)
r up

to t. See Figure 12.
To handle this case, choose another threshold parameter �� k, to be determined

later. If t lies at level at most 5k + 4�, we charge v to t. We note, as above, that the

1Recall that, in the analysis of W0, we refer to the view of this region from above (in the vertical
direction of R

4).
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ζ

v

u

t

δ
(1)
r

η
δ̄
(3)
r

w

δβ

δ
(1)
b

η′δρ

Fig. 11. The case in which w lies to the left of t.

charging is unique and use the fact that the index of t is at most 2 to conclude that

the number of vertices v in this subcase is at most V
(2)
≤5k+4
(n). Our choice of � will

ensure that 5k+4� ≤ 5�, so, using [7], the number of vertices v under consideration is

O
(
�4V

(2)
0

( n
5�

))
.

Assume then that the level of t is > 5k+4�. Then the portion δ̄
(3)
r of δ

(3)
r between

η and tmust contain at least 4� (4-colored) vertices. We now apply a collection process

for blue arcs that emanate from δ̄
(3)
r . The process is very similar to that applied to δ

(1)
r

(and to δ
(1)
b ), except that we redefine the notions of being deep, terminal, or shallow

in terms of the parameter � rather than k. To distinguish between the old and new
notions, we say that an arc is �-deep (resp., �-shallow) if it contains at least � (resp.,
fewer than �) vertices (and so that none of the first � vertices is terminal). If one of
the first � vertices lying on an arc is terminal, the arc is said to be �-terminal. The
old notions are from now on designated, in complete analogy, as k-deep, k-shallow,
and k-terminal.

The collection process on δ̄
(3)
r is therefore as follows. Starting from η, we proceed

along δ̄
(3)
r , taking shortcuts along �-shallow arcs that land back on δ̄

(3)
r , and collect

either 2� �-deep blue arcs or an �-terminal blue arc or 2� �-shallow blue arcs that do

not terminate on δ̄
(3)
r . The starting point of any collected arc is at blue level at most

4k + 4� ≤ 5� and at red level at most k.
A significant technical difference between the two collection processes is that, in

the new process, we do not have the unique charging property that was utilized in the
preceding analysis. Nevertheless, we do have a weaker property that we detail next.

Suppose that we have collected 2� �-deep blue arcs, as just described. See Fig-
ure 12. We thus obtain Θ(�2) vertices along these arcs, all contained in W0 and lying
at combined level 4k + 5� ≤ 6�. We claim that each such vertex q is collected in this
fashion by at most O(k2) vertices v.

Consider such a vertex q, and attempt to trace back from q to determine the
charging vertex v as follows. Proceed from q along the �-deep blue arc δβ′ that contains
q, until the first time we reach a vertex q′ at red level ≤ k. (This will happen either

when we reach δ̄
(3)
r or earlier.) The red surface incident to any charging vertex v

must be one of the ≤ k red graphs that lie below q′. (Clearly, f̃r is one of these
graphs.) Pick any of these graphs, f̃r′ , and continue to trace δβ′ backward until the
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ζ

v

u

t
δβ

δ
(1)
r

w

δ
(1)
b

η
δ̄
(3)
r

q

δρ

Fig. 12. The case in which w lies to the right of t and at a high level. The figure depicts the

subcase in which there are many deep blue arcs emanating from δ̄
(3)
r .

first time it actually intersects f̃r′ . If the stopping point is at red level > k, then r′

is a wrong guess. We thus keep picking candidate graphs in this fashion until, for
one of them, f̃r′′ , the backward tracing of δβ′ reaches f̃r′′ at red level ≤ k. Once this
situation is attained, we trace the red curve γr′′ that we have hit, in the negative
x-direction, until the first time we reach a point ν whose blue level is at most 4k.
(As above, if no such point exists, then r′′ is a wrong guess, and we keep trying with
different candidates f̃r′′′ .) The blue arc incident to a charging vertex v that is incident
to f̃r′′ must then correspond to one of the ≤ 4k blue graphs lying below ν. (f̃b is
clearly one of them when r′′ = r.) Now note that knowing which red and blue arcs
are incident to v determines v uniquely. We have thus shown that there are only
O(k2) possible vertices v that can charge q. Hence, using [7], the number of vertices v
in this subcase is

O(k2) ·O
(
1

�2
V≤6
(n)

)
= O

(
k2�2V0

(
n

6�

))
.

Similarly, if we collect an �-terminal blue arc, the terminal event along it is charged
by at most O(k2) vertices v, and there are O(�2nλ5(n)) such events. The number of
vertices v in this subcase is thus O(k2�2nλ5(n)).

We are left to treat the case in which we have collected 2� �-shallow blue arcs.
Note that their starting points on δ̄

(3)
r are at combined level at most 5k + 4� ≤ 5�.

Trace any such arc δβ′ to its end-point η′, which lies on some red edge of ∂W0, and
at combined level ≤ 6�. Several cases can arise, as depicted in Figure 13.

(a) η′ ∈ δ(1)
r , and we make a right turn from δβ to δ

(3)
r at η: See Figure 13(a). In

this case, we trace δ
(3)
r from η to the left (in the negative x-direction). Since η lies to

the left of w, it is easily seen that this tracing of δ
(3)
r must reach a local x-minimum

that lies to the right of v. Such cases, however, were ruled out above, where the

number of vertices v for which a terminal event on δ
(3)
r can be reached in this fashion

was bounded by O(k3nλ5(n)) in (1).

(a’) η′ ∈ δ(1)
r , and we make a left turn from δβ to δ

(3)
r at η: See Figure 13(a’). This
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w

δ
(1)
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δ
(1)
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δ(1)r

δ(4)r
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v

w

δβ

u

δ(3)r

t

δ(1)r δβ′

(a)

δ
(1)

b

(a”) (b)

(a’)

w

v

u

η′

δβ

δβ′

δ(3)r

δ
(1)

b

(c)

w

v

u

δ
(1)

b

η

δβ

δβ′

η′

δ(1)r

δ(3)r

(c’)

η′

η

η′

η
t

δ(1)r

v

w

δ
(1)

b

u

δβ′

δ(1)r

δβ

η

η′

δ(3)r

v

w

u

δ
(1)

b

t
δ(3)r

η

η′ δβ

δβ′

δ(1)r

Fig. 13. Various cases of �-shallow blue arcs that emanate from δ̄
(3)
r .
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case can arise only when δβ′ lands back on δ
(1)
r , between v and δβ , as in Figure 13(a’).

(Otherwise, the component of τr,g,y that contains δ
(3)
r would have been forced to be

bounded: It has to be contained in the region bounded by δβ , δβ′ , δ
(3)
r , and δ

(1)
r ; see

Figure 13(a”). This possibility, however, has already been ruled out, as in case (a)

above.) Observe that there are overall at most 4k arcs δβ′ that land back on δ
(1)
r in

this fashion. Therefore, at least 2�− 4k of the �-shallow arcs emanating from δ̄
(3)
r do

not belong to case (a’).

(b) η′ ∈ δ(2)
r : See Figure 13(b). This case can arise only when we make a left turn

from δβ to δ
(3)
r at η, or else δ

(3)
r would have to be a bounded component, as in case (a’).

(The configuration would have looked like a “mirror image” of the one depicted in

Figure 13(a”).) Any red k-shallow arc that emanates from δ
(1)
b must then cross either

δβ or δβ′ . At most k of these red arcs can cross δβ , so at least k of them cross each
�-shallow arc δβ′ that falls into case (b). Since any of these k-shallow red arcs can cross

only k blue arcs, it follows that at most k of the �-shallow arcs emanating from δ̄
(3)
r

belong to case (b). Since only at most 4k arcs fall into case (a’), we conclude that
one of the cases (a), (c), or (d) must arise for at least 2�− 5k > � arcs δβ′ .

(c) η′ lies to the left of v. This case cannot arise when we make a right turn from

δβ to δ
(3)
r at η (see Figure 13(c)), for then we could reach, in the opposite direction,

a local x-extremum on δ
(3)
r , as in case (a). However, if we make a left turn at η, as

shown in Figure 13(c’), then δβ′ must leave δ
(3)
r in the positive x-direction, or else

it would have been “trapped” between δ
(1)
b on one side and δ

(1)
r , δβ , and δ

(3)
r on the

other side, which would make it impossible for δβ′ to reach to the left of v. Hence
δβ′ must have a locally x-maximal point before it reaches η′; since this is a terminal
event, this contradicts the shallowness of δβ′ .

(d) η′ lies to the right of v on a new edge δ
(4)
r of ∂W0, different from δ

(i)
r , for

i = 1, 2, 3: See Figure 13(d). In this case, we trace δ
(4)
r from η′ in the positive

x-direction, and we will not reach any vertex of W0. (We have already exhausted all
such vertices to the right of v.) The tracing will thus reach a terminal event. Since η′

lies at combined level at most 5k+5� ≤ 6�, this also bounds the 3-colored level of the
terminal event. Hence, arguing as above, the number of such events is O(�2nλ5(n)),
and each of them is charged by only O(�) vertices v. To see the latter claim, we spell
out, for the sake of completeness, a modified version of a previous argument.

Trace δ
(4)
r back (in either direction, if more than one direction is applicable, as

there may be two choices for r and for δ
(4)
r ) from the terminal event until the first

time we reach a point whose combined level (including the blue level) is at most 6�.
(This will be either at η′ or earlier.) Then any charging vertex v is a vertex incident to
f̃r, f̃g, f̃y, and to some f̃b from the at most 6� blue surfaces that lie below the stopping
point. In other words, the terminal event can be charged by at most O(�) vertices v,
implying that the number of vertices v that fall into this final subcase is O(�3nλ5(n)).

This completes the consideration of all possible situations that arise with vertices v
of index at most 3. Collecting all of the bounds obtained during the analysis of such
vertices leads to the following equation:

V
(3)
0 (n) = O

((
k2�2 + �3

)
nλ5(n)V

(2)
0 (n) + k4V

(2)
0

( n

4k

)

+ k2V
(3)
0

( n

5k

)
+ �4V

(2)
0

( n
5�

)
+ k2�2V

(3)
0

( n
6�

))
,
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which proves the lemma.

3.3. Putting it all together. Recall that in section 3.2 we handled only reg-
ular vertices v. To complete the counting, we have to add the number of irregular

vertices to each of the above bounds on the quantities V
(j)
0 (n). Since there are only

O(nλ5(n)) irregular vertices, this does not affect any of these asymptotic estimates.
Thus, collecting the bounds obtained in Lemmas 3.3–3.5, we obtain the following
recurrence relations:

V
(0)
0 (n) = O(nλ5(n)),

V
(1)
0 (n) = O(nλ5(n)),

V
(2)
0 (n) = O

(
k3nλ5(n) + k2V

(3)
0

( n

5k

))
,

V
(3)
0 (n) = O

((
k2�2 + �3

)
nλ5(n) + V

(2)
0 (n) + k4V

(2)
0

( n

4k

)

+ k2V
(3)
0

( n

5k

)
+ �4V

(2)
0

( n
5�

)
+ k2�2V

(3)
0

( n
6�

))
.

We choose different values of k in the recurrences for V
(2)
0 and for V

(3)
0 and denote them

by k2 and k3, respectively. These values, together with �, are chosen to be sufficiently

large constants satisfying � = k
1/(cε)
3 and k2 = �1/(cε) for an arbitrarily small but

prescribed positive constant ε and for some fixed small positive fraction c. (Note that
this choice of parameters satisfies �� k3, which was needed in our analysis.) We also

require that kε3 be sufficiently large. The recurrence for V
(3)
0 then becomes

V
(3)
0 (n) = O

((
k
cε(2+2cε)
2 + k3cε

2

)
nλ5(n) + V

(2)
0 (n) + k4c2ε2

2 V
(2)
0

(
n

4kc
2ε2

2

)

+ k2c2ε2

2 V
(3)
0

(
n

5kc
2ε2

2

)
+ k4cε

2 V
(2)
0

(
n

5kcε2

)
+ k2cε+2c2ε2

2 V
(3)
0

(
n

6kcε2

))

= O

(
k3+2cε
2 nλ5(n) + k2

2V
(3)
0

(
n

5k2

)
+ k2+4c2ε2

2 V
(3)
0

(
n

20k1+c2ε2

2

)

+ k2c2ε2

2 V
(3)
0

(
n

5kc
2ε2

2

)
+ k2+4cε

2 V
(3)
0

(
n

25k1+cε
2

)

+ k
2cε(1+cε)
2 V

(3)
0

(
n

6kcε2

))
.

As in other works where similar recurrences have been derived (see, e.g., [23]), it
is easy to show, using induction on n, that, with an appropriate choice of c and k2

(where the choice of k2 depends on ε but the choice of c does not), the solution of
this recurrence is

V0(n) = V
(3)
0 (n) = O(n2+ε)
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for any ε, where the constant of proportionality depends on ε. We have thus shown
the following.

Theorem 3.6. The complexity of the Euclidean Voronoi diagram of a set of
n lines in R

3 with four distinct orientations is O(n2+ε) for any ε > 0.

Remark 1. Inspecting the proof of Theorem 3.6, we see that it is fairly general
and does not explicitly use the fact that the sites are lines. It can thus be extended
to the case of the Voronoi diagram of any reasonable collection of sites (of constant
description complexity), which is the union of four subfamilies, under any reasonable
metric in R

3, provided that (i) we have a near-quadratic bound for the complexity
of the diagram of any three of the given families and (ii) any four sites determine at
most eight Voronoi vertices. We strongly suspect that the requirement (ii) can be
dropped. This would require us to handle vertices v that have index x ≥ 4, which
in turn would have made the preceding analysis more complicated, mainly by having
to use additional thresholds for shallowness (like the k and � that we used). Still, it
seems plausible that the analysis could go through.

4. More than four orientations. The case of an arbitrary number c of orienta-
tions is easy to handle by noting that any vertex v of the full Voronoi diagram Vor(L)
is also a vertex of the diagram of the set of all lines whose orientations are equal to the
(at most) four orientations of the lines that are (equally) nearest to v. Let u1, . . . , uc
denote the given orientations. Let Lj , for j = 1, . . . , c, denote the set of lines in L
at orientation uj , and put nj = |Lj |. Then

∑c
j=1 nj = n. Suppose, without loss of

generality, that n1 ≤ n2 ≤ · · · ≤ nc. The number of vertices of Vor(L) is at most∑
i<j<k<l Vijkl, where Vijkl is the number of vertices of Vor(Li ∪ Lj ∪ Lk ∪ Ll). By

Theorem 3.6, Vijkl = O((ni + nj + nk + nl)
2+ε) = O(n2+ε

l ). Hence the complex-
ity of Vor(L) is at most O(

∑
i<j<k<l n

2+ε
l ) = O(

∑c
l=4 l

3n2+ε
l ). As is easily verified,

the maximum value of this latter sum is O(c3n2+ε). We thus obtain the following
theorem, the main result of the paper.

Theorem 4.1. The combinatorial complexity of the Euclidean Voronoi diagram
of n lines in three dimensions, where the lines have 1 ≤ c ≤ n distinct orientations,
is O(c3n2+ε) for any ε > 0.

Corollary 4.2. The combinatorial complexity of the Euclidean Voronoi diagram
of n lines in R

3 that have a constant number of distinct orientations is O(n2+ε) for
any ε > 0.

Remark 2. As shown in [22], the complexity of the diagram in the general
case, without any restrictions on the orientations of the lines (that is, when c = n),
is O(n3+ε). This leads us to conjecture that the bound in Theorem 4.1 can be im-
proved to at least O(cn2+ε) for any ε > 0. The latter bound is consistent with the
result of [22] (when c = O(n)) and with Corollary 4.2 (when c = O(1)) and might
be easier to obtain than a near-quadratic bound like O(n2+ε) for any 1 ≤ c ≤ n.
(Nevertheless, in line with the general conjecture concerning 3-dimensional Voronoi
diagrams, we conjecture that the latter bound does indeed hold independently of c.)

Appendix. In this appendix, we provide a study of the geometric structure of
bisectors and trisectors, which are, respectively, the loci of points equidistant from
two and three lines. This analysis is useful in its own right, but most of the details
are not needed for the main result of this paper.

We begin with the analysis of bisectors, which have also been studied, e.g.,
in [9]. Consider the bisector H
1,
2 between two lines �1, �2 at different orientations.
Without loss of generality, by translating, rotating, and scaling 3-space, we may as-
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sume that �1 and �2 are both horizontal, and �1 (resp., �2) passes through (0, 0, 1)
(resp., (0, 0,−1)) and forms a horizontal angle of α (resp., −α) with the positive
x-direction for α ∈ (−π/2, π/2].

The squared distance of a point (x, y, z) from �1 is

d2((x, y, z), �1) = x2 + y2 + (z − 1)2 − (x cosα+ y sinα)2,

and the squared distance of (x, y, z) from �2 is

d2((x, y, z), �2) = x2 + y2 + (z + 1)2 − (x cosα− y sinα)2.

Hence the equation of H
1,
2 is

x2 + y2 + (z − 1)2 − (x cosα+ y sinα)2 = x2 + y2 + (z + 1)2 − (x cosα− y sinα)2,

or

z = −xy sinα cosα.

This is the equation of a hyperbolic paraboloid. It has two sets of generating lines,
one set consisting of lines parallel to the xz-plane and the other consisting of lines
parallel to the yz-plane. Specifically, lines in the first family have the following form,
parametrized over t ∈ R:

λt : y = − t

sinα cosα
, z = tx.

Similarly, lines in the second family have the form, parametrized over s ∈ R,

λ̄s : x = − s

sinα cosα
, z = sy.

We can project H
1,
2 onto the xy-plane π0 bijectively and note that the generating
lines project to lines parallel to the axes.

Fix a line λt of the first family, having parameter t. Let �3 be a differently oriented
line passing through some point a = (a1, a2, a3) and having direction u = (u1, u2, u3),
which is a unit vector along �3 and is common to all input lines of a fixed color. By
our general position assumption, we may assume that u3 �= 0, i.e., that the direction u
is not coplanar with the directions of l1 and l2. Without loss of generality, we assume
that a · u = 0. The distance between a point w = w(x) on λt, parametrized as
(x,−t/(sinα cosα), tx), and �3 is

d2(w, �3) = ‖w − a‖2 − ((w − a) · u)2 = ‖w − a‖2 − (w · u)2

= (x− a1)
2 +

(
t

sinα cosα
+ a2

)2

+ (tx− a3)
2 −

(
xu1 − tu2

sinα cosα
+ txu3

)2

.

Consider the function

F (x) = d2(w(x), �3)− d2(w(x), �1)

= (x− a1)
2 +

(
t

sinα cosα
+ a2

)2

+ (tx− a3)
2 −

(
xu1 − tu2

sinα cosα
+ txu3

)2

− x2 − t2

sin2 α cos2 α
− (tx− 1)2 +

(
x cosα− t

cosα

)2

.
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Note that F (x) is positive (resp., zero, negative) if the ball centered at w(x) and
touching �1 and �2 is disjoint from (resp., touches, intersects) �3. Hence the locus of
the roots of F (x), as we trace them by varying t from −∞ to +∞, is the trisector
τ
1,
2,
3—the locus of all centers of balls that touch �1, �2, �3 simultaneously.

The function F (x) is quadratic (for any fixed t), and its global behavior along λt
depends largely on the sign of the coefficient of x2, which is

A(t) = 1 + t2 − (u1 + tu3)
2 − 1− t2 + cos2 α = cos2 α− (u1 + tu3)

2.

Hence, if A(t) > 0, then F (x) is convex and is positive at x = ±∞, meaning that
at the extremities of λt the ball touching �1, �2 is disjoint from �3 (we are in the free
region associated with �3), whereas if A(t) < 0, then F (x) is concave, and at the
extremities of λt we are in the intersection region of �3.

In other words, assuming, as above, that u3 �= 0, and, for specificity, that u3 > 0,
we have that A(t) < 0 if and only if |u1 + tu3| > cosα or

t >
−u1 + cosα

u3
or t <

−u1 − cosα

u3
.

The corresponding critical y-values are

yT =
u1 + cosα

u3 sinα cosα
and yB =

u1 − cosα

u3 sinα cosα
,

and we denote the corresponding horizontal critical lines by λ(T ) and λ(B), respec-
tively. (Note that the critical lines depend only on the orientation u of l3.)

We next apply a symmetric analysis to lines in the other family. We obtain that
the critical x-values where the corresponding quadratic function changes from being
convex to being concave are

xR =
u2 + sinα

u3 sinα cosα
and xL =

u2 − sinα

u3 sinα cosα
;

the corresponding vertical critical lines are denoted by λ̄(R) and λ̄(L).
We next claim that, for |t| sufficiently large, the line λt intersects the trisector in

exactly two points. For this, we need to show that the discriminant of the quadratic
equation F (x) becomes positive as |t| tends to ∞.

Write F (x) as A(t)x2 + 2B(t)x+ C(t), where

A(t) = cos2 α− (u1 + tu3)
2,

B(t) = −a1 − a3t+
u2t(u1+tu3)
sinα cosα ,

C(t) = a2
1 +

(
t

sinα cosα + a2

)2
+ a2

3 − t2u2
2

sin2 α cos2 α
− t2

sin2 α cos2 α
− 1 + t2

cos2 α .

As |t| tends to∞, the sign of the discriminant ∆(t) depends only on the coefficients
of t2 in these three expressions. That is, the limit of ∆/t4 is

lim
|t|→∞

B2(t)−A(t)C(t)

t4
= lim
|t|→∞

[(
B(t)

t2

)2

− A(t)

t2
· C(t)

t2

]

=
u2

2u
2
3

sin2 α cos2 α
+ u2

3 ·
(

1

cos2 α
− u2

2

sin2 α cos2 α

)
=

u2
3

cos2 α
> 0.
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That is, for large values of |t|, the trisector τ
1,
2,
3 meets λt at two points w1(t), w2(t).
The asymptotic values of these roots are

lim
|t|→∞

w1,2(t) = lim
|t|→∞

−B(t)±√∆(t)

A(t)
= lim
|t|→∞

−B(t)/t2 ±√∆(t)/t4

A(t)/t2

=
− u2u3

sinα cosα ± u3

cosα

−u2
3

=
u2 ± sinα

u3 sinα cosα
.

That is, w1(t) and w2(t) tend to xL and xR, respectively.
Symmetrically, there always exist two intersection points of τ
1,
2,
3 with the

lines λ̄s, as |s| tends to ∞, and their limits are at the ordinates yB and yT .
We have thus shown that any sufficiently large circle intersects the trisector at

eight points. We denote the points “at infinity” that lie on the vertical critical lines
λ̄(L), λ̄(R) as vLB , vLT , vRB , vRT , where vLB (resp., vLT ) is the bottom (resp., top) end
of λ̄(L), and similarly for the other two points. The points at infinity on the horizontal
lines are denoted, in a similar manner, as hLB , hLT , hRB , hRT . See Figure 14(a) for
an illustration.

Assuming that the trisector is nonsingular, it has exactly four unbounded com-
ponents, each connecting two of these points at infinity. We next proceed to classify
the structure of these components.

The function F (x) becomes linear along each of the horizontal critical lines
λ(T ), λ(B), and thus each of these two critical lines is intersected by the trisector
exactly once; symmetrically, this also holds for λ̄(L), λ̄(R). Number the eight points
at infinity in a cyclic order. Then it is clear that each odd-numbered point must
be connected to an even-numbered point, since the components of the trisector are
disjoint. Hence, vLT can be connected to hLT , vLB , hRB , or to vRT , and similarly for
the other points at infinity.

Consider the second case, in which vLT is connected to vLB via one component γ1

of the trisector. This component crosses the two critical horizontal lines λ(B), λ(T )

(each exactly once). In this case, no other component of the trisector can intersect
any of these lines, so each of the remaining three components is fully contained in
one of the three horizontal slabs delimited by λ(B) and λ(T ), and each of these slabs
contains exactly one such component. It then follows that these components must
connect hLT to hLB , vRT to hRT , and vRB to hRB . Moreover, γ1 must cross λ̄(L)

(exactly once), and one of the two components on the right must cross λ̄(R) (exactly
once). Hence the trisector has a shape similar to that shown in Figure 14(b).

Consider next the third case, in which vLT is connected to hRB via one compo-
nent γ1 of the trisector. Another component, γ2, must connect vRT to hRT . We have
two subcases.

In the first subcase, hLT is connected to vRB , and hLB is connected to vLB . In
this case, none of the components can cross any of its asymptotes. See Figure 14(a).

In the second subcase, hLT is connected to hLB , and vLB is connected to vRB .
In this case, we must allow each of the lines λ(B), λ̄(L) to be crossed (once) by some
component. See Figure 14(c). This figure depicts one of several possible subcases,
depending on which component crosses which critical line. In Figure 14(c) the compo-
nent connecting vLT to hRB crosses all four critical lines, but it might also be possible
for this component to cross only λ(T ) and λ̄(R) or to cross just one more critical line
and let the left and/or bottom components cross the other one or two critical lines
(in a manner similar to that of the top-right component in Figure 14(b)).
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(a) (b)

(c)

(d) (e)

vLT vRT

hLT

hLB

vLB vRB

hRB

hRT

λ(B)

λ(T )

λ̄(L)

λ̄(R)

Fig. 14. The various possible structures of a trisector.
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If none of the above cases occur, including their various symmetric variants, then
each end of each critical line must be connected to one of its two neighbors in the
above cyclic order. Only two cases are possible.

In the first subcase, hLT is connected to hLB , vLB is connected to vRB , hRT is
connected to hRB , and vLT is connected to vRT . As above, we must let some of these
components cross some of their asymptotes to ensure that each of the four critical
lines is crossed once by the trisector. See Figure 14(d), which, as above, depicts just
one of several possible subcases.

In the second subcase, hLT is connected to vLT , hLB is connected to vLB , hRT is
connected to vRT , and hRB is connected to vRB . Again, we must let some of these
components cross some of their asymptotes. One of several possible such configura-
tions is shown in Figure 14(e).

We also note that each trisector is an algebraic curve of degree 4. By Harnack’s
theorem [13], the number of components of a real nonsingular algebraic plane curve
of degree d is at most (d − 1)(d − 2)/2 + 1. Hence the number of components of
each trisector is at most 3 · 2/2 + 1 = 4. Since it has exactly four unbounded compo-
nents, we conclude that these are all the components of the trisector. In particular,
no component of any trisector is bounded. This completes the classification of the
trisectors.

Remark 3. We conjecture that, up to symmetry, only trisectors of the kind shown
in Figure 14(b) are possible. A program that we have written to explore the structure
of trisectors has revealed only trisectors of this kind, after several tens of thousands
of tests with randomly generated lines.
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Abstract. We introduce a class of “inverse parametric optimization” problems, in which one
is given both a parametric optimization problem and a desired optimal solution; the task is to
determine parameter values that lead to the given solution. We describe algorithms for solving such
problems for minimum spanning trees, shortest paths, and other “optimal subgraph” problems and
discuss applications in multicast routing, vehicle path planning, resource allocation, and board game
programming.
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rithms, ellipsoid method

AMS subject classifications. 68Q25, 90C31, 90C35

PII. S0097539700370084

1. Introduction. Many cars now come equipped with route planning software
that suggests a path from the current location to a desired destination. Similar services
are also available on the Internet (e.g., from http://maps.yahoo.com/). But although
these routes may be found by computing shortest paths in a graph representing the
local road system, the “distance” may be a weighted sum of several values other than
actual mileage: expected travel time, scenic value, number of turns, tolls, etc. [23].
Different drivers may have different preferences among these values, and they may
not be able to clearly articulate these preferences. Can we automatically infer the
appropriate weights to use in the sum by observing the routes actually chosen by a
driver?

More abstractly, we define an inverse parametric optimization problem as follows:
we are given as input both a parametric optimization problem (that is, a combinatorial
optimization problem such as shortest paths, but with the element weights being linear
combinations of certain parameters rather than fixed numbers) and a desired optimal
solution for the problem.1 Our task is to determine parameter values such that the
given solution is optimal for those values.

Along with the path planning problem described above, one can find many other
applications in which one must tune the parameters to an optimization problem:

• In many online services such as web page hosting, data is sent in a star
topology from a central server to each user. But in multicast routing of video
and other high-bandwidth information, network resources are conserved by
sending the data along the edges of a tree, in which some users receive copies
of the data from other users rather than from the central server. Natural
measures of the quality of each edge in this routing tree include the edge’s
bandwidth, congestion, delay, packet loss, and possibly monetary charges for
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2002; published electronically March 5, 2003. This work was supported in part by NSF grant CCR-
9912338. A preliminary version of this paper appeared in Proceedings of the 40th IEEE Symposium
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1One could more generally allow as input a set of problem-solution pairs, but for most of the

problems we consider, any such set can be represented equally well by a single larger problem.
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use of that link. Since one can find minimum spanning trees efficiently in the
distributed setting [14], it is natural to try to model this routing problem using
minimum spanning trees. Given one or more networks with these parameters,
and examples of desired routing trees, how can we set the weights of each
quality measure so that the desired trees are the minimum spanning trees of
their networks?
• Bipartite matching, or the assignment problem, is a common formalism for
grouping indivisible resources with resource consumers. For instance, the first
example given for matching by Ahuja, Magnanti, and Orlin [2] is to assign
recently hired workers to jobs, using weights based on such values as aptitude
test scores and college grades. One might set the weight of an edge from
worker i to job j to be ai · pj , where ai is the (known) set of aptitudes of the
worker, and pj is the (unknown) set of parameters describing the combination
of aptitudes best fitting the job. Again, it is natural to ask for a way to
automatically set the parameters of each job based on experience assigning
previously hired workers to those jobs.
• Many board games, such as chess, checkers, or Othello, can be played well by
programs based on relatively simple alpha-beta searching algorithms. How-
ever, these programs use relatively complex evaluation functions in which the
evaluation of a given position can be the sum of hundreds or thousands of
terms. Some of these terms may represent the gross material balance of a
game (e.g., in chess, one usually normalizes the score so that a pawn is worth
1 point, while a knight may be worth 2.5–3 points) while others represent
more subtle features of piece placement, king safety, advanced pawns, etc.
The weight of each of these terms may be individually adjusted in order to
improve the quality of play. Although there have been some preliminary ex-
periments in using evolutionary learning techniques to tune these weights [25],
they are currently usually set by hand. The true test of a game program is
in actual play, but programs are also often tuned by using test suites, large
collections of positions for which the correct move is known. If we are given
a test suite, can we automatically set evaluation weights in such a way that
a shallow alpha-beta search can find each correct move?

1.1. New results. We show the following theoretical results. For the inverse
parametric minimum spanning tree problem, in the case that the number of parame-
ters is a fixed constant, we provide a randomized algorithm with linear expected run-
ning time, and a deterministic algorithm with worst-case running time O(m log2 n).
For the minimum spanning tree, shortest path, matching, and other “optimal sub-
graph” problems for which the optimization problem can be solved in polynomial
time, we show that the inverse optimization problem can also be solved in polyno-
mial time by means of the ellipsoid method from linear programming, even when the
number of parameters is large.

In addition, we discuss the problem of setting weights for game evaluation and
describe how to solve it within the same inverse parametric optimization framework.

In cases where the initial problem is infeasible (there is no parameter setting for
which the desired solution is optimal), our techniques provide a witness for infeasi-
bility: a small number of alternative solutions, one of which must be better than the
given solution for any parameter setting. One can then examine these solutions to
determine whether the initial solution is suboptimal or whether additional parameters
should be added to better model the users’ utility functions.
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1.2. Relation to previous work. Although there has been considerable work
on parametric versions of optimization problems such as minimum spanning trees [1]
and shortest paths [26], we are not aware of any prior work in inverting such problems
to produce parameter values that match given solutions. One could compute the set of
solutions available over the range of parameter values and compare these solutions to
the given one, but the number of different solutions would typically grow exponentially
with the number of parameters.

The inverse parametric optimization problems considered here are most closely
related to parametric search, which describes a general class of problems in which
one sets the parameters of a parametric problem in order to optimize some criterion.
However, in most applications of parametric search, the criterion being optimized is
a numeric function of the solution (e.g., the ratio between two linear weights) rather
than the solution structure itself. Megiddo [20] describes a very general technique for
solving parametric search problems in which one simulates the steps of an optimization
algorithm, at each conditional step using the algorithm itself as an oracle to determine
which conditional branch to take. However, this technique does not seem to apply to
our problems, because the given optimal structure (e.g., a single shortest path) does
not give enough information to deduce the conditional branches followed by a shortest
path algorithm.

The vehicle routing problem discussed in the introduction was introduced by
Rogers and Langley [23]. However, they used a weaker model of optimization (a hill-
climbing procedure) and a stronger model of user interaction requiring the user to
specify preferences in a sequence of choices between pairs of routes.

The inverse parametric optimization problems we study are also related to previ-
ous work on “inverse optimization” problems, in which one is given an optimization
problem with a solution and must find new weights for the problem that make the
given solution optimal [3, 4, 5, 24, 27, 28]. However, work on these problems has not
focused on the parametric aspects of such optimization, which can be interpreted in
this framework as requiring the edge weights to be in a linear subspace rather than
being unrestricted, and has instead looked at finding a set of weights that is as close
as possible to some given set.

2. Minimum spanning trees. In this section, we consider the inverse para-
metric minimum spanning tree problem, in which we are given a fixed tree T in a
network in which the weight of each edge e is a linear function w(e) = ce · p (where
p represents the unknown vector of parameter settings and ce represents the known
value of edge e according to each parameter). Our task is to find a value of p such
that T is the unique minimum spanning tree for the weights w(e).

If we fix a given spanning tree T in a network, a pair of edges (e, f) is defined to
be a swap if T ∪{f} \ {e} is also a spanning tree; that is, if e is an edge in T , f is not
an edge in T , and e belongs to the cycle induced in T by f . T is the unique minimum
spanning tree if and only if for every swap (e, f), the weight of f is greater than the
weight of e.

Thus we can solve the inverse parametric minimum spanning tree problem as a
linear program, in which we have one variable per parameter, an additional variable δ
measuring the amount by which the inequality w(f) > w(e) holds, and one constraint
(cf − ce) · p ≥ δ per swap. To avoid multiple equally good spanning trees we use
the maximization of δ as our objective function, and to avoid unboundedness we can
add constraints such as −1 ≤ p ≤ 1. We call these additional constraints parameter
constraints since they do not depend on the input network.
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If the number of variables is a fixed constant, a linear program may be solved in
time linear in the number of constraints [21]; however, here the number of constraints
may be Θ(mn). We show how to improve this by a randomized algorithm which takes
linear time and by a deterministic algorithm which takes time O(m log2 n).

2.1. Randomized spanning tree algorithm. In the conference version of
this paper, we described a linear time algorithm for the inverse parametric minimum
spanning tree problem, using ideas of Clarkson [9] to bound the sizes of the remaining
subproblems after two levels of random sampling. Here we replace this technique by
a simpler method of Chan [8].

Lemma 1 (Chan [8]). Let P be a class of problems with real-valued solutions
such that any instance of size n can be divided in time T (n) into a constant number
of subproblems of size αn, α < 1, so that the solution of the original instance is the
minimum of the subproblem solutions. Further suppose that for any instance of size n
and subproblem solution v we can decide whether the solution of another subproblem
has a value less than v, in time T (n), and that T (n) = Ω(nε) for some ε > 0. Then
we can solve any problem in P in time O(T (n)).

Given an instance (G,T ) of the inverse parametric spanning tree problem, and
given a subset S of the edges, define an instance (GS , TS) by contracting all edges in
E(T ) ∩ S and deleting from G all edges in (E(G) \ E(T )) ∩ S. The contraction of T
is a tree with edges in E(T ) \S, and the contraction and deletion of edges in G forms
a graph with edges in E(G) \ S. It is not hard to see that a pair (e, f) forms a swap
in (GS , TS) if and only if (e, f) is a swap in (G,T ) and neither e nor f belongs to S.

Theorem 2. We can solve the inverse parametric minimum spanning tree prob-
lem for any constant number of parameters in randomized linear expected time.

Proof. Let the number of parameters be d; then the linear programming formu-
lation of the problem has dimension d+1, and its solution is the minimum value of δ
determined by some (d+1)-tuple of swaps. Partition the edges of G into 2d+3 equal-
cardinality subsets Si; then at least one of the sets Si is disjoint from the 2d+2 swap
edges that determine the problem’s solution. Therefore, the solution to the problem
is the minimum of the solutions to the 2d+ 3 subproblems (GSi , TSi), each of which
has size (number of edges) (2d+ 2)/(2d+ 3) times the size of the original instance.

If v is the solution to one of the subproblems, let p denote the parameter vector
associated with v. To test whether another subproblem (GSi , TSi) has a smaller
solution than v, we use a linear time minimum spanning tree verification algorithm [10,
18] to check whether TSi is a minimum spanning tree of GSi for parameter setting
p. If not, some linear programming constraint is violated by the solution p and the
subproblem solution is smaller than v.

The time to partition the problem into subproblems and to test subproblem so-
lutions is linear, so by Chan’s lemma, the overall time to solve the inverse parametric
minimum spanning tree problem is also linear.

2.2. Deterministic spanning tree algorithm. To solve the inverse paramet-
ric minimum spanning tree problem deterministically, we use a different sampling
technique of Clarkson [9] and derandomize it using methods very similar to those of
an approximate set cover algorithm of Brönnimann and Goodrich [7].

We begin by applying the multilevel restricted partition technique of Frederick-
son [12, 13] to the given tree T .

By introducing dummy edges, we can assume without loss of generality that T
is binary and that the root t of T has indegree one. These dummy edges will only
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Fig. 1. (a) Restricted partition of order 2; (b) multilevel partition.

be used to form the partition and will not take part in the eventual optimization
procedure.

Definition 1. A restricted partition of order z with respect to a rooted binary
tree T is a partition of the vertices of V such that

1. each set in the partition contains at most z vertices;
2. each set in the partition induces a connected subtree of T ;
3. for each set S in the partition, if S contains more than one vertex, then there
are at most two tree edges having one endpoint in S;

4. no two sets can be combined and still satisfy the other conditions.
Such a partition (for z = 2) is depicted in Figure 1(a). In general such a partition

can easily be found in linear time by merging sets until we get stuck. Alternatively,
by working bottom up we can find an optimal partition in linear time. We will defer
until later choosing a value for z; for now we leave it as a free parameter.

Lemma 3 (Frederickson [13]). Any order-z partition of a binary tree T has
O(n/z) sets in the partition. For z = 2 we can find a partition with at most 5n/6
sets.

Contracting each set in a restricted partition again gives a binary tree. We form a
multilevel partition [13] by recursively partitioning this contracted binary tree (Figure
1(b)).

We now use these partitions to construct a set Π of paths in T . For any set S in
the multilevel partition, define an internal edge of S to be an edge of T that has both
endpoints in S, but at most one endpoint in any set in a lower level of the partition,
and define an external edge of S to be an edge of T that has exactly one endpoint
in S. Define a terminal of S to be an endpoint of an internal or external edge of S.
We form Π by including all paths in T between pairs (u, v), where u and v are both
terminals of the same set.

Lemma 4. The set of paths Π defined above has the following properties:
• There are O(nz) paths in Π.
• Each edge in T belongs to O(z2 logz n) paths of Π.
• Any path in T can be decomposed into the disjoint union of O(logz n) paths
of Π.

Proof. The first property follows immediately from Lemma 3, since each set of
the partition contributes O(z2) paths, there are O(n/z) sets at the bottom level of
the partition, and the number of sets decreases at least geometrically at each level.
Similarly, the second property follows, since an edge can belong to O(z2) paths per
level and there are O(logz n) levels.
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Finally, to prove the third property, let p be an arbitrary path in T . We describe
a procedure for decomposing p into few paths πi ∈ Π. More generally, suppose we
have a path p contained in a set S at some level of a multilevel decomposition (note
that the whole tree is the set at the highest level of the partition). Then S can be
decomposed into at most z sets at the next level of the partition; p has endpoints in at
most two of these sets and may pass completely through some other sets. Therefore,
p can be decomposed into the union of two smaller paths in the sets containing its
endpoints, together with a single path πi connecting those two sets. By repeating this
decomposition recursively at each level of the tree, we obtain a decomposition into at
most two paths per level, or O(logz n) paths overall.

We now describe how to use this path decomposition in our inverse optimization
problem. For each path πi ∈ Π, let Ai denote the set of edges in T belonging to πi. Let
Bi denote the set of nontree edges (u, v) such that πi is included in the decomposition
of the path in T from u to v. The total size of all the sets Ai is O(nz2 logz n) by the
second property of Lemma 4, and the total size of all the sets Bi is O(m logz n) by
the third property of the same lemma. It is not difficult to explicitly construct all
sets Ai and Bi in time linear in their total size.

A pair (e, f) is a swap if and only if there is some e for which e ∈ Ai and f ∈ Bi.
With this decomposition, the inverse parametric minimum spanning tree problem
becomes equivalent to asking for a parameter p such that for each i, the weight of
every member of Ai is less than the weight of every member of Bi.

For a single value of i, one could solve such a problem by a (d + 1)-dimensional
linear program in which we augment the parameters by an additional variable that
is constrained to be greater than each e ∈ Ai and less than each f ∈ Bi; however,
adding a separate variable for each i would make the dimension nonconstant.

Instead, we use a standard derandomization technique from computational geom-
etry, ε-nets. If we graph the weight of each edge in a d-dimensional space (where again
d is one more than the number of parameters), letting the d− 1 parameter values be
independent variables and the weight be the dependent variable, the result is a hy-
perplane. Suppose that these edges are also given costs, independent of their weights.
For any set S of these hyperplanes and any ε > 0, define an ε-net for vertical line
segments to be a subset S′ with the following property: if any vertical line segment
V intersects a subset of the hyperplanes having cost at least ε times the total cost of
all hyperplanes, then the same segment must intersect at least one hyperplane in S′.
Figure 2 shows an example in which ε = 1/2 and all costs are equal. If 1/ε = O(1),
an ε-net of size O(1) can be found in time linear in |S| [6].

Our algorithm can then be described as follows. We will use ε = 1/4d.

1. Construct a multilevel partition.
2. Find the set of paths Π connecting terminals of the sets of the partition.
3. Find the sets Ai by listing the edges in each path π ∈ Π.
4. Find the sets Bi by decomposing the paths in T connecting the endpoints of
each nontree edge.

5. Assign unit cost to each edge in the graph.
6. Repeat until terminated:

(a) Construct ε-nets A′i and B′i for each Ai and Bi.
(b) Let S be the set of swaps involving only ε-net members. Find the optimal

solution (p, δ) for the constraints from S together with the parameter
constraints.

(c) Find the maximum weight ai of an edge in each Ai and the minimum
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Fig. 2. Example ε-net for ε = 1/2: every vertical line segment that crosses ≥ n/2 lines in the
overall arrangement also crosses at least one of the two heavy lines.

weight bi of an edge in each Bi, where weights are measured according
to p. If ai ≤ bi − δ for each i, terminate the algorithm.

(d) Find the maximum weight a′i of an edge in each A′i and the minimum
weight b′i of an edge in each B′i. Double the cost of each edge in Ai with
w(e) > a′i, and each edge in Bi with w(e) < b′i.

As in previous work on derandomized iterated reweighting schemes [7], each it-
eration increases the total cost of all the sets Ai (and similarly Bi) by a factor of
at most 1 + ε = 1 + 1/4d, but at least one edge from the optimal base has its cost
increase, so the cost of the optimal base increases on average by a factor of at least
21/2d ≈ 1+ ln(2)/2d ≈ 1/2.88d per iteration. Since the base’s cost increases at a rate
faster than the total cost, it can only continue to do so for O(d log n) iterations before
it overtakes the total cost—an impossibility. So at some point within those O(d log n)
iterations the algorithm must terminate the loop.

Theorem 5. We can solve the inverse parametric minimum spanning tree prob-
lem for any constant number of parameters in worst-case time O(m log n logm/n n).

Proof. We use the algorithm described above, setting z = max(2,
√

m/n). There-
fore, the total size of the sets Ai and Bi (and the total time to find these sets and
to perform each iteration) is O(m logm/n n). Since d is constant, there are O(log n)
iterations, and the total time is O(m log n logm/n n).

3. Other optimal subgraph problems. We now describe a method for solving
inverse parametric optimization on a more general class of optimal subgraph problems,
in which we are given a graph with parametric edge weights and must find the mini-
mum weight suitable subgraph, where suitability is defined according to the particular
problem. The minimum spanning tree problem considered earlier has this form, with
the suitable subgraphs simply being trees. The shortest path and minimum weight
matching problems also have this form. In order to solve these problems, we resort
to the ellipsoid method from linear programming. This has the disadvantage of be-
ing not strongly polynomial nor very practical, but its advantages are in its extreme
generality—not only can we handle any optimal subgraph problem for which the op-
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timization version is polynomial, but (unlike our minimum spanning tree algorithms)
we are not limited to a fixed number of parameters.

A good introduction to the ellipsoid method and its applications in combinatorial
optimization can be found in the book by Grötschel, Lovász, and Schrijver [15].

Lemma 6 (Grötschel, Lovász, and Schrijver [15, p. 158]). For any polyhedron P
defined by a strong separation oracle, and for any rational linear objective function f ,
one can find the point in P maximizing f in time polynomial in the dimension of P
and in the maximum encoding length of the linear inequalities defining P .

The strong separation oracle required by this result is a routine that takes as
input a d-dimensional point and either determines that the point is in P or returns a
closed halfspace containing P and not containing the test point. One slight technical
difficulty with this approach is that it requires the polyhedron to be closed (else one
could not separate it from a point on one of its boundary facets), while our problems
are defined by strict inequalities forming open halfspaces. To solve this problem, as in
the inverse spanning tree problem, we introduce an additional parameter δ measuring
the separation of the desired optimal subgraph from other subgraphs and attempt to
maximize δ.

Theorem 7. Let (G,X) be an inverse parametric optimization problem in which
G is a graph with parametric edge weights and X is the given solution for an op-
timal subgraph problem, and in which there exists a polynomial time algorithm that
determines whether X is the unique optimal subgraph and, if not, finds a different
optimal subgraph Y . Then we can solve the inverse parametric optimization problem
for (G,X) in time polynomial in the number of parameters, in the size of the graph,
and in the maximum encoding length of the linear functions defining the edge weights
of G.

Proof. We define a polyhedron P by linear inequalities w(X) ≤ w(Y )− δ, where
w denotes the weight of a subgraph for the given point p, Y can be any suitable
subgraph, and δ is an additional parameter. To avoid problems with unboundedness,
we can also introduce additional normalizing inequalities −1 ≤ p ≤ 1. Clearly, there
exists a point (p, δ) with δ > 0 in P if and only if p gives a feasible solution to the
inverse parametric optimization problem.

Although there can be exponentially many inequalities, we can easily define an
oracle that either terminates the entire algorithm successfully or acts as a strong
separation oracle: to test a point (p, δ), simply compute the optimal subgraph Y for
the weights defined by p. If X = Y , we have solved the problem. If w(X) ≤ w(Y )−δ,
the point is feasible. Otherwise, return the halfspace w(X) ≤ w(Y )− δ.

Therefore, we can apply the ellipsoid method to find the point maximizing δ on
P . If the method returns a point with δ > 0 or terminates early with X = Y , we
must have solved the problem; otherwise the problem must be infeasible.

Corollary 8. We can solve the inverse parametric minimum spanning tree,
shortest path, or matching problems in time polynomial in the size of the given graph
and in the encoding length of its parametric weight functions.

As a variant of this result, by using an algorithm for finding the second best sub-
graph, we can test whether a given solution (p, δ) is feasible even when the optimal
subgraph for p is the desired subgraph by testing whether its weight is separated by
at least δ from the next best subgraph for p. Thus, we can complete the ellipsoid
method without early termination and find a parameter value for which X is opti-
mally separated from other subgraphs. Efficient second-best algorithms are known
for minimum spanning trees [10, 17, 18], shortest paths [16], and matching [22]; in
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general the second-best subgraph is the best subgraph within all graphs formed by
deleting one edge of X from G.

4. Game tree search. As described in the introduction, we would like to be
able to tune the weights of a game program’s evaluation function so that a shallow
search (to some fixed depth D) makes the correct move for each position in a given
test suite. However, because of the possibility of making the right move for the wrong
reasons, this problem seems highly nonlinear. Instead, we now sketch how to use the
ellipsoid method to search for an evaluation function that not only makes all the right
moves but also correctly orders certain pairs of positions found in its searches.

Define an unavoidable set of positions for a given player and depth D to be a set
of positions, each of which occurs D half-moves from the present situation, such that,
no matter what the opponent does, the given player can force the game to reach some
position in the set. For any given position pi, one can prove that one particular move
µ is best (from the point of view of a depth D search) by exhibiting a pair (Ai, Bi)
where Ai is an unavoidable set for the first player after move µ, Bi is an unavoidable
set for the second player after all other moves, and the evaluation of all positions in
A is better than the evaluation of any position in B. Minimax or alpha-beta search
can be interpreted as finding both of these sets.

Our separation oracle runs a depth-D search on each test position until one is
found at which the wrong move is made. We then construct Ai and Bi for that one
position, using a deep search, and look for a ∈ Ai and b ∈ Bi that have evaluations
in the wrong order. The oracle returns a constraint that the evaluation of a should
be greater than the evaluation of b.

The result of applying the ellipsoid method with this separation oracle is either
an evaluation function that makes the correct move (with a depth D search) in each
test position or a determination that it is impossible to correctly order all (a, b) pairs
found by the oracle.

5. Conclusions. We have discussed several problems of inverse parametric op-
timization, provided general solutions to a wide class of optimal subgraph problems
based on the ellipsoid method, and provided faster combinatorial algorithms for the
inverse parametric minimum spanning tree problem.

One difficulty with our approach comes from infeasible inputs: what if there is
no linear combination of parameters that leads to the desired solution? Rogers and
Langley [23] observe a similar phenomenon in their vehicle routing experiments and
suggest searching for additional parameters to use. This search may be aided by the
fact that infeasible linear programs can be witnessed by a small number of mutually
inconsistent constraints: in the path planning problem, we can find d+1 paths, one of
which must be better than the given path for any combination of known parameters.
Studying these paths may reveal the nature of the missing parameters. Alternatively,
a search for a linear programming solution with few violated constraints [19] may
provide a parameter setting for which the user’s chosen solution is near-optimal.

A natural direction for future research is in dealing with nonlinearity. Problems
in which the solution weight includes low-degree combinations of element weights (as
are used in game programming to represent interactions between positional features)
may be dealt with by including additional parameters for each such combination. But
what about problems in which the element weights are nonlinear combinations of the
parameters? For instance, if the parameters are coordinates of points, any problem
involving comparisons of distances will involve quadratic functions of those coordi-
nates. The question of finding coordinates such that a given tree is the Euclidean
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minimum spanning tree of the points is known to be NP-hard [11], but if the points’
coordinates depend only on a constant number of parameters, one can solve the prob-
lem in polynomial time. Can the exponent of this polynomial be made independent
of the number of parameters?

It may be possible to extend our spanning tree methods to other matroids. For
example, transversal matroids provide a formulation of bipartite matching in which
the weights are on the vertices of one side of the bipartition rather than the edges.
Can we solve inverse parametric transversal matroid optimization efficiently? Are
there natural applications of this or other matroidal problems?

Another open question concerns the existence of combinatorial algorithms for the
inverse parametric shortest path problem. It is unlikely that a strongly polynomial
algorithm exists without restricting the dimension: one can encode any linear pro-
gramming feasibility problem as an inverse parametric shortest path (or other optimal
subgraph) problem by using a parallel pair of edges for each constraint. But is there a
strongly polynomial algorithm for inverse parametric shortest paths when the number
of parameters is small?
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[7] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension,
Discrete Comput. Geom., 14 (1995), pp. 463–479.

[8] T. M. Chan, Geometric applications of a randomized optimization technique, Discrete Comput.
Geom., 22 (1999), pp. 547–567.

[9] K. L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension
is small, J. ACM, 42 (1995), pp. 488–499.

[10] B. Dixon, M. Rauch, and R. E. Tarjan, Verification and sensitivity analysis of minimum
spanning trees in linear time, SIAM J. Comput., 21 (1992), pp. 1184–1192.

[11] P. Eades and S. Whitesides, The realization problem for Euclidean minimum spanning trees
is NP-hard, Algorithmica, 16 (1996), pp. 60–82.

[12] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees with
applications, SIAM J. Comput., 14 (1985), pp. 781–798.

[13] G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k small-
est spanning trees, SIAM J. Comput., 26 (1997), pp. 484–538.

[14] J. A. Garay, S. Kutten, and D. Peleg, A sublinear time distributed algorithm for minimum-
weight spanning trees, SIAM J. Comput., 27 (1998), pp. 302–316.

[15] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Algorithms Combin. 2, Springer-Verlag, Berlin, 1988.

[16] W. Hoffman and R. Pavley, A method for the solution of the Nth best path problem, J. ACM,
6 (1959), pp. 506–514.

[17] N. Katoh, T. Ibaraki, and H. Mine, An algorithm for finding K minimum spanning trees,
SIAM J. Comput., 10 (1981), pp. 247–255.



SETTING PARAMETERS BY EXAMPLE 653

[18] V. King, A simpler minimum spanning tree verification algorithm, Algorithmica, 18 (1997),
pp. 263–270.
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Abstract. The problem Minimum Convex Cover of covering a given polygon with a minimum
number of (possibly overlapping) convex polygons is known to be NP-hard, even for polygons without
holes [J. C. Culberson and R. A. Reckhow, J. Algorithms, 17 (1994), pp. 2–44]. We propose a
polynomial-time approximation algorithm for this problem for polygons with or without holes that
achieves an approximation ratio of O(logn), where n is the number of vertices in the input polygon.
To obtain this result, we first show that an optimum solution of a restricted version of this problem,
where the vertices of the convex polygons may lie only on a certain grid, contains at most three
times as many convex polygons as the optimum solution of the unrestricted problem. As a second
step, we use dynamic programming to obtain a convex polygon which is maximum with respect to
the number of “basic triangles” that are not yet covered by another convex polygon. We obtain a
solution that is at most a logarithmic factor off the optimum by iteratively applying our dynamic
programming algorithm. Furthermore, we show that Minimum Convex Cover is APX-hard; i.e.,
there exists a constant δ > 0 such that no polynomial-time algorithm can achieve an approximation
ratio of 1+δ. We obtain this result by analyzing and slightly modifying an already existing reduction
[J. C. Culberson and R. A. Reckhow, J. Algorithms, 17 (1994), pp. 2–44].
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1. Introduction and problem definition. The problem Minimum Convex
Cover is the problem of covering a given polygon T with a minimum number of (pos-
sibly overlapping) convex polygons that lie in T . This problem belongs to the family
of classic art gallery problems; it is known to be NP-hard for input polygons with holes
[17] and without holes [4]. The study of approximations for hard art gallery problems
has rarely led to good algorithms or good lower bounds; we discuss a few exceptions
below. In this paper, we propose the first nontrivial approximation algorithm forMin-
imum Convex Cover. Our algorithm works for polygons with and without holes.
It relies on a strong relationship between the continuous original problem version and
a particular discrete version in which all relevant points are restricted to lie on a kind
of grid that we call a quasi grid. The quasi grid is the set of intersection points of
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all lines connecting two vertices of the input polygon. In the Restricted Minimum
Convex Cover problem, the vertices of the convex polygons that cover the input
polygon may lie only on this quasi grid. We prove that an optimum solution of the
Restricted Minimum Convex Cover problem needs at most three times the num-
ber of convex polygons that theMinimum Convex Cover solution needs. To find an
approximate solution for the Restricted Minimum Convex Cover problem, we
propose a greedy approach: we compute one convex polygon of the solution after the
other, and we pick as the next convex polygon one that covers a maximum number of
triangles defined on an even finer quasi grid, where these triangles are not yet covered
by previously chosen convex polygons. We propose an algorithm for finding such a
maximum convex polygon by means of dynamic programming. To obtain an upper
bound on the quality of the solution, we interpret our covering problem on triangles as
a special case of the generalMinimum Set Cover problem that gives as input a base
set of elements and a collection of subsets of the base set and that asks for a smallest
number of subsets in the collection whose union contains all elements of the base set.
In our special case, each triangle is an element, and each possible convex polygon is a
possible subset in the collection, but not all of these subsets are represented explicitly.
(There could be an exponential number of subsets.) This construction translates the
logarithmic quality of the approximation from Minimum Set Cover to Minimum
Convex Cover [13].

On the negative side, we show that Minimum Convex Cover is APX-hard; i.e.,
there exists a constant δ > 0 such that no polynomial-time algorithm can achieve
an approximation ratio of 1 + δ (see [3] for an introduction to the class APX). This
inapproximability result is based on a problem transformation shown by Culberson
and Reckhow [4]; we modify this transformation and show that it is gap-preserving
(as defined by Arora and Lund [1]).

The related problem of partitioning a given polygon into a minimum number of
nonoverlapping convex polygons is polynomially solvable for input polygons without
holes [2]. It is NP-hard for input polygons with holes [15] and can be approximated
with an approximation ratio of 4 [12]; it remains NP-hard even if the convex partition
must be created by cuts from a given family of (at least three) directions [16]. Other
related results for art gallery problems include approximation algorithms with log-
arithmic approximation ratios for Minimum Vertex Guard and Minimum Edge
Guard [10], as well as for the problem of covering a polygon with rectangles in
any orientation [11]. Furthermore, logarithmic inapproximability results are known
for Minimum Point/Vertex/Edge Guard for polygons with holes, and APX-
hardness results are known for the same problems for polygons without holes [6]. The
related problem Rectangle Cover of covering a given orthogonal polygon with a
minimum number of rectangles can be approximated with a constant ratio for poly-
gons without holes [9] and with an approximation ratio of O(

√
log n) for polygons

with holes [14]. For additional results, see the surveys on art galleries [18, 19]. The
general idea of using dynamic programming to find maximum convex structures has
been used before to solve the problem of finding a maximum (with respect to the
number of vertices) empty convex polygon, given a set of vertices in the plane [5]. An
O(log n) approximation algorithm for the problem of covering a polygon with rect-
angles in any orientation [11] relies on an approach similar to ours that consists of
making the problem discrete and then transforming it to a Minimum Set Cover
instance.

In section 2, we define the quasi grid and its refinement into triangles. Section 3
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Fig. 1. Construction of first-order basic triangles.

contains the proof of the linear relationship between the sizes of the optimum solutions
of the unrestricted and restricted convex cover problems. We propose a dynamic
programming algorithm to find a maximum convex polygon in section 4 before showing
how to iteratively apply this algorithm to find a convex cover in section 5. In section 6,
we present the proof of the APX-hardness ofMinimum Convex Cover. Concluding
thoughts are in section 7.

2. From the continuous to the discrete. We consider simple input polygons
with and without holes, where a polygon T is given as an ordered list of vertices in
the plane. If T contains holes, each hole is also given as an ordered list of vertices.
Let VT denote the set of vertices (including the vertices of holes, if any) of a given
polygon T . While in the general Minimum Convex Cover problem the vertices of
the convex polygons that cover the input polygon can be positioned anywhere in the
interior or on the boundary of the input polygon, we restrict their positions in an
intermediate step: they may be positioned only on a quasi grid in the Restricted
Minimum Convex Cover problem.

In order to define the Restricted Minimum Convex Cover problem more
precisely, we partition the interior of a polygon T into convex components (as proposed
in [10] for a different purpose) by drawing a line through each pair of vertices of T .
We then triangulate each convex component arbitrarily. We call the triangles thus
obtained first-order basic triangles. Figure 1 shows an example of the first-order basic
triangles of a polygon (thick solid lines) with an arbitrary triangulation (fine solid lines
and dashed lines). If a polygon T consists of n vertices, drawing a line through each
pair of vertices of T will yield less than

(
n
2

)·(n2) ∈ O(n4) intersection points. Let V 1
T be

the set of these intersection points that lie in T (in the interior or on the boundary).
Note that VT ⊆ V 1

T . The first-order basic triangles are a triangulation of V 1
T inside T ;

therefore, the number of first-order basic triangles is also O(n4). The Restricted
Minimum Convex Cover problem asks for a minimum number of convex polygons,
with vertices restricted to V 1

T , that together cover the input polygon T . We call V 1
T

a quasi grid that is imposed on T . For solving the Restricted Minimum Convex
Cover problem, we make use of a finer quasi grid: simply partition T by drawing
lines through each pair of points from V 1

T . This yields again convex components, and
we triangulate them again arbitrarily. This higher resolution partition yields O(n16)
intersection points, which define the set V 2

T . We call the resulting triangles second-
order basic triangles. Obviously, there are O(n16) second-order basic triangles. Note
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that VT ⊆ V 1
T ⊆ V 2

T .

3. The optimum solution of MINIMUM CONVEX COVER vs. the optimum
solution of RESTRICTED MINIMUM CONVEX COVER. The quasi grids V 1

T and V 2
T

serve the purpose of making a convex cover computationally efficient while at the
same time guaranteeing that the cover on the discrete quasi grid is not much worse
than the desired cover in continuous space. The following theorem proves the latter.

Theorem 1. Let T be an arbitrary simple input polygon with n vertices. Let
OPT denote the size of an optimum solution of Minimum Convex Cover with
input polygon T , and let OPT ′ denote the size of an optimum solution of Restricted
Minimum Convex Cover with input polygon T . Then

OPT ′ ≤ 3 ·OPT.

Proof. We proceed as follows: we show how to expand a given arbitrary convex
polygon C ⊆ T to another convex polygon C ′ ⊆ T with C ⊆ C ′ by iteratively
expanding edges. We then replace the vertices in C ′ by vertices from V 1

T , which
results in a (possibly) nonconvex polygon C ′′ ⊆ T with C ′ ⊆ C ′′. Finally, we describe
how to obtain three convex polygons C ′′1 , C

′′
2 , C

′′
3 with C ′′ = C ′′1 ∪C ′′2 ∪C ′′3 that contain

only vertices from V 1
T . This will complete the proof, since each convex polygon from

an optimum solution of Minimum Convex Cover can be replaced by at most three
convex polygons that are in a solution of Restricted Minimum Convex Cover.
Following this outline, let us present the proof details.

Expanding edges. Let C be an arbitrary convex polygon inside polygon T . Let
the vertices of C be given in clockwise order. We obtain a series of convex polygons
C1, C2, . . . , C ′ with C = C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ C ′, where Ci+1 is obtained from Ci

as follows (see Figure 2).
Let a, b, c, d be consecutive vertices (in clockwise order) in the convex polygon

Ci that lies inside polygon T . For ease of description, we assume that Ci does not
contain vertices that are collinear with its two neighboring vertices, except when such
a vertex happens to be a vertex from VT ; moreover, any vertex from VT that lies on
the boundary of Ci is also a vertex of Ci, even if it has collinear neighbors in Ci.
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Let vertices b, c /∈ VT , with b and c not on the same edge of T . Then the edge (b, c)
is called expandable. If there exists no expandable edge in Ci, then C ′ = Ci, which
means that we have found the end of the series of convex polygons. If (b, c) is an
expandable edge, we expand the edge from vertex b to vertex c as follows:

• If b does not lie on the boundary of T , then we let a point p start at b and
move along the halfline through a and b away from a and b until either one of
the following two events happens: p lies on the line through c and d, or the
triangle p, c, b touches the boundary of T . Fix p as soon as the first of these
events happens. Figure 2 shows a list of all possible cases, where the edges
from polygon T are drawn as thick edges: point p lies on the intersection
point of the lines from a through b and from c through d as in case (i), or
there is a vertex vl on the line segment from p to c as in case (ii), or p lies on
an edge of T as in case (iii).
• If b lies on the boundary of T , i.e., on some edge of T , say, from vk to vk+1

(in clockwise order), then let p move from b as before, except that the move
is now along the halfline from vk through b away from vk and b up until at
most vk+1 (instead of the ray from a through b). Figure 2 shows a list of
all possible cases: point p lies either at vertex vk+1 as in case (iv) or on the
intersection point of the lines from b to vk+1 and from d through c as in case
(v), or there is a vertex vl on the line segment from p to c as in case (vi).

A new convex polygon Cip is obtained by simply adding point p as a vertex in

the ordered set of vertices of Ci between the two vertices b and c; if—as in cases (ii)
and (vi)—a vertex from VT lies on the boundary of Cip, it is also added as a vertex
(despite the fact that it may have two collinear neighbors). In contrast, all vertices
in Cip that have collinear neighbors and that are not vertices in VT are eliminated.

An edge from two consecutive vertices b and c with b, c /∈ VT can always be
expanded in such a way that the triangle b, p, c that is added to the convex polygon
is nondegenerate, i.e., has nonzero area, unless b and c both lie on the same edge of
polygon T . This follows from the cases (i)–(vi) of Figure 2.

Let Ci+1 = Cip if either a new vertex of VT has been added to Cip in the expansion

of the edge, which is true in cases (ii), (iv), and (vi), or the number of vertices of Cip
that are not vertices from VT has decreased, which is true in case (i). If p is as in
case (iii), we expand the edge (p, c), which will result in case (iv), (v), or (vi). Note
that in cases (iv) and (vi), we have found Ci+1. If p is as in case (v), we expand
the edge (p, d), which will result in case (iv), (v), or (vi). If it is case (v) again, we
repeat the procedure by expanding the edge from p and the successor (clockwise) of
d. This needs to be done at most as many times as there are vertices in Ci, since the
procedure eliminates a vertex from Ci in each iteration and will stop before it tries
to expand an edge ending at vertex a as the resulting polygon would not be convex.
Therefore, we obtain Ci+1 from Ci in a finite number of steps.

Let τi denote the number of vertices in Ci that are also vertices in T , and let τ̂i be
the number of vertices in Ci that are not vertices in T . Note that φ(i) = τ̂i−2τi+2n
is a function that bounds the number of remaining iteration steps that are needed to
reach C ′; it strictly decreases with every increase in i and cannot become negative
as τ̂i and τi are both nonnegative numbers by definition and n ≥ τi. The existence
of such a bounding function, which is often called a variant function, implies the
finiteness of the series C1, C2, . . . , C ′ of convex polygons.

By definition, there are no expandable edges left in C ′. Call a vertex of C ′ a
T -vertex if it is a vertex in T . From the definition of expandable edges, it is clear that
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there can be at most two non-T -vertices between any two consecutive T -vertices in
C ′, and if there are two non-T -vertices between two consecutive T -vertices, they must
both lie on the same edge in T . (Otherwise, the edge between two non-T -vertices
would be expandable, which contradicts the definition of C ′.)

Replacing vertices. Let the T -vertices in C ′ be t1, . . . , tl in clockwise order,
and let the non-T -vertices between ti and ti+1 be nti,1 and nti,2 if they exist. We will
replace each non-T -vertex nti,j in C ′ by one or two vertices nt1i,j and nt2i,j that are

both elements of the quasi grid V 1
T . This will transform the convex polygon C ′ into

a not necessarily convex polygon C ′′. (We will show later how C ′′ can be covered by
at most three convex polygons C ′′1 , C

′′
2 , C

′′
3 .) The details are as follows: let a, b, c be

the first-order basic triangle in which non-T -vertex nti,j lies, as illustrated in Figure
3. Points a, b, c are all visible from both vertices ti and ti+1. To see this, assume by
contradiction that the view from, say, ti to a is blocked by an edge e of T . Since nti,j
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Fig. 4. Covering C′′ with three convex polygons.

must see ti, the edge e must contain a vertex e′ in the triangle ti, a, nti,j , but then a
cannot be a vertex of the first-order basic triangle in which nti,j lies, since the line
from vertex ti through vertex e′ would cut through the first-order basic triangle—an
impossibility.

Assume that only one non-T -vertex nti,1 exists between ti and ti+1. If the triangle
ti, ti+1, a completely contains the triangle ti, nti,1, ti+1, then we let nt1i,1 = a, and

likewise for b and c (see Figure 3 (ii)). Otherwise, we let (nt1i,1, nt
2
i,1) be (a, b), (a, c),

or (b, c), as in Figure 3 (i), such that the polygon ti, nt
1
i,1, nt

2
i,1, ti+1 is convex and

completely contains the triangle ti, nti,1, ti+1. This is always possible by the definition
of points a, b, c.

Assume that two non-T -vertices nti,1 and nti,2 exist between ti and ti+1. From
the definition of C ′, we know that nti,1 and nti,2 must lie on the same edge e of
T . Therefore, the basic triangle in which nti,1 lies must contain a vertex a either at
nti,1 or preceding nti,1 on edge e along T in clockwise order. Let nt1i,1 = a. The
basic triangle in which nti,2 lies must contain a vertex b either at nti,2 or succeeding
nti,2 on edge e. Let nt1i,2 = b. (See Figure 3 (iii).) Note that the convex polygon

ti, nt
1
i,1, nt

1
i,2, ti+1 completely contains the polygon ti, nti,1, nti,2, ti+1.

After applying this change to all non-T -vertices in C ′, we obtain a (possibly)
nonconvex polygon C ′′.

Covering with three convex polygons. We will now show how to cover C ′′

with at most three convex polygons. First, assume that C ′′ contains an odd number
f of T -vertices. We let C ′′1 be the polygon defined by vertices ti, nt

k
i,j , and ti+1 for

all j, k and for all odd i, but i 
= f . By construction, C ′′1 is convex. To see this,
assume C ′′1 is not convex; it would then have to have at least one vertex whose inner
angle is larger than π, which cannot happen at non-T -vertices in C ′′1 by construction.
The inner angles at a T -vertex ti−1 for i odd cannot be larger than π either, because
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Fig. 5. Dynamic programming.

polygon C ′′1 lies entirely to the right of the line going from ti−1 through ti. Let C ′′2
be the polygon defined by vertices ti, nt

k
i,j , and ti+1 for all j, k and for all even i.

Finally, let C ′′3 be the polygon defined by vertices tf , nt
k
f,j , and t1 for all j, k. Using

similar arguments as for C ′′1 , polygons C
′′
2 and C ′′3 are convex as well. Figure 4 shows

an example. Obviously, C ′′1 , C
′′
2 , and C

′′
3 together cover all of C ′′. Second, assume

that C ′′ contains an even number of T -vertices, and cover it with only two convex
polygons using the same concept. This completes the proof.

4. Finding maximum convex polygons. Assume that each second-order ba-
sic triangle from a polygon T is assigned a weight value of either 1 or 0. In this section,
we present an algorithm using dynamic programming that computes a convex polygon
M in a polygon T that contains a maximum number of second-order basic triangles
with weight 1 and that has vertices only from V 1

T . For simplicity, we call such a poly-
gon a maximum convex polygon. The weight of a polygon M is defined as the sum of
the weights of the second-order basic triangles in the polygon and is denoted by |M |.
We will later use the algorithm described below to iteratively compute a maximum
convex polygon with respect to the triangles that are not yet covered, to eventually
obtain a convex cover for T .

Let a, b, c ∈ V 1
T . Let Pa,b,c denote the maximum convex polygon that

• contains only vertices from V 1
T ,

• contains vertices a, b, c in counterclockwise order,
• has a as its left-most vertex,1

• contains additional vertices only between vertices a and b, and
• is completely contained in T .

Given three vertices a, b, c ∈ V 1
T , let A be the (possibly infinite) area of points

that are

• to the right of vertex a,
• to the left of the line oriented from b through a, and
• to the left of the line oriented from b through c.

1If polygon Pa,b,c has several left-most vertices, vertex a is one of them.
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1. Initialize table S(a, b, c) with zeros
2. FORALL a ∈ V 1

T DO O(n28)
3. Choose a helper point a′ with the same

x-coordinate and an arbitrary but smaller
y-coordinate than a

4. Order all vertices b ∈ V 1
T to the right of a

according to the angle formed by b, a, a′;
let the resulting ordered set be B O(n4 logn)

5. B′ := ∅
6. WHILE B �= ∅ DO O(n24)
7. Let b be the smallest element in B;

B := B − {b}; B′ := B′ ∪ {b}
8. FORALL c ∈ V 1

T \B′ to the right of a DO O(n20)

9. Compute |∆a, b, c| O(n16)
10. Define area A with respect

to vertices a, b, c according
to Lemma 2

11. FORALL d ∈ (V 1
T ∩A) DO O(n4)

12. Look up |Pa,d,b| and
store maximizing d in dmax

13. END
14. |Pa,b,c| := |∆a, b, c|+ |Pa,dmax,b|
15. Store |Pa,b,c| in table S
16. END
17. END
18. END
19. Find maximum entry in table S

Fig. 6. Algorithm for computing a maximum weight convex polygon.

For an illustration, see Figure 5. Let

P ′a,b,c = max
d∈V 1

T
∩A
Pa,d,b ∪∆a, b, c,

where ∆a, b, c is the triangle a, b, c and max is defined as follows (to simplify notation):

max{P1, P2} =
{
P1 if |P1| ≥ |P2|,
P2 otherwise.

Lemma 2. Pa,b,c = P ′a,b,c if the triangle a, b, c is completely contained in the
polygon T .

Proof. Consider Pa,b,c, which is maximum by definition. Pa,b,c must contain
additional vertices between a and b. (Otherwise, the lemma is trivially true.) Let d′

be the predecessor of b in the counterclockwise order of Pa,b,c. Vertex d′ must lie in
A as defined above. Now consider P ′′ = Pa,b,c −∆a, b, c. From the definition of A it
is clear that P ′′ can contain only vertices that lie in A. Now Pa,d′,b is maximum by
definition, and it is considered when computing P ′a,b,c.

Let M be a maximum convex polygon for a polygon T with weights assigned to
the second-order basic triangles. Let a be the left-most vertex of M , let c be the
predecessor of a in M in counterclockwise order, and let b be the predecessor of c.
Then |Pa,b,c| = |M | by definition. We will use Lemma 2 to construct an algorithm,
which takes as input a polygon T and an assignment of weight 0 or 1 to each second-
order basic triangle of T and computes the maximum convex polygon. An overview
of the algorithm is given in Figure 6.
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In more detail, we start by initializing a table S(a, b, c), where the entry at position
a, b, c denotes the weight |Pa,b,c|, in line 1 of Figure 6. In a first loop, we fix vertex
a ∈ V 1

T in line 2, let a′ be a helper point with the same x-coordinate and an arbitrary
but smaller y-coordinate than a, and order all vertices b ∈ V 1

T to the right of a
according to the angle formed by b, a, a′. We call the resulting ordered set B and
let B′ be the empty set. In a second loop, starting at line 6, we iteratively take the
smallest element b from B, remove it from B, and add it to set B′; then for every
c ∈ V 1

T \B′ to the right of a (see line 8), we compute weight |∆a, b, c| of the triangle
a, b, c and compute Pa,b,c according to Lemma 2 in line 11 (i.e., look up the values
of Pa,d,b for all d ∈ V 1

T ∩ A and take the maximum; all these values were computed
in earlier iterations). We then compute weight |Pa,b,c| by adding |∆a, b, c| to |Pa,d,b|,
where d is the maximizing argument, and store the value in table S. Note that the
computation of Pa,b,c according to Lemma 2 is always possible, since all possible
vertices d in Pa,d,b lie to the left of the line from b to a (see also definition of area
A), have therefore smaller angles d, a, a′ than b, a, a′, and have therefore already been
computed. The algorithm is executed for every a ∈ V 1

T , and—by using standard
bookkeeping techniques (not explicitly given in the pseudocode of Figure 6)—the
maximum convex polygon found is returned.

The cumulative running times of the loops and the running times of some crucial
individual lines of the algorithm are given in Figure 6, resulting in an overall running
time of O(n28). To see this, we first look at the loop from line 8 to line 16: each
iteration of this loop takes time O(n16), which is the running time of computing the
weight of a triangle a, b, c (see line 9) as we have to add the weights of almost all
second-order basic triangles; the O(n4) running time of the inner loop (lines 11 to 13)
is dominated by the O(n16) running time of line 9. Since there are O(n4) iterations
of the loop from line 8 to line 16, we get a running time of O(n20) for this loop. The
loop from lines 6 to 17 consists of a total of O(n4) iterations of the O(n20) loop from
lines 8 to 16, thus resulting in a cumulative running time of O(n24). Finally, the loop
from lines 2 to 18 has O(n4) iterations of the O(n24) loop from lines 6 to 17; the
O(n4 log n) time required for sorting in line 4 is dominated by the O(n24) time for the
loop. Thus the overall running time is O(n28). Memory requirements are O(n12) as
we need to allocate table S.

5. An approximation algorithm for MINIMUM CONVEX COVER. Given a
polygon T , we obtain a convex cover by iteratively applying the algorithm for com-
puting a maximum convex polygon from section 4. It works as follows for an input
polygon T :

1. Let all second-order basic triangles have weight 1. Let S = ∅.
2. Find the maximum convex polygonM of polygon T using the algorithm from

section 4, and add M to the solution S. Decrease the weight of all second-
order basic triangles that are contained in M to 0.2

3. Repeat step 2 until there are no second-order basic triangles with weight 1
left. Return S.

To obtain a performance guarantee for this algorithm, consider theMinimum Set
Cover instance I, which has all second-order basic triangles as elements and where
the second-order basic triangles with weight 1 of each convex polygon in T , which
contains only vertices from V 1

T , form a set in I. The greedy heuristic for Minimum

2Note that by the definition of second-order basic triangles, a second-order basic triangle either
is completely contained in M or is completely outside M .
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Set Cover achieves an approximation ratio of 1 + lnn′, where n′ is the number of
elements in I [13], and it works in exactly the same way as our algorithm. However,
we do not have to (and could not afford to) compute all the sets of the Minimum Set
Cover instance I (which would be a number exponential in n′); it suffices to always
compute a set, which contains a maximum number of elements not yet covered by the
solution thus far. This is achieved by reducing the weights of the second-order basic
triangles already in the solution to 0; i.e., a convex polygon with maximum weight is
such a set.

Note that n′ = O(n16) since the number of triangles in a triangulation is pro-
portional to the number of points in V 2

T that induce the triangulation. Therefore,
our algorithm achieves an approximation ratio of O(log n) for Restricted Mini-
mum Convex Cover on input polygon T . Because of Theorem 1, we know that the
solution found for Restricted Minimum Convex Cover is also a solution for the
unrestricted Minimum Convex Cover that is at most a factor of O(log n) off the
optimum solution.

As for the running time of this algorithm, observe that the algorithm adds to the
solution in each round a convex polygon with nonzero weight. An optimum solution
would consist of at most O(n) convex polygons, since a triangulation of the vertices
of the input polygon yields a trivial solution with O(n) convex polygons that are
triangles in this case. Since our algorithm finds a solution that is at most a factor
O(log n) off the optimum solution and since it adds a convex polygon to the solution in
each round, there can be at most O(n log n) rounds before the algorithm finishes. As
each round takes time O(n28), the total running time is O(n29 log n). This completes
the proof of our first main theorem:

Theorem 3. Minimum Convex Cover for input polygons with or without holes
can be approximated by a polynomial-time algorithm with an approximation ratio of
O(log n), where n is the number of polygon vertices.

6. APX-hardness of MINIMUM CONVEX COVER. The upper bound ofO(log n)
on the approximation ratio for Minimum Convex Cover may not be tight: we will
now prove that there is a constant lower bound on the approximation ratio, and hence
a gap remains. More precisely, we prove Minimum Convex Cover to be APX-hard.
Our proof of the APX-hardness of Minimum Convex Cover for input polygons
with or without holes uses a construction similar to the one that is used to prove
the NP-hardness of this problem for input polygons without holes[4].3 However, we
reduce the problemMaximum 5-Occurrence-3-Sat rather than SATISFIABILITY
(SAT) (as done in the original reduction [4]) to Minimum Convex Cover, and we
design the reduction to be gap-preserving [1]. Maximum 5-Occurrence-3-Sat is
the variant of SAT in which each variable may appear at most five times in clauses
and each clause contains at most three literals. Maximum 5-Occurrence-3-Sat is
APX-complete [1].

The reduction is constructed as follows: for a given instance I of Maximum
5-Occurrence-3-Sat with n variables x1, . . . , xn and m clauses c1, . . . , cm, we con-
struct an instance I ′ ofMinimum Convex Cover. To stick to the notation of [4], let
li ≤ 5 denote the number of literals of variable xi in the clauses, and let l =

∑n
i=1 li

be the total number of literals.

For each literal in I, we construct a literal pattern, which we call a “beam ma-

3APX-hardness for Minimum Convex Cover for input polygons without holes implies APX-
hardness for the same problem for input polygons with holes.
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Fig. 7. The beam machine.

chine,” as illustrated in Figure 7. A beam machine allows us to send a beam, i.e., a
slim convex polygon in one of two possible directions out of the beam machine toward
a structure that represents a clause. The beam machines of all literals of a variable
are then combined into a variable structure, as illustrated in Figure 8. All these vari-
able structures are then arranged in a half-circle such that the beams emitted from
the beam machines reach the appropriate clause checkers, which are simple dents.
An overview of the whole structure is given in an example in Figure 9. After this
overview, let us give a more detailed description.

The beam machine that is constructed for each literal is shown in Figure 7. Since
no two of the four vertices a, a′, b, and b′ see each other, at least four convex polygons
are needed to cover the beam machine. Two of these are the maximal convex polygons
a, c, d and a′, c′, d. The remaining areas around the mouth and the ear (the triangle)
at b or b′ can be covered by a large convex polygon shown in light gray in Figure 7.
Finally, a fourth convex polygon is needed to cover the other ear (at b′ in Figure 7).
This polygon, which we call a beam, is very slim and can be extended indefinitely
beyond the mouth outside the beam machine. The large light gray convex polygon
thus acts as a switch: depending on whether we let it cover the ear at b or b′, we can
turn on the indefinite beam polygon at the other ear. However, we cannot turn on
both beams and still use only four polygons to cover the beam machine. Note that
we can “focus” and “aim” the beam by slightly bending the whole beam machine or
by making the ears smaller.

The variable structure is illustrated in Figure 8. Its basic shape is butterfly-like.
The beam machines for each occurrence of the variable in a literal in a clause are set
on top of the butterfly with the positive literals on the right wing and the negative
literals on the left wing of the butterfly. For each literal, we have a dent on the bottom
line of the wing. If we cover each dent of the left or right wing with a maximal convex
polygon, i.e., with a polygon that covers the whole dent and then extends canonically,
then we have covered almost all of the left or right wing except for the area around
the mouth of the variable structure and except for a small triangular region for each
literal that lies between two dents. These triangles are called beam locks. We can
cover the beam locks either by beams emanating from the beam machines or by a
single large convex polygon which also covers the region around the mouth of the
variable structure. Such a polygon is drawn in light gray in Figure 8. In a similar
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dent

mouth

beam lock

Fig. 8. The variable structure.

way as in the beam machine, this large convex polygon acts as a switch: in order to
cover the whole variable structure with a minimum number of convex polygons, we
can have the beam locks of only one wing covered with such a single polygon; the
beam locks of the other wing must be covered by the beams of the beam machines.
In Figure 8, beams that are turned on are drawn in dark gray, while beams that are
turned off are medium gray. Thus, in Figure 8, all beam machines of positive literals
are turned off, and all beam machines of negative literals are turned on and can shine
infinitely far beyond the mouth of the variable structure.4

We need four convex polygons to cover each beam machine; thus we need 4li
convex polygons to cover the beam machines in the variable structure for variable xi.
For each literal, we need an additional polygon to cover the dent, and we need one
additional large switcher polygon to cover the mouth and the beam locks of either
the positive or negative literals. Thus a minimum number of 5li + 1 convex polygons
are required to cover the variable structure of variable xi. Note that if the beams of
only one negative and one positive literal that are both aimed toward and beyond the
mouth of the variable structure are turned on, then 5li+2 convex polygons are needed
to cover the variable structure. On the other hand, if the beams of all (positive and
negative) literals that cover the beam locks are turned on, there are still 5li+1 convex
polygons needed to cover the variable structure, since we also need to cover the area
around the mouth.

We arrange all variable structures in a half-circle-like shape above a base line,
which contains triangular dents that represent the clauses, as illustrated in Figure
9. This is done in such a way that a beam emanating from a beam machine of a
literal that appears in a clause reaches the corresponding dent (the clause checker)
that represents that clause and thus covers it. Note that we can arrange the variable
structures in such a way that they cannot interfere with each other; i.e., no convex
polygon can cover any beam locks or areas around the mouth of two different variable
structures. We can achieve this by making the angles at the mouth of each variable

4The beam machines have not been drawn exactly to scale in Figure 8.
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Fig. 9. Overview of the construction.

structure very small.

Theorem 4. Let I be an instance of Maximum 5-Occurrence-3-Sat consist-
ing of n variables and m clauses with a total of l literals, and let I ′ be the corresponding
instance of Minimum Convex Cover. Let OPT be the maximum number of satisfied
clauses of I by any assignment of the variables. Let OPT ′ be the minimum number
of convex polygons needed to cover the polygon of I ′, and let ε > 0 be constant. Then

OPT = m =⇒ OPT ′ = 5l + n+ 1,

OPT < (1− 15ε)m =⇒ OPT ′ > 5l + n+ 1 + εn.

Proof. The first implication is trivial: if we have a variable assignment that
satisfies all variables, we turn on the beams that are aimed toward the clause checkers
of all beam machines that represent literals that are satisfied by the assignment. We
turn on the beams that are aimed toward the beam locks for all other beam machines.
Thus we need 5li + 1 convex polygons to cover the variable structure xi. If we sum
this up over all n variables, we obtain 5l+n convex polygons. We need one additional
polygon to cover the space between the base line and the variable structures.

Since each clause is satisfied, we must have for each clause checker at least one
beam turned on that covers it. Thus the convex polygons as just described cover all
of I ′.

We prove the second implication by proving its contraposition, i.e., OPT ′ ≤
5l + n+ 1 + εn =⇒ OPT ≥ (1− 15ε)m. To this end, we show how to transform the
convex polygons of any solution S′ of the Minimum Convex Cover instance I ′ in
such a way that their total number does not increase and in such a way that a truth
assignment of the variables satisfying the desired number of clauses can be “inferred”
from the convex polygons.

Suppose we are given a solution S′ of the Convex Cover instance with |S′| ≤
5l + n+ 1 + εn.
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By construction, the variable generator for variable xi must be covered by at least
5li+1 convex polygons. Moreover, by construction, there is no convex polygon, which
simultaneously covers a part of a beam lock in any variable generator and a part of a
clause checker. There is not even a convex polygon which covers a part of a beam lock
and touches the horizontal line, on which the clause checkers lie. Similarly, note that
there is no convex polygon which can simultaneously cover a part of an ear of a beam
machine and a part of any clause checker, except for the clause checker associated
with the beam machine.

Proceed in the following order:

1. Determine which convex polygon in S′ covers the midpoint on the line seg-
ment between the clause checkers of clause c1 and c2. Transform this polygon
in such a way that it covers all of the area between the clause checkers and
the variable generators. Note that no convex polygon that covers this mid-
point can also cover any beam lock, ear of a beam machine, or clause checker.
Therefore, we have a feasible solution after this step.

2. For each clause checker, proceed as follows: for each convex polygon in S′

that covers part of the clause checker and that is not a regular beam which
leads to a beam machine associated with the clause checker, turn the polygon
into a beam to any of the associated beam machines.

3. If there exists a convex polygon in S′ that covers parts of the interior of at
least two different variable structures, then choose any variable structure in
which it lies, and cut off all other parts. This operation results in a feasible
solution since, by construction, such a polygon cannot cover the beam locks
or the area around the mouths of two different variable structures.

4. For each variable structure, proceed as follows:
• If the variable structure for xi is covered by 5li+2 or more convex poly-
gons, then rearrange the convex polygons in such a way that all beams
that point to clause checkers are turned on for positive and negative
literals. By construction, this is always possible with 5li + 2 convex
polygons.
• If the variable structure for xi is covered by 5li + 1 convex polygons
and one beam from a beam machine for literal xi (¬xi) that is aimed
at its associated clause checker is turned on, then rearrange all convex
polygons in the variable generator in such a way that all beams from
beam machines for literal xi (¬xi) that are aimed at the associated clause
checkers are turned on.

The convex cover obtained this way is still a feasible solution. After this trans-
formation, we have for each variable structure xi one of the following cases:

• for all negative and positive literals, the beams that are aimed toward the
clause checkers are turned on;
• only for all positive or negative literals, the beams that are aimed toward the
clause checkers are turned on;
• for negative and positive literals, the beams that are aimed toward the beam
locks are turned on.

We set the truth values for the variables as follows: if all beams of literal xi (¬xi)
that are aimed at clause checkers and no beams of literal ¬xi (xi) that are aimed
at clause checkers are turned on, then let the variable xi have truth value TRUE
(FALSE). If either all or no beams (of both literals xi and ¬xi) that are aimed at
clause checkers are turned on, then let variable xi be TRUE.
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By construction, every solution of I ′ must consist of at least 5l + n + 1 convex
polygons. If we transform a solution of I ′ with 5l + n + 1 + εn convex polygons
as indicated above, we get at most εn variable structures in which the beams of all
literals (positive and negative) that are aimed at the clause checkers are turned on.
By assigning all these variables the value TRUE, we falsify at most five clauses for
each variable, since each variable appears at most five times as a literal.

Therefore, we get a solution of I with at least m − 5εn clauses satisfied. Since
3m ≥ n, the solution has at least m(1− 15ε) satisfied clauses.

In the so-called promise problem [1] of Maximum 5-Occurrence-3-Sat as de-
scribed above, we are promised that either all clauses are satisfiable or at most a
fraction of 1− 15ε of the clauses is satisfiable, and we are to find out which of the two
possibilities is true. This problem is NP-hard for sufficiently small values of ε > 0 (see
[1]). Therefore, Theorem 4 implies that the promise problem for Minimum Convex
Cover, where we are promised that the minimum solution contains either 5l+ n+1
convex polygons or at least 5l + n + 1 + εn convex polygons, is NP-hard as well for
sufficiently small values of ε > 0. Therefore, Minimum Convex Cover cannot be
approximated with a ratio of 5l+n+1+εn

5l+n+1 ≥ 1+ εn
25n+n+1 ≥ 1+ ε

27 , where we have used
that l ≤ 5n and n ≥ 1. This establishes the following theorem.

Theorem 5. Minimum Convex Cover on input polygons with or without holes
is APX-hard.

7. Conclusion. We have proposed a polynomial-time approximation algorithm
for Minimum Convex Cover that achieves an approximation ratio that is logarith-
mic in the number of vertices of the input polygon. This has been achieved by showing
that there is a discretized version of the problem using no more than three times the
number of cover polygons. The discretization may be a first step toward answer-
ing the long-standing open question of whether the decision version of the Minimum
Convex Cover problem is in NP [18]: we know now that there always exists an
optimum solution such that the convex polygons in such an optimum solution contain
only a polynomial number of vertices and that a considerable fraction of these vertices
are actually vertices from the input polygon; however, all other vertices of the convex
polygons could still need a superpolynomial number of bits for their coordinates to
be expressed. Apart from the discretization, our algorithm applies a Minimum Set
Cover approximation algorithm to a Minimum Set Cover instance with an ex-
ponential number of sets that are represented only implicitly, through the geometry.
We propose an algorithm that picks the best of the implicitly represented sets with
a dynamic programming approach and hence runs in polynomial time. This tech-
nique may prove to be of interest for other problems as well. Moreover, by showing
APX-hardness, we have eliminated the possibility of the existence of a polynomial-
time approximation scheme for this problem. However, polynomial-time algorithms
could still achieve constant approximation ratios. Whether our algorithm is the best
asymptotically possible is therefore an open problem. Furthermore, our algorithm has
a rather excessive running time of O(n29 log n), and it is by no means clear how this
can be improved substantially.
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section 5 that reduces the overall running time of our algorithm from O(n44), which
we had in earlier versions of this paper, to O(n29 log n).



670 STEPHAN EIDENBENZ AND PETER WIDMAYER

REFERENCES

[1] S. Arora and C. Lund, Hardness of approximations, in Approximation Algorithms for NP-
Hard Problems, D. Hochbaum, ed., PWS Publishing Company, Boston, 1996, pp. 399–446.

[2] B. Chazelle and D. P. Dobkin, Optimal convex decompositions, in Computational Geometry,
Mach. Intelligence Pattern Recogn. 2, North–Holland, Amsterdam, 1985, pp. 63–133.

[3] P. Crescenzi and V. Kann, A compendium of NP optimization problems, in Complexity and
Approximation. Combinatorial Optimization Problems and Their Approximability Prop-
erties, G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M.
Protasi, eds., Springer-Verlag, Berlin, 1999, pp. 87–122.

[4] J. C. Culberson and R. A. Reckhow, Covering polygons is hard, J. Algorithms, 17 (1994),
pp. 2–44.

[5] D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars, Searching for empty convex polygons,
Algorithmica, 5 (1990), pp. 561–571.

[6] S. Eidenbenz, C. Stamm, and P. Widmayer, Inapproximability results for guarding polygons
and terrains, Algorithmica, 31 (2001), pp. 79–113.

[7] S. Eidenbenz, (In-)Approximability of Visibility Problems on Polygons and Terrains, Ph.D.
thesis, Dissertation ETH 13683, Zürich, Switzerland, 2000.
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SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 3, pp. 671–680

Abstract. In this paper, we compare the makespan of preemptive and i-preemptive schedules
where only a limited number i of preemptions is allowed. The problem is to schedule n independent
jobs on m identical processors that operate in parallel. The objective is to minimize the makespan,
i.e., the completion time of the last job that finishes. We show that the ratio of the optimal i-

preemptive schedule length Cip
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max versus the optimal preemptive schedule length Cp
∗
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∗
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1. Introduction. In this paper, we compare the makespan of preemptive, i-
preemptive, and LPT schedules for the problem in which a set of n independent jobs
has to be scheduled on m identical processors that operate in parallel. The objective
is to minimize the makespan, i.e., the maximum completion time of any job. Using
the notation by Braun [2], we mean by an i-preemptive schedule that the maximum
number of preemptions is bounded from above by a nonnegative integer number i.
A preemptive schedule is allowed to interrupt a job and later resume its execution
without any loss of time. Also, the minimum time slice for preempting a job may
be arbitrarily small. In nonpreemptive schedules, a job is started and executed to
completion without any interruption. It is easy to construct an optimal preemptive
schedule with McNaughton’s wrap around rule [9], whereas it is an NP-hard prob-
lem to construct an optimal nonpreemptive schedule. The longest processing time
(LPT) rule, which orders the jobs in nondecreasing order of their processing times,
is a (4/3− 1/3m)-approximation algorithm for the nonpreemptive case [6]. Preemp-
tive, nonpreemptive, and LPT schedules are commonly studied in the literature. An
analysis of the complexity of these problems, along with several of their variants and
special cases, can be found, e.g., in [1], [5], [3], and [10].

It is easy to see that an optimal preemptive schedule is never longer than an
optimal nonpreemptive one. The time savings of a preemptive schedule are bought
at the costs of moving a job off a processor before it is finished and at the costs of
saving information about the job while it is waiting to be resumed. The costs of
preempting a job may be neglected in a computer environment. Here, the costs of
preempting the execution of a job in the main memory and transferring it to and
from the virtual memory, such as mass storage devices, may be ignored. Generally,
however, there arise costs with job preemptions such as inventory and transportation
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costs. A small number of preemptions, in general, has advantages such as lower work-
in-process inventories, reduced material handling costs, fewer tooling changes, quality
improvements, and simplified production planning of materials and labor.

We investigate the following question: How much more effective (with respect
to the objective of minimizing the makespan) can optimal preemptive scheduling be
compared to optimal i-preemptive scheduling? More precisely, over all instances I,
what is the least upper bound on Cip

∗
max(I)/C

p∗
max(I), where C

ip∗
max and C

p∗
max denote

an optimal i-preemptive and an optimal preemptive makespan, respectively? For a
job system with arbitrary precedence constraints, Liu conjectured in [8] that the ratio
of the optimal nonpreemptive makespan versus the optimal preemptive makespan is
bounded above by 2− 2/(m+ 1). His upper bound proof was found to be incorrect.
Coffman and Garey [4] proved Liu’s conjecture for a system with arbitrary precedence
constraints and two processors. Hong and Leung [7] showed the correctness of the
bound for unit execution time (UET) and also for tree-structured job systems. Their
proof for tree-structured job systems is also valid for independent jobs.

The paper is organized as follows. In section 2, we show that the ratio of the
optimal i-preemptive makespan Cip

∗
max versus the optimal preemptive makespan C

p∗
max

is bounded from above by Cip
∗

max ≤ (2 − 2/(m/(i + 1) + 1))Cp
∗
max for 0 ≤ i ≤ m − 1.

It follows from [9] that no more than m− 1 preemptions are necessary to construct a
schedule which is optimal concerning the makespan. Then we show that the ratio of
the makespan CLPTmax of a nonpreemptive schedule following the LPT rule versus the
optimal preemptive makespan Cp

∗
max is bounded from above by CLPTmax ≤ (2m/(m +

1))Cp
∗
max. For each of the two bounds, we give an example which shows the tightness

of the bounds. Concluding remarks are given in section 3.

2. Worst-case analysis. The scheduling problem under consideration is as fol-
lows. There are n jobs J1, . . . , Jn with processing times p1, . . . , pn that have to
be scheduled on m identical parallel processors P1, . . . , Pm so as to minimize the
makespan Cmax. Cmax is the maximum of all finish times Cj , j = 1, . . . , n, of all jobs.
Each processor may work only on one job at a time, and each job may be processed
by only one machine at a time. Cp

∗
max is the makespan (schedule length) of an optimal

preemptive schedule, Cip
∗

max is the makespan of an optimal i-preemptive schedule, and
CLPTmax is the makespan of a schedule constructed with the LPT rule. The LPT rule
works in the following way: First, sort the jobs in a list in order of nonincreasing pro-
cessing times. Then assign the first unscheduled job in the list to any one of the least
loaded processors. An optimal i-preemptive schedule S allows at most i preemptions.
We assume that preemptions are allowed only on the i processors P2, . . . , Pi+1. With
pmax = maxj=1,...,n pj we denote the maximum processing time of a job, and with∑
pj =

∑n
j=1 pj we denote the sum of all processing times.

McNaughton [9] has given a lower bound for the makespan of preemptive sched-
ules:

Cp
∗
max = max

{ ∑
pj
m

, pmax

}
.(2.1)

The wrap around rule of McNaughton constructs optimal schedules with at most
m − 1 preemptions. If at least m − 1 preemptions are allowed, then one always can
construct an optimal schedule with McNaughton’s algorithm. Therefore, we have to
investigate for i-preemptive scheduling only the case when 0 ≤ i ≤ m− 1.

Let Jk be a job with processing time pk and completion time Ck = Cip
∗

max. We
assume without loss of generality that job Jk is processed on processor Pi+1 or on
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Fig. 2.1. Lemma 2.1.

processor Pi+2. The structure of the proof is as follows. If pk ≥
∑
pj/m, we have

Cip
∗

max = Cp
∗
max, as by (2.1) a preemptive schedule cannot be shorter than pk. So we

assume that pk <
∑
pj/m. In Lemma 2.1, we show that in an optimal i-preemptive

schedule S, there always exists a job Jk with processing time pk and completion time
Ck = Cip

∗
max which is not interrupted. Note that preemptions are allowed only on

the i processors P2, . . . , Pi+1. In Lemma 2.2, we prove that the start time of Jk is
not larger than (

∑
pj − (i + 1)pk)/m. In Lemmas 2.3 and 2.4, we show that in the

case when pk ≤ (m/(m+ i+ 1))Cp
∗
max and pk > (m/(m+ i+ 1))Cp

∗
max, the inequality

Cip
∗

max ≤ (2− 2/(m/(i+ 1) + 1))Cp
∗
max is fulfilled. Next we prove the lemmas.

Lemma 2.1. Let Jk be a job with processing time pk <
∑
pj/m and completion

time Ck = Cip
∗

max. In an optimal i-preemptive schedule S, Jk is not preempted.

Proof. This proof is by contradiction. Note that a job is preempted one time
at most and that the first scheduled part of job Jk must be scheduled on one of the
first i + 1 processors, because only on these processors are preemptions allowed. If
in schedule S job Jk would be preempted, it would be possible to construct a new
schedule S′ with the same makespan and with Jk not preempted as follows. Without
loss of generality, let P1 be the processor where Jk is preempted in schedule S, and
let Pi+1 be the processor where the processing of Jk is finished. If we move the part
of job Jk that is scheduled on processor P1 immediately before the start time sk of
Jk on processor Pi+1 and schedule the load of P1, . . . , Pi+1 with McNaughton’s rule,
we obtain a new schedule S′ with the following properties (see Figure 2.1).

1. The finish times of processors Pi+2, . . . , Pm remain unchanged.
2. The total capacity to be scheduled on processors P1, . . . , Pi+1 remains un-
changed in schedule S′. As it is allowed to schedule this capacity with Mc-
Naughton’s rule, and as there is no job Jj with pj = Cip

∗
max, the finish times

of processors P2, . . . , Pi+1 in schedule S
′ are not larger than Ck of schedule

S.

Thus schedule S′ has the same makespan as schedule S, and Jk is not
preempted.

Lemma 2.2. Let Jk be a job with processing time pk <
∑
pj/m and completion

time Ck = Cip
∗

max. For 0 ≤ i ≤ m − 1, the maximum number of allowed preemptions,
the start time sk of Jk in an optimal i-preemptive schedule S is not larger than (

∑
pj−

(i+ 1)pk)/m.

Proof. In Lemma 2.1, it has been shown that in an optimal i-preemptive schedule
S, job Jk with Ck = Cip

∗
max is not preempted. Note that only on the i processors

P2, . . . , Pi+1 are preemptions allowed. Thus we distinguish two cases.
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Fig. 2.2. Lemma 2.2, Case 1a.
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Fig. 2.3. Lemma 2.2, Case 1b.

Case 1. In an optimal i-preemptive schedule S, Jk is processed on one of the first
i+ 1 processors (without loss of generality on Pi+1).

Note that we are allowed to schedule the load on the first i + 1 processors with
McNaughton’s wrap around rule and that there is no job Jj with pj = Cip

∗
max. In

an optimal i-preemptive schedule S, the load on the first i + 1 processors is at least
(i+ 1)Ck. If not, one could construct a new schedule S

′ with a smaller makespan as
follows. Without loss of generality, let P1 be a processor with load less than Ck. By
scheduling the load on the first i + 1 processors with McNaughton’s rule, we would
get a new schedule S′ with the following properties (see Figure 2.2).

1. The total capacity to be scheduled on processors P1, . . . , Pi+1 remains un-
changed in schedule S′. As we are allowed to schedule this capacity with
McNaughton’s rule, and as there is no job Jj with pj = Cip

∗
max, the finish

times of processors P1, . . . , Pi+1 in schedule S
′ are less than Ck of schedule

S, and the number of preemptions is still at most i.
2. The finish times of processors Pi+2, . . . , Pm remain unchanged.

Thus schedule S′ would have a smaller makespan than schedule S, and we have
proved that the load on the first i+ 1 processors is at least (i+ 1)Ck.

Next, we show that the last m − (i + 1) processors have a load of at least (m −
(i + 1))sk. If not, one could construct a new schedule S′ with smaller makespan as
follows. Without loss of generality, let Pm be a processor with load less than sk. If
we would move job Jk to processor Pm, we would obtain a new schedule S

′ with the
following properties (see Figure 2.3).

1. The total capacity to be scheduled on processors P1, . . . , Pi+1 reduces by pk in
schedule S′. As we are allowed to schedule this capacity with McNaughton’s
wrap around rule, and as there is no job Jj with pj = Cip

∗
max, the finish times

of processors P1, . . . , Pi+1 in schedule S
′ are less than Ck of schedule S, and

the number of preemptions is still at most i.
2. The finish times of processors Pi+2, . . . , Pm−1 remain unchanged.
3. As the finish time on Pm was less than sk (in schedule S), the finish time on
Pm in schedule S′ is less than Ck of schedule S.

Thus schedule S′ would have a smaller makespan than schedule S, and we have
proved that the load on the last m− (i+ 1) processors is (m− (i+ 1))sk.

In total, we have

∑
pj ≥ (i+ 1)Ck + (m− (i+ 1))sk = (i+ 1)pk +msk
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Fig. 2.4. Lemma 2.2, Case 2a.

�� ���

���

���

�
�

����

��

����

��

���

���

��

����

Fig. 2.5. Lemma 2.2, Case 2b.

or, equivalently,

sk ≤
∑
pj − (i+ 1)pk

m
.

Case 2. In an optimal i-preemptive schedule S, Jk is processed on one of the last
m− (i+ 1) processors (without loss of generality on Pi+2).

The first i+ 1 processors have a load of at least (i+ 1)Ck − pk. If not, we could
generate a new schedule S′ with a smaller makespan than S as follows. We are allowed
to schedule the load on the first i+ 1 processors with McNaughton’s rule, and there
is no job Jj with processing time pj = Cip

∗
max. Thus, in schedule S, there must be a

processor (without loss of generality Pi+1) with load less than Ck − pk = sk. If we
move job Jk to processor Pi+1, we would obtain a new schedule S

′ with the following
properties (see Figure 2.4).

1. The finish times of processors P1, . . . , Pi remain unchanged.
2. As the finish time on Pi+1 was less than sk (in schedule S), the finish time
on Pi+1 in schedule S

′ is less than Ck of schedule S.
3. The finish time of processor Pi+2 reduces by pk.
4. The finish times of processors Pi+3, . . . , Pm remain unchanged.

Thus schedule S′ would have a smaller makespan than schedule S, and we have
proved that the load on the first i+ 1 processors is at least (i+ 1)Ck − pk.

Next we prove that the last m − (i + 1) processors have a load of at least (m −
(i+ 1))sk + pk. If not, we could generate a new schedule S

′ with a smaller makespan
than S as follows. Without loss of generality, let Pm be a processor with load less
than sk. If we would move job Jk to processor Pm, we would obtain a new schedule
S′ with the following properties (see Figure 2.5).

1. The finish times of processors P1, . . . , Pi+1 remain unchanged.
2. The finish time of processor Pi+2 reduces by pk.
3. The finish times of processors Pi+3, . . . , Pm−1 remain unchanged.
4. As the finish time on Pm was less than sk (in schedule S), the finish time on
Pm in schedule S′ is less than Ck of schedule S.

Thus schedule S′ would have a smaller makespan than schedule S, and we have
proved that the load on the last m− (i+ 1) processors is (m− (i+ 1))sk + pk.

In total, we have

∑
pj ≥ (i+ 1)Ck − pk + (m− (i+ 1))sk + pk

= (i+ 1)(sk + pk)− pk + (m− (i+ 1))sk + pk = (i+ 1)pk +msk
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or, equivalently,

sk ≤
∑
pj − (i+ 1)pk

m
.

Lemma 2.3. Let S be an optimal i-preemptive schedule with makespan Cip
∗

max. Let
Jk be a job with Ck = Cip

∗
max, pk <

∑
pj/m, and

pk ≤ Cp∗max
(

m

m+ i+ 1

)
.(2.2)

For 0 ≤ i ≤ m − 1, the maximum number of allowed preemptions, we have, for all
instances of the problem P | i− pmtn | Cmax,

Cip
∗

max ≤

2− 2(

m
i+1

)
+ 1


Cp

∗
max.

Proof. From Lemma 2.2 we know that job Jk is not preempted. Thus we have
for the schedule length of the optimal i-preemptive schedule

Cip
∗

max = sk + pk.

With the help of Lemma 2.2, we have

Cip
∗

max ≤
∑
pj − (i+ 1)pk

m
+ pk =

∑
pj
m

+
m− (i+ 1)

m
pk.

McNaughton’s bound (2.1) and assumption (2.2) lead to

Cip
∗

max ≤ Cp
∗
max +

m− (i+ 1)
m

m

m+ (i+ 1)
Cp
∗
max =

(
2− 2

( mi+1 ) + 1

)
Cp
∗
max.

Lemma 2.4. Let S be an optimal i-preemptive schedule with makespan Cip
∗

max. Let
Jk be a job with Ck = Cip

∗
max, pk <

∑
pj/m, and

pk > Cp
∗
max

(
m

m+ i+ 1

)
.(2.3)

For 0 ≤ i ≤ m − 1, the maximum number of allowed preemptions, we have, for all
instances of the problem P | i− pmtn | Cmax,

Cip
∗

max ≤

2− 2(

m
i+1

)
+ 1


Cp

∗
max.

Proof. This proof is by contradiction. We assume that there is an optimal i-
preemptive schedule S with Cip

∗
max > (2−2/(m/(i+1)+1))Cp∗max. In this case, there is

always a processor with a load of at most (m/(m+i+1))Cp
∗
max, as we can see as follows.

If there would not exist a processor with a load of maximum (m/(m + i + 1))Cp
∗
max,
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Fig. 2.6. Lemma 2.4, Case 1.
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Fig. 2.7. Lemma 2.4, Case 2.

we would have

∑
pj > (i+ 1)Cip

∗
max + (m− (i+ 1))

(
m

m+ i+ 1

)
Cp
∗
max

> (i+ 1)


2− 2(

m
i+1

)
+ 1


Cp

∗
max + (m− (i+ 1))

(
m

m+ i+ 1

)
Cp
∗
max

= mCp
∗
max .

This would be a contradiction to McNaughton’s bound (2.1). Thus there is a
processor with a load of at most m/(m+ i+ 1)Cp

∗
max. Without loss of generality, we

assume that this processor is Pm with finish time Fm.
Case 1. In an optimal i-preemptive schedule S, Jk is processed on one of the first

i+1 processors (without loss of generality on Pi+1). In this case, one could construct
a new schedule S′ with smaller makespan as follows. If we would switch job Jk with
the jobs processed on processor Pm, we would obtain a new schedule S′ with the
following properties (see Figure 2.6).

1. Because of (2.3), we know that pk > (m/(m + i + 1))Cp
∗
max. By switching

all the jobs scheduled on Pm with Jk, the total capacity to be scheduled
on processors P1, . . . , Pi+1 reduces by pk − Fm in schedule S′. As we are
allowed to schedule the remaining capacity with McNaughton’s wrap around
rule, and as there is no job Jj with pj = Cip

∗
max, the finish times of processors

P1, . . . , Pi+1 in schedule S
′ are less than Ck of schedule S.

2. The finish times of processors Pi+2, . . . , Pm−1 remain unchanged.
3. As the finish time Fm on Pm was less than pk (in schedule S), and as Jk was
not the only job scheduled on Pi+1 (in schedule S), the finish time on Pm in
schedule S′ is less than Ck of schedule S.

Thus the makespan generated by S′ is smaller than the makespan generated by
S, which leads to a contradiction to the assumption of the optimality of S.

Case 2. In an optimal i-preemptive schedule S, Jk is processed on one of the
last m − (i + 1) processors (without loss of generality on Pi+2). In this case, one
could construct a new schedule S′ with smaller makespan as follows. If we switch job
Jk with the jobs processed on processor Pm, we obtain a new schedule S′ with the
following properties (see Figure 2.7).

1. The finish times of processors P1, . . . , Pi+1 remain unchanged.
2. Because of (2.3), we know that pk > (m/(m + i + 1))Cp

∗
max. As the finish

time Fm on Pm was less than pk (in schedule S), the finish time on Pi+2 in
schedule S′ is less than Ck of schedule S.
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��

��

� ��������������

�	� �
�

����

��

� �

����

���

������

���

��� ���

���

����

��

���

����

��

� �

����

���

���

��� ���

���

����

��

Fig. 2.8. Optimal preemptive and i-preemptive schedules.

3. The finish times of processors Pi+3, . . . , Pm−1 remain unchanged.
4. As Jk was not the only job to be scheduled on Pi+1 in schedule S, the finish
time on Pm in schedule S′ is less than Ck of schedule S.

Thus the makespan generated by S′ is smaller than the makespan generated by
S, which leads to a contradiction to the assumption of the optimality of S.

Theorem 2.5. Let S be an optimal i-preemptive schedule with makespan Cip
∗

max.
For 0 ≤ i ≤ m − 1, the maximum number of allowed preemptions, we have, for all
instances of the problem P | i− pmtn | Cmax,

Cip
∗

max ≤

2− 2(

m
i+1

)
+ 1


Cp

∗
max .

Proof. The proof is by Lemmas 2.3 and 2.4.
To show the tightness of the bound Cip

∗
max ≤ (2 − 2/(m/(i + 1) + 1))Cp∗max, we

consider the following problem instance: n jobs are to be scheduled on m processors
with n = m+i+1 and pj = k, j = 1, . . . , n. The optimal i-preemptive schedule always
has length 2k, whereas the optimal preemptive schedule length is k(m+ i+1)/m (see
Figure 2.8).

Job Jk with Ck = Cip
∗

max is marked grey. In figure (a), the jobs are scheduled with
McNaughton’s rule. In figure (b), job Jk is scheduled on the first i + 1 processors
which allow preemptions (without loss of generality on Pi+1). In figure (c), job Jk is
scheduled on the last m − (i + 1) processors which forbid preemptions (without loss
of generality on Pi+2). In both cases (b) and (c), there must exist a processor that
schedules two jobs without preemption.

We have

Cip
∗

max

Cp
∗
max

=
2k

k(m+ i+ 1)/m
=


2− 2(

m
i+1

)
+ 1


 .

In the following, we show that the relation between a schedule constructed with
the LPT rule and an optimal preemptive schedule is bounded from above by 2 −
2/(m+ 1).

Theorem 2.6. For schedules generated with the LPT rule, we have, for all
instances,

CLPTmax ≤
(
2− 2

m+ 1

)
Cp
∗
max.
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Fig. 3.1. i-preemptive makespan (worst-case).

Proof. Let Jk be the job that determines the schedule length of the LPT schedule.
If pk ≤ (m/(m+ 1))Cp

∗
max, we have

CLPTmax = sk + pk ≤
∑
pj − pk
m

+ pk =

∑
pj
m

+

(
1− 1

m

)
pk

≤ Cp∗max +
(
1− 1

m

)
Cp
∗
max

(
m

m+ 1

)
=

(
2− 2

m+ 1

)
Cp
∗
max .

If pk > (m/(m+ 1))Cp
∗
max, we have

pk > Cp
∗
max

(
m

m+ 1

)
≥
(∑

pj
m

)(
m

m+ 1

)
=

∑
pj

m+ 1

=⇒ pk >

∑
pj , j �= k

m
≥ sk

=⇒ sk < pk.

sk is only less than pk if sk = 0. (Note that the schedule is generated with the
LPT rule.) Thus we have CLPTmax = Cp

∗
max if pk > (m/(m+ 1))Cp

∗
max.

For i = 0, this bound is also met by schedules generated by the LPT rule.

3. Summary. We compared the length of preemptive and i-preemptive sched-
ules for the problem in which a set of n independent jobs has to be scheduled on
m identical processors that operate in parallel. The objective is to minimize the
makespan. We showed that the ratio of the optimal i-preemptive schedule length Cip

∗
max

(with a limited number 0 ≤ i ≤ m− 1 of preemptions) versus the optimal preemptive
schedule length Cp

∗
max is bounded from above by Cip

∗
max ≤ (2−2/(m/(i+1)+1))Cp

∗
max.

The grey region in Figure 3.1 displays all possible makespans as a function of the
number i of maximum allowed preemptions.

Furthermore, we showed that the ratio of the length CLPTmax of a nonpreemptive
schedule generated by the LPT rule versus the optimal preemptive schedule length
Cp
∗
max is bounded from above by exactly the same bound if i = 0. We gave an example

which shows the tightness of the bounds.
Further research is needed to investigate the trade-off between the objectives of

minimizing the makespan (time objective) and minimizing the number of preemptions
(cost objective), i.e., to find a minimal length schedule for a given i. Clearly, if
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i ≥ m− 1, one can generate an optimal schedule with the algorithm of McNaughton.
For any value between 0 and m−2, however, the problem of finding a minimal length
schedule is NP-hard.

The same problem arises if we try to find a schedule with a makespan not greater
than Callowedmax and with a minimal number of preemptions. Clearly, if Callowedmax < Cp

∗
max,

then there is no feasible schedule, and if Callowedmax ≥ 2 − (2/(m + 1))Cp
∗
max, then any

LPT schedule meets this bound by generating no preemptions. For any value between
these two values, however, the problem of minimizing the number of preemptions is
NP-hard.
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Abstract. We study nondeterministic quantum algorithms for Boolean functions f . Such
algorithms have positive acceptance probability on input x iff f(x) = 1. In the setting of query
complexity, we show that the nondeterministic quantum complexity of a Boolean function is equal
to its “nondeterministic polynomial” degree. We also prove a quantum-vs.-classical gap of 1 vs. n for
nondeterministic query complexity for a total function. In the setting of communication complexity,
we show that the nondeterministic quantum complexity of a two-party function is equal to the
logarithm of the rank of a nondeterministic version of the communication matrix. This implies that
the quantum communication complexities of the equality and disjointness functions are n + 1 if we
do not allow any error probability. We also exhibit a total function in which the nondeterministic
quantum communication complexity is exponentially smaller than its classical counterpart.

Key words. quantum computing, query complexity, communication complexity, nondetermin-
ism
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1. Introduction.

1.1. Motivation. In classical computing, nondeterministic computation has a
prominent place in many different models and for many good reasons. For example, in
Turing machine complexity, the study of nondeterminism leads naturally to the class
of NP-complete problems, which contains some of the most important and practically
relevant computer science problems—as well as some of the hardest theoretical open
questions. In fields like query complexity and communication complexity, there is a
tight relation between deterministic complexity and nondeterministic complexity, but
it is often much easier to analyze upper and lower bounds for the latter than for the
former.
Suppose we want to compute a Boolean function f in some algorithmic setting,

such as that of Turing machines, decision trees, or communication protocols. Consider
the following two ways of viewing a nondeterministic algorithm. The first and most
common way is to think of it as a “certificate verifier”: a deterministic algorithm A
that receives, apart from the input x, a “certificate” y whose validity it needs to
verify. For all inputs x, if f(x) = 1, then there is a certificate y such that A(x, y) = 1;
if f(x) = 0, then A(x, y) = 0 for all y. Second, we may view A as a randomized
algorithm whose acceptance probability is positive if f(x) = 1 and whose acceptance
probability is zero if f(x) = 0. It is easy to see that these two views are equivalent
in the classical case. To turn an algorithm A of the first kind into one of the second
kind, we can just guess a certificate y at random and output A(x, y). This will have
positive acceptance probability iff f(x) = 1. For the other direction, we can consider
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the sequence of coin flips used by an algorithm of the second kind as a certificate.
Clearly, there will be a certificate leading to output 1 iff f(x) = 1, which gives us an
algorithm of the first kind.
Both views may be generalized to the quantum case, yielding three potential

definitions of nondeterministic quantum algorithms, possibly nonequivalent. The
quantum algorithm may be required to output the right answer f(x) when given
an appropriate certificate, which we can take to be either quantum or classical. Or,
third, the quantum algorithm may be required to have positive acceptance proba-
bility iff f(x) = 1. An example is given by two alternative definitions of quantum
nondeterminism in the case of quantum Turing machine complexity. Kitaev defines
the class “bounded-error quantum-NP” (BNQP) as the set of languages accepted by
polynomial-time bounded-error quantum algorithms that are given a polynomial-size
quantum certificate (e.g., [32, 31] and [30, Chapter 14]). On the other hand, Adleman,
Demarrais, and Huang [2] and Fenner et al. [24] define quantum-NP as the set of lan-
guages L for which there is a polynomial-time quantum algorithm whose acceptance
probability is positive iff x ∈ L. This quantum class was shown to be equal to the
classical counting class co-C=P [24, 52] using tools from Fortnow and Rogers [25].
In this paper, we adopt the latter view: a nondeterministic quantum algorithm

for f is defined to be a quantum algorithm that outputs 1 with positive probability
if f(x) = 1 and that always outputs 0 if f(x) = 0. This definition contrasts with
the more traditional view of classical determinism as “certificate verification.” The
motivation for our choice of definition of quantum nondeterminism is twofold. First,
in the appendix, we show that this definition is strictly more powerful than the other
two possible definitions in the sense of being able to simulate the other definitions
efficiently, while the reverse is not true. Second, it turns out that this definition lends
itself to very crisp results. Rather than in the quantum Turing machine setting of
Kitaev, Adleman, etc., we study the complexity of nondeterministic algorithms in
the query complexity and communication complexity settings. Our main results are
exact characterizations of these nondeterministic quantum complexities in algebraic
terms and large gaps between quantum and classical complexities in both settings.
Our algebraic characterizations can be extended to nontotal functions in the obvious
way, but we will stick to total functions in our presentation.

1.2. Query complexity. We first consider the model of query complexity, also
known as decision tree complexity or black box complexity. Here the goal is to com-
pute some function f : {0, 1}n → {0, 1}, making as few queries to input bits as
possible. Most existing quantum algorithms can naturally be expressed in this model
and achieve provable speed-ups over the best classical algorithms. Examples can be
found, e.g., in [22, 48, 26, 12, 13, 14] and also include the order-finding problem on
which Shor’s celebrated factoring algorithm is based [47].
Let D(f) and QE(f) denote the query complexities of optimal deterministic and

quantum algorithms that compute f exactly. Let deg(f) denote the minimal degree
among all multilinear polynomials that represent f . (A polynomial p represents f
if f(x) = p(x) for all x ∈ {0, 1}n.) The following relations are known. The first
inequality is due to Beals et al. [6], the second inequality is obvious, and the last is
due to Nisan and Smolensky—unpublished, but described in the survey paper [20].

deg(f)

2
≤ QE(f) ≤ D(f) ≤ O(deg(f)4).

Thus deg(f), QE(f), and D(f) are polynomially related for all total f . (The situation
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is very different for partial f [22, 48, 47, 7].) Nisan and Szegedy [42] exhibit a function
with a large gap between D(f) = n and deg(f) = n0.6..., but no function is known
where QE(f) is significantly larger than deg(f), and it may in fact be true that QE(f)
and deg(f) are linearly related. In section 2, we show that the nondeterministic
versions of QE(f) and deg(f) are in fact equal :

NQ(f) = ndeg(f).

Here NQ(f) denotes the query complexity of an optimal nondeterministic quantum
algorithm for f , which has nonzero acceptance probability iff f(x) = 1. The non-
deterministic degree ndeg(f) is the minimal degree of a so-called nondeterministic
polynomial for f , which is required to be nonzero iff f(x) = 1. A note on termi-
nology: the name “nondeterministic polynomial” is based only on analogy with the
acceptance probability of a nondeterministic algorithm. This name is less than ideal,
since such polynomials have little to do with the traditional view of nondeterminism
as certificate verification. Nevertheless, we use this name because any alternatives
that we could think of were worse (too verbose or confusing).
Apart from the algebraic characterization of the nondeterministic quantum query

complexity NQ(f), we also show that NQ(f) may be much smaller than its classical
analogue N(f): we exhibit an f where NQ(f) = 1 and N(f) = n, which is the
biggest possible gap allowed by this model. Accordingly, while the case of exact (or,
for that matter, bounded-error) computation allows at most polynomial quantum-
classical query complexity gaps for total functions, the nondeterministic case allows
unbounded gaps.

1.3. Communication complexity. In the case of communication complexity,
the goal is for two distributed parties, Alice and Bob, to compute some function
f : {0, 1}n × {0, 1}n → {0, 1}. Alice receives an x ∈ {0, 1}n, and Bob receives a
y ∈ {0, 1}n, and they want to compute f(x, y), exchanging as few bits of communica-
tion as possible. This model was introduced by Yao [53] and is fairly well understood
for the case in which Alice and Bob are classical players exchanging classical bits [36].
Much less is known about quantum communication complexity, where Alice and Bob
have a quantum computer and can exchange qubits. This was first studied by Yao [54],
and it was shown later that quantum communication complexity can be significantly
smaller than classical communication complexity [21, 17, 5, 44, 16].
Let Dcc(f) and QccE(f) denote the communication required for optimal deter-

ministic classical and exact quantum protocols for computing f , respectively.1 Here
we assume Alice and Bob do not share any randomness or prior entanglement. Let
rank(f) be the rank of the 2n × 2n communication matrix Mf , which is defined by
Mf (x, y) = f(x, y). The following relations are known:

log rank(f)

2
≤ QccE(f) ≤ Dcc(f).

The first inequality follows from work of Kremer [35] and Yao [54], as first noted by
Buhrman, Cleve, and Wigderson [17]. (In [19] it is shown that this lower bound also
holds if the quantum protocol can make use of unlimited prior entanglement between
Alice and Bob.) It is an open question whether Dcc(f) can in turn be upper bounded

1The notation D(f) is used for deterministic complexity in decision tree complexity as well
as in communication complexity. To avoid confusion, we will consistently add “cc” to indicate
communication complexity.
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by some polynomial in log rank(f). The conjecture that it can is known as the log-rank
conjecture. If this conjecture holds, then Dcc(f) and QccE(f) are polynomially related
for all total f (which may well be true). It is known that log rank(f) and Dcc(f) are
not linearly related [43]. In section 3, we show that the nondeterministic version of
log rank(f) in fact fully determines the nondeterministic version of QccE(f):

NQcc(f) = �log nrank(f)�+ 1.

Here nrank(f) denotes the minimal rank of a matrix whose (x, y)-entry is nonzero iff
f(x, y) = 1. Thus we can characterize the nondeterministic quantum communication
complexity fully by the logarithm of the rank of its nondeterministic matrix. As far as
we know, only two other log-rank-style characterizations of certain variants of commu-
nication complexity are known: the communication complexity of quantum sampling
due to Ambainis et al. [5] and the so-called modular communication complexity due
to Meinel and Waack [38].
Equality and disjointness both have nondeterministic rank 2n, so their nondeter-

ministic complexities are maximal: NQcc(EQ) = NQcc(DISJ) = n+1. Since NQcc(f)
lower bounds QccE(f), we also obtain optimal bounds for the exact quantum com-
munication complexity of equality and disjointness. In particular, for the equality
function, we get QccE(EQ) = n+ 1, which answers a question posed by Gilles Bras-
sard in a personal communication [10]. Surprisingly, no proof of this fact seems to be
known that avoids our detour via nondeterministic computation. Thus our methods
also give new lower bounds for regular quantum communication complexity.
Finally, analogous to the query complexity case, we also show an exponential

gap between quantum and classical nondeterministic communication complexity: we
exhibit an f where NQcc(f) ≤ log(n+ 1) + 1 and Ncc(f) ∈ Ω(n). Massar et al. [37]
earlier found another gap that is unbounded, yet in some sense smaller: NQcc(NE) = 2
versus Ncc(NE) = logn+ 1, where NE is the nonequality function.

2. Nondeterministic quantum query complexity.

2.1. Functions and polynomials. For x ∈ {0, 1}n, we use |x| for the Hamming
weight (number of 1’s) of x, and xi for its ith bit, i ∈ [n] = {1, . . . , n}. We use �0 for a
string of n zeros. If B ⊆ [n] is a set of (indices of) variables, then xB denotes the input
obtained from x by complementing all variables in B. If x, y ∈ {0, 1}n, then x ∧ y
denotes the n-bit string obtained by bitwise ANDing x and y. Let f : {0, 1}n → {0, 1}
be a total Boolean function. For example, OR(x) = 1 iff |x| ≥ 1, AND(x) = 1 iff
|x| = n, PARITY(x) = 1 iff |x| is odd. We use f for the function 1− f .
For b ∈ {0, 1}, a b-certificate for f is an assignment C : S → {0, 1} to some

set S of variables, such that f(x) = b whenever x is consistent with C. The size
of C is |S|. The certificate complexity Cx(f) of f on input x is the minimal size of
an f(x)-certificate that is consistent with x. We define the 1-certificate complexity
of f as C(1)(f) = maxx:f(x)=1 Cx(f). We define C

(0)(f) similarly. For example,

C(1)(OR) = 1 and C(0)(OR) = n, but C(1)(OR) = n and C(0)(OR) = 1.
An n-variate multilinear polynomial is a function p : Cn → C that can be written

p(x) =
∑
S⊆[n]

aSXS .

Here S ranges over all sets of indices of variables, aS is a complex number, and
the monomial XS is the product Πi∈Sxi of all variables in S. The degree deg(p)
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of p is the degree of a largest monomial with nonzero coefficient. It is well known
that every total Boolean f has a unique polynomial p such that p(x) = f(x) for
all x ∈ {0, 1}n. Let deg(f) be the degree of this polynomial, which is at most n.
For example, OR(x1, x2) = x1 + x2 − x1x2, which has degree 2. Every multilinear
polynomial p =

∑
S aSXS can also be written out uniquely in the so-called Fourier

basis:

p(x) =
∑
S

cS(−1)x·S .

Again S ranges over all sets of indices of variables (we often identify a set S with
its characteristic n-bit vector), cS is a complex number, and x · S denotes the inner
product of the n-bit strings x and S, or, equivalently, x · S = |x ∧ S| = ∑i∈S xi.
It is easy to see that deg(p) = max{|S| | cS �= 0}. For example, OR(x1, x2) =
3
4 − 1

4 (−1)x1 − 1
4 (−1)x2 − 1

4 (−1)x1+x2 in the Fourier basis. We refer to [8, 42, 20] for
more details about polynomial representations of Boolean functions.
We introduce the notion of a nondeterministic polynomial for f . This is a poly-

nomial p such that p(x) �= 0 iff f(x) = 1. Let the nondeterministic degree of f ,
denoted ndeg(f), be the minimum degree among all nondeterministic polynomials p
for f . For example, p(x) =

∑n
i=1 xi is a nondeterministic polynomial for OR; hence

ndeg(OR) = 1.
We mention some upper and lower bounds for ndeg(f). Let f be a nonconstant

symmetric function (i.e., f(x) depends only on |x|). Suppose f achieves value 0
on the z Hamming weights, k1, . . . , kz. Since |x| =

∑
i xi, it is easy to see that

(|x|−k1)(|x|−k2) · · · (|x|−kz) is a nondeterministic polynomial for f ; hence ndeg(f) ≤
z. This upper bound is tight for AND (see below) but not for PARITY. For example,
p(x1, x2) = x1 − x2 is a degree-1 nondeterministic polynomial for PARITY on two
variables: it assumes value 0 on x-weights 0 and 2 and ±1 on weight 1. By squar-
ing p(x) and then using standard symmetrization techniques (as used, for instance,
in [39, 42, 6]), we can also show the general lower bound ndeg(f) ≥ z/2 for symmet-
ric f . Furthermore, it is easy to show that ndeg(f) ≤ C(1)(f) for every f . (Take a
polynomial that is the “sum” over all 1-certificates for f .)
Finally, we mention a general lower bound on ndeg(f). Let Pr[p �= 0] =

|{x ∈ {0, 1}n | p(x) �= 0}|/2n denote the probability that a random Boolean input x
makes a function p nonzero. A lemma of Schwartz [46] (see also [42, section 2.2]) states
that if p is a nonconstant multilinear polynomial of degree d, then Pr[p �= 0] ≥ 2−d,
and hence d ≥ log(1/Pr[p �= 0]). Since a nondeterministic polynomial p for f is
nonzero iff f(x) = 1, it follows that

ndeg(f) ≥ log(1/Pr[f �= 0]) = log(1/Pr[f = 1]).
Accordingly, functions with a very small fraction of 1-inputs will have high nondeter-
ministic degree. For instance, Pr[AND = 1] = 2−n, so ndeg(AND) = n.

2.2. Quantum computing. We assume familiarity with classical computation
and briefly sketch the setting of quantum computation (see, e.g., [40] for more details).
An m-qubit state is a linear combination of all classical m-bit states

|φ〉 =
∑

i∈{0,1}m
αi|i〉,

where |i〉 denotes the basis state i (a classical m-bit string) and αi is a complex
number that is called the amplitude of |i〉. We require ∑i |αi|2 = 1. Viewing |φ〉 as
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a 2m-dimensional column vector, we use 〈φ| for the row vector that is the conjugate
transpose of |φ〉. Note that the inner product 〈i||j〉 = 〈i|j〉 is 1 if i = j and 0 if
i �= j. When we observe |φ〉, we will see |i〉 with probability |〈i|φ〉|2 = |αi|2, and
the state will collapse to the observed |i〉. A quantum operation which is not an
observation corresponds to a unitary (i.e., norm-preserving) transformation U on the
2m-dimensional vector of amplitudes.

2.3. Query complexity. Suppose we want to compute some function f :
{0, 1}n → {0, 1}. For input x ∈ {0, 1}n, a query corresponds to the unitary transfor-
mation O that maps |i, b, z〉 → |i, b ⊕ xi, z〉. Here i ∈ [n] and b ∈ {0, 1}; the z-part
corresponds to the workspace, which is not affected by the query. We assume that
the input can be accessed only via such queries. A T -query quantum algorithm has
the form A = UTOUT−1 · · ·OU1OU0, where the Uk are fixed unitary transforma-
tions, independent of the input x. This A depends on x via the T applications of O.
We sometimes write Ax to emphasize this. The algorithm starts in initial state |�0〉,
and its output is the bit obtained from observing the leftmost qubit of the final su-
perposition A|�0〉. The acceptance probability of A (on input x) is its probability of
outputting 1 (on x).
We will consider classical and quantum algorithms and will count only the number

of queries these algorithms make on a worst-case input. Let D(f) and QE(f) be the
query complexities of optimal deterministic classical and exact quantum algorithms
for computing f , respectively. D(f) is also known as the decision tree complexity
of f . Similarly we can define R2(f) and Q2(f) to be the query complexity of f
for bounded-error classical and quantum algorithms, respectively. Quantum query
complexity and its relation to classical complexity has been well studied in recent
years; see, for example, [6, 4, 20].
We define a nondeterministic algorithm for f to be an algorithm that has positive

acceptance probability on input x iff f(x) = 1. Let N(f) and NQ(f) be the query
complexities of optimal nondeterministic classical and quantum algorithms for f , re-
spectively. It is easy to show that the 1-certificate complexity fully characterizes the
classical nondeterministic complexity of f .

Proposition 2.1. N(f) = C(1)(f).
Proof. A classical algorithm that guesses a 1-certificate, queries its variables,

and outputs 1 iff the certificate holds is a nondeterministic algorithm for f . Hence
N(f) ≤ C(1)(f).
A nondeterministic algorithm for f can only output 1 if the outcomes of the

queries that it has made force the function to 1. Hence, if x is an input where all
1-certificates have size at least C(1)(f), then the algorithm will have to query at least
C(1)(f) variables before it can output 1 (which it must do on some runs). Hence
N(f) ≥ C(1)(f).

2.4. Algebraic characterization. Here we show that NQ(f) is equal to ndeg(f),
using the following result from [6].

Lemma 2.2 (see [6]). The amplitudes of the basis states in the final superposition
of a T -query quantum algorithm can be written as multilinear complex-valued polyno-
mials of degree ≤ T in the n xi-variables. Therefore, the acceptance probability of the
algorithm (which is the sum of squares of some of those amplitudes) can be written as
an n-variate multilinear polynomial P (x) of degree ≤ 2T .
Note that the acceptance probability of a nondeterministic quantum algorithm

is actually a nondeterministic polynomial for f , since it is positive iff f(x) = 1. By
Lemma 2.2, this polynomial will have degree at most twice the number of queries
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of the algorithm, which immediately implies ndeg(f)/2 ≤ NQ(f). Below we will
show how we can get rid of the factor 1/2 in this lower bound, improving it to
ndeg(f) ≤ NQcc(f). We show that this lower bound is in fact optimal by deriving a
nondeterministic algorithm from a nondeterministic polynomial. This derivation uses
a trick similar to the one used in [24] to show that co-C=P ⊆ quantum-NP.

Theorem 2.3. NQ(f) = ndeg(f).
Proof. Upper bound. Let p(x) be a nondeterministic polynomial for f of degree

d = ndeg(f). Recall that x·S denotes |x∧S|, identifying S ⊆ [n] with its characteristic
n-bit vector. We write p in the Fourier basis:

p(x) =
∑
S

cS(−1)x·S .

Since deg(p) = max{|S| | cS �= 0}, we have that cS �= 0 only if |S| ≤ d.
We can construct a unitary transformation F that uses d queries to x and maps

|S〉 → (−1)x·S |S〉 whenever |S| ≤ d. Informally, this transformation does a controlled
parity-computation: it computes |x ·S| (mod 2) using |S|/2 queries [6, 23], then adds
a phase “−1” if that answer is 1, and then reverses the computation to clean up the
workspace and the answer at the cost of another |S|/2 queries. (If |S| is odd, then
one variable is treated separately, still using |S| queries in total.)
Now consider the following quantum algorithm:
1. Start with c

∑
S cS |S〉 (an n-qubit state, where c = 1/

√∑
S |cS |2 is a nor-

malizing constant).
2. Apply F to the state.
3. Apply a Hadamard transform H to each qubit.
4. Measure the final state, and output 1 if the outcome is the all-zero state |�0〉,
and output 0 otherwise.

The state after step 2 is c
∑
S cS(−1)x·S |S〉. Note that the sum of the amplitudes in

this state is c ·p(x), which is nonzero iff f(x) = 1. The Hadamard transform in step 3
gives us this sum as amplitude of the |�0〉-state, with a normalizing factor of 1/√2n.
Accordingly, the probability of observing |�0〉 at the end is

P (x) =

∣∣∣∣∣〈�0|H⊗nFc
∑
S

cS |S〉
∣∣∣∣∣
2

=
c2

2n

∣∣∣∣∣
∑
S′
〈S′|

∑
S

cS(−1)x·S |S〉
∣∣∣∣∣
2

=
c2

2n

∣∣∣∣∣
∑
S

cS(−1)x·S
∣∣∣∣∣
2

=
c2p(x)2

2n
.

Since p(x) is nonzero iff f(x) = 1, P (x) will be positive iff f(x) = 1. Hence we have
a nondeterministic quantum algorithm for f with d = ndeg(f) queries.

Lower bound. Let T = NQ(f), and consider a T -query nondeterministic quantum
algorithm for f . By Lemma 2.2, the amplitudes αi in the final state,

|φx〉 =
∑
i

αi(x)|i〉,
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on input x are n-variate polynomials of x of degree ≤ T . We use the probabilistic
method [3] to show that some linear combination of these polynomials is a nonde-
terministic polynomial for f , thus avoiding losing the factor 1/2 mentioned after
Lemma 2.2.
Let S be the set of basis states having a 1 as leftmost bit (observing such a state

will lead the algorithm to output 1). Since the algorithm is nondeterministic, we have
the following properties:

If f(x) = 0, then αi(x) = 0 for all i ∈ S.
If f(x) = 1, then αi(x) �= 0 for at least one i ∈ S.

Let I be an arbitrary set of more than 2n numbers. For each i ∈ S, pick a coefficient ci
uniformly at random from I, and define p(x) =

∑
i∈S ciαi(x). By the first property,

we have p(x) = 0 whenever f(x) = 0. Now consider an x for which f(x) = 1, and let
k ∈ S satisfy a = αk(x) �= 0. Such a k must exist by the second property. We want to
show that the event p(x) = 0 happens only with very small probability (probability
taken over the random choices of the ci). In order to do this, we fix the random
choices ci for all i �= k and view p(x) = ack + b as a linear function in the only
not-yet-chosen coefficient ck. Since a �= 0, at most one out of |I| > 2n many possible
choices of ck can make p(x) = 0, so

Pr[p(x) = 0] < 2−n.

However, then, by the union bound we have

Pr
[
there is an x ∈ f−1(1) for which p(x) = 0

]
≤

∑
x∈f−1(1)

Pr[p(x) = 0] < 2n · 2−n = 1.

This probability is strictly less than 1, which shows that there exists a way of setting
the coefficients ci that satisfies p(x) �= 0 for all x ∈ f−1(1), thus making p a nondeter-
ministic polynomial for f . Since p is a sum of polynomials of degree ≤ T , it follows
that ndeg(f) ≤ deg(p) ≤ T = NQ(f).

2.5. Quantum-classical separation. What is the biggest possible gap between
quantum and classical nondeterministic query complexity? Consider the total Boolean
function f : {0, 1}n → {0, 1} defined by

f(x) = 1 iff |x| �= 1.
It is easy to see that N(f) = C(1)(f) = C(0)(f) = n. On the other hand, the following
is a degree-1 nondeterministic polynomial for f :

p(x) =

(
n∑
i=1

xi

)
− 1 = n

2
− 1− 1

2

n∑
i=1

(−1)xi .(2.1)

Thus we have that NQ(f) = ndeg(f) = 1. Explicitly, the 1-query algorithm that we
get from the proof is as follows:

1. Start with c ((n/2 − 1)|�0〉 − (1/2)∑i |ei〉), where c = 1/
√
n2/4− 3n/4 + 1

and |ei〉 has a 1 only at the ith bit.
2. Using one query, we can map |ei〉 → (−1)xi |ei〉.
3. Applying a Hadamard transform turns the amplitude of |�0〉 into α�0 =

c√
2n
((n/2− 1)−∑i(−1)xi/2) = cp(x)/

√
2n.
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4. Hence the probability of observing |�0〉 at the end is α2
�0
= c2p(x)2/2n.

For the complement of f , we can easily show NQ(f) = ndeg(f) ≥ n− 1 (the “−1” is
tight for n = 2; witness p(x) = x1 − x2). In sum, we have the following theorem.

Theorem 2.4. For the above f , we have NQ(f) = 1, NQ(f) ≥ n − 1, and
N(f) = N(f) = n.

2.6. Relation to some other complexity measures. Many relations are
known between all sorts of complexity measures of Boolean functions, such as polyno-
mial degree, certificate complexity, various classical and quantum decision tree com-
plexities, etc. A survey may be found in [20]. In this subsection, we will similarly
embed ndeg(f) (= NQ(f)) in this web of relations and give upper bounds on D(f)
in terms of ndeg(f), C(f), and the block sensitivity bs(f), which is defined as fol-
lows. A set of (indices of) variables B ⊆ [n] is called a sensitive block for f on
input x if f(x) �= f(xB); B is minimal if no B′ ⊂ B is sensitive. The block sensi-
tivity bsx(f) is the maximal number of disjoint minimal sensitive blocks in x, and
bs(b)(f) = maxx∈f−1(b) bsx(f).

Lemma 2.5. If f(x) = 0 and B is a minimal sensitive block for f on x, then
|B| ≤ ndeg(f).

Proof. Assume without loss of generality that x = �0. Because B is minimal, for
every proper subset B′ of B, we have f(x) = f(xB

′
) = 0, but on the other hand

f(xB) = 1. Accordingly, if we fix all variables outside of B to zero, then we obtain
the AND-function of |B| variables, which requires nondeterministic degree |B|. Hence
|B| ≤ ndeg(f).

Lemma 2.6. C(0)(f) ≤ bs(0)(f)ndeg(f).

Proof. Consider any input x. As Nisan [41] proved, the union of a maximal set
of sensitive blocks forms a certificate for that input (for otherwise there would be one
more sensitive block). If f(x) = 0, then there can be at most bs(0)(f) disjoint sensitive
blocks, and by the previous lemma each block contains at most ndeg(f) variables.
Hence each 0-input contains a certificate of at most bs(0)(f)ndeg(f) variables.

The following theorem improves upon an argument of Nisan and Smolensky, de-
scribed in [20].

Theorem 2.7. D(f) ≤ C(0)(f)ndeg(f).

Proof. Let p be a nondeterministic polynomial for f of degree d = ndeg(f). Note
that if we take a 0-certificate C : S → {0, 1} and fix the S-variables accordingly,
then p must reduce to the constant-0 polynomial. This implies that S intersects all
degree-d monomials of p, because a nonintersected degree-d monomial would still be
present in the reduced polynomial, which would then not be constant-0. Thus taking
a minimal 0-certificate and querying its variables reduces the degree of p by at least 1.
Repeating this at most ndeg(f) times, we reduce p to a constant polynomial and know
f(x). This algorithm takes at most C(0)(f)ndeg(f) queries.

Combining this with the fact that bs(0)(f) ≤ 6Q2(f)
2 [6], we obtain the following.

Corollary 2.8. D(f) ≤ bs(0)(f)ndeg(f)2 ≤ 6 Q2(f)
2NQ(f)2.

This corollary has the somewhat paradoxical consequence that if the nondetermin-
istic complexity NQ(f) is small, then the bounded-error complexity Q2(f) must be
large (i.e., close to D(f)). For instance, if NQ(f) = O(1), then Q2(f) = Ω(

√
D(f)).

We hope that this result will help tighten the relation D(f) = O(Q2(f)
6) that was

proved in [6].



690 RONALD DE WOLF

3. Nondeterministic quantum communication complexity.

3.1. Communication complexity. In the standard version of communica-
tion complexity, two parties (Alice and Bob) want to compute some function f :
{0, 1}n × {0, 1}n → {0, 1}. For example, EQ(x, y) = 1 iff x = y, NE(x, y) = 1 iff
x �= y, and DISJ(x, y) = 1 iff |x ∧ y| = 0. A rectangle is a subset R = S × T of the
domain of f . R is a 1-rectangle (for f) if f(x, y) = 1 for all (x, y) ∈ R. A 1-cover
for f is a set of 1-rectangles whose union contains all 1-inputs of f . Cov1(f) denotes
the minimal size (i.e., minimal number of rectangles) of a 1-cover for f . Similarly, we
define 0-rectangles, 0-covers, and Cov0(f).

The communication matrix Mf of f is the 2
n × 2n Boolean matrix whose (x, y)-

entry is f(x, y), and rank(f) denotes the rank ofMf over the field of complex numbers.
A 2n × 2n matrix M is called a nondeterministic communication matrix for f if it
has the property that M(x, y) �= 0 iff f(x, y) = 1. Thus M is any matrix obtainable
by replacing 1-entries in Mf by nonzero complex numbers. Let the nondeterministic
rank of f , denoted nrank(f), be the minimum rank (over the complex field) among
all nondeterministic matrices M for f .2

We consider classical and quantum communication protocols and count only the
amount of communication (bits or qubits) that these protocols make on a worst-
case input. For classical communication protocols, we refer to [36]. Here we briefly
define quantum communication protocols, referring to the surveys [49, 15, 33, 11, 51]
for more details. The space in which the quantum protocol works consists of three
parts: Alice’s part, the communication channel, and Bob’s part. (We do not write
the dimensions of these spaces explicitly.) Initially these three parts contain only
0-qubits,

|0〉|0〉|0〉.

We assume Alice starts the protocol. She applies a unitary transformation UA1 (x) to
her private space and part of the channel. This corresponds to her initial computation
and her first message. The length of this message is the number of channel qubits on
which UA1 (x) acts. The total state is now

(UA1 (x)⊗ IB)|0〉|0〉|0〉,

where ⊗ denotes tensor product, and IB denotes the identity transformation on Bob’s
part. Then Bob applies a unitary transformation UB2 (y) = V B2 (y)S

B
2 to his part

and the channel. First, the operation SB2 “reads” Alice’s message by swapping the
contents of the channel with some fresh |0〉-qubits in Bob’s private space. After this,
the unitary V B2 (y) is applied to Bob’s private space and part of the channel. This
corresponds to Bob’s private computation and his putting a message to Alice on the
channel. The length of this new message is the number of channel-qubits on which

2This definition looks somewhat similar to the definition of the Colin de Verdiére parameter µ(G)
of an undirected graph G [27]. For G = (V,E) with |V | = n, µ(G) is defined to be the maximal
corank (= n−rank) among all real symmetric n×n matrices M having the following three properties:
(1)Mij < 0 if (i, j) ∈ E andMij = 0 if i �= j and (i, j) /∈ E; (2)M has exactly one negative eigenvalue
of multiplicity 1; (3) there is no real symmetric matrix X �= 0 such that MX = 0 and Xij = 0
whenever i = j or Mij �= 0. Such a matrix M is a nondeterministic matrix for the communication
complexity problem f : [n]× [n]→ {0, 1} defined by f(i, j) = 1 iff (i, j) ∈ E, with the promise that
the inputs i and j are distinct. However, the Colin de Verdière requirement appears to be more
stringent, since it constrains the nondeterministic matrix further by properties (2) and (3).
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V B2 (y) acts. This process goes back and forth for some k messages, so the final state
of the protocol on input (x, y) will be (in case Alice goes last as well)

(UAk (x)⊗ IB)(IA ⊗ UBk−1(y)) · · · (IA ⊗ UB2 (y))(UA1 (x)⊗ IB)|0〉|0〉|0〉.
The total cost of the protocol is the total length of all messages sent, on a worst-case
input (x, y). For technical convenience, we assume that at the end of the protocol the
output bit is the first qubit on the channel. Thus the acceptance probability P (x, y) of
the protocol is the probability that a measurement of the final state gives a “1” in the
first channel-qubit. Note that we do not allow intermediate measurements during the
protocol. This is without loss of generality; it is well known that such measurements
can be postponed until the end of the protocol at no extra communication cost.
Let Dcc(f) and QccE(f) be the communication complexities of optimal determin-

istic classical and quantum protocols for computing f , respectively. A nondeterminis-
tic protocol for f is a protocol that has positive acceptance probability on input (x, y)
iff f(x, y) = 1. Let Ncc(f) and NQcc(f) be the communication complexities of opti-
mal nondeterministic classical and quantum protocols for f , respectively. Our Ncc(f)
is called N1(f) in [36].
It is not hard to show that Ncc(f) = �logCov1(f)� + 1, where the “+1” is due

to the fact that we want Alice and Bob both to know the output at the end of the
protocol.

3.2. Algebraic characterization. Here we characterize NQcc(f) in terms of
nrank(f). We use the following lemma. It was stated without proof by Yao [54] and in
more detail by Kremer [35] and is key to many of the earlier lower bounds on quantum
communication complexity as well as to ours. It is easily proven by induction on +.

Lemma 3.1 (see Yao [54] and Kremer [35]). The final state of an +-qubit protocol
on input (x, y) can be written as

∑
i∈{0,1}�

|Ai(x)〉|i�〉|Bi(y)〉,

where the Ai(x), Bi(y) are vectors (of norm ≤ 1), and i� denotes the last bit of the
+-bit string i (the output bit).
The acceptance probability P (x, y) of the protocol is the squared norm of the part

of the final state that has i� = 1. Letting aij be the 2
n-dimensional complex column

vector with the inner products 〈Ai(x)|Aj(x)〉 as entries and bij the 2n-dimensional
column vector with entries 〈Bi(y)|Bj(y)〉, we can write P (viewed as a 2n×2n matrix)
as the sum

∑
i,j:i�=j�=1 aijb

T
ij of 2

2�−2 matrices, each of rank at most 1, so the rank

of P is at most 22�−2. For example, for exact protocols this gives immediately that
+ ≥ 1

2 log rank(f) + 1, and for nondeterministic protocols + ≥ 1
2 log nrank(f) + 1.

Below we show how we can get rid of the factor 1
2 in the nondeterministic case

and show that the lower bound of lognrank(f) + 1 is actually optimal. The lower
bound part of the proof relies on the following technical lemma.

Lemma 3.2. If there exist two families of vectors {A1(x), . . . , Am(x)} ⊆ C
d and

{B1(y), . . . , Bm(y)} ⊆ C
d such that, for all x ∈ {0, 1}n and y ∈ {0, 1}n, we have

m∑
i=1

Ai(x)⊗Bi(y) = 0 iff f(x, y) = 0,

then nrank(f) ≤ m.
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Proof. Assume there exist two such families of vectors. Let Ai(x)j denote the jth
entry of vector Ai(x), and similarly let Bi(y)k denote the kth entry of vector Bi(y).
We use pairs (j, k) ∈ {1, . . . , d}2 to index entries of vectors in the d2-dimensional
tensor space. Note that

if f(x, y) = 0, then
∑m
i=1Ai(x)jBi(y)k = 0 for all (j, k), and

if f(x, y) = 1, then
∑m
i=1Ai(x)jBi(y)k �= 0 for some (j, k).

As a first step, we want to replace the vectors Ai(x) and Bi(y) by numbers ai(x)
and bi(y) that have similar properties. We use the probabilistic method to show that
this can be done.
Let I be an arbitrary set of 22n+1 numbers. Choose coefficients α1, . . . , αd and

β1, . . . , βd, each coefficient picked uniformly at random from I. For every x define
ai(x) =

∑d
j=1 αjAi(x)j , and for every y define bi(y) =

∑d
k=1 βkBi(y)k. Consider the

number

v(x, y) =

m∑
i=1

ai(x)bi(y) =

d∑
j,k=1

αjβk

(
m∑
i=1

Ai(x)jBi(y)k

)
.

If f(x, y) = 0, then v(x, y) = 0 for all choices of the αj , βk.
Now consider some (x, y) with f(x, y) = 1. There is a pair (j′, k′) for which∑m

i=1Ai(x)j′Bi(y)k′ �= 0. We want to prove that v(x, y) = 0 happens only with
very small probability. In order to do this, fix the random choices of all αj , j �= j′,
and βk, k �= k′, and view v(x, y) as a function of the two remaining not-yet-chosen
coefficients α = αj′ and β = βk′ ,

v(x, y) = c0αβ + c1α+ c2β + c3.

Here we know that c0 =
∑m
i=1Ai(x)j′Bi(y)k′ �= 0. There is at most one value of α

for which c0α+ c2 = 0. All other values of α turn v(x, y) into a linear equation in β,
so for those α there is at most one choice of β that gives v(x, y) = 0. Hence out of
the (22n+1)2 different ways of choosing (α, β), at most 22n+1+(22n+1− 1) · 1 < 22n+2

choices give v(x, y) = 0. Therefore,

Pr[v(x, y) = 0] <
22n+2

(22n+1)2
= 2−2n.

Using the union bound, we now have

Pr
[
there is an (x, y) ∈ f−1(1) for which v(x, y) = 0

]
≤

∑
(x,y)∈f−1(1)

Pr[v(x, y) = 0] < 22n · 2−2n = 1.

This probability is strictly less than 1, so there exist sets {a1(x), . . . , am(x)} and
{b1(y), . . . , bm(y)} that make v(x, y) �= 0 for every (x, y) ∈ f−1(1). We thus have that

m∑
i=1

ai(x)bi(y) = 0 iff f(x, y) = 0.

View the ai and bi as 2
n-dimensional vectors, let A be the 2n × m matrix having

the ai as columns, and let B be the m × 2n matrix having the bi as rows. Then
(AB)xy =

∑m
i=1 ai(x)bi(y), which is 0 iff f(x, y) = 0. Thus AB is a nondeterministic

matrix for f , and nrank(f) ≤ rank(AB) ≤ rank(A) ≤ m.
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Lemma 3.2 allows us to prove the following tight characterization.
Theorem 3.3. NQcc(f) = �log nrank(f)�+ 1.
Proof. Upper bound. Let r = nrank(f), and let M be a rank-r nondeterministic

matrix for f . Let MT = UΣV be the singular value decomposition of the transpose
of M [28], so U and V are unitary, and Σ is a diagonal matrix whose first r diagonal
entries are positive real numbers and whose other diagonal entries are 0. Below we
describe a one-round nondeterministic protocol for f , using �log r�+ 1 qubits.
First, Alice prepares the state |φx〉 = cxΣV |x〉, where cx > 0 is a normalizing

real number that depends on x. Because only the first r diagonal entries of Σ are
nonzero, only the first r amplitudes of |φx〉 are nonzero, so |φx〉 can be compressed
into �log r� qubits. Alice sends these qubits to Bob. Bob then applies U to |φx〉 and
measures the resulting state. If he observes |y〉, then he puts 1 on the channel, and
otherwise he puts 0 there. The acceptance probability of this protocol is

P (x, y) = |〈y|U |φx〉|2 = c2x|〈y|UΣV |x〉|2 = c2x|MT
yx|2 = c2x|Mxy|2.

Since Mxy is nonzero iff f(x, y) = 1, P (x, y) will be positive iff f(x, y) = 1. Thus we
have a nondeterministic quantum protocol for f with �log r�+ 1 qubits of communi-
cation.

Lower bound. Consider a nondeterministic +-qubit protocol for f . By Lemma 3.1,
its final state on input (x, y) can be written as

∑
i∈{0,1}�

|Ai(x)〉|i�〉|Bi(y)〉.

Without loss of generality, we assume the vectors Ai(x) and Bi(y) all have the same
dimension d. Let S = {i ∈ {0, 1}� | i� = 1}, and consider the part of the state that
corresponds to output 1 (we drop the i� = 1 and the |·〉-notation here),

φ(x, y) =
∑
i∈S

Ai(x)⊗Bi(y).

Because the protocol has acceptance probability 0 iff f(x, y) = 0, this vector φ(x, y)
will be the zero vector iff f(x, y) = 0. The previous lemma gives nrank(f) ≤ |S| =
2�−1; hence log(nrank(f)) + 1 ≤ NQcc(f).
Note that any nondeterministic matrix for the equality function has nonzeros

on its diagonal and zeros off-diagonal and hence has full rank. Thus we obtain
NQcc(EQ) = n + 1. Similarly, a nondeterministic matrix for disjointness has full
rank, because reversing the ordering of the columns in Mf gives an upper triangular
matrix with nonzero elements on the diagonal. This gives tight bounds for the non-
deterministic as well as for the exact setting, neither of which was known prior to this
work.

Corollary 3.4. QccE(EQ) = NQcc(EQ) = n+1 and QccE(DISJ) = NQcc(DISJ)
= n+ 1.

3.3. Quantum-classical separation. To repeat, classically we have Ncc(f) =
�logCov1(f)� + 1, and quantumly we have NQcc(f) = �log nrank(f)� + 1. We now
give a total function f with an exponential gap between Ncc(f) and NQcc(f). For
n > 1, define f by

f(x, y) = 1 iff |x ∧ y| �= 1.
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We first show that the quantum complexity NQcc(f) is low.
Theorem 3.5. For the above f , we have NQcc(f) ≤ �log(n+ 1)�+ 1.
Proof. By Theorem 3.3, it suffices to prove nrank(f) ≤ n + 1. We will derive a

low-rank nondeterministic matrix from the polynomial p of (2.1), using a technique
from [43]. Let Mi be the matrix defined by Mi(x, y) = 1 if xi = yi = 1 and by
Mi(x, y) = 0 otherwise. Notice that Mi has rank 1. Define a 2

n × 2n matrix M by

M(x, y) =

(
n∑
i=1

Mi(x, y)

)
− 1.

Note that M(x, y) = p(x ∧ y). Since p is a nondeterministic polynomial for the
function which is 1 iff its input does not have weight 1, it can be seen that M is
a nondeterministic matrix for f . Because M is the sum of n + 1 rank-1 matrices,
M itself has rank at most n+ 1.
Now we show that the classical Ncc(f) is high (both for f and its complement).
Theorem 3.6. For the above f , we have Ncc(f) ∈ Ω(n) and Ncc(f) ≥ n− 1.
Proof. Let R1, . . . , Rk be a minimal 1-cover for f . We use the following result

from [36, Example 3.22 and section 4.6], which is essentially due to Razborov [45].
There exist sets A,B ⊆ {0, 1}n × {0, 1}n and a probability distri-
bution µ : {0, 1}n × {0, 1}n → [0, 1] such that all (x, y) ∈ A have
|x ∧ y| = 0, all (x, y) ∈ B have |x ∧ y| = 1, µ(A) = 3/4, and
there are α, δ > 0 (independent of n) such that for all rectangles R,
µ(R ∩B) ≥ α · µ(R ∩A)− 2−δn.

Since theRi are 1-rectangles, they cannot contain elements fromB. Hence µ(Ri∩B) =
0 and µ(Ri ∩ A) ≤ 2−δn/α. However, since all elements of A are covered by the Ri,
we have

3

4
= µ(A) = µ

(
k⋃
i=1

(Ri ∩A)
)
≤

k∑
i=1

µ(Ri ∩A) ≤ k · 2
−δn

α
.

Therefore, Ncc(f) = �log k�+ 1 ≥ δn+ log(3α/4).
For the lower bound on Ncc(f), consider the set S = {(x, y) | x1 = y1 = 1, xi = yi

for i > 1}. This S contains 2n−1 elements, all of which are 1-inputs for f . Note that
if (x, y) and (x′, y′) are two elements from S, then |x ∧ y′| > 1 or |x′ ∧ y| > 1, so a
1-rectangle for f can contain at most one element of S. This shows that a minimal
1-cover for f requires at least 2n−1 rectangles and Ncc(f) ≥ n− 1.
Another quantum-classical separation was obtained earlier by Massar et al. [37].

We include it for the sake of completeness. It shows that the nondeterministic com-
plexity of the nonequality problem is extremely low, in sharp contrast to the equality
problem itself.

Theorem 3.7 (see [37]). For the nonequality problem on n bits, NQcc(NE) = 2
versus Ncc(NE) = logn+ 1.

Proof. Ncc(NE) = logn+1 is well known (see [36, Example 2.5]). Below we give
the protocol for NE from [37].
Viewing her input x as a number ∈ [0, 2n − 1], Alice rotates a |0〉-qubit over

an angle xπ/2n, obtaining a qubit cos(xπ/2n)|0〉+ sin(xπ/2n)|1〉 which she sends to
Bob. Bob rotates the qubit back over an angle yπ/2n, obtaining cos((x−y)π/2n)|0〉+
sin((x − y)π/2n)|1〉. Bob now measures the qubit and sends back the observed bit.
If x = y, then sin((x − y)π/2n) = 0, so Bob will always send 0. If x �= y, then
sin((x− y)π/2n) �= 0, so Bob will send 1 with positive probability.
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In another direction, Klauck [34] showed that NQcc(f) is in general incomparable
to bounded-error quantum communication complexity: the latter may be exponen-
tially larger or smaller, depending on f .

4. Future work. One of the main reasons for the usefulness of nondeterministic
query and communication complexities in the classical case is the tight relation of these
complexities with deterministic complexity.
In the query complexity (decision tree) setting, we have the well-known bound

max{N(f), N(f)} ≤ D(f) ≤ N(f)N(f).
We conjecture that something similar holds in the quantum case:

max
{
NQ(f),NQ(f)

} ≤ QE(f) ≤ D(f) ?≤ O(NQ(f)NQ(f)).

The ?-part is open and ties in with tightly embedding NQ(f) and ndeg(f) into the web
of known relations between various complexity measures (section 2.6). This conjec-
ture implies, for instance, D(f) ∈ O(deg(f)2), which would be close to optimal [42].
Similarly, it would imply D(f) ∈ O(Q0(f)

2), which would be close to optimal as
well [18]. In both cases, the currently best relation has a fourth power instead of a
square.
Similarly, for communication complexity, the following is known [36, section 2.11]:

max{Ncc(f),Ncc(f)} ≤ Dcc(f) ≤ O(Ncc(f)Ncc(f)).

An analogous result might be true in the quantum setting, but we have been unable
to prove it. So far, the best result in this direction is Klauck’s observation that
Dcc(f) = O(Ncc(f)NQcc(f)) [33, Theorem 1].

Appendix. Comparison with alternative definitions. As mentioned in the
introduction, three different definitions of nondeterministic quantum complexity are
possible. We may consider the complexity of quantum algorithms that

1. output 1 iff given an appropriate classical certificate (and such certificates
must exist iff f(x) = 1),

2. output 1 iff given an appropriate quantum certificate (and such certificates
must exist iff f(x) = 1), or

3. output 1 with positive probability iff f(x) = 1.
The third definition is the one we adopted for this paper. Clearly definition 2 is at
least as strong as definition 1 in the sense that the complexity of a function according
to definition 2 will be less than or equal to the complexity according to definition 1. In
fact, in the setting of query complexity, these two definitions are equivalent, because
without loss of generality the certificate can be taken to be the purported input. See
Aaronson [1] for some recent results about “quantum certificate (query) complexity.”
Here we show that definition 3 is at least as strong as definition 2. We give the

proof for the query complexity setting, but the same proof can be modified to work
for communication complexity and other nonuniform settings as well. We then give
an example in which the query complexity according to definition 3 is much less than
according to definition 2. This shows that our NQ(f) is in fact the most powerful
definition of nondeterministic quantum query complexity.
We formalize definition 2 as follows. A T -query quantum verifier for f is a T -

query quantum algorithm V together with a set C of m-qubit states, such that for all
x ∈ {0, 1}n we have (1) if f(x) = 1, then there is a |φx〉 ∈ C such that Vx|φx〉 has
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acceptance probability 1; and (2) if f(x) = 0, then Vx|φ〉 has acceptance probability 0
for every |φ〉 ∈ C. Informally, the set C contains all possible certificates: (1) for every
1-input, there is a verifiable 1-certificate in C; and (2) for 0-inputs, there are not
any. We do not put any constraints on C. However, note that the definition implies
that if f(x) = 0 for some x, then C cannot contain all m-qubit states; otherwise,
|φx〉 = V −1

x |1�0〉 would be a 1-certificate in C even for x with f(x) = 0.
We now prove that a T -query quantum verifier can be turned into a T -query

nondeterministic quantum algorithm according to our third definition. This shows
that the third definition is at least as powerful as the second. In fact, this even
holds if we replace the acceptance probability 1 in clause (1) of the definition of a
quantum verifier by just positive acceptance probability—in this case, both definitions
are equivalent.

Theorem A.1. If there is a T -query quantum verifier V for f , then NQ(f) ≤ T .
Proof. The verifier V and the associated set C satisfy the following:
1. If f(x) = 1, then there is a |φx〉 ∈ C such that Vx|φx〉 has acceptance proba-
bility 1.

2. If f(x) = 0, then Vx|φ〉 has acceptance probability 0 for all |φ〉 ∈ C.
Let X1 = {z | f(z) = 1}. For each z ∈ X1, choose one specific 1-certificate |φz〉 ∈ C.
Now let us consider some input x and see what happens if we run Vx ⊗ I (where I is
the 2n × 2n identity operation) on the m+ n-qubit state

|φ〉 = 1√|X1|
∑
z∈X1

|φz〉|z〉.

Vx acts on only the first m qubits of |φ〉; the |z〉-part remains unaffected. Therefore,
running Vx ⊗ I on |φ〉 gives the same acceptance probabilities as when we first ran-
domly choose some z ∈ X1 and then apply Vx to |φz〉. In the case when f(x) = 0,
this Vx|φz〉 will have acceptance probability 0, so (Vx ⊗ I)|φ〉 will have acceptance
probability 0 as well. In the case when the input x is such that f(x) = 1, the specific
certificate |φz〉 that we chose for this x will satisfy that Vx|φx〉 has acceptance prob-
ability 1. However, then (Vx ⊗ I)|φ〉 has acceptance probability at least 1/|X1| > 0.
Accordingly, (Vx⊗I)|φ〉 has positive acceptance probability iff f(x) = 1. By prefixing
Vx ⊗ I with a unitary transformation that maps |�0〉 (of m+ n qubits) to |φ〉, we have
constructed a nondeterministic quantum algorithm for f with T queries.
The above proof shows that our definition of NQ(f) is at least as strong as the

certificate-verifier definition. Could it be that both definitions are in fact equivalent
(i.e., yield the same complexity)? The function we used in section 2.5 shows that this
is not the case. Consider again

f(x) = 1 iff |x| �= 1.
It satisfies NQ(f) = 1. On the other hand, if we take a T -query verifier for f and
fix the certificate for the all-0 input, we obtain a T -query algorithm that always
outputs 1 on the all-0 input and that outputs 0 on all inputs of Hamming weight 1.
The quantum search lower bounds [9, 6] immediately imply T = Ω(

√
n). This shows

that our definition of NQ(f) is strictly more powerful than the certificate-verifying
one.
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Abstract. We give the first nontrivial worst-case results for dynamic versions of various basic
geometric optimization and measure problems under the semi-online model, where during the inser-
tion of an object we are told when the object is to be deleted. Problems that we can solve with
sublinear update time include the Hausdorff distance of two point sets, discrete 1-center, largest
empty circle, convex hull volume in three dimensions, volume of the union of axis-parallel cubes, and
minimum enclosing rectangle. The decision versions of the Hausdorff distance and discrete 1-center
problems can be solved fully dynamically. Some applications are mentioned.
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1. Introduction. Problems in computational geometry that admit simple and
efficient static solutions can often be significantly harder to solve in the dynamic
setting, when data are inserted and deleted and answers have to be updated quickly.
For example, the width of a planar n-point set is an easy-to-state quantity and can
be computed by a “textbook” O(n log n) algorithm, but a data structure that can
maintain the width under arbitrary point updates in a manner faster than recomputing
from scratch had eluded researchers for years and was found only recently [8]. In
this paper, we look at more standard geometric optimization and measure problems,
study their worst-case complexities in the dynamic setting, and try to gain a better
understanding into generally what types of problems admit nontrivial dynamization
results.

The importance of dynamic computational geometry was realized long ago [10],
and while there have been many fundamental results in the area, our current knowl-
edge is still limited. Dynamic data structures for all kinds of problems reducible to
range searching [1], including linear/convex programming, are known. A class of de-
composable query problems [5] has been recognized as easy, for which simple general
tricks are known. A useful technique has been devised to deal with problems of the
form, “Which pair of objects minimizes a function?” [14]. Yet, simple nonconvex
minimization problems, like the width or smallest enclosing rectangle, or max-min
problems, like the Hausdorff distance (see below), defy solutions by all these method-
ologies.

Over a decade ago, Dobkin and Suri [11] introduced the semi-online model as a
restricted form of dynamic computation. The model assumes that when an object
is inserted, we are given the time at which the object is to be deleted. The model
simultaneously generalizes the incremental case (when there are no deletions) and
the off-line case (when the entire insertion/deletion sequence is known in advance).
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Table 1.1
Summary of results.

Semi-online update time

Hausdorff distance (2-d) Õ(n5/6) (Corollary 3.2)

Discrete 1-center (2-d) Õ(n5/6) (Corollary 3.2)

Largest empty circle Õ(n7/8) (Corollary 5.2)

Volume of 3-d convex hull Õ(n7/8) (Corollary 5.3)

Volume of union of unit cubes Õ(n1/2) (Theorem 6.1)

Minimum-perimeter/area rectangle Õ(n1/2) / Õ(n5/6) (Corollary 7.2/7.3)

Fully dynamic update time (amortized)

Hausdorff distance decision (2-d) Õ(n1/2) (Corollary 4.2)

Discrete 1-center decision (2-d) Õ(n1/2) (Corollary 4.2)

Largest discrete empty circle Õ(1) (Corollary 4.4)

Considering the apparent difficulty in obtaining worst-case results under the original
fully dynamic model, such a restriction is generally a reasonable starting point for
research; it lets us obtain semi-dynamic algorithms that are provably efficient and
still practically relevant. We adopt the semi-online model in this paper and initiate
the study of problems of a broader scope and higher complexity than those originally
considered by Dobkin and Suri themselves. (As we now know, most of the problems
they considered can be solved fully dynamically by the techniques mentioned, notably
Eppstein’s work [14].)

Table 1.1 gives a list of problems familiar to computational geometers and the
results obtained in this paper. Background to many of the problems can be found
in texts such as [27]. Statically, each problem can be solved in O(n log n) time,
by construction of a planar convex hull, three-dimensional convex hull (in particular,
planar Voronoi diagram), or three-dimensional union of cubes. Dynamically, however,
one can see plenty of challenges—we are unaware of nontrivial worst-case results for
any of these problems, even in the incremental case!

Specifically, the first problem is to determine the Hausdorff distance
maxq∈Qminp∈P d(p, q) for two given sets P and Q of n points in the plane, sub-
ject to semi-online updates to both P and Q, where d(·, ·) is the Euclidean metric;
the Hausdorff distance is commonly used as a measure of resemblance between two
images. Given planar point set P , the discrete 1-center problem asks for the small-
est circle, centered at a point of P , that encloses P ; this is a popular variant of the
standard 1-center problem that cannot be solved by convex programming (in fact,
Dobkin and Suri [11] raised this as an open question for semi-online algorithms). In
contrast, the largest empty circle problem, another example in facility location, seeks
the largest circle whose interior avoids P , with center inside a given region, say, a
triangle ∆ (note that there are different versions of the center constraint in the litera-
ture). The next two are measure problems in three dimensions and ask for the volume
of the convex hull of n points and of the union of a set of n congruent axis-parallel
cubes. The last (related to the width problem) is to find the smallest rectangle, in
terms of perimeter or area, that encloses a planar point set; this “bounding box” is
allowed to have arbitrary orientation. All these problems have practical applications.
We obtain a sublinear semi-online algorithm for each, using Õ(n) space. (Throughout

the paper, the Õ notation hides factors that are o(nε) for any fixed ε > 0.)

Along the way, we notice a few easier variants that admit sublinear fully dynamic
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algorithms. These variants include the decision versions of the Hausdorff distance and
discrete 1-center problems (decide whether the Hausdorff distance is less than a given
value r, and decide whether there exists a circle of radius r, centered at a point of P ,
that encloses P ), as well as the discrete version of the largest empty circle problem
(find the largest circle, centered at a point of P , whose interior avoids P except the
center).

Our semi-online algorithms all begin with a very simple strategy that was used
recently by the author to tackle the width problem [8] and is outlined in the next
section (Lemma 2.1). As one might guess, data structures for range searching [1]
are exploited to obtain the sublinear time bounds, but in nontrivial (and at times,
creative) ways. Most of our results are therefore theoretical. It is assumed that the
input is in general position, without loss of generality, by known perturbation schemes.

We mention some “applications” in section 8, including improved time bounds
for Klee’s measure problem [26] in the case of four-dimensional unit hypercubes, and
for the minimum-diameter spanning tree problem, which are of independent interest.

2. The strategy for semi-online dynamization. The most common dynam-
ization strategy [5, 24, 25] is based on decomposing a set of objects into subsets,
solving the problem on each subset, and combining the answers. An update affects
only a small number of subsets and thus can be efficiently handled. Unfortunately,
this simple approach is not viable for any of our problems, because they are not
directly “decomposable”—there is no effective way to combine the answers when the
set is arbitrarily decomposed into a large number of subsets.

Fortunately, another very simple (but lesser known) approach works for us, using
a weaker form of decomposability based on dividing the given set into two subsets,
one of which is kept small, as explained in the lemma below. The strategy was most
recently used by the author [8] (building on a previous work by Eppstein [16]) to

obtain a fully dynamic algorithm for planar width with Õ(n1/2) amortized time, by
a variant of the lemma that handles arbitrary deletions (with α = β = 1). A similar
idea was also used in one example from Dobkin and Suri’s paper [11].

Lemma 2.1. Consider a problem Π with the following property, where α ≥ 1 and
0 < β ≤ 1 are constants: we can preprocess a set S of n objects into a data structure
in Õ(n) time and space such that, given any additional set S′ of b objects, we can

solve Π on the set S ∪ S′ (block query) in Õ(bαn1−β) time. Then we can solve Π on

a set of n objects under semi-online updates in Õ(n1−β/(1+α)) time per update, using

Õ(n) space.

Proof. We store most of the objects in a static set S, preprocessed in the given
data structure, and put the rest in an auxiliary list S′. Insertions and deletions are
done directly to S′, but after every b updates, we reset S′ to hold the objects with
the b smallest deletion times and S to hold all other objects (this ensures that any
object to be deleted in the next round of b updates is indeed in S′, not S). The data

structure for S has to be rebuilt, in Õ(n) time, for every b updates. At any time, S′

has O(b) size, so the solution can be computed by a block query in Õ(bαn1−β) time.
The total time for n updates is therefore

Õ((n/b) · n + n · (bαn1−β)) = Õ(n2−β/(1+α))(2.1)

if we set the parameter b ≈ nβ/(1+α). This proves an amortized time bound of
Õ(n1−β/(1+α)).
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If the application insists on a worst-case time bound, a well-known modification
(e.g., see [24, 25]) is required: spread the work of rebuilding the data structure for S
evenly over the next b/2 updates. The data structure for S is available for the jth
update whenever j mod b ≥ b/2. A similar “shifted” version of S and S′ can deal
with the other case j mod b < b/2.

All our efforts are now directed to demonstrating that our problems obey the
requirement of the lemma. This task isn’t necessarily straightforward, as we will see
when we examine each problem in detail.

On one occasion (in a higher-dimensional application), we find the following mod-
ification of the lemma useful.

Lemma 2.2. Lemma 2.1 still holds if we are unable to preprocess S from scratch
in Õ(n) time but can create a copy of the data structure for S ∪ S′ (block insertion),

given the data structure for S, within Õ(n+ bαn1−β) time.
Proof. This is similar to the previous proof, except that we will use multiple

levels of decomposition (increasing space by a logarithmic factor). Specifically, let
� = �log2(n/b)�. For each i = 1, . . . , �, we maintain a partition of the objects into a
set Si, stored in a data structure, and an auxiliary list S′i: insertions and deletions
are done directly to S′i, but after every n/2

i+1 updates, we reset S′i to hold all objects
with the n/2i smallest deletion times and Si to the complement of S′i. The size of S′i
is always O(n/2i).

After every n/2i+1 updates, we need to rebuild the data structure for Si. We
know that Si−1 ⊆ Si (because at any time, S′i−1 must contain all objects with the
n/2i smallest deletion times). Thus, a data structure for Si can be created by copying
the structure for Si−1 and inserting S′i−1 \ S′i in O( n

2ib ) blocks. The total number of

block insertions over n updates is therefore O(
∑�
i=1 2

i+1 · n2ib ) = Õ(n/b). At any time,
the solution can be computed by a block query to the data structure for S�, so we
again arrive at the same expression (2.1).

If the application insists on a worst-case time bound, we can again spread the
construction of the data structures over time, and for each i, maintain two shifted
versions of Si and S

′
i to ensure that one of them is available at any given time. We

omit the standard details.

3. Optimizing over discrete points on a polytope. We consider first the
problem of maintaining the Hausdorff distance maxq∈Qminp∈P d(p, q) dynamically.
The difficulty here is the apparent necessity to know the nearest neighbor of each
point q ∈ Q to the point set P (unlike in the bichromatic closest pair problem studied
by Eppstein [14] of the min-min type). As points are inserted to P , a large number of
these nearest neighbors could change. The idea is that with Lemma 2.1 (and Lemma
2.2), we do not need to maintain the newest version of these nearest neighbors after
every single update but only after a block of updates.

The method involves multilevel range searching tools. Although the description
assumes familiarity with these tools, it is conceptually not complicated.

The method is quite general: we can combine the nearest neighbor distances
by operators other than the maximum, and we can solve the problem in any fixed
dimension. For this reason, we state a more general problem. Let d be a constant.
Given a set H of hyperplanes in R

d, define a mapping λH : R
d−1 → R

d as follows:
λH(q) is the point obtained by lifting q vertically onto the lower envelope ofH (in other
words, the lowest intersection of H with the vertical line at q). Given a set of points
Q ⊂ R

d−1, we wish to maintain implicitly the set of points λH(Q) = {λH(q) | q ∈ Q}
(all lying on a polytope’s boundary, as the title of this section suggests); actually,



704 TIMOTHY M. CHAN

we want the output to be ✷λH(Q) for some decomposable operator ✷, satisfying the
requirement that for any disjoint pair of sets S1 and S2, ✷S1 and ✷S2 can be combined
to form ✷(S1 ∪ S2) in constant time.

Theorem 3.1. Suppose that we can preprocess an n-point set Q ⊂ R
d−1 in Õ(n)

time so that ✷λh(Q) for any hyperplane h in R
d can be computed in Õ(n1−γ) time,

with γ ≥ 1/d. Then we can maintain ✷λH(Q) for a set Q of at most n points in R
d−1

and a set H of at most n hyperplanes in R
d in Õ(n1− 1

d(�d/2�+1) ) time per semi-online
update to Q and H.

Proof. We show how to store Q and H so that ✷λH∪H′(Q∪Q′) can be computed
efficiently given small additional blocks Q′ and H ′.

Preprocess the hyperplanes H in Õ(n) time to support vertical ray shooting

queries in Õ(n1−1/�d/2�) time [1]. For each q ∈ Q, compute λH(q); for d ≤ 3, this

step takes O(n log n) time. In Õ(n) time, preprocess λH(Q) for simplex range search-

ing [1, 23] to form canonical subsets {Qi}i of total size Õ(n) such that, given any query
simplex ∆ ⊂ R

d, we can retrieve all points q ∈ Q with λH(q) ∈ ∆ as a union of dis-

joint canonical subsets {Qi}i∈I in Õ(n1−1/d) time, with
∑
i∈I |Qi|1−1/d = Õ(n1−1/d).

Precompute ✷λH(Qi) for every canonical subset Qi. In addition, preprocess each Qi
as specified so that given any hyperplane h, ✷λh(Qi) can be found in Õ(n1−γ) time;

the total preprocessing time is Õ(n).

Given query sets Q′ and H ′ of size b, construct the lower envelope of H ′ in
Õ(b�d/2�) time and triangulate it into Õ(b�d/2�) (d − 1)-simplices. Take each such
simplex ∆, defined by hyperplane h′ ∈ H ′, say.

• Consider the points q ∈ Q such that λH(q) lies directly below ∆. By sim-
plex range searching, these points can be partitioned into canonical subsets
{Qi}i∈I . Take each Qi. All points q ∈ Qi have λH∪H′(q) = λH(q); so combine

the current answer with ✷λH(Qi). The time required is Õ(n1−1/d).
• Consider the points q ∈ Q such that λH(q) lies directly above ∆. Again these
points can be partitioned into canonical subsets {Qi}i∈I . Take each such Qi.
All points q ∈ Qi have λH∪H′(q) = λh′(q); so combine the current answer

with ✷λh′(Qi). The time required is Õ(
∑
i∈I |Qi|1−γ) = Õ(n1−1/d).

Applying this process to all simplices requires Õ(b�d/2�n1−1/d) time overall. The
current answer is ✷λH∪H′(Q). To get ✷λH∪H′(Q ∪Q′), compute λH∪H′(q′) for each
q′ ∈ Q′ by vertical ray shooting on H and on H ′, in Õ(bn1−1/�d/2�) total time, and
combine the current answer with ✷λH∪H′(Q′).

For d ≤ 3, the preprocessing time is Õ(n), so Lemma 2.1 is applicable, with
α = �d/2� and β = 1/d. For d ≥ 4, we cannot afford to recompute λH(Q) from
scratch, so Lemma 2.2 is required: to build a new data structure for Q ∪ Q′ and
H ∪H ′, compute λH∪H′(q) from λH(q) for every q ∈ Q, by vertical ray shooting on

H ′, in total time Õ(b�d/2� + n); in addition, compute λH∪H′(q′) for every q′ ∈ Q′ in
total time Õ(bn1−1/�d/2�); now, the rest of the new data structure can be built from

scratch in Õ(n) time.

Note that we have used simplex range searching only for point sets in convex
position. If it is possible to improve the range searching results under this special
case (for example, it is not difficult in two dimensions), the bound in the theorem
would be improved as well.

The Hausdorff distance is just a special case of the above problem in one dimension
higher by a standard transformation. The discrete 1-center problem can similarly be
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solved, as it asks for a similar quantity minq∈P maxp∈P d(p, q). In a forthcoming appli-
cation, we encounter an additively weighted variant that seeks maxq∈Qminp∈P [d(p, q)+
wq] or minq∈P maxp∈P [d(p, q)+wq], given weights wq; this variant can be solved sim-
ilarly as well.

Corollary 3.2. In R
d, we can maintain the Hausdorff distance of two sets of

at most n points and the discrete 1-center of a set of n points (possibly with additive

weights) in Õ(n1− 1
(d+1)(�d/2�+1) ) time per semi-online update.

Proof. For the unweighted Hausdorff distance problem, transform each point
p = (a1, . . . , ad) in P to a (d + 1)-dimensional hyperplane h in H with equation
{(x1, . . . , xd+1) | xd+1 = a21 + · · ·+ a2d − 2a1x1 − · · · − 2adxd}. The points in λH(Q)
correspond to the nearest neighbors of the points in Q to set P . The operator ✷

takes the maximum of xd+1 + x2
1 + · · · + x2

d (the actual nearest neighbor distance
squared) over the points. The requirement in the theorem (finding ✷λh(Q) for a
given hyperplane h) translates to finding the largest distance of Q to a given point p,
which can be done by farthest neighbor queries with γ = 1/�d/2� [1].

In the weighted case, the operator ✷ should instead return the maximum of√
xd+1 + x2

1 + · · ·+ x2
d+w, where w is the weight of the point q = (x1, . . . , xd). The

requirement translates to finding weighted farthest neighbors: more precisely, given
query point (a1, . . . , ad), find the maximum of

√
a21 + · · ·+ a2d − 2a1x1 − · · · − 2adxd + x2

1 + · · ·+ x2
d + w

over a set of O(n) tuples (x1, . . . , xd, w). We can compare this maximum with any
value b by halfspace range search in d+2 dimensions: given (a1, . . . , ad, b), find a tuple
that satisfies w ≥ b or [a21+· · ·+a2d−b2]−2a1x1−· · ·−2adxd+2bw+[x2

1+· · ·+x2
d−w2] ≥

0. This gives a data structure with γ = 1/(�d/2�+ 1) for the decision query problem
and, by parametric or randomized search, for the maximization query problem as
well [1].

By linearization or the use of lower envelopes of surfaces and semi-algebraic range
searching [1], sublinear results can also be obtained for other metric d(·, ·) with con-
stant description complexity. For Hausdorff distances under the L∞ metric, much
simplification is possible, since orthogonal range searching [1, 27] replaces simplex/
halfspace range searching, and an L∞-Voronoi diagram [6] replaces the lower envelope;

the time bound reduces to O(n1− 1
�d/2�+1 polylogn).

4. Some easier variants. Next, we give faster algorithms for the decision ver-
sions of the Hausdorff distance and discrete 1-center problem. The algorithms are
in fact fully dynamic and are obtained by directly modifying known range search-
ing structures (more specifically, by augmenting a standard partition tree to store
two extra numbers at each node). The idea is actually to generalize the problem of
testing whether each point is above the lower envelope, to counting the number of
hyperplanes below each point.

To state the generalized problem, define the mapping cH : R
d → N, where cH(q)

is the number of hyperplanes of H that lie below q. Implicitly, we wish to maintain
the multiset of numbers cH(Q) = {cH(q) | q ∈ Q} for a given set of points Q ⊂ R

d;
more precisely, we want to output ✷cH(Q), where the operator ✷ is assumed to be
decomposable and furthermore satisfy the property that for any set S of numbers and
a number j, ✷(S + j) can be computed from ✷S in constant time (where S + j =
{i+ j | i ∈ S}).
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Theorem 4.1. We can maintain ✷cH(Q) for a set Q of at most n points and a

set H of at most n hyperplanes in R
d in Õ(n1−1/d) amortized time per update to Q

and H fully dynamically, using O(n) space.
Proof. Assume that the size of H is m instead. Store the dual points of H in a

dynamic data structure to support simplex range counting queries in Õ(m1−1/d) time

and updates in Õ(1) amortized time [1]. The notation H∆ denotes the subset of all
hyperplanes of H crossing a given simplex ∆.

Matoušek’s partition theorem [1, 21] asserts that any set Q of n points can be
partitioned into O(r) subsets {Qi}i, each of size at most n/r and enclosed in a simplex
∆i, with the property that every hyperplane crosses O(r1−1/d) of these simplices. We
choose r to be a constant here; the construction time is then linear. Assuming that
Q itself is enclosed in a simplex ∆, we can ensure that the ∆i’s are all inside ∆ (by
intersecting with ∆ and retriangulating).

Let c∆i be the number of hyperplanes in H∆ that lie completely below ∆i. Note
that the duals of all hyperplanes intersecting ∆ and below ∆i form cells in a hyper-
plane arrangement of constant size. Therefore, we can compute c∆i by a constant

number of simplex range counting queries in Õ(m1−1/d) time.
Our data structure for (Q,∆) consists of recursively constructed structures for

{(Qi,∆i)}i, together with the numbers {c∆i}i and the answer ✷cH∆(Q).
Knowing the subanswers ✷cH∆i

(Qi), we can compute the answer ✷cH∆
(Q) as

follows. Take each Qi. All points q ∈ Qi have cH∆(q) = cH∆i
(q) + c∆i ; so combine

the current answer with ✷(cH∆i
(Qi) + c∆i

). Repeating for all Qi’s yields the desired
answer in constant (O(r)) time. By evaluating answers bottom-up, we can thus

preprocess our data structure in time Õ(nm1−1/d).
To insert a hyperplane h to H∆, we can first increment the count c∆i

for each
simplex ∆i completely above h, then recursively insert h to H∆i for each simplex
∆i crossed by h, and finally recompute the answer ✷cH∆(Q) from the subanswers
✷cH∆i

(Qi) in the manner described above. To delete h fromH∆, we proceed similarly,
decrementing the counts c∆i instead. The recurrence for the insertion/deletion time is
t(n) = O(r1−1/d)t(n/r) +O(r), which solves to t(n) = O(n1−1/d+ε) for an arbitrarily
small ε > 0 if r is made arbitrarily large.

To delete a point q from Q, we recursively delete q from the subset Qi that
contains it, and then recompute the answer ✷cH∆(Q) from the subanswers as above.
The required time is only O(log n).

Initially ∆ can be set to R
d. We have thus obtained a data structure that main-

tains the value ✷cH(Q), supports updates to H in Õ(n1−1/d) time, can be prepro-

cessed for any given Q in T (n) = Õ(nm1−1/d) time, and supports deletions from Q
in D(n) = O(log n) time.

It remains to handle insertions to Q. For this, we apply a well-known gen-
eral technique of Bentley and Saxe [5, 24, 25], which decomposes Q into logarith-
mically many deletion-only subsets (recall that the operator ✷ is decomposable)
and transforms any data structure with preprocessing time T (n) and deletion time
D(n) into a data structure that handles arbitrary updates to Q in amortized time

O((T (n)/n) log n+D(n)) = Õ(m1−1/d). As can be verified, this transformation pre-
serves our ability to perform insertions and deletions to H, with the update time for
H increased by a logarithmic factor, which is still Õ(n1−1/d).

Corollary 4.2. Given at most n points and at most n balls in R
d, we can

determine the ball that contains the least/most points in Õ(n1− 1
d+1 ) amortized time

fully dynamically. In R
d, we can compare the Hausdorff distance of two sets of at
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most n points or the discrete 1-center radius of a set of n points with a fixed value r
in Õ(n1−1/d) amortized time fully dynamically.

Proof. Transform each point to a (d+ 1)-dimensional hyperplane as in the proof
of Corollary 4.2, transform each ball with center (x1, . . . , xd) and radius r to a
(d+ 1)-dimensional point (x1, . . . , xd, r

2 − x2
1 − · · · − x2

d), and take ✷ to mean maxi-
mum/minimum. The second statement follows from the first: the slight improvement
in the time bound is due to the fact that the balls have equal radius; here, the lifted
points in Q lie on a common d-dimensional surface in R

d+1, and the duals of the hyper-
planes in H also lie on a common d-dimensional surface, so Agarwal and Matoušek’s
improved partition theorem [2] is applicable.

Returning to the exact Hausdorff distance problem, we quickly mention a straight-
forward but fast algorithm for the special case when we expect only a small number
of nearest neighbors to change in an update. This result is not surprising, but it
makes us appreciate our earlier worst-case algorithms better. Still, the special-case
algorithm would be interesting in applications where the update sequence is “random”
(e.g., see [15]). The subsequent corollary mentions one particular consequence involv-
ing the all-nearest-neighbors graph, which connects each point p ∈ P to its nearest
neighbor in P \ p.

Theorem 4.3. We can maintain λH(Q) for a set Q of at most n points in R
d−1

and a set H of at most n hyperplanes in R
d in Õ(kn1− 2

�d/2�+1 ) amortized time fully

dynamically, with Õ(n2− 2
�d/2�+1 ) space, where k is the number of changes to λH(Q).

Proof. Store H in a dynamic data structure for vertical ray shooting with

Õ(n1− 2
�d/2�+1 ) query and amortized update time [1]. Store λH(Q) in a dynamic data

structure for halfspace range reporting with Õ(n1− 2
�d/2�+1 +A) query time (A is the an-

swer size) and Õ(n1− 2
�d/2�+1 ) amortized update time [1, 3]. The point set λH(Q) itself

can be maintained as follows: when a point q is inserted/deleted, simply insert/delete
λH(q), computable by vertical ray shooting; when a hyperplane h is inserted to H,
find all k points q with λH(q) above h by a halfspace range reporting query and reset
each such λH(q) to λh(q); when h is deleted, retrieve all k points q with λH(q) set to
λh(q) and recompute each such λH(q) by vertical ray shooting.

Corollary 4.4. In R
d, we can maintain the nearest neighbor of each point in one

set of at most n points to another set of at most n points in Õ(kn1− 2
�d/2�+1 ) amortized

time fully dynamically, where k is the number of changes to the nearest neighbors.

We can maintain the all-nearest-neighbors graph of an n-point set in Õ(n1− 2
�d/2�+1 )

amortized time. We can maintain the largest discrete empty ball in the same time.
Proof. The first statement is immediate by the standard transformation. The

second statement can be obtained by a monochromatic variant of the algorithm, with
the following well-known observation [28]: the degree of the all-nearest-neighbors
graph is bounded by a constant, and thus the number of changes to the graph is
k = O(1) for every update. The largest distance in this graph is the radius of the
largest discrete empty ball.

The maintenance of the all-nearest-neighbors graph was raised by several re-
searchers in connection with dynamic closest pairs [28], but considering that a dy-
namic all-nearest-neighbors algorithm can indirectly be used to answer nearest neigh-
bor queries (by repeatedly inserting and then deleting the query point), the above
bound is probably close to optimal.

The usual tricks could perhaps make the amortized bounds worst-case.
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5. Optimizing over vertices of a 3-polytope. To solve problems like the
largest empty circle (the original continuous version), we need to optimize a function
over all points on a lower envelope rather than just a discrete set of points. Dynamiza-
tion appears even harder. We may infer from the application that the optimum must
be located at a vertex of the polytope (since we are actually maximizing a convex
function), but the polytope, and thus its set of vertices, can change drastically in the
worst case as hyperplanes are inserted and deleted. (Minimizing a convex function
over a polytope is of course convex programming, but maximizing a convex function
seems to require examining every vertex.)

We cannot afford to maintain the polytope explicitly after every update, so the
idea is again to invoke Lemma 2.1 and use only a static structure, periodically rebuilt
after a block of updates. The structure this time is more involved, as it needs to
support queries on not just a set of points but a set of facial features (such as line
segments) that come from the polytope.

This approach of implicitly maintaining a polytope again works in any fixed di-
mension in theory, but we will focus on problems involving three-dimensional poly-
topes that have efficient static solutions. (When the dimension exceeds 3, the number
of vertices may be Ω(n2) or bigger.)

The setup is as before and assumes a decomposable operator ✷. Given a set H
of planes in R

3, let VH denote the set of vertices of the lower envelope of H. The
objective is to maintain ✷VH .

Theorem 5.1. Suppose that we can preprocess a set E of n pairs of planes in R
3

in Õ(n) time so that ✷{h1 ∩ h2 ∩ h | (h1, h2) ∈ E} for any plane h can be computed

in Õ(n1−γ) time, with γ ≥ 1/4. Then we can maintain ✷VH for a set H of n planes

in R
3 in Õ(n7/8) time per semi-online update.

Proof. We show how to store a static set H so that ✷VH∪H′ can be computed
quickly given a block H ′ of b planes.

First construct the three-dimensional lower envelope of H in O(n log n) time [27]
and preprocess it to support membership and ray shooting queries in O(log n) time [1].

In Õ(n) time, preprocess its O(n) vertices VH for three-dimensional simplex range

searching [1] so that given any tetrahedron ∆, we can compute ✷(VH ∩∆) in Õ(n2/3)

time. Next, in Õ(n) time, preprocess the O(n) edges EH of the lower envelope for

triangle-intersection queries so as to form canonical subsets {Ei}i of total size Õ(n)
such that, given any triangle ∆, we can retrieve all edges (line segments) intersecting ∆

as a union of disjoint canonical subsets {Ei}i∈I in Õ(n3/4) time, with
∑
i∈I |Ei|3/4 =

Õ(n3/4)—this involves multilevel range/intersection searching tools [1] (specifically,
semi-algebraic range searching [2] in Plücker space; e.g., see [17, proof of Theorem
3.1], which examined a similar subproblem of quadrilaterial-intersection queries for
rays). For yet another level, preprocess each canonical subset Ei as specified so that
given any plane h intersecting every edge of Ei, ✷{e ∩ h | e ∈ Ei} can be computed

in Õ(n1−γ) time.

Given query set H ′, construct the lower envelope of H ′ (with vertex set VH′ and
edge set EH′) and triangulate it into O(b) triangles. Take each triangle ∆ defined by
plane h′ ∈ H ′, say.

• Vertices of VH that lie directly below ∆ are also vertices of VH∪H′ , so combine
the current answer with ✷{v ∈ VH | v directly below ∆} by simplex range

searching in Õ(n2/3) time.
• Consider the edges of EH that intersect ∆. These edges can be partitioned
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into canonical subsets {Ei}i∈I . Take each such Ei. The intersection of the
edges of Ei with h

′ are all vertices of VH∪H′ , so combine the current answer
with ✷{e ∩ h′ | e ∈ Ei}. The time required is Õ(

∑
i∈I |Ei|1−γ) = Õ(n3/4).

Applying this process to all triangles requires Õ(bn3/4) time overall. So far, all vertices
of VH∪H′ that are either vertices of VH or intersections of edges of EH with planes of
H ′ have been accounted for. We can also take each edge e′ ∈ EH′ , determine the at
most two vertices of the intersection with the lower envelope of H, by ray shooting,
and combine the answer with these vertices. We can further take each vertex of VH′

that lies below the lower envelope of H and combine the answer with such vertices.
The additional time is O(b log n), and the end result is ✷VH∪H′ .

The conclusion now follows from Lemma 2.1 with α = 1 and β = 1/4.
Corollary 5.2. We can maintain the largest empty circle of an n-point set in

R
2, with center restricted inside any given triangle ∆, in Õ(n7/8) time per semi-online

update.
Proof. Apply the same transformation as in the proof of Corollary 4.2 to obtain

n planes in R
3. Add three nearly vertical planes along the edges of ∆ (to ensure

that the n planes cannot be seen from below when outside ∆). The largest empty
circle must be centered at a vertex of the lower envelope of these n + 3 planes H
(usually a Voronoi vertex, except in boundary cases). The optimal radius is then
✷VH , with the same operator ✷ to maximize x3 + x2

1 + x2
2. The requirement in the

theorem (finding ✷{h1 ∩ h2 ∩ h | (h1, h2) ∈ E}) seeks, for a given query plane h, the
maximum of O(n) functions in terms of h, parametrizable in 2 variables (since our
planes are defined as liftings of points in R

2). These nasty-looking bivariate functions
nonetheless have constant description complexity, and by known semi-algebraic range
searching and vertical ray shooting techniques in three dimensions [1, 2], we can
achieve γ = 1/3.

Corollary 5.3. We can maintain the volume of the convex hull of an n-point
set in R

3 in Õ(n7/8) time per semi-online update.
Proof. Apply duality to transform each given point p to a plane p∗ so that facets

of the upper hull of the points correspond to vertices of the lower envelope of the
planes. For a vertex v defined by planes p∗1, p

∗
2, and p∗3, we associate with it the

volume of the tetrahedron op1p2p3 for some fixed point o sufficiently far below the
convex hull. The operator ✷ just sums the volumes associated with the vertices of
the given set. Applying a similar process to the lower hull and taking the difference
yields the volume of the convex hull.

The theorem requires the sum of the volumes of op1p2p over n given pairs (p1, p2)
and a query point p. By inspecting the proof of the theorem, we can ensure that the
generated pairs (p1, p2) are consistently oriented with respect to the query point p.
The volume of op1p2p is then a linear function in p (defined by a standard determi-
nant), so the sum is also a linear function in p. By precomputing the coefficients in
linear time, we can answer the volume-sum query in constant time for any given p, so
γ = 1.

One can imagine more applications of Theorem 5.1: for example, counting the
number of vertices of a convex hull in R

3, or determining the smallest/largest-area
Delaunay triangle in R

2. (The surface area of the convex hull, though, behaves dif-
ferently, as we have to sum square roots.)

6. Measuring a union of unit cubes. We can apply the same approach to im-
plicitly maintain structures other than a 3-polytope. To illustrate the idea on a simple
example, we now explore the union of n unit axis-parallel cubes in three dimensions,
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a structure also known to have linear complexity [6]. O(
√
n log n) dynamic algorithms

for measuring the union of squares (in fact, arbitrary axis-parallel rectangles) were
previously known by simple variants of the k-d tree (see [26]).

Theorem 6.1. We can maintain the volume of the union of a collection C of n
unit axis-parallel cubes in R

3 in Õ(
√
n) time per semi-online update.

Proof. We show how to store C so that the volume of
⋃
(C∪C ′) can be computed

quickly given an additional set C ′ of b unit cubes.
First compute

⋃
C and decompose this three-dimensional region into a collec-

tion S of O(n) disjoint boxes (boxes here are axis-parallel); this computation can be

done in O(n log n) time, as shown in [9]. Preprocess S in Õ(n) time so that given
any query box q ⊂ R

3, we can determine the sum of the volumes of σ ∩ q over all
σ ∈ S in Õ(1) time; in a moment, we will see exactly how this can be accomplished
by orthogonal range searching.

Given query set C ′, compute
⋃
C ′ and decompose the complement of the region

into a collection S′ of O(b) disjoint boxes. Take each box σ′ ∈ S′. Perform the above

query to find the total volume of σ ∩ σ′ over all σ ∈ S in Õ(1) time. Summing over
all σ′ ∈ S′ yields the total volume of

⋃
C outside

⋃
C ′. Adding the volume of

⋃
C ′

itself yields the final answer. The overall time is Õ(b), so we can apply Lemma 2.1
with α = β = 1.

It remains to describe how to sum volumes of σ ∩ q over all σ ∈ S for a given
query box q. Lift each box σ ∈ R

3 to a point σ∗ ∈ R
6 by taking the six coordinates of

the box. By orthogonal range searching [1, 27], we can retrieve all boxes in S whose

liftings lie in one of the 26 quadrants at q∗ as a union of Õ(1) canonical subsets in Õ(1)

time, after Õ(n)-time preprocessing into canonical subsets of Õ(n) total size. Now,
boxes σ inside each such quadrant intersect q (if at all) in a consistent “pattern” so
that the volume of σ ∩ q can be characterized by a polynomial function (degree 3 at
most) on the coordinates of q. By precomputing the (constant number of) coefficients
of the sum of these polynomial functions in linear time for each canonical subset, we
can therefore compute the sum of the volume of σ∩ q over all σ∗ inside a quadrant at
q∗ in Õ(1) time for any given q. Summing over all quadrants answers the query.

The running time above is actually O(
√
n polylogn). With more effort, we should

be able to maintain the surface area of the union of n unit axis-parallel cubes in R
3

or the area/perimeter of a union of n homothets of a constant-size convex polygon in
R

2 (the latter union also has linear complexity).

7. Optimizing with multiple convex polygons. We started with optimiza-
tion problems dealing with the interaction of points and a polytope. We will close with
a more complicated form of optimization, but in the two-dimensional plane, dealing
with interaction between two or more convex polygons. The planar width problem
is perhaps the simplest in this category and was addressed in a previous paper [8].
Its relative, the minimum enclosing rectangle problem, is the main subject of this
section; unlike in [8], we are not able to obtain a fully dynamic algorithm because of
the added complications.

We first state the abstract problem. Given a set of lines H, let VH be as before
(the set of vertices of the lower envelope), but abusing notation slightly, let λH be
instead a mapping from R

2 to R
2: λH(q) is the point lying on the lower envelope of H

and the vertical line at q. Let s be a constant. Below, 〈λH1 , . . . , λHs〉(Q) denotes the
set of tuples of points {〈λH1(q), . . . , λHs(q)〉 | q ∈ Q}. The objective is to maintain
✷〈λH1 , . . . , λHs〉(VH1∪· · ·∪VHs) for s sets of linesH1, . . . , Hs and some decomposable
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operator ✷.
Notation. Given a proper subset of indices J ⊂ {1, . . . , s}, the J-selector refers

to the following operator ⊗: 〈p1, . . . , ps〉 ⊗ 〈q1, . . . , qs〉 = 〈r1, . . . , rs〉, where rj = pj
if j ∈ J , and rj = qj if j �∈ J . There are a constant number (2s− 1) of such selectors.

Theorem 7.1. Suppose that we can preprocess a set S ⊂ (R2)s of n tuples (each

consisting of s points on a common vertical line) in Õ(n) time so that given any s lines
h1, . . . , hs and selector ⊗, ✷{〈λh1

(p1), . . . , λhs(p1)〉⊗〈p1, . . . , ps〉 | 〈p1, . . . , ps〉 ∈ P}
can be computed in Õ(n1−γ) time. Then we can maintain ✷〈λH1

, . . . , λHs〉(VH1 ∪
· · · ∪ VHs) for given sets H1, . . . , Hs of at most n lines in R

2 in Õ(n1−γ/2) time per
semi-online update to H1, . . . , Hs.

Proof. We show how to storeH1, . . . , Hs so that ✷〈λH1∪H′1 , . . . , λHs∪H′s〉(VH1∪H′1∪· · ·∪VHs∪H′s) can be computed efficiently given additional blocks H ′1, . . . , H
′
s of size b.

Compute the lower envelope of each Hj (a convex polygon) in O(n log n) time.
For each v ∈ VH1 ∪ · · · ∪ VHs , find λHj (v) by binary search. Using a binary tree
construction, we can form canonical subsets {Vi}i of total size O(n log n) such that
for any j, we can retrieve all points v ∈ VHj inside a vertical slab as a union of
O(log n) disjoint canonical subsets. For each canonical subset Vi, preprocess the
tuples {〈λH1(v), . . . , λHs(v)〉 | v ∈ Vi} in the specified data structure.

Given query sets H ′1, . . . , H
′
s, construct the lower envelope of each H

′
j in O(b log b)

time. Draw vertical lines at the vertices of these s envelopes. In addition, intersect
each edge of these envelopes with each of the lower envelopes of H1, . . . , Hs, by binary
search [27] in total O(b log n) time. Draw vertical lines at these intersections. As a
result, the plane is divided into O(b) vertical slabs. Take each vertical open slab σ.
Within σ, the lower envelope of Hj ∪H ′j coincides with either the lower envelope of
Hj or a single line h′j ∈ H ′j . So, VHj∪H′j ∩σ is either VHj ∩σ or ∅. Assume the former.

Partition the point set VHj ∩σ into O(log n) canonical subsets. Take each canon-
ical subset Vi. Now, λHk∪H′k(Vi) is either λHk(Vi) or λh′k(Vi) for each k. Thus,
✷〈λH1∪H′1 , . . . , λHs∪H′s〉(Vi) is merely ✷{〈λh′1(v), . . . , λh′s(v)〉⊗〈λH1(v), . . . , λHs(v)〉 |
v ∈ Vi} for some selector ⊗, and so can be computed in Õ(n1−γ) time per canonical
subset Vi.

We conclude that ✷〈λH1∪H′1 , . . . , λHs∪H′s〉((VH1∪H′1 ∪ · · · ∪ VHs∪H′s) ∩ σ) can be

computed in Õ(n1−γ) time. Repeating this process over all slabs requires Õ(bn1−γ)
time overall. In addition, each of the O(b) vertical lines drawn may pass through a
vertex v0 of VH1∪H′1∪· · ·∪VHs∪H′s . If so, compute 〈λH1∪H′1(v0), . . . , λHs∪H′s(v0)〉 by bi-
nary searches on the lower envelopes of Hj and H

′
j and combine with the answer. The

additional time is O(b log n), and the end result is ✷〈λH1∪H′1 , . . . , λHs∪H′s〉(VH1∪H′1 ∪· · · ∪ VHs∪H′s).
The conclusion now follows from Lemma 2.1 with α = 1 and β = γ.
Corollary 7.2. We can maintain the minimum-perimeter rectangle enclosing

an n-point set P ⊂ R
2 in Õ(n1/2) time per semi-online update.

Proof. We represent the rectangle using five parameters ξ, η1, . . . , η4:

{(x, y) | − η1 ≤ ξx+ y ≤ η2, −η3 ≤ x− ξy ≤ η4}.

The perimeter is 2(η1 + · · ·+ η4)/
√
1 + ξ2.

So, transform each point (a, b) ∈ P to the following four lines: {(ξ, η1) | η1 =
−ξa − b} in H1, {(ξ, η2) | η2 = ξa + b} in H2, {(ξ, η3) | η3 = −a + ξb} in H3, and

{(ξ, η4) | η4 = a−ξb} inH4. Define the operator ✷ to minimize (η1+· · ·+η4)/
√
1 + ξ2

over all tuples 〈(ξ, η1), . . . , (ξ, η4)〉 of the given set. Our problem is equivalent to
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determining ✷〈λH1
, . . . , λH4

〉(R2). Since one of four sides of the optimal rectangle
must be defined by a convex hull edge of the original points (see the appendix),
our problem reduces to finding ✷〈λH1 , . . . , λH4〉(VH1 ∪ · · · ∪ VH4), so Theorem 7.1 is
applicable with s = 4.

Now, given the selector’s index set J ⊂ {1, . . . , 4}, the theorem requires a data
structure to store a set S of n tuples so that given query lines {(x, y) | y = sjx+tj} (j =
1, . . . , 4), we can find the tuple 〈(ξ, η1), . . . , (ξ, η4)〉 ∈ S that maximizes

∑
j∈J(sjξ + tj) +

∑
j 
∈J ηj√

1 + ξ2
=

ξ√
1 + ξ2

∑
j∈J
sj +

1√
1 + ξ2

∑
j∈J
tj +

∑
j 
∈J ηj√
1 + ξ2

.

By storing the plane

{
(X,Y, Z) | Z =

ξ√
1 + ξ2

X +
1√

1 + ξ2
Y +

∑
j 
∈J ηj√
1 + ξ2

}

associated with each tuple for vertical ray shooting in three dimensions [1, 27] (by
constructing a three-dimensional convex hull and performing two-dimensional point
location), we can achieve γ = 1.

Corollary 7.3. We can maintain the minimum-area rectangle enclosing an
n-point set P ⊂ R

2 in Õ(n5/6) time per semi-online update.
Proof. Proceed as in the previous proof, but with a different objective to minimize

(η1 + η2)(η3 + η4)/(1 + ξ
2).

The data structuring requirement is now more complex. Again we want to prepro-
cess n tuples of the form 〈(ξ, η1), . . . , (ξ, η4)〉. Let {(x, y) | y = sjx+tj} (j = 1, . . . , 4)
be the query lines. We consider the following cases of selectors only, as all other cases
are symmetric or trivial.

• J = {1}. We want to minimize

(s1ξ + t1 + η2)(η3 + η4)

1 + ξ2
=
ξ(η3 + η4)

1 + ξ2
s1 +

η3 + η4
1 + ξ2

t1 +
η2(η3 + η4)

1 + ξ2
.

By storing the plane {(X,Y, Z) | Z = ξ(η3+η4)
1+ξ2 X + η3+η4

1+ξ2 Y + η2(η3+η4)
1+ξ2 } asso-

ciated with each tuple for three-dimensional vertical ray shooting as before,
we can handle this type of query in Õ(1) time.
• J = {1, 2}. We want to minimize

(s1ξ + t1 + s2ξ + t2)(η3 + η4)

1 + ξ2
=
ξ(η3 + η4)

1 + ξ2
[s1 + s2] +

η3 + η4
1 + ξ2

[t1 + t2].

This case reduces to two-dimensional vertical ray shooting.
• J = {1, 3}. This is the most involved case and we will use linearization
here [1]. We want to minimize

(s1ξ + t1 + η2)(s3ξ + t3 + η4)

1 + ξ2

= s1s3 +
1

1 + ξ2
[t1t3 − s1s3] + ξ

1 + ξ2
[s1t3 + s3t1]

+
ξη4

1 + ξ2
s1 +

η4
1 + ξ2

t1 +
ξη2

1 + ξ2
s3 +

η2
1 + ξ2

t3 +
η2η4
1 + ξ2

.
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By storing the hyperplane {(X1, . . . , X7) |X7 = 1
1+ξ2X1+

ξ
1+ξ2X2+

ξη4
1+ξ2X3+

η4
1+ξ2X4 + ξη2

1+ξ2X5 + η2
1+ξ2X6 + η2η4

1+ξ2 } associated with each tuple for seven-
dimensional vertical ray shooting, we can handle this type of queries in
Õ(n2/3) time with Õ(n) preprocessing [1, 22].

• J = {1, 2, 3}. This is similar to the previous case. We want to minimize

(s1ξ + t1 + s2ξ + t2)(s3ξ + t3 + η4)

1 + ξ2

= (s1 + s2)s3 +
1

1 + ξ2
[(t1 + t2)t3 − (s1 + s2)s3]

+
ξ

1 + ξ2
[(s1 + s2)t3 + s3(t1 + t2)] +

ξη4
1 + ξ2

[s1 + s2] +
η4

1 + ξ2
[t1 + t2].

Again we can use vertical ray shooting, this time in four dimensions.
Thus, we can achieve γ = 1/3.

The running time for Corollary 7.2 is actually O(
√
n polylogn) (only elementary

tools are used). We will leave the reader with the question of whether the same
approach works for similar problems like the minimum enclosing equilateral triangle
(or convex polygon of a fixed angle sequence).

8. Some consequences. Faster dynamic data structures can generally lead to
faster implementations of static algorithms. We briefly indicate a few sample appli-
cations of our results to illustrate their importance.

The generalized discrete 2-center problem. Given an n-point set P ⊂ R
2, we want

to find two points p1, p2 ∈ P to minimize f(r1, r2) such that every point q ∈ P is
within radius r1 of p1 or within radius r2 of p2. Here, f(·, ·) is some constant-time
computable function that is monotone increasing in both arguments. Agarwal, Sharir,
and Welzl [4] studied the most basic version with f(r1, r2) = max{r1, r2} and gave an

Õ(n4/3) algorithm, but other functions, such as f(r1, r2) = r1 + r2, are reasonable in
some situations. (See [13] for results on the generalized version of the original 2-center
problem, where p1 and p2 can be arbitrary points in R

2.)
An exhaustive algorithm may try each point p1 ∈ P , shrink a ball B centered at

p1 with a decreasing radius r1, and compute r2 = minq∈P maxp∈P\B d(p, q). We need
to try n possible radii r1 for each of the n choices for p1, and if we compute r2 from
scratch in O(n log n) time via the farthest-point Voronoi diagram each time, the total
running time would be O(n3 log n). By applying the method of Corollary 3.2 and
noting that P \B is subjected to insertions only as B shrinks (the insertion sequence

is actually off-line), we immediately obtain an improved time bound of Õ(n3−1/6). In

any constant dimension d, the bound is Õ(n3− 1
(d+1)(�d/2�+1) ).

The minimum-diameter spanning tree. An interesting application of the general-
ized discrete 2-center problem was considered by Ho et al. [20]: given an n-point set
P ⊂ R

d, find a spanning tree that minimizes its diameter (i.e., the maximum distance
over all pairs of points, where the “distance” between p and q refers to the sum of the
edge lengths, measured in the Euclidean metric, along the path connecting p and q
in the tree). As Ho et al. showed, the resulting tree turns out to have very low link
diameter (every pair of points is connected by a path with at most three edges), and
consequently, the problem reduces to an additively weighted version of the discrete
2-center problem, where the objective is to minimize r1 + r2 + d(p1, p2).

We can use the same exhaustive-search algorithm, except that while considering
a center candidate p1, we assign each point q ∈ P \ B an additive weight of wq =
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d(p1, q) and maintain minq∈P maxp∈P\B [d(p, q) + wq] instead (using the method of

Corollary 3.2). This results in the first subcubic time bound (Õ(n3− 1
(d+1)(�d/2�+1) )) for

the problem.

Greedy disk cover. Consider the following (NP-hard) geometric version of the set
cover problem: given n points and n balls in R

d, find the smallest number of balls
that together cover all the points. Although various approximation algorithms have
been proposed (e.g., see [7]), the most well known is perhaps the greedy algorithm
(which has a logarithmic approximation factor): choose the ball that covers the most
points, remove the ball and all points inside it, and repeat. The naive implementation
would require O(n) time per iteration, for a total time of O(n2). By applying the
fully dynamic Corollary 4.2, we can reduce the running time of the greedy algorithm

to O(n2− 1
d+1 ). For unit balls, the time reduces to O(n2−1/d).

Klee’s measure problem for unit hypercubes. Klee’s measure problem in R
d seeks

the volume of n axis-parallel boxes. The fastest algorithm known is due to Over-
mars and Yap from 1991 [26] and runs in O(nd/2 log n) time. The algorithm basically
exploits an orthogonal binary space partition of the (d−2)-faces of the boxes, and be-
cause such partitions have a worst-case lower bound of size Θ(nd/2) [12], improvement
appears difficult in general.

Better bounds for the special case of unit hypercubes are possible, however (e.g.,
see [18]), because the union of unit hypercubes has size O(n�d/2�) only [6]. For ex-
ample, for d = 3, we can afford to construct the union explicitly [9] and therefore
find the volume in O(n log n) time. In higher dimensions, assuming that there is an
algorithm Ad to construct the union and decompose the interior/exterior into disjoint

boxes in Õ(n�d/2�) time (for d > 3, we are unable to find an explicit reference to such

an algorithm), we can solve Klee’s problem for unit hypercubes in Õ(n�d/2�) time—an
improvement over Overmars and Yap’s bound for odd dimensions d.

An interesting question involves the case of unit hypercubes in even dimensions
d > 2. By a standard space sweep, the four-dimensional Klee’s problem reduces to
the off-line maintenance of the volume of a dynamic three-dimensional union and, by
Theorem 6.1, can therefore be solved in Õ(n3/2) time. This is surprising considering
that the union itself may have quadratic size in R

4. A similar approach works for

higher even dimensions and yields a time bound of Õ(n�d/2−1+ 1
�d/2� ), assuming the

existence of algorithm Ad−1 (the simple calculations are left for the interested readers
to verify).

Hypercubes of possibly different sizes can have unions of complexity Θ(n�d/2) [6].
Assuming the existence of an algorithm to construct and decompose the union in near-
optimal time, we can also obtain a similar algorithm, in this case with running time

Õ(n�d/2�+
1

�d/2�+1 ), which is an improvement in odd dimensions d ≥ 5.

Of course, a solution for hypercubes implies a solution for fat axis-parallel boxes,
where the edge lengths of a box differ by at most a constant factor. (Unlike Over-
mars and Yap’s method, though, our method does not solve the related problem of
computing the depth in an arrangement of boxes [18].)

9. Conclusion. We have shown that a number of basic geometric problems
have nontrivial (sublinear) dynamization results under the semi-online model. More
important than the specific results themselves, however, are our general strategies for
attacking different categories of problems; these strategies can serve as helpful design
models to tackle further problems in dynamic computational geometry.

Of course, the ultimate wish is to have fully dynamic, polylogarithmic algorithms,
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but at present this appears to be beyond our grasp for any of the problems discussed
here. We hope that our results will inspire more work in this challenging area.

Appendix. It is a well-known fact [19] that the minimum-area rectangle enclosing
a set of planar points has one side touching an edge of the convex hull, but since we
are unable to find a reference stating the analogous fact for the minimum-perimeter
rectangle, we include a quick proof:

Parametrize the rectangle differently in terms of variables ξ, η, ω1, ω2, ζ:

{(x, y) | ω1 ≤ ξx+ ηy ≤ ω1 + ζ, ω2 ≤ ηx− ξy ≤ ω2 + (1− ζ)}.

The perimeter is 2/
√
ξ2 + η2. The problem is to maximize ξ2 + η2 subject to the

constraints that the n given points lie in the rectangle—these constraints are linear
in ξ, η, ω1, ω2, ζ. To finish, observe that the maximum of a convex function over a
polytope must be located at a vertex, here defined by five five-dimensional bounding
hyperplanes, two of which are associated with a common side of the rectangle.
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minimum-diameter spanning tree application to me.
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[23] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom.,

10 (1993), pp. 157–182.
[24] K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and Compu-

tational Geometry, Springer-Verlag, Heidelberg, 1984.
[25] M. H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Comput. Sci.

156, Springer-Verlag, Heidelberg, 1983.
[26] M. H. Overmars and C.-K. Yap, New upper bounds in Klee’s measure problem, SIAM J.

Comput., 20 (1991), pp. 1034–1045.
[27] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag, New York, 1985.
[28] M. Smid, Closest-point problems in computational geometry, in Handbook of Computational

Geometry, J. Urrutia and J. Sack, eds., North-Holland, Amsterdam, 2000, pp. 877–935.



IMPROVED BOUNDS FOR THE ONLINE SCHEDULING PROBLEM∗

JOHN F. RUDIN III† AND R. CHANDRASEKARAN†

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 3, pp. 717–735

Abstract. The problem considered here is the same as the one discussed in [G. Galambos
and G. J. Woeginger, eds., SIAM J. Comput., 22 (1993), pp. 349–355]. It is an m-machine online
scheduling problem in which we wish to minimize the competitive ratio for the makespan objective.
In this paper, we show that

√
3 is a lower bound on this competitive ratio for m = 4. In particular,

we show how to force a lower bound of
√
3 − ε for any positive ε. This reduces the gap between the

performance of known algorithms [S. Albers, in Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, ACM, New York, 1997, pp. 130–139] and the lower bound. The method used
introduces an approach to building the task master’s strategy.

Key words. scheduling, online, competitive ratio, lower bound
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1. Introduction. We have m identical machines and a sequence of jobs to be
processed on any one of these machines. Preemption is not allowed. We wish to
minimize makespan. This is an online scenario: there are two players—a scheduler and
a task master. The task master releases information on jobs (such as processing time)
sequentially; the scheduler must schedule each job on a machine without knowing
the future job information. These decisions are irrevocable. However, he knows the
processing time of the current job before it is scheduled. At any time, the task master
may stop issuing any further job. At this time, we calculate the ratio of the length
of the schedule to the optimal offline schedule (which knows all of the data up front).
The scheduler wants to minimize this ratio (known as the competitive ratio), and the
task master attempts to make the scheduler look bad and therefore maximizes this
ratio.

History. The problem of finding the optimal solution has been solved for two
and three machines. In [8], Graham demonstrated that the greedy algorithm, now
called list scheduling, had a competitive ratio of 2− 1

m . The list scheduling algorithm
always puts a new job on the machine with the lowest current load. This is an optimal
algorithm for two or three machines, as was shown in [5]. For four or more machines,
better algorithms have been found.

In 1989, Faigle, Kern, and Turan [5] showed a lower bound of 1+
√

2
2 (≈ 1.7071) for

all m ≥ 4. For more than three machines, neither the best scheduling algorithm nor
the competitive ratio is known. An upper bound that improved on Graham’s greedy
algorithm for four or more machines was discovered by Galambos and Woeginger [7] in
1993. Their algorithm had a competitive ratio of 2− 1

m − ε(m) for some positive ε(m)
(which tends to zero as m → ∞). Bartal, Fiat, Karloff, and Vohra [2] provided an
algorithm that was 1.978 competitive for all values of m. That bound was improved
upon by Karger, Phillips, and Torng [10] with an algorithm form ≥ 8 that guarantees
a competitive ratio of at most 1.945. This is a generalization of the earlier algorithm.
In 1994 , Bartal, Karloff, and Rabani [3] improved the lower bound to 1.837 for
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Table 1.1

m LB UB

2
3
2

3
2

3
5
3

5
3

4 1.7310 1.7333

5 1.7462 1.7708

6 1.7730 1.8

7 1.7910 1.8229

∞ 1.8520 1.9230

m ≥ 3454. Albers [1] produced an algorithm which is 1.923 competitive. She also
improved the lower bound to 1.852 for m a multiple of 40.

Table 1.1 shows the best currently known bounds, as given in Fiat and Woeginger
[6]. Many of these bounds were taken from Chen, van Vliet, and Woeginger [4].

Our primary result in this paper is to show a task master strategy that forces a
minimum ratio of

√
3 − ε for any positive ε for four machines. By using this method

we can also improve the lower bounds in general for m ≥ 4, and this is taken up in a
forthcoming paper.

2. General method. The method presented in this paper will improve the
lower bounds by presenting sequences of jobs for a given competitive ratio (1 + V )
and m, such that the scheduler is forced to schedule in a specific manner. Specifically,
successive layers of jobs will be produced, each containing m jobs, as shown in Figure
2.1. The layers are constructed such that if the scheduler puts any two of the jobs
in the same layer on the same machine, that machine will instantly have a makespan
greater than or equal to the current divisor (a lower bound on the offline schedule
length) times the competitive ratio. Therefore, regardless of the scheduling algorithm,
at the end of a series of layers, we know that one of the following conditions holds:

• each machine has one job from each layer, or
• the competitive ratio of 1 + V or more has already been achieved.

Such a sequence guarantees that at the end of each layer, every machine has
a minimum load equal to the sum of the smallest job in each layer, or the target
competitive ratio has already been achieved.

The current layer of jobs will be designated theA-layer and will beA1, A2, . . ., Am.
The layer before it will be B1, B2, . . ., Bm, and the layer before that will be C1, C2, . . .,
Cm. After the first job in a layer is determined, no job in that layer will ever be any
smaller; that is, A1 ≤ Ai for all i.

We define S as the lowest possible machine load, assuming that each machine has
one job from each layer. The total S depends on the number of layers that have been
scheduled, so we define

SB = B1 + C1 + · · · ,
SA = A1 +B1 + C1 + · · · . = A1 + SB = A1 +B1 + SC ,

etc.
Therefore, when an entire layer has been scheduled by any scheduling algorithm,

either a competitive ratio greater or equal to (1+ V ) will have already been achieved
or every machine will have a load of at least S. For the remainder of this paper, it will
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Fig. 2.1. Typical sequence of jobs in the layering method.

be assumed that the scheduler avoids the target competitive ratio as long as possible,
and so it is assumed that at the end of each row, every machine has been given one
job from each layer.

We also define the ratios

RA =
A1

SA
, RB =

B1

SB
,

etc.

The goal of the process is to produce a sequence of layers, each one reducing R,
until R = 1

2V . If R = 1
2V , then, since RA = A1

SA
, we have

SA = 2A1V.

It is also necessary that all current jobs fit on an offline schedule onm−1 machines
with loads no greater than 2A1. This condition must be checked separately. Then a
final job of 2A1 is offered. No matter which machine it is scheduled on, that machine



720 JOHN F. RUDIN III AND R. CHANDRASEKARAN

will have a load of at least

2A1 + SA = 2A1(1 + V ).

Since the offline schedule for all jobs on m machines is 2A1, this will immediately
force a competitive ratio of 1 + V .

There will be two types of layers, each of m jobs, that we might use:
1. m jobs of equal size, i.e., A1 = A2 = · · · = Ai = · · · = Am;
2. m jobs satisfying the relation Am ≤ A1 + 2C1; the offline makespan when
Am is being scheduled is exactly A1 +B1 + 2C1.

In all cases, A1 ≤ Ai for all i. They will be identically equal to A1 as long as
possible, becoming larger only when a larger value is needed to force the scheduler to
schedule them on separate machines. The smallest load possible for a machine that
already has a job from this layer is SA. Therefore, Ai will be chosen so that a machine
with load SA + Ai would force a competitive ratio of 1 + V . For this reason, Ai will
be (1 + V )Di − SA, where Di is the divisor when Ai is to be scheduled. Since Di is
nondecreasing, it follows that Ai ≤ Ai+1.

Consider the final situation, in which the next job of size J must force a com-
petitive ratio of at least 1 + V . We may assume, without loss of generality, that the
divisor is 1 by scaling all jobs equally. Let SA be the smallest total workload on any
machine. Then the following statements are true:

1. J ≤ 1 (no job can be greater than the divisor).
2. SA + J ≥ 1 + V .
3. Therefore, SA ≥ V .

The layering construction method presented assumes that a layer has just been
completed as well as the fact that J = 1. Since the m + 1 jobs A1, . . ., Am plus J
must all be scheduled on m machines with makespan less than or equal to 1, at least
one of those jobs must be less than or equal to 1

2 . The smallest of these is A1, so we
assume that A1 = 1

2 .

Therefore, for the final layer, the ratio RA = A1

SA
≤ 1

2V . Achieving this ratio is a
primary goal of the layering method.

2.1. Type-1 layers. Type-1 layers are layers of m identical jobs, that is, A1 =
Ai for all i; and the scheduler is required to put each job of the layer on a separate
machine, or he will immediately have caused the competitive ratio 1+V to have been
reached. Let SB be the smallest machine load prior to the placing of A1. Then, by
construction,

SB = B1 + C1 + · · · ,
SA = SB +A1.

Let R = A
SA

. Then, for a type-1 layer to force each A-job onto a distinct machine,
we must have

A+ SA ≥ (1 + V )D.

Since every machine has a load of at least SA, it follows that D ≥ SA, with
equality holding only if all previous layers are also type-1 layers. Therefore, A1 must
be chosen such that

A1 + SA ≥ (1 + V )D ≥ (1 + V )SA.
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Fig. 2.2.

Hence

A1 ≥ V SA,

and, therefore,

R =
A1

SA
≥ V.

By the previous result, R must be reduced to 1
2V by the end of the process.

Therefore, type-1 layers can only achieve the desired competitive ratio if

V ≤ R ≤ 1

2V
.

This implies that V 2 ≤ 1
2 , and hence 1 + V ≤ 1 + 1√

2
∼= 1.7071.

Using type-1 layers alone, Faigle, Kern, and Turan demonstrated that 3
2 was the

highest possible forced competitive ratio with two machines, and 5
3 was the highest

possible with three machines [5].

With two machines, a single layer of two jobs of size 1 is offered, followed by a job
of size 2. The first two jobs are forced on separate machines to avoid the competitive
ratio of 2, and then the final job forces a competitive ratio of 3

2 .

For three machines, two layers are needed. A layer of size B = 1 is followed
by a layer of size A = 3, which must be scheduled on separate machines to avoid a
competitive ratio of 7

4 . Since all jobs in type-1 layers are identical, no subscript is
needed to distinguish them. At that point, every machine has a load of 4. When a
final job of 2A is sent, then the machine it is scheduled on must have a makespan of
10. The offline schedule has makespan 6, as shown in Figure 2.2.

Therefore, a competitive ratio of 5
3 is forced.

Since Graham’s list scheduling algorithm can never be forced above 2 − 1
m , this

is the highest that can be forced for m = 2, 3.

In 1989, Faigle, Kern, and Turan [5] showed a lower bound of 1 +
√

2
2 (∼= 1.7071)

for all m ≥ 4. They used two type-1 layers. The first layer is
√

2
2 − 1

2 (
∼= 0.2071). The
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second layer is 1
2 ; if two of these jobs are scheduled on the same machine, the ratio is

(
√

2
2 + 1

2 )√
2

2

= 1 +

√
2

2
.

A final job of size 1 completes the sequence. As shown above, this is the highest
that can be achieved with type-1 layers alone. To force higher ratios, we need type-2
layers.

2.2. Type-2 layers. A type-2 layer is a layer of m jobs, satisfying the relation

Am ≤ A1 + 2C1,

and the divisor when Am is being scheduled is exactly A1 +B1 + 2C1. At the end of
a layer, there are m A-layer jobs, each greater than or equal to A1. It follows that
if the ideal makespan is to be less than 2A1, then each of the m A-level jobs must
be scheduled on different machines, so each machine contains at least A1, from an
A-level job, and unless it was a type-1 layer, one of the machines received Am > A1.
Then, either one of the machines has two B-level jobs, or each machine has one of
them. Therefore, the makespan is at least min[A1 + 2B1, Am +B1]. Therefore, if

Am ≥ A1 +B1,

then the divisor is at least A1 + 2B1. For the divisor to go below this bound, each
A-level job must be on a separate machine, and each B-level job must be as well.
Therefore, to reduce the divisor further, we must enforce Am < A1+B1. By the same
reasoning as before, if

Am ≥ A1 + C1,

then the competitive makespan is at least A1 +B1 +2C1. Type-2 layers are designed
to force this competitive ratio. A type-2 layer is created by keeping the competitive
divisor less than or equal to A1 + B1 + 2C1 during the offering of the layer. This is
always less than A1 + 2B1 or 2A1.

Since there arem separate jobs of size A1 or greater, this bound requiresmA-level
jobs to be on the m machines for the competitive schedule. Since there are also m
separate jobs of size B1 or greater, these jobs must also each be on separate machines
for the competitive schedule. Therefore, the machine with job Am(= A1 + 2C1) and
some B-level job has a makespan of at least A1 +B1 + 2C1. It is therefore sufficient
to show a competitive schedule with makespan A1 + B1 + 2C1 to prove that is the
competitive divisor.

Example 1. As an example, consider the following series of jobs for m = 4 and V
= 19

11 = 1.727272:

1 1 1 1
3 3 3 3
16 16 16 16
44 44 44 50
88
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The first three layers are type-1. They must be assigned across all four machines
to avoid a competitive ratio of 7

4 . Therefore, at the end of the third row, each machine
has a makespan of 20. As the first three numbers in the fourth layer are being assigned,
the competitive divisor can be no more than 60, as shown by the following offline
schedule: [44, 16]; [44, 16]; [44, 16]; [16, 3, 3, 3, 3, 1, 1, 1, 1]. It follows that the scheduler
cannot allow any machine to exceed 60( 19

11 )(= 103.636). Note that the argument does
not require proof that 60 is the length of the ideal schedule—merely that it is an upper
bound on the length.

Since each machine already has a load of 20, the scheduler cannot put any two of
the 44-jobs on the same machine, which would give a makespan of 108.

When the job of length 50 is added, the makespan of the ideal schedule cannot
be less than A1+B1+2C1( = 44+16+6 = 66), as shown above. The following schedule
shows that this makespan is possible: [50, 16]; [44, 16, 3, 3]; [44, 16, 3, 3]; [44, 16, 1, 1, 1, 1].
Therefore adding the 50-job to a machine that has a 44-job already (and hence
a makespan of 64) will give a makespan of 114 and a competitive ratio of 114

66 (=
1.727272). If the scheduler avoids this by placing it on the fourth machine, then each
machine has a load of at least 64, so the final job forces a makespan of 64+88(= 152).
The competitive divisor is 88, as shown:[88]; [44, 44]; [50, 16, 16, 3, 1, 1]; [44, 16, 16, 3, 3,
3, 1, 1]. Therefore, a competitive ratio greater or equal to 152

88 (= 1.727272) is forced
against any scheduling algorithm.

Assume SA, R, and A1 as before. To create a type-2 layer, first a B1 is selected,
and all of the Bi jobs will be identical. B1 must be chosen such that all Bi jobs must
be forced onto separate machines to avoid an immediate ratio of 1 + V . Since the
C-row has already been scheduled across all m machines, we have already calculated
a divisor DC such that all jobs through row C can fit on m machines with makespan
on any machine less than or equal to DC . Therefore, the divisor

DB = DC +B1.

Then B1 must be sufficiently large that

2B1 + SC ≥ (1 + V )DB = (1 + V )(DC +B1).

Hence

(1− V )B1 ≥ (1 + V )DC − SC ,

and so

B1 ≥ (1 + V )DC − SC
(1− V )

.

B1 is chosen to make the equality true. A1 must be chosen so that

Am + SA ≥ (1 + V )(A1 +B1 + 2C1).

In a type-2 layer,
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A1 + 2C1 ≥ Am,

and the divisor when Am is added is A1 +B1 + 2C1. Also,

SA = A1 +B1 + SC .

Therefore,

Am + SA ≥ (1 + V )(A1 +B1 + 2C1),

and hence

2A1 + 2C1 +B1 + SC ≥ Am + SA ≥ (1 + V )(A1 +B1 + 2C1),

from which it follows that

(1− V )A1 ≥ V B1 + 2V C1 − SC
and

A1 ≥ (V B1 + 2V C1 − SC)
1− V .

A1 is chosen to make the equality true in the above relation. Note that, in the
first step above, this forces

Am = A1 + 2C1.

Later, this restriction will be relaxed in some cases. However, this restriction gives
us the smallest possible A1, and so the smallest possible RA, and the largest possible
V . At each step, the ratio RA is reduced. The reduction occurs asymptotically. The
limit has no simple closed-form result, but experiment shows that, for V less than or
equal to 0.73742, the limit can be reached so that a final type-2 layer can force the
competitive ratio of 1 + V .

More formally, consider the asymptotic behavior of the sequence. The highest
possible V for which a solution can be reached is one for which the ratio of SA

2A1
, or

1
2R , approaches V , as the number of layers increases without bound. This can be
found by assuming that

SA
2A1

= V

and that the layers are identical in form. (Of course, this condition can never be
reached in practice. However, an infinite series of type-2 layers will approach it
asymptotically.) Therefore, we assume a steady state, at the end of the C-layer,
with C = 1

2 and SC = V . By construction,

B1 =
(1 + V )DC − SC

1− V
=

(1 + V )DC − V
1− V ,

and
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A1 =
V B1 + 2V C1 − SC

1− V
=

V B1

1− V .

By the hypothesis that the asymptotic conditions have been reached, we can assume
that

DC = DA
C1

A1
= (A1 +B1 + 2C1)

1

2A1

=
A1 +B1 + 1

2A1
.

Finally, we have the relation that

RA
SA

=
1

2V

or

2V A1 = SA = A1 +B1 + SC

= A1 +B1 + V.

Therefore, we have four equations in the variables A1, B1, DC , and V . The solution
was found numerically and is

A1
∼= 6.20899278265808,

B1
∼= 2.21087597923733,

DC
∼= 0.758566573648259,

V ∼= 0.737421563000747.

This is the highest value for V that we can achieve with type-1 and type-2 layers.
The existing literature shows that, for two and three machines, type-2 layers are not
needed to achieve optimal values of V . However, for four machines, we need type-2
layers, and these are sufficient to prove the results of this paper. We take up the case
of more layers in a forthcoming paper.

3. Four machines. Here we use type-1 and type-2 layers, and they are inter-
spersed. Alternate layers are of each type.

We will prove the following result.

Theorem 3.1. For any ε > 0, there exists a finite series of jobs that can force
any scheduler to a ratio of

√
3− ε when m = 4.

A construction method will be presented, creating a sequence of jobs for 1+V =√
3 − ε. It will be shown that the sequence terminates, and jobs in each layer (each

layer contains four jobs) must be scheduled on the four different machines to avoid a
ratio greater than or equal to 1 + V . After all these layers of jobs are scheduled, a
final job will force a ratio of at least 1 + V .
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Note. The type-1 layers are designated by Bi and the type-2 layers by A. These
alternate. The sets of jobs are shown below.

Bn Bn Bn Bn
An An An An
Bn−1 Bn−1 Bn−1 Bn−1

An−1 An−1 An−1 An−1 + 2An
Bn−2 Bn−2 Bn−2 Bn−2

An−2 An−2 An−2 An−2 + 2An−1

. . . .

. . . .
Bi Bi Bi Bi
Ai Ai Ai Ai + 2Ai+1

. . . .

. . . .

. . . .

. . . .
B0 B0 B0 B0

A0 A0 A0 A0 + 2A1

2A0

Si and Ri have the usual definition of SA and RA for the layer that begins with Ai.
Since type-2 layers are being used, each B-row will have four identical jobs, and each
A-row will have three identical jobs Ai and one job of size Ai + 2Ai+1.

3.1. Construction. If 1+V ≤ 1+
√

2
2 , then a simple solution using type-1 layers

[5] is already known. For 1+
√

2
2 < 1+ V <

√
3, the form of the sequence of jobs will

be as shown in the table above.
We also define

Si =

n∑
j=i

(Aj +Bj)

and

Ri =
Ai
Si
.

Thus Si is the minimum load on a machine when the jobs n through i have been
loaded, as long as no two jobs (of four jobs) from any layer are scheduled on the same
machine. Also let

V =
√
3− 1− ε,

M =
3V − 2

2
.

To begin, define S0 to be an arbitrary number. Then

A0 =
S0

2V
,

R0 =
A0

S0
=

1

2V
,
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B0 = S0 −A0 −MA0,

Si =MAi−1, i ≥ 1,

Ai =
Ai−1 − 2Bi−1

4
, i ≥ 1,

Ri = max

[
1,
Ai
Si

]
, i ≥ 1.

If Ri < V , then

Bi = Si −Ai −MAi

= Si −Ai − Si+1,

and we go to index (i+ 1). If V ≤ Ri ≤ 1, then

Bi = Si −Ai,

and the sequence terminates. If Ri = 1, then Bi = 0, and we redefine Ai = Si, and
the sequence terminates. The terminating i becomes n. Note that, by definition of
Bn,

Sn = An +Bn.

Also, by definition of Bi,

Si = Ai +Bi + Si+1.

Therefore, by induction,

Si =

n∑
j=i

(Aj +Bj).

This represents the smallest possible load on the smallest machine after the jobs n
through i have been scheduled if each set of four jobs in a layer has been split among
all four machines.

Claim. The procedure described above terminates in finite time for (1+V ) <
√
3

and produces a sequence of jobs that will force a ratio of at least (1 + V ).

Lemma 3.2. The procedure described above terminates in finite time for (1+V ) <√
3.

Proof. Let (1+ V ) =
√
3− ε. Then V =

√
3− 1− ε. Since (1 + V ) > 1+

√
2

2 , we
know that

ε =
√
3− (1 + V )

<
√
3−

(
1 +

√
2

2

)

< 1.73206− 1.70710

= 0.02496

<
1

40
.
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For 1 ≤ i < n, we have

Ri+1 =
Ai+1

Si+1

=
1
4Ai − 1

2Bi

MAi

=
1

4M

Ai − 2(Si −Ai − Si+1)

Ai

=
1

4M

Ai(1− ( 2
Ri

) + 2 + 2M)

Ai

=
3 + 2M − ( 2

Ri
)

4M

=
3

4M
+

1

2
− 1

2MRi
.

We define

δi = Ri −Ri−1,

and, therefore,

Ri = R0 +

i∑
j=1

δj .

Recalling that

R0 =
1

2V
,

we get

δ1 =
3

4M
+

1

2
− 1

2MR0
− 1

2V

=
3V + 2MV − 4V 2 − 2M

4MV

=
3V + (3V − 2)V − 4V 2 − (3V − 2)

4MV

=
2− 2V − V 2

4MV
.

Substituting

V =
√
3− 1− ε,

we get

δ1 =
2− 2(

√
3− 1− ε)− (

√
3− 1− ε)2

4MV

=
2
√
3ε− ε2
4MV

=
2
√
3ε− ε2

(6V − 4)V
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>
2
√
3ε− ε2

(6
√
3− 10)(

√
3− 1)

>
2
√
3ε− ε

40

28− 16
√
3

=
(7 + 4

√
3)(2
√
3− 1

40 )ε

(7 + 4
√
3)(28− 16

√
3)

>
(14
√
3 + 24− 7

40 −
√

3
10 )ε

196− 192

>

(
6 +

7

2

√
3− 7

160
−
√
3

40

)
ε

> (6 + 6.062− 0.0438− 0.0434)ε

> 11ε > 0.

Therefore,

δ1 = R1 −R0 > 0,

and so R1 > R0.

For i ≥ 2,

δi =
3

4M
+

1

2
− 1

2MRi−1
− 3

4M
− 1

2
+

1

2MRi−2

=
Ri−1 −Ri−2

2MRi−1Ri−2

=
δi−1

2MRi−1Ri−2
.

Since δ1 > 0, by induction it follows that δi > 0, and hence Ri −Ri−1 > 0. Now,
if Rj ≥ V , the sequence stops at j. Otherwise,

δi =
δi−1

2MRi−1Ri−2

>
δi−1

(3V − 2)V 2

=
δi−1

(3(
√
3− 1)− 2)(

√
3− 1)2

=
δi−1

(3
√
3− 5)(4− 2

√
3)

=
δi−1

22
√
3− 38

> 9.5δi−1

> (9.5)i−1δ1.
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Therefore,

Ri = R0 +

i∑
j=1

δj

> R0 + δ1

i∑
j=1

(9.5)j−1

= R0 + δ1
(9.5)i − 1

9.5− 1

> R0 +
11ε

8.5
[(9.5)i − 1].

Therefore, Ri increases at an exponential rate, and the sequence will terminate in
no more than c(− log9.5 ε) steps, creating a sequence of no more than [8+c(−8 log9.5 ε)]
jobs for some fixed positive constant c. This proves the lemma.

Remark 1. Note that if 1 + V >
√
3 (and therefore ε is negative), we have

δ1 =
2− 2(

√
3− 1− ε)− (

√
3− 1− ε)2

4MV

=
2ε
√
3− ε2

4MV
< 0.

Also,

δi < (9.5)δi−1,

and so Ri does not increase with i. Hence the method does not terminate for 1+V >√
3. For 1 + V =

√
3 (which implies that ε = 0), δi = δ1 = 0, and the method does

not terminate. Therefore, this method cannot be used for 1 + V ≥ √3.
Lemma 3.3. The jobs from steps n through i can be sorted into four sets totaling

no more than 3
2Ai and into three sets of no more than 2Ai.

Proof. The proof is by induction, beginning with i = n. With i = n, there are
eight jobs

Bn Bn Bn Bn
An An An An

with An ≥ V Sn and Bn ≤ (1− V )Sn. Since V ≥ 2
3 , Bn ≤ 1

2An, and hence

An +Bn ≤ 3

2
An.

There are obviously four such sets. Also,

An +Bn +Bn ≤ An +An.

Therefore, the three sets {An, An},{An, Bn, Bn},{An, Bn, Bn} satisfy the first
condition. Therefore, the lemma is true for i = n.

Now, assume that it is true for the jobs in sets n through i. Then those jobs can
be collected into three sets that total to a number less than or equal to 2Ai. These
three sets, which are interchangeable for purposes of this proof, can be labeled X3i.
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Similarly, we have four sets X4i, each of which total to a number less than or equal
to 3

2Ai.
Now, consider the three sets {Ai−1, Ai−1},{Ai−1, Bi−1, Bi−1, X3i, X3i}, and {Ai−1+

2Ai, Bi−1, Bi−1, X3i}.
The total of the jobs in the first set is 2Ai−1. Since the total in X3i is less than or

equal to 2Ai, by the induction hypothesis, the second set’s total is less than or equal
to the third set’s total. Therefore, we need only consider the third set. Please note
that since

Ai =
(Ai−1 − 2Bi)

4
,

by construction, we have

Ai−1 = 2Bi−1 + 4Ai.

The total load of the third machine is

Ai−1 + 2Ai + Bi−1 +Bi−1 +X3i

≤ Ai−1 + 2Bi−1 + 4Ai

≤ Ai−1 +Ai−1.

Therefore, all three machines have loads that are less than or equal to 2Ai−1.
Now consider the four sets {Ai−1, Bi−1, X3i},{Ai−1, Bi−1, X3i},{Ai−1, Bi−1, X3i},

and {Ai−1 + 2Ai, Bi−1}.
Since the total load in set X3i is less than or equal to 2Ai, each set has a total

load less than or equal to

Ai−1 + Bi−1 + 2Ai

= Ai−1 +
1

2
Ai−1 =

3

2
Ai−1.

So Lemma 3.3 is true for i−1. Therefore, by induction, it is true for all 0 ≤ i ≤ n.
Lemma 3.4. The jobs {Bi, Bi, Bi, Bi} must each be scheduled on a separate

machine to prevent having a ratio 1 + V or more. Furthermore, the four A-level jobs
must each be scheduled on a separate machine to prevent having a ratio 1 + V or
more.

Proof. Clearly it is true for Bn, since that situation is simply scheduling four
identical jobs. If two of them are scheduled on one machine, the ratio is 2 > 1 + V .
Since

Rn =
An
Sn
≥ V,

we have An ≥ V Sn. Scheduling two jobs of size An on one machine gives a load of

(Bn +An) +An ≥ Sn + V Sn

= (1 + V )Sn.

The divisor is Sn, so this forces a ratio greater than or equal to 1+V . Therefore,
the lemma is true for n. Assume that it is true for the jobs in sets n through i.
Then all jobs in sets n through i must be scheduled evenly. In this case, the smallest
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possible load on any machine is Si. If two jobs of size Bi−1 are scheduled on one
machine, its load is greater than or equal to

Si + 2Bi−1 = Si +Ai−1 − 4Ai

=MAi−1 +Ai−1 − 4Ai

=
M + 1

M
Si − 4Ai

=
M + 1

MRi
Ai − 4Ai

=
M + 1− 4MRi

MRi
Ai.

By Lemma 3.3, the divisor must be less than or equal to

Bi−1 +X4i ≤ 1

2
Ai−1 − 2Ai +

3

2
Ai

=
1

2
(Ai−1 −Ai)

=
1

2

(
Si
M
−Ai

)

=
1

2

(
Ai
RiM

−Ai
)

=
1−RiM
2RiM

Ai.

Therefore, the ratio must be greater than or equal to

2(M + 1− 4RiM)

1−RiM
=

2M + 2− 8RiM

1−RiM
= 2 +

2M − 6RiM

1−RiM .

Since M ∼= 0.09807 < 0.1 and Ri < V <
√
3− 1 < 0.733 for i < n,

2 +
2M − 6RiM

1−RiM
= 2− M(6Ri − 2)

1−RiM
> 2− 0.1(4.398− 2)

0.9267
= 2− 0.258

= 1.742 > (1 + V ).

Therefore, two Bi cannot be scheduled on the same machine without exceeding the
competitive ratio 1 + V . So if the lemma is true for n through i, then it is true for
Bi.

The jobs {Ai−1, Ai−1, Ai−1, Ai−1 + 2Ai} must each be scheduled on separate
machines to prevent having a ratio of 1 + V or more.
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As the fourth job is scheduled, any attempt to put it on the same machine as one
of the other three will result in a machine whose load is at least

Ni−1 = Si +Bi−1 + 2Ai−1 + 2Ai =MAi−1 + 2Ai−1 +
1

2
Ai−1

= Ai−1

(
M +

5

2

)
.

By Lemma 3.3, the denominator is no more than

Di−1 =
3

2
Ai−1.

So the ratio is at least

2M + 5

3
=

3V − 2 + 5

3

=
3V + 3

3
= 1 + V.

As the second and third jobs are scheduled, any attempt to put two jobs on the same
machine will result in a machine load of at least

Si +Bi−1 + 2Ai−1 = Ai−1

(
M +

5

2
− 2

Ai
Ai−1

)
= Ni−1 − 2

Ai
Ai−1

.

The denominator is

Ai−1 +Bi−1 = Di−1 − 2
Ai
Ai−1

.

Therefore, this ratio is greater than Ni−1

Di−1
, previously shown to be greater than or

equal to 1 + V . Therefore, by induction, Lemma 3.4 is true.
Lemma 3.5. The final job of 2A0 will force a ratio of at least 1 + V .
Proof. By the previous lemma, if a scheduler schedules any two jobs from the same

layer on one machine, it immediately forces a ratio greater than 1+V . Therefore, the
scheduler is forced to put one from each layer on each of the four machines. So the
smallest possible load on any machine is the sum of the smallest load in each layer.
This sum is S0. By construction,

S0 = 2A0V.

Therefore, the numerator when a job of 2A0 is added will be at least

2A0V + 2A0 = (1 + V )2A0.

By Lemma 3.3, the denominator can be no more than 2A0. Therefore, the ratio is at
least 1 + V . Therefore, this finite sequence forces a ratio of

1 + V =
√
3− 1− ε

against any scheduler strategy.
Example 2. Let ε = 10−8. Then 1 + V = 1.732050798, M = .098076196, and the

sequence in Table 3.1 is generated.
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Table 3.1
Sequence of variables to generate layers for 1 + V =

√
3− 10−8.

i Si Ri Ai Bi
0 7,320,507,976 0.683012711 5,000,000,000 1,830,126,994
1 490,380,982 0.683012832 334,936,503 122,595,180
2 32,849,298 0.68301415 22,436,536 8,212,273
3 2,200,490 0.683028555 1,502,998 550,084
4 147,408 0.683185975 100,707 36,824
5 9,877 0.684905818 6,765 2,449
6 663 0.70364391 467 151
7 46 0.901864135 41 5

Table 3.2
Job sequence to force 1 + V =

√
3− 10−8.

5 5 5 5
41 41 41 41
151 151 151 151
467 467 467 549
2, 449 2, 449 2, 449 2, 449
6, 765 6, 765 6, 765 7, 699
36, 824 36, 824 36, 824 36, 824
100, 707 100, 707 100, 707 114, 237
550, 084 550, 084 550, 084 550, 084
1, 502, 998 1, 502, 998 1, 502, 998 1, 704, 412
8, 212, 273 8, 212, 273 8, 212, 273 8, 212, 273
22, 436, 536 22, 436, 536 22, 436, 536 25, 442, 532
122, 595, 180 122, 595, 180 122, 595, 180 122, 595, 180
334, 936, 503 334, 936, 503 334, 936, 503 379, 809, 575
1, 830, 126, 994 1, 830, 126, 994 1, 830, 126, 994 1, 830, 126, 994
5, 000, 000, 000 5, 000, 000, 000 5, 000, 000, 000 5, 669, 873, 006
10, 000, 000, 000

Since R7 > V , the sequence terminates at n = 7. Therefore, the series of jobs in
Table 3.2 guarantees a ratio greater than or equal to

√
3−10−8, against any scheduler

strategy.

In a forthcoming paper, we discuss how this approach can lead to better lower
bounds for a larger number of machines.
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1. Introduction. The partial sum problem is to maintain n bits x1, . . . , xn ∈
{0, 1} that are subject to updates

update(i): change xi to 1− xi
and compute queries about the partial sums x1 + · · ·+ xi.

It is easy to construct data structures that provide either very fast updates (by
computing the answer from scratch after each query) or very fast queries (by recom-
puting all partial sums after each update). However, in many partial sum problems—
and in many dynamic problems in general—we cannot have both. This trade-off
between update time and query time was established by Fredman and Saks [15], who
showed that, with the parity query

parity(i): return x1 + · · ·+ xi mod 2,

the partial sum problem requires time Ω(logn/ log log n) per operation on the unit-
cost RAM with logarithmic cell size. In other words, even the least significant bits of
the partial sums are hard to maintain.

The motivation for the present paper is that the hardness of the problem depends
on the following query: If the parity query is replaced by

or(i): return “yes” iff x1 + · · ·+ xi ≥ 1 (equivalently, return x1 ∨ · · · ∨ xi),
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then a Van Emde Boas tree provides an implementation in time O(log logn) per
operation, which is exponentially faster.

We show which queries are hard in this sense.

General partial sum queries. Consider two other natural partial sum queries:

majority(i): return 1 iff x1 + · · ·+ xi ≥
⌈

1
2 i
⌉
,

equality(i): return 1 iff x1 + · · ·+ xi =
⌈

1
2 i
⌉
.

We can formulate these problems as database queries like “Did as many male as
female guests arrive before noon?” or “Are more French than English talks scheduled
between Tuesday and Friday?” Similarly, these problems can be viewed as natural
range query problems in computational geometry.

Proposition 3 of the present paper shows that both problems require time
Ω(log n/ log log n) per operation, just as parity. We then extend our analysis of the
majority problem to the class of threshold functions and characterize the complexity
of the resulting partial sum problem in terms of the size of the threshold in Propo-
sition 4. This connects the majority problem, where the threshold is 1

2 i, and the or
problem above, where the threshold is 1. Finally, we generalize this to the entire class
of symmetric functions in Proposition 11.

Intriguingly, the resulting bounds closely resemble the corresponding results from
Boolean circuit complexity, where these problems have been studied intensively, hint-
ing at a connection between the dynamic and parallel realms.

Main contribution. Our main technical and conceptual contributions are lower
bounds for partial sum problems in very strong models of computation. All our other
results follow from these bounds.

The idea is to provide the query algorithm with well-defined parts of the answer
for free without reducing the problem’s complexity. We phrase the results for the
signed partial sum problem. The problem is to maintain a string x ∈ {−1, 0,+1}n
under the following operations:

update(i, a): change xi to a ∈ {−1, 0,+1},
query(i): return x1 + · · ·+ xi mod 2.

We prove two theorems about this problem.

Theorem 1 shows that, even in models with nondeterministic queries (defined and
discussed in section 2), the partial sum problem requires time Ω(logn/ log log n) per
operation. It is known that this is also the deterministic complexity of the problem
[9, 15], so nondeterminism does not help.

Theorem 3 studies the same problem in a promise setting, where the (determin-
istic) query algorithm receives an almost correct answer for free. The updates are as
before, and the query is

parity(i, s): return x1 + · · ·+ xi mod 2 provided that

∣∣∣∣∣s−
i∑

j=1

xj

∣∣∣∣∣ ≤ 1
(otherwise, the behavior of the query algorithm is undefined).

We show that this problem still requires Ω(logn/ log log n) per operation.
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Lower bounds for dynamic algorithms. We present some applications to
dynamic algorithms and data structure problems other than partial sums. Because
Theorems 1 and 3 hold in very strong models of computation, we can construct
powerful reductions.

We can show that the existential problem for orthogonal range queries in the plane
requires time Ω(log1/2 n) per operation (Proposition 2). We also present bounds for
planar point location in monotone subdivisions [5, 26], reachability in upward planar
digraphs [28], and incremental parsing of balanced parentheses [11]. We show that
these problems require time Ω(log n/ log log n) per operation (Propositions 5–8). It
is known [10, 14, 17, 23] that this is also a lower bound for reachability in grid
graphs. However, grid graphs of constant width allow a reachability algorithm in
time O(log log n) per operation [4], an exponential improvement. We prove a lower
bound that is parameterized by the width w of the graph: Proposition 10 states
that dynamic reachability for grid graphs of width w = O(logn/ log log n) requires
time Ω(w) per operation, bridging the gap between the two results.

Apart from the bound for the existential range query problem, for which the
authors recently proved a stronger bound using a different technique [3], all these
bounds are new and the best known.

Related work. Fredman introduced the partial sum problem as a “toy problem
which is both tractable and surprisingly interesting” [13], and it has been the focal
point of many investigations of dynamic complexity in a variety of models [15, 31].
We reason within the cell-probe model of Fredman [12] and Yao [30] with some ex-
tensions to cope with our stronger modes of computation. The model can be viewed
as a nonuniform version of the random access computer with arbitrary register in-
structions. Lower bounds are especially valid on RAMs with unit-cost instructions
and logarithmic cell size. The success of this model is partly due to the validity of
these bounds in light of schemes like hashing, indirect addressing, bucketing, pointer
manipulation, or recent algorithms that exploit the parallelism inherent in unit-cost
instructions. For these reasons, the cell-probe model has arguably become the model
of choice for lower bounds for dynamic computation.

Theorems 1 and 3 are proved by extending the chronogram method, which was
introduced by Fredman and Saks [15] and got its name in [7].

The prefix parity problem was solved in [15], but no nontrivial lower bounds for
the majority or equality problems follow from that. The results from [6, 21, 22, 29]
can be seen to imply Ω(log log n/ log log logn) lower bounds using an entirely differ-
ent technique based on Ajtai’s result [2]; and [19] reports Ω((logn/ log log n)1/2) for
equality and Ω(logn/(log log n)2) for the majority.

2. Nondeterminism in dynamic algorithms.

2.1. Example: Range queries. We can illustrate our concept of nondetermin-
istic queries using the existential range query problem. The object is to maintain a
set S ⊆ {1, . . . , n}2 of points in the plane under the following operations:

update(x): add x ∈ {1, . . . , n}2 to S, or remove it if it is already there,
exists(y): return “yes” iff S contains a point x in the rectangle defined by the origin
and y, i.e., such that x1 ≤ y1 and x2 ≤ y2.

With nondeterministic queries, the problem is very easy: guess a point and verify
that it is in S ∩ R. This shows that positive instances of this problem have short,
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maintainable witnesses—the points themselves. On the other hand, it is known that,
for deterministic computation, this problem requires time Ω(logn/ log log n) [3]; we
prove a somewhat weaker bound in Proposition 2. Thus the hardness of this problem
lies in maintaining precisely the kind of information that nondeterminism provides
for free.

However, this is not true for all problems; we shall show that queries about the
size |R ∩ S| remain hard even with nondeterminism. Thus we see that the hardness
of the two problems, both of which have the same deterministic complexity, hinges
on information of a fundamentally different kind.

Another example from computational geometry is dynamic convex hull, the prob-
lem of maintaining the convex hull of a set of points S, where points are inserted and
removed. The query operation asks whether the query point q lies inside or outside
the convex hull of S. Again, we can solve this problem with a trivial update algorithm
that simply stores S in a large table. (In the cell-probe model, we do not worry about
memory space; otherwise, we can use standard dictionaries.) The nondeterministic
query guesses three points from S and verifies that the query point lies in the triangle
spanned by these points—a well known result in plane geometry asserts that this is
necessary and sufficient.

Thus we have identified a class of dynamic problems, namely, those with fast
nondeterministic queries. Problems in this class have positive instances with short
witnesses, and these witnesses can be maintained by an efficient data structure. This
encompasses the class of problems where the outcome of each query depends on only
a small number of updates. Contrast this with the problems identified in [15], where
each update affects only a small number of queries, e.g., dictionary problems.

2.2. A model for nondeterministic query algorithms. We introduce a
model for nondeterministic query algorithms for dynamic decision problems, where
the query returns 0 or 1. We allow query algorithms to nondeterministically load
a value into a memory cell. The semantics are as usual: The value returned by a
nondeterministic query is 1 unless all nondeterministic choices return 0. For example,
the following program solves in constant time the existential range query problem,
storing all points from S in a two-dimensional array M :

update(x1, x2):
M [x1, x2] := 1−M [x1, x2],

exists(y1, y2):
guess x1 ≤ y1 and x2 ≤ y2
return M [x1, x2].

We should mention that we have not defined the side-effects of a nondeterministic
query algorithm, i.e., the effect of its assignments to memory. This can be done in
a number of ways; for example, we might say that if there are computations (i.e.,
sequences of nondeterministic choices) that result in “1,” the algorithm will execute
one of these computations; otherwise, it will execute a computation leading to “0.”
Our lower bound is immune to precisely how these effects are defined, since the hard
operation sequence constructed in the proof needs only a single query, which happens
at the very end.

2.3. Signed partial sum. The signed partial sum problem is to maintain a
string of letters x ∈ {−1, 0,+1}n, initially 0n, under updates that change the letters
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of x and queries about the parity of the prefix sums of x:

update(i, a): change xi to a ∈ {−1, 0,+1},
query(i): return x1 + · · ·+ xi mod 2.

The data structure of Dietz [9] solves this problem deterministically in time
O(log n/ log log n) per operation with logarithmic cell size. The next theorem states
that nondeterministic queries can do no better. We state this theorem as a trade-off
between update and query time.
Theorem 1. Every nondeterministic algorithm for the signed partial sum prob-

lem with cell size b, update time tu, and query time tq must satisfy

tq = Ω

(
log n

log(btu log n)

)
.(1)

Also, the lower bound holds even if the algorithm requires

0 ≤ x1 + · · ·+ xi ≤
⌈

log n

log(btu log n)

⌉
(2)

for all i after each update.
The proof is given in the next section.
Note that the query cannot distinguish +1 from −1 (since 1 = −1 mod 2), so

a data structure for the signed partial sum problem structure can treat −1 as +1.
The reason for introducing −1 in the problem is the balancing condition (2), which
continues previous work [19] on extending the chronogram method.

In section 5.2, we state a further generalization of Theorem 1, relating the terms
in (1) and (2).

2.4. Lower bound for existential range queries. We give a lower bound of
size Ω(log1/2 n) for the existential range query problem; we consider cell size b = log n
for concreteness. The value of this result lies in its simplicity; it provides a good
illustration of how to apply Theorem 1. Using a different technique [3], the authors
with Alstrup have since established Ω(logn/ log(btu)), which is optimal. However,
before the present paper, no lower bound better than Ω(log logn/ log log log n) was
known for this problem (which is rather central—see the discussion by Agarwal [1]),
so the result provides an exponential yet, by now, outdated improvement.

Following [3], we start with the existential marked ancestor problem. Consider a
full rooted tree with nodes V , number of leaves n, height h, and arity d, where

h = log1/2 n, d = 2h.(3)

Let π(v) denote the nodes on the path from v to the root (including v). The problem
is to maintain a subset of marked nodes M ⊆ V under the following operations:

mark(v): insert v ∈ V in M ,

unmark(v): remove v ∈ V from M ,

exists(v): return “yes” iff any of v’s ancestors are marked, i.e., if π(v) ∩M �= ∅.
The counting marked ancestors problem supports the same updates, and the query is

parity(v): return |M ∩ π(v)| mod 2, the parity of the number of marked ancestors
of v.



LOWER BOUNDS FOR DYNAMIC PARTIAL SUMS 741

The parity prefix sum problem is a special case of this problem, where the tree is
a path. We begin by showing that the problem is hard also for d-ary trees, where
d = log1/2 n.
Lemma 1. Every nondeterministic algorithm for counting marked ancestors in

trees with update time tu requires query time

tq = Ω

(
log n

log1/2 n+ log(tu log n)

)
.

Proof. Let x be a length n instance to the signed partial sum problem. We
assume that log1/2 n is an integer. Consider a data structure for the counting marked
ancestor problem for a tree T with parameters as in (3), and update and query time
tu and tq. The ith leaf vi of T corresponds to xi. We will maintain that the parity of
the number of marked ancestors to vi is the parity of the ith prefix sum in x, i.e.,

|π(vi) ∩M | = x1 + · · ·+ xi (mod 2).

Thus the time for a partial sum query is the same as the time for a marked ancestor
query, tq. To maintain the invariant whenever xi is changed (and thus the parity of
all prefix sums ≥ i are changed), we change the marking of the root of a number
of disjoint subtrees in T , whose leaves correspond to xi, . . . , xn. These roots are the
right siblings of π(vi−1), so there are at most dh updates. Thus the update time is at

most tudh = O(2log
1/2 ntu log

1/2 n). Now Theorem 1 implies the bound on the query
time.

The proof of the next proposition contains the crucial application of nondeter-
minism to transform a counting problem into an existential one.
Proposition 1. Existential Marked Ancestor requires time Ω(log1/2 n) per op-

eration.
Proof. Consider an algorithm for the existential problem with update time tu and

query time tq, and let T be an instance of the counting marked ancestor problem.
Construct 2h new instances Tw indexed by bit strings w ∈ {0, 1}h. We maintain that
the markings in the first instance T00···0 are the same as in T . In general, the ith bit
of w is cleared iff the markings in Tw on level i are the same as in T . More precisely,
if v is a node on level i, we have

(v marked in Tw) = wi ⊕ (v marked in T ),

where ⊕ denotes exclusive or. The crucial observation is the following: Let v be a leaf.
Then w is the characteristic vector of π(v) ∩M iff the path π(v) in Tw is unmarked.

Whenever a node in T is marked or unmarked, we must update all 2h instances,
so the update time is 2htu. For a query, we guess the characteristic vector of π(v)∩M
and verify that π(v) is unmarked in Tw. This takes time tq + O(1). We finish the
proof by applying the above lemma.

Finally, we present the application to range queries.
Proposition 2. Existential Range Query requires time Ω(log1/2 n) per opera-

tion.
Proof. Embed the tree from the marked ancestor problem in the first quadrant

of the plane, with the root in the origin and the nodes at depth i spread out evenly
on the diagonal y = −x+ dh − dh−i. The query rectangle has its upper-right corner
in the queried node.
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2.5. Discussion. Analyzing the above proof, we see that the algorithm used
in the reduction actually solves the complement of the problem; we use it to verify
π(v)∩M = ∅. Thus the proof also yields a bound on the nondeterministic complexity
of the emptiness problem (to return “yes” iff the query rectangle is empty). In other
words, there is no short, maintainable witness to the absence of points in the plane.

In contrast, the emptiness problem in one dimension does admit a fast nondeter-
ministic algorithm, since we can maintain a doubly linked list of the inserted points,
and the query can guess both the immediate predecessor and immediate successor of
a query interval and verify that they are neighbors in S. Using a Van Emde Boas tree,
this can be implemented in time O(log logn) per update and constant query time.

3. Proof of Theorem 1. We consider a specific sequence of operations that
consists of a number of updates followed by a single query. The update sequence is
chosen at random from a set U defined in section 3.5.

3.1. Model of computation. The computational model is an extension of the
cell-probe model [12, 30]; since there is only a single query in the hard sequence of
operations constructed in our proof, which happens at the very end of the sequence,
we can model query algorithms by nondeterministic decision trees.

More precisely, a cell-probe algorithm consists of a family of trees, one for each
operation, and a memory M ∈ {0, . . . , 2b − 1}∗. We refer to the elements of M as
cells, each of which can store a b-bit number. To each update we associate a decision-
assignment tree as in [15]. There are two types of nodes: Read nodes are 2b-ary and
labeled by a memory address, and computation proceeds to the child identified at
that address; write nodes are unary and labeled by a memory address and a b-bit
value, with the obvious semantics.

To each query we associate a nondeterministic decision tree of arity 2b whose
internal nodes are labeled by a memory address or by “∃.” The leaves are labeled 0
or 1 to represent the possible answers to the query. We define the value qM ∈ {0, 1}
computed by a query tree q on memory M to be 1 if there exists a path from the root
to a leaf with label 1. A witness of such an accepting computation is the description of
the choices for the ∃ nodes. We let qi denote the query tree corresponding to query(i).
The query time tq is the height of the largest query tree, and the update time tu is
the height of the largest update tree. We account only for memory reads and writes
and for nondeterministic choices; all other computation is for free.

3.2. Updates and epochs. Each update sequence in U is described by a binary
string u ∈ {0, 1}∗. Each bit represents an update update(j, a). The parameters for
these updates will be specified in section 3.5. The update sequences u ∈ U are split
into d substrings each corresponding to an epoch. It turns out to be convenient that
time flows backward, so epoch 1 corresponds to the end of u. In general, the update
string is an element in U = UdUd−1 · · ·U1, where Ut = {0, 1}e(t) and where e(t) is
the length of epoch t such that e(t) + · · ·+ e(1) = �nt/d/d�. The length of the entire
update sequence is �n/d�. The size of d and hence the growth rate of e(t) are given
by

d =

⌈
log n

log(btu log n)

⌉
.(4)

The goal is to establish that tq ∈ Ω(d).
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3.3. Time stamps and nondeterminism. To each cell we associate a time
stamp when it is written. A cell receives time stamp t if some update during epoch t
writes to it, and none of the subsequent updates during epochs t− 1 to 1 write to it.

For an update sequence u ∈ U , let Mu denote the memory resulting from these
updates (recall that updates are restricted to perform deterministically), starting with
some arbitrary initial contents corresponding to the initial instance 0n.

For index i and update string u, let T (i, u) denote the set of time stamps that are
found on every accepting computation path of qi on M

u. If there are no accepting
computations, the set is empty. More formally, let w denote a witness for a com-
putation path of qi on M

u, and let A(i, u) denote the set of witnesses that leads to
accepting computations of qi on M

u. Let for a moment T (i, u, w) denote the set of
time stamps encountered by the computation of qi on M

u that is witnessed by w.
Then T (i, u) =

⋂ {T (i, u, w) | w ∈ A(i, u) } if A(i, u) �= ∅, and T (i, u) = ∅ otherwise.
The simple lemma below is the tool to identify a read of a cell with time stamp t

by nondeterministic queries.
Lemma 2. If Mu and Mv differ only on cells with time stamp t, then qiM

u �=
qiM

v implies t ∈ T (i, u) ∪ T (i, v).
Proof. Suppose, on the contrary, that qiM

u �= qiMv and t /∈ T (i, u) ∪ T (i, v).
Assume without loss of generality that qiM

u = 1 and qiM
v = 0. Since t /∈ T (i, u) and

qiM
u = 1, there is an accepting computation path that avoids cells with time stamp t.

However, this computation might as well be executed on Mv, by the premise. Hence
qi has an accepting computation on M

v as well, contradicting qiM
v = 0.

3.4. Lower bound on query time. The update sequences are chosen such
that, even if two sequences differ only in a single epoch, they still result in very
different instances. To each update sequence u ∈ U we associate the query vector
qu = (q1M

u, q2M
u, . . . , qnM

u) ∈ {0, 1}n. Update sequences that differ only in epoch t
are called t-different.
Lemma 3. No Hamming ball of diameter 1

8n can contain more than |Ut|9/10 query
vectors from t-different update sequences for large n.

The difficult part is constructing a set of update sequences for which the statement
is true, which we present in section 3.5. The proof itself is as in [15] and is provided
in section 3.5 for completeness.

Write U>t for Ud · · ·Ut+1, the set of update sequences prior to epoch t, and write
U<t for Ut−1 · · ·U1, the set of update sequences in epoch t to epoch 1. Assume for the
rest of this section that tq = O(logn); else there is nothing to prove. The worst-case
query time tq is at least the average of |T (i, u)| over choices of i ∈ {1, . . . , n} and
u ∈ U , so

|U |ntq ≥
∑
u∈U

n∑
i=1

|T (i, u)| =
d∑
t=1

∑
u∈U>t

∑
w∈U<t

∑
v∈Ut

n∑
i=1

(
t ∈ T (i, uvw)).

The next lemma tells us how many v ∈ Ut fail to make the last sum exceed 1
16n.

Lemma 4. Fix any epoch 1 ≤ t ≤ d and past and future updates x ∈ U<t, y ∈ U>t.
For large n, at least half of the update sequences u ∈ xUty satisfy

∣∣{ 1 ≤ i ≤ n |
t ∈ T (i, u) }∣∣ ≥ 1

16n if tq = O(logn).
Proof. Consider the set V ⊆ xUty of updates after which fewer than 1

16n queries
encounter time stamp t; i.e., xuy for u ∈ Ut is in V if

∣∣{ 1 ≤ i ≤ n | t ∈ T (i, xuy) }∣∣ < 1
16n.
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We will bound the size of V below 1
2 |Ut|.

To this end, partition V into equivalence classes such that u and v are in the
same class iff Mu and Mv agree on all cells except maybe those with time stamp t.
We first bound the number of such classes. Since all cells with time stamp greater
than t have identical content (they depend only on the common prefix x), we need
only to analyze the amount of information distributed among cells with time stamps
t − 1 to 1. The number of cells written during the last t − 1 epochs is at most
r = tu · (e(t − 1) + · · · + e(1)). Note that at most n2tqb different cells appear in the
entire forest of query trees. The number of different ways we can choose such r cells
and fix their content to some value in {0, . . . , 2b − 1} is bounded by

(n2tqb · 2b)r ≤ |Ut|o(1),(5)

where the inequality uses (4). That is, |Ut|o(1) bounds the number of equivalence
classes of V .

It remains to bound the size of each class. Consider two query vectors qu and qv

for u and v in the same equivalence class. Then

|qu − qv| ≤ 1
8n(6)

because 15
16n entries of each vector depend only on cells with time stamps other than t.

On these cells, the memories are indistinguishable and therefore yield the same result
by Lemma 2. By (6), all vectors from the same class end up in a Hamming ball

of diameter 1
8n, so Lemma 3 tells us that there can be only |Ut|

9
10 of them. We

conclude that the size of V is bounded by |Ut| 9
10 · |Ut|o(1), which is less than 1

2 |Ut| for
large n.

By this lemma we obtain for large n

|U |ntq ≥
d∑
t=1

|U>t| · |U<t| · 1
16n · 1

2 |Ut| = 1
32nd|U |

and hence tq ≥ 1
32d as desired.

3.5. Update scheme. The technical part that remains is to exhibit a set of
update sequences U satisfying Lemma 3. There are a number of ways to do this; the
following construction is one which simultaneously anticipates our needs in section 6
and satisfies the balancing condition (2).

To alleviate notation, we assume that n/d is an integer. Consider the updates in
epoch t, and index them as u1 · · ·ue(t) ∈ Ut. If ui = 0, then nothing happens in the
ith update. Else it performs update(j, a), where the update position j is given below.
The new value is a = (−1)r, where r = 1 + u1 + · · · + ui mod 2, so the nonzero
updates in u alternate between −1 and +1, starting with +1. The position of the
affected letter is defined as follows. Write x as a table of dimension d× n/d like this:



x1 xd+1 xn−d+1

...
... · · · ...

xd x2d xn


 .

All updates in epoch t will affect only the letters in row t. The updates of an epoch
are spread out evenly from left to right across that row, so the distance between two
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of them is ⌊
n/d

e(t)

⌋
.(7)

In summary, the ith update in epoch t affects the letter in row t and the column given
by (i− 1) · ⌊(n/d)/e(t)⌋+ 1.

This update scheme satisfies the statement in Lemma 3.
Proof of Lemma 3. Let xUty be any set of t-different update sequences. Pick

any u ∈ Ut, and consider any Hamming ball of diameter 1
8n that contains query

vector qxuy. We will bound the number of v ∈ U t with query vector qxuy ending up
in that Hamming ball.

Let w ∈ Ut record the difference between u and v; i.e., the ith letter of w is 1 iff
u and v differ on the ith letter. Now let w′ denote the string of prefix sum parities
of w, i.e.,

w′i = w1 + · · ·+ wi mod 2, 1 ≤ i ≤ e(t).

It is easy to see that w′ records the difference between the query vectors resulting
from u and v. Indeed, each 1 in w′ yields an interval of indices where the vectors
differ, and the length of this interval is d times the distance given by (7). In other
words, each 1 in w′ contributes as many points to the Hamming distance between
the resulting query vectors. So, if we let |w′|1 denote the number of 1’s in w′, the
Hamming distance between two query vectors is at least

|w′|1 · d ·
⌊
n/d

e(t)

⌋
≥ 1

2 |w′|1 ·
n

e(t)
,(8)

where we have used that �a� ≥ 1
2a for a ≥ 1.

By the triangle inequality, the maximum Hamming distance between two query
vectors in the same ball is 1

8n. This bounds the number of 1’s in w
′ to 1

4e(t) for
large n. Hence the number of choices for w′ is bounded by

1
4 e(t)∑
i=0

(
e(t)

i

)
< 2

9
10 e(t)(9)

for large n. This also bounds the number choices of v ∈ Ut since there is a one-to-one
correspondence between v and w′.

The prefix sums of instances resulting from our scheme are small: Let x denote
an instance resulting from our scheme from the initial instance 0n. Let xt denote the
string resulting from only the updates in epoch t, and write x as x1 + · · · + xd; this
works because no two epochs write in the same positions. Then

i∑
j=1

xj =

i∑
j=1

d∑
t=1

xtj =

d∑
t=1

i∑
j=1

xtj ∈ {0, . . . , d}

because the prefix sum of every xt is 0 or 1 by construction. It can be checked that
the balancing bound (2) holds at all times.

Another important feature of this update scheme, which we will use to prove
Theorem 3, is that, if x and y result from t-different updates, then xr = yr for r �= t
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and hence ∣∣∣∣∣
i∑

j=1

xj −
i∑

j=1

yj

∣∣∣∣∣ ≤ 1(10)

for all i.

4. Partial sum queries. The next result shows that the majority and equality
problems defined in the introduction are just as hard as the parity query from [15].
The proof is a simple application of Theorem 1.
Proposition 3. The prefix equality and prefix majority problems satisfy

tq = Ω

(
log n

log(tub log n)

)
.

Proof. We first give the proof for prefix equality. Let d = �log n/ log(btu log n)�.
An instance x ∈ {−1, 0,+1}n of signed partial sum is encoded as the binary

string x′ by

−1 �→ 00, 0 �→ 01, +1 �→ 11.

We maintain d+ 1 strings y(0), . . . , y(d) as

y(t) = (00)t(01)d−tx′.

Let tu = tu(n) denote the update time of our prefix equality algorithm. Whenever x
is changed, we make at most 2d+ 2 updates in the strings y(t); so the update time is
(2d+ 2) · tu(n+ 2d+ 2).

Index the strings y(t) from −2d to 2n− 1. We then have
2i−1∑
j=−2d

y
(t)
j = d− t+ i+

i∑
j=1

xj , 0 ≤ t ≤ d, 1 ≤ i ≤ n.(11)

Hence, in order to find the ith prefix sum of x, our algorithm can nondeterminis-
tically guess the sum s ∈ {0, . . . , d}; we can assume from the balancing condition (2)

in Theorem 1 that the sum is in that set and verify y
(s)
−2d + · · ·+ y(s)2i−1 = d+ i, which

is the case iff equality(2d+ 2i) on y(s) returns 1. The conclusion is by Theorem 1.
The same bound must hold for the majority problem since we can write

x1 + · · ·+ xi =
⌈

1
2 i
⌉
iff x1 + · · ·+ xi

≥ ⌈ 1
2 i
⌉ ∧ x̄1 + · · ·+ x̄i ≥

⌈
1
2 i
⌉
,

where x̄i = 1− xi, and these negated values are easily maintained.
To study this kind of problem in a general, let the threshold ϑ be an integer

function such that ϑ(i) ∈ {0, . . . , � 12 i�}. The query in the prefix threshold problem
for ϑ is

threshold(i): return “yes” iff x1 + · · ·+ xi ≥ ϑ(i).
Prefix majority is the special case ϑ(i) = � 12 i�; prefix-or is ϑ(i) = 1. Now, for our lower
bound, our assumption on ϑ is that there are integers p(1) < p(2) < · · · < p(i) < · · ·
such that ϑ(p(i)) = i. We call such functions nice for lack of a better word. It is
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reasonable to assume that ϑ is monotonically increasing; the niceness assumption also
prevents it from skipping points.
Proposition 4. Let tu = tu(n) and tq = tq(n) denote the update and query time

of any cell size b implementation of the prefix threshold problem for a nice threshold ϑ.
Then tq = Ω(log ϑ/ log(tub log ϑ)).

Proof. The proof is not difficult but is tedious. The idea is to stretch an instance
for a threshold problem, padding it with sufficiently many 0’s or 1’s to turn it into a
majority problem.

Let ϑ be a nice function, and let p(1), . . . , p(n) be such that ϑ(p(i)) = i. Assume
we have an algorithm for the prefix problem for ϑ with the parameters given in the
statement of the theorem. We will construct an algorithm for the majority with
instance x ∈ {0, 1}n. Construct a bit string y as

y = 0 · · · 0x1x10 · · · 0x2x20 · · · 0xnxn,
where the letters of x are at positions p(1)− 1, p(1), p(2)− 1, p(2), . . . , p(n)− 1, p(n);
denote the length of y by m = p(n).

The string y can be maintained in time 2tu(m) for each update of x. For the
query, note that 2x1 + · · ·+ 2xi = y1 + · · ·+ yp(i), so

x1 + · · ·+ xi ≥
⌈

1
2 i
⌉

iff y1 + · · ·+ yp(i) ≥ i = ϑ(p(i)),
so the majority function (left-hand side) can be expressed in terms of the threshold
function ϑ (right-hand side). Hence the query time is tq(m). However, from the
bound on the complexity of the majority function, we know that

tq(m) = Ω

(
log n

log(tu(m)b(m) log n)

)
.

The stated bound follows by substituting ϑ(m) for n.
To gauge the strength of this result, we mention that the problem can be solved on

the unit-cost RAM with logarithmic cell size in time O((log ϑ/ log log n)+log logn) per
update (if ϑ(1), . . . , ϑ(n) can be computed in the preprocessing stage of the algorithm).
The left term in the expression stems from a search tree, and the right term stems
from a priority queue, which vanishes for cell size b = Ω(log2 n); details are omitted.
A comparison with Proposition 4 shows that the lower bound is tight for logarithmic
cell size and ϑ = Ω(loglog log n n). For smaller thresholds, the bounds leave a gap of
size O(log log n).

We consider a more general class of query functions in section 6.2.

5. Applications to dynamic algorithms. Theorem 1 suggests a new approach
for proving lower bounds for dynamic algorithms by employing nondeterminism in the
reduction from signed partial sum. We demonstrate this with a number of examples
in this section. The results are presented for cell size b = log n for concreteness. Some
of the reductions extend previous work of the authors with Søren Skyum [19].

5.1. Nested brackets. Consider the problem of maintaining a nested structure,
i.e., a string x with round and square brackets under the following operations:

change(i, a): change xi to a, where a is a round or square opening or a closing
bracket or whitespace.

balance: return “yes” iff the brackets in x are properly nested.
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This problem was studied in [11], where an algorithm with polylogarithmic update
time is presented.
Proposition 5. Maintaining a string of nested brackets requires time Ω(log n/

log log n) per operation.
Proof. Consider a deterministic algorithm for this problem, and consider an in-

stance x ∈ {0,−1,+1}n to signed partial sum. Let bi be an encoding of xi given
by

+1 �→ ) ) �, 0 �→ ) � �, −1 �→ � � � ,

where “�” stands for space. Let c be the string “� (” consisting of a single space and
an opening bracket. We maintain a balanced string of brackets uvw, where u = c2n,
v = b1b2 . . . bn, and w = )n−s�s, where s = x1 + · · · + xn. It is easy to see that uvw
balances and can be maintained by a constant number of updates per update in x. For
any prefix size i, this construction enables efficient verification of a nondeterministic
guess g of the prefix sum x1 + · · · + xi: Place a closing square bracket on the last �
of bi and an opening square bracket on the � of the first c of suffix c

i+g of u. This
modification keeps uvw balanced iff g is the right guess of prefix sum x1 + · · · + xi.
The conclusion is by Theorem 1.

5.2. Dynamic graph algorithms. Our techniques improve the lower bounds
of a number of well-studied graph problems considered in [19].

Tamassia and Preparata [28] present an algorithm for the class of upward planar
source-sink graphs that runs in time O(logn) per operation. These digraphs have
a planar embedding where all edges point upward (meaning that their projection
on some fixed direction is positive) and where exactly one node has indegree 0 (the
source) and exactly one node has outdegree 0 (the sink). The updates are

insert(u, v): insert an edge from u to v,

delete(u, v): delete the edge from u to v if it exists,

reachable(u, v): return “yes” iff there is a path from u to v.

The updates have to preserve the topology of the graph, including the embedding.
Proposition 6. Dynamic reachability in upward planar source-sink graphs re-

quires time Ω(log n/ log log n) per operation.
Planarity testing is to maintain a planar graph where the query asks whether

a new edge violates the planarity of the graph. Italiano, Poutré, and Rauch [20]
present an efficient algorithm for a version of this problem, and a strong lower bound
is exhibited by Fredman and Henzinger [14]. Our lower bound also holds for upward
planarity testing, where the topology is further restricted to upward planar graphs.
The updates insert and delete edges as above, and the query is as follows:

planar(u, v): return “yes” iff the graph remains upward planar after insertion of
edge (u, v).

This problem was studied by Tamassia [27], who found an O(logn) upper bound.
Proposition 7. Upward planarity testing requires time Ω(log n/ log log n) per

operation.
A classical problem in computational geometry is planar point location: given

a subdivision of the plane, i.e., a partition into polygonal regions induced by the
straight-line embedding of a planar graph, determine the region of query point q ∈ R2.
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Fig. 1. Planar graphs corresponding to x = (0, 0, +1, +1, −1, 0, +1, 0). Left: Grid graph.
Even grid points are marked •; odd grid points are marked ◦. Middle: Upward planar source-sink
graph. Right: Monotone planar subdivision.

An important restriction of the problem considers only monotone subdivisions, where
the subdivision consists of polygons that are monotone (so no horizontal line crosses
any polygon more than twice). In the dynamic version of this problem, updates
manipulate the geometry of the subdivision. Preparata and Tamassia [26] give an
algorithm that runs in time O(log2 n) per operation; this was improved to query
time O(log n) by Baumgarten, Jung, and Mehlhorn [5]. The lower bound for this
problem in [19] applies only to algorithms returning the name of the region containing
the queried point. The techniques of the present paper extend this bound to work for
simpler decision queries like

query(x): return “yes” iff x is in the same polygon as the origin.

Proposition 8. Planar point location requires time Ω(log n/ log log n) per oper-
ation, even in monotone subdivisions.

Traditionally, lower bounds in computational geometry are proved in an algebraic,
comparison-based model (see [25] for a textbook account) that is broken by standard
RAM operations like indirect addressing, bucketing, hashing, etc. Cell-probe lower
bounds for that field are lacking.

To explain our reduction, we turn to the conceptually very simple class of grid
graphs. The vertices of a grid graph of width w and height h are integer points (i, j)
in the plane for 1 ≤ i ≤ w and 1 ≤ j ≤ h. All edges have length 1 and are parallel to
the axes. The dynamic reachability problem for these graphs is the following:

flip(x, y): add an edge between x ∈ [w]× [h] and y ∈ [w]× [h] or remove it if it
exists,

reachable(x, y): return “yes” iff there is a path from x to y.

There are several well-known constructions that prove a lower bound for this problem
[10, 14, 17, 23], but our proof translates to the other problems in Propositions 6–
8. The details in these constructions are omitted; Figure 1 illustrates the structures
arising in the reductions.
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Proposition 9. Dynamic reachability in grid graphs requires time Ω(log n/
log log n) per operation.

Proof. From an instance x ∈ {0,±1}n to signed partial sum, we build a grid graph
on the points {0, . . . , 2w} × {0, . . . , 2n}, where w = �log n/ log log n�. We will exploit
the balancing constraint (2) of Theorem 1 to keep the instance within this width.

For every i and j, consider any point with even coordinates (2i, 2j − 2), drawn
as • in Figure 1, and connect it to one of the three even grid points above it using
•
◦ ◦
◦ •
, •
◦
•
, or •

◦◦
◦•
, depending on whether xj = +1, 0, or −1, respectively. The idea is that

the path from (0, 0) mimics the prefix sums of x in that it passes through (2s, 2j) iff
x1+ · · ·+xj equals s. Hence a guess of the sum can be verified by a single reachability
query in the graph.

It remains to note that the graph can be maintained efficiently. Any changed letter
in x incurs O(w) edges to be inserted or deleted. So, if the update time of the graph
algorithm is polylogarithmic, then the graph can be maintained in polylogarithmic
time. The bound follows from Theorem 1.

The width of the hard graph above is logarithmic in the height, while the graphs
constructed in [10, 14, 17, 23] are square. Hence narrow grid graphs are as hard
as square ones. However, this is not true for very narrow graphs: It is known
that the reachability problem for grid graphs of constant width can be solved in
time O(log log n) by [4], an exponential improvement. This leaves open the question
of what happens for graphs of sublogarithmic width. To answer this, we introduce a
subtler statement of Theorem 1.
Theorem 2. Let d = O(logn/ log(btu log n)) be an integer function. Every non-

deterministic algorithm for signed partial sum with cell size b, update time tu, and
query time tq must satisfy tq = Ω(d). The lower bound holds even if the algorithm
requires 0 ≤ x1 + · · ·+ xi ≤ d for all i after each update.

This result implies a lower bound for grid graphs that smoothly connects the two
extremes between linear and constant width. A similar parameterization can be done
for all our problems.
Proposition 10. For every w = O(logn/ log log n), dynamic reachability in grid

graphs of width w requires time Ω(w) per operation.

6. Refinement. We now take a somewhat subtler approach to our basic question
than we take in section 2. Instead of nondeterminism, we study the performance of
query algorithms in a promise setting. We assume that the query algorithm for signed
partial sum receives a value s that is promised to be close to (but not known to be
equal to) the right sum and then decides between right and wrong values.

The partial sum refinement problem can be phrased as follows: Maintain a string
x ∈ {0,±1}n, initially 0n, under the following operations:

update(i, a): change xi to a ∈ {−1, 0,+1},
parity(i, s): return x1 + · · ·+ xi mod 2 provided that |s−∑i

j=1 xj | ≤ 1
(for other values of s, the behavior of the query algorithm is undefined).

The problem gets its name from the following alternative definition, where the query
operation is replaced by

refine(i, s): return 1 if s =
∑i
j=1 xj and 0 if s �=

∑i
j=1 xj , provided that

|s−∑i
j=1 xj | ≤ 1. (For other values of s, the behavior of the query

algorithm is undefined.)



LOWER BOUNDS FOR DYNAMIC PARTIAL SUMS 751

The two problems are computationally equivalent.

Theorem 3. Let d be an integer function such that d = O(logn/ log(tub log n)).
Every algorithm for partial sum refinement with cell size b, update time tu, and query
time tq must satisfy tq = Ω(d). Moreover, this is true even for algorithms that require
0 ≤ x1 + · · ·+ xi ≤ d for all i after each update.

6.1. Proof of Theorem 3. Most of the technical work for this result was already
done in section 3.5, where we found that the instances resulting from two t-different
updates have close prefix sums (10).

The query trees in our computational model are now deterministic decision trees
as in [15]. However, there are more of them: we associate a tree qsi to each query
parity(i, s), yielding n(2n + 1) trees. (We could reduce this number to n(d + 1) by
the balancing constraint, but that does not improve the bounds.)

For update string u, we write qui for the query tree q
s
i corresponding to the “right

guess” s = x1+ · · ·+ xi, where x is the instance resulting from updates u. The query
vector is (qu1M, . . . , q

u
nM), i.e., the responses yielded by guessing right every time. We

let T (i, u) denote the time stamps encountered by qui on M
u and compare this with

the construction in section 3.3.

The next lemma corresponds to Lemma 2 and shows that our update scheme
constructs different instances whose prefix sums are so close that the query trees
cannot use the (almost correct) value given to them.

Lemma 5. For t-different update sequence u, v ∈ Ut, if Mu and Mv differ only
on cells with time stamp t, then, for all i,

quiM
u �= qviMv implies t ∈ T (i, u) ∪ T (i, v).

Proof. Assume, to the contrary, for some such t, u, v, and i, that t /∈ T (i, v)
and quiM

u �= qviMv. Let x and y denote the input instances resulting from u and v,

respectively. Let s denote
∑i
j=1 xj . By (10) and without loss of generality,

∑i
j=1 yj =

s+1. By correctness, qsiM
u = qs+1

i Mu. Since the computation path for qs+1
i Mv does

not encounter time stamp t, this computation might as well be executed on Mu with
the same result; i.e., qs+1

i Mu = qs+1
i Mv = qsiM

u = quiM
u. However, this contradicts

our assumption quiM
u �= qviMv = qs+1

i Mv.

The rest of the proof can be reused almost ad verbatim.

6.2. The partial sum problem for symmetric functions. Theorem 3 acts as
an important ingredient in characterizing the dynamic complexity of all the symmetric
functions, generalizing the results for the threshold functions of the last section. A
Boolean function is symmetric if it depends only on the number of 1’s in the input
x = (x1, . . . , xn). The symmetric functions include some of the most well-studied
functions in complexity theory like parity, majority, and the threshold functions.

In general, we can describe every symmetric function f in n variables by its
spectrum, a string in {0, 1}n+1 whose ith letter is the value of f on inputs where
exactly i variables are 1. The boundary of a spectrum s is the smallest value ϑ
such that s�ϑ� = s�ϑ�+1 = · · · = s�n−ϑ�. For instance, the boundary of the parity
or majority functions is 1

2n, and for the threshold functions with threshold ϑ, the
boundary is min(ϑ, n− ϑ).

Let 〈fn〉 = (f1, . . . , fn) be a sequence of symmetric Boolean functions where the
ith function fi takes i variables. The dynamic prefix problem for 〈fn〉 is to maintain
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a bit string x ∈ {0, 1}n under the following operations:

update(i): change xi to ¬xi,
query(i): return fi(x1, . . . , xi).

For example, taking fi to be the parity function on i variables, we have the prefix
parity problem of [15], and taking fi to be the threshold function for ϑ(i), we have
the problem from Proposition 4.
Proposition 11. Let ϑ be a nice function, and let 〈fn〉 be a sequence of sym-

metric functions where fi : {0, 1}i → {0, 1} has boundary ϑ(i). Let tu and tq denote
the update and query time of any cell size b implementation of the dynamic prefix
problem for 〈fn〉. Then tq = Ω(log ϑ/ log(tub log ϑ)).

Proof. First assume that fi’s boundary is in the middle, i.e., ϑ(i) =
1
2 i. Let

x ∈ {+1, 0,−1}n denote an instance to prefix refinement, and define d and maintain
d+ 1 strings as in the proof for Proposition 3. Using the data structure for 〈fn〉, we
perform refine(i, g) as follows. Let s be the spectrum for f2i+2d. Since its boundary
is in the middle, it is the case that

sd+i−1sd+isd+i+1 ∈ {001, 010, 011, 100, 101, 110}.

We consider only the case 001 above—the other cases are treated similarly. Recall
that we can assume x1 + · · ·+ xi ∈ {g − 1, g, g + 1}. Let r−1, r0, and r+1 denote the
answer of query(2d+2i) on y(g−1), y(g), and y(g+1), respectively. By (11) in the proof
of Proposition 3, if g = x1 + · · · + xi, then r−1r0r+1 = sd+i−1sd+isd+i+1 = 001. If
instead g − 1 is the correct sum, then r−1r0 = 01, and finally if g + 1 is the correct
sum, then r0r+1 = 00. Hence these three cases for g can be distinguished by the
above three queries, and they hence determine the correct answer for refine(i, g). The
bound then follows from Theorem 3.

The rest of the proof is a padding argument that “stretches” the above to work
for smaller ϑ similarly to the proof of Proposition 3. We omit the details.

Intriguingly, the bound in the proposition is precisely the same bound as for the
size-depth trade-off for Boolean circuits for these functions [16, 8, 24].
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Abstract. The genome can be modeled as a set of strings (chromosomes) of distinguished el-
ements called genes. Genome duplication is an important source of new gene functions and novel
physiological pathways. Originally (ancestrally), a duplicated genome contains two identical copies
of each chromosome, but through the genomic rearrangement mutational processes of reciprocal
translocation (prefix and/or suffix exchanges between chromosomes) and substring reversals, this
simple doubled structure is disrupted. At the time of observation, each of the chromosomes resulting
from the accumulation of rearrangements can be decomposed into a succession of conserved segments,
such that each segment appears exactly twice in the genome. We present exact algorithms for recon-
structing the ancestral doubled genome in linear time, minimizing the number of rearrangement mu-
tations required to derive the observed order of genes along the present-day chromosomes. Somewhat
different techniques are required for a translocations-only model, a translocations/reversals model,
both of these in the multichromosomal context (eukaryotic nuclear genomes), and a reversals-only
model for single chromosome prokaryotic and organellar genomes. We apply these methods to the
yeast genome, which is thought to have doubled, and to the liverwort mitochondrial genome, whose
duplicate genes are unlikely to have arisen by genome doubling.
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Hannenhalli–Pevzner graph, exact polynomial algorithms
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1. Introduction. In almost all the genomes which have been studied, there are
some genes that are present in two or more copies. These copies may be identical
or may have some differences, and they may be adjacent on a single chromosome
or dispersed on different chromosomes throughout the genome. There are a number
of different ways in which duplicate genes can arise; perhaps the most spectacular
mechanism is the simultaneous doubling of the entire genome. Normally a lethal
accident of meiosis or other reproductive step, if genome doubling can be resolved
in the organism and eventually fixed as a normalized diploid state in a population,
simultaneous doubling constitutes a duplication of the entire genetic complement. It
transcends other mechanisms for gene duplication in that not only is one copy of
each gene free to evolve its own function (or to lose function, becoming a pseudogene
and mutating randomly, eventually beyond recognition), but it can evolve in concert
with any subset of the thousands of other extra gene copies (cf. [14] for accounts of
gene family coevolution). Whole new physiological pathways may emerge, involving
novel functions for many of these genes. Genome duplication is thus a likely source
of rapid and far-reaching evolutionary progress. Its rarity does not detract from its
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importance.
For some genomes, recent polyploidy is easily detected due to the presence of a

complete set of duplicated chromosomes. However, in most cases, all we can observe
are duplicated chromosomal segments scattered throughout the genome.

Evidence for the effects of genome duplication has shown up across the eukaryote
spectrum. More than two hundred million years ago, the vertebrate genome may have
undergone two duplications [4, 20, 31], though at least one of these remains contro-
versial [38, 21, 25, 8, 13]. Although numerous reversals and reciprocal translocations
have subsequently occurred, the number of such chromosome rearrangements has been
sufficiently modest that hundreds of conserved paralogous segments can be detected
in the human genome since the ancient duplications; similar observations hold for the
mouse genome [28, 29] and for less intensively mapped vertebrate genomes. More
recent genome duplications are known to have occurred in some vertebrate lines, such
as the frogs [40], the salmoniform fish [31], and the zebrafish [33].

Another example is given by the comparison of chromatin-eliminating Ascaridae
with other nematodes. This comparison suggests that somatic cells of these worms
have discarded a good proportion of the genes present in germ cells, possibly because
these are redundant duplicates arising through genomic doubling some 200 million
years ago [27].

Genome duplication is particularly prevalent in plants. Comparison of the well-
studied rice [1], oats (wild and domestic), corn [1, 15], and wheat [26] genomes in-
dicate several occurrences in the cereal lineage. Soybeans [36], Arabidopsis [24, 3],
rapeseed [34], and other cultivars have genome duplications in their ancestry. Pater-
son et al. have presented convincing evidence that one or more genome duplications
also occurred much earlier in plant evolution [32].

Following the complete sequencing of all Saccharomyces cerevisiae chromosomes,
the prevalence of gene duplication has led to the hypothesis that this yeast genome is
also the product of an ancient doubling [35, 39].

What of bacteria and other prokaryotes? In 1985, Herdman [19], observing that
bacterial genome sizes clustered around multiples of 0.8Mb (i.e., 1.6Mb, 3.2Mb, etc.),
suggested that the larger ones are the product of ancient duplications. The gene order
of modern-day bacteria is not strong evidence for or against such duplication. There
are often pairs of regions which are similar in gene content and order, but these are too
rare and scattered to be convincing proof of a genome-wide duplication. If this event
did occur, it has since been almost totally obscured by loss or divergence (in sequence
and function) of one or both of the copies of most gene pairs, by lateral transfer of genes
among related and unrelated organisms and by extensive rearrangement of the gene
order. Nevertheless, prokaryotic genome duplication remains a possibility and often
crops up in the literature, e.g., [23]. In contrast to plants, fungi, animals, and other
eukaryotes which have a multiple-chromosome genome in their nucleii, prokaryotes
tend to have a single, often circular, chromosome, so that translocation is not a
possibility. They do not have meiosis, so genome duplication cannot arise as a result
of a defect in this mechanism. It could, however, result from a fusion of two sister
genomes. Reversal of long or short chromosomal segments is often cited as one of the
predominant mechanisms for gene order rearrangement in unichromosomal genomes.

The prevalence and evolutionary importance of genome duplication, together with
the fragmented nature of its present-day remnants, usually greatly obscured by sub-
sequent developments at the sequence and chromosomal levels, lead to the question
addressed in this paper: How can we reconstruct some or most of the original gene
order at the time of genome duplication, based on traces conserved in the ordering
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of those duplicate genes still identifiable? Solving this would allow us key insights
into the mechanisms and consequences of this dramatic evolutionary event. A similar
question can also be considered in the case of duplication of fragments of chromo-
somes [9].

Originally a duplicated genome contains two identical copies of each chromosome,
but through intrachromosomal movements and reciprocal translocations, this simple
doubled structure is disrupted. The problem considered here is therefore as follows:
given a present-day genome modeled by a set of strings (chromosomes) of distin-
guished elements (genes), each gene appearing exactly twice in the genome, how to
recover an ancestral duplicated genome by performing a minimal number of reversals
and/or reciprocal translocations? We assume that a sign + or − is associated to
each gene, representing its transcriptional orientation. Our method makes use of a
formula of Hannenhalli and Pevzner (HP) for the classical problem of signed genome
rearrangement.

In a series of papers published in 1995, HP solved the problems of calculating
the minimum number of rearrangements necessary to transform one signed genome G
into another signed genome H, with rearrangement models based on

• reversals only [17],
• translocations only [16], and
• both reversals and translocations [18].

Though the minimizing formulae and their derivations are different in each case,
the frameworks for the three models are similar. They are based on a graph called
the breakpoint graph, in which each vertex is incident to one black and one gray
edge, black edges corresponding to genome G, and gray edges to genome H. This
graph decomposes naturally into a set of color-alternating cycles. The number of
cycles is the dominant term in the minimizing formulae. The other terms depend
on overlap relationships among these cycles, and on their clustering into “good” and
“bad” components.

The 1995 papers also presented exact polynomial algorithms for actually con-
structing a series of rearrangements satisfying the minimality criterion. Subsequently,
many alternate versions have been proposed to make various parts of the algorithms
more efficient [22, 6, 5, 37]. However, our results on duplicated genomes do not de-
pend on these algorithms. After deriving an ancestral genome by our new methods,
an efficient version of the HP algorithm can simply be applied to the present-day
genome to convert it to the ancestral genome we obtain.

Our approach in this paper is, given a present-day genome G, to estimate its
ancestral polyploid genome by one whose comparison with G minimizes the HP for-
mulae. As the ancestral genome H is unknown, we can start only with the partial
graph of black edges, and we must complete this graph with an optimal set of gray
edges. Though the three evolutionary models described above have different aspects
related to the particular kind of genome (multichromosomal or circular) and opera-
tion (translocations and/or reversals) considered, the key concepts are the same for
the three models.

The first step of the general method is to complete the graph with “valid” gray
edges, i.e., gray edges representing a duplicated genome, so as to maximize the num-
ber of cycles of the resulting graph. The key idea is to subdivide the graph into a set
of disjoint subgraphs, called natural and supernatural graphs, that can be solved in-
dependently. This is detailed in section 5. These graphs first provide an upper bound
for the number of cycles. This bound is presented in section 6. Section 7 then de-
scribes a linear algorithm, called dedouble, for constructing a completed graph, where
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the number of cycles actually attains the upper bound. The main characteristic of
dedouble is that any gray edge constructed links two vertices of the same supernatural
graph. The second step of the general method consists in modifying dedouble in order
to minimize the number of bad components. Though the concept of bad components
is different for each of the three models, they are all related to the notion of subpermu-
tations (SPs). Section 8 describes the general approach and the major modification
to algorithm dedouble. Sections 9, 10, and 11 are then dedicated to the models with
translocations only, translocations and reversals, and reversals only, respectively. De-
velopments specific to each model are detailed in these sections. Finally, section 12
gives an application of our algorithm to the multichromosomal yeast genome, and
section 13 gives another application to a circular mitochondrial genome.

We begin by formalizing the problem in the next section. We then introduce the
HP graph and formulae in section 3 and introduce our notation and main definitions
in section 4.

2. Formalizing the problem. We consider three models: translocations-only,
both translocations and reversals, and reversals-only. The first two pertain to the
multichromosomal context (eukaryotic nuclear genomes), while the third is relevant
to single chromosome prokaryotic and organellar genomes.

A string is a sequence of signed (+ or −) terms (genes) from a set B. A mul-
tichromosomal genome is a collection of at least two nonnull strings (chromosomes).
For a string X = x1x2 · · ·xr, denote by −X the reverse string −xr −xr−1 · · · − x1.

In the models with translocations, a rearranged duplicated genome G is a mul-
tichromosomal genome containing an even number of chromosomes, such that each
gene in B is present exactly twice, i.e., once in each of two different chromosomes, or
twice in a single chromosome.

Example 1. Let B = {a, b, c, d, e, f, g, h} be a set of 8 genes, and let G be a
genome consisting of four chromosomes:

1: +a + b − c + b − d; 2: −c − a + f ;
3: −e + g − f − d; 4: +h + e − g + h.

G is a rearranged duplicated genome. Each gene appears exactly twice in the set
of chromosomes; e.g., gene b appears twice in chromosome 1. Signs represent gene
orientation.

A circular chromosome is a string x1x2 · · ·xr, where x1 is considered to follow xr.
As most single chromosome genomes contain a circular chromosome, in this paper
only these circular genomes are considered. However, the application of all the results
to genomes with single noncircular chromosomes is straightforward.

In the reversals-only model, a rearranged duplicated genome consists of a single
circular genome G containing each gene in B exactly twice.

Example 2. Let G = +a + b − c + b −d − e +a + c −d − e. G is a rearranged
duplicated genome on the set of genes B = {a, b, c, d, e}. That G is a circular genome
means that vertex +a is considered to follow vertex −e.

The problem is to calculate the minimum number of rearrangement operations
required to transform a given rearranged duplicated genome G into some perfect du-
plicated genome H (or simply duplicated genome) to be found. We call this problem
the genome halving problem. In the case of a multichromosomal genome, H consists
of chromosomes C1, . . . , C2N , where for each i ∈ {1, . . . , 2N}, we have Ci = Cj for
exactly one j ∈ {1, . . . , 2N}\{i}. In the case of a circular genome, H is of the form
C C or C −C, where C is a string containing exactly one occurrence of each gene
of B.
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Each of the three models permits a different combination of the rearrangement
operations reversal and translocation. A reversal transforms some proper substring
of a genome into its reverse. Let X1, X2, Y1, and Y2 be nonnull strings. A re-
ciprocal translocation between two chromosomes X = X1X2 and Y = Y1Y2 is of
the form X1X2, Y1Y2 −→ X1Y2, Y1X2 (prefix-prefix) or of the form X1X2, Y1Y2 −→
X1 − Y1,−Y2X2 (prefix-suffix) (see Figure 2.1).

(a)
X1 X2

Y1 Y2

✲
X1 Y2

Y1 X2

(b)
X1 X2

−Y2 −Y1
✲ X1 −Y1

−Y2 X2

Fig. 2.1. Reciprocal translocation between two chromosomes X1X2 and Y1Y2. (a) Prefix-prefix
translocation. (b) Prefix-suffix translocation.

3. The HP theory. Given two genomes H1 and H2 containing the same gene
set B, where each gene appears exactly once in each genome, the genome rearrange-
ment problem is to find the minimum number of rearrangement operations necessary
to transform H1 into H2 (or H2 into H1). HP designed polynomial algorithms for the
reversals-only version of the problem (in the case of single chromosome genomes) [17],
the translocations-only version [16], and the version with both reversals and translo-
cations [18] (the latter two for multichromosomal genomes).

The algorithms all depend on a bicolored graph G12 constructed from H1 and H2.
The details of this construction vary from model to model, due to the different ways
chromosomal endpoints must be handled, but the general character of the graph is
the same and may be summarized as follows.

Graph G12. If gene x of H1 has positive sign, replace it by the pair xtxh, and if
it is negative, replace it by xhxt. Then the vertices of G12 are just the xt and the xh

for all x in B. Any two vertices which are adjacent in some chromosome in H1, other
than xt and xh deriving from the same x, are connected by a black edge (thick lines
in figures), and any two adjacent in H2 are connected by a gray edge (thin lines). In
the case of a single chromosome, the black edges may be displayed linearly according
to the order of the genes in the chromosome (Figure 3.1). For a genome containing
N chromosomes, N such linear orders are required (Figure 3.2), and the genes at
either end of the chromosome must be treated somewhat differently.

Now, each vertex is incident to exactly one black and one gray edge so that there
is a unique decomposition of G12 into c12 disjoint cycles of alternating edge colors.
By the size of a cycle we mean the number of black edges it contains. Note that
c21 = c12 = c is maximized when H1 = H2, in which case each cycle has one black
edge and one gray edge.

A rearrangement operation ρ, either a reversal or a translocation, is determined by
the two points where it “cuts” the current genome which correspond to two black edges
e and f . We say that ρ is determined by the two black edges e and f . Rearrangement
operations may change the number of cycles of the graph so that minimizing the
number of operations can be seen in terms of increasing the number of cycles as fast
as possible. Let ∆(c) be the difference between the number of cycles before and after
applying the rearrangement operation ρ. HP showed that ∆(c) may take on values
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1, 0, or −1, in which cases they are called ρ proper, improper, or bad, respectively.
Roughly speaking, an operation determined by two black edges in two different cycles
will be bad, while one acting on two black edges within the same cycle may be proper
or improper, depending on the type of cycle and the type of edges considered.

Key to the HP approach are the graph components. Two cycles, say, Cycles 1
and 2, all of whose black edges are related by the same linear order (i.e., are on the
same line), and containing gray edges that “cross,” e.g., gene i linked to gene j by a
black edge (i.e., in H1) in Cycle 1, gene k linked to gene t by a black edge in Cycle 2,
but ordered i, k, j, t in H2, are connected. A component of G12 is a maximal set of
crossing cycles, excluding the case of a cycle of size 1 (see Figures 3.1 and 3.2). A
component is termed good if it can be transformed to a set of cycles of size 1 by a series
of proper operations, and bad otherwise. Bad components are called subpermutations
in the translocations-only model, hurdles in the reversals-only model, and knots in
the combined model. More details on bad components and how to solve them will be
given in the sections dedicated to each of the three evolutionary models.
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Fig. 3.1. Graph G12 corresponding to circular genomes (i.e., the first gene is adjacent to the
last gene) H1 = +1+4−6+9−7+5−8+10+3+2+11−12 (black edges) and H2 = +1+2+3 · · ·+12
(gray edges). A, B, C, D, E, and F are the six cycles of G12. {A,E}, {B,C,D}, and {F} are the
three components of G12.
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Fig. 3.2. Graph G12 corresponding to genomes H1, H2, both with three chromosomes, where
H1 = {1 : 1 3 9 ; 2 : 7 8 4 5 6 ; 3 : 10 2 11 12 13} and H2 = {1 : 1 2 3 4 5 6 ; 2 : 7 8 9 ;
3 : 10 11 12 13}. All genes are signed “+.” The edges, which are on the same horizontal row of
the graph, correspond to a chromosome of H1. There are seven cycles. As no cycle of size > 1 is
contained on one row, G12 does not contain any component. Both genomes have the same set of
endpoints, so we can omit the extremal vertices (xt for initial genes and xh for terminal genes) as
discussed in section 4.

The HP formulae for all three models may be summarized as follows:

HP1: RO(H1, H2) = b(G12)− c(G12) +m(G12) + f(G12),

where RO(G,H) is the minimum number of rearrangement operations (reversals
and/or translocations), b(G12) is the number of black edges, c(G12) is the number
of cycles, m(G12) is the number of bad components of G12, and f(G12) is a correction
of size 0, 1, or 2 depending on the set of bad components.

Generally speaking, bad components are rare, so the number of cycles of G12 is
the dominant parameter in the HP1 formula if b(G12) is considered as a constant. In
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other words, the more cycles there are, the fewer reversals we need to transform H1

into H2.

4. Preliminaries. To make use of the HP graph structure for our genome halv-
ing problem, we first introduce, arbitrarily, a distinction within each pair of identical
genes in the rearranged duplicated genome G, labeling one occurrence x1 and the
other x2 for each x in B.

In the case of linear chromosomes (noncircular), the HP method requires that
the two genomes being compared share the same set of chromosomal endpoints. To
ensure this constraint for linear multichromosomal genomes, we add a new initial
term Oi1 and a new final term Oi2 to each chromosome Ci. This also ensures that all
translocations, including those which reduce (by fusion, e.g., null X1Y2, Figure 2.1) or
augment (by fission, e.g., null X1X2, Figure 2.1) the number of chromosomes in the
genome, can be treated as reciprocal translocations. This also allows us to consider
genomes with an odd number 2N−1 of chromosomes by adding a dummy chromosome
consisting of just one initial and one final O, to obtain 2N chromosomes.

In each chromosome, each xj (except the Oij) is replaced by xtj and xhj as in the
HP construction. Define

O = {Oi1, Oi2}i=1,···,2N , V = {xsj}s∈{h,t}x∈B
j=1,2

, V = O ∪ V.

In the case of a circular genome, endpoints are irrelevant, and thus the set O is
empty, and V = V . We use the notation 1 = 2, 2 = 1, t̃ = h, h̃ = t. For u = xsj ∈ V ,
its counterpart, denoted u, is xs

j
(the corresponding vertex in the paralogous gene),

and its obverse, denoted ũ, is xs̃j (the vertex corresponding to the other “end” of the

gene). Note that u = ˜̃u = u.

The partial graph G(V, A) associated with G has the edge set A of black edges
linking adjacent terms (other than the obverse) in G. The partial graph associated
with the genome G of Example 1 is shown in Figure 4.1. To differentiate the two
occurrences of each gene x, one is subscripted “1,” and its counterpart is “2.”

1: � � � � � � � � � � � �
O11 at1 ah1 bt1 bh1 ch1 ct1 bt2 bh2 dh1 dt1 O12

2: � � � � � � � �
O21 ch2 ct2 ah2 at2 f t1 fh1 O22

3: � � � � � � � � � �
O31 eh1 et1 gt1 gh1 fh2 f t2 dh2 dt2 O32

4: � � � � � � � � � �
O41 ht1 hh1 et2 eh2 gh2 gt2 ht2 hh2 O42

Fig. 4.1. The partial graph G(V, A) corresponding to Example 1.

We are required to add to this partial graph a set Γ of gray edges so that every
vertex in V is incident to exactly one black edge and one gray edge and so that the
resulting genome is a perfectly duplicated one. A set Γ of gray edges giving rise to a
duplicated genome is said to be valid. In the case of a multichromosomal genome, a
chromosome of a perfectly duplicated genome should begin and end with two elements
of O. The graph GΓ(V, A,Γ) obtained by adding a valid set Γ of gray edges is called
a completed graph of G(V, A). Lemmas 4.1 and 4.2 give the constraints that Γ should
satisfy to be valid in the cases of multichromosomal and circular genomes, respectively.
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Lemma 4.1. For multichromosomal genomes, Γ is valid if and only if the follow-
ing conditions are satisfied:

1. Γ contains no edge of form (x, x) for any x ∈ V .
2. Suppose (x, y) ∈ Γ and y ∈ V . If x ∈ V , then (x, y) is also in Γ. Otherwise

(x ∈ O), y is also linked by a gray edge to an element of O.
3. The resulting genome does not contain any circular chromosome.

Proof. Clearly, a duplicated genome must satisfy all three conditions. Suppose
now that Γ is a set of gray edges so that every vertex of V is incident to exactly one
gray edge, and Γ satisfies the three conditions. Then, from condition 3, as no circular
fragment is present, and as the only “genes” with only one end are the elements
of O, each chromosome of the resulting genome H has its two endpoints in O. From
condition 1, the two copies of the same gene cannot be adjacent in H, and from
condition 2, if two genes are adjacent in H, then their homologs are also adjacent
in H in the same order. This ensures that each permutation (string) is present exactly
twice in H. Therefore, H is a perfectly duplicated genome.

Lemma 4.2. For circular genomes, Γ is valid if and only if the following condi-
tions are satisfied:

1. Γ contains exactly zero or two edges of form (x, x).
2. If (x, y) ∈ Γ, then (x, y) ∈ Γ.
3. The resulting genome consists of a single circular chromosome.

Proof. The proof follows from the definition of a circular duplicated genome.
To find a duplicated genome that gives rise to the minimal number of rearrange-

ment operations, we have to construct a valid set of gray edges that minimizes the
formula HP1 (section 3). The key idea is to decompose the partial graph into a set of
subgraphs that can be completed independently. We describe such a decomposition
in the next section.

5. Decomposition into subgraphs. We define the set NG of natural graphs
of G(V, A) as follows.

Definition 5.1. Let e = (x, y) ∈ A. Define Ae recursively by (x, y) ∈ Ae, and
if (x, y) ∈ Ae, then both the edge of A adjacent to x and the edge of A adjacent to y
are also in Ae.

Let Ve be the subset of V made up of vertices incident to the edges in Ae. Then
Ge(Ve, Ae) is the natural graph (of size |Ae|) of G(V, A) generated by e. Note that
if f ∈ Ae, then Af = Ae.
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Fig. 5.1. The natural graphs of the partial graph G(V, A) of Figure 4.1.

As an illustration, the decomposition of the partial graph of Figure 4.1 into natural
graphs is given in Figure 5.1.

Let Gα be a subgraph of G(V, A). Gα represents a set of fragments of the chro-
mosomes of G. The subgraph Gα is said to be completable if we can find a set of gray



762 NADIA EL-MABROUK AND DAVID SANKOFF

edges linking the vertices of Gα that gives rise to a set of fragments of a potential
duplicated genome. Not every natural subgraph is completable. In the case of multi-
chromosomal genomes, we proved in [10] that a natural graph is completable if and
only if it is of even size or it contains vertices in O. Similarly, for circular genomes, all
natural graphs of even size are completable. Moreover, as we can have at most two
gray edges of form (u, u), then at most two natural graphs of odd size are completable.

The underlying idea of the subdivision and amalgamating procedure is to form
completable graphs. First, NG is subdivided into the following subsets:

• NE is the subset of NG containing the natural graphs of even size.
• NO is the subset of NG containing the natural graphs of odd size. We further

subdivide NO into NO+ and NO− according to whether the natural graphs
include vertices in O or not. Note that NO+ may contain a natural graph
formed by a single edge linking two vertices in O.

The set A contains 2(|B| + N) edges in the case of multichromosomal genomes,
and 2|B| edges in the case of circular genomes. Moreover, the graphs of NE contain
an even number of edges. Therefore, NO must also contain an even number of edges
and thus an even number of graphs. We can then pair off all the graphs in NO as
follows:

• Arbitrarily choose pairs of graphs in NO+ to amalgamate. The set of larger
graphs thus formed is denoted SO+.

• Arbitrarily choose pairs of the remaining graphs in NO to amalgamate. This
includes graphs in NO− plus, if applicable, the remaining one in NO+. The
set of graphs thus formed is denoted SO.

We denote SE = NE ∪SO+, and we call the graphs of SN = SE ∪SO supernat-
ural.

In the example of Figure 5.1, NE = {S1, S3, S4}, NO− = {S2}, and NO+ =
{S5}. Moreover, SE = NE , and if S25 is the supernatural graph obtained by amalga-
mating S2 and S5, then SO = {S25}. The set {S1,S25,S3,S4} is a decomposition of
G(V, A) into supernatural graphs.

Note that for circular genomes, NO+ is empty, and thus NO graphs are arbi-
trarily amalgamated. In that case, SO+ is empty and SE = NE .

Notation 1. In a supernatural graph Gα(Vα, Aα) of NE ∪ SO, if a vertex
u ∈ Vα ∩ O exists, then we denote by u the (only) other vertex in Vα ∩ O. For
example, in Figure 5.1, 011 = 021, and 041 = 042.

In a supernatural graph Gα(Vα, Aα) of SO+ made up of two natural graphs
G1(V1, A1) and G2(V2, A2) of NO+, if u ∈ V1 ∩O, then we arbitrarily choose one of
the two vertices of V2 ∩O to be u.

5.1. Ordering the edges of the natural subgraphs. To simplify the en-
suing development, we use a particular representation of each supernatural graph
Gα(Vα, Aα) of size 2n, where n > 1. Relabeling the vertices in Vα allows us to define
a suitable order for the edges in Aα (cf. Figure 5.2).

1. If Gα ∈ CE , Aα = {e1, e′1, . . . , en, e′n} such that the following hold:
• e1 = (a1, b1); e

′
1 = (a1, b2).

• For each i, 1 < i < n, ei = (ai, bi−1) and e′i = (ai, bi+1).
• en = (an, bn−1); e

′
n = (an, bn).

2. If Gα ∈ SO, let G1(A1) and G2(A2) be its two component natural subgraphs,
where Aα = A1 ∪ A2. Then A1 = {e1, e′1, . . . , en1−1, e

′
n1−1, en1}, where

ei and e′i are defined as above except that en1 = (bn1 , bn1−1). Similarly,
A2 = {en1+1, e

′
n1+1, . . . , en−1, e

′
n−1, en} with en = (bn, bn−1).
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Fig. 5.2. A suitable order for the edges of supernatural graphs. (a) A supernatural graph in SE.
(b) A supernatural graph in SO.

For an illustration, consider the supernatural graphs {S1,S25,S3,S4} of our run-
ning example. By means of a relabeling of the vertices (a vertex x1 could be relabeled
as x2, or vice-versa), one possible suitable order for the edges of the graphs is consid-
ered in Figure 7.5.

In the ensuing discussion, we start with any decomposition of G(V, A) into a
set SN of supernatural graphs in the suitable order.

As the dominant parameter in the HP1 formula is the number of cycles, we
begin by considering a set of valid gray edges maximizing the number of cycles of a
completed graph. In the next section, we provide an upper bound on the number of
cycles, and in section 7, we describe an algorithm for constructing a completed graph
that allows us to reach this bound.

6. Upper bound on the number of cycles. We need a preliminary definition.
Definition 6.1. Let Gα(Vα, Aα) be a supernatural graph of size 2n. Consider

the ordering of Aα described in the last section. Then Vl =
⋃

1≤i≤n{ai, ai} is the set

of left vertices of Vα, and Vr =
⋃

1≤i≤n{bi, bi} is the set of right vertices of Vα.
Note that from the definition, a natural subgraph of SO has four more right

vertices than left vertices.
The set V is partitioned into subsets of left and right vertices: x is a left vertex

in V if it is a left vertex of a graph of SN . Otherwise, it is a right vertex.
Let GΓ(V, A,Γ) be a completed graph of G(V, A), and let C be a particular cycle

of size r of the graph with vertex set VC and black and gray edge sets AC and ΓC ,
respectively. We define the signature SC of C to be the subset of VC derived as
follows: For every left vertex x in VC , if x is not already in SC , then add x to SC .

Let S be the set of signatures of all the cycles of GΓ. Define the signature graph
with the set of nodes S and the set of edges E as follows: for all S1, S2 ∈ S,
S1 and S2 are linked by an edge in E if and only if there is a vertex x such that
x ∈ S1 and x ∈ S2.

In Figure 6.1, a completed graph is given on the left. It represents a completed
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Fig. 6.1. Example of a signature graph.

supernatural graph of SE . The completed graph is made up of five cycles, whose
signatures are as follows:

1. {a1}; 2. {a1, a2, a4}; 3. {a2}; 4. {a3, a4}; 5. {a3}.
The graph on the right of Figure 6.1 is the signature graph derived from the graph
on the left.

Lemma 6.2. In the case of multichromosomal genomes, the signature graph of
any completed supernatural graph is connected.

Proof. The proof is deduced from the fact that SN is a set of smallest completable
graphs: for any supernatural graph Gα, there does not exist any subgraph of Gα that
is also completable.

For a node SC of S, denote by t(SC) the number of vertices in SC and by δ(SC)
the number of outgoing edges.

Lemma 6.3. For a multichromosomal genome, let Ge(Ve, Ae) be a supernatural
graph of size 2n, where n > 0. Let Ge(Ve, Ae,Γe) be a completed graph, and let ce be
its number of cycles. If Ge ∈ SE, then ce ≤ n+ 1. Otherwise (Ge ∈ SO), ce ≤ n.

Proof. Let S be the set of vertices and E the set of edges of the signature graph
of Ge(Ve, Ae,Γe). Then ce = |S|.

For every SC ∈ S, δ(SC) ≤ t(SC). Now
∑
SC∈S t(SC) ≤ 2n so that

|E| = 1

2

∑
SC∈S

δ(SC) ≤ 1

2

∑
SC∈S

t(SC) ≤ n.

From Lemma 6.2, a signature graph is connected so that |S| ≤ |E|+ 1 ≤ n+ 1.
For the case Ge(Ve, Ae) ∈ SO,

∑
Sc∈S t(SC) ≤ 2n− 2. By the same argument as

above,

|S| ≤ |E|+ 1 =
1

2

∑
SC∈S

δ(SC) + 1 ≤ 1

2

∑
SC∈S

t(SC) + 1 ≤ n.

Results are slightly different for circular genomes.
Lemma 6.4. In the case of circular genomes, the signature graph of any completed

supernatural graph of SE is connected. On the other hand, at most one completed
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supernatural graph of SO has a signature graph with two connected components. The
signature graph corresponding to any other graph of SO is connected.

Proof. In the case of circular genomes, at most two natural graphs among all
natural graphs of odd size are completable. This follows from the fact that a circular
genome contains at most two adjacencies of form (x, x). Therefore, as a supernatural
graph of SO is obtained by concatenating two natural graphs of odd size, at most
one completable supernatural graph of SO has a signature graph with two connected
components. Any other graph of SN cannot be subdivided into smallest completable
graphs and thus have signature graphs reduced to one connected component.

Lemma 6.5. For a circular genome, let Ge(Ve, Ae,Γe) be a completed supernat-
ural graph of size 2n, and let ce be its number of cycles. If Ge ∈ SE, then ce ≤ n+ 1.
Moreover, there is at most one supernatural graph Ge of SO such that ce = n+1. For
all the other supernatural graphs of SO, ce ≤ n.

Proof. The proof is similar to that of Lemma 6.3 but uses the result of Lemma
6.4.

Notation 2. We denote by γ(G) the number of “good” supernatural graphs:
• In the case of a multichromosomal genome G, γ(G) = |SE|.
• In the case of a circular genome G, if SO is empty, then γ(G) = |SE|; other-

wise, γ(G) = |SE|+ 1.
Theorem 6.6. Let GΓ(V, A,Γ) be a completed graph of G(V, A), and let c(GΓ)

be its number of cycles. Then

c(GΓ) ≤ |A|
2

+ γ(G).

Proof. If any cycle C of GΓ(V, A,Γ) is “good,” i.e., such that all black edges of C
belong to the same supernatural graph of SG, then, according to Lemmas 6.3 and 6.5,

c(GΓ) ≤ |A|2 + γ(G).
Suppose now that there exist “bad cycles” in GΓ(V, A,Γ), i.e., cycles containing

black edges of different supernatural graphs. Let cb be the number of bad cycles, and
let cg be the number of good cycles of GΓ(V, A,Γ). Then c(GΓ) = cb + cg.

Let Gp(Vp, Ap) be a supernatural graph, and let Cp be the set of cycles of
GΓ(V, A,Γ) containing at least one edge in Ap. Let cgp be the number of good
cycles and cbp the number of bad cycles of Cp. Denote by {xi, 1 ≤ i ≤ |Vp|} the set
of vertices of Vp.

Suppose that C is a bad cycle of Cp of size > 1. Denote C = x1x2 −−x3x4 −−
x5x6, . . . , where xi’s are the vertices in Vp and “−−” denote paths in the cycle that
do not contain any vertex in Vp. Some of these paths can be empty.

We modify the bad cycles of Cp by the following procedure:
1. For any bad cycle C = x1x2 −−x3x4 −−x5x6 · · · and any xi with an even i, do
2. If xi+1 �= xi, do
3. Remove the gray edges adjacent to xi, xi+1, xi, xi+1;
4. Construct the gray edges (xi, xi+1) and (xi, xi+1);
5. Else, there is another path of form xj −−xj (i.e., xj+1 = xj) either in C,

or in another cycle of Cp;
6. Choose such a path, if possible in C, otherwise in another bad cycle,

else, in a good cycle;
7. Remove the gray edges adjacent to xi, xi+1, xj , and xj+1;
8. Construct the gray edges (xi, xj), (xi+1, yj+1), (xi, xj), and (xi+1, xj+1);
9. End of If
10. End of For
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The procedure constructs a completed graph Gp(Vp, Ap,Γp). Let cp be the num-
ber of cycles of Gp(Vp, Ap,Γp). As the only way to decrease the number of cycles is
to amalgamate pairs of bad cycles or to amalgamate at most once a bad cycle with a
good one (lines 5 to 8 of the procedure), we have cp ≥ cgp + cbp −

⌈ cbp
2

⌉ ≥ cgp + ⌊ cbp2 ⌋.
Let cmax,p be the maximal number of cycles of a completed graph of Gp(Vp, Ap).

Then cgp +
⌊ cbp

2

⌋ ≤ cmax,p.
Let now cmax be the maximal number of cycles of a completed graph of G(V, A),

and let cd be the total number of bad cycles of GΓ(V, A,Γ). Then (1) cg + cd ≤
cmax +

⌊
cd
2

⌋
=⇒ cg +

⌈
cd
2

⌉ ≤ cmax.
On the other hand, as any bad cycle of a supernatural graph (a cycle contain-

ing at least one edge in the supernatural graph) corresponds to a bad cycle of an-
other supernatural graph, the total number of cycles of GΓ(V, A,Γ) is (2) c(GΓ) =
cg + cb ≤ cg +

⌈
cd
2

⌉
. We deduce from inequalities (1) and (2) that c(GΓ) ≤ cmax ≤

|A|
2 + γ(G).

7. Maximizing the number of cycles. Based on the decomposition of G(V, A)
into supernatural graphs, can we construct a completed graph GΓ(V, A,Γ) having

c(GΓ) = γ(G) + |A|
2 cycles? By Theorem 6.6, this would necessarily be a maximal

completed graph, that is, a completed graph with a maximal number of cycles. In
this section, we focus on multichromosomal genomes. Modifications that have to be
introduced in the case of circular genomes are presented in section 11.

We will use the following notation: for any set U of natural graphs, we denote
by VU the set of vertices of all natural graphs of U and by AU the set of all black
edges of U . For example, VSE will be the set of vertices of SE .

We require a preliminary definition. A fragment of a genome is just a linear
substring of G. For example, F1 = +g1 − f2 − d2 and F2 = 011 + a1 + b1 are two
fragments of the genome represented by the partial graph of Figure 4.1. A fragment
has two endpoints, unless it is restricted to one element of O. In the example given
here, the two endpoints of F1 are gt1 and dt2, and the two endpoints of F2 are 011

and bh1 . We call a fragment that has its two endpoints in V a B-fragment.
Suppose that we have reached a certain step s in the construction, that Γs is the

set of gray edges already constructed, and that G(Γs) is the “partially completed”
graph obtained at this step. Suppose also that the natural graph being considered at
this step is Gα, that the set of gray edges linking vertices of Gα already constructed
is Γs,α, and that Gα(Γs,α) is the obtained “partially completed” natural graph. A
vertex of V is said to be unlinked if it is not yet linked by a gray edge at the current
step of the algorithm.

We denote by F the fragments set resulting from Γs. At the outset, F is made
up of the unitary fragments, which include not only xtxh for all x ∈ B (the B-unitary
fragments) but also the 2N elements of O (the O-unitary fragments). As the con-
struction proceeds, whenever a gray edge (x, y) is created, the fragment containing x
and the one containing y are joined together.

Definition 7.1. Let Vs be a subset of the set of unlinked vertices at step s of the
algorithm. The border of Vs is the set of all vertices x of Vs such that x ∈ O, or x is
an endpoint of a B-fragment F ∈ F , and the second endpoint of F is not in Vs.

The graph G(Γs) is bad if there exists a subset U of SN such that the border
ofVs,U is empty, whereVs,U is the set of unlinked vertices ofVU at step s. Otherwise,
G(Γs) is a good graph. For an example, see Figure 7.1.

Lemma 7.2. Any set of gray edges linking the remaining unlinked vertices of a
bad graph creates at least one circular fragment.
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Fig. 7.1. The partial graph corresponding to the genome with the two chromosomes:
O1 + a1 + d1 O3; O2 + a2 + b1 − c2 − b2 + c1 + d2 O4. If we construct the two gray
edges (ah1 , d
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1), (a
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t
2), the graph becomes bad, as the border of the supernatural graph S1 becomes

empty.

Proof. Suppose that U is a subset of SN such that the border of Vs,U is empty.
Then there is a set Fd of fragments such that the set of endpoints of Fd is exactlyVs,U .
Then, by linking the vertices of Vs,U by gray edges, all we can do is close all the
fragments of Fd, that is, create at least one circular fragment.

The above lemma implies that we have to be careful during the execution of the
algorithm so as not to end up with a bad graph. Now suppose that G(Γs) is a good
graph. Let x, y, x, y be four unlinked vertices of Gα(Γs,α). The pair of “potential”
gray edges {(x, y), (x, y)} will be termed impossible if, when constructed, it creates
either a circular fragment or a bad graph and possible otherwise. It is easy to see
that a pair of edges {(x, y), (x, y)} creates a circular fragment if and only if one of the
following properties is satisfied (see Figure 7.2).

Property I. The vertices {x, y} are the endpoints of a B-fragment of F .
Property II. The pairs of vertices {x, y}, {x, y} are the endpoints of two B-

fragments of F .
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Fig. 7.2. The left (resp., right) figure represents Property I (resp., Property II). Bold lines
represent fragments, and thin lines represent the “potential” gray edges (x, y), (x, y). In any of these
cases, the resulting fragment is circular.

Now, let us consider a third property of a pair {(x, y), (x, y)} of potential gray
edges.

Property III. x, y are two endpoints of two different fragments F1, F2 of F , and
neither one of the two other endpoints of F1, F2, if any, is in Gα.

Lemma 7.3. Suppose that G(Γs) is good. Suppose that, at step s+1, we construct
the two gray edges (x, y), (x, y). If these gray edges do not satisfy Property III, then
G(Γs+1) is good.

Proof. Let F1, F2 be the two fragments such that x is an endpoint of F1 and y is
an endpoint of F2. Suppose that x, y do not satisfy Property III. Let U be any subset
of SN .

• Suppose F1, F2 have four endpoints, and all of these endpoints are in Gα.
Then it is easy to see that linking F1 to F2 does not modify either the border
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corresponding to Gα or that corresponding to U . Thus the state of Gα (good
or bad) could not have changed between steps s and s+ 1.
• Suppose that F1, F2 have at least three endpoints, and three such endpoints

are in Gα. The subgraph U is bad if and only if VU,s+1 contains the fourth
endpoint of F1, F2 not in Gα and the border of VU,s+1 is empty. However, in
that case, U would also have been bad at step s, which is a contradiction.

For example, in Figure 7.1, the two gray edges (ah2 , b
t
1), (a

h
1 , b

t
2) do not satisfy

Property III, as the second endpoint of the fragment containing bt1 is bh1 , and bh1 is
in S1. Therefore, constructing these gray edges does not create a bad graph.

Corollary 7.4. If a pair of potential gray edges {(x, y), (x, y)} of a good graph
does not satisfy any of the Properties I, II, and III, then it is a possible pair of gray
edges.

Let x be an unlinked vertex of Gα. Then x is one of the two endpoints of a path
(made up of a succession of black and gray edges) completely contained in Gα. We
denote by xc the second endpoint of this path. We say that a gray edge closes the
path if and only if it links x to xc.

Algorithm dedouble described in Figure 7.3 completes each supernatural graph
of SN , one after the other, in a specific order. The notation and edge order are those
described in section 5.1.

Lemma 7.5. At each step, algorithm dedouble constructs possible pairs of gray
edges.

Proof. Supernatural graphs of SE, with n = 1. At the beginning of the algorithm,
the gray edges (a1, b1), (a1, b1) of SE are clearly possible, as they form fragments of
the original genome G (Figure 7.4.(a)).

Suppose that we have reached a certain step in the construction and that the
current supernatural graph of SO has the four vertices b1, b2, b1, b2 (Figure 7.4.(b)).

Suppose b1, b2 do not satisfy Property I, that is, they are the two endpoints of
a fragment F = b1 · · · b2. F cannot be a fragment of G, as in that case G would
contain a circular fragment. Thus F should contain an adjacency (bi, bj) constructed
from a supernatural subgraph of SO, which means that (ai, ai) and (aj , aj) are two
adjacencies in G. Then, if F = b1 · · · aiaj · · · b2, it is easy to see that G should contain
two fragments of form b1 · · · bibi · · · b1 and b2 · · · bjbj · · · b2. But since (b1, b1), (b2, b2)
are two adjacencies in G (from the fact that the four vertices belong to a graph in SO),
this implies that G contains two circular fragments, which is impossible. Therefore,
(b1, b2) (or, similarly, (b1, b2)) does not create a circular fragment. We can prove in a
similar way that (b1, b2), (b1, b2) do not satisfy Property II.

Suppose now that (b1, b2) creates a bad graph. Then there exists a subset U
of SN such that the border of VU,s is B(U, s) = {b1, b2, b1, b2}. This implies that the
vertices of VU,s belong to two fragments of G with the four endpoints {b1, b2, b1, b2}.
This is also impossible as the two edges (b1, b2), (b1, b2) would give rise to a circular
fragment in G.

Therefore, at the end of step 1 of the algorithm, the partial graph obtained is a
good graph.

Supernatural graphs of SE, with n > 1. Suppose that we have reached a good
graph G(Γs) with a certain number of completed supernatural graphs. Suppose that
Gα is the supernatural graph currently being completed and that the current vertices
to be considered are ai, ai. Suppose first that i ≤ n − 2. It is easy to see, from the
construction, that aci �= ai

c and thus the two pairs of gray edges pi,1 and pi,2 are
different.
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Algorithm dedouble:

Subgraphs in SE , n = 1

1. Construct the gray edges {(a1, b1), (a1, b1)} (cf. Figure 7.4.(a));

Subgraphs in SO, n = 1

2. Construct the gray edges {(b1, b2), (b1, b2)} (cf. Figure 7.4.(b));

Subgraphs in SE , n > 1

3. For i = 1 to n− 2 Do
4. Set c = aci and d = ai

c;
5. If pi,1 = {(ai, c), (ai, c)} does not satisfy Properties I, II, and, III, Then
6. Construct the gray edges of pi,1;
7. Else

8. Construct the gray edges of pi,2 = {(ai, d), (ai, d)};
9. End of if
10. End of for
11. Set c = acn−1 and d = an−1c (cf. Figure 7.4.(c));
12. If pn−1,1 = {(an−1, c), (an−1, c)} and pn,1 = {(an, d), (an, d)} do not
13. satisfy any of the Properties I, II, and III, Then
14. Construct the gray edges of pn−1,1, pn,1;
15. Else

16. Construct the gray edges of pn−1,2 = {(an−1, d), (an−1, d)} and
17. pn,2 = {(an, c), (an, c)};
18. End of if

Subgraph Gα in SO, n > 1

Let G1,G2 be the two natural graphs amalgamated to form Gα, and n1 > 1;
19. For i = 1 to n1 − 2 Do
20. Construct gray edges as in the previous case;
21. End of for
22. For i = n1 + 1 to n− 1 Do
23. Construct gray edges as in the previous case;
24. End of for
25. Set c = acn1−1, d = an1−1

c (cf. Figure 7.4.(d));
26. Let e, e be the only unlinked vertices in G2;
27. If pn−1,1 = {(an1−1, c), (an−1, c)} and pn,1 = {(e, d), (e, d)} do not
28. satisfy any of the Properties I, II, and III, Then
29. Construct the gray edges of pn−1,1, pn,1;
30. Else

31. Construct the gray edges of pn−1,2 = {(an1−1, d), (an1−1, d)} and
32. pn,2 = {(c, e), (c, e)};
33. End of if

Fig. 7.3. Algorithm for constructing a maximal completed graph.

Suppose now that pi,1 is impossible. We want to prove that pi,2 is possible.
Suppose pi,1 satisfies Property I. That means that ai and c are the endpoints of the
same fragment F . Therefore, ai and d cannot be the endpoints of the same fragment,
which means that pi,1 does not satisfy Property I. The vertices ai and d are not
the endpoints of the same fragment either, which means that pi,2 does not satisfy
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Fig. 7.4. Different situations considered by dedouble. (a) A supernatural graph of SE, with
n = 1. (b) A supernatural graph of SO, with n = 1. (c) The last step for a supernatural graph
of SE; corresponds to lines 10 to 15 of the algorithm. (d) The last step for a supernatural graph
of SO; corresponds to lines 23 to 29 of the algorithm. In (c) and (d), edges represent paths that
can contain more than one edge.

Property II. Now, since ai and d are two endpoints of two fragments, one of them,
which is F having both endpoints in Gα, pi,2, does not satisfy Property III either.

We prove similarly that, if pi,1 satisfies Property II, then pi,1 cannot satisfy any
of the three properties.

Suppose now that pi,1 creates a bad graph. That means that there exists a
subset U of E such that the border of VU,s is B(U, s) = {ai, ai, c, c}; then ai and c
should belong to two different fragments with the two other endpoints not in Gα.
Then clearly pi,2 cannot satisfy Property I or Property II. Suppose that it satisfies
Property III. That means that there exists a subset U ′ of E such that the border
of VU ′,s is B(U ′, s) = {ai, ai, d, d}. Therefore, the border of U ∪ U ′ is restricted
to {ai, ai} and is of size 2. The other vertices of U ∪U ′ cannot be in O (as, otherwise,
these vertices would have been part of the border), and if u is in U ∪U ′, then u, us, us
are also in U ∪U ′. Therefore, the number of vertices of U ∪U ′ is 4m+2 for some m.
However, this is impossible as the number of vertices of U ∪ U ′ remaining unlinked
should be divisible by 4.

To finish the proof, we have to show that, if pn−1,1 and pn,1 are impossible, then
pn−1,2 and pn,2 are possible (Figure 7.4(c)).

Suppose (an−1, c) (and (an−1, c)) satisfies Property I, that is, an−1 and c are the
endpoints of a fragment F . Then clearly neither (an−1, d) nor (an, c) satisfies Prop-
erty I or Property II. Suppose (an−1, d), (an, c) give rise to one circular fragment.
This is possible if an−1, c and an, d are the endpoints of two fragments. However,
in that case, the supernatural graph Gα would have had an empty border just be-
fore the current step, and the graph would have been a bad graph. However, this
contradicts the recurrence hypothesis. Suppose finally that pn−1,2 and pn,2 create
a bad graph. Then there exists a subset U of SN such that the border of U is in
{an−1, an−1, an, an, c, c, d, d}. However, just before this step, U ∪ {Gα} would have
been a bad graph, which contradicts the recurrence hypothesis.

The remaining cases are treated in a similar way, and we prove with similar
arguments that, in any of these cases, pn−1,2, pn,2 are possible.

Supernatural graphs of SO with n > 1. The construction method for 1 ≤ i ≤ n1−2
and n1 + 1 ≤ i ≤ n − 1 is identical to that in a supernatural subgraph of SE for
1 ≤ i ≤ n − 2. Therefore, the same proof as before holds in that case. Finally, we
should prove that, if pn−1,1 and pn,1 are impossible, then pn−1,2 and pn,2 are possible.
To do so, arguments similar to those for a supernatural subgraph of SE are used to
treat each case.

Example 3. Consider the genome G of Example 1 and the decomposition of its
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partial graph into the supernatural graphs {S1,S25,S3,S4}. Figure 7.5 depicts the
completed graph produced by dedouble.
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Fig. 7.5. The completed graph GΓ(V, A,Γ) constructed by dedouble.

The number of cycles in the completed graph is c(G) = 13. As γ(G) = 3 and
|A| = 20, according to Theorem 6.6, it is a maximal completed graph.

The corresponding duplicated genome H is made up of the four chromosomes

1. O11 + a1 + b1 − d1 O12; 3. O42 + h1 + c2 + f2 − g1 + e1 O31;
2. O21 + a2 + b2 − d2 O32; 4. O41 + h2 + c1 + f1 − g2 + e2 O22.

Theorem 7.6. Algorithm dedouble constructs a maximal completed graph

GΓ(V, A,Γ), containing c(G) = |A|
2 + γ(G) cycles.

Proof. To prove this result, it is sufficient to prove that, for every supernatural
graph Gα with 2n black edges, if Gα ∈ SE , then the number of cycles in the completed
graph obtained by dedouble is c(Gα) = n+1, and if Gα ∈ SO, this number is c(Gα) = n.

Let Gα be a supernatural graph of SE . For each i, 1 ≤ i ≤ n − 2, the algorithm
constructs either (ai, a

c
i ) or (ai, ai

c). Thus, at each step of the construction, at least
one path is closed to form a cycle. Finally, it is easy to see, from Figure 7.4(c), that
instructions 11–16 close three more cycles. Therefore, in total, at least n+1 cycles are
formed in Gα. According to Lemma 6.3, the maximal number of cycles of a completed
graph of SE is n+ 1. Therefore, c(Gα) = n+ 1.

Similarly, for a supernatural graph Gα of SO with 2n black edges, steps 17–22 of
the algorithm close at least n − 2 cycles. Then it is easy to see, from Figure 7.4(d),
that instructions 24–29 close two more cycles. Therefore, as n is the maximal number
of cycles of a completed graph of SO (Lemma 6.3), c(Gα) = n.

The following theorem is a direct consequence of Theorems 6.6 and 7.6.
Theorem 7.7. The number of cycles of a maximal completed graph of G(V, A)

is

c(G) =
|A|
2

+ γ(G).

Complexity. At each step, algorithm dedouble considers at most four black edges
of the graph and constructs two gray edges with four vertices of the considered black
edges. Choosing the right vertices to connect requires checking Properties I, II, and III
for at most two pairs of gray edges. This is clearly done in constant time. Thus each
step of the algorithm takes constant time. As each step constructs two gray edges, the

graph is completed in |A|2 steps. Therefore, the time complexity of algorithm dedouble
is O(|A|).
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8. Bad components. We turn now our attention to minimizing the number of
bad components of a completed graph. Even if the concept of bad components is
different for each of the three models considered in this paper (translocations-only,
reversals-only, or both reversals and translocations), it is always related to the notion
of “subpermutation” introduced by Hannenhalli [16] and summarized below.

Given two genomes H1 and H2 containing the same gene set, where each gene ap-
pears exactly once in each genome, a subpermutation ofH1 (or, similarly, of the break-
point graph G12 associated with H1 and H2) is a subsequence S = u1u2, · · ·up−1up
of a chromosome X of H1 such that there is a permutation P and a subsequence
T = P (S) = u1v2 · · · vp−1up of a chromosome Y of H2, with v2 �= u2 and vp−1 �= up−1.
A minimal SP (minSP) is an SP not containing any other SP, and a maximal SP
(maxSP) is an SP not included in any other SP.

We call the interval of a component C the interval I = [ul, ur], where ul and ur
are the endpoints of C. The interval I is such that no gray edge links a vertex of I to
a vertex outside of I, and at least one cycle of I is of size greater than 1. A minimal
component is a component whose interval contains no other component. There is a
bijection between the SPs of G12 and the components of G12. More precisely, let S
be an SP, let Π = {π1, . . . , πp} be the set of components containing the vertices of S,
and for any i, let Vi be the set of vertices of πi. Then the following hold:

• Si is an SP contained in S (inner SP of S, possibly S itself) if and only if Si
corresponds to an interval of a component πi of Π. We call this component
the component of the SP Si.

• Si is a minimal inner SP of S if and only if Si corresponds to an interval of
a minimal component of Π.

Example 4. Consider the following two circular genomes and the corresponding
breakpoint graph (Figure 8.1):

G = +a1 +b1 +c1 +d1 +e1 +d2 −f1 −e2 −f2 +a2 −b2 +c2,

H = +a1 +b1 +c1 +d1 +e1 +f2 −f1 −e2 −d2 −c2 −b2 −a2.

Each of the three components of this graph is made up of a single cycle.
C1 is the component of the SP S1 = +e1 +d2 −f1 −e2 −f2 +a2 −b2 +c2 +a1.
C2 is the component of the SP S2 = +d2 −f1 −e2 −f2.
C3 is the component of the SP S3 = +a2 −b2 +c2.
The only two minSPs are S2 and S3.
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Fig. 8.1. Breakpoint graph corresponding to genomes G and H.

For the problem of rearrangement by translocations [16], all minSPs are bad
components of an HP graph. More precisely, if s(G12) is the number of minSPs
of G12, then, in formulae HP1 (section 3), m(G12) = s(G12). For the problem of
rearrangement by reversals, or by reversals and translocations, certain SPs can still
be solved by proper operations, while others, the “bad components,” require bad
operations to be solved. The hurdles in the case of reversals [17] and the knots in the
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case of reversals and translocations [18] are the bad (intrachromosomal) minSPs and
maxSPs.

Returning to our genome halving problem, we want to determine the minimal
number of such (bad) SPs in a completed graph of G(V, A). In the case of circular
genomes, we need to distinguish between SPs that do not contain both x and x
for the same vertex x, which we call normal, and those that do, the special ones. As
duplicated multichromosomal genomes cannot have both x and x on one chromosome,
all SPs are normal for multichromosomal genomes. In the rest of the paper, if not
specified, an SP will designate a normal one.

Definition 8.1. Let S = x1x2 · · ·xn−1xn be a subsequence of a chromosome
of G. S is a local SP of G if S is a real local SP or a potential local SP, namely:

• S is a real local SP of G if {x1, . . . , xn} ∩ O = ∅ and there exists another
subsequence of a chromosome of G of form S = x1P (x2, . . . , xn−1)xn, where
P is a permutation other than the identity.
• S is a potential local SP if either i. {x1, xn} ⊂ O, and there exists a chro-

mosome of G containing a subsequence S = O1P (x2, . . . , xn−1)O2, where P
is a permutation other than the identity and {O1, O2} ∈ O, or ii. x1 ∈ O, and
there exists a chromosome containing a subsequence S = O1P (x2, . . . , xn−1)xn,
where P is a permutation other than the identity and O1 ∈ O. An analogous
condition holds for xn.

We call S the complementary sequence of S. We say that a local SP (real or
potential) S is minimal if it does not contain any subsequence corresponding to another
local SP.

For circular genomes, as the notion of endpoints is irrelevant, potential SPs do
not exist and all local SPs are real ones.

Example 5. Let G = +a1 +b1 +c1 +d1 +e1 −d2 +b1 +c1 −a2 +e2. The
subsequence S = +a1 +b1 +c1 +d1 is a local SP of G. In the genome G of Example 4,
the subsequence +a1 +b1 +c1 is a local SP of G.

8.1. Correcting the completed graph obtained by algorithm dedouble.
In this section, we describe a modification of algorithm dedouble that will be used
to produce an optimal completed graph (i.e., a completed graph giving rise to a
duplicated genome minimizing the rearrangement distance to G).

Let GΓ(V, A,Γ) be a maximal completed graph produced by dedouble, and let
S = x1 · · ·xn be an SP of GΓ(V, A,Γ). The following procedure applies to the SP S.

Procedure spoil-SP(S):
Remove all the edges of Γ adjacent to the vertices of {x1, . . . , xn, x1, . . . , xn};
Construct the edges (xk, xk+1) and (xk, xk+1) for all k, 1 ≤ k < n.
Consider the maximal completed graph GΓ(V, A,Γ) produced by dedouble. Let S

be the set of SPs in GΓ(V, A,Γ) that do not correspond to local SPs of G. Correcting
GΓ consists in applying spoil-SP to each S ∈ S.

Complexity. To correct the completed graph G produced by dedouble, we have to
consider all the SPs of G. This problem is equivalent to that of decomposing a break-
point graph into its components. As shown in [22], this can be done in time O(|A|).
Then, verifying if an SP is a local SP of G and applying procedure spoil-SP takes
time linear in the number of edges of the considered SP. Therefore, the total time
needed to correct the graph is linear in the number of black edges |A| of the graph.
As algorithm dedouble has also been shown to be linear in |A|, the complexity of the
whole algorithm (dedouble and graph correction) is O(|A|).
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8.2. Genome with no local SP. In this section, we show that for a genome
with no local SP, the corrected graph is optimal.

Lemma 8.2. Suppose that the completed graph GΓ(V, A,Γ) produced by dedouble
contains an SP S. If S is not a local SP of G, then spoil-SP(S) gives rise to a com-
pleted graph GΓ′(V, A,Γ

′) containing at least the same number of cycles as GΓ(V, A,Γ)
and one less SP.

Proof. Let C be the set of cycles of GΓ(V, A,Γ) containing at least one vertex in
V (x, x) = {x1, . . . , xn, x1, . . . , xn}, C(x) the subset of C containing cycles with at least
one vertex in V (x) = {x1, . . . , xn}, and C(x) the subset of C containing cycles with at
least one vertex in V (x) = {x1, . . . , xn}. Let c = |C|, c(x) = |C(x)|, and c(x) = |C(x)|.
As S is an SP, C(x) ∩ C(x) = ∅.

Let CP be the set of cycles pairs (Ck, Cl) of C(x) such that Ck �= Cl, and there is
a vertex xk in Ck and a vertex xl in Cl such that xk and xl belong to the same cycle
in C(x). Let π = |CP|.

There are at most n
2 − π cycles in C(x), so c ≤ c(x) + n

2 − π.
Let GΓ′(V, A,Γ

′) be the graph obtained after applying procedure spoil-SP(x1, . . . ,
xn), and let C′, C′(x) and C′(x) be the sets defined respectively as C, C(x) and C(x)
but for GΓ(V, A,Γ

′). Let c′ = |C′|, c′(x) = |C′(x)|, and c′(x) = |C′(x)|. As only size 1
cycles are formed with V (x) vertices, c′(x) = n

2 .

Let C1, . . . , Cm be the cycles of size > 1 of C(x) for all r, 1 ≤ r ≤ m, |Cr| =
pr, and let {xr1 , . . . , xrqr } be the vertices of V (x) contained in Cr. Suppose we
transform C1 into p1

2 size 1 cycles. The vertices {x11
, . . . , x1q1

} belong to at least one
cycle. Then transform C2 into n

2 size 1 cycles. If (C1, C2) ∈ CP, then the vertices
{x11 , . . . , x1q1

, x21 , . . . , x2q2
} belong to at least 2 cycles; otherwise, they belong to at

least 1 cycle.

By continuing this reasoning until Cm, we show that c′(x) ≥ c(x) − π. Thus
c′ ≥ n

2 + c(x) − π, and so c ≤ c′. The completed graph GΓ′(V, A,Γ
′) is then also

maximal but no longer contains the SP x1 · · ·xn.
Suppose that the procedure spoil-SP(x1 · · ·xn) creates an SP that was not in

GΓ(V, A,Γ). Since the only modified edges are those linking vertices of V (x, x), this
new SP has to be formed by vertices in V (x). Thus x1 · · ·xn is necessarily a local SP
of G.

As a corollary to Lemma 8.2 we have the following.

Corollary 8.3. For a genome G with no local SP, the corrected graph produced
by dedouble is maximal and contains no SP.

Then, from the formula HP1 (section 3) and from the fact that, for all three
rearrangement models considered, a bad component is attached to an SP of the graph
(section 8), if G is a genome with no local SP, then the corrected graph produced by
dedouble is optimal (i.e., gives rise to a duplicated genome minimizing the rearrange-
ment distance to G).

In the remainder of this paper, it will be implicit that the correction of the graph,
as described in the previous section, is incorporated at the end of algorithm dedouble.
We turn next to the case in which G contains local SPs.

8.3. General formula for the rearrangement distance. The next lemma
shows that any maximal completed graph should contain at least as many SPs as the
number of real local SPs of G.

Lemma 8.4. Suppose that G contains a real local SP S = x1 · · ·xn. Suppose that
the completed graph GΓ(V, A,Γ) contains no SP made up of the vertices {x1, . . . , xn}.
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If cmax is the maximal number of cycles of a completed graph of G(V, A) and c(GΓ) is
the number of cycles of GΓ, then c(GΓ) ≤ cmax − 2.

Proof. Let XS = {x1, . . . , xn} be the vertices of a subsequence S = x1 · · ·xn
of a certain chromosome of G, and let XS = {x1, . . . , xn} be the vertices of the
complementary sequence S contained in a chromosome of G (another one or the
same).

Let GΓ(V, A,Γ) be a maximal completed graph. Suppose that some vertices
in XS are linked by gray edges to vertices outside XS . Let X be this set of vertices.
Vertices in X are of two types: those linked to vertices in X and those linked to
vertices outside X ∪ X. Denote X1 = {xk1 , . . . , xkl} as the set of l vertices of the
first type, X2 = {xp1 , . . . , xpm} as the set of m vertices of the second type, and
Y = {y1, . . . , ym} ⊂ V \X ∪X as the vertices adjacent to them.

As all X vertices are adjacent to each other by black edges, a cycle containing a
vertex in X ∪ Y contains at least two vertices of this set. Thus at most l+m

2 cycles

contain a vertex in X ∪ Y . Similarly, at most m
2 cycles contain a vertex in X2 ∪ Y .

Moreover, a cycle containing a vertex in X1 should contain a vertex in X1. Therefore,
the number of cycles containing a vertex in X ∪Y ∪XY is at most l+m

2 + m
2 = m+ l

2 .

Now, let GΓ′(V, A,Γ
′) be the completed graph obtained from GΓ(V, A,Γ) by the

following procedure:

For all x ∈ X do
- Remove gray edges adjacent to x and x;
- Construct the gray edge (x, x′), where x′ is the vertex in X linked to x by a

black edge;
- Construct the gray edge (x, x′);

For all y ∈ Y do
- Construct the gray edge (y, y′), where y′ is the vertex in V \X linked to y

by a black edge;
- Construct the gray edge (y, y′).

Then exactly l+m
2 cycles have vertices in X and they are all of size 1, and exactly

m
2 cycles have vertices in Y and they are also of size 1. Moreover, there is no cycle

containing at the same time a vertex in X and another one in Y , and there are at
least two cycles with a vertex in X or a vertex in Y . Therefore, the number of cycles
containing vertices in X ∪ Y ∪ XY is at least l+m

2 + m
2 + 2 = m + l

2 + 2. As the
above procedure does not modify the other cycles, GΓ′(V, A,Γ

′) has at least two more
cycles than GΓ(V, A,Γ), which is a contradiction with the fact that GΓ(V, A,Γ) is a
maximal completed graph.

Remark 1. Let S be a local SP of G and S the complementary sequence of S.
We can suppose, without loss of generality, that dedouble constructs only cycles of
size 1 with vertices of S and that the SPs of the final completed graph are formed
by the vertices of S. (We can always modify the resulting completed graph so that it
satisfies these properties.)

For multichromosomal genomes, potential SPs give rise to additional problems.
The goal is to minimize the number of such potential SPs that become SPs of the
final completed graph. For circular genomes, all local SPs are real ones. However, in
that case, one additional problem is due to special SPs.

Let RO(G) be the minimal number of rearrangement operations required to trans-
form G into a duplicated genome. Though RO(G) is different depending on the model
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considered (reversals, translocations, reversals and translocations), we will prove in
the coming sections that all results can be summarized by the following formula:

RO(G) =
|A|
2
− γ(G) +m(G) + φ(G),

where m(G) is the number of bad real local SPs of G and φ(G) is a correction de-
pending on bad potential local SPs (for multichromosomal genomes) and special SPs
(for circular genomes).

Moreover, we will show that, with an appropriate construction of natural graphs,
and with other minor corrections in the case of sorting by translocations and reversals,
the completed graph produced by algorithm dedouble gives rise to the rearrangement
distance.

9. Genome halving with translocations only. For two multichromosomal
genomes H1 and H2, if G12 is the breakpoint graph associated to H1 and H2, the
minimal number T (H1, H2) of translocations required to transform H1 to H2 is given
by the formulae proved in [16]:

HP2: T (H1, H2) = b(G12)− c(G12) + s(G12) + f(G12),

where s(G12) is the number of minSPs of H1. In other words, in the formula HP1,
we have m(G12) = s(G12).

The value of the parameter f(G12) depends on a characteristic of the breakpoint
graph, defined in [16]. The graph G12 has an even-isolation if the next three conditions
are satisfied:

1. All minSPs of G12 are on a single chromosome of H1.
2. s(G12) is even.
3. All minSPs are contained within a single SP.

If G12 has an even-isolation, then f(G12) = 2; if G12 has an odd number of minSPs,
then f(G12) = 1; otherwise, f(G12) = 0 [16].

Returning to our problem of genome halving, denote byT(G) the minimal number
of translocations required to transform G into a perfectly duplicated genome. In
section 7, we described an algorithm for constructing a maximal completed graph
in the case of multichromosomal genomes. We also proved, in section 8, that the
minimal number of SPs of a completed graph can be deduced from the local (real or
potential) SPs of G. The following corollary is a direct consequence of these results
(Theorem 7.7, Corollary 8.3, and formula HP2).

Corollary 9.1. If G does not contain any local SP, then T (G) = |A| − c(G) =
|A|
2 − γ(G).

Moreover, in section 8, we treated the case of real SPs. It remains now to consider
potential local SPs.

Let S be a potential SP with two ends O1, O
′
1 in O, and let O2, O

′
2 be the two

ends of S. S becomes a real SP if and only if O2 = O1 and O′2 = O′1. Similarly, let
S be a potential SP with only one end O1 in O, and let O2 be the vertex of S in O.
S becomes a real SP if and only if O2 = O1. The problem is to avoid such situations.

According to formula HP2, we need only to minimize the number of minSPs
of a completed graph (instead of SPs). Therefore, we consider only potential local
minSPs. In the ensuing discussion, we just call them potential SPs.

Remark 2. Let S be a potential SP and V (S, S) the set of vertices of S and S
excluding those in O. The number of natural graphs containing vertices both in
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V (S, S) and O is exactly two if S has both its ends in O, and one if S has only one
end in O. We call these graphs the graphs associated to S.

We distinguish between two kinds of potential SPs.
Definition 9.2. A potential SP is even (PES) if its associated graphs (one or

two) are in NE, i.e., are of even size. Otherwise, the potential SP is odd (POS). A
POS necessarily has both its ends in O and thus two associated graphs in NO+.

Notation 3. We denote PES the set of all PES, and e = |PES|. For i, 1 ≤ i ≤ e,
Pi is the set of (one or two) graphs associated to the ith PES for an arbitrary ordering
of the PESs.

We denote POS the set of all POS, and o = |POS|. For every i, 1 ≤ i ≤ o,
denote by Qi = (Ai, A

′
i) the pair of graphs associated to the ith POS for an arbitrary

ordering of the POSs.
In section 5, we arbitrarily amalgamated pairs of natural graphs of odd size to

form supernatural graphs. To avoid transforming a POS into an SP, we introduce a
more deterministic way to amalgamate graphs of POS. If |POS| > 1, we proceed as
follows:

Procedure amalgamating POS. For every i, 1 ≤ i ≤ o, amalgamate each graph
of the pair Qi with a graph of a pair Qj , where j �= i.

Similar constraints are required in amalgamating PESs to avoid transforming
them into SPs. If |PES| > 1, we proceed as follows:

Procedure amalgamating PES. For every i, 1 ≤ i ≤ e, amalgamate each graph
of Pi with a graph in Pj , where j �= i. Moreover, if PES has at least one Pi with two
graphs and if a last nonamalgamated graph GP remains, then GP should belong to
a Pi of size 2. Suppose G1 and G2 are amalgamated, O1 and O′1 are the two vertices
of G1 ∩ O, and O2 and O′2 are the two vertices of G2 ∩ O. Then set O1 = O2 and
O′1 = O′2.

Note that, in the case of the PESs, we amalgamate even size (completable) nat-
ural graphs. The consequence is that dedouble, applied to such supernatural graphs,
generates a completed graph that is no longer maximal. This gives rise to additional
difficulties.

After amalgamating the graphs of PES∪POS by the procedures described above,
there remain some nonamalgamated graphs. This gives rise to eight possible config-
urations. For some of them, additional graphs are amalgamated.

C1. There remain no nonamalgamated graphs.
C2. There remains one Qi in POS. This happens when POS contains a single

POS.
C3. There remains one Pi of two graphs in PES. This happens when PES con-

tains a single PES.
C4. There remains one graph in PES, and it belongs to a Pi of size 2.
C5. There remains one graph in PES, and it belongs to a Pi of size 1. This

happens when all Pis are of size 1 and e is even.
C6. There remains one Qi = (G1, G2) in POS and one G3 in PES belonging to

a Pi of size 1. Then we amalgamate the three graphs G1, G2, and G3 if that
does not create an even-isolation. If O1 and O′1 are the vertices of G1 ∩ O,
O2 and O′2 are the vertices of G2 ∩ O, and O3 and O′3 are the vertices of
G3 ∩O, then we set O1 = O3, O′1 = O′2, and O2 = O′3.
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C6’ will denote the configuration that would give rise to an even-isolation. In
this case, the graphs are not amalgamated.

C7. There remains one Qi in POS and one graph in PES belonging to a Pi of
size 2.

C8. There remains one Qi = (G1, G2) in POS and one Pi = (G3, G4) in PES.
Then we amalgamate G1 and G2 and one of the two graphs of Pi if that does
not create an even-isolation. Counterpart elements are set similarly to C6.
C8’ will denote the configuration that would give rise to an even-isolation. In
that case, the graphs are not amalgamated.

A local SP that is either real or potential, but not solved by the amalgamating
procedure described above, is called a final SP.

In the remainder of this section, SG will designate the set of completable graphs
obtained by the procedure described above for the graphs in POS ∪PES, and by the
usual way (section 5) for the other natural graphs.

Notation 4. Consider the following parameters:
• s(G) is the number of real minSPs of G;
• sp(G) is the number of graphs obtained by amalgamating PES graphs;
• ψ(G) = 1 if configuration C6 or C8 is encountered, and ψ(G) = 0 otherwise;
• sr(G) = 0 if one of the configurations C1, C4, C6, or C8 is encountered;
sr(G) = 1 for C2, C3, C5, or C7; sr(G) = 2 for C6’ or C8’. sr(G) is the
number of potential SPs that become final SPs.
• f(G) = 2 if the set of final SPs represents an even-isolation; f(G) = 1 if the

number of final SPs is odd; f(G) = 0 otherwise.
Recall that c(G) is the number of cycles of a maximal completed graph of G(V, A)

(Theorem 7.6).
Theorem 9.3. Let GΓ(V, A,Γ) be the completed graph produced by dedouble.

Let H be the resulting duplicated genome. Then c(GΓ) = c(G) − sp(G) − ψ(G),
s(GΓ) = s(G) + sr(G), and

T (G,H) = |A| − c(G) + sp(G) + ψ(G) + s(G) + sr(G) + f(G).

The minimal number of translocations required to transform G into a duplicated
genome is T (G) = T (G,H).

Proof. According to Corollary 8.3 and Lemma 8.4, ifG does not contain any PESs,
then dedouble produces a maximal completed graph GΓ(V, A,Γ) with c(G) cycles.

Suppose now that G contains local SPs. Let G3 be a graph of SG obtained by
amalgamating two natural graphs of PES: G1 of size n1 and G2 of size n2. Given that
this graph has as many left edges as right edges, a proof similar to that of Lemma 6.3
shows that the maximal number of cycles of a completed graph of G3 is n1+n2

2 + 1,
and dedouble produces such a maximal completed graph. If we apply dedouble to
each of the two graphs G1 and G2, we obtain two completed graphs with a total of
n1

2 +1+ n2

2 +1 cycles, that is, one more cycle than for G3. Thus, if we apply dedouble
to the graphs of SG obtained by amalgamating graphs in PES, we obtain sp(G) fewer
cycles than if we apply the algorithm to each graph of PES. Moreover, one fewer cycle
is also obtained by amalgamating one graph pair of POS and one graph of PES. As
these are the only modifications to the original procedure of graph amalgamating that
changes the number of cycles, c(GΓ) = c(G)− sp(G)− ψ(G).

Moreover, also according to Corollary 8.3 and Lemma 8.4, if G does not con-
tain any PESs, then dedouble produces a maximal completed graph GΓ(V, A,Γ) with
s(GΓ) SPs corresponding to the s(G) local SPs of G and to the only existing POS, if
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any. Moreover, the sr(G) potential SPs not amalgamated are the only potential SPs
that become real SPs. Therefore, s(G) = s(G)− sr(G).

We deduce that

T (G,H) = |A|−c(GΓ)+s(GΓ)+f(GΓ) = |A|−c(G)+sp(G)+ψ(G)+s(G)+sr(G)+f(G).

Suppose T (G,H) > T (G). Then there is a completed graph GΓ′(V, A,Γ
′) con-

taining c(GΓ′) cycles, s(GΓ′) SPs, and a value of f(GΓ′) such that (1) c(GΓ′)−s(GΓ′)−
f(GΓ′) > c(GΓ)−s(GΓ)−f(GΓ), i.e., c(GΓ′)−c(GΓ) > (s(GΓ′)−s(GΓ))+(f(GΓ′)−f(GΓ)).

First, suppose that GΓ′(V, A,Γ
′) contains p fewer SPs than GΓ(V, A,Γ). Suppose

first that p = 1 and that this SP is a real local SP of G. Then, by Lemma 8.4,
GΓ′(V, A,Γ

′) is a completed graph that is not maximal and contains at most c(GΓ)−2
cycles. More generally, a construction that removes p real local SPs of G gives rise to
a completed graph with at most c − 2p cycles. Suppose now that GΓ′(V, A,Γ

′) has
one less SP than GΓ(V, A,Γ), but this SP is not a real local SP of G. That means
that it corresponds to a potential SP transformed into a final SP. This occurs in
configurations C2, C3, C5, C6’, C7, and C8. In all cases, it is easy to show that at
least two cycles would necessarily be removed if we remove such an SP. Therefore,
(2) c(GΓ′) ≤ c(GΓ)− 2(s(GΓ′)− s(GΓ′)).

We deduce from (1) and (2) that s(GΓ)− s(GΓ′) < f(GΓ)− f(GΓ′).
As s(GΓ)− s(GΓ′) ≥ 0 and f(GΓ)− f(GΓ′) ≤ 2, we should have s(GΓ)− s(GΓ′) = 1

and f(GΓ)− f(GΓ′) = 2. We can see, from the definition of f , that this configuration
is impossible.

Suppose now that GΓ′(V, A,Γ
′) contains p more SPs than GΓ(V, A,Γ). If these

SPs that are in GΓ′(V, A,Γ
′) but not in GΓ(V, A,Γ) do not correspond to potential

local SPs of G, then, from Lemma 8.2 and the fact that f(GΓ) ≤ 2, the value of
−c(GΓ) + s(GΓ + f(GΓ) is not changed if we remove these SPs. Thus these SPs
correspond necessarily to potential local SPs that are transformed into final SPs in
GΓ′(V, A,Γ

′) but not in GΓ(V, A,Γ). Necessarily, p ≥ 2.
Suppose first p = 2. If these two SPs correspond to
• two POS, then amalgamating these two SPs gives rise to two fewer SPs and

to the same number of cycles,
• two PES, then amalgamating these two SPs gives rise to two fewer SPs and

one less cycle,
• one POS and one PES, then amalgamating these SPs gives rise to two fewer

SPs and one less cycle.
More generally, a graph containing 2p more SPs contains at most p more cycles

than G(V, A,Γ). Therefore, (3) c(GΓ′)− c(GΓ) ≤ s(GΓ′ )−s(GΓ)
2 .

We deduce from (1) and (3) that s(GΓ′)− s(GΓ) < 2(f(GΓ)− f(GΓ′)).
As s(GΓ′) − s(GΓ) ≥ 2 and f(GΓ) − f(GΓ′) ≤ 2, s(GΓ′) − s(GΓ) = 2 and f(GΓ) −

f(GΓ′) = 2. That means that amalgamating the two potential SPs gives rise to
an even-isolation, which is in contradiction with the properties of the amalgamating
procedure.

10. Genome halving with translocations and reversals.

10.1. The HP method. Given two genomes H1 and H2 with the same number
of chromosomes, HP [18] determined the minimal number of reversals and translo-
cations RT (H1, H2) required to transform H1 into H2. Formula HP1 (section 3)
is a general description of the result. A more precise description requires a deeper
consideration of the problem.
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We will only sketch the HP procedure, which is rather complex. The first step
in the comparison of two multichromosomal genomes through translocations and re-
versals is to reduce it to a problem of comparing two single chromosome genomes
through reversals only. These latter genomes are constructed essentially by concate-
nating the individual chromosomes in the original genomes end-to-end in an arbitrary
order. Additional dummy genes, called caps, must be appropriately inserted at the
ends of the original chromosomes of both genomes. A translocation in an original
genome becomes a reversal in the new one.

More precisely, let H = C1, . . . , CN be a genome of N chromosomes written in
a particular order. An H concatenate is a genome H̃ with a single chromosome:
H̃ = (s1C1) · · · (sNCN ), where each si, 1 ≤ i ≤ N , is in {−1, 1}. The identity
concatenate of H is the H concatenate satisfying s = (s1, . . . , sN ) = (1, . . . , 1).

Let O = {O0, . . . , O2N−1} be a set of caps and Ĥ1 the genome obtained by
adding one cap at each end of each chromosome of H1. Any sequence of reversals/
translocations transforming H1 into H2 induces a sequence of reversals transforming
Ĥ1 into a genome Ĥ2, where Ĥ2 is a particular capping of H2. We can prove that
RT (H1, H2) = minĤ2∈ĤRT (Ĥ1, Ĥ2), where Ĥ is the set of all possible cappings ofH2.

Let H̃1 be the identity concatenate of Ĥ1. Let Gs(V, A,Γs) be the graph defined
as follows: V = {xs∈{t,h}, x ∈ B} and V = V ∪ O; A is the set of black edges
connecting adjacent vertices in H1 other than (xt, xh) for the same x; Γs is the set
of gray edges connecting adjacent vertices in H2. Denote by Ve the set of vertices
of V located at the ends of H2 chromosomes. Note that vertices of Ve ∪ O are not
connected by gray edges in Gs(V, A,Γs). Gs(V, A,Γs) is called the semicompleted
graph associated to H1 and H2. It is a collection of cycles and paths. Paths are of
three kinds: those ending with a vertex in O and another in V , called good paths,
those ending with two vertices in O, called bad paths, and those ending with two
vertices in V . Denote, respectively, OV, OO, and VV as these three path sets. We
have |OO| = |VV|.

A gray edge in a cycle or a path of size > 1 is oriented if it links the vertices
at the left ends of two black edges or at the right ends of two black edges, while an
unoriented gray edge links two different sides of two black edges. A cycle or a path is
good if it contains at least one oriented gray edge, and bad otherwise. A component
is good if it has at least one good cycle or path and thus at least one oriented gray
edge, and bad otherwise.

HP showed that a good component can be solved, i.e., transformed to a set of
cycles (and paths) of size 1, by a series of proper reversals (reversals increasing the
number of cycles; see section 3). However, bad components often require bad reversals.
The set of bad components is subdivided into subsets, depending on the difficulty of
solving them (i.e., transforming them into good components). This subdivision is
explained below.

An edge of Γs is intrachromosomal if it connects two vertices both belonging
to the same chromosome of H1 and interchromosomal otherwise. A component of
Gs(V, A,Γs) is intrachromosomal if it contains only intrachromosomal edges, and
interchromosomal otherwise. We say that the component U separates two components
U ′ and U ′′ if any edge we tried to draw from a vertex of U ′ to one of U ′′ would cut
a gray edge of U . A knot is an intrachromosomal bad component which does not
separate any pair of bad components. Now, a real knot is a knot that contains only
cycles (no paths), and a semiknot is a knot containing at least one path in OV and
no path in OO ∪ VV.
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The underlying idea is that a bad component U that separates two bad compo-
nents U ′ and U ′′ is automatically solved by solving U ′ and U ′′ and thus may just as
well be considered to be a good one. On the other hand, a real knot requires bad
reversals to be solved, while a semiknot can be transformed into a good component
if paths are closed appropriately.

HP proved that the problem of sorting by reversals/translocations is reduced
to a problem of finding an appropriate capping of H2, that is, finding appropriate
connections between vertices of Ve and vertices of O. Finally, they proved that the
minimal number of reversals/translocations required to transform H1 into H2 is

HP3: RT (H1, H2) = b(Gs)−cp(Gs)+bp(Gs)+rr(Gs)+
⌈
s(Gs)− gr(Gs) + fr(Gs)

2

⌉
,

where b(Gs) = |A|; cp(Gs) is the number of cycles and paths of Gs(V, A,Γs); bp(Gs) is
the number of bad paths; rr(Gs) is the number of real knots obtained after closing
paths of OV that are not included in semiknots; s(Gs) is the number of semiknots;
and gr(Gs) and fr(Gs) take values 0 or 1, depending on the set of real knots and
semiknots.

Returning to the problem of genome halving, we represent the genome G as H1,
i.e., by adding caps at the ends of the chromosomes, and by concatenating the resulting
chromosomes. The partial graph G(V, A) associated to G is thus represented on a
single line instead of 2N lines. Algorithm dedouble can be applied to such a partial
graph as well. The goal is to construct a semicompleted graph Gs(V, A,Γs) that
minimizes formula HP3. We first construct a maximal semicompleted graph that
maximizes cp(Gs)− bp(Gs).

10.2. Constructing a maximal semicompleted graph. Denote by c(G) the
number of cycles of a maximal completed graph of G(V, A) obtained by dedouble. For
any semicompleted graph Gs(V, A,Γs), denote by c(Gs) its number of cycles and by
p(Gs) its total number of paths. Denote also cc(Gs) = cp(Gs)− bp(Gs).

Lemma 10.1. Let Gs(V, A,Γs) be a maximal semicompleted graph of G(V, A).
Then cc(Gs) ≤ c(G).

Proof. As mentioned above, we have |OO| = |VV|. Let GΓ(V, A,Γ) be the graph
obtained by closing good paths and by constructing cycles with remaining paths, each
of these paths obtained by connecting a path of OO with a path of VV. Such a graph
is clearly a completed graph of G(V, A) with c(Gs) − p(Gs) cycles. As c(G) is the
number of cycles of a maximal completed graph, we have c(Gs)− p(Gs) ≤ c(G).

We now construct a semicompleted graph Gs(V, A,Γs) satisfying cc(Gs) = c(G).
From Lemma 10.1, this graph must be maximal.

Theorem 10.2. Let GΓ(V, A,Γ) be the maximal completed graph obtained by
applying dedouble to G(V, A). Let Γs be the set of gray edges obtained from Γ by
removing all edges adjacent to at least one vertex in O, and consider the semicompleted
graph Gs(V, A,Γs). Then Gs(V, A,Γs) is a maximal semicompleted graph of G(V, A).
Moreover, cp(Γs) = c(G).

Proof. According to the construction of natural and supernatural graphs, each
supernatural graph contains 0, 2, or 4 vertices in O. Moreover, it is easy to see that
each cycle of a maximal completed graph contains at most two vertices in O as if this
is not satisfied, then the cycle could be subdivided into at least two cycles, and thus
the completed graph could not be maximal.

Let G′(V′, A′) be a supernatural graph. Let GΓ′(V
′, A′,Γ′) be this supernatural

graph completed by dedouble, and let G′s(V′, A′,Γ′s) be the semicompleted supernat-
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ural graph obtained by removing from Γ′ edges with at least one end in O. Let c(Γ′)
be the number of cycles of GΓ′(V

′, A′,Γ′).
• Suppose that V′ does not contain any vertex in O. In this case, no edge is

removed from Γ′ to form G′s(V′, A′,Γ′s), and thus c(G′s)− p(G′s) = c(Γ′).
• Suppose that V′ contains two vertices in O. Suppose that these two vertices

are in two different cycles of GΓ′(V
′, A′,Γ′). Then removing the two gray

edges connecting these two vertices transforms the two corresponding cycles
into two good paths. Thus c(G′s)− p(G′s) = c(Γ′).
Suppose now that both vertices are in the same cycle. Then removing the two
gray edges connecting these two vertices transforms the cycle into two paths,
and at most one of them is bad. (In this case, the second path is in VV.)
Thus c(G′s)− p(G′s) ≥ (c(Γ′)− 1) + 2− 1 = c(Γ′).
• Suppose that V′ contains four vertices in O. If these vertices are in four or

three different cycles, then we prove by an argument similar to the previous
case that c(G′s)− p(G′s) ≥ c(Γ′).
Otherwise, if these vertices are in two cycles, then each of these cycles contains
two of the four vertices. In that case, removing the four gray edges adjacent
to these four vertices transforms the two cycles into four paths, and at most
two of them are bad. Thus c(G′s)− p(G′s) ≥ (c(Γ′)− 2) + 4− 2 = c(Γ′).

In all cases, c(G′s) − p(G′s) ≥ c(Γ′). We deduce that c(Gs) − p(Gs) ≥ c(G). As
GΓ(V, A,Γ) is a maximal completed graph, from Lemma 10.1, c(Gs) − p(Gs) = c(G)
and Gs(V, A,Γs) is a maximal semicompleted graph.

We call semidedouble the algorithm obtained by incorporating, at the end of
dedouble, the procedure that removes the gray edges adjacent to at least one vertex
of O. From Theorem 10.2, semidedouble constructs a maximal semicompleted graph.

Remark 3. Let C be a cycle of a completed graph G(V, A,Γ) containing two
vertices O1 and O2 in O. Let C1 and C2 be the two paths obtained by removing
the two gray edges adjacent to O1 and O2. Then one of the following situations is
satisfied: 1. C1 and C2 are two paths in OV; or 2. C1 is a bad path (in OO) and C2

is in VV.
The first situation occurs when O1 and O2 are separated by an odd number of

vertices in C (to the right or to the left), and the second situation occurs when O1

and O2 are separated by an even number of vertices.

10.3. Knots. We now turn our attention to minimizing, in formula HP3, the

expression rr(Gs) + � s(Gs)−gr(Gs)+fr(Gs)2 �. Denote by RT (G) the minimal number
of reversals/translocations required to transform G into a duplicated genome. We
deduce the following corollary from Theorem 7.7, Corollary 8.3, and formula HP3.

Corollary 10.3. If G does not contain any local SP, then RT (G) = T (G) =

|A| − c(G) = |A|
2 − γ(G).

Suppose now that G contains local SPs. Let S be a local SP, and let Π =
{π1, . . . , πp} be the set of components of the maximal semicompleted graph obtained
by semidedouble, containing the vertices of S. In order to consider the components
which may form knots, we introduce another definition. Let U = {u1, . . . , up} be a
subset of B, and U = {u1, . . . , up}. We say that U is unoriented if genes ui and ui
have either the same sign in G or opposite signs for all i. Otherwise, U is oriented.
Let πi ∈ Π, and let Vi be its vertex set. Vi is oriented if and only if the set of genes
corresponding to the vertices in Vi is oriented.

Lemma 10.4. πi is a good component if and only if Vi is oriented.
Proof. πi is good if and only if πi contains at least one cycle with at least one
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Fig. 10.1. Inner SPs corresponding to S1.

oriented gray edge. Suppose that Vi is unoriented. We can suppose, without loss
of generality, that all corresponding genes are signed +. All C cycles of πi are such
that left vertices are of form xh and right edges are of form xt (Definition 6.1).
Moreover, there is no supernatural graph of SO obtained by amalgamating natural
graphs containing vertices in Vi. Therefore, a gray edge necessarily connects a left
vertex to a right one in C cycles, and thus a vertex of form xh to one of form xt. From
the definition of gray edge orientation, all gray edges of πi are unoriented, and thus
πi is bad.

Conversely, if Vi is oriented, then we can assume, without loss of generality, that
there exist two genes a and b such that a and b are adjacent and are both signed
positively in S, but a and b do not have the same sign in S. Algorithm dedouble

constructs the gray edges (ah, bt) and (ah, b
t
). As a and b do not have the same sign

in S, ah and b
t
are either both left ends or both right ends of black edges. Therefore,

the gray edge (ah, b
t
) is oriented.

We say that a real local SP is oriented if the set of vertices in its component is
oriented and is unoriented otherwise. Knots produced by semidedouble then corre-
spond to the real minimal unoriented SPs, which we call real minimal SPs, and to at
most one other SP, the maximal one, defined as follows.

Definition 10.5. Let S = x1 · · ·xn be a local SP. The outer SP of S is the
largest SP Se contained in S satisfying the following three conditions:

1. The component πe of Se is bad;
2. Se is not minimal, and the interval of Se contains all the real minimal SPs

of S;
3. Se does not separate two real minimal SPs.

A local SP S is maximal if all the real minimal SPs of G are inner SPs of S and
if there exists an outer SP of S.

Example 6. Suppose that the genome G contains the local SP S1 = a1 c1 e1 d1 f1
h1 g1 i1 b1 j1, with complement S1 = a2 b2 c2 d2 e2 f2 g2 h2 i2 j2. The components
of S1 and the inner SPs of S1 are depicted in Figure 10.1. The two components C2
and C3 correspond to components of the two minimal SPs of S. C1 is the component
of S1. It is bad and does not separate two minimal SPs. S1 is thus an outer SP.

A bad real SP is a real SP which is either minimal or maximal. We denote
by brs(G) the number of bad SPs of G.

As for semiknots, they are associated to potential SPs. To minimize them, we
must minimize the number of potential SPs that become bad SPs of the final graph.

We already saw in section 9 how to solve POSs, provided that at least two of them
exist. We can therefore assume that at most one POS exists. Suppose that one such
POS S exists. In that case, we amalgamate the two odd size natural graphs G1 and G2

associated to S. Suppose that G1 = O1x1 · · ·xnO′1 and G2 = O2y1 · · · sx1 · · · ynO′2,
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where s is the sign of x1. If s = +, then we set O1 = O′2 and O′1 = O2. Otherwise
(s = −), we set O1 = O2 and O′1 = O′2. With this construction, we ensure that the

set of vertices {Oh1 , x1, . . . , xn, O
′t
1 } is oriented.

Consider now the PESs. For every graph associated to a PES and containing
two vertices O1 and O2 of O, semidedouble sets O1 = O2. We say that a PES S is
unoriented if the set of vertices of S is unoriented and oriented otherwise. As oriented
PESs do not give rise to any problem, we consider only, in the ensuing discussion, an
unoriented PES S. S is a minimal PES if S is minimal. Moreover, an outer PES of S
is defined in a similar way as for a real SP (Definition 10.5) by replacing “real minimal
SPs” by “real minimal SPs and minimal PESs.” We similarly define a maximal PES
and a bad PES.

We denote by BPES a bad PES, b is the number of BPESs, and BPES =
{P1, . . . , Pb} with, for every i, Pi as the set of graphs associated to the BPES i.

To minimize the number of semiknots, graphs of BPES are amalgamated with
procedure amalgamating-PES described in section 9. Three configurations can arise
after applying the procedure:

R1. There remains no nonamalgamated graph.
R2. There remains only one nonamalgamated graph, and it belongs to a Pi of

size 2.
R3. There remains one Pi ∈ BPES with one or two nonamalgamated graphs.

This happens if only one BPES exists or if b is odd and BPES contains only
sets of size 1.

In the remainder of this section, SG is the set of completable graphs obtained
by amalgamating the two graphs of a POS, if any, as described above, by using
procedure amalgamating-PES for the graphs of BPES, and by the usual way for the
other natural graphs.

Lemma 10.6. Let Gs(V, A,Γs) be the semicompleted graph obtained by semide-
double. Then Gs(V, A,Γs) is a maximal semicompleted graph.

Proof. Suppose that G does not contain any BPESs. The amalgamating pro-
cedure is then identical to that of section 5. Thus, from Theorem 10.2, dedouble
constructs a maximal completed graph.

Suppose now that G contains BPESs. The only graphs of SG not correspond-
ing to those of section 5 are those obtained by amalgamating graphs of BPES.
Let G3(V3, A3) be a graph of size n3 obtained by amalgamating the two graphs
G1 = (V1, A1) of size n1 and G2 = (V2, A2) of size n2 of BPES. By arguments
similar to those used in the proof of Theorem 9.3, we can see that dedouble gives
rise to one less cycle when it is applied to a set of graphs containing G3, instead of a
set of graphs containing the two supernatural graphs G1 and G2. More precisely, let
cmax be the maximal number of cycles containing edges of A1∪A2 obtained when the
two graphs G1, G2 are considered and c the number of cycles containing edges of A3

obtained when G3 is considered. Then c = cmax − 1.

Let Γ′3 be the set of gray edges linking the vertices of V3 in a completed graph
obtained by applying dedouble to a set of graphs containing G3(V3, A3). V3 has
four vertices in O, denoted by the set O′. Dedouble constructs two cycles of size 1,
each containing one of the vertices of O′, and one cycle C of size > 1 containing
the two remaining vertices of O′. Let G3,s(V3, A3,Γ3) be the semicompleted graph
of G3(V3, A3) obtained by semidedouble, that is, by removing from Γ′3 the edges
adjacent to vertices of O. From Remark 3, vertices of O are either all left vertices or
all right vertices. Therefore, removing from Γ′3 the edges adjacent to the vertices of O
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transforms C into two good paths. The number of bad paths of G3,s is then bp3 = 0.
Moreover, cc(G3,s) = cmax.

We deduce that cc(Gs) = c(G). Gs(V, A,Γs) is thus a maximal semicompleted
graph.

A local SP that is either real or a BPES not solved by the procedure amalgamating-
PES is called a final SP.

Notation 5. Consider the following parameters:
• s(G) is the number of BPESs that become semiknots. s(G) = 0 if configura-

tions R1, R2 are encountered, and s(G) = 1 otherwise.
• brs(G) is the number of bad real SPs of G.
• fr(G) and gr(G) are defined like fr(Gs) and gr(Gs) [18]. They depend on

the set of real knots and semiknots determined by the set of final SPs of G.
We require one more lemma.
Lemma 10.7. Suppose that G contains an unoriented local SP S. Let π be the

component of S. Then any maximal completed graph must contain an unoriented
component made up of the vertices of π.

Proof. Suppose that G contains an unoriented real SP S. From Lemma 8.4, any
maximal completed graph G(V, A,Γ) contains an SP formed by S vertices. As S
does not contain any vertex in O, any maximal semicompleted graph also contains
an SP formed by S vertices. On the other hand, all supernatural graphs containing
vertices of S ∪S are in SE , and the corresponding completed supernatural graphs (in
a maximal completed graph) give rise to at least one component. We want to show
that each of these components contains exclusively unoriented gray edges.

As S is unoriented, we can assume that all genes corresponding to S vertices are
signed positively and that all left vertices of S are of form xh and all right vertices
of form xt. Let Gsn(Vsn, Asn) be a supernatural graph containing vertices of S.
Suppose that the corresponding completed supernatural graph Gsn(Vsn, Asn,Γsn)
contains an oriented edge. Such an edge necessarily links two left vertices or two
right vertices. Arguments similar to those used in the proof of Lemma 6.3 show that
Gsn(Vsn, Asn,Γsn) contains at least one cycle less than a completed supernatural
graph corresponding to a maximal completed graph.

Theorem 10.8. Let Gs(V, A,Γs) be the semicompleted graph produced by semide-
double. Let H be the resulting duplicated genome. Then cp(Gs) − bp(Gs) = c(G) =
1
2 |A|+ γ(G), rr(Gs) = brs(G), s(Gs) = s(G), fr(Gs) = fr(G), gr(Gs) = gr(G), and

RT (G,H) =
1

2
|A| − γ(G) + brs(G) +

⌈
s(G)− gr(G) + fr(G)

2

⌉
.

Moreover, RT (G,H) = RT (G).
Proof. To simplify the notation, denote by cc, cp, bp, rr, s, gr, and fr the

parameters corresponding to the graph Gs.
From Lemma 10.6, Gs(V, A,Γs) is a maximal semicompleted graph, and cp−bp =

c(G). Now, we know that real knots correspond to bad real SPs, plus at most one
maximal SP. Thus rr = brs(G). As for semiknots, they correspond to bad compo-
nents containing at least one good path and for which the corresponding interval does
not contain any path in OO ∪ VV. As POSs do not give rise to bad components,
the only remaining nonamalgamated PES, if any, is the only SP giving rise to a bad
component with vertices in O. As these vertices (in O) are either all left vertices or
all right vertices, from Remark 3, removing gray edges adjacent to these vertices gives
rise to only good cycles. One semiknot is then due to this nonamalgamated PES.
Therefore, s = s(G). We deduce



786 NADIA EL-MABROUK AND DAVID SANKOFF

RT (G,H) = |A| − cp+ bp+ rr +
⌈
s− gr + fr

2

⌉

=
1

2
|A| − γ(G) + brs(G) +

⌈
s(G)− gr(G) + fr(G)

2

⌉
.

Suppose RT (G,H) > RT (G). This means that there exists a completed graph
Gs′(V, A,Γ′s) with parameters cc′, cp′, bp′, rr′, s′, gr′, and fr′ such that cp′ − bp′ −
rr′ −

⌈
s′−gr′+fr′

2

⌉
> cp− bp− rr −

⌈
s−gr+fr

2

⌉
, i.e.,

(1) cc′ − cc > (rr′ − rr) +
(⌈
s′ − gr′ + fr′

2

⌉
−
⌈
s− gr + fr

2

⌉)
.

Suppose first that the completed graph Gs′(V, A,Γ′s) contains x fewer real knots
than Gs(V, A,Γs). Suppose first that x = 1 and that it corresponds to a bad real
SP. Then, from Lemma 10.7, Gs′(V, A,Γ′s) is a completed graph that is not maximal.
More generally, a construction that removes x bad real SPs gives rise to a completed
graph for which cp′ ≤ c(G)− x.

Suppose now that Gs′(V, A,Γ′s) contains one less semiknot than Gs(V, A,Γs).
This can occur in situations R2 or R3. However, removing such a semiknot, for
example by constructing a good component, would also remove at least two cycles.
Therefore,

(2) cp′ − cp ≤ (rr′ − rr) + (s′ − s).

We deduce from the above observations that

(I)

⌈
s′ − gr′ + fr′

2

⌉
−
⌈
s− gr + fr

2

⌉
< s′ − s.

Two possible situations occur:

1. s′ − gr′ + fr′ is even and s − gr + fr is odd. In that case, inequality (I)
induces (s− s′) < (−gr + fr)− (−gr′ + fr′) + 1.
But s − s′ ≥ 0 and (−gr + fr) − (−gr′ + fr′) ≤ 1. This is due to the fact
that if fr = 1, then gr = 1. (The same holds for fr′ and gr′.)
There are three possible cases: (a) s−s′ = 0 and (−gr+fr)−(−gr′+fr′) = 0;
(b) s − s′ = 0 and (−gr + fr) − (−gr′ + fr′) = 1; (c) s − s′ = 0 and
(−gr + fr)− (−gr′ + fr′) = 1.
Cases (a) and (b) contradict the fact that s′ − gr′ + fr′ and s− gr + fr are
not both even or both odd.

2. All other situations for s′−gr′+fr′ and s−gr+fr (other than s′−gr′+fr′
even and s − gr + fr odd). In that case, inequality (I) induces (s − s′) <
(−gr+ fr)− (−gr′ + fr′). As s− s′ ≥ 0 and (−gr+ fr)− (−gr′ + fr′) ≤ 1,
we should have s− s′ = 0 and (−gr + fr)− (−gr′ + fr′) = 1.

Thus the only situation remaining is s = s′ and (−gr + fr) = (−gr′ + fr′) + 1.
However, from the definitions of gr, fr, gr′, and fr′, this situation is impossible.

On the other hand, as the amalgamating procedure of BPES graphs preserves
a maximal completed graph, a completed graph that contained more real knots or
semiknots than Gs would not satisfy inequality (I).
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11. Genome halving with reversals.

11.1. The HP result. The problem of reconstructing a duplicated circular
genome by reversals is a special case of the problem of reconstructing a duplicated
multichromosomal genome by reversals and translocations. As the notion of endpoints
is irrelevant for circular genomes, the distinction between a semicompleted graph and
a completed graph is absent in this case. Let G(V, A,Γ) be the completed graph
obtained by dedouble. This graph can be decomposed into a set of alternating cycles
(no paths). We define good and bad components in a similar way as for multichromo-
somal genomes (section 10), but by considering only cycles (no paths). Moreover, the
concept of knots is here replaced by the concept of hurdles. Note that the concepts
of “real hurdles” and “semihurdles” are irrelevant.

Let H1 and H2 be two single chromosome genomes, and let G12 be the breakpoint
graph associated to H1 and H2. HP proved [17] that the minimal number of reversals
required to transform H1 to H2 is

HP4: R(H1, H2) = b(G12)− c(G12) + h(G12) + f(G12),

where h(G12) is the number of hurdles of G12 and f(G12) is a correction of size 0 or 1.
In other words, in formula HP1 (section 3), m(G12) = h(G12).

11.2. Maximizing the number of cycles. We denote by R(G) the minimum
number of reversals necessary to transform G into a duplicated genome. Denote
by c(G) the number of cycles of a maximal completed graph of G(V, A). Theorem 6.6
gives an upper bound for c(G). We would like to construct a completed graph with
a number of cycles equal to this upper bound. This completed graph would then be
maximal.

The method is almost identical to that described in section 7 for multichromo-
somal genomes. In particular, if we set O = ∅, then all the definitions and notation
introduced in section 7 are valid for the circular genome case.

During the construction of gray edges, we still have to be careful not to create a
circular fragment as long as unlinked vertices remain in the partially completed graph.
In other words, the last step of the algorithm is the only one “closing” a fragment,
eventually by constructing two gray edges of form (x, x). Therefore, at each step
except the last one (when there remain just four gray edges to be constructed to
complete the graph), we have to construct possible pairs of gray edges, that is, pairs
of gray edges that do not satisfy Properties I, II, and III (section 7).

In the case of circular genomes, if SO is not empty, then the set of “good”
supernatural graphs, that is, the supernatural graphs of size 2n that can be completed
by forming n + 1 cycles, contains one supernatural graph of SO (Lemma 6.5 and
Theorem 6.6). However, constructing n + 1 cycles on a supernatural graph of SO
creates a circular fragment. Therefore, to be able to construct a maximal number of
cycles, we have to be careful to end up with a supernatural graph of SO, if any.

The algorithm used in this case is also dedouble, with the slight difference de-
scribed above. This algorithm constructs a maximal completed graph, that is, a

completed graph with c(GΓ) = γ + |A|
2 cycles.

Example 7. Consider the genome G = +a +b −c +b −d −e +a +c −d −e. The
decomposition of the partial graph into supernatural graphs is shown in Figure 11.1.
We have |A| = 10, γ = 3, and thus c = γ + A

2 = 8. Figure 11.1 depicts the completed
graph produced by dedouble. The corresponding circular duplicated genome is

H = +c1 − b1 − a1 + e2 + d2 − d1 − e1 + a2 + b2 − c2.
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Fig. 11.1. Completed graph GΓ(V, A,Γ) constructed by dedouble.
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Fig. 11.2. The completed graph constructed by dedouble for the genome G of Example 7.

11.3. Hurdles. We now evaluate the number of hurdles contained in the maxi-
mal completed graph obtained by dedouble.

For circular genomes, the notion of a potential local SP is irrelevant, and only
real local SPs remain. We saw, in section 8, how to modify dedouble so that, applied
to a genome that does not contain any local SP, it gives rise to a completed graph
containing no real SP.

The concepts of maximal, minimal, and bad SPs are defined as in section 10.3.
Let brs(G) be the number of bad (real) SPs of G. Then, from Lemma 8.4 and
Theorem 7.6, the completed graph GΓ(V, A,Γ) produced by dedouble contains exactly
brs(G) hurdles corresponding to these bad SPs. In addition, there may be at most
two more special hurdles due to the special SPs defined in section 8.

Consider the parameter f(G) which is 1 if the hurdles determined by the bad SPs
of G form a fortress [17] and 0 otherwise. The next theorem is proved by arguments
similar to those used for Theorem 10.8.

Theorem 11.1. Let GΓ(V, A,Γ) be the completed graph produced by dedouble,
and let H be the resulting duplicated genome. Then

|A|
2
− γ(G) + brs(G) + f(G) ≤ R(G,H) ≤ |A|

2
− γ(G) + brs(G) + f(G) + 2.

In addition,

|A|
2
− γ(G) + brs(G) + f(G) ≤ R(G) ≤ |A|

2
− γ(G) + brs(G) + f(G) + 2.

After Theorem 11.1, we have the following corollary.
Corollary 11.2. Let GΓ(V, A,Γ) be the completed graph of G(V, A) produced

by dedouble-circular. If GΓ(V, A,Γ) does not contain any special hurdle, then

R(G) =
|A|
2
− γ(G) + brs(G) + f(G).
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Example 8. Consider genome G of Example 7 and the corresponding completed
graph of Figure 7.5. Figure 11.2 gives a planar representation of this graph.

The number of cycles of this graph is c(G) = 8, |A| = 10, brs(G) = 0, and
f(G) = 0. It does not contain any hurdles. Thus the minimum number of reversals
necessary to transform genomeG into a duplicated genome is R(G) = 10−8+0+0 = 2.

12. Analyzing the yeast genome. Wolfe and Shields [39] proposed that yeast
is a degenerate tetraploid resulting from a genome duplication 108 years ago. They
identified 55 duplicated regions, representing 50% of the genome.

12.1. Sorting by translocations. Applying our algorithm to the yeast genome
data of Table 12.1, we obtain the perfect duplicated genome Gd represented in Ta-
ble 12.2. The number of cycles of the corresponding completed graph G(V,A,Γ) is
c = 81. Since G does not contain any local SPs, we can deduce that the minimal
number of translocations required to transform G into Gd is

t = 2|B|+ |O| − 2N − c = 142− 16− 81 = 45.

Table 12.1
Order of Wolfe and Shields’ blocks on each of the 16 chromosomes of the yeast genome. Signs

indicate transcriptional orientation. In each chromosome, the • indicates the position of the cen-
tromere.

I : +2 • −1
II : +4 • −3 − 7 +8 − 5 + 6
III : +9 • −10 − 11
IV : +20 + 12 + 12 + 54 + 15 + 21 • −3 − 13 − 16 + 17 − 24 − 22 − 14

−23 − 19 + 18 − 9
V : +28 • −25 − 27 − 4 − 26 − 13
VI : +55 • −36
VII : +36 + 25 + 26 + 32 +6 − 33 + 5 • −30 − 34 − 31 − 29
VIII : +35 • −14 − 37 − 29 − 1
IX : +38 + 39 + 27 •
X : +10 + 40 + 41 • −28 − 42
XI : +42 + 40 + 43 + 35 • −41 − 52 − 38
XII : +53 • −53 − 31 − 55 − 16 −18 − 17 − 45 − 30 − 15 − 44
XIII : +46 + 44 + 19 • −43 − 54 − 48 − 47 − 46
XIV : +49 + 20 + 37 + 50 + 39 • −11
XV : +49 + 21 • −22 − 52 − 50 − 23 − 45 − 51 − 47 − 2
XVI : +48 + 32 + 33 + 51 + 8 + 24 • −7− 34

Table 12.2
Order of Wolfe and Shields’ blocks on each of the 16 chromosomes of the A solution for the

ancestral genome. The present-day yeast genome can be obtained from this one by genome doubling
followed by 45 translocations.

1 : +2 − 1
2 : +46 + 47 + 48 + 54 + 43 + 35 − 41 − 40 − 42
3 : +9 − 10 − 11
4 : +44 + 15 + 21 − 22 − 14 − 23 − 19 + 18 + 16;+13 + 26

+32 + 33 + 51 + 45 + 17 − 24 − 8 + 7 + 3 − 4
5 : +55 − 36
6 : +38 + 39 + 27 + 25 − 28
7 : +29 + 37 + 50 + 52 − 53
8 : +49 + 20 + 12 + 31 + 34 + 30 − 5 + 6
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12.2. Sorting by reversals and translocations. As the yeast genome does
not contain any real or potential local SPs, our method for sorting by reversals and
translocations does not involve any reversals, so 45 translocations are still required.

13. An application on a circular genome. The mitochondrial genome of
the liverwort plant Marchantia polymorpha is rather unusual in that many of its
genes are manifested in two or three copies [30]. It is very unlikely that these arose
from genome doubling, since this would not account for the numerous triplicates, nor
is it consistent with comparative data on mitochondrial genomes. Nevertheless, it
provides a convenient small example to test our method. A somewhat artificial map
was extracted from the Genbank entry, deleting all singleton genes and one gene from
each triplet. (The two genes furthest apart were saved from each triplet.) This led
to a “rearranged duplicated genome” with 25 pairs of genes. A single supernatural
graph in SE emerged from the analysis. This produced a minimum of 25 inversions,
which is what one would expect from a random distribution of the duplicate genes on
the genome. Any trace of genome duplication, were this even biologically plausible,
has been obscured.

14. Conclusions. Calculating the HP formula for the edit distance between two
genomes requires a rather intricate evaluation of the bicolored graph, including up to
seven different structural parameters. In minimizing these formulae over the set of
all (diploid) genomes, it is somewhat surprising that we can reconstruct an optimal
ancestral genome exactly in all cases except the simplest reversals-only model. In the
latter case, the uncertainty is not a deficiency of the algorithm but is due to ambiguity
in how the doubled genome is constructed.

This work completes the major part of the program we undertook in [11]. In
that article, we proposed a suite of “genome halving” problems and offered an algo-
rithm for one of them in which a diploid genome is considered to be a set of genes
partitioned among a number of subsets called chromosomes. The only operation is
translocation considered as an exchange of subsets between two chromosomes. For
the reconstruction problem in that context, in all likelihood NP-hard, we offered an
effective heuristic which functions well on trial data. The present work shows that
by adding gene order and transcription direction (strandedness, sign, polarity) to
chromosome structure and adding the reversal operation, exact linear algorithms are
possible. (Gene order alone, without transcription direction, would likely not suffice
to permit polynomial-time exact algorithms; cf. [7].)

An additional level of structure to increase the realism of the model would be to
incorporate a centromere on each chromosome. The centromere can occur anywhere
in the linear order of genes, the centromeres are structurally indistinguishable from
each other (for our purposes), and there is normally exactly one centromere per chro-
mosome. This condition excludes some translocations, namely, those which result in
one chromosome with two centromeres and one with none. The algorithms we have
developed for the reconstruction of doubled genomes are not easily adaptable in this
context. It should be noted that the condition on single centromeres is occasionally
violated in nature, as, for example, with fissions and fusions, so that ideally the model
should be complicated to allow for centromere creation and disappearance. As a final
note, this work, together with [12] on hybridization and [9] on segment duplication,
represents the use of computational biology techniques first developed for compara-
tive genomics, as tools for the internal reconstruction of the evolutionary history of a
single genome.
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Abstract. Most research in algorithms for geometric query problems has focused on their worst-
case performance. However, when information on the query distribution is available, the alternative
paradigm of designing and analyzing algorithms from the perspective of expected-case performance
appears more attractive. We study the approximate nearest neighbor problem from this perspective.

As a first step in this direction, we assume that the query points are sampled uniformly from a
hypercube that encloses all the data points; however, we make no assumption on the distribution of
the data points. We show that with a simple partition tree, called the sliding-midpoint tree, it is
possible to achieve linear space and logarithmic query time in the expected case; in contrast, the data
structures known to achieve linear space and logarithmic query time in the worst case are complex,
and algorithms on them run more slowly in practice. Moreover, we prove that the sliding-midpoint
tree achieves optimal expected query time in a certain class of algorithms.
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1. Introduction. The main focus in the design of data structures and algo-
rithms for geometric query problems has been to obtain optimal worst-case query
time. However, in many applications, the average time for answering a query is more
important than the worst-case time. Thus, when we have information on the query
distribution, we believe it is prudent to incorporate it in the algorithm design with a
view to minimize the expected query time and to provide simpler data structures. We
study the approximate nearest neighbor problem from this novel perspective.

Nearest neighbor searching is a fundamental problem in computational geometry
with applications in numerous areas such as pattern recognition [11], data compres-
sion [17], information retrieval [10], and multimedia databases [15]. Since the problem
is very difficult to solve exactly in high dimensions, researchers have investigated the
approximate nearest neighbor problem. Consider a set S of n data points in Rd and
a query point q ∈ Rd. Given an error bound ε > 0, we say that a point p ∈ S is a
(1 + ε)-approximate nearest neighbor of q if dist(p, q) ≤ (1 + ε)dist(p∗, q), where p∗ is
the true nearest neighbor of q. This problem has been extensively studied from the
worst-case perspective [2, 3, 5, 6, 7, 8, 9, 12, 18, 19, 21].

For our expected-case study, we consider that the set S of n data points is con-
tained within the unit hypercube U = [0, 1]d and assume that the query points are
sampled from the uniform distribution in U . Note that we make no assumption on the
distribution of the data points. While the assumption of uniformly distributed query
points is admittedly simplistic, we think it is a natural first step toward the design of
algorithms for more general query distributions. We investigate a general approach for

∗Received by the editors December 13, 1999; accepted for publication (in revised form) February
3, 2003; published electronically April 23, 2003. This research was supported in part by RGC CERG
HKUST736/96E and RGC DAG96/97.EG40. A preliminary version of this paper appeared in the
Proceedings of the 11th Annual ACM–SIAM Symposium on Discrete Algorithms, 2000, pp. 379–388.

http://www.siam.org/journals/sicomp/32-3/36634.html
†Department of Computer Science, The Hong Kong University of Science and Technology, Clear

Water Bay, Kowloon, Hong Kong (arya@cs.ust.hk, csaddy@cs.ust.hk).

793



794 SUNIL ARYA AND HO-YAM ADDY FU

Fig. 1. Sliding-midpoint tree.

finding the approximate nearest neighbor devised by Arya et al. [4, 6], called priority
search. This approach can be used in conjunction with any partition tree for S and is
based on efficiently enumerating the leaves of the tree in order of increasing distance
from the query point until a certain termination condition is satisfied. (Section 3
describes this method and presents its important features.) In this study, we consider
the question of how to construct the partition tree so as to minimize the expected
query time.

Our main results are for a partition tree based on a very simple splitting method
called the sliding-midpoint method, introduced by Mount and Arya [24]. As in the
standard kd-tree [16], cells are recursively subdivided using hyperplanes that are or-
thogonal to the coordinate-axes. More precisely, we first place a hyperplane orthog-
onal to the longest side of the cell and at its middle. We let this hyperplane be the
splitting plane if there are data points located on both sides; otherwise, we slide the
hyperplane toward the side that contains all the data points until it just touches a
point. The point that touches the splitting plane is assigned to the side that is origi-
nally empty. (See Figure 1.) The space used by this tree is O(n) (since no empty cells
are created), and it can be easily constructed in O(n log n) time using well-known
techniques [6]. Although its worst-case query time can be as bad as Ω(n), Manee-
wongvatana and Mount [22] have studied it empirically and observed that it performs
well in practice. We present two results pertaining to its expected query time that
provide some theoretical justification for its good practical performance.

First, we prove that the expected query time for this tree is O((1/ε)d log n),
irrespective of the distribution of data points. We note that Arya et al. [6] and,
more recently, Duncan, Goodrich, and Kobourov [12] have proposed partition trees
for which priority search achieves logarithmic worst-case query time. However, they
both use considerably more complex ways of subdividing a cell. (In addition to axis-
orthogonal splits, Arya et al. allow a shrink operation, which can generate a cell that
is the set-theoretic difference of two rectangles. Duncan, Goodrich, and Kobourov
restrict themselves to splits with a hyperplane; however, the hyperplane is not nec-
essarily axis-orthogonal.) Although both these partition trees provide optimal worst-
case query time, the features introduced to ensure this property hurt their practical
performance.

Our second result, which is of greater significance, shows that the sliding-midpoint
tree is, in fact, optimal in a certain sense. Consider the class of algorithms obtained by
running priority search on partition trees, where the splits are made by hyperplanes
at arbitrary orientations (that is, not necessarily axis-orthogonal). We prove that,
for any given data distribution, priority search on the sliding-midpoint tree achieves
the minimum expected query time (up to a constant factor depending on d and ε)
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over all such algorithms. Our proof also implies that priority search on the sliding-
midpoint tree attains lower expected query time compared to any algorithm that
can be modeled as an algebraic decision tree using linear tests (that is, involving the
evaluation of a polynomial of degree one).

The paper is organized as follows. In section 2, we describe our notation. Section 3
reviews the priority search approach for finding the approximate nearest neighbor.
Section 4 presents a general framework for the expected-case analysis of partition
trees. In section 5, we give a simple proof that the expected query time using the
sliding-midpoint tree is O(log n), and, in section 6, we establish the optimality of this
tree. Finally, we present our experimental results in section 7.

2. Conventions. Let U denote the unit hypercube [0, 1]d in d dimensions. We
assume that the set S of n data points has been scaled and translated to lie within
U . To avoid confusion, we always use data point to refer to a point in the data set S,
and we use point to refer to any point in space. We assume that the dimension d and
the error bound ε are fixed constants, independent of the number of data points.

We will assume that distances are measured in the Euclidean metric (although
our results can be easily generalized to any Minkowski metric). We define the distance
between a point p and a region z to be the minimum distance between p and any point
in z.

Throughout, the word rectangle will denote a d-dimensional axis-parallel hyper-
rectangle. We define the size of a rectangle to be the length of its longest side. For
any region z, we let vz denote its volume (area in two dimensions and length in one di-
mension). If z is the set-theoretic difference of two rectangles, one enclosed within the
other, we denote the outer rectangle and inner rectangle by zO and zI , respectively,
and we define its size to be the size of its outer rectangle.

The data structures we consider are based on partition trees that represent a
hierarchical decomposition of U . We recall some basic facts about partition trees.
Each node of the partition tree is associated with a region of space, called a cell,
and the set of data points that lie in this cell. The cell associated with any node is
partitioned into disjoint cells and associated with the children of the node. We assume
that the cell associated with the root of the partition tree is the unit hypercube U .
The leaves of the tree contain at most a constant number of data points, called the
bucket size (henceforth assumed to be ≤ 1 for simplicity).

Given a partition tree T , let IT ,LT , and NT denote the set of its internal nodes,
leaf nodes, and all nodes, respectively. We let ZT denote the subdivision of U induced
by the leaf nodes of T . Let x be a node in T . We let Cx denote the cell associated
with x and vx denote the volume of Cx. If Cx is a rectangle or the difference of two
rectangles, we use sx to denote the size of Cx. We will often use Rx in place of Cx
if Cx is a rectangle. Finally, we use �x to denote the level of x, that is, the length of
the path from the root to x. Note that the root is at level 0.

3. Background. We briefly review some features of the priority search approach
for approximate nearest neighbor searching, proposed by Arya and Mount [4] and Arya
et al. [6].

3.1. Query algorithm. The algorithm is based on visiting leaf cells in order of
increasing distance from the query point q. For each leaf cell visited, the algorithm
computes the distance between q and the data point stored with the leaf and updates
p, the closest neighbor to q found so far, and rp, the distance to it. The algorithm
terminates when the distance between q and the leaf cell exceeds rp/(1+ ε), returning
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Fig. 2. Algorithm overview.

p as the answer. For example, in Figure 2, the leaf cells have been labeled in order of
increasing distance from the query point q. The algorithm terminates on visiting cell
8, since its distance from the query point exceeds rp/(1 + ε) (the radius of the dotted
circle shown).

To see that the algorithm works correctly for any partition tree, let B denote
the ball of radius rp/(1 + ε) centered at q. Since the algorithm has already seen all
leaf cells overlapping B, it is clear that B contains no data point. Thus point p is a
(1 + ε)-approximate nearest neighbor of q.

It remains to describe the method used to enumerate the leaf cells in order of
increasing distance from the query point. The algorithm maintains a priority queue
of nodes, where the priority of a node is inversely related to the distance between
the query point and the corresponding cell. Initially, the root of the tree is inserted
into the queue. Then the following procedure is repeatedly carried out. First, the
node with the highest priority is extracted from the queue, that is, the node closest
to the query point. Then the algorithm descends the subtree associated with this
node until reaching the leaf closest to the query point. For each internal node visited,
the distance between the query point and the children of the node is computed. The
algorithm descends to the child that is closer to the query point, while the other child
is inserted into the queue. When the algorithm reaches the leaf, it processes the data
point associated with it. The correctness of the algorithm is based on the invariant
that the set of leaves descended from the nodes in the priority queue is disjoint and
their union is the set of all unvisited leaves.

While priority search can be applied on any partition tree, it is especially efficient
on trees that use only axis-orthogonal splits. The reason is that, for each internal
node visited, the algorithm needs to compute the distance between the query point
and the children of the node. If we do not restrict ourselves to axis-orthogonal splits,
this computation can take time proportional to the complexity of the cell. In contrast,
for a node that is partitioned by an axis-orthogonal hyperplane, this computation can
be done in O(1) time independent of dimension d, using a technique called incremen-
tal distance computation. From a practical perspective, the difference is significant
especially in high dimensions. Intuitively, this technique works because the cells for
the children differ from the parent’s cell in only one of the d dimensions. For details,
we refer the reader to Arya and Mount [4].

3.2. Query time. The analysis of the query time given in [6] employs the fol-
lowing two lemmas, which will also be useful for us. Lemma 3.1 says that all the leaf
cells visited, except possibly the last one, are large relative to their distance from the
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query point. Lemma 3.2 relates the query time to the number of internal nodes and
leaf nodes visited. Their proofs follow from the discussion in [6]; we repeat them here
for the sake of completeness.

Lemma 3.1 (see [6]). Consider a partition tree T built using axis-orthogonal
splits, such that each leaf cell contains a data point. Suppose that we run priority
search on T with query point q and error bound ε. Then the size of any leaf cell x that
does not cause the algorithm to terminate is at least rε/

√
d, where r is the distance

from q to x.
Proof. Suppose that the size of x is less than rε/

√
d. Clearly, the diameter of

x is then less than rε, and so it contains a data point at distance less than r(1 +
ε) from q. This implies that x must satisfy the termination condition, which is a
contradiction.

Lemma 3.2 (see [4, 6]). Consider a partition tree T built using axis-orthogonal
splits. Suppose that we run priority search on T with query point q and error bound
ε. Let I and L be the number of internal nodes and leaf nodes, respectively, visited by
the algorithm. Then the query time is O(I + Ld+ L log I), where the constant factor
in the O-notation is independent of d and ε.

Proof. On visiting an internal node, the algorithm first updates the distance to
its two children; since the children are created by an axis-orthogonal split, this can
be done in O(1) time using incremental distance computation. Then it inserts the
farther child into the priority queue; using Fibonacci heaps, the amortized time for
each insertion is O(1). Finally, it descends to the closer child, which takes O(1) time.

On visiting a leaf node, it computes the distance between q and the data point
stored with the leaf, which takes O(d) time. It then extracts the closest node from
the queue. Since each internal node visited inserts one child into the queue, the size
of the queue is at most I. Thus it takes O(log I) time to extract the closest node.
The total query time is therefore O(I + L(d+ log I)) = O(I + Ld+ L log I).

4. Expected-case analysis: General framework. In this section, we set up
the basic framework for analyzing the expected query time of priority search on a
partition tree. For the sake of simplicity, we assume that the partition tree is built
using axis-orthogonal splitting planes. Before presenting the analysis, we first need
to make a small but important modification to priority search.

4.1. Modified priority search. We give some intuition for why this modifica-
tion is needed. Recall from section 3 that priority search is given a chance to terminate
the search only at leaf nodes. Further, it follows from Lemma 3.1 that it visits at
most one leaf cell of size less than rε/

√
d, where r is the distance from the query

point to the leaf cell. However, while descending the tree to this small leaf cell, the
algorithm may visit a large number of small internal nodes. This is undesirable as it
increases the query time and prevents us from proving good bounds on the expected
query time. Thus the idea of the modification is to allow the search to be terminated
at internal nodes as well to ensure that at most one node (leaf or internal) of size less
than rε/

√
d is visited.

The details of the modification are as follows. With each internal node x, we store
its size sx and a pointer to any data point px inside Rx. (Asymptotically, this does
not increase the space or preprocessing requirements.) The search algorithm works
in exactly the same way if a leaf node is visited. If an internal node x is visited, then
let r denote its distance from the query point q. If sx ≥ rε/

√
d, the algorithm works

just as before. However, if sx < rε/
√
d, the algorithm computes the distance from q

to the associated data point px, updates the closest point seen so far, and terminates.
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It is easy to see that the modified algorithm remains correct. Obviously, if the
algorithm terminates at a leaf node, then it behaves exactly as the unmodified algo-
rithm and is therefore correct. If it terminates at an internal node x at a distance r
from q, then the diameter of Rx is at most rε, and so the associated data point px
is at a distance at most r(1 + ε) from q. Note that the algorithm has already seen
any data point that lies in the ball of radius r centered at q. Clearly, if this ball
contains no data point, then px is a (1 + ε)-approximate nearest neighbor. Otherwise,
the algorithm returns the nearest neighbor of q. In either case, the algorithm returns
the correct answer.

For the rest of this paper, we shall assume that priority search has been modi-
fied as indicated above. Note that Lemmas 3.1 and 3.2 continue to hold after this
modification.

4.2. Upper bound on expected number of nodes visited. Recall that S
is a set of n data points in U and the query point is sampled from the uniform
distribution in U . In Lemma 4.1, we establish upper bounds on the expected number
of internal nodes and leaf nodes visited by priority search, which depend only on the
sizes of the rectangles associated with the nodes of the partition tree. Together with
Lemma 3.2, these upper bounds facilitate the expected-case analysis of partition trees
formed by different splitting methods. In sections 5 and 6, we will apply them to the
sliding-midpoint tree.

Lemma 4.1. Let d and ε be any fixed constants. Let S be a set of n data points in
U . Let T be a partition tree for S built using axis-orthogonal splits, such that each leaf
cell contains a data point. Assume that the query point is sampled from the uniform
distribution in U . Then the expected number of internal nodes and leaf nodes visited by
priority search is at most 1 + (1 + 2

√
d/ε)d

∑
x∈IT s

d
x and 1 + (1 + 2

√
d/ε)d

∑
x∈LT s

d
x,

respectively.

Proof. We will prove only the bound on the expected number of internal nodes
visited, since the proof for leaf nodes is similar. Let q be a query point. Let x be any
node visited that does not cause the algorithm to terminate, and let r be the distance
between q and Rx. We claim that sx ≥ rε/

√
d. If x is an internal node, this follows in

view of the modifications made to priority search, and if x is a leaf node, this follows
from Lemma 3.1. Thus r ≤ sx

√
d/ε. That is, if a node x is visited and does not cause

the algorithm to terminate, then the query point q must be at a distance at most
sx
√
d/ε from Rx.

With each internal node x, associate a random variable Vx that takes the value
1 if node x is visited and does not cause the algorithm to terminate; otherwise, it
takes the value 0. Let I denote the number of internal nodes visited by priority
search. Clearly I ≤ 1 +

∑
x∈IT Vx. Here we have added 1 to take into account the

last internal node visited, which may have caused the algorithm to terminate. By
linearity of expectation,

E[I] ≤ 1 +
∑
x∈IT

E[Vx].(1)

Note that E[Vx] equals the probability that Vx is 1. We compute an upper bound
on this probability. From our earlier observation, it follows that if node x is visited
and does not cause the algorithm to terminate, then q lies inside the hypercube of
size (1 + 2

√
d/ε)sx, whose center coincides with the center of Rx. Since q is sampled

from the uniform distribution in U , the volume of this hypercube, (1 + 2
√
d/ε)dsdx, is
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an upper bound on the desired probability and hence on E[Vx]. Using this bound in
(1) completes the proof.

5. Logarithmic bound on expected query time of sliding-midpoint tree.
By Lemma 4.1, the expected query time of priority search on a partition tree T is
related to the quantities

∑
x∈IT s

d
x and

∑
x∈LT s

d
x. The following lemma obtains upper

bounds on these two quantities for the sliding-midpoint tree.
Lemma 5.1. Let S be a set of n data points in U . Let T be the partition tree for S

built using the sliding-midpoint method. Then the following are true: (i)
∑
x∈IT s

d
x =

O(log n), and (ii)
∑
x∈LT s

d
x = O(1). The constant factors in the O-notation depend

on d.
Proof. Recall that the sliding-midpoint method partitions a cell into two subcells

by a hyperplane orthogonal to its longest side and its middle. If there are data points
in both subcells, it does nothing else. Otherwise, if there are no data points in one
subcell, it slides the splitting plane until it just passes through a data point; the larger
child becomes a leaf, and the smaller child becomes an internal node. It follows that
the size of an internal node decreases by a factor of at least 2 as we descend d levels
in the tree.

For i ≥ 1, define block i to consist of levels (i − 1)d to id − 1. Let Ii denote the
set of internal nodes in block i. By the above observation, the size of an internal node
in block i is at most 1/2i−1. Since the number of internal nodes in block i is at most
2(i−1)d(2d − 1),

∑
x∈Ii

sdx ≤
(

1

2i−1

)d
2(i−1)d(2d − 1) = 2d − 1.

Let I ′ be the set of internal nodes in blocks numbered from 1 to 
log n/d�, and let I ′′
be the remainder of the internal nodes. We will show that

∑
x∈I′ s

d
x = O(log n) and∑

x∈I′′ s
d
x = O(1), which will prove (i).

Since I ′ consists of 
log n/d� blocks,

∑
x∈I′

sdx ≤
⌈

log n

d

⌉
(2d − 1) = O(log n).

It remains to show that
∑
x∈I′′ s

d
x = O(1). Since each internal node has at least two

data points, the number of internal nodes at any level is at most 
n/2� ≤ n. Thus
the number of internal nodes in a block is at most nd, which implies that

∑
x∈Ii

sdx ≤ nd
(

1

2i−1

)d
.

Therefore,

∑
x∈I′′

sdx ≤
∑

i>
 logn
d �

nd

2(i−1)d
≤ nd

(
1/n

1− 1/2d

)
≤ 2d = O(1).

This completes the proof of (i).
Next we prove (ii). Recall that for any node x in the tree, Rx is the associated

rectangle, defined by the splitting planes used in the construction of the tree. Now
we associate a new rectangle R′x with node x using the following simple procedure.
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The root is associated with the unit hypercube U . Inductively, assume that R′x is
the rectangle associated with node x. If x is an internal node, then split any of the
longest sides of R′x at its middle, and associate the two resulting rectangles with the
children of node x.

For each node x, let s′x denote the longest side of the rectangle R′x. Since the
procedure splits the longest side of the rectangle each time, s′x decreases by a factor
of 2 as we descend d levels in the tree. Thus for any internal node x, sx ≤ s′x, and for
any leaf node x, sx ≤ 2s′x, which implies that∑

x∈LT
sdx ≤ 2d

∑
x∈LT

(s′x)d.(2)

Further, since the rectangles R′x have an aspect ratio bounded by 2,∑
x∈LT

(s′x)d ≤ 2d−1
∑
x∈LT

v′x,(3)

where v′x denotes the volume of rectangleR′x. Also,
∑
x∈LT v

′
x = 1, since the rectangles

R′x associated with the leaves form a subdivision of U . Combining this with (2) and
(3), we get

∑
x∈LT s

d
x = O(1).

Using the upper bounds obtained in Lemma 5.1, it is easy to bound the expected
query time.

Theorem 5.2. Let S be any set of n data points in U = [0, 1]d. Given any
ε, assuming that the query point is sampled from the uniform distribution in U , the
expected query time of priority search on the sliding-midpoint tree is O((1/ε)d log n).
The constant factor in the O-notation depends on d.

Proof. By Lemma 3.2, the query time is O(I + Ld+ L log I), where I and L are
the number of internal and leaf nodes visited, respectively. For fixed d, the expected
query time is given by O(E[I]+E[L log I]). Since I ≤ n, the expected query time can
be written as O(E[I] + (logn)E[L]). By Lemmas 4.1 and 5.1, E[I] = O((1/ε)d log n)
and E[L] = O((1/ε)d). Thus the expected query time is O((1/ε)d log n).

6. Optimality of sliding-midpoint tree. If the data points are uniformly
distributed, then Ω(logn) is a lower bound on the expected query time in the decision
tree model. Thus it follows from Theorem 5.2 that the sliding-midpoint tree achieves
optimal expected query time for uniformly distributed data points (ignoring constant
factors depending on d and ε). The question naturally arises whether the sliding-
midpoint tree achieves optimal performance for other data distributions as well. We
prove that this is indeed the case under reasonable assumptions.

Let TS denote the class of partition trees for S formed by splits using arbitrarily
oriented hyperplanes (that is, binary space partition trees) such that each leaf cell
contains at most one data point. We have the following result.

Theorem 6.1. Let d and ε be any fixed constants. There exists a constant c
depending on d and ε such that the following is true. Let S be any set of n data points
in U = [0, 1]d, and let T be any partition tree in TS. Assuming that the query point
is sampled from the uniform distribution in U , the expected query time of priority
search on the sliding-midpoint tree is no more than c times the expected query time of
priority search on T .

Let Z denote any set of regions inside U . (Note that the regions need not form a
subdivision of U , nor are they necessarily disjoint.) We define the entropy of Z to be∑
z∈Z vz log(1/vz). The entropy of a subdivision of U is defined to be the entropy of

the set of regions that form the subdivision.
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We give a brief overview of the proof. Let S be a set of n data points in U . Let
D denote any set of cells in U that satisfy the following properties for some constants
ca and cn, depending on dimension.

A.1. Difference of two rectangles: A cell is the set-theoretic difference of two rect-
angles, one enclosed within the other. Note that the inner rectangle need not
be present.

A.2. Bounded aspect ratio: The outer rectangle and inner rectangle (if present)
have an aspect ratio (ratio of longest to shortest side) of at most ca.

A.3. Stickiness: If the cell has an inner rectangle, then for each dimension, the
separation between the corresponding faces of the inner and outer rectangles
is either 0 or at least the length of the inner rectangle along that dimension.

A.4. Existence of a close data point: There is a data point whose distance from
any point inside the outer rectangle of the cell is at most cns, where s is the
size of the cell (that is, the length of the longest side of its outer rectangle).

A.5. Disjointedness: Given any two cells in D, either the outer rectangles of the
two cells are disjoint or the outer rectangle of one cell is contained within the
inner rectangle of the other.

The basic idea of the proof is to show that the entropy of any such set of cells is a
lower bound on the expected query time of priority search on any partition tree. For
the upper bound, we will determine a set D of cells in U satisfying properties A.1–A.5
such that the expected query time of priority search on the sliding-midpoint tree is
no more than the entropy of D (ignoring constant additive and multiplicative factors
depending on d and ε).

6.1. Lower bound. The main result of this subsection is the following lemma.

Lemma 6.2. Let d and ε be any fixed constants. Let S be any set of n data points
in U , and let T be any partition tree in TS. Let D be any set of cells in U satisfying
properties A.1–A.5. Assuming that the query point is sampled from the uniform dis-
tribution in U , the expected query time of priority search on T is Ω(entropy(D) + 1).
The constant factor in the Ω-notation depends on d.

Briefly, the proof works as follows. Let T be any partition tree in TS . Recall that
ZT denotes the subdivision of U induced by the leaf nodes of T . Since each internal
node of T splits the associated region into two parts by a hyperplane, it follows that
the cells in ZT are convex polytopes. Further, each cell in ZT either is empty or
contains one data point. Let Z ′T denote the subdivision formed by splitting each non-
empty cell in ZT into two parts by passing a hyperplane through the data point inside
it. The cells in Z ′T are convex polytopes in U and satisfy the following properties for
constant cv, depending on dimension (property B.1 is obvious; property B.2 is proved
in Lemma 6.3).

B.1. Empty interior: A cell contains no data point in its interior.
B.2. Proportionality of swept volume to radius: Let z denote the cell, � denote

the Minkowski difference operator, and Br denote a ball of radius r. For any
r ≥ 0, the volume of z − (z � Br) (that is, the set of points inside z within
distance r of the boundary of z) is at most cvr.

Let D be any set of cells in U satisfying properties A.1–A.5, and let Z be any sub-
division of U into cells satisfying properties B.1–B.2. Lemmas 6.4, 6.5, and 6.6 form
the cornerstone of the lower bound argument and show that the entropy of D is
O(entropy(Z)+1). Since Z ′T satisfies properties B.1–B.2, it follows that the entropy of
D is O(entropy(Z ′T )+1). It is easy to show that entropy(Z ′T ) ≤ entropy(ZT )+1. Thus
entropy(D) = O(entropy(ZT )+1), as shown in Lemma 6.7. Finally, Lemma 6.8 proves
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that the expected query time of priority search on T is Ω(entropy(ZT ) + 1). Together
these imply that the expected query time of priority search on T is Ω(entropy(D)+1).

We start by proving that any convex polytope in U satisfies property B.2 (for
constant cv = 2d).

Lemma 6.3. Let z be a convex polytope contained within U . For any r ≥ 0, the
volume of z − (z �Br) is at most 2dr.

Proof. Let y = z − (z � Br). By definition, y is the set of points inside z at
distance at most r from the boundary of z. For d = 1, z is a line segment, and it is
obvious that the volume of y is at most 2r.

Let d > 1. For each facet of z, construct a prism with this facet as base, directed
inward into z, and with height r. It is easy to see that any point in y must lie in
one of these prisms. Thus the volume of y is no more than the sum of the volume of
all the prisms, which is clearly azr, where az is the surface area (perimeter, in two
dimensions) of z. Since z ⊆ U , az is no more than the surface area of U , which is
2d. (Here we have employed the following fact: if A and B are two closed, bounded,
and convex subsets of Rd and A ⊆ B, then the surface area of A is no more than the
surface area of B. See [13] for a proof.) Thus the volume of y is at most 2dr.

Now we are ready to present the key lemma for the lower bound argument. In view
of the applications of the lemma to other problems (such as planar point location [1]),
we prove a stronger version than is strictly needed here.

Lemma 6.4. Let d be any fixed constant. Let Z be any set of disjoint cells in U
satisfying property B.2 (for constant cv), and let D be any set of cells in U satisfying
properties A.1, A.2 (for constant ca), A.3, and A.5. Assume further that there exists
a constant cn such that, for any cell u ∈ D and z ∈ Z, if uO ⊆ z, then the distance
to any point in uO from the boundary of z is at most cnsu. Define a fragment to be
a connected component in the intersection of a cell in Z with a cell in D. Let F be
the set of all fragments. Then

entropy(F) ≤ d · entropy(Z) +O

(∑
z∈Z

vz

)
,

where the constant factor in the O-notation depends on d.

Proof. For any cell z ∈ Z, let Fz ⊆ F denote the set of fragments that are
contained within z. We will show that entropy(Fz) ≤ dvz log(1/vz) + O(vz). Since
entropy(F) =

∑
z∈Z entropy(Fz), the lemma will then follow by summing over all

z ∈ Z.

Let z be any cell in Z. We start by partitioning z into an infinite set of regions,
denoted zi, i ≥ 1, as follows. Let rc = vz/cv. Define z′i to be the region consisting of
points inside z at a distance of at least rc/2

i from the boundary of z. Clearly z′i ⊆ z′i+1

for i ≥ 1. By property B.2 and the definition of rc, it follows that the volume of z′i
is at least vz(1 − 1/2i). The volume of z′1 is thus at least vz/2; we define z1 to be
any region of volume vz/2 inside z′1. Next observe that the volume of z′2 is at least
3vz/4, and so the volume of z′2 − z1 is at least vz/4; we define z2 to be any region
of volume vz/4 inside z′2 that is disjoint from z1. Continuing in this way, we define
zi, i ≥ 1, to be any region of volume vz/2

i inside z′i that is disjoint from all of the
regions z1, z2, . . . , zi−1. It is clear that the regions zi, i ≥ 1, form an infinite partition
of z and satisfy the following two conditions: vzi = vz/2

i and zi ⊆ z′i.
Define a subfragment to be the intersection of a fragment in Fz with a region

zi, i ≥ 1. Let Gz denote the set of all subfragments. Since each fragment y ∈ Fz is
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partitioned into subfragments y ∩ zi, i ≥ 1, it is easy to see that

entropy(Fz) ≤ entropy(Gz).(4)

Let Gzi denote the set of subfragments that lie inside zi. Clearly

entropy(Gz) =
∑
i≥1

entropy(Gzi).(5)

Next we compute an upper bound on entropy(Gzi); the desired bound on entropy(Fz)
will follow using (4) and (5). Obviously entropy(Gzi) ≤ entropy(Gzi ∪ {x}), where
x = zi−

⋃Gzi (that is, the region remaining in zi after removing all the subfragments
in Gzi). Let mi be the number of subfragments in Gzi . It follows from basic calculus
that entropy(Gzi ∪ {x}) can be no more than the entropy of the set of regions formed
by splitting zi into mi + 1 parts of equal volume. Thus

entropy(Gzi) ≤ vzi log
mi + 1

vzi
.(6)

We will show that mi ≤ c ·2id/vd−1
z , where c is a constant that depends on dimension

d. Assuming this fact for now and recalling that vzi = vz/2
i, we get

entropy(Gzi) ≤
vz
2i

log
c2id/vd−1

z + 1

vz/2i
≤ vz

2i
log

(c+ 1)2id/vd−1
z

vz/2i
.

Letting c′ = c+ 1 and simplifying, we get

entropy(Gzi) ≤
(
dvz log

1

vz
+ vz log c′

)
1

2i
+ (d+ 1)vz

i

2i
.

Using (5), we obtain

entropy(Gz) ≤ dvz log
1

vz
+ vz(log c′ + 2(d+ 1)) = dvz log

1

vz
+O(vz),

where the constant factor in the O-notation depends on d. By (4), entropy(Fz) ≤
dvz log(1/vz) +O(vz), which is the desired claim.

It remains to show that mi ≤ c · 2id/vd−1
z . Recall that mi is the number of

fragments that overlap zi. Since zi ⊆ z′i, it follows that mi is no more than the
number of fragments that overlap z′i. Let Fz′i denote the set of fragments that overlap

z′i. For convenience, set ri = rc/2
i and c′n = max(cn,

√
d). Below we describe a set

of disjoint hypercubes H and give a 1-1 mapping from H to Fz′i such that at least
a fraction (1/2d) of the fragments in Fz′i lie in the image of this mapping. (We will
use Hy to denote the hypercube, if any, that maps to fragment y and say that Hy is
associated with y.) Further, each hypercube in H is contained within z and has size
ri/(c

′
nca). A simple packing argument then implies that

|H| ≤ vz
(ri/(c′nca))d

.

Substituting ri = rc/2
i and rc = vz/cv, we get

|H| ≤ (c′ncacv)
d2id

vd−1
z

.
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Fig. 3. Partitioning a cell into rectangles.

The number of fragments in Fz′i is at most 2d times this quantity. We thus obtain

the desired bound mi ≤ c · 2id/vd−1
z , where c = 2d(c′ncacv)

d.
Let u ∈ D be any cell that contains a fragment of Fz′i . Clearly u overlaps z′i.

We claim that the size of u is at least ri/c
′
n. If uO overlaps the boundary of z, then

the diameter of uO must exceed ri, and so su is at least ri/
√
d. Otherwise, uO is

contained within z, and, by the statement of the lemma, the distance to any point in
uO from the boundary of z is at most cnsu. Since uO overlaps z′i, it contains a point
at a distance of at least ri from the boundary of z; thus cnsu ≥ ri, which implies that
su ≥ ri/cn. Combining the two cases, we get su ≥ ri/c′n, where c′n = max(cn,

√
d).

We will make use of this fact in our proof.
We now describe how to associate hypercubes with fragments in Fz′i ; later we

will show that the resulting set of hypercubes H satisfies all the properties mentioned
earlier. For each fragment y ∈ Fz′i , choose a point py in y ∩ z′i. (We call such a point
a fragment representative point.) Let u ∈ D be any cell that overlaps z′i. We consider
three cases: (i) u has no inner rectangle, (ii) u has an inner rectangle of size at least
ri/c

′
n, and (iii) u has an inner rectangle of size less than ri/c

′
n.

If u has no inner rectangle, then, with each fragment y ∈ Fz′i such that y ⊆ u,
associate a hypercube Hy of size ri/(c

′
nca) that overlaps py and is contained within

u. Note there exists such a hypercube since, as shown above, su ≥ ri/c
′
n and, by

property A.2 (bounded aspect ratio), the length of each side of u is at least ri/(c
′
nca).

In the second case, u has an inner rectangle of size at least ri/c
′
n. Observe that

u can be partitioned into t rectangles, where 1 ≤ t ≤ 2d is the number of sides of
the inner rectangle that do not touch the corresponding side of the outer rectangle.
(This can be done by successively passing hyperplanes that touch a side of the inner
rectangle. For example, Figures 3(a), (b), and (c) show how a cell in two dimensions
is partitioned into 2, 3, and 4 rectangles, respectively.) Note that by properties A.2
(bounded aspect ratio) and A.3 (stickiness), each side of these t rectangles is of length
at least ri/(c

′
nca). Of these t rectangles, let R denote the rectangle that has the

maximum number of fragment representative points corresponding to the fragments
in Fz′i . With each fragment y ∈ Fz′i such that py ∈ R, associate a hypercube Hy
of size ri/(c

′
nca) that overlaps py and is contained within R. With the remaining

fragments in u (that is, fragments whose corresponding representative point lies in
u−R), we associate no hypercube.

In the third case, u has an inner rectangle of size less than ri/c
′
n. As in the

second case, we partition u into t rectangles, 1 ≤ t ≤ 2d, and determine the rectangle
R among them that has the maximum number of fragment representative points
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corresponding to the fragments in Fz′i . With each fragment y ∈ Fz′i such that py ∈ R,
associate a hypercube Hy of size ri/(c

′
nca) that overlaps py and is contained within the

outer rectangle of u. Such a hypercube exists because, as shown above, su ≥ ri/c′n.
With the remaining fragments in u, we associate no hypercube. (Note that, unlike the
second case, the sides of R may have length less than ri/(c

′
nca), and the hypercube

Hy may overlap the inner rectangle of u.)
It remains to argue that the resulting set of hypercubes H has the desired prop-

erties. Let y denote a fragment in Fz′i . By construction, the size of Hy (if defined)
is ri/(c

′
nca). Second, since Hy overlaps py and py is at distance at least ri from the

boundary of z, it follows that Hy is contained within z. Third, for any cell u that
overlaps z′i, it is clear that we associate a hypercube with at least a fraction 1/(2d) of
the fragments of Fz′i contained in u. It follows that a hypercube is associated with at
least a fraction 1/(2d) of the fragments in Fz′i .

The only thing left to show is that the hypercubes are all disjoint. Let y1, y2 ∈ Fz′i
be any two distinct fragments that each have a hypercube associated with them. Let
u1, u2 ∈ D be the cells containing y1, y2, respectively. There are four different cases:
(i) u1O ∩ u2O = ∅, (ii) u2O ⊆ u1I , (iii) u1O ⊆ u2I , and (iv) u1 = u2. (Note that, in
case (iv), y1 and y2 are contained in the same cell.)

By our construction, Hy1 ⊆ u1O and Hy2 ⊆ u2O. It follows that in case (i), Hy1
and Hy2 must be disjoint. In case (ii), recall that a cell containing a fragment of Fz′i
must have size at least ri/c

′
n. Thus u2 has size at least ri/c

′
n, and hence u1I has size

at least ri/c
′
n. By our construction, this implies that Hy1 ⊆ u1. Since Hy2 ⊆ u2O,

it follows that Hy1 and Hy2 are disjoint. Case (iii) is similar to the second case. In
case (iv), observe that the line segment joining py1 and py2 lies entirely within cell
u1. (This is obvious if u1 has no inner rectangle; if u1 has an inner rectangle, this
follows from the fact that we partition u1 into rectangles and associate hypercubes
with fragment representative points lying in only one of these rectangles.) Since y1
and y2 are distinct fragments created by the intersection of z with u1, the boundary
of z must intersect this line segment. Since the distance of both py1 and py2 from
the boundary of z is at least ri, the distance between py1 and py2 must be at least
2ri. Since Hy1 and Hy2 overlap py1 and py2 , respectively, and each has size ri/(c

′
nca),

it is easy to verify that Hy1 and Hy2 are disjoint. This completes the proof of the
lemma.

Lemma 6.5. Let d be any fixed constant. Let Z and D be sets of cells satisfying
all the conditions given in the statement of Lemma 6.4. Further, let F be as defined
in the statement of Lemma 6.4. Assuming that Z is a subdivision of U ,

entropy(D) ≤ entropy(F) ≤ d · entropy(Z) +O(1),

where the constant factor in the O-notation depends on d.
Proof. Clearly, the set of fragments in F form a refinement of the set of cells in D.

Thus entropy(D) ≤ entropy(F). Using Lemma 6.4 and the fact that
∑
z∈Z vz = 1,

we get entropy(F) ≤ d · entropy(Z) +O(1), which completes the proof.
Lemma 6.6. Let d be any fixed constant. Let S be any set of n data points in U .

Let Z be a subdivision of U whose cells satisfy properties B.1–B.2, and let D be a set
of cells in U satisfying properties A.1–A.5. Then

entropy(D) = O(entropy(Z) + 1),

where the constant factor in the O-notation depends on d.
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Proof. Let u be a cell in D whose outer rectangle is contained within some cell
z ∈ Z. We claim that the distance to any point p in uO from the boundary of z is at
most cnsu. This follows from the facts that the distance between p and the nearest
data point is at most cnsu (property A.4) and z contains no data point in its interior
(property B.1). Thus D and Z satisfy the conditions of Lemma 6.5, which implies
the desired claim.

Lemma 6.7. Let d be any fixed constant. Let S be any set of n data points in U ,
and let T be any partition tree in TS. Then entropy(D) = O(entropy(ZT ) + 1), where
D is any set of cells in U satisfying properties A.1–A.5. The constant factor in the
O-notation depends on d.

Proof. Refine the subdivision ZT by splitting each nonempty cell of ZT into two
parts by passing any hyperplane through the data point inside the cell. Let Z ′T be the
new subdivision. It is easy to see that entropy(Z ′T ) can be no more than the entropy
of the set of regions formed by splitting each cell of ZT into two parts of equal volume.
Thus

entropy(Z ′T ) ≤
∑
z∈ZT

2
vz
2

log
1

vz/2
=
∑
z∈ZT

(
vz log

1

vz
+ vz

)
= entropy(ZT ) + 1,(7)

where we have used the fact that
∑
z∈ZT vz = 1.

Clearly, Z ′T is a subdivision of U into cells satisfying property B.1 (empty interior).
Also, since the cells in Z ′T are convex polytopes contained within U , by Lemma 6.3,
they satisfy property B.2 (proportionality of swept volume to radius). Thus D and
Z ′T satisfy the conditions of Lemma 6.6, which implies that

entropy(D) = O(entropy(Z ′T ) + 1).(8)

The lemma now follows from (7) and (8).
Lemma 6.8. Let d and ε be any fixed constants. Let S be any set of n data points

in U , and let T be any partition tree in TS. Assuming that the query point is sampled
from the uniform distribution in U , the expected query time of priority search on T
is Ω(entropy(ZT ) + 1).

Proof. Recall that the algorithm starts by descending from the root of the tree T
to the leaf that contains the query point. Thus the expected number of nodes visited
by the algorithm to locate the leaf cell containing the query point is

∑
z∈ZT vz(�z+1).

Note that this is the weighted external path length [20] of the tree, where the weight
of a leaf is the volume of the associated cell. A fundamental information theoretic
result due to Shannon [20, 25] implies that the weighted external path length of any
binary tree with these weights is at least

∑
z∈ZT vz log(1/vz). Thus entropy(ZT ) is

a lower bound on the expected number of nodes visited. Noting that the algorithm
must visit at least one node, the lemma follows.

Finally, Lemmas 6.7 and 6.8 together imply Lemma 6.2.

6.2. Upper bound. In this subsection, we compute an upper bound on the
expected query time of priority search on the sliding-midpoint tree. We will prove
that the expected query time is O(entropy(D) + 1), where D is some set of cells in U
satisfying properties A.1–A.5. In view of Lemma 6.2, this would imply the optimality
of the sliding-midpoint tree in the sense of Theorem 6.1.

Our approach for obtaining D is as follows. In Lemma 6.9, we show that, for any
sliding-midpoint tree T , there exists a closely related partition tree T ′ whose leaves
satisfy properties A.1–A.5 and whose internal nodes satisfy properties A.1–A.4. In
addition, T ′ possesses the following property, which is important for our analysis.
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A.6. Geometric decrease in volume: The volume of the cells associated with the
nodes decreases by at least a constant factor every O(1) levels of descent in
the tree. This property implies that if the volume of a leaf is v, then its level
is O(log(1/v) + 1).

We define D to be the set of cells corresponding to the leaves of T ′. In Lemmas 6.10,
6.11, 6.12, and 6.13, by exploiting properties of T and T ′, we give a simple analysis
proving that the expected query time of priority search on T is O(entropy(D) + 1).

Lemma 6.9. Let S be a set of n data points in U . Let T be the sliding-midpoint
tree for S. Then there exists a partition tree T ′ such that the following hold:

(1) The cells associated with the nodes (internal and leaf) of tree T ′ satisfy prop-
erties A.1–A.4 and A.6. Also, the set of cells associated with the leaves of T ′

satisfy property A.5.
(2) There exists a 1-1 mapping f from the nodes of T to the nodes of T ′ such

that for any node x of T , sx/2 ≤ sf(x) ≤ 8sx.

Proof. We will construct the partition tree T ′ and the mapping f incrementally
in n− 1 steps. To this end, we label the internal nodes of T from 1 to n− 1 such that
the label assigned to any child is greater than the label assigned to its parent. Clearly,
there exists such a labeling. (For example, label the internal nodes in a breadth-first
manner.) Let Ti denote the subtree of T consisting of the root and the nodes whose
parents have label ≤ i.

Let T ′i denote the tree constructed after i steps. In addition to this tree, we also
maintain a 1-1 mapping f from the nodes of Ti to the nodes of T ′i . We will prove
by induction that the following invariant holds at each step of the construction. (For
convenience, we denote the cell associated with a node u by Ru if it is a rectangle and
by Cu if it is the difference of two rectangles.)

(1) T ′i is a partition tree, and f is a 1-1 mapping from the nodes of Ti to the
nodes of T ′i .

(2) Properties A.1–A.4 and A.6 hold for the cells associated with the nodes (in-
ternal and leaf) in T ′i .

(3) Property A.5 holds for the set of cells associated with the leaves of T ′i .
(4) Let x be any internal node in T that is present in Ti. Let y = f(x). Then

(a) the cell associated with node y is a rectangle (denoted Ry) and Rx ⊆ Ry,
(b) each side of Ry has length ≥ sx/2 and ≤ 4sx, and
(c) if x is a leaf in Ti, then y is a leaf in T ′i .

(5) Let x be any leaf in T that is present in Ti. Let y = f(x). Then sx/2 ≤ sy ≤
8sx.

It is clear that the lemma will then follow from the fact that the invariant holds for
the final tree T ′ = T ′n−1.

Initially, T ′0 consists of just the root node, which is associated with U . Further,
the root of T is mapped by f to the root of T ′0. It is easy to see that the invariant
holds for i = 0. We now describe the ith step of the construction. Let x denote the
internal node of T labelled i. Observe that our method of labeling implies that x is a
leaf in Ti−1. Thus, by (4(c)) of the invariant, the corresponding node y = f(x) must
be a leaf in T ′i−1. Let x1 and x2 denote the two children of x. In the ith step, we
attach a subtree consisting of a constant number of nodes to node y and map x1 and
x2 by function f to two leaf nodes in this subtree. For the other nodes in Ti, the
mapping f remains unchanged. (Note that they are all present in Ti−1.)

Now we give the details. Let the longest side of Rx that is split to form Rx1

and Rx2 be aligned along the kth coordinate axis, and let P denote the hyperplane
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Fig. 4. Proof of Lemma 6.9.

orthogonal to it and passing through the center of Rx. We consider two cases.
Case 1. P is the splitting plane associated with node x. (See Figure 4(a).)
This implies that P splits Rx into Rx1 and Rx2 and there is a data point in each

of these two rectangles. We modify T ′i−1 in two substeps and show that the invariant
holds after the second substep.

Substep 1. By (4(a)) of the invariant, the cell associated with y is a rectangle Ry,
and Rx ⊆ Ry. We create two children y1 and y2 for node y. We then split Ry into
two rectangles by hyperplane P and associate these rectangles with y1 and y2 such
that Ry1 and Rx1 are both on the same side of P , and Ry2 and Rx2 are both on the
other side of P . Henceforth, in our discussion of Case 1, we focus only on nodes x1

and y1 since nodes x2 and y2, respectively, play a symmetrical role.
We show that properties A.1–A.4 hold for Ry1 . First, observe that since Ry1 is

a rectangle, it trivially satisfies properties A.1 (difference of two rectangles) and A.3
(stickiness). Second, since Rx1 ⊆ Ry1 and there is a data point in Rx1 , it is clear that
Ry1 satisfies property A.4 (existence of a close data point).

Third, we claim that each side of Ry1 has length ≥ sx/2 and ≤ 4sx. Note that
this would imply that Ry1 satisfies property A.2 (bounded aspect ratio). From (4(b))
of the invariant, each side of Ry has length ≥ sx/2 and ≤ 4sx. Since Ry1 is formed
from Ry by splitting side k (that is, the side aligned along the kth coordinate axis),
the claim is obviously true for all sides of Ry1 other than side k. Further, the length
of side k of Ry1 must be ≤ 4sx since it must be smaller than the corresponding side
of Ry. It remains to show that the length of side k of Ry1 is ≥ sx/2. Recall that
Rx1
⊆ Ry1 . Also, side k of Rx1 has length sx/2 since P splits Rx at the middle of side

k, which is one of the longest sides of Rx. Thus the length of side k of Ry1 is ≥ sx/2.
Next we claim that the volume of Ry1 is at most 7/8th the volume of Ry. As

we will see, substep 2 creates either zero or two children for y1; thus the volume of
the nodes decreases by at least a factor of 8/7 after every two levels of descent in T ′i ,
which implies that T ′i satisfies property A.6 at the end of substep 2. To see the claim,
observe that the ratio of the volume of Ry2 to the volume of Ry is the same as the
ratio of the length of side k of Ry2 to the length of side k of Ry. Since the length of
any side of Ry2 is ≥ sx/2, and the length of any side of Ry is ≤ 4sx, this ratio is at
least 1/8. Thus the volume of Ry1 is at most 7/8th the volume of Ry.

Substep 2. Let B1 ⊆ Ry1 denote a rectangle formed by expanding each side of Rx1

that is smaller than sx1/2 to sx1/2. Note that it is possible to do the expansion such
that B1 lies inside Ry1 , since Rx1 ⊆ Ry1 and, as shown in the discussion of substep
1, each side of Ry1 is of length ≥ sx/2 ≥ sx1

/2. Clearly, each side of B1 has length
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≥ sx1
/2 and ≤ sx1

.

Next, if rectangle B1 has a side that violates the stickiness property with respect
to the corresponding side of Ry1 , expand it until it touches the side of Ry1 . Continue
this process until all sides of the resulting rectangle (call it B2) satisfy the stickiness
property. It is easy to see that this can increase the length of a side of B1 by a factor
of at most 4 (since its length can increase by a factor of at most 2 in each of two
expansions). Thus the length of each side of B2 is ≥ sx1

/2 and ≤ 4sx1
.

If B2 = Ry1 , then set f(x1) = y1. Otherwise, create two children y11 and y12 for
node y1, associate rectangle B2 with y11 and Ry1 −B2 with y12, and set f(x1) = y11.
Note that y12 will be a leaf in the final tree T ′.

We now show that the invariant holds. We have already seen that T ′i satisfies
property A.6, and properties A.1–A.4 hold for the node y1 added in substep 1. We
next show that properties A.1–A.4 hold for the children (if any) added to y1.

If f(x1) = y1, then no children are added, and there is nothing to show. Oth-
erwise, nodes y11 and y12 are made children of y1. Recall that Ry11 = B2 and
Cy12 = Ry1 − B2, and the length of each side of B2 is ≥ sx1/2 and ≤ 4sx1 . It
follows that Ry11 and Cy12 satisfy properties A.1 (difference of two rectangles) and
A.2 (bounded aspect ratio). Since B2 is a rectangle, it satisfies property A.3 (sticki-
ness). By construction of B2, it is clear that Cy12 also satisfies stickiness. Since B2 has
a data point inside it, it follows that B2 and Cy12 both satisfy property A.4 (existence
of a close data point).

Next we show that (4(a)–(c)) of the invariant hold if x1 is an internal node of
T , and (5) of the invariant holds if x1 is a leaf node. To prove (4(a)), note that
by construction Rf(x1) is the rectangle B2, and Rx1 ⊆ B2 (since B2 is formed by
expanding Rx1). Recall that each side of B2 is of length ≥ sx1/2 and ≤ 4sx1 , which
implies (4(b)) and (5). Since f(x1) is a leaf in the tree T ′i , it follows that (4(c)) holds.

Finally, it is clear from our construction that T ′i is a partition tree whose leaves
satisfy property A.5, and f is a 1-1 mapping from the nodes of Ti to the nodes of T ′i
((1) and (3) of the invariant).

Case 2. P is not the splitting plane associated with node x. (See Figure 4(b).)

This implies that all the data points in Rx are on the same side of P , and the
splitting plane for x is obtained by sliding P along dimension k until it just passes
through a data point. Without loss of generality, suppose that Rx1 is smaller than
Rx2

, as shown in Figure 4(b). (The other case can be handled similarly.) Note that
x2 is a leaf containing exactly one data point.

As in Case 1, the cell associated with node y is a rectangle Ry and Rx ⊆ Ry. We
modify T ′i−1 in two substeps. In substep 1, we create two children y1 and y2 for node
y. We then split Ry into two rectangles by hyperplane P ; the rectangle that is on
the same side of P as Rx1 is associated with y1, and the other rectangle is associated
with y2. Next we set f(x2) = y2. Note that y2 will be a leaf in the final tree T ′.

The description of substep 2 is identical to Case 1, and so we omit it. Note that
we need only to process nodes x1 and y1 in substep 2 (since x2 is already mapped by
f in substep 1).

We now show that the invariant holds. The argument is similar to that for Case 1,
with two differences: (1) in showing that there is a data point close to Ry2 (property
A.4), and (2) in showing that the size of Ry2 is ≥ sx2

/2 and ≤ 8sx2
((5) of the

invariant).

Arguing as in Case 1, we can show that the length of each side of Ry2 is ≥ sx/2
and ≤ 4sx. Further, since Rx contains a data point (call it p), and Rx ⊆ Ry, the
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distance between any point in Ry and p is no more than the diameter of Ry; by (4(b))

of the invariant, this is ≤ 4
√
dsx. Since Ry2 ⊆ Ry, this bound also applies to the

distance between any point in Ry2 and p. It follows that Ry2 satisfies property A.4.
Finally, to show the desired lower and upper bound on the size of Ry2 , note that
Rx2 is the larger of the two children formed by applying the sliding-midpoint method
to Rx. Thus sx ≥ sx2 ≥ sx/2, which implies that the length of each side of Ry2 is
≥ sx2/2 and ≤ 8sx2 . This completes the proof.

The following lemma proved in [23] gives a bound on the number of leaf cells
visited by priority search that holds irrespective of the data distribution and the
location of the query point.

Lemma 6.10 (see [23]). The number of leaf cells of the sliding-midpoint tree
visited by priority search in the worst case is O((1 + 1/ε)d). The constant factor in
the O-notation depends on d.

Let T denote the sliding-midpoint tree, and let T ′ denote the tree corresponding
to it, given in the statement of Lemma 6.9.

Lemma 6.11. The expected query time of priority search on the sliding-midpoint
tree T is O(

∑
x∈NT ′ s

d
x). The constant factor in the O-notation depends on d and ε.

Proof. By Lemma 3.2, the query time is O(I + Ld + L log I), where I and L
are the number of internal and leaf nodes visited, respectively. Thus, for fixed d, the
expected query time is O(E[I] + E[L log I]). By Lemma 6.10, L is bounded by a
constant. Hence the expected query time is O(E[I]+E[log I]) = O(E[I]). Lemma 4.1
implies that E[I] = O(

∑
x∈NT s

d
x). By Lemma 6.9, there is a 1-1 function f that

maps each node in T to a node in T ′, whose size is the same to within a constant
factor. The lemma now follows.

Lemma 6.12. Let T̃ be any partition tree in which the cells associated with the leaf
and internal nodes of the tree satisfy properties A.1–A.3 and A.6. Let ZT̃ denote the

subdivision of U induced by the leaf nodes of T̃ . Then
∑
x∈NT̃ s

d
x = O(entropy(ZT̃ ) +

1), where the constant factor in the O-notation depends on d.

Proof. Since the cells associated with the nodes of the tree satisfy property A.2
(bounded aspect ratio) and property A.3 (stickiness), it follows that

∑
x∈NT̃ s

d
x =

O(
∑
x∈NT̃ vx). Since the volume of a node x is the sum of the volume of all the

leaf nodes descended from it, we can write
∑
x∈NT̃ vx =

∑
x∈LT̃ vx(�x + 1), where �x

denotes the level of leaf x. Further, by property A.6, �x = O(log(1/vx) + 1). Thus∑
x∈NT̃ s

d
x = O(

∑
x∈LT̃ vx(log(1/vx) + 1)) = O(entropy(ZT̃ ) + 1).

By Lemma 6.9, T ′ satisfies the conditions of Lemma 6.12, and thus
∑
x∈NT ′ s

d
x =

O(entropy(ZT ′) + 1). Setting D = ZT ′ and applying Lemmas 6.9 and 6.11, we obtain
the desired upper bound on the expected query time.

Lemma 6.13. The expected query time of priority search on the sliding-midpoint
tree is O(entropy(D) + 1), where D is some set of cells in U satisfying properties
A.1–A.5. The constant factor in the O-notation depends on d and ε.

Finally, combining this lemma with the lower bound given in Lemma 6.2 estab-
lishes Theorem 6.1.

Remark. It is easy to see that our proof of Theorem 6.1 also implies the following:
Let S be any set of n data points in U , and let A be any algorithm for finding the
approximate nearest neighbor that can be modeled as an algebraic decision tree T
using linear tests. Then the expected query time of priority search on the sliding-
midpoint tree is no more than a constant (depending on d and ε) times the expected
query time of A.
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We mention only two key observations. First, the leaf nodes of T induce a subdi-
vision ZT of U into convex cells, such that each cell has at most one data point (since
the same data point must be the approximate nearest neighbor, no matter where the
query point lies in the cell). Second, the weighted path length of T , where the volume
of a leaf is its weight, is a lower bound on the expected query time of A. Thus, as
in section 6.1, we can prove that the expected query time of A is Ω(entropy(D) + 1),
where D is any set of cells in U satisfying properties A.1–A.5. The claim now follows
in light of Lemma 6.13.

7. Experimental results. We ran experiments to compare the performance
of the sliding-midpoint tree with the standard kd-tree, a partition tree devised by
Friedman, Bentley, and Finkel [16] which is often used in nearest neighbor searching
(both exact and approximate). The standard kd-tree recursively splits the data set
into two sets of equal size by a hyperplane orthogonal to the dimension in which
the points have maximum spread (difference of maximum and minimum coordinate).
Friedman, Bentley, and Finkel showed that this tree can be used to answer nearest
neighbor queries in O(log n) expected time, assuming that both data and query points
are sampled from a distribution of bounded density.

We start by listing the point distributions used for generating the data sets [6, 24].
The clustered segments distribution was used to model data sets that exhibit cluster-
ing in low dimensional subspaces. The correlated Gaussian and correlated Laplacian
point distributions were chosen to model data from speech processing applications.
These two distributions were formed by grouping the output of autoregressive sources
into vectors of length d. An autoregressive source uses the following recurrence to
generate successive outputs:

Xn = ρXn−1 +Wn,

where Wn is a sequence of zero mean independent, identically distributed random
variables. The correlation coefficient ρ was taken as 0.9 for our experiments. Each
point was generated by selecting its first coordinate from the corresponding uncorre-
lated distribution (either Gaussian or Laplacian), and then the remaining coordinates
were generated by the equation above. See Farvardin and Modestino [14] for more
information.

Uniform. Each coordinate was chosen uniformly from the interval [0, 1].
Clustered segments. Eight axis-parallel line segments were sampled from a hy-

percube as follows. For each line segment a random coordinate axis xk was selected,
and a point p was sampled uniformly from the hypercube. The line segment is the
intersection of the hypercube with the line parallel to xk, passing through p. An equal
number of points were generated uniformly along the length of each line segment and
a Gaussian error with standard deviation of 0.001 was added.

Gaussian. Each coordinate was chosen from the Gaussian distribution with zero
mean and unit variance.

Laplace. Each coordinate was chosen from the Laplacian distribution with zero
mean and unit variance.

Correlated Gaussian. Wn was chosen so that the marginal density of Xn is normal
with variance unity.

Correlated Laplacian. Wn was chosen so that the marginal density of Xn is
Laplacian with variance unity.

We generated data points in dimension 16 from these distributions and in each
case generated query points uniformly from a hypercube enclosing 90% of the data
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Fig. 5. Average number of floating point operations for the (a) uniform, (b) clustered segments,
(c) correlated Gaussian, and (d) correlated Laplacian distributions versus n. Here ε = 2.

points (to reduce the effect of outliers). Throughout, we used a bucket size (the
maximum number of data points inside a leaf cell) of one for the partition trees.

For each experiment, we fixed ε and measured a number of statistics, averaging
over 200 query points. The statistics included the average number of nodes visited,
the average number of floating point operations (that is, any arithmetic operation
involving point coordinates or distances), and the average CPU time. We present
plots showing the number of floating point operations, which agrees well with the
CPU times and provides a reasonable machine-independent measure of the query
time.

The results for the uniform, clustered segments, correlated Gaussian, and corre-
lated Laplacian distributions are shown in Figures 5 and 6. Figure 5 shows the average
number of floating point operations as a function of n when ε is 2. Figure 6 shows the
average number of floating point operations as a function of ε when n is 128, 000. We
used a large value of ε in some of our experiments because we observed that the actual
relative error committed by the algorithm is typically smaller by factors between 10
and 100.

We can make the following observations from the plots.

• The key observation is that for the clustered and the two correlated distri-
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Fig. 6. Average number of floating point operations for the (a) uniform, (b) clustered segments,
(c) correlated Gaussian, and (d) correlated Laplacian distributions versus ε. Here n = 128, 000.

butions, the sliding-midpoint tree offers significant speed-up, sometimes by
factors of over 10, compared to the standard kd-tree. Moreover, the speed-up
increases with n.

• For the uniform distribution, both trees yield very similar query times.
• For the clustered segments distribution, the expected query time for the

sliding-midpoint tree appears to be independent of the number of data points.
(This is not hard to explain using Lemma 4.1.)
• As ε increases from 0 to 2, the query times of both the trees decrease signifi-

cantly, usually by factors between 10 and 100.

Because of its design, the sliding-midpoint tree does a better job than the standard
kd-tree of zooming toward the region where the data points are more densely clustered.
This is the reason why it enjoys a considerable advantage for clustered data sets.

8. Conclusion. We have studied the approximate nearest neighbor problem
from the perspective of expected-case performance. Our analysis assumes that the
query points are sampled uniformly from a hypercube enclosing all the data points
but makes no assumption on the distribution of data points. We have shown that the
sliding-midpoint tree achieves linear space and logarithmic expected query time. We
have also shown that this tree attains optimal expected query time (ignoring constant
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factors) for any set of data points in a certain class of algorithms. The data structure
is simple and easy to implement, and our empirical studies indicate that it performs
well in practice.

There are several interesting open problems. The main limitation of our work is
that it is restricted to the case of uniform query distribution. It would be interesting
to develop an algorithm that achieves optimal expected query time for nonuniform
query distributions. Another problem concerns strengthening the optimality claim for
the sliding-midpoint tree. We proved that the sliding-midpoint tree achieves expected
query time no more than a constant times that of any algorithm that can be modeled
as an algebraic decision tree using linear tests. Does this optimality claim hold even
if we allow polynomials of higher degree?
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Abstract. We introduce a natural variant of the (metric uncapacitated) k-median problem
that we call the online median problem. Whereas the k-median problem involves optimizing the
simultaneous placement of k facilities, the online median problem imposes the following additional
constraints: the facilities are placed one at a time, a facility cannot be moved once it is placed, and
the total number of facilities to be placed, k, is not known in advance. The objective of an online
median algorithm is to minimize the competitive ratio, that is, the worst-case ratio of the cost of an
online placement to that of an optimal offline placement. Our main result is a constant-competitive
algorithm for the online median problem running in time that is linear in the input size. In addition,
we present a related, though substantially simpler, constant-factor approximation algorithm for the
(metric uncapacitated) facility location problem that runs in time linear in the input size. The latter
algorithm is similar in spirit to the recent primal-dual-based facility location algorithm of Jain and
Vazirani, but our approach is more elementary and yields an improved running time. While our
primary focus is on problems which ask us to minimize the weighted average service distance to
facilities, we also show that our results can be generalized to hold, to within constant factors, for
more general objective functions. For example, we show that all of our approximation results hold,
to within constant factors, for the k-means objective function.
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clustering, k-means
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1. Introduction. Suppose we wish to open a new chain of stores in a city with
n neighborhoods and that we have a good estimate of the demand for our product in
each neighborhood. In determining where to locate the stores, our high-level strategy
is to minimize the service cost associated with our configuration of stores, which we
define as the demand-weighted average distance from a customer to the nearest store.
Our business plan is to start with one store and then to gradually add new stores as
allowed by our profits. (Remark: We will never move a previously established store.)
Thus our configuration of stores may change over time, and hence the ratio between
the service cost of our configuration and that of an optimal same-size configuration
may also change. The goal of the online median problem is to choose a site for each
new store so that the maximum value of this ratio is minimized. An online median
algorithm that guarantees a ratio of at most r is said to achieve a competitive ratio
of r, or to be r-competitive.

The variant of this problem, in which the total number of stores to be built, k, is
known in advance, corresponds to the classic k-median problem. The k-median prob-
lem is known to be NP-hard and has been studied extensively over several decades
(see, e.g., [25] for many pointers to the literature). Charikar et al. presented the
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first polynomial-time constant-factor approximation algorithm for the k-median prob-
lem [5]; subsequently, improved time bounds and approximation factors have been
obtained by Charikar and Guha [4], Jain and Vazirani [17], and Arya et al. [2].

Note that the online median problem can be viewed as the offline problem of
determining a permutation of the n neighborhoods (specifying the order in which to
build our stores) that minimizes the maximum ratio between the service cost of any
prefix of the permutation and that of an optimal same-size configuration. We adopt
this view throughout the remainder of the paper. Given the existence of constant-
factor approximation algorithms for the k-median problem, it is natural to ask whether
there is a constant-competitive algorithm for the online median problem. In other
words, can we (efficiently) find a permutation of the n neighborhoods such that the
service cost of any prefix of the permutation is at most a constant times that of an
optimal same-size configuration? Note that, given an arbitrary problem instance, it
is not clear a priori that such a permutation even exists.

In this paper, we affirm the existence of such a permutation and give a determin-
istic constant-competitive algorithm for the online median problem. Furthermore, the
running time of our algorithm is O(n2+�n) (where � is the number of bits required to
represent each distance), which is linear in the size of the input. While the main contri-
bution of this paper is to identify and solve the online median problem, it worth noting
that the k-median problem is a special case of the online median problem. Hence our
linear-time online median algorithm is also the first deterministic constant-factor ap-
proximation algorithm for the k-median problem running in time that is linear in the
size of the input. (The best previous running time of O((n2 log n)(�+ log n)) is given
in [17].)

An obvious approach to the online median problem is to iteratively choose the
point that minimizes the objective function. Greedy strategies of this kind are com-
monly applied in the design of online algorithms [3, 15]. It turns out, however, that
for the online median problem, the simple strategy suggested above has an unbounded
competitive ratio. We show that a modification of this strategy that we call hierar-
chically greedy can be used to obtain a constant-competitive algorithm for the online
median problem that has a running time that is linear in the size of the input. We
develop this strategy by first considering a simple greedy algorithm for facility loca-
tion.

1.1. Problem definitions. Fix a set of points U , a distance function d : U ×
U → R, and nonnegative functions f, w : U → R. We assume throughout that d is a
metric, that is, d is nonnegative and symmetric and satisfies the triangle inequality,
and d(x, y) = 0 iff x = y. For the online median problem, it will prove useful
to consider a slightly more general class of distance functions in which the triangle
inequality is relaxed to the following “λ-approximate” triangle inequality, where λ ≥ 1:
For any sequence of points 〈x0, . . . , xm〉, d(x0, xm) ≤ λ ·∑0≤i<m d(xi, xi+1). We refer
to such a distance function as a λ-approximate metric. (Remark: The inequality
associated with a λ-approximate metric is referred to as the “λ-polygonal inequality”
in [9].) We let n = |U |, and we define a subset of U to be a configuration iff it is
nonempty. For any point x and configuration X, we define d(x,X) as miny∈X d(x, y).

We consider three computational problems: k-median, online median, and facility
location. For the k-median and online median problems, the cost of a configuration,
which we denote as cost(X), is defined to be

∑
x∈U d(x,X) · w(x). The input to

the k-median problem is (U, d), w, and an integer k, 0 < k ≤ n. The output is a
minimum-cost configuration of size k. The input to the online median problem is
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(U, d) and w. The output is a total order on U . We define the competitive ratio of
such an ordering as the maximum over all k, 0 < k ≤ n, of the ratio of the cost of
the configuration given by the first k points in the ordering to that of an optimal k-
median configuration. We define the competitive ratio of an online median algorithm
as the supremum, over all possible choices of the input instance (U, d) and w, of the
competitive ratio of the ordering produced by the algorithm.

For the facility location problem, the cost of a configuration, denoted cost(X), is
defined as the sum of

∑
x∈X f(x) and

∑
x∈U d(x,X) ·w(x). The input to the facility

location problem is (U, d), f , and w. The output is a minimum-cost configuration.

1.2. Previous work. There has been much prior work on the facility location
and k-median problems. In this paper, we focus on the metric versions of these prob-
lems; for recent work and pointers to the literature on the general (nonmetric) facility
location and k-median problems, see [28]. The first constant-factor approximation
algorithm for facility location is due to Shmoys, Tardos, and Aardal [26] and is based
on rounding the (fractional) solution to a linear program (LP). Chudak [6] gives an
LP-based (1 + 2/e)-approximation algorithm for facility location. This was the best
constant factor known until the work of Charikar and Guha [4], which establishes a
slightly lower approximation ratio of 1.728. Jain, Mahdian, and Saberi [16] give a sim-
ple greedy algorithm for the facility location that has an approximation ratio of 1.61.
To our knowledge, the best approximation ratio for facility location is currently 1.52,
due to Mahdian, Ye, and Zhang [23]. Guha and Khuller [12] provide the best lower
bound known of 1.463 on the approximation ratio for the facility location problem.

The first constant-factor approximation for the k-median problem was recently
given by Charikar et al. [5] and is also LP-based. That work follows a sequence
of bicriteria results utilizing LP-based techniques [21, 22]. (These bicriteria results
produce a configuration of size O(k) with cost at most a constant factor times that
of an optimal configuration of size k.) Jain and Vazirani [17] give the first nearly
linear-time (in the input size) combinatorial algorithms for the facility location and
k-median problems, achieving approximation ratios of 3 and 6, respectively. While the
latter algorithms are combinatorial, the primal-dual approach used in their analysis
is based on LP theory. (See [11] for an excellent introduction to the primal-dual
method.) To our knowledge, the best approximation ratio for the k-median problem
is 3 + ε, due to Arya et al. [2]. Jain, Mahdian, and Saberi [16] provide the best lower
bound known of 1 + 2/e on the approximation ratio for the k-median problem.

Strategies based on local search and greedy techniques for facility location and
the k-median problem have previously been studied. The work of Korupolu, Plaxton,
and Rajaraman shows that a simple local search heuristic proposed by Kuehn and
Hamburger [20] yields both a constant-factor approximation for the facility location
problem and a bicriteria approximation for the k-median problem [18]. To obtain
their approximation result, Arya et al. [2] analyze a similar local search heuristic with
a generalized local search step. Guha and Khuller [12] show that greedy improvement
can be used as a postprocessing step to improve the approximation guarantee of
certain facility location algorithms. Charikar and Guha [4] achieve an approximation
ratio of 1.728 for facility location by combining a local search heuristic with the best
LP-based algorithm known. Charikar and Guha also give a 4-approximation for the
k-median problem by building on the techniques of Jain and Vazirani [17].

1.3. Contributions. Algorithms for problems in discrete location theory arise
in many practical applications; see [7, 25], for example, for numerous pointers to
the literature. Given that many of these problems are NP-hard, it is desirable to
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develop fast approximation algorithms. As mentioned above, it is not uncommon
for approximation algorithms to be based on a greedy approach. In this paper, we
show that greedy strategies yield a fast constant-factor approximation algorithm for
the facility location problem and a fast constant-competitive algorithm for the online
median problem.

We give an algorithm for the facility location problem that achieves an approx-
imation ratio of 3 and runs in O(n2) time (i.e., time linear in the size of the input).
The main idea of the algorithm is to compute and use the “value” of balls about every
point in the metric space. In retrospect, the idea of value is implicit in the work of
Jain and Vazirani [17]. We make this idea explicit and use the values of balls to make
greedy choices. Additionally, our algorithm is faster than the Jain-Vazirani algorithm
by a logarithmic factor.

While a simple greedy algorithm yields a constant-factor approximation bound
for the facility location problem, it appears that a more sophisticated approach is
needed to obtain a constant-factor approximation guarantee for the k-median prob-
lem, let alone a constant-competitiveness result for the online median problem. For
example, in section 3, we show that perhaps the most natural greedy approach to
the k-median (resp., online median) problem leads to an unbounded approximation
(resp., competitive) ratio.

Our main result is a constant-competitive algorithm for the online median prob-
lem that runs in time linear in the size of the input. We achieve this result using a
“hierarchically greedy” approach. The basic idea behind this approach is as follows:
Rather than selecting the next point in the ordering based on a single greedy crite-
rion, we greedily choose a region (the set of points lying within some ball) and then
recursively select a point within that region. Thus the choice of point is influenced
by a sequence of greedy criteria addressing successively finer levels of granularity.

Finally, we show that our analysis holds for more general classes of distance func-
tions. We study two classes of “approximate” metrics for which the triangle inequality
holds only to within a constant factor. We define and study λ-approximate metrics
and weakly λ-approximate metrics. We show that our analysis holds to within con-
stant factors given either of these two classes of distance functions. First, we show
that λ-approximate distance functions facilitate an implementation of our online me-
dian algorithm running in time linear in the input size. We then show that weakly
λ-approximate distance functions allow us to apply our techniques to objective func-
tions other than the k-median objective. For example, we show that the approx-
imation bounds for both of our algorithms hold to within constant factors for the
well-known k-means objective function [8].

1.4. Outline. The rest of this paper is organized as follows. In section 2, we
present our facility location algorithm and prove that it achieves an approximation
ratio of 3. In section 3, we present our online median algorithm and prove that it is
constant-competitive. Then, in section 4, we consider a weaker form of the triangle
inequality in which we assume that the triangle inequality holds only to within a
constant factor and show that our approximation bounds still hold (to within constant
factors). Section 5 offers some concluding remarks.

2. Facility location. The following definitions are used throughout the present
section as well as section 3.

(i) For any nonnegative integer m, let [m] denote the set {i | 0 ≤ i < m}.
(ii) A ball A is a pair (x, r), where the center x of A, denoted center(A), belongs

to U , and the radius r of A, denoted radius(A), is a nonnegative real.
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(iii) Given a ball A = (x, r), we let Points(A) denote the set {y ∈ U | d(x, y) ≤
r}. However, for the sake of brevity, we tend to write A instead of Points(A). For
example, we write “x ∈ A” and “A∪B” instead of “x ∈ Points(A)” and “Points(A)∪
Points(B),” respectively.

(iv) The value of a ball A = (x, r), denoted value(A), is
∑
y∈A(r−d(x, y)) ·w(y).

(v) For any ball A = (x, r) and any nonnegative real c, we define cA as the ball
(x, cr).

2.1. Algorithm. In the first step of the following algorithm, we assume that
there is at least one point x such that w(x) > 0. (The problem is trivial otherwise.)
The output of the algorithm is the configuration Zn, which we also refer to as Z.
(Remark: The indexing of the sets Zi has been introduced solely to facilitate the
analysis.)

1. For each point x, determine a ball Ax = (x, rx) such that value(Ax) = f(x).
2. Determine a bijection ϕ : [n]→ U such that rϕ(i−1) ≤ rϕ(i), 0 < i < n.
3. Let Bi = (xi, ri) denote the ball Aϕ(i), 0 ≤ i < n. Let Z0 = ∅.
4. For i = 0 to n− 1: If Zi ∩ 2Bi = ∅, then let Zi+1 = Zi ∪ {xi}; otherwise, let

Zi+1 = Zi.
We now sketch a simple O(n2)-time implementation of the above algorithm. For

each point x, the associated radius rx can be computed in O(n) time. (This is es-
sentially a weighted selection problem.) Thus the first step requires O(n2) time. The
second step involves sorting n values and can be accomplished in O(n log n) time. The
running time for the third step is negligible. Each iteration of the fourth step can
be easily implemented in O(n) time; thus the time complexity of the fourth step is
O(n2).

2.2. Approximation ratio. In this section, we establish the following theorem.
Theorem 2.1. For any configuration X, cost(Z) ≤ 3 · cost(X).
Proof. The proof is immediate from Lemmas 2.4 and 2.8 below.
Lemma 2.2. For any point xi, there exists a point xj in Z such that j ≤ i and

d(xi, xj) ≤ 2ri.
Proof. If there is no such point xj with j < i, then Zi ∩ 2Bi is empty, and so xi

belongs to Z.
Lemma 2.3. Let xi and xj be distinct points in Z. Then d(xi, xj) > 2·max{ri, rj}.
Proof. Assume without loss of generality that j < i. Thus ri ≥ rj . Furthermore,

d(xi, xj) > 2ri since xj belongs to Zi and Zi ∩ 2Bi is empty.
For any point x and any configuration X, let

charge(x,X) = d(x,X) +
∑
xi∈X

max{0, ri − d(xi, x)}.

Lemma 2.4. For any configuration X,
∑
x∈U charge(x,X) · w(x) = cost(X).

Proof. Note that∑
x∈U

charge(x,X) · w(x) =
∑
xi∈X

∑
x∈Bi

(ri − d(xi, x)) · w(x) +
∑
x∈U

d(x,X) · w(x)

=
∑
xi∈X

value(Bi) +
∑
x∈U

d(x,X) · w(x),

which is equal to cost(X) since value(Bi) = f(xi).
Lemma 2.5. Let x be a point, let X be a configuration, and let xi belong to X.

If d(x, xi) = d(x,X), then charge(x,X) ≥ max{ri, d(x, xi)}.
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Proof. If x does not belong to Bi, then charge(x,X) ≥ d(x, xi) > ri. Otherwise,
charge(x,X) ≥ d(x, xi) + (ri − d(x, xi)) = ri ≥ d(x, xi).

Lemma 2.6. Let x be a point, and let xi belong to Z. If x belongs to Bi, then
charge(x, Z) ≤ ri.

Proof. By Lemma 2.3, there is no point xj in Z such that i �= j and x belongs
to Bj . The claim now follows from the definition of charge(x, Z), since d(x, Z) ≤
d(x, xi).

Lemma 2.7. Let x be a point, and let xi belong to Z. If x does not belong to Bi,
then charge(x, Z) ≤ d(x, xi).

Proof. The claim is immediate unless there is a point xj in Z such that x belongs to
Bj . If such a point xj exists, then Lemmas 2.3 and 2.6 imply d(xi, xj) > 2·max{ri, rj}
and charge(x, Z) ≤ rj , respectively. The claim now follows since d(x, xi) ≥ d(xi, xj)−
d(x, xj) > 2rj − rj = rj .

Lemma 2.8. For any point x and configuration X, charge(x, Z) ≤ 3·charge(x,X).
Proof. Let xi be some point in X such that d(x, xi) = d(x,X). By Lemma 2.2,

there exists a point xj in Z such that j ≤ i and d(xi, xj) ≤ 2ri.
If x belongs to Bj , then charge(x, Z) ≤ rj by Lemma 2.6. The claim follows since

j ≤ i implies rj ≤ ri and Lemma 2.5 implies charge(x,X) ≥ ri.
If x does not belong to Bj , then charge(x, Z) ≤ d(x, xj) by Lemma 2.7. Thus

charge(x, Z) ≤ d(x, xi) + d(xi, xj) ≤ d(x, xi) + 2ri. The claim now follows by
Lemma 2.5, since the ratio of d(x, xi) + 2ri to max{ri, d(x, xi)} is at most 3.

3. Online median placement. In the previous section, we found that a simple
greedy algorithm yields interesting results for the facility location problem. The most
obvious greedy algorithm for the online median problem is to select as the next point
in the ordering the one that minimizes the objective function. Unfortunately, this
algorithm gives an unbounded competitive (resp., approximation) ratio for the online
median (resp., k-median) problem. To see this, consider an instance consisting of
n > 3 points, one “red” and the rest “blue,” such that the following conditions are
satisfied: the red point has weight 0; each blue point has weight 1; the distance from
the red point to any blue point is 1, and the distance between any pair of distinct
blue points is 2. The aforementioned greedy algorithm chooses the red point first in
the ordering, since that gives a cost of n − 1, while choosing any other point gives a
cost of 2n− 4. Consequently, the ratio for a configuration of size n− 1 is unbounded
since the greedy cost is 1 and the optimal cost is 0. (This example also shows that
no online median algorithm can achieve a competitive ratio below 2− 2

n−1 .)
We show that a more careful choice of the point, which we call hierarchically

greedy, works well. Let ∆ (resp., δ) denote the largest (resp., smallest) distance
between two distinct points in the metric space. We define a certain ball about each
point and select a ball A of maximum value. However, rather than simply choosing the
center of ball A as the next point in the ordering, we apply the approach recursively
to select a point within a region defined by A. At each successive level of recursion,
we consider geometrically smaller balls about the remaining candidate points. Within
O(log ∆

δ ) levels of recursion, we arrive at a ball containing a single point, and we return
this point as the next one in the ordering. Note that whereas the greedy algorithm
discussed in the previous paragraph makes a single greedy choice to select a point,
the hierarchically greedy algorithm makes O(log ∆

δ ) greedy choices per point.
Throughout this section, let λ, α, β, and γ denote real numbers satisfying the

following inequalities:

λ ≥ 1,(1)
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α > 1 + λ,(2)

β ≥ λ(α− 1)

α− 1− λ
,(3)

γ ≥
(
α2β + αβ

α− 1
+ α

)
λ.(4)

The online median algorithm of section 3.1 below makes use of the following
additional definitions.

(i) A child of a ball (x, r) is any ball (y, rα ), where d(x, y) ≤ βr.
(ii) For any point x and configuration X, let isolated(x,X) denote the ball

(x, d(x,X)/γ). We let isolated(x, ∅) denote the ball (x,maxy∈U d(x, y)).
(iii) For any nonempty sequence !, we let head(!) (resp., tail(!)) denote the first

(resp., last) element of !.

3.1. Algorithm. Let Z0 = ∅. For i = 0 to n− 1, execute the following steps:
1. Let σi denote the singleton sequence 〈A〉, where A is a maximum value ball

in {isolated(x, Zi) | x ∈ U \ Zi}.
2. While the ball tail(σi) has more than one child, append a maximum value

child of tail(σi) to σi.
3. Let Zi+1 = Zi ∪ {center(tail(σi))}.

The output of the online median algorithm is a collection of point sets Zi such
that |Zi| = i, 0 ≤ i ≤ n, and Zi ⊆ Zi+1, 0 ≤ i < n. Note that it is sufficient for an
implementation of the algorithm to maintain the ball tail(σi) as opposed to the entire
sequence σi. The sequence σi has been introduced in order to facilitate the analysis.

We discuss two implementations of the online median algorithm in section 3.4.
The first implementation has a running time that is slightly superlinear in the input
size. The second implementation has a running time that is linear in the input size but
assumes a (linear) preprocessing phase in which all distances are rounded down to the
nearest integral power of λ. (Note that for the preprocessing phase to be well defined,
we require λ > 1.) If the input distance function is a metric, it is straightforward to
see that such rounding produces a λ-approximate metric.

3.2. Competitive ratio. Before proceeding with the analysis, we introduce a
number of additional definitions.

(i) Let zi denote the unique point in Zi+1 \ Zi, 0 ≤ i < n.
(ii) For any configurationX and set of points Y , let cost(X,Y ) =

∑
y∈Y d(y,X)·

w(y).
(iii) For any configuration X, we partition U into |X| sets {cell(x,X) | x ∈ X}

as follows: For each point y in U , we choose a point x in X such that d(y,X) = d(y, x)
and add y to cell(x,X).

(iv) For any configuration X, point x in X, and set of points Y , we define
in(x,X, Y ) as cell(x,X) ∩ isolated(x, Y ) and out(x,X, Y ) as cell(x,X) \ in(x,X, Y ).

(v) For any configuration X and set of points Y , we let in(X,Y ) denote the set
∪x∈X in(x,X, Y ) and out(X,Y ) denote U \ in(X,Y ).

Note that the |X| sets cell(x,X), x ∈ X, partition U by assigning each point
in U to its closest point in X, breaking ties arbitrarily. The sets in(x,X, Y ) and
out(x,X, Y ) partition the set cell(x,X) into two disjoint sets. In our arguments, we
will consider the sets in(x,X,Z|X|) and out(x,X,Z|X|) for x ∈ X, where X is an
arbitrary configuration.

We note that the set out(x,X,Z|X|) corresponds to the points in cell(x,X) that
are “outside” the ball isolated(x, Z|X|). That is, if isolated(x, Z|X|) has radius r,
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then by the definition of isolated(x, Z|X|), the points contained in out(x,X,Z|X|) are
exactly the points in cell(x,X) that have distance greater than r to x but distance at
most γr to some point in Z|X|. Thus we can view the points in out(x,X,Z|X|) as the
points that are “close” to Z|X| and “far” from X. For any point y in out(X,Z|X|), it is
relatively straightforward (see Lemma 3.2) to show that d(y, Z|X|) (i.e., the distance to
the configuration Z|X| computed by our online median algorithm) is within a constant
factor of d(y,X).

We devote considerably more effort to showing that the cost incurred by Z|X| to
serve the set in(x,X,Z|X|) is within a constant factor of optimal. The set in(x,X,Z|X|)
corresponds to the points in cell(x,X) that are contained in the ball isolated(x, Z|X|).
Suppose that isolated(x, Z|X|) has radius r. By the definition of isolated(x, Z|X|), the
points contained in in(x,X,Z|X|) are exactly the points in cell(x,X) that are in the
ball (x, r) but have distance strictly greater than γr to any point in Z|X|. Thus the
points in in(x,X,Z|X|) are those points in cell(x,X) that are “close” to X and “far”
from Z|X|. Accounting for the cost incurred by Z|X| for the points in(X,Z|X|) will
comprise the majority of the proofs in this subsection and the following subsection.

We now present our main result, Theorem 3.1. In order to minimize the compet-
itive ratio of 2λ(γ + 1) implied by the theorem, we set λ to 1, set α to 2 +

√
3, and

set β and γ to the right-hand sides of (3) and (4), respectively. We thereby establish
a competitive ratio of below 29.86 for the online median problem. In section 3.4, we
describe an implementation of the online median algorithm for which the parameter
λ is required to be strictly greater than 1. The degradation in the competitive ratio
that results by setting λ greater than 1 can be made arbitrarily small by choosing λ
sufficiently close to 1.

Theorem 3.1. For any configuration X, cost(Z|X|) ≤ 2λ(γ + 1) · cost(X).

Proof. Let Y = in(X,Z|X|), and let Y ′ = out(X,Z|X|) = U \ Y . Note that
cost(X) = cost(X,Y ) + cost(X,Y ′) and cost(Z|X|) = cost(Z|X|, Y ) + cost(Z|X|, Y ′).
Thus the theorem follows immediately from Lemmas 3.3, 3.5, and 3.6 below.

Lemma 3.2. For any configuration X, and points x in X and y in out(x,X,Z|X|),
d(y, Z|X|) ≤ λ(γ + 1) · d(y,X).

Proof. Let isolated(x, Z|X|) = (x, r). Note that d(x, y) > r. Also, by the definition
of isolated(x, Z|X|), there is a point z in Z|X| such that d(x, z) = γr. Hence d(y, z) ≤
λ[d(x, y) + d(x, z)] = λ[d(x, y) + γr] < λ[d(x, y) + γ · d(x, y)] = λ(γ + 1) · d(x, y) =
λ(γ+1) ·d(y,X), where the last step follows since y is in cell(x,X). The claim follows
since d(y, z) ≥ d(y, Z|X|).

Lemma 3.3. For any configuration X, cost(Z|X|, out(X,Z|X|)) is at most λ(γ +
1) · cost(X, out(X,Z|X|)).

Proof. Summing the inequality of Lemma 3.2 over all y in out(x,X,Z|X|), we
obtain

cost(Z|X|, out(x,X,Z|X|)) ≤ λ(γ + 1) · cost(X, out(x,X,Z|X|)).

The claim now follows by summing the above inequality over all x in X.

Lemma 3.4. For any configuration X and point x in X, cost(Z|X|, in(x,X,Z|X|))
is at most λ(γ + 1)[cost(X, in(x,X,Z|X|)) + value(isolated(x, Z|X|))].

Proof. Assume that isolated(x, Z|X|) = (x, r). Note that d(x, y) = γr for some
y in Z|X|. Thus, for any z in isolated(x, Z|X|), d(y, z) ≤ λ[d(y, x) + d(x, z)] ≤
λ(γ + 1)r, where the last step follows from our bound on d(x, y) and the defini-
tion of isolated(x, Z|X|). It follows that cost(Z|X|, in(x,X,Z|X|)) is at most λ(γ + 1)
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times∑
z∈in(x,X,Z|X|)

r · w(z) ≤
∑

z∈in(x,X,Z|X|)

d(x, z) · w(z) +
∑

z∈isolated(x,Z|X|)

(r − d(x, z)) · w(z)

= cost(X, in(x,X,Z|X|)) + value(isolated(x, Z|X|)).

Lemma 3.5. For any configuration X and point x in X, cost(Z|X|, in(X,Z|X|))
is at most λ(γ + 1)[cost(X, in(X,Z|X|)) +

∑
x∈X value(isolated(x, Z|X|))].

Proof. The claim follows by summing the inequality of Lemma 3.4 over all x in
X.

Our main technical lemma is stated below. The proof is given in the next sub-
section.

Lemma 3.6. For any configuration X,

∑
x∈X

value(isolated(x, Z|X|)) ≤ cost(X).

3.3. Proof of Lemma 3.6. In this section, we establish our main technical
lemma, Lemma 3.6. Informally, Lemma 3.6 yields an upper bound on the value of
certain balls containing points “far” from Z|X|, where X is an arbitrary configuration.
The upper bound we obtain states that the value associated with these points is at
most cost(X). Thus, in combination with Lemmas 3.3 and 3.5, we can conclude
that cost(Z|X|) is O(cost(X)). To prove Lemma 3.6, we argue that for each ball
isolated(x, Z|X|), it is possible to identify a ball with commensurately high value that
does not contain a point from X. More precisely, we construct a matching between
the points in Z|X| and X and show that for each point x in X \Z|X| we can identify a
ball Ax appearing in some sequence σi < |X| such that value(Ax) ≥ isolated(x, Z|X|),
cost(X,Ax) ≥ value(Ax), and all such balls Ax are disjoint. Intuitively, we will
identify these balls by making use of the greedy manner in which our online median
algorithm constructs the sequences of balls σi, 0 ≤ i < |X|.

Lemma 3.7. Let A = (x, r) belong to σi. Then d(x, Zi) ≥ γr.
Proof. Let z be a point in Zi such that d(x, z) = d(x, Zi). If A = head(σi), then

A = isolated(x, Zi), and the result is immediate. Otherwise, let B = (y, s) denote the
predecessor of A in σi, and assume inductively that d(y, Zi) ≥ γs. Note that d(x, y) ≤
βs and s = αr. Thus d(x, Zi) = d(x, z) ≥ d(y, z)/λ − d(x, y) ≥ (γ/λ − β)αr ≥ γr,
where the last step follows from (4).

Lemma 3.8. Let A = (x, r) belong to σi, and let B = (y, s) belong to σj. If i < j
and d(x, y) ≤ r+s, then the following claims hold: (i) radius(head(σj)) ≤ r

α ; (ii) A �=
tail(σi); (iii) the successor of A in σi (call it C) satisfies value(C) ≥ value(head(σj)).

Proof. Let head(σj) = (y′, s′). For part (i), we begin by deriving upper and lower
bounds on d(y′, zi). For a lower bound on d(y′, zi), note that d(y′, zi) ≥ d(y′, Zj) (since
i < j) and d(y′, Zj) ≥ γs′ by Lemma 3.7. To derive an upper bound on d(y′, zi), we
first let P denote the prefix of sequence σj ending with ball B, and we let S denote the
suffix of sequence σi beginning with ball A. We then apply the λ-approximate triangle
inequality to the sequence of points 〈y′, . . . , y, x, . . . , zi〉, where the prefix 〈y′, . . . , y〉
corresponds to the centers of the balls in P and the suffix 〈x, . . . , zi〉 corresponds to
the centers of the balls in S. By repeated application of the definition of a child, and
using the given upper bound on d(x, y), we obtain

d(y′, zi) ≤ λ

[
β

(
s′ +

s′

α
+ · · ·+ αs

)
+ s+ r + β

(
r +

r

α
+ · · ·

)]
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≤
[

αβ

α− 1
· (r + s′) + r

]
λ.

Combining the bounds on d(y′, zi) and applying (4), we obtain

(
α2β + αβ

α− 1
+ α

)
λs′ ≤

[
αβ

α− 1
· (r + s′) + r

]
λ.

Multiplying through by (α − 1)/λ and rearranging, we get r ≥ α2β+α2−α
αβ+α−1 · s′ = αs′,

establishing the claim.
For part (ii), note that d(x, y) ≤ r + r

α < βr by part (i) and (3). Thus A has at
least two children; the claim follows.

For part (iii), we obtain an upper bound on d(x, y′) by applying the λ-approximate
triangle inequality to the sequence of points 〈y′, . . . , y, x〉, where the prefix 〈y′, . . . , y〉
corresponds to the centers of the balls in P (as defined in part (i) above). By repeated
application of the definition of a child and by the given upper bound on d(x, y), we
observe that

d(x, y′) ≤ λ
[
r + s+

(
αs+ α2s+ · · ·+ s′

)
β
]
.

Then, by using (2) and (3) and part (i), we observe that

λ
[
r + s+

(
αs+ α2s+ · · ·+ s′

)
β
] ≤ λr +

αβλ

α− 1
· s′

≤ λr +
αβλ

α− 1
· r
α

≤
(

β

α− 1
+ 1

)
λr.

Observe that ( β
α−1 + 1)λr is at most βr by (3). It then follows that head(σj) is

contained in a child of A. Thus value(C) ≥ value(head(σj)).
For ease of notation, throughout the remainder of this section, we fix a configu-

ration X, and let k denote |X|. We now describe a pruning procedure that we use
for the purpose of analyzing our online median algorithm. The pruning procedure
takes as input the k sequences σi, 0 ≤ i < k, and produces as output k sequences τi,
0 ≤ i < k. The sequence τi is initialized to σi, 0 ≤ i < k. The (nondeterministic)
pruning procedure then performs a number of iterations. In a general iteration, the
pruning procedure checks whether there exist two balls A = (x, r) and B = (y, s)
in distinct sequences τi and τj , respectively, such that i < j and d(x, y) ≤ r + s.
If not, the pruning procedure terminates. If so, the sequence τi is redefined as the
proper suffix of (the current) τi beginning at the successor of A. Note that part (ii)
of Lemma 3.8 ensures that the pruning procedure is well defined. Furthermore, the
procedure is guaranteed to terminate since each iteration reduces the length of some
sequence τi.

Lemma 3.9. Let A = (x, r) belong to τi, and let B = (y, s) belong to τj. If i < j,
then d(x, y) > r + s.

Proof. The proof is immediate from the definition of the pruning procedure.
Lemma 3.10. Each sequence τi is nonempty.
Proof. The proof is immediate from part (ii) of Lemma 3.8 and the definition of

the pruning procedure.
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Lemma 3.11. Let x be a point, and assume that 0 ≤ i < j ≤ n. Then

value(isolated(x, Zi)) ≥ value(isolated(x, Zj)).

Proof. Since Zi ⊆ Zj , radius(isolated(x, Zi)) ≥ radius(isolated(x, Zj)). The claim
follows.

Lemma 3.12. Let x be a point, and assume that 0 ≤ i < k. Then

value(head(σi)) ≥ value(isolated(x, Zk)).

Proof. If x belongs to Zi, then radius(isolated(x, Zi)) = 0. It follows that
value(isolated(x, Zi)) = 0, and there is nothing to prove. Otherwise, value(head(σi)) ≥
value(isolated(x, Zi)) by the definition of the online median algorithm, and the claim
follows by Lemma 3.11.

Lemma 3.13. Let x be a point, and assume that 0 ≤ i < k. Then

value(head(τi)) ≥ value(isolated(x, Zk)).

Proof. We prove that the claim holds before and after each iteration of the pruning
procedure. Initially, τi = σi, and the claim holds by Lemma 3.12. If the claim holds
before an iteration of the pruning procedure, then it holds after the iteration by
part (iii) of Lemma 3.8.

A ball A = (x, r) is defined to be covered iff d(x,X) < r. A ball is uncovered iff
it is not covered.

Lemma 3.14. For any uncovered ball A = (x, r), cost(X,A) ≥ value(A).
Proof. Note that cost(X,A) ≥∑y∈A d(y,X) ·w(y) ≥∑y∈A(r− d(y, x)) ·w(y) =

value(A).
Let I denote the set of all indices i in [k] such that some ball in τi is covered.

We now construct a matching between the sets [k] and X as follows. First, for each
i in I, we match i with a point x in X that belongs to the last covered ball in the
sequence τi. (Note that such a point x is guaranteed to exist by the definition of I.
Furthermore, Lemma 3.9 ensures that we do not match the same point with more
than one index.) Second, for each i in [k] \ I in turn, we match i with an arbitrary
unmatched point x in X.

We now construct a function ϕ mapping each point x in X to an uncovered ball.
For each x in X that is matched with an index i in [k] \ I, we set ϕ(x) to head(τi).
For each x in X that is matched with an index i in I, we set ϕ(x) to the successor of
the last covered ball in τi unless tail(τi) is covered, in which case we set ϕ(x) to the
ball (x, 0).

Lemma 3.15. For any pair of distinct points x and y in X, ϕ(x) ∩ ϕ(y) = ∅.
Proof. The proof is immediate from Lemma 3.9 and the fact that the ball (x, 0)

is contained in tail(τi).
Lemma 3.16. For any point x in X, value(ϕ(x)) ≥ value(isolated(x, Zk)).
Proof. If x is matched with an index i in [k]\ I, the claim follows by Lemma 3.13.

If x is matched with an index i in I, we consider two cases. If tail(τi) is covered,
then x = zi since tail(τi) has exactly one child. The claim follows since ϕ(x) =
isolated(x, Zk) = (x, 0). If tail(τi) is uncovered, then the predecessor of ϕ(x) in τi
(call it A = (y, r)) exists and contains x. It follows that value(ϕ(x)) ≥ value(B),
where B = (x, r/α) is the child of A centered at x. Let C = (x, s) denote the ball
isolated(x, Zk). Below we complete the proof of the claim by showing that r/α ≥ s,
which implies that B ⊇ C and hence value(B) ≥ value(C).
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It remains to prove that r/α ≥ s in the final case considered above. We prove
the claim by deriving upper and lower bounds on d(x, zi). Let S be the suffix of the
sequence τi beginning with the ball A. For the upper bound, we apply the triangle
inequality to the sequence of points 〈x, y, . . . , zi〉, where the suffix 〈y, . . . , zi〉 consists
of the centers of the balls in S. We then obtain that

d(x, zi) ≤ λ

(
r + β

(
r +

r

α
+ · · ·

))

≤
(
1 +

αβ

α− 1

)
λr,

which is less than γr/α by (4). The desired inequality follows since d(x, zi) ≥ γs by
the definition of C.

Lemmas 3.14, 3.15, and 3.16 together yield a proof of Lemma 3.6.

3.4. Time complexity. In this section, we describe two implementations of the
online median algorithm given in section 3.1. Throughout this section, let � denote the
quantity log ∆

δ . The first implementation runs in O((n+ �) ·n log n) time. The second
implementation runs in O(n2 + �n) time and assumes an O(n2)-time preprocessing
phase in which all distances are rounded down to the nearest integral power of λ. To
analyze the running time of the implementations given below, we make use of the
following lemma.

Lemma 3.17. Let A = (x, r) be a child of a ball B in sequence σi, and let
A′ = (x, r′) be a child of a ball B′ in sequence σj. If i < j, then r ≥ (α+ 1 + 1

β )r
′.

Proof. We first obtain an upper bound on d(x, zi) by applying the λ-approximate
triangle inequality to a sequence of points consisting of the centers of the balls in the
suffix of σi beginning with ball A. Thus d(x, zi) ≤ λβ (r + r/α+ · · ·) ≤ λαβr/(α−1).
By Lemma 3.7 and since j > i, we get that γr′ ≤ d(x, Zj) ≤ d(x, zi). Combining
these inequalities and using (4), we obtain

r ≥ (α− 1)γ

λαβ
· r′

≥ α− 1

αβ
·
(
α2β + αβ

α− 1
+ α

)
λ · r′

=

(
α+ 1 +

1

β

)
r′.

In the first implementation, for each point x in U , we sort the remaining points by
their distance from x. The total sorting time is O(n2 log n). Using these sorted arrays,
we can compute the value of any given ball in O(log n) time. We also maintain the
distance from x to the nearest point in Zi. Note that d(x, Zi+1) can be determined
in constant time given d(x, Zi) and zi. The total time to maintain such distances
is thus O(n2). It follows that the first step of each iteration can be implemented in
O(n) time. The total time for the second step is O(log n) times the sum over all balls
A appearing in some sequence σi, 0 ≤ i < n, of the number of children of A. By
Lemma 3.17, it is straightforward to see that the latter sum is O(�n), and thus the
total time for the second step is O(�n log n). The running time of the third step is
negligible. Thus the running time of the first implementation is O((n + �) · n log n),
as claimed above.

For the second implementation, note that after the preprocessing phase, there are
O(�) distinct distances. Thus, for each point x, O(n+�) time is sufficient to construct
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an O(�)-sized table that can be used to compute the value of any ball (x, r) in O(1)
time. It follows that the total time for the second step can be improved to O(�n). The
running time of the second implementation is therefore O(n2 + �n), which is linear in
the size of the input (in bits).

4. Weakly λ-approximate metrics. The analysis in section 3 of this paper
assumes that the (nonnegative, symmetric) distance function d approximately satisfies
the triangle inequality. Recall that we defined a “λ-approximate” triangle inequality
for λ ≥ 1 as follows: For any sequence of points x0, . . . , xm in U , d(x0, xm) ≤ λ ·∑

0≤i<m d(xi, xi+1). We refer to such a distance function as a λ-approximate metric.
In this section, we show that the analysis in both sections 2 and 3 holds to within

constant factors for an even weaker form of the triangle inequality. We say that a
distance function d satisfies a “weakly λ-approximate” triangle inequality if, for any
x, y, and z, d(x, z) ≤ λ(d(x, y) + d(y, z)). We note that this inequality has been
studied previously and is also referred to as the relaxed triangle inequality [10], the
parameterized triangle inequality [1], and the λ-triangle inequality [9]. We will say
that a distance function satisfying this inequality is a weakly λ-approximate metric.
We will make use of such distance functions to extend our results to other objective
functions. For example, the well-known k-means heuristic [8] has a sum of squared
distances in its objective function. It is straightforward to show that squaring the
distances in a metric yields a weakly 2-approximate metric. Thus the results in this
section show that our analysis also holds, to within constant factors, with respect
to the k-means objective function. (Remark: More generally, it is not hard to show
that raising the distances in a metric to any constant power yields a weakly O(1)-
approximate metric.)

Lemmas 4.1 and 4.2 establish that the approximation results in this paper hold, up
to constant factors, even for weakly λ-approximate metrics. Recall that, in sections 2
and 3, we make use of the triangle inequality and the λ-approximate triangle inequality
on sequences of points to derive upper bounds on the distances between pairs of
points. In most cases, we consider constant-length sequences of points to derive our
upper bounds. In such cases, Lemma 4.1 shows that a weakly λ-approximate metric
is sufficient to guarantee that our upper bounds hold to within constant factors.
Unfortunately, Lemma 4.1 alone is not sufficient to generalize our upper bounds based
on nonconstant-length sequences of points, which arise in Lemmas 3.8, 3.16, and 3.17.
For these cases, we require Lemma 4.2. Lemmas 4.1 and 4.2 together show that the
upper bounds derived in Lemmas 3.8, 3.16, and 3.17 still hold up to constant factors
given only a weakly λ-approximate triangle inequality.

Lemma 4.1. Let d be a weakly λ-approximate metric, and let x0, x1, . . . , xm be
points with m ≥ 1. Then d(x0, xm) ≤ λ�log2m	 ·∑0≤i<m d(xi, xi+1).

Proof. We will prove the lemma by induction. The base case, m = 1, is trivial.
For the induction step, assume that for any sequence of points y0, . . . , yi, 1 ≤ i < m,
d(y0, yi) ≤ λ�log2 i	∑

0≤j<i d(yj , yj+1). Then

d(x0, xm) ≤ λ
(
d(x0, x�m2 �) + d(x�m2 �, xm)

)

≤ λ


λ�log2 �m2 ��


 ∑

0≤j<�m2 �
d(xj , xj+1)


+ λ�log2 �m2 �� ∑

�m2 �≤j<m
d(xj , xj+1)




≤ λ · λ�log2m	−1
∑

0≤j<m
d(xj , xj+1)
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= λ�log2m	
∑

0≤j<m
d(xj , xj+1).

The first step follows from the weakly λ-approximate triangle inequality. The second
step follows by applying the induction hypothesis twice. (Note that m ≥ 2 implies
that 0 <

⌈
m
2

⌉
< m, so the induction hypothesis is applicable.) The last step follows

from the fact that
⌈
log2

⌈
m
2

⌉⌉
= �log2 m� − 1.

If λ and m are constant, then Lemma 4.1 implies that d(x0, xm) is

Θ


 ∑

0≤i<m
d(xi, xi+1)


 .

Thus Lemma 4.1 is sufficient to show that the upper bounds derived in section 2
using the triangle inequality hold to within a constant factor given only a weakly
λ-approximate metric. Similarly, the upper bounds derived in section 3 using the
λ-approximate triangle inequality on constant-length sequences of points also hold
to within constant factors given only a weakly λ-approximate metric. However, in
Lemmas 3.8, 3.16, and 3.17, we derive upper bounds on distances by applying the
λ-approximate triangle inequality to nonconstant-length sequences of points that ap-
pear in the sequences σi associated with our online median algorithm. In these cases,
the nonconstant-length sequences of points we consider have the property that they
are composed of a constant number of contiguous subsequences in which distances be-
tween successive points are either geometrically increasing or geometrically decreasing.
Lemma 4.2 shows that the upper bounds derived using these sequences hold to within
a constant factor assuming only a weakly λ-approximate metric.

Lemma 4.2. Let d be a weakly λ-approximate metric, and let x0, x1, . . . , xm be
points such that for 1 ≤ i ≤ m, d(xi, xi+1) ≤ d(xi−1, xi)/ξ for a positive real ξ > λ.
Then d(x0, xm) ≤ λξ

ξ−λd(x0, x1).

Proof. We first prove by induction that d(x0, xm) ≤
∑

0≤i<m λi+1d(xi, xi+1).
For the base case, take m = 1. Then d(x0, x1) ≤ λd(x0, x1) since λ ≥ 1. For
the induction step, assume that for any sequence of points y0, . . . , yi, 1 ≤ i < m,
d(y0, yi) ≤

∑
0≤j<i λ

j+1d(yj , yj+1). Observe that

d(x0, xm) ≤ λ (d(x0, x1) + d(x1, xm))

≤ λd(x0, x1) + λ


 ∑

1≤i<m
λid(xi, xi+1)




≤
∑

0≤i<m
λi+1d(xi, xi+1),

where the first step follows from the weakly λ-approximate triangle inequality and
the second step follows from the induction hypothesis. Then

d(x0, xm) ≤
∑

0≤i<m
λi+1d(xi, xi+1)

≤
∑

0≤i<m

λi+1

ξi
d(x0, x1)

≤ ξλ

ξ − λ
d(x0, x1),
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where the second step follows from the assumption that d(xi, xi+1) ≤ d(xi−1, xi)/ξ
for 0 ≤ i < m and the third step follows from the assumption that ξ > λ.

As stated above, Lemma 4.2 is needed in addition to Lemma 4.1 to show that
the upper bounds derived in Lemmas 3.8, 3.16, and 3.17 hold to within a constant
factor given only a weakly λ-approximate metric. We now explain how Lemmas 4.1
and 4.2 may be used to show that the upper bound obtained in part (i) of Lemma 3.8
holds to within a constant factor given a weakly λ-approximate metric. Recall that
in part (i) of Lemma 3.8, we derive an upper bound on the distance d(y′, zi). For the
argument, we apply the λ-approximate triangle inequality to the sequence of points
〈y′, . . . , y, x, . . . , zi〉 and show that d(y′, zi) is within a constant factor of the sum of
the distances between successive points in this sequence. The prefix 〈y′, . . . , y〉 of
this sequence appears in the sequence of balls σj associated with our online median
algorithm. By the definition of our online median algorithm, the distances between
successive points in 〈y′, . . . , y〉 decrease by a factor of β. Since β and λ are con-
stants, and since β > λ, we can apply Lemma 4.2 with ξ = β to conclude that
d(y′, y) is within a constant factor of the sum of distances between successive points
in 〈y′, . . . , y〉 given only a weakly λ-approximate metric. By a similar application
of Lemma 4.2 to d(x, zi) with 〈x, . . . , zi〉 as the sequence of points, we can conclude
that d(x, zi) is within a constant factor of the sum of distances between successive
points in 〈x, . . . , zi〉 given only a weakly λ-approximate metric. With upper bounds
on d(y′, y) and d(x, zi), we can then apply Lemma 4.1 to the constant-length sequence
〈y′, y, x, zi〉 to conclude that, given only a weakly λ-approximate metric, d(y′, zi) is
within a constant factor of the sum of distances between successive points in the se-
quence 〈y′, . . . , y, x, . . . , zi〉. Using Lemmas 4.1 and 4.2 in this manner, the bounds
derived in part (iii) of Lemma 3.8 and in Lemmas 3.16 and 3.17 can also be shown to
hold to within constant factors given only a weakly λ-approximate metric.

5. Concluding remarks. We plan to investigate whether the ideas presented in
this paper can be applied to other problems. Korupolu, Plaxton, and Rajaraman [19]
give an algorithm and an efficient distributed implementation for hierarchical coop-
erative caching in which the distance function is an ultrametric. We would like to see
if the hierarchical greedy strategy can be used or extended to solve the cooperative
caching problem in an arbitrary metric space. It would also be interesting to see if
the hierarchical greedy strategy admits an efficient distributed implementation for
this problem.

This paper has focused on the development of fast deterministic algorithms for the
facility location problem and the online median problem. It is worth noting that there
have been a number of recent results that make use of randomization to obtain fast
algorithms for the k-median problem. The first such result was due to Indyk [14]; for
the uniform-demand k-median problem, he gives a bicriteria approximation algorithm
that uses random sampling and a black-box k-median algorithm. His algorithm has a
constant probability of success and runs in Õ(nk3) time. (The Õ-tilde notation omits
polylogarithmic factors in n and k.) Assuming the existence of an Õ(n2)-time bicri-
teria k-median algorithm, this time bound can be reduced to Õ(nk). Subsequently,
Guha et al. obtained an Õ(nk)-time constant-factor approximation algorithm for the
k-median problem in the data stream model of computation [13]. More recently, Tho-
rup [27] has obtained a randomized constant-factor approximation algorithm for the
k-median problem in a graph setting. For this problem, the interpoint distances are
given by a graph on m edges rather than being fully specified in the input. That is, to
obtain the distance between two points x and y, we must compute the shortest path



THE ONLINE MEDIAN PROBLEM 831

between x and y. Thorup gives an Õ(m) constant-factor approximation algorithm for
this problem. His algorithm implies an Õ(nk)-time algorithm for the version of the
k-median problem defined in section 1.

Recently, we have obtained a randomized constant-factor approximation algo-
rithm for the k-median problem that runs in O(n(k + log n) + k2 log2 n) time under
the standard assumption that the point weights and interpoint distances are polyno-
mially bounded [24]. Thus, for k such that logn ≤ k ≤ n/ log2 n, our algorithm runs
in O(nk) time. Our algorithm succeeds with high probability, that is, for any positive
constant ξ, we can adjust constant factors in the definition of the algorithm to achieve
a failure probability less than n−ξ. We also establish a matching Ω(nk) lower bound
on the running time of any randomized constant-factor approximation algorithm for
the k-median problem that has even a nonnegligible success probability (e.g., at least
1

100 ).

Acknowledgments. The authors would like to thank the anonymous referees
for making many helpful comments on the presentation.

REFERENCES

[1] T. Andreae and H.-J. Bandelt, Performance guarantees for approximation algorithms de-
pending on parametrized triangle inequalities, SIAM J. Discrete Math., 8 (1995), pp. 1–16.

[2] V. Arya, N. Garg, R. Kandhekar, V. Pandit, A. Meyerson, and K. Munagala, Local
search heuristics for k-median and facility location problems, in Proceedings of the 31st
Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp. 21–29.

[3] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, Cambridge, UK, 1998.

[4] M. Charikar and S. Guha, Improved combinatorial algorithms for facility location and k-
median problems, in Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society, Los Alamitos, CA, 1999, pp. 378–388.

[5] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys, A constant-factor approximation
algorithm for the k-median problem, in Proceedings of the 31st Annual ACM Symposium
on Theory of Computing, ACM, New York, 1999, pp. 1–10.

[6] F. A. Chudak, Improved approximation algorithms for uncapacitated facility location, in In-
teger Programming and Combinatorial Optimization, R. E. Bixby, E. A. Boyd, and R. Z.
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Abstract. Combinatorial strongly polynomial algorithms for minimizing submodular functions
have been developed by Iwata, Fleischer, and Fujishige (IFF) and by Schrijver. The IFF algorithm
employs a scaling scheme for submodular functions, whereas Schrijver’s algorithm achieves strongly
polynomial bound with the aid of distance labeling. Subsequently, Fleischer and Iwata have described
a push/relabel version of Schrijver’s algorithm to improve its time complexity. This paper combines
the scaling scheme with the push/relabel framework to yield a faster combinatorial algorithm for
submodular function minimization. The resulting algorithm improves over the previously best known
bound by essentially a linear factor in the size of the underlying ground set.
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1. Introduction. Let V be a finite nonempty set of cardinality n. A set function
f on V is submodular if it satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) ∀X,Y ⊆ V.

Submodular functions are discrete analogues of convex functions [14]. Examples of
submodular functions include cut capacity functions, matroid rank functions, and
entropy functions.

The first polynomial-time algorithm for submodular function minimization is due
to Grötschel, Lovász, and Schrijver [9]. A strongly polynomial algorithm has also
been described by Grötschel, Lovász, and Schrijver [10]. These algorithms rely on the
ellipsoid method, which is not efficient in practice.

Recently, combinatorial strongly polynomial algorithms have been developed by
Iwata, Fleischer, and Fujishige (IFF) [13] and by Schrijver [16]. Both of these algo-
rithms build on works of Cunningham [2, 3]. The IFF algorithm employs a scaling
scheme developed in capacity scaling algorithms for the submodular flow problem
[7, 11]. In contrast, Schrijver [16] directly achieves a strongly polynomial bound by
introducing a novel subroutine in the framework of lexicographic augmentation. Sub-
sequently, Fleischer and Iwata [5, 6] have described a push/relabel algorithm using
Schrijver’s subroutine to improve the running time bound. In this paper, we combine
the scaling scheme with the push/relabel technique to yield a faster combinatorial
algorithm.

Let γ denote the time required for computing the function value of f and M
denote the maximum absolute value of f . The IFF scaling algorithm minimizes an
integral submodular function in O(n5γ logM) time. The strongly polynomial version
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runs in O(n7γ log n) time, whereas an improved variant of Schrijver’s algorithm runs
in O(n7γ + n8) time [6].

The time complexity of our new scaling algorithm is O((n4γ + n5) logM). Since
the function evaluation oracle has to identify an arbitrary subset of V as its argument,
it is natural to assume γ is at least linear in n. With this assumption, the new
algorithm is faster than the IFF algorithm by a factor of n. The strongly polynomial
version of the new scaling algorithm runs in O((n6γ + n7) log n) time. This is an
improvement over the previous best bound by essentially a linear factor in n.

These combinatorial algorithms perform multiplications and divisions, although
the problem of submodular function minimization does not involve those operations.
Schrijver [16] asks if one can minimize submodular functions in strongly polynomial
time using only additions, subtractions, comparisons, and oracle calls for the function
values. Such an algorithm is called “fully combinatorial.” A very recent paper [12]
settles this problem by developing a fully combinatorial variant of the IFF algorithm.
Similarly, we can implement the strongly polynomial version of our scaling algorithm
in a fully combinatorial manner. The resulting algorithm runs in O(n8γ log2 n) time,
improving the previous O(n9γ log2 n) bound by a factor of n.

This paper is organized as follows. Section 2 provides preliminaries on submodular
functions. In section 3, we describe the new scaling algorithm. Section 4 is devoted
to its complexity analysis. Finally, in section 5, we discuss its extensions as well as a
fully combinatorial implementation.

2. Preliminary. This section provides preliminaries on submodular functions.
See [8, 14] for more details and general background.

For a vector x ∈ RV and a subset Y ⊆ V , we denote x(Y ) =
∑
u∈Y x(u). We

also denote x− the vector in RV with x−(u) = min{x(u), 0}. For each u ∈ V , let χu
denote the vector in RV with χu(u) = 1 and χu(v) = 0 for v ∈ V \{u}.

For a submodular function f : 2V → R with f(∅) = 0, we consider the base
polyhedron

B(f) = {x | x ∈ RV , x(V ) = f(V ), ∀Y ⊆ V : x(Y ) ≤ f(Y )}.

A vector in B(f) is called a base. In particular, an extreme point of B(f) is called
an extreme base. An extreme base can be computed by the greedy algorithm of
Edmonds [4] and Shapley [17] as follows.

Let L = (v1, . . . , vn) be a linear ordering of V . For any vj ∈ V , we denote
L(vj) = {v1, . . . , vj}. The greedy algorithm with respect to L generates an extreme
base y ∈ B(f) by

y(u) := f(L(u))− f(L(u)\{u}).(2.1)

Conversely, any extreme base can be obtained in this way with an appropriate linear
ordering.

Lemma 2.1. Let Q and R be disjoint subsets of V such that Q ∪ R forms an
interval in L. Let L′ be the linear ordering obtained from L by moving Q to the place
immediately after R without changing the orderings in Q and in R. Then the extreme
base y′ generated by L′ satisfies y′(q) ≤ y(q) for q ∈ Q and y′(r) ≥ y(r) for r ∈ R.

Proof. For any q ∈ Q, we have L′(q) ⊇ L(q). Therefore, the submodularity of f
implies y′(q) = f(L′(q)) − f(L′(q)\{q}) ≤ f(L(q)) − f(L(q)\{q}) = y(q). Similarly,
L′(r) ⊆ L(r) holds for r ∈ R. Then it follows from the submodularity of f that
y′(r) = f(L′(r))− f(L′(r)\{r}) ≥ f(L(r))− f(L(r)\{r}) = y(r).
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For any base x ∈ B(f) and any subset Y ⊆ V , we have x−(V ) ≤ x(Y ) ≤ f(Y ).
The following theorem shows that these inequalities are in fact tight for appropriately
chosen x and Y .

Theorem 2.2. For a submodular function f : 2V → R, we have

max{x−(V ) | x ∈ B(f)} = min{f(Y ) | Y ⊆ V }.
Moreover, if f is integer-valued, then the maximizer x can be chosen from among
integral bases.

This theorem is immediate from the vector reduction theorem on polymatroids
due to Edmonds [4]. It has motivated combinatorial algorithms for minimizing sub-
modular functions.

3. A scaling algorithm. This section presents a new scaling algorithm for
minimizing an integral submodular function f : 2V → Z.

The algorithm consists of scaling phases with a scale parameter δ ≥ 0. It keeps
a set of linear orderings {Li | i ∈ I} of the vertices in V . We denote v �i u if
v precedes u in Li or v = u. Each linear ordering Li generates an extreme base
yi ∈ B(f) by the greedy algorithm. The algorithm also keeps a base x ∈ B(f) as a
convex combination x =

∑
i∈I λiyi of the extreme bases. Initially, I = {0} with an

arbitrary linear ordering L0 and λ0 = 1.
Furthermore, the algorithm works with a flow in the complete directed graph on

the vertex set V . The flow is represented as a skew-symmetric function ϕ : V ×V → R.
Each arc capacity is equal to δ. Namely, ϕ(u, v) + ϕ(v, u) = 0 and −δ ≤ ϕ(u, v) ≤ δ
hold for any pair of vertices u, v ∈ V . The boundary ∂ϕ is defined by ∂ϕ(u) =∑
v∈V ϕ(u, v) for u ∈ V . Initially, ϕ(u, v) = 0 for any u, v ∈ V .

Each scaling phase aims at increasing z−(V ) for z = x + ∂ϕ. Given a flow
ϕ, the procedure constructs an auxiliary directed graph Gϕ = (V,Aϕ) with arc set
Aϕ = {(u, v) | u �= v, ϕ(u, v) ≤ 0}. Let S = {v | z(v) ≤ −δ} and T = {v | z(v) ≥ δ}.
A directed path in Gϕ from S to T is called an augmenting path.

Each scaling phase also keeps a valid labeling d. A labeling d : V → Z is valid if
d(u) = 0 for u ∈ S and v �i u implies d(v) ≤ d(u) + 1. A valid labeling d(v) serves as
a lower bound on the number of arcs from S to v in the directed graph GI = (V,AI)
with the arc set AI = {(u, v) | ∃i ∈ I, v �i u}.

If there is an augmenting path P , the algorithm augments the flow ϕ along P
by ϕ(u, v) := ϕ(u, v) + δ and ϕ(v, u) := ϕ(v, u) − δ for each arc (u, v) in P . This
procedure is referred to as Augment(ϕ, P ). As a result of Augment(ϕ, P ), the initial
vertex s of P may get rid of S and no new vertex joins S. Thus Augment(ϕ, P ) does
not violate the validity of d.

Let W be the set of vertices reachable from S in Gϕ, and let Z be the set of
vertices that attains the minimum labeling in V \W . A pair (u, v) of u ∈ W and
v ∈ Z is called active for i ∈ I if v is the first vertex of Z in Li and u is the last vertex
in Li with v �i u and d(v) = d(u) + 1. A triple (i, u, v) is also called active if (u, v)
is active for i ∈ I. The procedure Multiple-Exchange(i, u, v) is applicable to an active
triple (i, u, v).

For an active triple (i, u, v), the set of vertices from v to u in Li is called an active
interval. The active interval is divided into Q and R by Q = {w | w ∈W, v ≺i w �i u}
and R = {w | w ∈ V \W, v �i w ≺i u}.

The procedure Multiple-Exchange(i, u, v) moves the vertices in R to the place
immediately after u in Li, without changing the ordering in Q and in R. Then it
computes an extreme base yi generated by the new Li. By Lemma 2.1, this results
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in yi(q) ≥ y◦i (q) for q ∈ Q and yi(r) ≤ y◦i (r) for r ∈ R, where y◦i denotes the previous
yi.

Consider a complete bipartite graph with the vertex sets Q and R. The algorithm
finds a flow ξ : Q×R→ R+ such that

∑
r∈R ξ(q, r) = yi(q)−y◦i (q) for each q ∈ Q and∑

q∈Q ξ(q, r) = y◦i (r) − yi(r) for each r ∈ R. Such a flow can be obtained easily by
the so-called northwest corner rule. Then the procedure computes α = min{λi, δ/β}
with β = max{ξ(q, r) | q ∈ Q, r ∈ R} and moves x by x := x + α(yi − y◦i ). In order
to keep z invariant, the procedure adjusts the flow ϕ by ϕ(q, r) := ϕ(q, r) − αξ(q, r)
and ϕ(r, q) := ϕ(r, q) +αξ(q, r) for every (q, r) ∈ Q×R. The resulting ϕ satisfies the
capacity constraints due to the choice of α, and the vertices in W remain reachable
from S in Gϕ.

If α = λi, Multiple-Exchange(i, u, v) is called saturating. Otherwise, it is called
nonsaturating. In a nonsaturating Multiple-Exchange(i, u, v), a new index k is added
to I. The associated linear ordering Lk is the previous Li. The coefficient λk is
determined by λk := λi − α, and then λi is replaced by λi := α. Thus the algorithm
continues to keep x as a convex combination x =

∑
i∈I λiyi.

Suppose the labeling d is valid before the algorithm applies Multiple-Exchange to
an active triple (i, u, v). For any vertex w in the active interval, d(v) ≤ d(w) + 1 and
d(w) ≤ d(u)+1 hold. These inequalities and d(v) = d(u)+1 imply d(v) ≤ d(w) ≤ d(u).
Note that d(v) ≤ d(r) holds for any r ∈ R ⊆ V \W . Hence we have d(r) = d(v) for
any r ∈ R. If Multiple-Exchange(i, u, v) adds a new arc (s, t) to AI , then s ∈ Q and
t ∈ R. Therefore, we have d(t) = d(v) ≤ d(s) + 1. Thus Multiple-Exchange(i, u, v)
does not violate the validity of d.

Let h denote the number of vertices in the active interval. The number of function
evaluations required for computing the new extreme base yi by the greedy algorithm
is at most h. The northwest corner rule can be implemented to run in O(h) time,
and the number of arcs (q, r) with ξ(q, r) > 0 is at most h − 1. Thus the total time
complexity of Multiple-Exchange(i, u, v) is O(hγ).

If there is no active triple, the algorithm applies Relabel to each v ∈ Z. The
procedure Relabel(v) increments d(v) by one. Then the labeling d remains valid.

The number of extreme bases in the expression of x increases by one as a result
of nonsaturating Multiple-Exchange. In order to reduce the complexity, the algorithm
occasionally applies a procedure Reduce(x, I) that computes an expression of x as a
convex combination of affinely independent extreme bases chosen from the currently
used ones. This computation takes O(n2|I|) time with the aid of Gaussian elimination.

We are now ready to describe the new scaling algorithm.
Step 0: Let L0 be an arbitrary linear ordering. Compute an extreme base y0 by the

greedy algorithm with respect to L0. Put x := y0, λ0 := 1, I := {0}, and
δ := |x−(V )|/n2.

Step 1: Put d(v) := 0 for v ∈ V , and ϕ(u, v) := 0 for u, v ∈ V .
Step 2: Put S := {v | z(v) ≤ −δ} and T := {v | z(v) ≥ δ}, where z = x + ∂ϕ. Let

W be the set of vertices reachable from S in Gϕ.
Step 3: If there is an augmenting path P , then do the following.

(3-1) Apply Augment(ϕ, P ).
(3-2) Apply Reduce(x, I).
(3-3) Go to Step 2.

Step 4: Compute - := min{d(v) | v ∈ V \W} and put Z := {v | v ∈ V \W, d(v) = -}.
If - < n, then do the following.
(4-1) If there is an active triple (i, u, v), then apply Multiple-Exchange(i, u, v).
(4-2) Otherwise, apply Relabel(v) for each v ∈ Z.
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(4-3) Go to Step 2.
Step 5: Determine the set X of vertices reachable from S in GI . If δ ≥ 1/n2, then

apply Reduce(x, I), δ := δ/2, and go to Step 1.
We now show that the last set X obtained by the scaling algorithm is a minimizer

of f .
Lemma 3.1. At the end of each scaling phase, z−(V ) ≥ f(X)− n(n+ 1)δ/2.
Proof. At the end of each scaling phase, d(v) = n for every v ∈ V \W . Since d(v)

is a lower bound on the number of arcs from S to v in GI , this means there is no
directed path from S to V \W in GI . Thus we have X ⊆ W ⊆ V \T , which implies
z(v) ≤ δ for v ∈ X. It follows from S ⊆ X that z(v) ≥ −δ for v ∈ V \X. Since there
is no arc in GI emanating from X, we have yi(X) = f(X) for each i ∈ I, and hence
x(X) =

∑
i∈I λiyi(X) = f(X). We also have ∂ϕ(X) ≥ −δ |X|·|V \X| ≥ −n(n−1)δ/2.

Therefore, we have z−(V ) = z−(X) + z−(V \X) ≥ z(X) − δ|X| − δ|V \X| = x(X) +
∂ϕ(X)− nδ ≥ f(X)− n(n+ 1)δ/2.

Lemma 3.2. At the end of each scaling phase, x−(V ) ≥ f(X)− n2δ.
Proof. The set Y = {v | x(v) < 0} satisfies x−(V ) = x(Y ) = z(Y ) − ∂ϕ(Y ) ≥

z−(V )− ∂ϕ(Y ). Note that ∂ϕ(Y ) ≤ δ |Y | · |V \Y | ≤ n(n− 1)δ/2. Therefore, we have
x−(V ) ≥ z−(V ) − n(n − 1)δ/2, which together with Lemma 3.1 implies x−(V ) ≥
f(X)− n2δ.

Theorem 3.3. At the end of the last scaling phase, X is a minimizer of f .
Proof. Since δ < 1/n2 in the last scaling phase, Lemma 3.2 implies x−(V ) >

f(X) − 1. Then it follows from the integrality of f that f(X) ≤ f(Y ) holds for any
Y ⊆ V .

4. Complexity. This section is devoted to complexity analysis of the new scaling
algorithm.

Lemma 4.1. Each scaling phase performs Augment O(n2) times.
Proof. At the beginning of each scaling phase, the set X obtained in the previous

scaling phase satisfies z−(V ) ≥ f(X) − 2n2δ by Lemma 3.2. For the first scaling
phase, we have the same inequality by taking X = ∅. Note that z−(V ) ≤ z(X) ≤
f(X) + n(n − 1)δ/2 throughout the algorithm. Thus each scaling phase increases
z−(V ) by at most 3n2δ. Since each augmentation increases z−(V ) by δ, each scaling
phase performs at most 3n2 augmentations.

Lemma 4.2. Each scaling phase performs Relabel O(n2) times.
Proof. Each application of Relabel(v) increases d(v) by one. Since Relabel(v) is

applied only if d(v) < n, Relabel(v) is applied at most n times for each v ∈ V in a
scaling phase. Thus the total number of relabels in a scaling phase is at most n2.

Lemma 4.3. The number of indices in I is at most 2n.
Proof. A new index is added as a result of nonsaturating Multiple-Exchange. In

a nonsaturating Multiple-Exchange(i, u, v), the arc (q, r) that determines β satisfies
ϕ(q, r) ≤ 0 after the update of ϕ, and the vertex r in R becomes reachable from S
in Gϕ. This means the set W is enlarged. Thus there are at most n applications
of nonsaturating Multiple-Exchange between augmentations. Hence the number of
indices added between augmentations is at most n. After each augmentation, the
number of indices is reduced to at most n. Therefore, |I| ≤ 2n holds throughout the
algorithm.

In order to analyze the number of function evaluations in each scaling phase,
we now introduce the notion of reordering phase. A reordering phase consists of
consecutive applications of Multiple-Exchange between those of Relabel or Reduce. By
Lemmas 4.1 and 4.2, each scaling phase performs O(n2) reordering phases.
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Lemma 4.4. There are O(n2) function evaluations in each reordering phase.
Proof. The number of function evaluations in Multiple-Exchange(i, u, v) is at most

the number of vertices in the active interval for (i, u, v). In order to bound the
total number of function evaluations in a reordering phase, suppose the procedure
Multiple-Exchange(i, u, v) marks each pair (i, w) for w in the active interval. We now
intend to claim that any pair (i, w) of i ∈ I and w ∈ V is marked at most once in a
reordering phase.

In a reordering phase, the algorithm does not change the labeling d nor does it
delete a vertex from W . Hence the minimum value of d in V \W is nondecreasing.
After execution of Multiple-Exchange(i, u, v), there will not be an active pair for i
until the minimum value of d in V \W becomes larger. Let Multiple-Exchange(i, s, t)
be the next application of Multiple-Exchange to the same index i ∈ I. Then we have
d(t) > d(v) = d(u) + 1, which implies v ≺i u ≺i t ≺i s in the linear ordering Li before
Multiple-Exchange(i, u, v). Thus a pair (i, w) marked in Multiple-Exchange(i, u, v) will
not be marked again in the reordering phase.

Since |I| ≤ 2n by Lemma 4.3, there are at most 2n2 possible marks without
duplications. Therefore, the total number of function evaluations in a reordering
phase is O(n2).

In order to find an active triple efficiently in Step (4-1), we keep track of possible
candidates of active triples. For each i ∈ I and - = 1, . . . , n − 1, let ui� denote the
last vertex u in Li such that u ∈W and d(u) = -− 1. Similarly, vi� denotes the first
vertex v in Li such that v ∈ V \W and d(v) = -. Then (i, ui�, vi�) is an active triple if
- = min{d(v) | v ∈ V \W} and vi� ≺ ui�. At the beginning of each reordering phase,
we scan the linear orderings to find all those candidates in O(n2) time.

In the rest of the reordering phase, we update the candidates whenever a new
vertex is added to W . Let w be the vertex that is added to W . For each i ∈ I, if
ui� � w with d(w) = - − 1, then we replace ui� by w. If w = vi�, then we find the
new vi� by scanning Li. Thus it takes O(n2) time to update the candidates when a
new vertex is added to W . Since at most n vertices are added to W , each reordering
phase requires O(n3) fundamental operations.

Theorem 4.5. The algorithm performs O(n4 logM) function evaluations and
O(n5 logM) arithmetic computations.

Proof. Consider the set U = {u | x(u) > 0} for the initial base x ∈ B(f). Then we
have x−(V ) = x(V )− x(U) ≥ f(V )− f(U) ≥ −2M . Therefore, the initial value of δ
satisfies δ ≤ 2M/n2. Each scaling phase cuts the value of δ in half, and the algorithm
terminates when δ < 1/n2. Thus the algorithm consists of O(logM) scaling phases.

Since each scaling phase performs O(n2) reordering phases, Lemma 4.4 implies
that the number of function evaluations in a scaling phase is O(n4). In addition, each
reordering phase requires O(n3) steps to keep track of active triples. By Lemma 4.1,
each scaling phase performs O(n2) calls of Reduce, which requires O(n3) arithmetic
computations. Thus each scaling phase consists of O(n4) function evaluations and
O(n5) arithmetic computations. Therefore, the total running time bound is O((n4γ+
n5) logM).

5. Discussions. A family D ⊆ 2V is called a distributive lattice (or a ring
family) if X ∩ Y ∈ D and X ∪ Y ∈ D for any pair of X,Y ∈ D. A compact
representation of D is given by a directed graph as follows. Let D = (V, F ) be a
directed graph with the arc set F . A subset Y ⊆ V is called an ideal of D if no arc
enters Y in D. Then the set of ideals of D forms a distributive lattice. Conversely,
any distributive lattice D ⊆ 2V with ∅, V ∈ D can be represented in this way due to
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Birkhoff’s representation theorem [1, Theorem 2.5]. Moreover, contracting strongly
connected components of D to single vertices, we may assume that the directed graph
D is acyclic.

For minimizing a submodular function f onD, we apply the scaling algorithm with
a minor modification. The modified version uses the directed graph Gϕ = (V,Aϕ∪F )
instead of Gϕ = (V,Aϕ). The initial linear ordering L0 must be consistent with D;
i.e., v �i u if (u, v) ∈ F . Then all the linear orderings that appear in the algorithm
will be consistent with D. This ensures that the set X obtained at the end of each
scaling phase belongs to D. Thus the modification of our scaling algorithm finds a
minimizer of f in D.

Iwata, Fleischer, and Fujishige [13] also describe a strongly polynomial algorithm
that repeatedly applies their scaling algorithm with O(logn) scaling phases. The
number of iterations is O(n2). Replacing the scaling algorithm by the new one, we
obtain an improved strongly polynomial algorithm that runs in O((n6γ + n7) log n)
time.

A very recent paper [12] has shown that the strongly polynomial IFF algorithm
can be implemented by using only additions, subtractions, comparisons, and oracle
calls for function values. Similarly, the new strongly polynomial scaling algorithm can
be made fully combinatorial as follows.

The first step towards a fully combinatorial implementation is to neglect Reduce.
This causes growth of the number of extreme bases for convex combination. However,
the number is still bounded by a polynomial in n. Since the number of indices added
between augmentations is at most n, each scaling phase yields O(n3) new extreme
bases. Hence the number of extreme bases through the O(log n) scaling phases is
O(n3 log n).

The next step is to choose an appropriate step length in Multiple-Exchange so that
the coefficients should be rational numbers with a common denominator bounded by
a polynomial in n. Let θ denote the value of δ in the first scaling phase. Then
κ = θ/δ is an integer. For each i ∈ I, we keep λi = µi/κ with an integer µi. We
then modify the definition of saturating Multiple-Exchange. Multiple-Exchange(i, u, v)
is now called saturating if λiξ(q, r) ≤ ϕ(q, r) for every (q, r) ∈ Q × R. Otherwise,
it is called nonsaturating. In nonsaturating Multiple-Exchange(i, u, v), let ν be the
minimum integer such that νξ(q, r) > ϕ(q, r)κ for some (q, r) ∈ Q × R. Such an
integer ν can be computed by binary search. Then the new coefficients λk and λi are
determined by µk := µi − ν and µi := ν. Thus the coefficients are rational numbers
whose common denominator is κ, which is bounded by a polynomial in n through
the O(logn) scaling phases. Then it is easy to implement this algorithm using only
additions, subtractions, comparisons, and oracle calls for the function values.

Finally, we discuss time complexity of the resulting fully combinatorial algorithm.
The algorithm performs O(n2) iterations of O(logn) scaling phases. Since it keeps
O(n3 log n) extreme bases, each scaling phase requires O(n6 log n) oracle calls for
function evaluations and O(n7 log n) fundamental operations. Therefore, the total
running time is O((n8γ+n9) log2 n). This improves the previous O(n9γ log2 n) bound
in [12] by essentially a linear factor in n.

In order to reduce this time complexity, McCormick [15] suggests a more efficient
implementation for finding active triples. For each i ∈ I and - = 1, . . . , n, let σi�
denote the last vertex s in Li with d(s) = -− 1. Similarly, τi� denotes the first vertex
t in Li with d(t) = -. Then there is an active triple (i, u, v) with d(v) = - only if
τi� ≺i σi�. At the beginning of each reordering phase we scan the linear orderings to
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find all σi� and τi� in O(n|I|) time. Note that within the reordering phase, σi� and
τi� are invariant until the algorithm performs Multiple-Exchange(i, u, v) with d(v) = -.
Once such a Multiple-Exchange is applied, there will be no active triples for the same
i and - in the rest of the reordering phase.

For a pair of i and - with τi� ≺ σi�, we may restrict the search for active triples
to the interval between τi� and σi� in Li. Since these intervals are disjoint, the
total number of fundamental operations required for finding active triples is O(n|I|)
in each reordering phase. This reduces the number of fundamental operations in a
scaling phase to O(n6 log n). Thus the resulting fully combinatorial algorithm runs in
O(n8γ log2 n) time.
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Abstract. We obtain a near-tight bound of O(n3+ε) for any ε > 0 on the complexity of the
overlay of the minimization diagrams of two collections of surfaces in four dimensions. This settles
a long-standing problem in the theory of arrangements, most recently cited by Agarwal and Sharir
[in Handbook of Computational Geometry, North–Holland, Amsterdam, 2000, pp. 49–119, Open
Problem 2], and substantially improves and simplifies a result previously published by the authors
[in Proceedings of the 13th ACM–SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM,
Philadelphia, 2002, pp. 810–819].

Our bound is obtained by introducing a new approach to the analysis of combinatorial structures
arising in geometric arrangements of surfaces. This approach, which we call the “partition technique,”
is based on k-fold divide and conquer, in which a given collection F of n surfaces is partitioned into
k subcollections Fi of n/k surfaces each, and the complexity of the relevant combinatorial structure
in F is recursively related to the complexities of the corresponding structures in each of the Fi’s. We
introduce this approach by applying it first to obtain a new simple proof for the known near-quadratic
bound on the complexity of an overlay of two minimization diagrams of collections of surfaces in R

3,
thereby simplifying the previously available proof [P. K. Agarwal, O. Schwarzkopf, and M. Sharir,
Discrete Comput. Geom., 15 (1996), pp. 1–13].

The main new bound on overlays has numerous algorithmic and combinatorial applications, some
of which are presented in this paper.
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1. Introduction. In this paper, we obtain combinatorial bounds on overlays of
minimization diagrams by introducing a new approach to the analysis of combinatorial
structures in arrangements of surfaces. Let us start with the basic definitions. (For
a thorough treatment of the topic we are about to briefly introduce, the reader is
referred to [21, Chapter 7].)

Let F be a family of n d-variate (not necessarily continuous or totally defined)
functions of constant description complexity ; that is, the graph of each function is
a semialgebraic set in R

d+1 defined by a constant number of polynomial equalities
and inequalities of constant maximum degree. The lower envelope EF of F is the
pointwise minimum of the functions of F :

EF (x) = min
f∈F

f(x) for x ∈ R
d.

∗Received by the editors May 6, 2002; accepted for publication (in revised form) February 24,
2003; published electronically June 10, 2003. This work was supported by a grant from the Israel
Science Fund (for a Center of Excellence in Geometric Computing) and is part of the first author’s
Ph.D. dissertation, prepared under the supervision of the second author at Tel Aviv University.
A preliminary version of this paper appeared in the Proceedings of the 43rd IEEE Symposium on
Foundations of Computer Science, Vancouver, Canada, 2002.

http://www.siam.org/journals/sicomp/32-4/40700.html
†Computer Science Division, University of California Berkeley, Berkeley, CA 94720-1776 (vladlen@

cs.berkeley.edu).
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute

of Mathematical Sciences, New York University, New York, NY 10012 (michas@post.tau.ac.il). The
work of this author was supported by NSF grants CCR-97-32101 and CCR-00-98246, by a grant from
the U.S.–Israel Binational Science Foundation, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University.

841



842 VLADLEN KOLTUN AND MICHA SHARIR

EF is itself a d-variate function whose graph is a semialgebraic set in R
d+1. The

projection onto d-space of this graph is called the minimization diagram of F and is
denoted by MF . This is a subdivision of R

d into maximal connected relatively open
cells of dimensions that range between 0 and d so that, for each cell τ , a fixed subset
of F attains EF over all points x ∈ τ (and no other function attains the envelope
over any point in τ). The complexity of MF (and of EF ) is the number of cells (of
all dimensions) of MF .

It has been shown by Halperin and Sharir [12, 20] that the complexity of MF
(and of EF ) is O(nd+ε) for any ε > 0, where the constant of proportionality depends
on ε, d, and the maximum degree of the polynomials defining the functions of F . A
(slightly) super-Ω(nd) lower bound is known, so the bound of [12, 20] is almost tight
in the worst case. Its proof is fairly involved and is based on a counting (or charging)
scheme, where vertices of the envelope are charged to sets of “nearby” vertices of the
arrangement A(F) of the function graphs.

This technique and various refinements and extensions thereof have been success-
ful in bounding the complexity of lower envelopes and of several related structures,
such as a single cell in a d-dimensional arrangement [6, 13]. However, the technique
has had only partial success in analyzing the overlay of minimization diagrams. The
overlay of two (or several) minimization diagrams of d-variate functions, as above, is
the superposition of these diagrams in R

d; specifically, it is the arrangement in d-space
of the union of the curves or surfaces (of various dimensions) that constitute the indi-
vidual diagrams. The complexity of the overlay is the complexity of this arrangement,
namely, the number of its cells of all possible dimensions. The overlay of minimiza-
tion diagrams became an important concept in the theory of arrangements after it
was demonstrated that a successful analysis of the complexity of the overlay can lead
to simple divide and conquer algorithms for the computation of lower envelopes and
related structures [11]. Moreover, overlays arise naturally in many applications, as
will be described below in more detail.

For d = 1 (the case of univariate functions), each minimization diagram is simply
a partition of the x-axis into a finite number of intervals; if each pair of functions
intersects in at most s points, then the size of the minimization diagram of n functions
is known to be at most λs(n) for totally defined continuous functions or λs+2(n) for
partially defined continuous functions, where λs(n) is the maximum length of (n, s)-
Davenport–Schinzel sequences [21], which is near-linear in n for any fixed s. The
overlay of two (or more) minimization diagrams is simply the partition obtained by
merging the breakpoints of the diagrams into a single sequence. The complexity of the
overlay is thus proportional to the sum of the complexities of the individual diagrams;
in particular, it is near-linear in the number of functions.

For d = 2, it was shown by Agarwal, Schwarzkopf, and Sharir [2] that the overlay
of two minimization diagrams, each defined for some set of n bivariate functions of
constant description complexity, is O(n2+ε) for any ε > 0. That is, the asymptotic
bounds on the complexity of the overlay and on the complexity of a single diagram
are the same, which is somewhat counterintuitive. The proof uses a refined and more
involved variant of the counting scheme mentioned above.

The prevailing conjecture is that the complexity of the overlay of two minimization
diagrams of d-variate functions of constant description complexity is O(nd+ε) for any
ε > 0 (the same asymptotic bound as that for the complexity of a single envelope).
This has been an open problem for all d ≥ 3. Recently [18], the authors have made a
small step toward establishing the conjecture for d = 3, obtaining bounds of the form
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O(n4− 1
s+ε), where s is a constant integer parameter that depends on the shape and

the (constant) maximum degree of the given functions. The proof in [18] is based on
the counting scheme and is highly complicated.

In this paper, we settle the conjecture affirmatively for d = 3 and prove the
following theorem.

Theorem 1.1. (a) The complexity of the overlay of two minimization diagrams
of a total of n trivariate functions of constant description complexity is O(n3+ε) for
any ε > 0.

(b) The complexity of the overlay of k ≥ 3 minimization diagrams, each of n/k
trivariate functions of constant description complexity, is O(n3+ε) for any ε > 0.

This is achieved by introducing the partition technique, a new approach to this
problem, which we hope will also prove useful in the analysis of the complexity of
other substructures in arrangements. The technique is based on k-fold divide and
conquer, in which each of the given collections is partitioned into k subcollections
of n/k functions each, where k is some parameter, and the complexity of the entire
overlay is expressed in terms of the complexities of various “suboverlays” and related
substructures. The analysis exploits and extends ideas used by Har-Peled [14, 15] for
the analysis of the complexity of substructures in the overlay of planar arrangements.

We introduce our approach by presenting a new simple proof for the complexity
of the overlay of the minimization diagrams of two collections of bivariate functions.
This compares favorably with the previously available proof [2].

So far, the partition technique faces technical difficulties when applied to the
analysis of other structures (like vertical decompositions) or to overlays in higher
dimensions. Nevertheless, we feel hopeful that it will develop further, becoming able
to tackle these problems and to find many additional applications.

Our result has several applications, which we enumerate in section 5 (some of
which were already noted in our previous work [18]). It can be used to obtain an
improved near-cubic bound, which is nearly tight in the worst case, on the complexity
of the region enclosed between two envelopes in four dimensions. Another application
is an improved near-cubic bound on the complexity of the space of all hyperplane
transversals of a collection of simply shaped convex sets in 4-space, and on the com-
plexity of the space of all line transversals of a similar collection of convex sets in
3-space. Using these bounds, one can adapt randomized incremental techniques, pro-
posed in [1, 5], to construct the boundary of these transversal spaces in expected
near-cubic time. We also obtain an improved near-cubic bound on the number of ge-
ometric permutations in a collection of disjoint convex bodies in R

3. Our new bound
can also be used to obtain a near-cubic bound on the complexity of the union of
certain families of fat convex objects of nearly equal size in 4-space.

Parts of our analysis are of independent interest, and we adapt one to show
that the complexity of the lower envelope of an arrangement of n totally defined
semialgebraic surfaces of constant description complexity in R

3, that does not contain
any vertices, is O(n1+ε) for any ε > 0.

The rest of the paper is organized as follows. We begin by introducing the parti-
tion technique. It is introduced by example, in section 2, where it is used to rederive
the known near-quadratic bound for the complexity of the overlay of the minimization
diagrams of two collections of bivariate functions. In section 3, we provide a useful
technical tool needed for applying the partition technique in three dimensions. Fi-
nally, we use the partition technique to prove a near-cubic bound on the complexity
of the overlay of minimization diagrams of trivariate functions in section 4. Several
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applications of this new bound are described in section 5.

2. The overlay of bivariate minimization diagrams. We start by introduc-
ing the partition technique. This introduction is done by example, on the analysis of
overlays of minimization diagrams of two collections of bivariate functions.

Let F and G be two collections, each consisting of n bivariate functions of con-
stant description complexity. We prove that the complexity of the overlay of the
minimization diagrams MF of F and MG of G is O(n2+ε) for any ε > 0. Denote
the overlay by Q(F ,G), and define the bichromatic complexity C(F ,G) of the overlay
to be the number of intersections between edges of MF and edges of MG . Clearly,
since each overlay is a planar map, the actual complexity of Q(F ,G) is proportional to
C(F ,G)+|MF |+|MG |, where |MF | (resp., |MG |) is the complexity of the minimization
diagram MF (resp., of MG).

Throughout what follows, we will assume that all the functions in F and G are
continuous and totally defined. This involves no real loss of generality, because one can
always partition each function graph in F and G into a constant number of continuous
patches, which can then be extended to be totally defined without decreasing the
complexity of the overlay. Indeed, a continuous partially defined function graph can
be extended to be totally defined by means of near-vertical semi-infinite walls attached
to its boundary. Formally, we replace each graph by the boundary of its Minkowski
sum with a steeply sloped vertical cone; it is easy to see that, if the slope of the cone
is large enough, this can only increase the complexity of the overlay. This extension
can be analogously performed for collections F and G of functions in any dimension.

Partition G into k groups, G1, . . . ,Gk, each of n/k functions, for some threshold
parameter k that we will determine later. Fix an edge e of MF , and consider the
vertical 2-dimensional wall V (e) erected over e; this is the union of all z-parallel lines
that pass through points of e. Restrict the functions of G over e to obtain a collection
G(e) of univariate functions of constant description complexity. It is partitioned in an

obvious way into k subcollections G(e)
1 , . . . ,G(e)

k .
We shall now see that the complexity of the lower envelope of G(e) is roughly

proportional to the sum of the complexities of the lower envelopes of all the subsets

G(e)
i , disregarding a small additive term and a near-constant multiplicative factor.

Let s denote the (constant) maximum number of intersections of the xy-projections
of an intersection curve of two function graphs in F and of an intersection curve of
two function graphs in G. In particular, the number of intersections between any pair
of (graphs of) functions in G(e) is at most s.

Note that the lower envelope EG(e) of G(e) is the lower envelope of the lower

envelopes EG(e)
i

of the subcollections G(e)
i for i = 1, . . . , k. Define the complexity

|E(e)| of a univariate envelope E(e) over a connected arc e to be the number of ver-
tices (breakpoints) of E(e) over points in the relative interior of e. Using an easy
modification of an observation due to Har-Peled [14, 15], the complexity of EG(e) is

|EG(e) | = O

(
λs(k)

k

k∑
i=1

(
1 + |EG(e)

i
|
))

.(2.1)

Indeed, Har-Peled’s proof merges the breakpoints of the EG(e)
i

’s into a single sequence

and partitions this sequence into blocks of k breakpoints each. Within each block, at
most 2k functions can appear on the merged envelope, and they contribute at most
O(λs(k)) breakpoints to EG(e) . If an envelope EG(e)

i
does not have any breakpoint
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over (the relative interior of) e, we still need to consider the single function that it
contributes to the overall envelope. The term 1, added to each term |EG(e)

i
| in the

above bound, takes care of these extreme cases.
Putting βs(k) = λs(k)/k and summing these bounds over all edges e of MF , we

obtain that the bichromatic complexity C(F ,G) of the overlay of MF and MG satisfies

C(F ,G) = O

(
|MF |λs(k) + βs(k)

k∑
i=1

C(F ,Gi)
)

.(2.2)

Informally, we have just shown that, ignoring an additive term dominated by
|MF | and a negligible multiplicative factor of βs(k), the complexity of the overlay of
MF with MG is roughly proportional to the sum of the complexities of the overlays
of MF with all the minimization diagrams MGi . This is the essence of the partition
technique for overlays, and it allows us to easily finish off the analysis as follows.

We reverse the roles of F and G, as follows. Fix a subset Gi, and consider an
edge e′ of MGi . Partition F into k groups, F1, . . . ,Fk, each of n/k functions, and
consider the vertical 2-dimensional wall V (e′) erected over e′. Restrict the functions
of F over e′ to obtain a collection F (e′) of univariate functions of constant description

complexity, which is partitioned in an obvious way into F (e′)
1 , . . . ,F (e′)

k .
As above, the lower envelope of the individual lower envelopes EF(e′)

j

over e′ is

the lower envelope EF(e′) . Using once again the technique of Har-Peled [14, 15], the
complexity of EF(e′) is

|EF(e′) | = O


βs(k)

k∑
j=1

(
1 + |EF(e′)

j

|
)
 .

Summing these bounds over all edges e′ of MGi , we obtain that the bichromatic
complexity C(F ,Gi) of the overlay of MF and MGi satisfies

C(F ,Gi) = O


|MGi |λs(k) + βs(k)

k∑
j=1

C(Fj ,Gi)

 .

This is essentially the same equation as (2.2), with Gi in the role of F and F in the role
of G, and it was obtained using an identical mechanism. If we now simply substitute
this equation into (2.2), we obtain

C(F ,G) = O


|MF |λs(k) + βs(k)

k∑
i=1


|MGi |λs(k) + βs(k)

k∑
j=1

C (Fj ,Gi)



 .(2.3)

Let C(n) denote the maximum complexity of the overlay of the minimization diagrams
of two collections of n bivariate functions, each of the same constant description
complexity,1 and recall that the complexity of a lower envelope of n bivariate functions
of constant description complexity is O(n2+ε) for any ε > 0 [12, 20]. This simplifies
(2.3) into the recurrence

C(n) = O
(
n2+ελs(k) + k2β2

s (k)C
(n

k

))
,

1Having a fixed constant description complexity means that a function graph is defined by a
fixed maximum number of polynomials of a fixed maximum degree.
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the solution of which is O(n2+ε) for any ε > 0 (see [13, 20, 21] for demonstrations
of solutions of similar recurrence relations, which are obtained by choosing a suitable
parameter k as a function of ε). We have thus shown the following theorem.

Theorem 2.1. The complexity of the overlay of the minimization diagrams of
two collections of n bivariate functions of constant description complexity is O(n2+ε)
for any ε > 0, where the constant of proportionality depends on ε.

3. The partition technique in three dimensions. In this section, we take a
crucial preparatory step toward a bound on the complexity of overlays of collections of
trivariate functions. The partition technique, as exposed in the previous section, calls
for relating the complexity of the minimization diagram of a collection F =

⋃k
i=1 Fi

of functions to the sum of the complexities of the minimization diagrams of all the
subcollections Fi. This is precisely what was established in (2.1), in the case of
univariate functions, where it was essentially shown that

|MF | = O

(
βs(k)

k∑
i=1

(
1 + |MFi |

))

when F is a collection of univariate functions.
Utilizing the partition technique in three dimensions requires a parallel relation to

be established for the case of bivariate functions. Such a relation, which we believe to
be of independent interest, is proved below. Although it is sufficient for our purposes,
it is not as intuitive as its counterpart in the univariate case.

Theorem 3.1. Let F1, . . . ,Fk be k sets of bivariate functions of constant de-
scription complexity, and put F =

⋃k
i=1 Fi. Then

|MF | = O


k2+ε + k1+ε

k∑
i=1

|MFi |+ kε
k∑
i=1

k∑
j=i+1

C(Fi,Fj)



for any ε > 0, where C(Fi,Fj) is, as above, the bichromatic complexity of the overlay
Q(Fi,Fj).

Proof. EF is the lower envelope of EF1
, . . . , EFk . Take, as above, the minimiza-

tion diagrams MF1 , . . . ,MFk , and overlay them to obtain a planar subdivision, which
is the arrangement of the edges of these individual minimization diagrams. We may,
of course, interpret this overlay as the combination of the overlays of pairs of these
minimization diagrams. (For example, each vertex of the overlay, which is not a ver-
tex of one of the diagrams MFi , is also a vertex of one of these pairwise overlays.)
However, in order to derive the relation asserted in the theorem, we treat the overlay
in a more “economical” manner, which can be regarded as a 2-dimensional extension
of the technique of Har-Peled [14, 15].

Specifically, let Ni denote the number of edges of MFi for i = 1, . . . , k. Clearly,

Ni = O(|MFi |). Put N =
∑k
i=1 Ni, and let V denote the number of crossings between

these N arcs. Note that, by definition,

V =

k∑
i=1

k∑
j=i+1

C(Fi,Fj).

It is therefore sufficient to show that

|MF | = O
(
k2+ε + k1+εN + kεV

)
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for any ε > 0, and we establish this bound as follows.
Put r = �N/k	, and construct a (1/r)-cutting Ξ of the arrangement of the above

N edges. This is a decomposition of the plane into cells, each of constant description
complexity, such that each cell is crossed by at most N/r arcs of the arrangement.
The size of a cutting is said to be its number of cells. As shown, e.g., by de Berg and
Schwarzkopf [9], there exists a cutting Ξ of size

O

(
r +

V r2

N2

)
= O

(
1 +

N

k
+

V

k2

)
.

Let τ be a cell of Ξ. It is crossed by at most N/r ≤ k edges. Let mi denote the

number of edges of MFi that cross τ ; we have
∑k
i=1 mi ≤ k. It is easily seen that

the number of functions of Fi that can attain EFi over τ is at most mi + 1. Indeed,
construct a spanning tree T of the adjacency graph of the faces of MFi ∩ τ . (T exists
since the adjacency graph is clearly connected.) Each edge of T corresponds to an
edge of MFi that crosses τ , so T has at most mi edges and thus at most mi+1 nodes,
corresponding to at most mi+1 faces of MFi that cross τ ; this is easily seen to imply
the claim.

We have thus shown that the number of functions that can attain EF over τ is at
most

∑k
i=1(mi+1) ≤ 2k. The complexity of EF over τ is thus O(k2+ε) for any ε > 0

[12, 20]. Summing this bound over all cells τ of Ξ, the overall complexity of EF is

O(k2+ε|Ξ|) = O

(
k2+ε ·

(
1 +

N

k
+

V

k2

))
= O(k2+ε + k1+εN + kεV )

for any ε > 0, as asserted.
Remark 1. An obvious open problem is to extend Theorem 3.1 to the case of

trivariate functions. Here we have a collection of 2-dimensional surface patches in R
3,

which are the faces of the individual minimization diagrams, and we want to construct
a (1/r)-cutting for this collection. The crucial ingredient in the preceding proof is a
sharp bound for the size of such a cutting, which becomes a considerably harder
task in the trivariate case. Specifically, the only known general-purpose method for
constructing cuttings of curved surfaces in three (and higher) dimensions uses the
vertical decomposition of a sample Σ of the given surfaces (see [21]). The size of such
a vertical decomposition depends on the number of visibility events in Σ, which are
triples of the form (e, e′, s), where each of e, e′ is an intersection curve of two surfaces
in Σ or a boundary edge or the silhouette of a single surface, and s is a vertical segment
that connects a point on e to a point on e′ and does not meet any other surface of Σ.
Obtaining sharp bounds on the number of visibility events in a sample of faces of the
k given minimization diagrams appears to be a fairly involved problem, which makes
an extension of Theorem 3.1 to the trivariate case a difficult task.

4. The overlay of trivariate minimization diagrams. Armed with the ex-
tension given in Theorem 3.1, we apply the partition technique to prove the main
result of the paper, which yields a near-cubic bound for the complexity of overlays
of minimization diagrams of trivariate functions. The general approach is the same
as the one demonstrated in the proof of Theorem 2.1, but the technical details are
unfortunately more complicated.

4.1. Preliminaries. Let F and G be two collections, each consisting of n totally
defined trivariate functions of constant description complexity. Consider the overlay
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Q(F ,G) of the minimization diagrams MF (of F) and MG (of G). The combinatorial
complexity of Q(F ,G) counts the number of cells of all dimensions in the overlay.

Each vertex (0-dimensional cell) of Q(F ,G) is a vertex either of MF or of MG ,
or a crossing between an edge of one diagram and a 2-face of the other. Denote by
C32(F ,G) the number of crossings between edges of MF and 2-faces of MG (the sub-
scripts 3 and 2 indicate that we consider interactions between features of MF defined
by three functions and features of MG defined by two functions). Our analysis will
concentrate on C32(F ,G), and the complementary count C23(F ,G) of the number of
crossings between 2-faces of MF and edges of MG will be handled in a fully symmetric
manner. Vertices counted in C32(F ,G) will sometimes be referred to as (3, 2)-vertices,
and vertices in C23(F ,G) can similarly be called (2, 3)-vertices.

Each edge (1-dimensional cell) of Q(F ,G) is (a portion of) an edge either of MF
or of MG , or a maximal connected portion of an intersection curve between a 2-face of
MF and a 2-face of MG , which does not meet any other 2-face of either diagram. Any
edge of the latter kind that has an endpoint can be charged to that endpoint, which
is a vertex of the overlay. Under an appropriate general position assumption, each
vertex is charged in this manner only O(1) times, so we will not have to be concerned
explicitly with such edges. Any other edge is either unbounded or a closed bounded
connected curve without a vertex. An unbounded edge e, formed by the intersection
of two 2-faces ϕ1 of MF and ϕ2 of MG , can be charged to a crossing between ϕ1 and
ϕ2 at infinity (or, alternatively, at some sufficiently large sphere or cube, enclosing all
bounded features of Q(F ,G)). The number of such crossings is equal to the complexity
of the overlay of MF and MG at infinity, which is the overlay of two minimization
diagrams of bivariate functions of constant description complexity, and its complexity,
denoted as C∞(F ,G), is O(n2+ε) for any ε > 0 (see [2] and the analysis in section 2).

We are thus left with edges of Q that are closed and bounded connected com-
ponents of “bichromatic” intersection curves. Computing the number of such edges
turns out to be the most involved part of our analysis. We denote their number by
C22(F ,G).

There is no need to consider separately 2-faces of Q(F ,G). Any 2-face ϕ of
Q(F ,G) can be charged to a bounding edge, except for those 2-faces that have no
boundary. The number of 2-faces of this latter kind is only O(n2), as is easily seen.

Levels. We can extend the above definitions as follows. The level of a point x in
the arrangementA(F) of F is the number of graphs of functions in F that lie vertically
below x, and similarly for A(G). Consider a projection of an a-level edge (resp., 2-
face) of A(F), and a projection of a b-level 2-face (resp., edge) of A(G). A crossing
between these two projections is said to be an (a, b)-level overlay vertex (note, though,
that these vertices do not show up at all in the actual overlay unless a = b = 0). The

number of such vertices is denoted by C
(a,b)
32 (F ,G) (resp., C

(a,b)
23 (F ,G)). Denote by

C
(≤k)
32 (F ,G) (resp., C(≤k)

23 (F ,G)) the number of all such vertices for which a+ b ≤ k.

C
(≤k)
22 (F ,G) is defined analogously. (Note that, since our functions are totally defined

and since we count here curves that have no vertex, the level of a curve is well defined

and is the same for all points on the curve.) Obviously, C32(F ,G) = C
(0,0)
32 (F ,G), and

the same is true for C23(F ,G) and C22(F ,G).
Denote by C

(≤k)
32 (n) the maximum value of C

(≤k)
32 (F ,G) over all collections F ,G,

each consisting of n trivariate functions of the same constant description complexity.

The quantities C
(≤k)
23 (n), C

(≤k)
22 (n) are defined analogously. For the case k = 0, where

features of the actual overlay are counted, we use the notation C32(n), C23(n), and
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C22(n), respectively. Since F and G are assumed to belong to the same general class

of functions, we have C32(n) = C23(n) and C
(≤k)
32 (n) = C

(≤k)
23 (n), so we will address

only the quantities C32(n) and C
(≤k)
32 (n), and not their symmetric counterparts, in

what follows.
We can estimate C

(≤k)
32 (n) in terms of C32(n). Since every crossing counted in

C
(≤k)
32 (F ,G) is defined by five surfaces, the standard random sampling argument of

Clarkson and Shor [8] implies

C
(≤k)
32 (n) = O

(
k5C32

(n

k

))
.(4.1)

Similarly, we get for overlay edges (each defined by four surfaces) that

C
(≤k)
22 (n) = O

(
k4C22

(n

k

))
.(4.2)

Remark 2. A more general problem involving overlays of trivariate functions is
that of the overlay of three or more minimization diagrams, rather than just two. The
reason is that overlays of three minimization diagrams contain a new kind of features:
vertices formed by the intersection of three 2-faces, one from each diagram. Overlays of
two diagrams are special in that they do not give rise to such vertices. Nevertheless,
as will be shown below, our analysis will lead us straight into the consideration of
such triple overlays. As a byproduct, we will also obtain near-cubic bounds on their
complexity.

4.2. Overlay vertices (counting C32(n)). As in section 2, we apply a 2-stage
analysis. We fix a parameter k, and, in the first stage, we partition G into k subgroups
G1, . . . ,Gk, each consisting of n/k functions.

Fix an edge e of MF , and erect a 2-dimensional wall V (e) over e consisting of
all x4-parallel lines that pass through e. Restrict the functions of G over e to obtain
a collection G(e) of univariate functions of constant description complexity, which is

partitioned in an obvious way into k subcollections G(e)
1 , . . . ,G(e)

k .
Let s denote the maximum number of intersections between the xy-projections of

an intersection curve of three function graphs in F , and of an intersection 2-surface of
two function graphs in G. Since F and G are assumed to belong to the same general
class of functions, we may assume that s also bounds the number of intersections
between the xy-projections of any intersection curve of three function graphs in G,
and of an intersection 2-surface of two function graphs in F .

Consider the lower envelopes EG(e)
i

of G(e)
i for i = 1, . . . , k. Note that the lower

envelope of the EG(e)
i

’s is the restriction EG(e) of the lower envelope EG over e and

that the number of breakpoints of EG(e) is the number of crossings between e and the
2-faces of MG (and similarly for each EG(e)

i
). Hence, applying the analysis of section 2,

the complexity of EG(e) is

|EG(e) | = O

(
βs(k)

k∑
i=1

(
1 + |EG(e)

i
|
))

.

Summing this bound over all edges e of MF , we obtain the recurrence

C32(F ,G) = O

(
|MF |λs(k) + βs(k)

k∑
i=1

C32(F ,Gi)
)

.(4.3)
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In the (considerably more involved) second stage, we partition F into k groups
F1, . . . ,Fk, each consisting of n/k functions. Fix a subset Gb and a 2-face ϕ of
MGb . Let V (ϕ) denote the 3-dimensional wall erected over ϕ. (It is the union of all
x4-parallel lines passing through points of ϕ.) Restrict the functions of F over ϕ
to obtain a collection F (ϕ) of bivariate functions of constant description complexity,

which is partitioned in an obvious way into F (ϕ)
1 , . . . ,F (ϕ)

k .
Note that the number of crossings between edges of MF and ϕ is equal to the

number of vertices of the lower envelope EF(ϕ) (over the relative interior of ϕ). Using
Theorem 3.1, we can estimate |EF(ϕ) | or, rather, |MF(ϕ) | as follows:

|MF(ϕ) | = O


k2+ε + k1+ε

k∑
i=1

|MF(ϕ)
i
|+ kε

k∑
i=1

k∑
j=i+1

C
(
F (ϕ)
i ,F (ϕ)

j

) .

We sum this bound over all 2-faces ϕ of MGb to obtain an upper bound for C32(F ,Gb).
The terms k2+ε add up to O(k2+ε|MGb |). The sum

∑
ϕ |MF(ϕ)

i
| for any fixed i is equal,

by definition, to

O (C32(Fi,Gb) + C23(Fi,Gb) + C22(Fi,Gb) + C∞(Fi,Gb)) .
Indeed, vertices ofMF(ϕ)

i
that lie in the relative interior of ϕ are counted in C32(Fi,Gb).

Closed and bounded connected edges of MF(ϕ)
i

that have no vertex and are fully

contained in the relative interior of ϕ are counted in C22(Fi,Gb). Edges with no vertex
that reach the boundary of ϕ induce, at their boundary crossings, (2, 3)-vertices and
are thus counted in C23(Fi,Gb). Edges that reach infinity (which can happen when ϕ
is unbounded) are counted in C∞(Fi,Gb). Finally, edges with a vertex can be charged
to that vertex.

The sum
∑
ϕ C(F (ϕ)

i ,F (ϕ)
j ) for any fixed i, j is equal to the number of vertices of

the triple overlay of MFi , MFj , and MGb , which are intersections of three 2-faces, one
of each diagram; we refer to such vertices as trichromatic. We denote this triple overlay
by Q∗(Fi,Fj ,Gb) and denote by C222(Fi,Fj ,Gb) the number of trichromatic vertices

of the overlay. We define the notation C
(≤k)
222 (Fi,Fj ,Gb), C

(≤k)
222 (n), and C222(n) in

complete analogy with the definition of the similar quantities given above.
Note that we started our analysis by considering the overlay Q(F ,G) of only two

minimization diagrams, and there we needed only to consider “bichromatic” vertices,
formed by the intersection of edges of one diagram with the 2-faces of the other. As
mentioned in the remark above, when we overlay three or more diagrams, we also
encounter trichromatic vertices, formed by the intersection of three 2-faces, one of
each diagram.

Combining the analysis just given with (4.3) and using the fact that |MF | =
O(n3+ε) for any ε > 0 [20], we obtain, for any ε > 0,

C32(n) = O


λs(k)n

3+ε + βs(k)

k∑
b=1


k2+ε|MGb |

+ k1+ε
k∑
i=1

(
C32

(n

k

)
+ C22

(n

k

)
+
(n

k

)2+ε
)
+ kε

k∑
i=1

k∑
j=i+1

C222

(n

k

)



= O
(
λs(k)n

3+ε + k3+εC32

(n

k

)
+ k3+εC22

(n

k

)
+ k3+εC222

(n

k

))
.(4.4)
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Note that the final value of ε in this relation has to be taken slightly larger than the
one we started with to accommodate the extra factor βs(n). However, the recurrence
still holds for any arbitrarily small ε > 0.

4.3. Trichromatic vertices (counting C222(n)). Let F ,G,H be three col-
lections, each consisting of n trivariate functions of constant description complexity,
as above. We want to estimate the number C222(F ,G,H) of triple intersections of
2-faces in the triple overlay Q∗(F ,G,H) of MF ,MG ,MH. Here we use a 3-stage anal-
ysis based on a variant of the analysis of the overlay of bivariate functions given in
section 2. Interestingly, this part of our analysis of overlays of trivariate minimization
diagrams is the simplest. Informally, this is because, in each of the three stages below,
we have to consider only overlays of univariate functions, as in section 2.

We fix a parameter k and partition H into k groups H1, . . . ,Hk of n/k functions
each. Fix a 2-face ϕ1 of MF and a 2-face ϕ2 of MG , and let e be a connected component
of the intersection curve ϕ1 ∩ ϕ2 in R

3. Note that the number of such edges e that
have at least one endpoint is proportional to C32(F ,G) + C23(F ,G), because each
endpoint of e is a crossing between an edge of one diagram and a 2-face of the other.
Any other edge is either unbounded or a closed and bounded Jordan curve, and the
number of such edges, as analyzed above, is O(n2+ε + C22(n)). Thus the number of
edges e under consideration is O(n2+ε + C32(n) + C22(n)).

Restrict the functions in H to the vertical wall V (e), as defined above, to obtain
a collection H(e) of univariate functions of constant description complexity, which is

partitioned in an obvious way into k subcollections H(e)
1 , . . . ,H(e)

k . As above, we have

|MH(e) | = O

(
βs(k)

k∑
i=1

(
1 + |MH(e)

i
|
))

,

and, summing this bound over all such edges e, we obtain, by definition,

C222(F ,G,H) = O

((
n2+ε + C22(n) + C32(n)

)
λs(k) + βs(k)

k∑
i=1

C222(F ,G,Hi)
)

.

We repeat the same counting stage twice more. In the second stage, we fix F
and one subcollection Hc, partition G into k subgroups G1, . . . ,Gk, and conclude, as
above, that

C222(F ,G,Hc) = O


(n2+ε + C22(n) + C32(n)

)
λs(k) + βs(k)

k∑
j=1

C222(F ,Gj ,Hc)

 .

(Note that the “overhead” term depends on C22(F ,Hc)+C32(F ,Hc)+C23(F ,Hc)+
C∞(F ,Hc), which still involves Θ(n) functions in F .)

Similarly, in the third stage, we fix two subsets Gb and Hc, partition F into k
subgroups F1, . . . ,Fk, and obtain

C222(F ,Gb,Hc)

= O

(((n

k

)2+ε

+ C22

(n

k

)
+ C32

(n

k

))
λs(k) + βs(k)

k∑
�=1

C222 (F�,Gb,Hc)
)

.
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Substituting these estimates into one another, we obtain

C222(n) = O

((
n2+ε + C22(n) + C32(n)

)
λs(k)

+ λs(k)

[(
n2+ε + C22(n) + C32(n)

)
λs(k)

+ λs(k)

[((n

k

)2+ε

+ C22

(n

k

)
+ C32

(n

k

))
λs(k) + λs(k)C222

(n

k

)]])

or

(4.5) C222(n)

= O
(
λ2
s(k)

[
n2+ε + C22(n) + C32(n)

]
+ λ3

s(k)
[
C22

(n

k

)
+ C32

(n

k

)
+ C222

(n

k

)])
.

4.4. Overlay edges (counting C22(n)). In this section, we analyze the quan-
tity C22(F ,G), which is the number of “bichromatic” overlay edges that are closed
bounded Jordan curves, each formed as a connected component of an intersection of
a face of MF and a face of MG , which are not adjacent to any overlay vertex. Overlay
edges are structurally quite different from overlay vertices. To bound their number,
we do not use the partition technique but employ the well-known technique of count-
ing schemes introduced by Halperin and Sharir [12, 20] (see also [21]) and already
mentioned in the introduction. This part of the analysis is essentially identical to the
corresponding part in the precursor paper [18].

Our counting scheme for C22(F ,G) is another novel technical feature of this paper,
and no similar scheme that charges curves rather than vertices has been employed in
previous works involving substructures in arrangements. In this counting scheme,
we partition the set of overlay edges into a small number of groups, according to the
index of the edge (a notion to be defined shortly, and quite different from the standard
notion of indices, as used in the analysis of substructures in arrangements [21]). We
establish a separate recurrence relation for the number of edges in each group. These
recurrences will depend on each other as well as on C32(n).

Fix some threshold parameter k. Consider the (at most a constant number of)
connected components of a bichromatic overlay intersection curve defined by a fixed
quadruple of surfaces f1, f2 ∈ F , g1, g2 ∈ G. Suppose one of these components contains
a point at level at most k and either is incident to an (≤ k)-level overlay vertex or
extends to infinity. The discussion in section 4.1 easily implies that the number of
such overlay edges (that is, edges counted in C22(n) for which a sibling component of
the same intersection curve satisfies the above properties) is, for any ε > 0,

O
(
k5C32

(n

k

)
+ k2n2+ε

)
.(4.6)

In the remainder of this section, we treat bichromatic overlay edges defined by
some quadruple f1, f2, g1, g2 such that all (≤ k)-level edges defined by f1, f2, g1, g2 are
closed and bounded Jordan curves that are not incident to any vertex. (The level of
such a curve is well defined: all points on the curve have the same level, assuming,
as above, that the functions in F and G are totally defined.) We fix a 2-face ϕ that
belongs to EG and is a connected portion of the intersection of the graphs of two
functions g1, g2 ∈ G, and we consider the vertical 3-dimensional wall V (ϕ) erected
over ϕ, as in the previous sections. Let F (ϕ) be the cross-section of F within V (ϕ),
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and let fϕ be the cross-section of the graph of a function f within V (ϕ) for each f ∈ F .
A(F (ϕ)) can be regarded as an arrangement of xy-monotone 2-dimensional surfaces
in R

3.
Let Γ(F (ϕ)) denote the set of edges, for which the following holds. Each edge c

of Γ(F (ϕ)) is a 0-level edge that lies completely in the lower envelope of A(F (ϕ)) and
is a connected component of an intersection curve f1 ∩ f2 for some f1, f2 ∈ F (ϕ) such
that all the connected components (including c) of this intersection that lie at level at
most k of A(F (ϕ)) are closed and bounded Jordan curves and are not incident to any
vertex. Note that any bichromatic overlay edge of the kind we are after corresponds
to a curve in Γ(F (ϕ)) for some 2-face ϕ of EG .

Define S(F ,G) ≡∑ϕ |Γ(F (ϕ))| and S(n) ≡ maxS(F ,G), where the maximum is
taken over all sets F and G of size n as above. The above analysis implies, for any
ε > 0,

C22(n) = O
(
S(n) + k5C32

(n

k

)
+ k2n2+ε

)
.(4.7)

We next define the notion of index that we attach to intersection curves. For
readers who have encountered previous similar-purpose definitions [20], we remark
that our definition is conceptually different in that it is not “local,” meaning that
the index given to a specific intersection curve is defined with respect to the whole
arrangement A(F (ϕ)) and may change as the set F (ϕ) decreases.

Specifically, consider the intersection f1 ∩ f2 for any f1, f2 ∈ F (ϕ). Consider all
the connected components of this intersection that are edges of Γ(F (ϕ)), and let j be
their number. We set the index of the curve f1 ∩ f2 to j. We will say that j is also
the index of all the edges of Γ(F (ϕ)) that are connected components of f1 ∩ f2.

Let q be the maximum possible number of connected components of an intersec-
tion f1∩f2 as above. By the constant description complexity and the general position
assumptions, q is constant. Clearly, j varies between 1 and q. The case j = 0 means
that either no component of f1 ∩ f2 shows up on the envelope or some such compo-
nents do show up, but there exists a component at level at most k that has a vertex
or reaches infinity. We will not be concerned with edges of index 0, because either we
do not have to count them at all, or else we can bound their number using (4.6).

Let Γ(j)(F (ϕ)) denote the subset of Γ(F (ϕ)) that contains edges with index at
least j. Define S(j)(F ,G) ≡∑ϕ |Γ(j)(F (ϕ))| and S(j)(n) ≡ maxS(j)(F ,G), where the
maximum is taken over all sets F and G of size n as above. Since the maximal index
of an edge is q, we have S(q+1)(n) = 0. We also have, by definition, S(n) = S(1)(n).

We note that the index of f1 ∩ f2 depends on the current set F . When F is
replaced by a smaller sample, as happens, for example, when applying the Clarkson–
Shor bound, the index may increase, because either (i) more components of f1 ∩ f2

appear on the envelope, or (ii) all vertices of A(F (ϕ)) that lie on components of
f1 ∩ f2 at level at most k disappear, since all the third surfaces incident to these
vertices have been removed from F . (Note that the level of a curve can only decrease
when functions are removed from F .) In this latter case, the index jumps from 0
(no component of f1 ∩ f2, even those on the envelope, qualified to belong to Γ(F (ϕ))
before F was reduced) to some j equal to the number of components that lie on the
envelope after the reduction.

The index of f1 ∩ f2 can decrease in only one way, as follows. There may exist an
intersection curve f1 ∩ f2 that had a positive index, but, after F has been reduced,
new components of f1 ∩ f2 reach the (≤ k)-level of A(F (ϕ)) and do contain vertices
or do reach infinity. The index of f1 ∩ f2 then drops to 0. However, the number of



854 VLADLEN KOLTUN AND MICHA SHARIR

such curves in the reduced arrangement can be estimated using the bound in (4.6)
(applied to the reduced arrangement). To conclude, with the exception of these drops
to zero, the index of a curve can only increase when the size of F is reduced.

The counting scheme below bounds S(j)(n) for all 1 ≤ j ≤ q. It proceeds by
distinguishing between five possible scenarios (Cases 1–5) and treating each in turn.

Case 1: Γ(j)(F (ϕ)) is small. Suppose first that at most (q + 1)k + 2 = O(k)
surfaces of F attain the lower envelope of A(F (ϕ)). In this case, we use the naive
bound |Γ(j)(F (ϕ))| = O(k2). Since there are O(n3+ε) possible faces ϕ, the maximum
number of edges of this kind that are counted in S(j)(n) is O(k2n3+ε) (for all j). In
what follows, we consider only faces ϕ such that more than (q+1)k+2 surfaces of F
attain the lower envelope of A(F (ϕ)).

Case 2: There is a “shallow” connected component of the same intersection curve.
Consider any pair of surfaces P,Q ∈ F such that there is a connected component c
of the intersection Pϕ ∩ Qϕ that is an edge of Γ(j)(F (ϕ)). The component c is, by
definition, also an edge of Γ(F (ϕ)), which implies that all the connected components
of Pϕ ∩ Qϕ that lie at level at most k of A(F (ϕ)) are closed and bounded Jordan
curves and are not incident to a vertex. Also, since the index of Pϕ ∩ Qϕ is at least
j, the number of connected components of Pϕ ∩Qϕ that lie on the lower envelope of
A(F (ϕ)) is at least j. Suppose there is a connected component c′ defined by Pϕ ∩Qϕ

whose level is between 1 and k. (As noted, the level of a curve that satisfies the above
properties is well defined.) In this case, we charge all edges of Γ(j)(F (ϕ)) defined by
Pϕ ∩ Qϕ to c′. It is easy to see that each such edge c′ is charged in this fashion at
most a constant number of times (that is, at most q − 1 times).

Let Γ(c′) be the set of the (at most k) surfaces of F (ϕ) that lie below c′. Set
F̃ (ϕ) ≡ F (ϕ) \ Γ(c′), and consider the arrangement A(F̃ (ϕ)). Clearly, c′ lies on its
lower envelope. Moreover, there are at least j + 1 connected components of the
intersection Pϕ ∩ Qϕ that lie on this lower envelope. Thus the index of c′ is now at

least j+1, and c′ belongs to Γ(j+1)(F̃ (ϕ)). More accurately, c′ belongs to Γ(j+1)(F̃ (ϕ))
unless a new component of Pϕ ∩Qϕ, that either reaches infinity or contains a vertex

of A(F̃ (ϕ)), has “descended” to the first k levels in A(F̃ (ϕ)), thereby dropping the
index of c′ to 0. (Note that this analysis also applies to any subset F ′ ⊆ F̃ (ϕ).)
A standard random sampling argument, such as the ones used in section 4.1, now
implies, in combination with (4.6), that the maximum number of edges of this kind
that are counted in S(j)(F ,G) is

O
(
k4S(j+1)

(n

k

)
+ k4

[
k5C32

( n

k2

)
+ n2+ε

])

= O
(
k4S(j+1)

(n

k

)
+ k9C32

( n

k2

)
+ k4n2+ε

)
.

In what follows, we assume that there is no connected component c′ as above.
Case 3: There is a “shallow” vertex. Since Case 1 is ruled out, there are at least

(q + 1)k surfaces, other than Pϕ, Qϕ, that attain the lower envelope of A(F (ϕ)) over
ϕ. Consider all the connected components (edges) of Pϕ ∩ Qϕ that lie in the lower
envelope of A(F (ϕ)). These edges partition both Pϕ and Qϕ into at most (q + 1)
pairs of relatively open regions, where each pair consists of two regions, one on Pϕ
and one on Qϕ, that have a common boundary (over the relative interior of ϕ) and a
common projection onto ϕ. One of these projections, denoted by ∆0, has to contain
at least k subregions where k other distinct surfaces attain the envelope. Each of these
surfaces, Tϕ, lies strictly above Pϕ ∩ Qϕ over all points of ∂∆0 defined by Pϕ ∩ Qϕ.
Hence Tϕ intersects both Pϕ and Qϕ over ∆0, and the projection of each component
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γπ,v

(a) (b) (c)

v

π

π’v

π

Fig. 4.1. The region ∆ (shaded) is illustrated in (a). (b) shows a point v that is charged by
an edge π, together with the connecting arc γπ,v. The interior of the arc γπ,v lies fully within ∆
and thus cannot intersect any connected component of Pϕ ∩Qϕ that lies on the lower envelope. (c)
depicts the edge π′, whose assumed existence leads to the contradiction in the proof of Lemma 4.1.

of either intersection onto ϕ is not incident to those boundary components of ∆0 that
are defined by Pϕ∩Qϕ. (We emphasize that the region ∆0 is fixed in all the remaining
charging steps during the present case and in Cases 4 and 5 below.)

Consider an arbitrary edge π (defined by Pϕ ∩Qϕ) whose projection onto ϕ lies
on the boundary of ∆0, and assume, without loss of generality, that Pϕ lies below Qϕ

when approaching (the projection of) π from within ∆0. Let ∆ denote the portion of
Qϕ (the surface that is higher near π) that projects onto ∆0 (see Figure 4.1(a)), and
let C be the set of edges (each being a connected component of Oϕ ∩ Qϕ for some
Oϕ ∈ F (ϕ)) contained in ∆. By what we have just argued, |C| ≥ k.

Suppose that there is at least one vertex v on Qϕ within ∆ that lies at level at
most k, such that v can be connected to a point on π by an arc γπ,v (of some finite
though not necessarily constant description complexity) that lies on Qϕ within ∆, and
is at level (≤ k) for all points in its relative interior. In this case, we charge all the
edges of Γ(j)(F (ϕ)) defined by Pϕ∩Qϕ to an arbitrary such vertex (see Figure 4.1(b)).
Note that each such vertex corresponds to a (≤ k, 0)-level overlay vertex.

Similarly, suppose there is at least one edge that passes above/below the boundary
of ϕ at level ≤ k, while lying on Qϕ within ∆, at a certain point v, such that v can be
connected to π by an arc γπ,v as above. By construction, this implies that part of ∂∆
is covertical with the boundary of ϕ, and this is the part of ∂∆ that contains v. (In
general, notice that ∆ is always bounded by ϕ in the sense that the projection ∆0 of
∆ is contained in ϕ. In the case under consideration, ∆0 touches the boundary of ϕ,
and thus part of ∂∆0 lies on ∂ϕ.) In this case, we charge all the edges in Γ(j)(F (ϕ))
defined by Pϕ∩Qϕ to an arbitrary such point v, as above, noting that each such point
again corresponds to a (≤ k, 0)-level overlay vertex. (Note that, in the preceding case,
the charged vertex was a (3, 2)-vertex, whereas now it is a (2, 3)-vertex.)

An observation that will prove useful in the proof of the following lemma is that
an arc γπ,v cannot cross any connected component of Pϕ ∩Qϕ that lies in the lower
envelope of A(F (ϕ)), since the interior of γπ,v is required to lie inside the region ∆.

Lemma 4.1. Each point v is charged by at most qk distinct edges of Γ(j)(F (ϕ))
as prescribed in Case 3.

Proof. The proof is visualized in Figure 4.1. Suppose a point v that lies on Qϕ is
charged by an edge π. By construction, π is a connected component of an intersection
of Qϕ with another surface Pϕ. The crucial observation is that Pϕ has to lie below
v. Indeed, suppose Pϕ lies above v. By construction, there exists an arc γπ,v that
connects v to a point on π and lies fully within level ≤ k in its interior. Also by
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construction, Pϕ lies below Qϕ when we approach π on γπ,v, and our assumption
states that Pϕ lies above Qϕ when we approach v on γπ,v. Thus Pϕ has to intersect
the interior of γπ,v, which implies the existence of an edge π′ defined by Pϕ ∩ Qϕ,
distinct from π, within level ≤ k. As observed just before the statement of the lemma,
γπ,v cannot intersect π′ at level 0. Thus the level of π′ is between 1 and k. Such a
situation, however, has been ruled out in Case 2, leading us to a contradiction.

We have thus shown that v can only be charged by connected components of
intersections of Qϕ with surfaces that lie below v. Since at most k surfaces lie below v
and each defines at most q such connected components (edges) along Qϕ, v is charged
by at most qk distinct edges that lie on Qϕ. Since v lies on at most three surfaces of
F (ϕ), it can be charged by at most 3qk edges overall.

Combined with (4.1) and with the fact that q is a constant, Lemma 4.1 implies
that the maximum number of edges of this kind that are counted in S(j)(F ,G) is

O(kC
(≤k)
32 (n)) = O(k6C32(n/k)). In what follows, we assume that there is no vertex

v as above (for the specific region ∆ which we now keep fixed).

Case 4: There is a “shallow” edge that reaches infinity. We continue to use the
setup introduced in Case 3 and suppose that there is an edge c of C that lies at level
at most k and is not a closed and bounded Jordan curve, and c can be reached from
π along an arc γπ,c, as above, that stays at level ≤ k. (Since we assume that the
scenario treated in Case 3 does not hold, this can only occur if ∆ is unbounded, c
has no vertices, and c reaches infinity. This, in turn, can only happen when ϕ is
unbounded.) In this case, we charge all the edges of Γ(j)(F (ϕ)) defined by Pϕ ∩Qϕ to
the edge c. Arguing as above, we can show that the overall number of such edges is
O(k2n2+ε). The proof of Lemma 4.1 can easily be modified to show that each edge is
charged at most 2qk times in this fashion. (In the modified proof, we use the fact that
the set of surfaces that lie below a point on c is the same for all points of c.) Thus the
maximum number of edges of this kind that are counted in S(j)(F ,G) is O(k3n2+ε).
In what follows, we assume that there is no edge c ∈ C as above (for our fixed ∆).

Case 5. In this final case, we distinguish between two subcases. In both, we
charge one edge π of Γ(j)(F (ϕ)) defined by Pϕ∩Qϕ (out of the at most q such edges),
which bounds the region ∆ under consideration, to k edges c ∈ C that lie at level ≤ k
and can be reached from π along an (≤ k)-level arc γπ,c, as above.

Subcase 5.A: There is a point on ∆ that lies at level > k. We can connect this
point to a point on one of the boundary arcs π of ∆, defined by Pϕ∩Qϕ, by an arc (of
some finite though not necessarily constant description complexity) that lies on Qϕ

within ∆, in its interior. Since one endpoint of this arc lies at level > k and the other
lies on the lower envelope, the arc intersects at least k distinct edges of C. Moreover,
the first k distinct edges encountered when walking along the arc away from π lie at
level ≤ k since π lies on the lower envelope. We charge π to these first k edges of C.

Subcase 5.B: ∆ lies entirely at level ≤ k. We charge π to k arbitrary edges of C.

We emphasize that in both subcases there exists an arc γπ,c for each edge c charged
by π that connects a point on c to a point on π and lies on Qϕ within ∆, and its
interior lies fully at level ≤ k. In Subcase 5.A, γπ,c is the appropriate prefix of the arc
used to identify the k edges that are charged, while in Subcase 5.B, γπ,c exists since
∆ lies entirely at level ≤ k and is connected. Therefore, since Cases 1–4 are assumed
not to occur, it follows that each of these edges c is a closed bounded Jordan curve
not incident to any vertex. Indeed, had vertices incident to c existed, one of them
would lie at level ≤ k and could be connected to a point on π as prescribed in Case
3. We have assumed, however, that there are no such vertices. The exclusion of Case
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γθ,c

γθ,c’

(a) (b) (c)

π θ

c
γπ,c

π θ

c

π θ

c

π’ π’ θ’

Fig. 4.2. A schematic visualization of the proof of Lemma 4.2. The general setup is introduced
in (a); (b) illustrates the edge π′ and the arc γ′θ,c (with the latter thickened), and (c) illustrates the

edge θ′.

4 similarly implies that c is a closed bounded Jordan curve. (Note that there may
nevertheless exist edges c ∈ C at level ≤ k that contain a vertex or are unbounded
but are unreachable from π along a low-level arc γπ,c, as above.)

Let c be an edge of C that is charged in the above fashion. Lemma 4.2 below
states that c is charged at most twice. Let Γ(c) be the set of the (at most k) surfaces
of F (ϕ) that lie below c, and set F̃ (ϕ) ≡ F (ϕ) \ Γ(c). Since we assume that none
of the scenarios treated in Cases 1–4 holds, it is easy to see that c is an edge of
Γ(F̃ (ϕ)), unless there exists a component c′ “sibling” to c that meets the first k levels
of A(F̃ (ϕ)) and either reaches infinity or contains a vertex of A(F̃ (ϕ)); the component
c′ has either descended to the first k levels in A(F̃ (ϕ)), thereby dropping the index of c
to 0, or has already existed within the first k levels of A(F (ϕ)) but was “hidden” from
the charging curve π, as described in the preceding paragraph. (These properties also
hold for any subset of F̃ (ϕ).) As in Case 2, a standard random sampling argument,
such as the ones used in section 4.1, now implies, in combination with (4.6), that the
maximum number of edges of this kind that are counted in S(j)(F ,G) is

q

k
·O
(
k4S

(n

k

)
+ k4

[
k5C32

( n

k2

)
+ n2+ε

])

= O
(
k3S

(n

k

)
+ k8C32

( n

k2

)
+ k3n2+ε

)
.

We now give the lemma, referred to in the beginning of the paragraph, that ensures
that each edge c ∈ C is charged in the above fashion at most twice.

Lemma 4.2. Each curve is charged by at most two distinct edges of Γ(j)(F (ϕ))
as prescribed in Case 5.

Proof. By construction, an edge c ⊆ Qϕ ∩Oϕ can only be charged by edges that
lie either on Qϕ or on Oϕ. Assume, for the sake of contradiction, that c is charged by
two edges, π ⊆ Qϕ ∩ Pϕ and θ ⊆ Qϕ ∩ Tϕ, for some Pϕ, Tϕ ∈ F (ϕ) (see Figure 4.2).
Notice that the level of c is at most k and that c can be connected to π and θ by arcs
γπ,c and γθ,c, respectively, as described above (see Figure 4.2(a) for an illustration).
As argued above, this implies that c is a closed bounded Jordan curve that is incident
to no vertex.

We can assume, without loss of generality, that θ and c lie on the same side of
the closed curve π. The arguments in the proof of Lemma 4.1 imply that Pϕ has to
lie completely below c. Consider the arc γθ,c connecting a point on c to a point on θ,
as above. Pϕ lies below Qϕ when we approach c on γθ,c, but since θ lies on the lower
envelope, Pϕ lies above Qϕ when we approach θ on γθ,c. Thus Pϕ has to intersect the
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relative interior of γθ,c, which implies the existence of a closed curve π′ defined by
Pϕ ∩Qϕ, within level ≤ k such that θ and c lie on different sides of π′. π′ is therefore
distinct from π. If its level is between 1 and k, we reach a contradiction since such
situations have been ruled out in Case 2. π′ therefore lies on the lower envelope.

Consider the part γ′θ,c of γθ,c that lies between (the last intersection of γθ,c with)
π′ and θ (as shown in Figure 4.2(b)). By construction, Tϕ lies below Qϕ when we
approach θ on γ′θ,c, but since π′ lies on the lower envelope, Tϕ lies above Qϕ when
we approach π′ on γ′θ,c. Thus Tϕ has to intersect the relative interior of γ′θ,c, which
implies the existence of a closed curve θ′ defined by Tϕ ∩Qϕ, distinct from θ, within
level ≤ k (as illustrated in Figure 4.2(c)). As observed just before Lemma 4.1, γθ,c
cannot intersect θ′ at level 0. Thus the level of θ′ is between 1 and k. Such a situation
has however been ruled out in Case 2, leading to a contradiction.

We have shown that c can be charged by a connected component of an intersection
of Qϕ with only one other surface. A symmetric statement holds for Oϕ. c ⊆ Qϕ∩Oϕ
can thus be charged at most twice.

We can now write the following relations for all 1 ≤ j ≤ q. (Note that for j = q
the second term on the right side is not present.)

S(j)(n) = O
[
k3S

(n

k

)
+ k4S(j+1)

(n

k

)
+ k6C32

(n

k

)
(4.8)

+ k9C32

( n

k2

)
+ k4n3+ε

]
.

4.5. Putting it all together. We claim that the system of interdependent
recurrences derived in this section, given in (4.4), (4.5), (4.7), (4.8), solves to

C32(n) = O(n3+ε), C22(n) = O(n3+ε), C222(n) = O(n3+ε)

for any ε > 0. This is shown by induction, as in [20], choosing a different value
of k for each recurrence. In more detail, we order the functions appearing in the
recurrences as (C22, S

(1), S(2), . . . , S(q), C222, C32) and denote this, for uniformity, as
(F1, F2, . . . , Fq+3). Each recurrence is roughly of the form

Fi(n) = O

(
kβ1

i Fj1

(
n

kα1
i

))
+O

(
kβ2

i Fj2

(
n

kα2
i

))
+ · · ·

+O

(
kβri Fjr

(
n

kαri

))
+O (fi(n)) .

We represent this system by a directed graph G on the indices {1, 2, . . . , q+3}, whose
directed edges are (i, j1), . . . , (i, jr) for all i. We call an edge (i, j) a forward (resp.,
backward) edge if j > i (resp., j ≤ i). Let γ be the maximum of the ratios βt/αt
taken over all corresponding edges (i, jt) that are backward edges, and assume also
that fi(n) = O(nγ+ε) for each i and for any ε > 0. Then one can show that the
solution of this system is Fi(n) = O(nγ+ε) for any ε > 0 and for all i. Informally,
larger exponent ratios in terms that relate Fi to a function Fj with a larger index do
not affect the overall bound because (almost all of) their effect can be suppressed by
the choice of appropriate values for the ki’s, which decrease exponentially with i.

Since in our case, under the order given above, γ = 3, we obtain the bound
asserted above.2 This completes the proof of Theorem 1.1.

2Technically, γ is not quite 3 because of the factors βs(k) and kε that are also present in our
recurrences. However, any γ > 3 can be used as a bound for the exponent of the solution, so O(n3+ε)
is a solution of the system.
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5. Applications. Our bound on the complexity of overlays in R
4 has many

applications. We mention several of the more obvious ones. All the results listed below
improve significantly upon the best previously known ones. Their proofs crucially rely
on Theorem 1.1. Some of the more standard details in the proofs are omitted.

The region “sandwiched” between two envelopes. Let F and G be two families of
n trivariate functions of constant description complexity, as above. Let ΣF,G denote
the sandwich region consisting of all points that lie above the upper envelope EG of
G and below the lower envelope EF of F . That is, ΣF,G is the set of all quadruples
(x1, x2, x3, x4), such that g(x1, x2, x3, x4) ≤ x4 ≤ f(x1, x2, x3, x4) for each f ∈ F ,
g ∈ G.

Theorem 5.1. The combinatorial complexity of the sandwich region ΣF,G is
O(n3+ε) for any ε > 0.

Proof. Consider, for example, the number of vertices of ΣF,G . Any such vertex
is (i) a vertex of EF or of EG (there are O(n3+ε) such vertices for any ε > 0), (ii) an
intersection between an edge e of EF and a facet ϕ of EG , (iii) an intersection between
an edge e of EG and a facet ϕ of EF , or (iv) an intersection between a 2-face f of
EF and a 2-face g of EG . Consider the overlay Q(F ,G) of the minimization diagram
MF of F and the maximization diagram MG of G (defined in complete analogy to the
definition of minimization diagrams). In cases (ii) and (iii), the projections of e and of
ϕ in Q(F ,G) have a nonempty intersection. That is, there exists a connected portion
of e that appears as a feature of Q(F ,G), and the cells of Q(F ,G) that it bounds are
portions of the projection of ϕ. Similarly, in case (iv), the projections of f and of
g intersect in a curve that is a feature (or a union of features) of Q(F ,G). We can
thus charge vertices of ΣF,G to features of Q(F ,G) in a unique manner, which clearly
implies the claim.

Note that the bound in Theorem 5.1 is nearly tight in the worst case. As a matter
of fact, the proof of Theorem 5.1 implies the following stronger result; we refer the
reader to [7, 17] for details concerning vertical decompositions in four dimensions.

Corollary 5.2. The combinatorial complexity of the first stage of the vertical
decomposition of the sandwich region ΣF,G is O(n3+ε) for any ε > 0.

This corollary still leaves open the question of whether the complexity of the entire
vertical decomposition of ΣF,G is near-cubic or at least subquartic. This problem is
still open even when one collection is empty, i.e., the problem concerning the vertical
decomposition of the region below the lower envelope of a collection of trivariate
functions.

The space of hyperplane transversals in 4-space. Let C be a collection of n convex
sets in R

4, each being semialgebraic of constant description complexity. Let T3(C)
denote the space of all hyperplane transversals of C, i.e., the set of all hyperplanes
that intersect every member of C. Using a standard duality transformation [10],
we map hyperplanes to points and points to hyperplanes so that the incidence and
the above/below relationships between points and hyperplanes are preserved. (This
transformation excludes hyperplanes parallel to the x4-axis, which can be handled
separately in a much simpler manner.) Then each c ∈ C is mapped into two totally
defined trivariate functions f+

c , f−c such that a hyperplane x4 = h1x1+h2x2+h3x3+h4

intersects c if and only if f−c (h1, h2, h3) ≤ h4 ≤ f+
c (h1, h2, h3). See [2] for more details.

Hence T3(C) is the region sandwiched between the upper envelope of {f−c |c ∈ C} and
the lower envelope of {f+

c |c ∈ C}. Using Theorem 5.1, we thus obtain the following
result.

Theorem 5.3. The combinatorial complexity of the space T3(C) of all hyperplane
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transversals of a set C of n convex sets of constant description complexity in R
4 is

O(n3+ε) for any ε > 0.
Remark 3. Note that each vertex of T3(C) is dual to a hyperplane transversal

that is tangent to four members of C. Similar geometric interpretations hold for other
features of ∂T3(C).

The space of line transversals in 3-space. Let C be a collection of n convex sets in
R

3, each being semialgebraic of constant description complexity. Let T1(C) denote the
space of all line transversals of C. We can map each line l in R

3, given by the equations
y = a1x+a2, z = a3x+a4, to the point l∗ = (a1, a2, a3, a4) ∈ R

4. (This excludes lines
parallel to the yz-plane, which can be handled separately in a much simpler manner.)
As above (see [2] for details), each c ∈ C is mapped to a pair of partially defined
trivariate functions f+

c , f−c such that f+
c and f−c have the same domain of definition,

and a line l, with l∗ = (a1, a2, a3, a4), is a transversal of c if and only if the functions
f+
c , f−c are defined at (a1, a2, a3) and f−c (a1, a2, a3) ≤ a4 ≤ f+

c (a1, a2, a3). Hence
this problem too reduces to a sandwich region in four dimensions, and Theorem 5.1
implies the following result.

Theorem 5.4. The combinatorial complexity of the space T1(C) of all line
transversals of a set C of n convex sets of constant description complexity in R

3

is O(n3+ε) for any ε > 0.
Remark 4. As above, vertices of T1(C) are dual to lines that are tangent to four

members of C.
This implies the following corollary concerning the number of geometric permuta-

tions. Such a permutation is the order in which a collection of disjoint convex bodies
can be stabbed by a line transversal.

Corollary 5.5. The number of geometric permutations in a collection C of n
pairwise disjoint convex sets of constant description complexity in R

3 is O(n3+ε) for
any ε > 0.

This improves the general known upper bound of O(n4) [22] (for the special case
of sets with constant description complexity) but is not known to be tight, since the
only known lower bound is Ω(n2) [16].

Efficient construction of transversal spaces. Theorems 5.3 and 5.4 do not address
the problem of efficient construction of the respective spaces T3(C), T1(C). We next
show that the boundaries of these spaces can be constructed efficiently in time O(n3+ε)
for any ε > 0. To avoid (the routine though somewhat technical) details involving
the representation of the combinatorial structure of the boundary as a 3-dimensional
cell complex, we restrict the algorithm to produce, for every pair c1, c2 ∈ C, just the
portion of ∂T3(C) (or ∂T1(C)) that consists of all the points representing hyperplanes
(or lines) that are tangent to c1, c2 and intersect all the other sets in C. The represen-
tation of such a portion, which consists of some faces of a 2-dimensional arrangement
(see below), is easy to define and compute. Our construction technique follows the
approach used in [1, 5] and is easy to adapt to constructing a complete representation
of ∂T3(C) (or ∂T1(C)).

In more detail, let us consider the case of T3(C). Fix a pair of sets c1, c2 ∈ C, and
consider any pair of functions from {f+

c1 , f
−
c1}×{f+

c2 , f
−
c2}, say, f+

c1 , f
+
c2 . The intersection

of their graphs is a 2-dimensional surface ϕ. For each c ∈ C∗ ≡ C \ {c1, c2}, let

Kc = {h ∈ ϕ | f−c (h1, h2, h3) ≤ h4 ≤ f+
c (h1, h2, h3)}.

We need to construct
⋂
c∈C∗ Kc. We do it using the randomized incremental technique

of [1, 5]. That is, we insert the sets Kc for c ∈ C∗ in some random order and update
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the intersection after the insertion of each new set. We omit further details, which can
be easily adapted from the algorithms just cited. The analysis given in [5], combined
with Theorem 5.3, can easily be adjusted to the case at hand, implying that the
overall expected running time of this algorithm, when applied to all pairs c1, c2 ∈ C,
is O(n3+ε) for any ε > 0. Applying a fully analogous procedure for the case of line
transversals in 3-space, we obtain the following theorem.

Theorem 5.6. (a) The boundary of the space of hyperplane transversals T3(C) in
four dimensions, as defined above, can be computed in O(n3+ε) randomized expected
time for any ε > 0.

(b) The boundary of the space of line transversals T1(C) in three dimensions, as
defined above, can be computed in O(n3+ε) randomized expected time for any ε > 0.

Union of objects in 4-space. Let C be a collection of n convex sets in R
4, each being

semialgebraic of constant description complexity, such that (i) the mean curvature [19]
of any c ∈ C is at most some constant κ, and (ii) for any pair of sets c1, c2 ∈ C, the
ratio between their diameters is at most some constant α. (We refer to such sets as
being of “nearly equal size.”)

Let U denote the union of C. The combinatorial complexity of U is the number
of faces of all dimensions of the arrangement of the boundaries ∂c of the sets c ∈ C,
which appear on ∂U .

Theorem 5.7. The combinatorial complexity of the union U of n convex sets of
constant description complexity in R

4 that satisfy properties (i) and (ii) is O(n3+ε)
for any ε > 0.

Proof. We may assume that the diameter of any c ∈ C is between 1 and α. This,
plus the bounded mean curvature assumption, implies the following two properties.
Let G be an infinite axis-parallel grid in R

4, where each cell of G is a hypercube
of side length b for some sufficiently small constant b < 1. Then (a) each c ∈ C
intersects only O(1) cells of G; (b) let c be a set in C such that ∂c intersects a cell
τ of G. Let ∆(c, τ) denote the set of all directions d, such that ∂c ∩ τ is monotone
orthogonally to d. That is, ∂c∩τ can be regarded as the graph of a (partially defined)
function, where the dependent variable is in direction d. (Clearly, ∆(c, τ) is centrally
symmetric: d ∈ ∆(c, τ)⇔ −d ∈ ∆(c, τ).) Then the measure of ∆(c, τ) is at least 7/8
of the measure of the entire sphere of directions (provided b is sufficiently small).

This is easy to establish, and a similar analysis in three dimensions is provided in
[4]. To verify property (b), note that the bounded mean curvature assumption implies
that for any pair of points x, y ∈ ∂c on a surface c ∈ C

dS(Nc(x), Nc(y)) ≤ κ′‖x− y‖,

where κ′ is a constant dependent on κ, Nc(x) denotes the direction of the outward
normal to ∂c at x, and dS is the geodesic distance along the unit sphere of directions
S

3. Choose b sufficiently small so that 2κ′b < δ, where the value of δ will be determined
shortly. Fix some x0 ∈ ∂c∩ τ . Let d be any direction forming an angle θ with Nc(x0).
Suppose that there exists a line λ parallel to d that intersects ∂c ∩ τ at two points
u, v. Then Nc(u) · d and Nc(v) · d have different signs so that, say, Nc(u) · d < 0.
Assuming θ to be smaller than π/2 − δ, it follows that dS(Nc(x0), Nc(u)) ≥ π/2 −
θ > δ. On the other hand, the bounded mean curvature assumption implies that
dS(Nc(x0), Nc(u)) ≤ κ′‖u − x0‖ ≤ 2κ′b ≤ δ, which is a contradiction. This implies
that the set of directions d that satisfy the property in (b) contains the two spherical
caps centered at ±Nc(x0) and having geodesic radius π/2 − δ. Choosing δ (and b)
sufficiently small, the validity of property (b) follows.
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Property (b) implies that there exists a set ∆ of O(1) directions such that, for
any quadruple c1, c2, c3, c4 ∈ C whose boundaries all cross a cell τ , we have ∆ ∩⋂4
i=1 ∆(ci, τ) �= ∅.
Now, fix a cell τ . If τ is fully contained in some set c ∈ C, then we ignore τ ; it

contributes nothing to ∂U . Otherwise, we consider the set Cτ = {c ∈ C | ∂c ∩ τ �= ∅}
and further partition it into the subsets C+τ,d, C−τ,d for d ∈ ∆, where C+τ,d (resp., C−τ,d)
consists of all sets c ∈ Cτ for which d ∈ ∆(c, τ) and such that, if we move slightly
from any point on ∂c ∩ τ in the direction +d (resp., −d), we enter c. (A set c may
belong to more than one of these subcollections.)

The preceding discussion implies the following property: (b’) let v ∈ τ be a
vertex of U , incident to the boundaries of four sets c1, c2, c3, c4 ∈ C. Then there exists
a direction d ∈ ∆ such that c1, c2, c3, c4 ∈ C+τ,d ∪ C−τ,d.

Property (b’) implies that the number of vertices of ∂U ∩τ can be upper bounded
by the sum, over d ∈ ∆, of the number of vertices of the sandwich region between
the upper envelope of the boundaries of the sets in C+τ,d and the lower envelope of the

boundaries of the sets in C−τ,d, where both boundaries are clipped to within τ . Using
Theorem 5.1 plus the facts that |∆| = O(1) and

∑
τ |Cτ | = O(n) (which follows from

property (a)), the bound on the complexity of U follows.

Arrangements with no vertices. The analysis in section 4.4, which uses a quite
nonstandard counting scheme, is of interest on its own and can be adapted to other
settings. In particular, it can be easily adjusted to show the following.

Theorem 5.8. The complexity of the lower envelope of an arrangement of n
totally defined semialgebraic surfaces of constant description complexity in R

3, that
does not contain any vertices, is O(n1+ε) for any ε > 0.

Note that if the surfaces are not totally defined, the complexity of the lower
envelope may still be quadratic. An easy lower bound construction is provided by a
family of n/2 nearly x-parallel lines and another family of n/2 nearly y-parallel lines
that together make up a grid-structure when viewed from below.

6. Conclusion. We have obtained several results concerning overlays of mini-
mization diagrams using a novel approach. We feel that this approach might find
applications for related problems like the analysis of vertical decompositions of ar-
rangements [17]. Although the partition technique seems quite general, our initial
steps in applying it in more general contexts have encountered some technical diffi-
culties, which we hope to be able to resolve in the future. We also hope to be able to
apply the technique to settle the conjecture concerning the complexity of overlays of
minimization diagrams in all dimensions.

In general, it would be interesting to analyze the partition technique from a more
“philosophical” point of view and to understand, in particular, the underlying reason
for why it was so successful in the analysis of overlays, where the technique of counting
schemes has provided only partial results but does not seem to be easily applicable
to the related problem of the analysis of single cells, where a near-optimal solution
using counting schemes exists [6]. The two techniques seem to be related, at least
in the fact that the final recurrences that are derived by both techniques have very
similar structures. This is apparent, for instance, in the case of overlays for bivariate
functions, in which both techniques provide the same near-optimal solution. The
difference, in this case at least, is that the way to obtain these recurrences via the
partition technique is arguably much simpler.
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COMPUTING PHYLOGENETIC ROOTS WITH BOUNDED
DEGREES AND ERRORS∗
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Abstract. Given a set of species and their similarity data, an important problem in evolutionary
biology is how to reconstruct a phylogeny (also called evolutionary tree) so that species are close in
the phylogeny if and only if they have high similarity. Assume that the similarity data are represented
as a graph G = (V,E), where each vertex represents a species and two vertices are adjacent if they
represent species of high similarity. The phylogeny reconstruction problem can then be abstracted
as the problem of finding a (phylogenetic) tree T from the given graph G such that (1) T has no
degree-2 internal nodes, (2) the external nodes (i.e., leaves) of T are exactly the elements of V , and
(3) (u, v) ∈ E if and only if dT (u, v) ≤ k for some fixed threshold k, where dT (u, v) denotes the
distance between u and v in tree T . This is called the phylogenetic kth root problem (PRk), and
such a tree T , if it exists, is called a phylogenetic kth root of graph G. The computational complexity
of PRk is open, except for k ≤ 4. In this paper, we investigate PRk under a natural restriction
that the maximum degree of the phylogenetic root is bounded from above by a constant. Our main
contribution is a linear-time algorithm that determines if G has such a phylogenetic kth root, and
if so, demonstrates one. On the other hand, because in practice the collected similarity data are
usually not perfect and may contain errors, we propose to study a generalized version of PRk where
the output phylogeny is required only to be an approximate root of the input graph. We show that
this and other related problems are computationally intractable.

Key words. phylogeny, phylogenetic root, computational biology, efficient algorithm, NP-hard
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1. Introduction. The reconstruction of evolutionary history for a set of species
from quantitative biological data has long been a popular problem in computational
biology. This evolutionary history is typically modeled by an evolutionary tree, or
phylogeny. A phylogeny is a tree where the leaves are labeled by species and each
internal node represents a speciation event whereby an ancestral species gives rise
to two or more child species. Both rooted and unrooted trees have been used to
describe phylogenies in the literature, although they are practically equivalent. In this
paper, we will consider only unrooted phylogenies for the convenience of presentation.1

The internal nodes of a phylogeny have degrees (in the sense of unrooted trees, i.e.,
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the number of incident edges) at least 3. Proximity within a phylogeny in general
corresponds to similarity in evolutionary characteristics.

Many phylogenetic reconstruction algorithms have been proposed and studied in
the literature [12]. In this paper we investigate the computational feasibility of a
graph-theoretic approach for reconstructing phylogenies from similarity data. Specif-
ically, interspecies similarity is represented by a graph where the vertices are the
species and the adjacency relation represents evidence of evolutionary similarity. A
phylogeny is then reconstructed from the graph such that the leaves of the phylogeny
are labeled by vertices of the graph (i.e., species) and for any two vertices of the
graph, they are adjacent in the graph if and only if their corresponding leaves in the
phylogeny are connected by a path of length at most k, where k is a predetermined
proximity threshold. To be clear, vertices in the graph are called vertices while those
in the phylogeny are called nodes. Recall that the length of the (unique) path con-
necting two nodes u and v in phylogeny T is the number of edges on the path, which is
denoted by dT (u, v). This approach gives rise to the following algorithmic problem [8].

Phylogenetic kth root problem (PRk). Given a graph G = (V,E), find a
phylogeny T with leaves labeled by the elements of V such that for each pair of vertices
u, v ∈ V , (u, v) ∈ E if and only if dT (u, v) ≤ k.

Such a phylogeny T (if it exists) is called a phylogenetic kth root, or a kth root
phylogeny, of graph G. Graph G is called the kth phylogenetic power of T . For
convenience, we denote the kth phylogenetic power of any phylogeny T as T k. That
is, T k = {(u, v) | u and v are leaves of T and dT (u, v) ≤ k}. Thus, PRk asks for a
phylogeny T such that G = T k.

1.1. Connection to graph and tree roots, and previous results. Phylo-
genetic power might be thought of as a Steiner extension of the standard notion of
graph power. A graph G is the kth power of a graph H (or equivalently, H is a kth
root of G) if vertices u and v are adjacent in G if and only if the length of the shortest
path from u to v in H is at most k. An important special case of graph power/root
problems is the following.

Tree kth root problem (TRk). Given a graph G = (V,E), find a tree
T = (V,ET ) such that (u, v) ∈ E if and only if dT (u, v) ≤ k.

If T exists, then it is called a tree kth root, or a kth root tree, of graph G. Note
that in the phylogenetic root problem the leaves of T correspond to the vertices of G,
while in the tree root problem the nodes of T correspond to the vertices of G.

The special case TR2 is also known as the tree square root problem [9]. Cor-
respondingly, we call PR2 the phylogenetic square root problem. There is abundant
literature on graph root and power (see [2, section 10.6] for an overview) but few
results on phylogenetic/tree roots/powers. It is NP-complete to recognize a graph
power [10]; nonetheless, it is possible to determine if a graph has a kth root tree, for
any fixed k, in O(n3) time, where n is the number of vertices in the input graph [5].
In particular, determining if a graph has a tree square root can be done in O(n+ e)
time [9], where e is the number of edges in the input graph. Recently, Nishimura,
Ragde, and Thilikos [11] presented an O(n3)-time algorithm for a variant of PRk for
k ≤ 4, where internal nodes of the output phylogeny are allowed to have degree 2.
More recently, Lin, Kearney, and Jiang [8] introduced a novel notion of critical clique
and obtained an O(n + e)-time algorithm for PRk for k ≤ 4. Unfortunately, both
algorithms cannot be generalized to k ≥ 5.

1.2. Our contribution. In the practice of phylogeny reconstruction, most phy-
logenies considered are trees of degree 3 [12] because speciation events are usually
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bifurcating events in the evolutionary process. In such fully resolved phylogenetic
trees, each internal node has three neighbors and represents a speciation event in
which some ancestral species splits into two child species. Nodes of degrees higher
than 3 are introduced only when the input biological (similarity) data is not sufficient
to separate individual speciation events, and hence several such events may be col-
lapsed into a nonbifurcating (super) speciation event in the reconstructed phylogeny.
Hence in this paper, we consider a restricted version of PRk where the output phy-
logeny is assumed to have degree at most ∆ for some fixed constant ∆ ≥ 3. For
simplicity, we call it the degree-∆ PRk and denote it in short as ∆PRk. Since in
the practice of computational biology the species under consideration are more or less
related, we are mostly interested in connected graphs. The main contribution of this
paper is a linear-time algorithm that determines, for any input connected graph G
and constant ∆ ≥ 3, if G has a kth root phylogeny with degree at most ∆, and if so,
demonstrates one such phylogeny. The basic construction in our algorithm is a non-
trivial application of bounded-width tree-decomposition of certain chordal graphs [2].

Notice that the input graph in PRk is derived from some similarity data, which is
usually inexact in practice and may have erroneous (spurious or missing) edges. Such
errors may result in graphs that have no phylogenetic roots. Hence, it is natural to
consider a more relaxed problem where we look for phylogenetic trees whose powers
are close to the input graphs. The precise formulation is as follows.

Closest phylogenetic kth root problem (CPRk). Given a graph G =
(V,E) and a nonnegative integer �, find a phylogeny T with leaves labeled by V such
that G and T k differ by at most � edges. That is,

∣∣E(G)⊕ E(T k)
∣∣ = ∣∣(E(G)− E(T k)

) ∪ (E(T k)− E(G)
)∣∣ ≤ �.

A phylogeny T which minimizes the above edge discrepancy is called a closest kth
root phylogeny of graph G.

The closest tree kth root problem (CTRk) is defined analogously. Notice that
CTR1 is trivially solved by finding a spanning tree of the input graph. Kearney and
Corneil [5] proved that CTRk is NP-complete when k ≥ 3. The computational com-
plexity for CTR2 had been open for a while and was recently shown to be intractable
by Jiang, Lin, and Xu [4]. In this paper, we will show that CPRk is NP-complete
for any k ≥ 2. Another closely related problem, the Steiner kth root problem (where
k ≥ 1), is also studied.

We introduce some notation and definitions, as well as some existing related
results, in the next section. Our main result on bounded-degree PRk is presented
in section 3. The hardness of closest phylogenetic root and Steiner root problems is
discussed in section 4. We close the paper with some open problems in section 5.

2. Preliminaries. We employ standard terminologies in graph theory. In par-
ticular, the subgraph of a graph G induced by a vertex set U of G is denoted by G[U ],
the degree of a vertex v in G is denoted by degG(v), and the maximum size of a clique
in G is denoted by ω(G). First, it is obvious that if a graph has a kth root phylogeny,
then it must be chordal ; that is, it contains no induced subgraph which is a cycle of
size greater than 3 [2].

Definition 2.1. A tree-decomposition of a graph G = (V,E) is a pair D =
(T ,B) consisting of a tree T = (U,F ) and a collection B = {Bα | Bα ⊆ V, α ∈ U} of
sets (called bags) for which

• ⋃α∈U Bα = V ;
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• for each edge (v1, v2) ∈ E, there is a node α ∈ U such that {v1, v2} ⊆ Bα;
and
• if α2 ∈ U is on the path connecting α1 and α3 in T , then Bα1 ∩Bα3 ⊆ Bα2 .

The treewidth associated with this tree-decomposition D = (T ,B) is tw(G,D) =
maxα∈U |Bα| − 1.

The treewidth of graph G, denoted by tw(G), is the minimum tw(G,D) taken
over all tree-decompositions D of G.

A clique-tree-decomposition of G is a tree-decomposition (T ,B) of G such that
each bag in B is a maximal clique of G.

Lemma 2.2 (see [6]). Every chordal graph has a clique-tree-decomposition, and
it can be computed in linear time.

From the proof of Lemma 2.2 given in [6], it is not difficult to see that a clique-
tree-decomposition D = (T ,B) of a given chordal graph G can be computed in linear
time if ω(G) = O(1). We can further modify D so that degT (α) ≤ 3 for each node α
of T [1]. This modification takes linear time too if ω(G) = O(1).

Hereafter, a tree-decomposition of a chordal graph G always means a clique-
tree-decomposition D = (T ,B) of G such that degT (α) ≤ 3 for all nodes α of T .
Furthermore, in what follows, we abuse the notation to use D to denote the tree T in
it (since we will use T to denote the kth root phylogeny of graph G) and denote the
bag associated with a node α of D by Bα.

3. Algorithm for bounded-degree PRk. This section presents a linear-time
algorithm for solving 3PRk. The adaptation to ∆PRk where ∆ ≥ 4 is straightforward
and hence omitted here.

We assume that the input graph G = (V,E) is connected. We further assume
that G is not complete but is chordal; otherwise the problem is trivially solved in
linear time. Since every vertex v ∈ V appears as an external node (i.e., leaf) in the
kth root phylogeny, the maximum size ω(G) of a clique in G can be bounded from
above by a constant f(k), where

f(k) =

{
3 · 2 k2−1 if k is even,

2
k+1
2 − 1 if k is odd.

The first step of the algorithm consists of constructing a clique-tree-decomposition D
of G in linear time, as given in Lemma 2.2. Then the kth root phylogeny is computed
by a dynamic programming algorithm applied on a rooted version of the decomposition
D. The dynamic programming starts at the leaves of D and proceeds upwards. After
processing the root, the algorithm will construct a kth root phylogeny of G if there
is any. The processing of a node α of D can be sketched as follows. Let Uα be the
union of the bags associated with α and its descendants in D. While processing α,
the algorithm computes a set of trees T such that (1) T may possibly be a subtree
of a kth root phylogeny of G, (2) all vertices of Uα are leaves of T , and (3) each leaf
of T not contained in Uα is not labeled. The unlabeled leaves of T serve as ports
from which we can expand T so that it may eventually become a kth root phylogeny
of G. The crucial point we will observe is that we need only those ports that are
at distance at most k apart from vertices of Bα in T . This point implies that the
number of necessary ports depends only on k and hence is a constant. The details of
the dynamic programming algorithm are developed in the next two subsections.

One more notation is in order. For two adjacent nodes α and β of D, let U(α, β) =⋃
γ Bγ , where γ ranges over all nodes of D with dD(γ, α) < dD(γ, β). In other words,
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if we root D at node β, then U(α, β) is the union of the bags associated with α and its
descendants in D. A useful property of D is that for every internal node β and every
two neighbors α1 and α2 of β in D, G has no edge between any vertex of U(α1, β)−Bβ
and any vertex of U(α2, β)−Bβ .

3.1. Ideas behind the dynamic programming algorithm. Note that since
∆ = 3, every internal node in a kth root phylogeny T of G has degree exactly 3.

Definition 3.1. Let U be a set of vertices of G. A relaxed phylogeny for U is
a tree R satisfying the following conditions:

• The degree of each internal node in R is 3.
• Each vertex of U is a leaf in R and appears in R only once. For convenience,

we call the leaves of R that are also vertices of U final leaves of R, and we
call the rest of the leaves of R temporary leaves of R.
• For every two vertices u and v of U , u and v are adjacent in G if and only if

dR(u, v) ≤ k.
• Each temporary leaf v of R is assigned a pair (γ, t), where γ is a node of D

and 0 ≤ t ≤ k. We call γ the color of v and call t the threshold of v. For
convenience, we denote the color of a temporary leaf v of R by cR(v), and
denote the threshold of v by tR(v).

Intuitively speaking, the temporary leaves of R serve as ports from which we can
expand R so that it may eventually become a kth root phylogeny of G.

Recall that our algorithm processes the nodes of D one by one. While processing
a node α of D, the algorithm finds out all relaxed phylogenies for Bα that are subtrees
of kth root phylogenies of graph G. The following lemma shows that such relaxed
phylogenies for Bα have certain useful properties.

Lemma 3.2. Let T be a kth root phylogeny of G. Let α be a node of D. Root T
at an arbitrary leaf that is in Bα. Define a pure node to be a node w of T such that
α has a neighbor γ in D such that all leaf descendants of w in T are in U(γ, α)−Bα.
Define a critical node to be a pure node of T whose parent is not pure. Let R be
the relaxed phylogeny for Bα obtained from T by performing the following steps of
operations:

1. For every critical node w of T , perform the following:
(a) Compute the minimum distance from w to a leaf descendant of w in

T ; let iw denote this distance. (Comment: iw ≤ k or else the leaf
descendants of w in tree T would be unreachable from the outside in
graph G.)

(b) Find the neighbor γ of α such that all leaf descendants of w in T are
contained in U(γ, α).

(c) Delete all descendants (excluding w, of course) of w, and assign the pair
(γ, iw) to w.

2. Unroot T .
Then the resultant R has the following properties:

• For every temporary leaf v of R, cR(v) is a neighbor of α in D.
• For every two temporary leaves u and v of R with different colors, it holds

that tR(u) + tR(v) + dR(u, v) > k.
• For every neighbor γ of α in D, every temporary leaf v of R with cR(v) = γ,

and every final leaf w of R with w /∈ Bγ , it holds that dR(v, w) + tR(v) > k.
• For every internal node v of R, either there is a final leaf u of R with
dR(u, v) ≤ k − 1 or at least one descendant of v in R′ is a final leaf of
R, where R′ is obtained from R by rooting it at an arbitrary final leaf.
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Proof. Obviously, R is a relaxed phylogeny for Bα. Since T is a phylogeny of G,
it follows immediately that R has the first three properties in the lemma. To prove
the fourth property, first note that the construction of R from T is independent of the
choice of the root of T as long as it is a final leaf. So, it suffices to prove that for every
critical node w of T whose parent p in T has no leaf descendant contained in Bα, there
is a vertex u in Bα such that dT (u, p) ≤ k− 1. To this end, let v be a leaf descendant
of p that is closest to p among all leaf descendants of p in T . Let u1, u2, . . . , uq be all
leaves in T that are at distance at most k apart from v in T but are not descendants
of p in T . Since G is connected, q ≥ 1. We claim that {u1, u2, . . . , uq} ∩ Bα �= ∅.
For the sake of a contradiction, assume that {u1, u2, . . . , uq} ∩ Bα = ∅. Then some
connected component G1 of G[V −Bα] contains all of v, u1, u2, . . . , uq. Let Q be the
set of all leaf descendants of p in T that are not contained in G1. Since p is not pure
and no leaf descendant of p in T is in Bα, we have |Q| ≥ 1. Also, no vertex of G1

can be adjacent to any vertex of Q in G. Now, by the choices of u1 through uq and
the assumption that G1 contains all of u1, u2, . . . , uq, we conclude that G has no edge
between any vertex of Q and any vertex of V −Q. This contradicts the connectivity
of G. So, the claim holds. By this claim, there is a ui ∈ {u1, u2, . . . , uq} ∩ Bα such
that dT (ui, v) ≤ k. Thus, dT (ui, p) ≤ k − 1, establishing the fourth property.

Each relaxed phylogeny R for Bα having the four properties in Lemma 3.2 is
called a skeleton of α. The following lemma shows that there can be only a constant
number of skeletons of α.

Lemma 3.3. For each node α of D, the number of skeletons of α is bounded from
above by a constant depending only on k and |Bα|.

Proof. First note that the color and the threshold of each temporary leaf can be
chosen from a constant range. Further note that each internal node v in a skeleton
S of α satisfies degS(v) = 3. So, to prove the lemma, it suffices to prove that the
number of temporary leaves in a skeleton S of α is bounded from above by a constant.

Consider a skeleton S of α and root S at an arbitrary final leaf r. We claim
that for every temporary leaf u of S, there is a final leaf w with dS(u,w) ≤ k. To
see this, let u be a temporary leaf and v be the parent of u in S. Since the root
of S is a final leaf, v must be an internal node of S. If there is a final leaf w with
dS(v, w) ≤ k − 1, then dS(u,w) ≤ k and we are done. Otherwise, by the definition
of a skeleton, at least one descendant x of v is a final leaf of S. Since dS(x, r) ≤ k,
we have min{dS(x, v), dS(r, v)} ≤ k − 1 and hence min{dS(x, u), dS(r, u)} ≤ k. This
establishes the claim.

Since each pair of final leaves is at distance at most k apart in S and the maximum
degree of a node in S is 3, there are only a constant number of temporary leaves by
the claim.

By Lemma 3.3, while processing a node α of D, our algorithm can find out all
skeletons of α in constant time. For each skeleton S of α, if possible, the algorithm then
extends S to a relaxed phylogeny for U(α, β), where β is the parent of α in rooted D.
The algorithm records these relaxed phylogenies of α in the dynamic programming
table for later use when processing the parent β. The following definition aims at
removing unnecessary relaxed phylogenies of α from the dynamic programming table.

Definition 3.4. Let α and β be two adjacent nodes of D. Let S be a skeleton
of α. The projection of S to β is a relaxed phylogeny for Bα ∩ Bβ obtained from S
by performing the following steps of operations:

1. Change each final leaf v /∈ Bβ to a temporary leaf; set the threshold of v to be
0 and set the color of v to be α.
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2. Root S at an arbitrary vertex of Bα ∩Bβ.
3. Find those nodes v in S such that (i) every leaf descendant of v in S is a

temporary leaf whose color is not β, but (ii) the parent of v in S does not
have property (i).

4. For each node v found in the last step, if v is a leaf in S, then set the color
of v to be α; otherwise, perform the following steps of operations:
(a) Set mv = minu{tS(u) + dS(u, v)}, where u ranges over all leaf descen-

dants of v in S.
(b) Delete all descendants of v in S.
(c) Set v to be a temporary leaf, α to be the color of v, and mv to be the

threshold of v.
5. Unroot S.

Obviously, two different skeletons of α may have the same projection to β. For
convenience, we say that these skeletons are equivalent. Among equivalent skeletons
of α, our algorithm will extend only a hopeful one of them to a relaxed phylogeny
for U(α, β) and record it in the dynamic programming table. This motivates the
following definition.

Definition 3.5. Let α and β be two adjacent nodes of D. A projection of α
to β is the projection of a skeleton of α to β. Let P be a projection of α to β. An
expansion of P to U(α, β) is a relaxed phylogeny X for U(α, β) such that some subtree
Y of X is isomorphic to P , and the bijection f from the node set of P to the node set
of Y witnessing this isomorphism satisfies the following conditions:

• For every final leaf v of P , f(v) = v.
• For every temporary leaf v of P with cP (v) = β, f(v) is a temporary leaf of
X with cX(f(v)) = cP (v) and tX(f(v)) = tP (v).

• Suppose that we root X at a vertex in Bα ∩ Bβ. Then, for every temporary
leaf v of P with cP (v) �= β (hence cP (v) = α), all leaf descendants of f(v)
in X are final leaves and are contained in U(α, β) − Bβ, and the minimum
distance between f(v) and a leaf descendant of f(v) in X equals tP (v).

Note that a projection of α to β may have no expansion to U(α, β). The following
lemma shows that if G has a kth root phylogeny T , then some subtree of T is a
projection of α to β and another subtree of T is its expansion to U(α, β).

Lemma 3.6. Let α and β be two adjacent nodes in D. Let T be a kth root
phylogeny of G. Root T at an arbitrary leaf that is in Bα. Let R be the skeleton of
α obtained from T as in Lemma 3.2. Let P be the projection of R to β. Define a
β-pure node to be a node w of T such that all leaf descendants of w in T are contained
in U(β, α) − Bα. Further, define a β-critical node to be a β-pure node of T whose
parent is not β-pure. Let X be the relaxed phylogeny for U(α, β) obtained from T by
performing the following steps of operations:

1. For every β-critical node w of T , perform the following:
(a) Compute the minimum distance from w to a leaf descendant of w in

T ; let iw denote this distance. (Comment: iw ≤ k or else the leaf
descendants of w in tree T would be unreachable from the outside in
graph G.)

(b) Delete all descendants (excluding w, of course) of w, and assign the pair
(β, iw) to w.

2. Unroot T .

Then X is an expansion of P to U(α, β).

Proof. The proof is straightforward.
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By Lemma 3.6, whenever G has a kth root phylogeny, there is always a projection
of α to β that has an expansion to U(α, β). While processing α, our algorithm will
find out those projections that have expansions to U(α, β) and record the expansions
in the dynamic programming table.

3.2. Details of dynamic programming for 3PRk. To solve the 3PRk prob-
lem forG, we perform a dynamic programming on the tree-decompositionD as follows.
To simplify the description of the algorithm, we add a new node r to D, connect r to
an arbitrary leaf α of D, and copy the bag at α to r (that is, Br = Bα). Clearly, the
resultant D is still a required tree-decomposition of G. Root D at r.

The dynamic programming starts at the leaves of D and proceeds upwards; after
the unique child of the root r of D is processed, we will know whether G has a kth
root phylogeny or not. The invariant maintained during the dynamic programming
is that after each nonroot node α has been processed, for each projection P of α to
its parent β, we will have found out whether P has an expansion X to U(α, β), and
we will have found and recorded such an X if any exists.

Now consider how a nonroot node α of D is processed. Let β be the parent of α
in D. First suppose that α is a leaf of D. When processing α, we find and record all
possible projections of α to β; moreover, for each projection P found, we also record
a skeleton S of α such that P is the projection of S to β.

Next suppose that α is neither a leaf nor the root node of D, and suppose that
all descendants of α in D have been processed. To process α, we try all possible
skeletons S of α. When trying S, for each child γ of α in D, we first compute the
projection Pγ of S to γ and then check whether Pγ is also a projection of γ to α and
additionally has an expansion to U(γ, α). If the checking fails for at least one child of
α, we proceed to try the next possible skeleton of α. Otherwise, we can conclude that
the projection Pβ of S to β has an expansion to U(α, β) because such an expansion
can be constructed as follows:

1. For each child γ of α in D, search the dynamic programming table to find
the expansion Xγ of Pγ to U(γ, α), and find the bijection fγ (from the node
set of Pγ to the node set of some subtree of Xγ) witnessing that Xγ is an
expansion of Pγ to U(γ, α). (Comment: To speed up the algorithm, we
may have recorded this bijection in the dynamic programming table when
processing γ.)

2. For each child γ of α in D, root Xγ at an arbitrary vertex of Bγ ∩Bα.
3. Modify S as follows: For each temporary leaf v of S with cS(v) �= β, replace

v by the subtree rooted at fγ(v) of Xγ , where γ = cS(v). (Comment: Recall
that by Definition 3.4 each temporary leaf v of S with cS(v) = γ is also a
temporary leaf of Pγ .)

One can verify that the above construction indeed gives us an expansion of Pβ . Since
Pβ is a possible projection of α to β, we record this expansion for Pβ in the dynamic
programming table. After trying all possible skeletons of α, if we find no projection
of α to β that has an expansion to U(α, β), then we can conclude that G has no kth
root phylogeny; otherwise, we proceed to the processing of the next node of D.

Finally, suppose that α is the unique child of the root r of D. Further suppose
that α has been successfully processed (for otherwise we already knew that G has no
kth root phylogeny). Then, by searching the dynamic programming table, we try to
find a projection P of α to r such that (i) P has no temporary leaf whose color is r, and
(ii) an expansion X of P to U(α, r) has been recorded in the dynamic programming
table. If P is found, we can conclude that X is a kth root phylogeny for G; otherwise,
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we can conclude that G has no kth root phylogeny.

The above discussion justifies the following theorem.

Theorem 3.7. Let k be a constant integer larger than or equal to 2. There is
a linear-time algorithm determining if a given connected graph has a kth root phy-
logeny in which every internal node has degree 3, and if so, demonstrating one such
phylogeny.

We can easily generalize the above discussion to prove the following.

Corollary 3.8. Let ∆ and k be constant integers such that ∆ ≥ 3 and k ≥ 2.
There is a linear-time algorithm determining if a given connected graph has a kth
root phylogeny in which every internal node has degree in the range [3,∆], and if so,
demonstrating one such phylogeny.

4. The hardness of closest phylogenetic root problems. We introduce
some basic concepts (some of them from [5]) that will be used in the hardness proofs.
Consider a set S = {s1, s2, . . . , sn}. Let M be a symmetric matrix with rows and
columns indexed by the elements of S. M is a binary dissimilarity matrix on set S
if M(si, sj) ∈ {1, 2} for every pair (si, sj) of distinct elements of S and M(si, si) = 0
for every element si ∈ S.

A tree T is a 2-ultrametric on set S if T is a rooted tree whose leaves are labeled by
the elements of S and each leaf-to-root path contains exactly two edges. Call a node
in T that is neither a leaf nor the root a middle node, to avoid ambiguity. The half-
distance between two leaves si and sj , denoted by hT (si, sj), is one half of the number
of edges on the unique path in T connecting si and sj . Clearly, hT (si, sj) ∈ {1, 2} if
i �= j, and hT (si, si) = 0 for every i.

Given a binary dissimilarity matrix M and a 2-ultrametric T on set S, define

D(T,M) =
∑
i<j

|hT (si, sj)−M(si, sj)| ,

which measures how well T matches the inter-leaf (half-)distances specified by M .2

The following fitting ultrametric trees problem has been shown to be NP-complete by
Křivánek and Morávek [7].

Fitting ultrametric trees (FUT). Given a binary dissimilarity matrix M
on set S and a nonnegative integer �, decide if there is a 2-ultrametric T on S such
that D(T,M) ≤ �.

Kearney and Corneil [5] proved that CTRk is NP-hard for any fixed k ≥ 3
by a (polynomial-time) reduction from FUT (to CTR3). Using a more dexterous
reduction, Jiang, Lin, and Xu [4] recently proved that CTR2 is intractable too.

4.1. CPR2. Given a binary dissimilarity matrixM on a set S = {s1, . . . , sn}, let
S′ = {sn+1, sn+2, . . . , s2n} be another set of n elements. Define a binary dissimilarity
matrix M ′ on set S ∪ S′, from M as follows:

For every pair of (not necessarily distinct) integers i, j ∈ {1, 2, . . . , n},
• M ′(si, sj) = M(si, sj);
• M ′(sn+i, sn+j) = M(si, sj);
• M ′(si, sn+j) = M(si, sj) if i �= j;
• M ′(si, sn+i) = 1.

2So, here the entries in M are supposed to represent the half-distances between species instead
of full distances.
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Lemma 4.1. If there is a 2-ultrametric T on set S such that D(T,M) = �, then
there is a 2-ultrametric T ′ on set S ∪ S′ such that D(T ′,M ′) = 4�.

Proof. Given a 2-ultrametric T on set S such that D(T,M) = �, construct a
2-ultrametric T ′ on set S ∪ S′ in the following way: The root and middle nodes of T ′

are the same as those in T ; if an si ∈ S is adjacent to a middle node u in T , then
both si and sn+i are adjacent to u in T ′. Clearly, for every pair of (not necessarily
distinct) integers i, j ∈ {1, 2, . . . , n},

• hT ′(si, sj) = hT (si, sj);
• hT ′(sn+i, sn+j) = hT (si, sj);
• hT ′(si, sn+j) = hT (si, sj) if i �= j;
• hT ′(si, sn+i) = 1.

Thus, D(T ′,M ′) = 4D(T,M) = 4�.

Lemma 4.2. Let T be a 2-ultrametric on set S ∪ S′; then there is another 2-
ultrametric T ′ on set S ∪ S′ such that (1) D(T ′,M ′) ≤ D(T,M ′) and (2) for every
i ∈ {1, 2, . . . , n}, si ∈ S and sn+i ∈ S′ are adjacent to a common middle node in tree
T ′.

Proof. Suppose that si ∈ S is adjacent to a middle node u and sn+i ∈ S′ is
adjacent to another middle node u′ �= u in tree T . Let

• S̃ = (S ∪ S′)− {si, sn+i};
• a be the number of s ∈ S̃ adjacent to u in T with M ′(s, si) = 1;

• b be the number of s ∈ S̃ adjacent to u in T with M ′(s, si) = 2;

• a′ be the number of s ∈ S̃ adjacent to u′ in T with M ′(s, sn+i) = 1; and

• b′ be the number of s ∈ S̃ adjacent to u′ in T with M ′(s, sn+i) = 2.

If a′ + b ≤ a + b′, we can modify T by deleting edge (sn+i, u
′) and adding edge

(sn+i, u). Otherwise, we can modify T by deleting edge (sn+i, u) and adding edge
(sn+i, u

′). In either case, D(T,M ′) does not increase and, si and sn+i are adjacent to
a common middle node of the modified T . Repeating this process results in a desired
2-ultrametric.

From now on, we will only consider those 2-ultrametrics on set S ∪ S′ such that
for every i ∈ {1, . . . , n}, si ∈ S and sn+i ∈ S′ are connected to a common middle
node.

Lemma 4.3. Given a binary dissimilarity matrix M on set S, there is a 2-
ultrametric T on S such that D(T,M) ≤ � if and only if there is a 2-ultrametric T ′

on S ∪ S′ such that D(T ′,M ′) ≤ 4�.

Proof. The “only if” part is implied by Lemmas 4.1 and 4.2. The “if” is straight-
forward by observing that deleting elements in S′ from T ′ gives a 2-ultrametric T on
set S such that D(T,M) = D(T ′,M ′)/4.

Theorem 4.4. CPR2 is NP-complete.

Proof. CPR2 is clearly in NP. The hardness proof is done by a reduction
from FUT. Consider an instance I of FUT, i.e., a dissimilarity matrix M on set
S = {s1, s2, . . . , sn} and a nonnegative integer �. Without loss of generality, we may
assume that n ≥ 4 and � ≤ n(n − 1)/2. Construct the corresponding set S′ and the
dissimilarity matrix M ′ on S∪S′, from M as in the above. Construct a graph G on a
set V of 2n vertices as follows. For every si ∈ S∪S′, there is a corresponding vertex vi
in V .3 Two distinct vertices vi and vj are adjacent in G if and only if M ′(si, sj) = 1.

Let the instance of CPR2 consist of graph G and a nonnegative integer �′ = 4�.

3We use a different name vi instead of si here in order to avoid ambiguity, although they should
be viewed as identical.
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We claim that there is an approximate phylogenetic square root T ′ of graph G with
|E(G)⊕E(T ′2)| ≤ �′ if and only if there is a 2-ultrametric T on set S with D(T,M) ≤
�.

To see the “if” part, suppose that there is a 2-ultrametric T on set S such that
D(T,M) ≤ �. This implies there is a 2-ultrametric T ′′ on set S ∪ S′ such that
D(T ′′,M ′) ≤ 4� = �′. Recall that for all i ∈ {1, 2, . . . , n}, si ∈ S and sn+i ∈ S′ are
adjacent to a common middle node in tree T ′′. It follows that every middle node in
T ′′ has degree at least 3. Then replacing every leaf si in T ′′ by vertex vi gives a tree
(still denoted by T ′′) whose leaves are the elements of V . So, if there are three or more
middle nodes, then T ′′ is a phylogeny on V and we are done by setting T ′ = T ′′. If
there is only one middle node in T ′′, then we obtain T ′ from T ′′ by deleting the root as
well as its incident edge. If there are exactly two middle nodes in T ′′, then we obtain
T ′ from T ′′ by removing the root and connecting the two middle nodes by an edge.
Clearly, the final tree T ′ is a phylogeny on set V . Moreover, dT ′(vi, vj) ≤ 2 if and
only if hT ′′(vi, vj) = hT ′′(si, sj) = 1 for all distinct i, j ∈ {1, 2, . . . , n}. It follows that
edge (vi, vj) is in exactly one of E(G) and E(T ′2) if and only if either hT ′′(si, sj) = 1
and M ′(si, sj) = 2, or hT ′′(si, sj) = 2 and M ′(si, sj) = 1. That is, the number of
such edges is equal to D(T ′′,M ′). Thus, |E(G)⊕ E(T ′2)| = D(T ′′,M ′) ≤ �′.

To prove the “only if” part, let us assume that T ′ is a phylogeny interconnecting
the vertices in V such that |E(G) ⊕ E(T ′2)| ≤ �′. If T ′ contains only one internal
node, i.e., T ′2 is complete, then a 2-ultrametric T ′′ on set S ∪ S′ can be constructed
to have only one middle node with all elements of S ∪ S′ attached to it. So, suppose
in the following that T ′ contains two or more internal nodes. We obtain a rooted tree
T ′′ by modifying T ′ as follows:

1. Select an arbitrary internal edge of T ′, i.e., an edge connecting two internal
nodes, and split the edge into two edges by adding a new internal node, say
r, on the edge.

2. Root the new tree at r.
3. Delete all internal edges from the tree. This results in a (possibly empty) set

of isolated nodes and a set of stars whose centers are internal nodes of the
original T ′.

4. Connect the centers of the stars to the root r.
Clearly, the leaves of T ′′ are the elements of V , T ′′ is of height 2, and every leaf-to-
root path is of length exactly 2. Furthermore, E(T ′2) = E(T ′′2). Now replacing leaf
vi in T ′′ by si gives a 2-ultrametric (still denoted by T ′′) on set S ∪ S′. Again, an
edge (vi, vj) is in exactly one of E(G) and E(T ′2) if and only if either hT ′′(si, sj) = 1
and M ′(si, sj) = 2, or hT ′′(si, sj) = 2 and M ′(si, sj) = 1. Thus, D(T ′′,M ′) =
|E(G) ⊕ E(T ′2)| ≤ �′ = 4�. According to Lemmas 4.2 and 4.3, we may easily obtain
a 2-ultrametric T on set S, from T ′′, such that D(T,M) ≤ �. This finishes the
proof.

4.2. CPRk. We extend the above NP-completeness result to CPRk for k > 2.
In doing so, we need to design several gadgets that facilitate the proof.

4.2.1. Gadgets. A critical clique [8] of a graph is a maximal subset of vertices
that are adjacent to each other and have a common neighborhood. As for constructing
a phylogenetic root, the vertices in a critical clique can be identified because they are
interchangeable in every phylogenetic root. When we say that one critical clique C1

is adjacent to another C2, we mean every vertex in C1 is adjacent to every vertex
in C2. Consider a graph H = (V,E) consisting of 4k − 7 critical cliques C1 through
C4k−7 such that
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• |Ci| = N for 1 ≤ i ≤ 4k − 7;
• Ci is adjacent to C1, C2, . . . , Ck−2+i for 1 ≤ i ≤ k − 1;
• Ci is adjacent to Ci−k+2, Ci−k+3, . . . , Ci+k−2 for k ≤ i ≤ 3k − 5;
• Ci is adjacent to Ci−k+2, Ci−k+3, . . . , C4k−7 for 3k − 4 ≤ i ≤ 4k − 7.

Assume that T is an approximate kth root phylogeny of graph H such that |E(T k)⊕
E(H)| ≤ � < N . We present some enforced structural properties of T below.

Lemma 4.5. In T , no two vertices from different critical cliques can be adjacent
to a common internal node.

Proof. For the sake of a contradiction, assume that vi ∈ Ci and vj ∈ Cj with
i �= j are both adjacent to an internal node u in T . Then vi and vj have the same
neighborhood in the kth phylogenetic power T k. On the other hand, by the construc-
tion of H, there is another critical clique Ch with h �∈ {i, j} such that Ch is adjacent
to exactly one of Ci and Cj in H. So, |E(T k) ⊕ E(H)| is at least as large as N—a
contradiction.

Let R be the skeleton obtained from T by deleting all the leaves. In light of
Lemma 4.5, a node of R adjacent to some vertex of Ci in tree T is called a node for
Ci or simply a Ci-node. We also call a vertex in clique Ci a Ci-vertex. Let Ri be the
minimal subtree of R that contains all Ci-nodes. Clearly, Ri can be obtained from R
by deleting some nodes and their incident edges. Call Ri the Ci-subtree.

Lemma 4.6. For every j ∈ {k − 1, k, . . . , 3k − 5} and every i �= j, there is no
Ci-node in Rj. That is, for every j ∈ {k − 1, k, . . . , 3k − 5}, the Cj-nodes form a
subtree of T .

Proof. Fix a j ∈ {k− 1, k, . . . , 3k− 5}. Notice that for every i ∈ {1, 2, . . . , j − 1},
if there is a Ci-node, say ti, in Rj , then ti must be an internal node in Rj . In tree T ,
every vertex in Cj+k−2 is either at distance greater than k− 2 from some Cj-node or
at distance at most k−2 from every Cj-node. A Cj+k−2-vertex which is at distance at
most k−2 from every Cj-node is at distance less than k−2 from ti. Therefore, in T k,
each Cj+k−2-vertex is either adjacent to no Cj-vertex or adjacent to some Ci-vertex
(which is adjacent to ti in T ). This, together with the fact that Cj+k−2 is adjacent
to Cj but adjacent to none of C1 through Cj−1, implies that |E(T k)⊕E(H)| ≥ N—
a contradiction. Similarly, using Cj−k+2 instead of Cj+k−2, we can show that Rj
contains no Ci-node for every i ≥ j + 1. This proves the lemma.

Lemma 4.7. For every i ∈ {k − 1, k, . . . , 3k − 5}, there is exactly one Ci-node,
denoted by ti, in tree T . Moreover, the nodes tk−1, tk, . . . , t3k−5 appear consecutively
in this order on a path of tree T .

Proof. Let t2k−2 be a C2k−2-node. If t2k−2 were within distance k − 2 from
all Ck−1-nodes, then the vertices of C2k−2 adjacent to t2k−2 in tree T would be at
distance at most k from every vertex of Ck−1 in tree T . This would result in at least
N edges in E(T k)−E(H) and is thus impossible. Let tk−1 be a Ck−1-node such that
dR(tk−1, t2k−2) > k − 2, and let P denote the path in R connecting them. It holds
that for every i ∈ {k, k + 1, . . . , 2k − 3}, there must be a Ci-node, say ti, such that
dR(ti, tk−1) ≤ k− 2 and dR(ti, t2k−2) ≤ k− 2 (otherwise |E(T k)⊕E(H)| would be at
least N because both Ck−1 and C2k−2 are adjacent to Ci in H). Therefore, in tree
R, ti is closer to some node on path P than to either of tk−1 and t2k−2. If subtree Ri
contains some node from the path P , then we choose an arbitrary node in Ri ∩ P as
the representative node for Ri. Otherwise, choose the node on P that is the closest
to subtree Ri as the representative node for Ri. Denote the representative node for
Ri by ri.
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We claim that ri �= rj for every pair of distinct i, j ∈ {k, k + 1, . . . , 2k − 3}. To
prove the claim, for every i ∈ {k, k + 1, . . . , 2k − 3}, let t′i be the closest Ci-node
to ri in R. Then dR(ri, t

′
i) should be less than or equal to both dR(ri, tk−1) and

dR(ri, t2k−2). It follows that if Ri and Rj with i < j share some representative node,
say ri = r = rj and dR(r, t

′
i) ≤ dR(r, t

′
j) (respectively, dR(r, t

′
i) ≥ dR(r, t

′
j)), then

for every vertex x ∈ Cj+k−2 (respectively, x ∈ Ci−k+2), either dT (x, t
′
i) ≤ k − 1

or max{dT (x, t2k−2), dT (x, t
′
j)} > k − 1 (respectively, either dT (x, t

′
j) ≤ k − 1 or

max{dT (x, tk−1), dT (x, t
′
i)} > k − 1). This again contradicts the fact that |E(T k) ⊕

E(H)| < N .

A similar argument to the proof of the above claim shows that k ≤ i < j ≤ 2k−3 if
and only if dR(tk−1, ri) < dR(tk−1, rj). Since some Ck-node should be within distance
k − 2 from t2k−2, we conclude that the representative node rk is in fact a Ck-node.
Analogously, for every i ∈ {k, k + 1, . . . , 2k − 3}, ri is in fact a Ci-node. It further
follows that dR(tk−1, rk) = dR(rk, rk+1) = · · · = dR(r2k−3, t2k−2) = 1, that is, the
path P connecting tk−1 and t2k−2 is tk−1-rk-rk+1-. . .-r2k−3-t2k−2. It is then easy to
argue that there is only one Ci-node for every i ∈ {k − 1, k, . . . , 2k − 3}.

The lemma is proved by considering analogously the C2k−4-node and a C3k−5-
node, and the index interval [2k − 4, 3k − 5].

By Lemma 4.7, letting ti denote the unique Ci-node for i ∈ {k− 1, k, . . . , 3k− 5},
we get a rough structure of R, as shown in Figure 4.1 (where k = 5 and ti indicates
a possible Ci-node for i ∈ {1, 2, . . . , k − 2} ∪ {3k − 4, 3k − 3, . . . , 4k − 7}).

❝ ❝ ❝ ❝ ❝

t2k−3tk−1 t3k−5
❝ ❝ ❝ ❝

❝

❝

❅❅
��
❝

❝

❅❅
��

t1

t1
t2

t2

❝

❝

��
❅❅
❝

❝

��
❅❅
t4k−7

t4k−7

t4k−6

t4k−6

Fig. 4.1. The rough structure of R.

4.2.2. Proof of hardness.

Theorem 4.8. CPRk is NP-complete when k ≥ 3.

Proof. The proof is also a reduction from FUT, but it is more complicated than
that of Theorem 4.4. To simplify the presentation, we assume that k is even. It is
trivial to extend the proof to odd k. Given a binary dissimilarity matrix M on a set
S = {s1, . . . , sn}, let Sh = {shn+1, shn+2, . . . , s(h+1)n} be another set of n elements

for all h = 1, 2, . . . , 2k/2 − 1. For convenience, let S0 denote the set S. Define a

dissimilarity matrix M ′ on set S̃ =
⋃2k/2−1
h=0 Sh from M as follows. For every pair of

integers i, j ∈ {1, 2, . . . , n} and every pair of integers h1, h2 ∈ {0, 1, . . . , 2k/2 − 1},
• M ′(sh1n+i, sh2n+j) = M(si, sj) if i �= j;
• M ′(sh1n+i, sh2n+i) = 1 if h1 �= h2;
• M ′(sh1n+i, sh1n+i) = 0.

Similarly to the proofs of Lemmas 4.1, 4.2, and 4.3, we can show the following:

(i) There exists a 2-ultrametric T on set S with D(T,M) ≤ � if and only if there

exists a 2-ultrametric T ′ on set S̃ with D(T ′,M ′) ≤ 2k�.

(ii) We can consider only those 2-ultrametrics on set S̃ in which shn+i, where
h = 0, 1, . . . , 2k/2 − 1, are adjacent to a common middle node.
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Let �′ = 2k� and N = �′ + 1. The instance of CPRk consists of the nonnegative
integer �′ and graph G constructed as follows:

• G takes S̃ as a vertex subset;
• two distinct vertices si, sj ∈ S̃ are adjacent in G if and only if M ′(si, sj) = 1;
• G also contains the graphH consisting of the 4k−7 critical cliques as discussed
in the last subsubsection as a subgraph; and
• for every i ∈ { 3k

2 − 1, 3k
2 , . . . , 5k

2 − 5}, each vertex in Ci is adjacent to every

vertex in S̃.
Lemma 4.7 guarantees that if G has an approximate phylogeny T ′ such that |E(G)⊕
E(T ′k)| ≤ �′ < N , then the vertices in each critical clique Ci in subgraph H (where
i ∈ {k − 1, k, . . . , 3k − 5}) are adjacent to the unique internal Ci-node ti in T ′. Since
every vertex in S̃ is adjacent to all vertices in Ci for all i ∈ { 3k

2 − 1, 3k
2 , . . . , 5k

2 − 5},
and the length of the path consisting of those k − 3 Ci-nodes has length k − 4, every
vertex in S̃ must be within distance k

2 +1 from the (unique) C2k−3-node t2k−3 in T ′.
Let T ′′ denote the minimal subtree of T ′ that contains all vertices in S̃. The first

observation is that T ′′ contains no vertex outside S̃. Secondly, since every vertex in
S̃ is adjacent to neither vertex in C 3k

2 −2 nor vertex in C 5k
2 −4, we conclude that every

vertex in S̃ is at distance exactly k
2 +1 from the C2k−3-node t2k−3. Furthermore, the

path connecting any vertex in S̃ to t2k−3 does not intersect the backbone path formed
by the Ci-nodes for i ∈ {k − 1, k, . . . , 3k − 5} (except at t2k−3).

Therefore, if subtree T ′′ does not include node t2k−3, then we can construct

a 2-ultrametric tree, denoted also by T ′′, on set S̃ by connecting all the elements
to a single middle node. Otherwise, rooting T ′′ at t2k−3 and letting every leaf be
adjacent to its closest child node of the root, which serves as the middle node, give a
2-ultrametric, denoted still by T ′′, on set S̃. In any case, the 2-ultrametric T ′′ on set
S̃ satisfies D(T ′′,M ′) ≤ �′ = 2k�, which immediately implies that we can construct a
2-ultrametric T on set S such that D(T,M) ≤ �.

On the other hand, if we have a 2-ultrametric T on set S such that D(T,M) ≤ �,

we can easily construct a 2-ultrametric T ′′ on set S̃ such that D(T ′′,M ′) ≤ 2k� = �′

and in which elements shn+i, h = 0, 1, . . . , 2k/2− 1, are adjacent to a common middle
node. It is also easy to transform the subtree of T ′′ under each middle node into a
k
2 -height subtree rooted at the middle node so that every leaf is at distance exactly k

2
from the middle node and every internal node of the whole tree (except its root), still
denoted by T ′′, has degree at least 3. At the same time, we can also easily build a tree
for subgraphH in which all vertices in Ci are adjacent to a single Ci-node ti, and these
4k−7 Ci-nodes are connected consecutively into a path (such that ti is adjacent to ti−1

and ti+1). We then identify the root of T ′′ with the C2k−3-node t2k−3. This gives a
phylogeny, which is denoted by T ′, such that |E(G)⊕E(T ′k)| = D(T ′′,M ′) ≤ �′.

4.3. Steiner kth root problem. We study another problem closely related to
PRk and TRk, which is the Steiner kth root problem [8]. Recall that given a graph
G = (V,E), TRk asks for a tree whose node set is exactly V , and PRk asks for a tree
whose leaf-set is exactly V . A more general problem is to ask for a tree T whose node
set is a superset of V and whose leaf-set is a subset of V , and such that for every pair
of vertices u and v in V , dT (u, v) ≤ k if and only if (u, v) ∈ E. We call a tree T whose
node set is a superset of V and whose leaf-set is a subset of V a Steiner tree on V .

Steiner kth root problem (SRk). Given a graph G = (V,E), find a Steiner
tree T on V such that for each pair of vertices u, v ∈ V , (u, v) ∈ E if and only if
dT (u, v) ≤ k.
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Such a Steiner tree T (if it exists) is called a Steiner kth root or a kth root Steiner
tree of G. G is called the kth Steiner power of T . We also abuse T k to denote the
kth Steiner power of T when there is no confusion from the context.

Notice that here we do not require a nonleaf node in a Steiner tree to have degree
at least 3. This requirement is not necessary from the tree root point of view. But
one may do so, as this requirement is natural from the phylogenetic root point of
view. Steiner trees satisfying this additional requirement are called restricted Steiner
trees. Graphs having a restricted Steiner kth root for k = 1, 2 can be recognized in
linear time [8]. The recognition algorithm can be extended to find an ordinary Steiner
kth root for k = 1 and k = 2. However, when k ≥ 3, no polynomial-time recognition
algorithm has been reported yet to find either a Steiner kth root or a restricted Steiner
kth root. In the following, we will consider only ordinary Steiner roots and show that
the closest Steiner kth root problem (CSRk), defined in a straightforward way, is
NP-complete when k ≥ 2.

We call the nodes in a Steiner tree T that are not vertices in V Steiner nodes.

For CSR1, we notice that deleting all Steiner nodes from an (approximate) 1st
root Steiner tree T results in a collection of subtrees such that vertices in different
subtrees are not adjacent in T 1. Therefore, for any input graph G, the best way to
build the closest 1st root Steiner tree is to construct a spanning tree for each connected
component in G and then connect these spanning trees together via a Steiner node.
That is, a closest 1st root Steiner tree can be computed in O(n) time, where n is the
number of vertices in the input graph. The complexity changes when k marches from
1 to 2. In fact, by designing similar yet more careful gadgets, we are able to construct
a reduction from FUT to CSRk for every fixed k ≥ 2.

Theorem 4.9. CSRk is NP-complete for every k ≥ 2.

We omit the proof of Theorem 4.9 in this paper because it is quite long and
somewhat tedious (especially given the proof of Theorem 4.8). The complete proof
can be found in the technical report [3].

5. Open problems. Since CPRk is NP-complete for all k ≥ 2, it would be
interesting to know how well we can approximate the closest phylogenetic kth root.
Also, it would be nice to extend Theorem 3.7 and Corollary 3.8 to disconnected graphs.
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Abstract. We consider a generalization of the Dyck language. We have a set of opening and
a set of closing brackets and a relation that gives the pairs of brackets that can be used in the
generalized Dyck language. This Dyck language is a handy coding for several classes of labeled trees.

We present an algorithm that generates all words of length 2n of the generalized Dyck language
lexicographically. Thereby, each word is computed from its predecessor according to the lexicograph-
ical order without any knowledge about the words generated before.

Additionally, we introduce a condition on the relation for the generalized Dyck language to be
simply generated, which means that an algorithm needs to read only the suffix to be changed in order
to compute the successor of a word according to the lexicographical order. We present an algorithm
that checks whether a Dyck language is simply generated or not.

For an arbitrary relation, we compute the sth moments of the random variable describing the
length of the suffix to be changed in the computation of the successor of a Dyck word. In particular,
the mean value and the variance are constant.
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1. Overview and definitions. In this section, we introduce the generalization
of the Dyck language, the lexicographical order needed for the lexicographical gener-
ation, and all definitions—illustrated by several examples—for the whole paper. We
also point out the contents of the following sections.

In this paper, we present an algorithm that generates all words of length 2n of the
generalized Dyck language given in Definition 1.1 lexicographically. The algorithm
reads a word from right to left and changes a suffix of that word in order to generate
the next word according to the lexicographical order given in Definition 1.2.

Definition 1.1. Let T[ :=
{
[1, [2, . . . , [t1

} (
resp., T] :=

{
]1, ]2, . . . , ]t2

})
with t1,

t2 ∈ N be the set of opening (resp., closing) brackets. Let |S| be the cardinality of the
set S, so

∣∣T[ ∣∣ = t1 and
∣∣T] ∣∣ = t2. With T := T[

.∪ T] , where
.∪ denotes the disjoint

union of sets, and a relation R ⊆ T[ × T] , we obtain the generalized Dyck language
associated with R (cf. [Ke96]) by

D := {w ∈ T � | w ≡ ε mod δ},

where ε denotes the empty word and δ is the congruence over T which is defined by
(∀([a, ]b) ∈ R)([a ]b ≡ ε mod δ). The set of all Dyck words of length 2n is given by
D2n := D ∩ T 2n.

Remark 1.1. Obviously, there is a unique corresponding closing (resp., opening)
bracket to each opening (resp., closing) bracket in every Dyck word w ∈ D.

∗Received by the editors August 28, 2001; accepted for publication (in revised form) September
8, 2002; published electronically June 10, 2003.

http://www.siam.org/journals/sicomp/32-4/39449.html
†Fachbereich Biologie und Informatik, Institut für Informatik, Johann Wolfgang Goethe-

Universität, Frankfurt am Main, D-60054 Frankfurt am Main, Germany (jens@sads.informatik.
uni-frankfurt.de).

880



GENERATION OF A GENERALIZED DYCK LANGUAGE 881

The closing bracket corresponding to an opening bracket in a Dyck word w ∈ D
can be found by searching for the first closing bracket behind the shortest word w2 ∈ D
(w2 might be ε) on the right side of the opening bracket. If the opening (resp.,
its corresponding closing) bracket is [a (resp., ]b), we have w = w1 [a w2 ]b w3 with
w1 w3, w2 ∈ D. The corresponding opening bracket to a closing bracket can be found
in an analogous way.

Definition 1.2. Let � ⊆ T × T be an irreflexive linear ordering on T . The
lexicographical order ≺ over T+ is defined as the extension of � to ≺ ⊆ T+ × T+ by

x ≺ y :⇐⇒ (∃z ∈ T+
)
(xz = y)

∨ (∃ (w, x′, y′, a, b) ∈ T �3 × T 2
)
(x = wax′ ∧ y = wby′ ∧ a � b) ,

cf. [Ke98]. Note that in this paper we consider the lexicographical order on words of
length 2n only.
We use the following ordering on T :

[|T[ | � · · · � [1 � ]1 � · · · � ]|T] |.

Now, let us have a closer look at the relation R. From the existence of the lexi-
cographical order ≺ on D results the existence of a unique lexicographically minimal
(resp., maximal) tuple in R which is denoted by Rmin (resp., Rmax).

Definition 1.3. Let pmin (resp., pmax) be the lexicographically minimal (resp.,
maximal) pair of brackets in R. Further, let [pmin , [pmax ∈ T[ and ]pmin , ]pmax ∈ T] .
Then we get

pmin := [pmin
]pmin

⇐⇒ Rmin =
(
[pmin

, ]pmin

)
and

pmax := [pmax
]pmax

⇐⇒ Rmax =
(
[pmax

, ]pmax

)
.

Obviously, [pmin
(resp., ]pmin) is the opening (resp., closing) bracket of the lexico-

graphically minimal pair of brackets, and [pmax (resp., ]pmax) is the opening (resp.,
closing) bracket of the lexicographically maximal pair of brackets. Now, we are able
to compute the minimal (resp., maximal) word ofD2n according to the lexicographical
order wD2n

min (resp., wD2n
max):

wD2n

min =
(
[pmin

)n (
]pmin

)n
and wD2n

max =
(
pmax

)n
.

In this paper, we assume that there are no useless symbols in T , so we find
[pmin = [|T[ | and [pmax = [1.

Definition 1.4. Given ([a, ]b) ∈ R, ]b is called minimal (resp., maximal) with
respect to [a if there is no smaller (resp., larger) closing bracket that corresponds to [a
in R. For the sake of clear presentation, we use “minimal (resp., maximal)” instead
of “minimal (resp., maximal) with respect to the corresponding opening bracket”. A
string of closing brackets is called minimal (resp., maximal) if each bracket in the
string is minimal (resp., maximal).
Note that the property of being minimal (resp., maximal) depends not only on

the closing bracket, but also on the corresponding opening bracket. For example, ]b
of ([a1 , ]b) can be minimal even if ]b of ([a2 , ]b) is not minimal.
Let us demonstrate the above definitions by two simple examples.
Example 1.1. Let T := {[1, [2, ]1, ]2}, R := {([1, ]1), ([2, ]2)}, and n := 2. We get

the ordering on the alphabet [2 � [1 � ]1 � ]2. The lexicographically minimal (resp.,
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[2 [2 ]2 ]2 ≺ [2 [1 ]1 ]2 ≺ [2 ]2 [2 ]2 ≺ [2 ]2 [1 ]1
≺ [1 [2 ]2 ]1 ≺ [1 [1 ]1 ]1 ≺ [1 ]1 [2 ]2 ≺ [1 ]1 [1 ]1

Fig. 1. All Dyck words of Example 1.1 arranged according to the lexicographical order ≺.

[2 [2 ]2 ]2 ≺ [2 [1 ]1 ]2 ≺ [2 [1 ]2 ]2 ≺ [2 ]2 [2 ]2 ≺ [2 ]2 [1 ]1 ≺ [2 ]2 [1 ]2
≺ [1 [2 ]2 ]1 ≺ [1 [2 ]2 ]2 ≺ [1 [1 ]1 ]1 ≺ [1 [1 ]1 ]2 ≺ [1 [1 ]2 ]1 ≺ [1 [1 ]2 ]2
≺ [1 ]1 [2 ]2 ≺ [1 ]1 [1 ]1 ≺ [1 ]1 [1 ]2 ≺ [1 ]2 [2 ]2 ≺ [1 ]2 [1 ]1 ≺ [1 ]2 [1 ]2

Fig. 2. All Dyck words of Example 1.2 arranged according to the lexicographical order ≺.

maximal) word is given by wD4

min = [2 [2 ]2 ]2 (resp., w
D4
max = [1 ]1 [1 ]1). In Figure 1, we

find all Dyck words of this example.

Example 1.2. Let T := {[1, [2, ]1, ]2}, R := {([1, ]1), ([1, ]2), ([2, ]2)}, and n := 2.
Again, we obtain the ordering on the alphabet [2 � [1 � ]1 � ]2. The lexicographically
minimal (resp., maximal) word is given by wD4

min = [2 [2 ]2 ]2 (resp., w
D4
max = [1 ]2 [1 ]2).

Given ([1, ]1), we see that ]1 is minimal but not maximal. Analogously, ]2 of ([1, ]2)
is maximal but not minimal. Regarding ([2, ]2), we find ]2 to be both minimal and
maximal. In Figure 2, all Dyck words of this example are arranged lexicographically.

Now, in the following two definitions, let us recall some functions defined in [Ke98];
the formal definitions can be found in [Li98] as well.

Definition 1.5. For an arbitrary language L and w ∈ L, the successor function
next(w) computes the successor of w according to the lexicographical order; next(wLmax)
is undefined.

Definition 1.6. Let pre(w) be the longest common prefix of w and next(w); old(w)
(resp., new(w)) is the suffix of w (resp., next(w)) to the right of pre(w). Thus w =
pre(w)old(w) and next(w) = pre(w)new(w) are factorizations of w and its successor.
The language L ⊆ Σ� is called simply generated with respect to ≺ iff it satisfies the
property

(∀(w,w′) ∈ L2
)(

old(w) = ϑ old(w′), ϑ ∈ Σ� ❀
(
ϑ, new(w)

)
=

(
ε, new(w′)

))
.

This means that a language L is called simply generated if it is possible to de-
termine the suffix old(w) and replace it by the suffix new(w) in a unique way for all
w ∈ L\{wLmax} without any knowledge about pre(w). So, a language L is called simply
generated if it is sufficient to read the suffix to be changed only for all w ∈ L\{wLmax}
in order to compute next(w).

Example 1.3. Considering Example 1.1, with w = [2 [2 ]2 ]2 we find next(w) =
[2 [1 ]1 ]2. Obviously, we get pre(w) = [2, old(w) = [2 ]2 ]2, and new(w) = [1 ]1 ]2. It
is easy to check that the Dyck language D4 with R := {([1, ]1), ([2, ]2)} is simply
generated.

In section 2, we formalize the successor function; for that purpose we have to
define some functions that give information on the relation R. In the algorithm, we
use the notation w = w0 . . . w2n−1 ∈ D2n with wi ∈ T , 0 ≤ i ≤ 2n− 1.
The first three functions depend on the relation R and a given Dyck word w.

Their formal definitions can be found in [Li98].

The function succ pair. The function succ pair([a ]b) computes to a given pair of
brackets [a ]b the next pair of brackets according to the lexicographical order ≺ and
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the relation R. Thus it computes the successor of a Dyck word of length two.
Note that for all (r1, r2) ∈ R \ {Rmax}, the function succ pair(r1 r2) is always

defined.
The function succ. The function succ(w, i) computes to a given closing bracket

wi = ]b in a Dyck word the next closing bracket according to the lexicographical order
≺ and the relation R. For some closing brackets, the unique corresponding opening
bracket to ]b in the Dyck word w has to be known. It can be determined as described
in Remark 1.1.
Note that, for all closing brackets that are not maximal, succ is always defined.
The function min pred. Given a Dyck word with wi = ]b, and [a being the cor-

responding opening bracket to ]b, the function min pred(w, i) computes the minimal
closing bracket that corresponds to [a according to the lexicographical order ≺ and
the relation R.
Note that, for all closing brackets, min pred is always defined. Further, the function

min pred can be applied to wi . . . wj ∈ T �] ; we define

min pred(w, i, j) := min pred(w, i)min pred(w, i+ 1) . . .min pred(w, j).

If wi . . . wj = ε, we obtain min pred(w, i, j) = ε.
Remark 1.2. The functions succ and min pred need some more information,

namely, the corresponding opening bracket to the function’s argument, which is a
closing bracket. For some relations R it is necessary to read that opening bracket; for
others it is not necessary, because the information needed can be determined by the
relation R. A condition for this requirement of information will be given in section
3.
The following boolean functions depend on the relation R only.
The function no succ. The function no succ( ]b) is true iff the given closing bracket

]b is maximal with respect to all pairs of brackets in which it appears.
The function succ unique. The function succ unique( ]b) is true iff the call of the

function succ for any closing bracket ]b leads to the same result—independently of the
corresponding opening bracket to ]b.

The function min pred unique. The function min pred unique( ]b) is true iff the result
of min pred for a given closing bracket ]b is the same—independently of the correspond-
ing opening bracket to ]b.
Again, these three functions are formally defined in [Li98].
Example 1.4. Let us revisit Example 1.2 with R := {([1, ]1), ([1, ]2), ([2, ]2)}. As

the lexicographical order on the pairs of brackets is given by [2 ]2 ≺ [1 ]1 ≺ [1 ]2, we
obtain succ pair([2 ]2) = [1 ]1, succ pair([1 ]1) = [1 ]2, succ pair([1 ]2) = undefined. Now,
we regard

w = w0 w1 w2 w3 w4 w5 = [1 ]2 [1 [2 ]2 ]1 ∈ D6.

Obviously,

succ(w, 1) = undefined, succ(w, 4) = undefined, succ(w, 5) = ]2,

min pred(w, 1) = ]1,min pred(w, 4, 5) = ]2 ]1.

The boolean functions immediately yield
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no succ( ]1) = false, no succ( ]2) = true,

succ unique( ]1) = true, succ unique( ]2) = true,

min pred unique( ]1) = true,min pred unique( ]2) = false.

In section 3, we formalize the condition on the relationR whether a given language
D2n is simply generated or not. Further, we present an algorithm that decides whether
or not a relation R results in a simply generated Dyck language. The following two
definitions are needed for section 3.

Definition 1.7. Let open( ]j) := {[i | ([i, ]j) ∈ R} (resp., close([i) := { ]j | ([i, ]j) ∈
R}) be the set of all corresponding opening (resp., closing) brackets to a given closing
(resp., opening) bracket according to the relation R.

Further, let successor( ]j , [i) be the function that computes the same closing bracket
for a relation R as succ does for a closing bracket of a Dyck word. The only difference
is that the function needs to know the corresponding closing bracket to the opening
bracket, because it is not able to determine it as succ, because succ gets the whole word
as a parameter and not only a closing bracket.

For the formal definition of successor, refer to [Li98].

Note that open, close, and successor depend on the relation R only and not on a
Dyck word.

Definition 1.8. The matrix representation of a relation R is given by

M := (mi,j)1≤i≤|T[ |,1≤j≤|T] | with mi,j :=

{
1 if ([i, ]j) ∈ R,
0 if ([i, ]j) /∈ R.

Example 1.5. Considering the relation R := {([1, ]1), ([1, ]2), ([2, ]2)} of Example
1.2, we immediately find open( ]1) = {[1}, open( ]2) = {[1, [2}, close([1) = { ]1, ]2}, and
close([2) = { ]2}. The matrix representation of R is given by M =

(
1 1
0 1

)
.

In section 4, we analyze the length of the suffix to be changed in order to generate
the next word according to the lexicographical order on the average. This average-case
analysis is based on a general approach to the average length of the shortest suffix to
be changed when generating words of a language lexicographically, cf. [Ke98].

In section 5, we point out that the generalized Dyck language is a handy coding
for several classes of labeled trees. Hence we are able to generate classes of labeled
trees lexicographically.

2. Algorithm for the generation of Dyck words. In this section, we will
present an algorithm that generates all words w ∈ D2n lexicographically. We follow
a classical method for lexicographical generation of combinatorial objects, cf. [Wi77],
[NW78], and [Ke98]; the lexicographical generation will be carried out by successive
calls of a function which obtains a word and computes its successor according to the
lexicographical order. The successor is computed by changing a suffix of the word.

In contrast to the above method, all objects of a desired length can be generated
modifying all (recursively generated) objects of the next shorter length, cf. [BLP98].
The latter method does not allow the computation of the successor of a word, if
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function generate ()
begin

w := wD2n
min

while w �= undefined do
w := next(w)

end;

Fig. 3. Algorithm 1. Function that generates all words of the language D2n lexicographically.

merely that word is known; at least one word of shorter length is required. Thus, for
saving the state of the generation process, not less than one word of each length has
to be stored. In the method used here, only one word needs to be saved. So, we can
interrupt the computation without extra cost.
The reason for generating according to the lexicographical order is the following:

For the lexicographical generation (following the classical method), it is known that
the mean length of the suffix to be changed is as short as possible, cf. [Ke98]. Our
algorithm is optimal with respect to the length of the suffix to be changed.
The function generate (see Algorithm 1) starts with the generation of the lexico-

graphically minimal word wD2n

min and successively generates the successor next(w) of
w ∈ D2n according to the lexicographical order until the lexicographically maximal
word wD2n

max has been generated. Remember that next(wD2n
max) is undefined.

Note that in the function generate, the lexicographical generation is a transforma-
tion from one word to its successor. So, each word w ∈ D2n \

{
wD2n

min

}
depends on

its predecessor only; there is no need for more information on the words previously
generated.
For the function next we need two technical lemmas. In Lemma 2.1, we prove

that D2n can be split into four disjoint sets. In Lemma 2.2, we show that each Dyck
word w = w0 . . . w2n−1 ∈ D2n has a unique factorization. The existence of the unique
factorization is required for the function next.

Lemma 2.1. Let S
(j)
2n ⊆ D2n, 1 ≤ j ≤ 4. With w ∈ D2n, the following hold:

w ∈ S
(1)
2n ⇐⇒ w = wD2n

max ,

w ∈ S
(2)
2n ⇐⇒ w = x︸︷︷︸

∈ T+

wα︸︷︷︸
∈ T]

not maximal

wα+1 . . . wβ︸ ︷︷ ︸
∈ T �

]

maximal

wD2i
max︸ ︷︷ ︸
with

0 ≤ i ≤ n− 1

,

w ∈ S
(3)
2n ⇐⇒ w = x︸︷︷︸

∈ T �

wα wα+1︸ ︷︷ ︸
∈ D2 \ {wD2

max}
wα+1 maximal

wα+2 . . . wβ︸ ︷︷ ︸
∈ T �

]

maximal

wD2i
max︸ ︷︷ ︸
with

0 ≤ i ≤ n− 1

,

w ∈ S
(4)
2n ⇐⇒ w = x︸︷︷︸

∈ T+

wD2
max wα . . . wβ︸ ︷︷ ︸

∈ T+
]

maximal

wD2i
max︸ ︷︷ ︸
with

0 ≤ i ≤ n− 2

.

Then the following equation holds:

D2n = S
(1)
2n

.∪ S
(2)
2n

.∪ S
(3)
2n

.∪ S
(4)
2n .

Proof. We present only the sketch of the proof here; the proof is worked out in
[Li98] in detail.
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With S
(j)
2n ⊆ D2n, 1 ≤ j ≤ 4, it follows that every word that is not a Dyck word

is in none of these sets.

Now, we have to prove that every Dyck word is in at least one set. We assume

that a Dyck word w exists which is in none of the sets S
(j)
2n , 1 ≤ j ≤ 4. Then we

factorize w by splitting off first the longest suffix pmax . . . pmax and second the longest
suffix consisting of maximal closing brackets only. Several cases arise, and in each
case we obtain a contradiction; thus each Dyck word is in at least one of the sets
defined above.

Finally, we just have to prove that the sets S
(1)
2n , S

(2)
2n , S

(3)
2n , and S

(4)
2n are pairwise

disjoint. We obtain six cases; in each case, the assumption that a Dyck word is in
both sets leads to a contradiction.

Remark 2.1. If n = 1, we find S
(4)
2 = ∅.

Lemma 2.2. Each Dyck word w ∈ D2n has a unique factorization.

Proof. Again, we outline the proof; the formal proof can be found in [Li98].

As we have already shown that S
(1)
2n , S

(2)
2n , S

(3)
2n , and S

(4)
2n are pairwise disjoint, we

have only to prove that, for each word w, there is only one factorization according to
the set it belongs to. The assumption to find two different factorizations for a Dyck
word leads to a contradiction for each set.

Now we are able to point out the successor function next(w) of a word w ∈ D2n

according to the lexicographical order. With Lemmas 2.1 and 2.2, we can compute

the successor for each of the sets S
(j)
2n , 1 ≤ j ≤ 4, separately.

Theorem 2.3. The successor of a Dyck word w ∈ D2n is computed as follows.

w ∈ S
(1)
2n :
w = wD2n

max

next(w) = undefined

w ∈ S
(2)
2n :

w =

∈ T+︷︸︸︷
x

∈ T]
not maximal︷︸︸︷

wα

∈ T �
]

maximal︷ ︸︸ ︷
wα+1 . . . wβ

with
0 ≤ i ≤ n− 1︷ ︸︸ ︷

wD2i
max

next(w) = x︸︷︷︸
∈ T+

succ(w, α)︸ ︷︷ ︸
∈ T]

wD2i
min︸ ︷︷ ︸
with

0 ≤ i ≤ n− 1

min pred(w, α + 1, β)︸ ︷︷ ︸
∈ T �

]

minimal

❄
✂
✂✌

�������

✏✏✏✏✏✏✮

w ∈ S
(3)
2n :

w =

∈ T �︷︸︸︷
x

∈ D2 \ {wD2
max}

wα+1 maximal︷ ︸︸ ︷
wα wα+1

∈ T �
]

maximal︷ ︸︸ ︷
wα+2 . . . wβ

with
0 ≤ i ≤ n− 1︷ ︸︸ ︷

wD2i
max

next(w) = x︸︷︷︸
∈ T �

ŵα︸︷︷︸
∈ T[

wD2i
min︸ ︷︷ ︸
with

0 ≤ i ≤ n− 1

ŵα+1︸ ︷︷ ︸
∈ T]

minimal

min pred(w, α + 2, β)︸ ︷︷ ︸
∈ T �

]

minimal

.

❄
✄
✄✎

�������

�������

✘✘✘✘✘✘✘✘✾
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Here, succ pair(wα wα+1) = ŵα ŵα+1.

w ∈ S
(4)
2n :

w =

∈ T+︷︸︸︷
x wD2

max

∈ T]
maximal︷︸︸︷
wα

∈ T �
]

maximal︷ ︸︸ ︷
wα+1 . . . wβ

with
0 ≤ i ≤ n− 2︷ ︸︸ ︷

wD2i
max

next(w) = x︸︷︷︸
∈ T+

min pred(w, α)︸ ︷︷ ︸
∈ T]

minimal

w
D2(i+1)

min︸ ︷︷ ︸
with

0 ≤ i ≤ n− 2

min pred(w, α + 1, β)︸ ︷︷ ︸
∈ T �

]

minimal

.
❄


✡
✡✢



✟✟✟✟✙

Proof. As the proofs for the sets S
(2)
2n , S

(3)
2n , and S

(4)
2n are similar, some cases can

be omitted here. All cases are treated in [Li98] completely.

w ∈ S
(1)
2n : ❀ w = wD2n

max ; w
D2n
max has no successor.

Regarding w ∈ S
(j)
2n , 2 ≤ j ≤ 4, and next(w), we see that w ≺ next(w). Hence we

have only to prove that there is no Dyck word between w and next(w).

w ∈ S
(2)
2n : We assume that (∃v ∈ D2n)(w ≺ v ≺ next(w)) ❀ v = x ṽ, x ∈ T+,

with

wα︸︷︷︸
∈ T]

not maximal

lexicographically
largest suffix for xwα︷ ︸︸ ︷
wα+1 . . . wβ︸ ︷︷ ︸

∈ T �
]

maximal

wD2i
max ≺ ṽ

≺ succ(w, α)︸ ︷︷ ︸
∈ T]

lexicographically
smallest suffix for x succ(w,α)︷ ︸︸ ︷

wD2i
min min pred(w, α + 1, β)︸ ︷︷ ︸

∈ T �
]

minimal

.

Obviously, wα � succ(w,α). Note that wα and succ(w,α) are the only possibilities for
the first symbol in ṽ. Further, we know that every v ∈ D2n has exactly n opening
and n closing brackets.

Case 1: ṽ = wα v̂. ❀ wα+1 . . . wβ w
D2i
max ≺ v̂. This is a contradiction, as w

is the lexicographically largest Dyck word with the prefix xwα. Obviously, v̂ must
contain i opening brackets and (β−α+ i) closing brackets, but all closing brackets in
wα+1 . . . wβ are maximal (so none of them can be substituted by a larger one), and
there is no larger Dyck word in D2i than wD2i

max.

As each opening bracket is smaller than each closing bracket, a rearrangement of
the brackets does not lead to a lexicographically larger Dyck word.

Thus such v̂ does not exist.

Case 2: ṽ = succ(w,α) v̂. ❀ v̂ ≺ wD2i

min min pred(w,α + 1, β). Similarly to Case 1,
we can prove that next(w) is the smallest Dyck word with the prefix x succ(w,α).

Hence such v̂ does not exist.

w ∈ S
(3)
2n , w ∈ S

(4)
2n . These cases can be proved analogously to the previous

case.
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Remark 2.2.
1. When regarding the definition of next(w) of w ∈ D2n, we notice that we need
some information on the relation R:
• Is a closing bracket maximal?
• If a closing bracket is not maximal, what is its next closing bracket
according to the relation R (

=̂ succ
)
?

• If a closing bracket is maximal, what is its minimal closing bracket ac-
cording to the relation R (

=̂ min pred
)
?

In the next section, we will focus on the condition for the following:
• This information can be obtained from the relation R.
• This information cannot be obtained from the relation R, but it can be
obtained by reading a part of the Dyck word—especially the opening
bracket corresponding to that closing bracket.

2. If n = 1, the function next simplifies to

next(w) =




undefined if w = wD2
max ∈ S

(1)
2 ,

w0 succ(w, 1) if w = w0 w1 ∈ S
(2)
2 ,

(w0, w1) ∈ R, w1 is not maximal,

succ pair(w0 w1) if w = w0 w1 ∈ S
(3)
2 ,

(w0, w1) ∈ R \ {Rmax}, w1 is maximal

= succ pair(w0 w1).

Note that the function min pred is not needed for n = 1 because S
(4)
2 = ∅.

Now, we are able to present the algorithmic definition of the function next. Re-
garding Theorem 2.3, we see that it has to read the Dyck word w from right to left.
First, the algorithm reads all lexicographically maximal pairs of brackets pmax at the
end of w. Then it has to read the string consisting of maximal closing brackets. Hav-
ing read an opening bracket or a closing bracket that is not maximal, it finds the suffix
to be changed and can generate the successor. We see that the function next uses the
existence of the unique factorization according to the suffix of every Dyck word, cf.
Lemma 2.2. The successor is computed for each of the sets defined in Lemma 2.1.
Sometimes there are one or more closing brackets in the suffix to be changed for

which it is undecidable (in consideration of the suffix read only) whether the brackets
are maximal or what the next or minimal closing brackets according to the order
on the alphabet and the relation R are. If such a bracket is read, the function init

is called. It reads to the left until the corresponding opening bracket is found (see
Remark 1.1). The function init makes the information on this part of the Dyck word
accessible to the functions succ and min pred in the algorithm.
Now, we are able to present the algorithm (see Algorithm 2) that generates all

words in D2n lexicographically. Note that w = w0 . . . w2n−1 ∈ D2n in the algorithm.

3. On the length of the suffixes read and changed. In the preceding sec-
tion, we noticed that, for the generation of the successor of a word w ∈ D2n, according
to the lexicographical order it might sometimes be necessary to read more than just
the word’s suffix to be changed (function init). In this section, we will show that this
necessity depends on the relation R.
Now, we formalize the condition for a simply generated Dyck language D2n. We

will see that this condition depends onR only and that we have to distinguish between
the cases n = 1 and n ≥ 2.
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dyck word function next(w : dyck word)
begin
i := 2n− 1
pairs := 0
brackets := 0
/� � � � � find the suffix of w to be changed � � � � �/

/� read w
D2pairs
max �/

while i ≥ 1 and wi−1 wi = pmax do
begin
pairs := pairs+ 1
i := i− 2

end
if i < 1 then

begin

/� successor for w = w
D2n
max ∈ S(1)

2n does not exist �/
next := undefined
return

end

/� read all maximal closing brackets on the left of w
D2pairs
max �/

while wi ∈ T] and no succ(wi) and min pred unique(wi) do
begin
brackets := brackets+ 1
i := i− 1

end
if wi ∈ T] and ( not succ unique(wi)

or (no succ(wi) and not min pred unique(wi))) then
begin

init(w, i)
while wi ∈ T] and wi is maximal do

begin
brackets := brackets+ 1
i := i− 1

end
end

/� � � � � change the suffix of w to generate the successor � � � � �/
if wi ∈ T] then

begin

/� compute successor for w ∈ S(2)
2n �/

wi := succ(w, i)
w2n−brackets . . . w2n−1

:= min pred(w, 2n− brackets− 2pairs, 2n− 1− 2pairs)

wi+1 . . . wi+2pairs := w
D2pairs
min

end
else

begin
if wi wi+1 	= pmax then

begin

/� compute successor for w ∈ S(3)
2n �/

w2n+1−brackets . . . w2n−1

:= min pred(w, 2n+ 1− brackets− 2pairs, 2n− 1− 2pairs)
wi wi+1 := succ pair(wi wi+1)
wi+1+2pairs := wi+1

wi+1 . . . wi+2pairs := w
D2pairs
min

end
else

begin

/� compute successor for w ∈ S(4)
2n �/

wi := min pred(w, i+ 2)
w2n+1−brackets . . . w2n−1

:= min pred(w, 2n+ 1− brackets− 2pairs, 2n− 1− 2pairs)

wi+1 . . . wi+2+2pairs := w
D2(pairs+1)
min

end
end

next := w
end;

Fig. 4. Algorithm 2. Successor function next for the lexicographical generation of Dyck words.
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...
...

· · · mκ,λ 0 · · · 0 mκ,λ+ν · · ·
...

...
· · · mκ+µ,λ 0 · · · 0︸ ︷︷ ︸

≥0
mκ+µ,λ+ν · · ·

...
...




Fig. 5. Matrix representation of a relation R (Case a).



...
...

0 · · · 0 mκ,λ · · · mκ,λ+ν 0 · · · 0
...

...
0 · · · 0︸ ︷︷ ︸
≥0

mκ+µ,λ · · ·︸︷︷︸
≥0

mκ+µ,λ+ν 0 · · · 0︸ ︷︷ ︸
≥0...

...




Fig. 6. Matrix representation of a relation R (Case b).

Theorem 3.1.
Case 1: n = 1.

D2 is simply generated

⇐⇒ (∀ ]j ∈ T]
)(∀ [i1 , [i2 ∈ open( ]j)

)(
successor( ]j , [i1) = successor( ]j , [i2)

)
.

Case 2: n ≥ 2.

D2n is simply generated ⇐⇒
(∀ ]j ∈ T]

)(∀ [i1 , [i2 ∈ open( ]j)
)(

close([i1) = close([i2)
)
.

Proof. We just outline the proof of the theorem; the formal proof is presented in
[Li98] in detail.
First, let us take a look at some columns of two rows of the matrix representation

M given in Figures 5 and 6. In both figures, we have 1 ≤ κ < κ + µ ≤ |T[ | and
1 ≤ λ < λ+ ν ≤ |T] |. We distinguish between two cases, which we will refer to in the
sketch of the proof.

Case a (see Figure 5):

(
mκ,λ mκ,λ+ν

mκ+µ,λ mκ+µ,λ+ν

)
=

(
1 1
1 0

)
or

(
mκ,λ mκ,λ+ν

mκ+µ,λ mκ+µ,λ+ν

)
=

(
1 0
1 1

)
.

Case b (see Figure 6):

(
mκ,λ mκ,λ+ν

mκ+µ,λ mκ+µ,λ+ν

)
=

(
1 1
0 1

)
or

(
mκ,λ mκ,λ+ν

mκ+µ,λ mκ+µ,λ+ν

)
=

(
0 1
1 1

)
.

Let us remember Remark 2.2. Generating the successor next(w) of w ∈ D2n,
we need to decide whether a given closing bracket wi = ]j ∈ T] is maximal. If it
is not maximal, then we need to compute succ(w, i); otherwise, we need to compute
min pred(w, i), but only if n ≥ 2.

Case 1: n = 1. This case implies Case a (Figure 5).
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⇒: We assume
(∃ ]j ∈ T]

)(∃ [i1 , [i2 ∈ open( ]j)
)(

successor( ]j , [i1) �= successor( ]j , [i2)
)
.

We have either Case i or Case ii.
Case i: successor( ]j , [i1) = ]a �= ]b = successor( ]j , [i2).
Case ii: successor( ]j , [i1) = ]a �= undefined = successor( ]j , [i2).
In both cases, we can conclude that the Dyck language is not simply generated,

since the condition for a language to be simply generated (see Definition 1.6) is not
fulfilled.
⇐ : We assume that D2 is not simply generated, i.e.,(∃w,w′ ∈ D2

)(
old(w) = ϑ old(w′), ϑ ∈ T � ❀ (ϑ, new(w)) �= (ε, new(w′))

)
.

Again, we have two cases.
Case i: ϑ �= ε.
Case ii: ϑ = ε ∧ new(w) �= new(w′).
In either case, we obtain a contradiction to

(∀ ]j ∈ T]
)(∀ [i1 , [i2 ∈ open( ]j)

)(
successor( ]j , [i1) = successor( ]j , [i2)

)
.

Case 2: n ≥ 2. This case implies Case a (Figure 5) or Case b (Figure 6); it can
be proved in a way analogous to the proof of Case 1.

Remark 3.1.
1. From Theorem 3.1 it follows immediately that a Dyck language D2n is simply
generated for n ≥ 1 if |open( ]j)| = 1, 1 ≤ j ≤ |T] |.

2. In order to compute next(w) of w ∈ D2n, we have to read a suffix of w. If
D2n is simply generated, we have to change exactly the brackets we need
to read in order to generate the successor of w ∈ D2n. In that case, the
information required by the functions succ, min pred, no succ, succ unique, and
min pred unique can be directly deduced from the relationR. This is in contrast
to a language not simply generated, whereas—for at least one word —a part
of the common prefix of the Dyck word and its successor has to be inspected.

3. The familiar Dyck languages with the following relations are simply gener-
ated:
• R = {([1, ]1)}, i.e., with one pair of brackets,
• R = {([1, ]1), . . . , ([t, ]t)}, i.e., with t pairs of brackets, t ≥ 1, where
every opening (resp., closing) bracket corresponds to one closing (resp.,
opening) bracket only (cf. [Ha78, p. 313], [Li96]), and
• R = {([1, ]1), . . . , ([1, ]r), ([2, ]1), . . . , ([2, ]r), . . . , ([l, ]1), . . . , ([l, ]r)}, i.e.,
with l · r pairs of brackets, l, r ≥ 1, where each opening (resp., clos-
ing) bracket corresponds to each closing (resp., opening) bracket.

4. Let

M̃ :=




A(1)

A(2) 0
. . .

0 A(k−1)

A(k)




be the normal form of a matrix M . Here, A(l), 1 ≤ l ≤ k, are submatrices.
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boolean function simply generated ()
begin

simply generated := true
/� check for all closing brackets ]j , . . . �/
for j := 1 to |T] |do

begin
/� . . . if successor( ]j , [i) is the same for all corresponding [i �/
k := 0
for i := 1 to |T[ |do

if mi,j = 1 and k = 0 then
k := search next(i, j)

else if mi,j = 1 and k �= search next(i, j) then
begin

simply generated := false
return

end
end

end;

Fig. 7. Algorithm 3. Function that checks whether the language D2 is simply generated.

• If n = 1, the first row of A(l) consists of 1’s only. The following rows
have the form

0 · · · 0︸ ︷︷ ︸
≥0
1 · · · 1︸ ︷︷ ︸
≥1

,

where the number of 1’s is monotonically decreasing from the first to
the last row. For example, the matrices


 1 1 10 0 1
0 0 1


 ,


 1 1 10 1 1
0 0 1


 , and


 1 1 11 1 1
1 1 1




have that property.
• In the case in which n ≥ 2, each entry in A(l) is equal to 1.

The matrix representation M of the Dyck language D2n with relation R can
be transformed into its normal form M̃ by permutating rows and columns iff
D2n is simply generated.

Example 3.1. D2n with relation R = {([1, ]1), ([2, ]2)} of Example 1.1 is simply
generated for n ≥ 1, as |open( ]1)| = 1 and |open( ]2)| = 1.
For the language D2n with relation R = {([1, ]1), ([1, ]2), ([2, ]2)} of Example 1.2,

we find open( ]1) = {[1} and open( ]2) = {[1, [2}. As successor( ]2, [1) = undefined
= successor( ]2, [2), D2n is simply generated for n = 1. Since close([1) = { ]1, ]2} �=
{ ]2} = close([2), D2n is not simply generated for n ≥ 2.
Now, one can determine how to decide algorithmically whether D2n is simply

generated or not. As we have seen, the property of being simply generated depends
on the relation R only; we have to distinguish between n = 1 and n ≥ 2. Let us
have a look at an algorithm that decides whether D2n is simply generated or not. We
discuss the algorithm for n = 1; an algorithm for n ≥ 2 is similar.
Algorithm 3 checks if the language D2 is simply generated. It operates on the

matrix representation of R.
The function simply generated uses another function that computes successor( ]j , [i)

for any ([i, ]j) ∈ R by looking up the column of the next 1 on the right side of the
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integer function search next (i, j : integer)
begin

search next := j + 1
while search next ≤ |T] | and mi,search next = 0 do

search next := search next+ 1
end;

Fig. 8. Algorithm 4. Function that looks up the column of the next 1 on the right of an entry
in M .

entry for ([i, ]j) in M in the same row. If such a 1 does not exist,
∣∣T] ∣∣ + 1 will be

returned, which means successor( ]j , [i) = undefined. The function search next is defined
in Algorithm 4.
Note that each entry in the matrix M is regarded twice at most. So, it can be

checked in O( ∣∣T[ ∣∣ ∣∣T] ∣∣ ) if the language D2 is simply generated. The same fact holds
for the case in which n ≥ 2. Hence the amount of time to decide whether the language
is simply generated is constant with respect to n, i.e., independent of the number of
pairs of brackets in the words of the language.

4. Analysis of the algorithm. In this section, we analyze the length of the
suffix to be changed in order to compute the successor next(w) of a Dyck word w ∈ D2n.
Remember that for every word the suffix to be changed is equal to the suffix to be
read if D2n is simply generated. If D2n is not simply generated, then there is at least
one Dyck word w ∈ D2n \

{
wD2n
max

}
for which an algorithm has to inspect the common

prefix pre(w) of w and next(w). So, the length of the suffix to be read is larger than
the length of the suffix to be changed.
Let Xsufl(D2n) be the random variable that describes the length of the suffix to be

changed. We proved in section 2 that the function generate generates the Dyck words
in D2n with respect to the lexicographical order ≺. Thus every word is generated
exactly once. Further, the function next reads the words from right to left. Under
these conditions, the sth moments, s ≥ 1, about the origin of the random variable
Xsufl(D2n) are given by [Ke98]:

E[Xssufl(D2n)] := 1 + |D2n|−1
2n−1∑
k=1

[(k + 1)s − ks] |INIT2n−k(D2n)| .(4.1)

Here, INITk(D2n) := INIT(D2n)∩T k denotes the set of all prefixes of length k appearing
in words belonging to D2n; thereby, the set of all prefixes appearing in words belonging
to D2n is defined by INIT(D2n) := {u ∈ T � | (∃v ∈ T �) (uv ∈ D2n)}.
Now, our interest is |INITk(D2n)|, 1 ≤ k < 2n. For that purpose we consider the

well-known one-to-one correspondence between the Dyck language and paths on the
lattice given in Figure 9.
Thereby, an up-segment ↗ (resp., down-segment ↘) corresponds to an opening

(resp., closing) bracket. Since we have a correspondence between opening and closing
brackets (see Remark 1.1), there must also be a correspondence between up-segments
and down-segments of a path in the lattice. To each up-segment of any path there is a
corresponding down-segment and vice versa: The down-segment (resp., up-segment)
corresponding to an up-segment (resp., down-segment) is the next segment on the
right (resp., left) side in the same row.
Thus each Dyck word of length 2n corresponds to a path from (0, 0) to (2n, 0). The

segments are labeled by the symbols of the alphabet; the labels of up-segments (resp.,
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Fig. 9. One-to-one correspondence between Dyck words of length 2n and the paths from (0, 0)
to (2n, 0)

down-segments) are opening (resp., closing) brackets. Obviously, an up-segment and
its corresponding down-segment must be labeled by some [a and ]b with

(
[a, ]b

) ∈ R.
With the number of paths from (0, 0) to (k, i) in the lattice in Figure 9 given by

the ballot number [CRS71]

p(k, i) =

(
k

1
2 (k − i)

)
−

(
k

1
2 (k − i)− 1

)
,(4.2)

we have

|INITk(D2n)| =
∑

0≤i≤min{k,2n−k}
k+i ≡ 0 mod 2

|R| 12 (k−i) ∣∣T[ ∣∣i p(k, i) .(4.3)

This formula can be found in [Ke96].
Distinguishing between the terms for even k and those for odd k in (4.3), we

immediately obtain by inserting (4.2)

|INITk(D2n)| =
min{� k2 �, n−� k+1

2 �}∑
i=0

|R|� k2 �−i ∣∣T[ ∣∣2i+k−2� k2 �

×
[(

k⌊
k
2

⌋− i

)
−

(
k⌊

k
2

⌋− i− 1
)]
.

(4.4)

By (4.1), |D2n| = |INIT2n(D2n)|, and (4.4), we get

E[Xssufl(D2n)] = |D2n|−1
2n−1∑
k=0

[(k + 1)s − ks]

min{� 2n−k
2 �, n−� 2n−k+1

2 �}∑
i=0

|R|� 2n−k
2 �−i

× ∣∣T[ ∣∣2i+2n−k−2� 2n−k
2 �

[(
2n− k⌊
2n−k
2

⌋− i

)
−

(
2n− k⌊

2n−k
2

⌋− i− 1
)]
.

Splitting the first sum into two parts and letting the index of the second sum go to
infinity, we obtain with |D2n| = 1

n+1

(
2n
n

) |R|n after rearranging the sums and applying



GENERATION OF A GENERALIZED DYCK LANGUAGE 895

some simplifications

E[Xssufl(D2n)] =
n+ 1(
2n
n

) [
F
(1)
s,|R|,|T[ |(n) + F

(2)
s,|R|,|T[ |(n)− F

(3)
s,|R|,|T[ |(n)− F

(4)
s,|R|(n)

]
,

where

F
(1)
s,a,b(n) :=

∑
i≥0

a−i b2i
n∑
k=0

[(2k + 1)s − (2k)s] a−k

×
[(
2n− 2k
n− k − i

)
−

(
2n− 2k

n− k − i− 1
)]

,

F
(2)
s,a,b(n) :=

∑
i≥0

a−i−1 b2i+1
n∑
k=0

[(2k + 2)s − (2k + 1)s] a−k

×
[(
2n− 2k − 1
n− k − i− 1

)
−

(
2n− 2k − 1
n− k − i− 2

)]
,

F
(3)
s,a,b(n) :=

∑
i≥0

a−i−1 b2i+2
n∑
k=0

[(k + 1)s − ks] a−k bk

×
[(

2n− k

n− k − i− 1
)
−

(
2n− k

n− k − i− 2
)]

,

F (4)
s,a (n) :=

(2n+ 1)s − (2n)s
an

.

In order to gain an asymptotic for n → ∞ for E[Xssufl(D2n)], we need to study the

asymptotic behavior of F
(1)
s,a,b(n), F

(2)
s,a,b(n), F

(3)
s,a,b(n), and F

(4)
s,a (n); that is why we

consider the generating functions for these functions in Lemma 4.1.
Lemma 4.1. Let s, a, b ∈ N , and u :=

√
1− 4z . The generating functions of

F
(1)
s,a,b(n), F

(2)
s,a,b(n), F

(3)
s,a,b(n), and F

(4)
s,a (n) are given by

G
(1)
s,a,b(z) :=

∑
n≥0

F
(1)
s,a,b(n) z

n =
2

(1 + u)
(
1− b2(1−u)24az

)

×

 1

1− za
+

s−1∑
j=1

(
s

j

)
2j Aj

(z

a

) 1(
1− za

)j+1


 ,

G
(2)
s,a,b(z) :=

∑
n≥0

F
(2)
s,a,b(n) z

n =
b(1− u)

a(1 + u)
(
1− b2(1−u)24az

)

 (−1)s+1

1− za

+
a

z

s−1∑
j=1

(
s

j

)
2j (−1)s−j+1 Aj

(z

a

) 1(
1− za

)j+1


 ,

G
(3)
s,a,b(z) :=

∑
n≥0

F
(3)
s,a,b(n) z

n =
4b

(1 + u)2
(
1− b2(1−u)a(1+u)

)As

(
b(1− u)

2a

)
1(

1− b(1−u)2a

)s ,

G(4)
s,a(z) :=

∑
n≥0

F (4)
s,a (n) z

n =
1

1− za
+

s−1∑
j=1

(
s

j

)
2j Aj

(z

a

) 1(
1− za

)j+1
.
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Here, Al(x) denotes the lth Eulerian polynomial [Ke84, p. 214] with

Al(x) = (1− x)l+1
∑
m≥0

mlxm = x

l∑
i=1

i!

{
l

i

}
(x− 1)l−i,

where
{
n
k

}
stands for the Stirling number of the second kind [GKP94, p. 258].

Proof. In order to find the generating function for F
(1)
s,a,b(n), we consider the

convolution of two functions first.
∑
µ≥0
[(2µ+ 1)s − (2µ)s] a−µ zµ





∑
λ≥0

[(
2λ

λ− i

)
−

(
2λ

λ− i− 1
)]

zλ




=
∑
κ≥0

zκ
κ∑
ν=0

[(2ν + 1)s − (2ν)s] a−ν
[(
2κ− 2ν
κ− ν − i

)
−

(
2κ− 2ν

κ− ν − i− 1
)]

.(4.5)

With u =
√
1− 4z ❀ 4z = (1 + u)(1− u) and the identity

∑
m≥0

(
2m+ α

m

)
zm =

1√
1− 4z

(
1−√1− 4z

2z

)α
=
1

u

(
1− u

2z

)α
, α ∈ N0(4.6)

[GKP94, p. 203], a straightforward computation leads to

∑
λ≥0

[(
2λ

λ− i

)
−

(
2λ

λ− i− 1
)]

zλ =
2

1 + u

(
(1− u)2

4z

)i
.(4.7)

In consideration of (4.5) and (4.7), we obtain

G
(1)
s,a,b(z) =

∑
i≥0

a−i b2i


∑
λ≥0

[(
2λ

λ− i

)
−

(
2λ

λ− i− 1
)]

zλ




×

∑
µ≥0
[(2µ+ 1)s − (2µ)s] a−µ zµ




=
2

(1 + u)
(
1− b2(1−u)24az

)

∑
µ≥0
[(2µ+ 1)s − (2µ)s] a−µ zµ


(4.8)

by the expansion of the geometric series. Now, let us have a closer look at the sum
in (4.8). Splitting off the first term, applying the binomial theorem to (2µ+ 1)s, and
using again the expansion of the geometric series yield

∑
µ≥0
[(2µ+ 1)s − (2µ)s] a−µ zµ =

∑
µ≥0

(z

a

)µ
+

s−1∑
j=1

(
s

j

)
2j

∑
µ≥0

µj
(z

a

)µ

=
1

1− za
+

s−1∑
j=1

(
s

j

)
2j Aj

(z

a

) 1(
1− za

)j+1
.(4.9)

Inserting the expression (4.9) into (4.8) results in the generating function G
(1)
s,a,b(z) for

the numbers F
(1)
s,a,b(n) stated in the lemma. G

(2)
s,a,b(z) can be computed analogously.



GENERATION OF A GENERALIZED DYCK LANGUAGE 897

For the generating function G
(3)
s,a,b(z), we consider the function

Hs,c,d(z) :=
∑
n≥0

zn
n∑
k=0

[(k + 1)s − ks]

(
2n− k

n+ c

)
dk, c ∈ N0, d > 0.

A rearrangement of the terms of Hs,c,d(z) and the application of the identity
(
n
k

)
=(

n
n−k

)
, n, k ∈ N0, results with (4.6) in

Hs,c,d(z) =
∑
k≥0
[(k + 1)s − ks] dk zk+c

∑
n≥0

zn
(
2n+ k + 2c

n

)

=
1

u

(
1− u

1 + u

)c∑
k≥0
[(k + 1)s − ks]

(
d(1− u)

2

)k
.

Moreover, a simple computation shows that

∑
k≥0
[(k + 1)s − ks] yk = As(y)

1

y(1− y)s

holds; applying this identity, we obtain

Hs,c,d(z) =
1

u

(
1− u

1 + u

)c
As

(
d(1− u)

2

)
1

d(1−u)
2

(
1− d(1−u)2

)s .(4.10)

Now, by (4.10), we get after simplifications

G
(3)
s,a,b(z) =

∑
n≥0

zn
∑
i≥0

(
b2

a

)i+1 n∑
k=0

[(k + 1)s − ks]

(
b

a

)k

×
[(
2n− k

n+ i+ 1

)
−

(
2n− k

n+ i+ 2

)]

=
4b

(1 + u)2
(
1− b2(1−u)a(1+u)

) As

(
b(1− u)

2a

)
1(

1− b(1−u)2a

)s .

G
(4)
s,a(z) can be calculated similarly to G

(1)
s,a,b(z).

With this lemma, we are able to formalize the following theorem.

Theorem 4.2. Let all w ∈ D2n be equally likely. The sth moments, s ≥ 1, about
the origin of the random variable Xsufl(D2n) are constant. They are given by

E[Xssufl(D2n)] ∼ Cs,|R|,|T[ |, n→∞, where
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Cs,|R|,|T[ | :=
|R|(|R| − |T[ |2)2



s−1∑
j=1

(
s

j

)
2j Aj

(
1

4|R|
) |R|+ |T[ |2 + 4|R||T[ |(−1)s−j+1

(
1− 1

4|R|
)j+1

− 2s|R|s−1|T[ |
(2|R| − |T[ |)s+1

[
2|R|(4|R|2 + (s− 2)|R||T[ | − s|T[ |3

)
As

( |T[ |
2|R|

)

+ |T[ |
(
2|R| − |T[ |

)(|R| − |T[ |2)A′s

( |T[ |
2|R|

)]

+
4|R|(|R|+ |T[ |2 − |T[ |(−1)s)

4|R| − 1


.

Proof. Using the results of the preceding lemma, we get the following formula
after a simple computation:

E[Xssufl(D2n)]

=
n+ 1(
2n
n

) [zn]{G(1)
s,|R|,|T[ |(z) +G

(2)
s,|R|,|T[ |(z)−G

(3)
s,|R|,|T[ |(z)−G

(4)
s,|R|(z)

}

=
n+ 1(
2n
n

) [zn]



1

(1 + u)
(
1− |T[ |2(1−u)|R|(1+u)

)



(
2− (1 + u)

(
1− |T[ |

2(1− u)

|R|(1 + u)

))

×


 1

1− z
|R|
+

s−1∑
j=1

(
s

j

)
2j Aj

(
z

|R|
)

1(
1− z

|R|
)j+1


+ (1− u)

|T[ |
|R|

×


 (−1)s+1

1− z
|R|
+
|R|
z

s−1∑
j=1

(
s

j

)
2j (−1)s−j+1 Aj

(
z

|R|
)

1(
1− z

|R|
)j+1




− 4|T[ |
(1 + u)

As

( |T[ |(1− u)

2|R|
)

1(
1− |T[ |(1−u)2|R|

)s






.

Now, we are looking for the singularity of smallest modulus that is not equal to 0.

We find candidates for singularities at z = 1
4 , z = |R|, z =

|R||T[ |2
(|R|+|T[ |2)2 , and z =

|R|(|T[ |−|R|)
|T[ |2 . We do not have to take z = |R| > 1

4 into account. As the expansions of

G
(1)
s,|R|,|T[ |(z)+G

(2)
s,|R|,|T[ |(z)−G

(3)
s,|R|,|T[ |(z)−G

(4)
s,|R|(z) around z =

|R||T[ |2
(|R|+|T[ |2)2 and z =

|R|(|T[ |−|R|)
|T[ |2 result in Taylor series, i.e., neither z =

|R||T[ |2
(|R|+|T[ |2)2 nor z =

|R|(|T[ |−|R|)
|T[ |2

is a singularity, the singularity nearest to the origin is given by z = 1
4 . Expanding

G
(1)
s,|R|,|T[ |(z) +G

(2)
s,|R|,|T[ |(z)−G

(3)
s,|R|,|T[ |(z)−G

(4)
s,|R|(z) around y := 1− 4z yields
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Table 1
Values for C1,|R|,|T[ |, 1 ≤ |T[ | ≤ |R|, |R| → ∞.

G
(1)
s,|R|,|T[ |(z) +G

(2)
s,|R|,|T[ |(z)−G

(3)
s,|R|,|T[ |(z)−G

(4)
s,|R|(z)

= C ′s,|R|,|T[ | − 2Cs,|R|,|T[ |
√
y +O(y),

where Cs,|R|,|T[ | is given in the theorem and C
′
s,|R|,|T[ | = O(1) is another constant. An

application of Darboux’s method [GK82] immediately gives the asymptotic behavior
of the sth moments of the random variable Xsufl(D2n) stated in the theorem with
1
n+1

(
2n
n

) ∼ 4n√
πn

3
2
, n→∞, obtained by Stirling’s formula [GKP94, p. 454].

Corollary 4.3. For the random variable Xsufl(D2n), we obtain the mean value
µsufl(D2n) = E[X1

sufl(D2n)] and the variance σ
2
sufl(D2n) = E[X2

sufl(D2n)]−E[X1
sufl(D2n)]

2

for n→∞:

µsufl(D2n) ∼ 16|R|3(
4|R| − 1)(2|R| − |T[ |)2 ,

σ2sufl(D2n) ∼
16|R|3(16|R|2|T[ |+ 12|R|2 − 12|R||T[ |2 − 20|R||T[ |+ 7|T[ |2)(

4|R| − 1)2(2|R| − |T[ |)4 .

Remark 4.1. Now, we focus on µsufl(D2n). According to Theorem 4.2, we have
µsufl(D2n) ∼ C1,|R|,|T[ |, n→∞. A moment’s reflection shows that

C1,1,1 =
16

3
,

C1,|R|,1 =
16|R|3(

4|R| − 1)(2|R| − 1)2 = 1 +O
(
1

|R|
)
, |R| → ∞,

C1,|R|,|R| =
16|R|(
4|R| − 1) = 4 +O

(
1

|R|
)
, |R| → ∞,

hold. We further find with 1 ≤ |T[ | ≤ |R|
C1,|R|,|T[ | > C1,|R|+1,|T[ |,(4.11)
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Fig. 10. Two views of C1,|R|,|T[ | for 1 ≤ |T[ | ≤ |R| ≤ 10

Table 2
Exact and asymptotical values for µsufl(D2n) and σsufl(D2n) for relations with 1 ≤ |T[ | ≤ |R| ≤ 5.

∣∣T[ ∣∣
|R| ↓ n ↓ → 1 2 3 4 5

10 4.91176
100 µsufl(D2n) 5.28127
→∞ 5.33333

1
10 3.73227
100 σ2sufl(D2n) 5.08069
→∞ 5.33333

10 2.04358 4.08490
100 µsufl(D2n) 2.03273 4.51384
→∞ 2.03175 4.57143

2
10 1.79522 2.65130
100 σ2sufl(D2n) 1.77458 4.29137
→∞ 1.77375 4.57143

10 1.58401 2.39785 3.86900
100 µsufl(D2n) 1.57212 2.44870 4.30531
→∞ 1.57091 2.45455 4.36364

3
10 0.97310 1.94598 2.40665
100 σ2sufl(D2n) 0.93482 2.20012 4.07994
→∞ 0.93112 2.23140 4.36364

10 1.40361 1.88379 2.61626 3.76953
100 µsufl(D2n) 1.39417 1.89503 2.71870 4.20811
→∞ 1.39320 1.89630 2.73067 4.26667

4
10 0.65391 1.26514 2.02532 2.29851
100 σ2sufl(D2n) 0.62294 1.32720 2.49557 3.98183
→∞ 0.61983 1.33443 2.55590 4.26667

10 1.30795 1.64243 2.10626 2.76323 3.71230
100 µsufl(D2n) 1.30034 1.64449 2.14401 2.90690 4.15187
→∞ 1.29955 1.64474 2.14823 2.92398 4.21053

5
10 0.48929 0.91187 1.47111 2.06551 2.23756
100 σ2sufl(D2n) 0.46442 0.92860 1.64749 2.70233 3.92519
→∞ 0.46189 0.93057 1.66828 2.78718 4.21053

C1,|R|,|R| > C1,|R|+1,|R|+1,(4.12)

C1,|R|,|T[ | < C1,|R|,|T[ |+1.(4.13)
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Table 3
Exact and asymptotical values for µsufl(D2n) and σ2sufl(D2n) for relations with |R| ∈

{10, 20, 50, 100} and |T[ | ∈ {1, � |R|4 �,
|R|
2

, � 3|R|
4
�, |R|}.

∣∣T[ ∣∣
|R| ↓ n ↓ → 1

⌈ |R|
4

⌉ |R|
2

⌈
3|R|
4

⌉
|R|

10 1.14058 1.41839 1.79957 2.68132 3.60298
100 µsufl(D2n) 1.13684 1.41946 1.82102 2.83122 4.04378
→∞ 1.13644 1.41957 1.82336 2.84900 4.10256

10
10 0.21381 0.54447 1.01347 1.88943 2.12362
100 σ2sufl(D2n) 0.20198 0.55127 1.10638 2.53566 3.81660
→∞ 0.20075 0.55203 1.11687 2.62173 4.10256

10 1.06728 1.32106 1.77318 2.46325 3.55073
100 µsufl(D2n) 1.06545 1.32250 1.79762 2.57895 3.99182
→∞ 1.06526 1.32266 1.80028 2.59241 4.05063

20
10 0.09993 0.38904 0.93847 1.66690 2.07031
100 σ2sufl(D2n) 0.09427 0.39533 1.03942 2.16155 3.76452
→∞ 0.09368 0.39601 1.05080 2.22487 4.05063

10 1.02623 1.32422 1.75772 2.47605 3.52012
100 µsufl(D2n) 1.02551 1.32747 1.78386 2.60006 3.96128
→∞ 1.02543 1.32782 1.78671 2.61453 4.02010

50
10 0.03839 0.37172 0.89539 1.64838 2.03940
100 σ2sufl(D2n) 0.03620 0.38376 1.00071 2.17339 3.73395
→∞ 0.03597 0.38505 1.01257 2.24113 4.02010

10 1.01300 1.30572 1.75262 2.43480 3.51003
100 µsufl(D2n) 1.01264 1.30904 1.77932 2.55271 3.95120
→∞ 1.01261 1.30940 1.78223 2.56642 4.01003

100
10 0.01894 0.34303 0.88134 1.60367 2.02927
100 σ2sufl(D2n) 0.01785 0.35496 0.98804 2.10131 3.72387
→∞ 0.01774 0.35623 1.00006 2.16505 4.01003

Altogether, we obtain the following values for C1,|R|,|T[ | given in Table 1. Here, ↑, ↖,
and→ stand for strictly increasing sequences. Obviously, ↑, ↖, and→ correspond to
(4.11), (4.12), and (4.13), respectively.

Now, we take a look at two plots of C1,|R|,|T[ | for 1 ≤ |T[ | ≤ |R| ≤ 10 from two
different points of view, analytically continued to R.

By these plots, we get a better idea of the behavior of µsufl(D2n) for different
combinations of the two parameters |R| and |T[ |. In the left plot of Figure 10, we see
clearly the inequations (4.11) and (4.12); in the right plot we recognize (4.13).

Remark 4.2. In [Li96] the lexicographical generation of the Dyck language with
t types of brackets D t [Ha78, p. 313] has been analyzed. The results are presented in
[Ke98]. Following our definitions, D t = D with the relation R = {([1, ]1), ([2, ]2), . . . ,
([t, ]t)}, and thus D t2n = D2n. Obviously, D

t
2n is simply generated (see Remark 3.1).

The mean value and the variance of the random variable Xsufl(D
t
2n) describing the

number of symbols to be changed while generating the successor of a word were found
to be

µsufl(D
t
2n) ∼

16t

4t− 1 , n→∞, and σ2sufl(D
t
2n) ∼

16t

4t− 1 , n→∞.

For R = {([1, ]1), . . . , ([t, ]t)}, we obtain |R| =
∣∣T[ ∣∣ = t and so by Corollary 4.3

µsufl(D2n) ∼ 16t
4t−1 , n→∞, and σ2sufl(D2n) ∼ 16t

4t−1 , n→∞, evidently.
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In Tables 2 and 3, we give some exact and asymptotical values for µsufl(D2n) and
σ2sufl(D2n) for various relations R.

5. Lexicographical generation of labeled trees. It is well known that the
normal Dyck language (with only one pair of brackets) is a coding for unlabeled
trees such as ordered trees (with arbitrary degree of the nodes) and extended ordered
binary trees (each node is a leaf or has exactly two sons); see, e.g., [Za80]. Other
representations of the shape of trees are the integer sequences: level-representation,
leaf-representation, and leaf-level-representation (see, e.g., [Ke98]). In contrast to
the aforementioned representation of trees, the generalized Dyck language is a handy
coding not only for the shape but also for the labels at the nodes and/or edges of
several classes of trees. Some classes of labeled trees, coded by the generalized Dyck
language, are discussed in [Li00]. There, a tree is coded in one Dyck word and not in
two independent parts (one for the shape of the tree and another one for the labels).
Nevertheless, the structure of the tree and its labels can be determined in a very
simple way. Thus, with the algorithm presented here, we are able to generate classes
of labeled trees lexicographically.

6. Concluding remarks. In this paper, we have presented an algorithm that
generates all words of a generalized Dyck language lexicographically. The Dyck lan-
guage is defined by a relation R which describes the pairs of brackets that can be
used. We introduced a function that computes from one Dyck word the next one
according to the lexicographical order. For that purpose, no knowledge about the
words generated before is required.
Since the generalized Dyck language is a coding for several classes of labeled trees,

we can generate these classes of trees lexicographically with the algorithm presented
here.
Further, we found a condition for the generalized Dyck language to be simply

generated, which means that for every word it is possible to compute its successor
by reading only the suffix to be changed. We saw that this condition depends on
the relation R only and not on the length of the words. We introduced an algorithm
that computes whether the Dyck language—implied by the relation R—is simply
generated or not. The running time of that algorithm depends on the relation only,
so it has a constant amount of time with respect to the length of the words.
Following a general approach to the lexicographical generation of all words of a

formal language [Ke98], we computed the sth moments, s ≥ 1, of the random variable
describing the length of the suffix of a word to be changed. In particular, we pointed
out the mean value and the variance of the number of symbols to be changed in order
to generate the successor of a Dyck word.

Acknowledgment. The author would like to thank Prof. Rainer Kemp for his
idea of how to compute the sth moments of the random variable describing the length
of the suffix to be changed.
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Abstract. We propose a simple direct approach for computing the expected cost of random
partial match queries in random quadtrees. This approach gives not only an explicit expression for
the leading constant in the asymptotic approximation of the expected cost but also more terms in
the asymptotic expansion if desired.
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1. Introduction. Quadtrees, originally proposed by Finkel and Bentley [2], rep-
resent one of the simplest, most prototypical, and most studied data structures for
multidimensional data; see [13, 14]. We are concerned in this paper with the average-
case analysis of random partial match queries in random quadtrees, a problem origi-
nally analyzed in detail by Flajolet et al. [3] and then extended by several authors.

The probabilistic model is as follows. First, a sequence of n points is generated
uniformly and independently in [0, 1]d, where d ≥ 2. From this sequence, we con-
struct the (d-dimensional) quadtree and call it the random quadtree. (A quadtree of a
sequence of points is constructed by placing the first element at the root, which splits
the space [0, 1]d into 2d quadrants; the remaining points are compared to the root
and are directed to each quadrant depending on the location of each point; points
falling in each quadrant are constructed recursively as quadtrees.) Then we generate
s independent random variables, with the same Uniform[0, 1] distribution, which cor-
respond to the specified coordinates of the partial match query q, where 1 ≤ s < d;
the remaining d− s coordinates are “wild-cards.” We then perform the range search
of this query q in the random tree and denote the expected number of nodes visited

by Qn = Q
(d,s)
n . Note that, by symmetry, only the number of specified coordinates

matters; the order or positions of the specifications are immaterial.

Flajolet et al. [3] showed that Qn can be computed recursively as follows (see
Lemma 1 for a self-contained proof): Q0 = 0 and for n ≥ 1

Qn = 1 + 2d
∑

1≤k<n
πn,kQk,(1.1)
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where

πn,k =
1

n(n+ 1)

∑
k≤�d−1≤···≤�1<n

1

(�1 + 2) · · · (�s−1 + 2)
× 1

(�s+1 + 1) · · · (�d−1 + 1)
.

(1.2)

From this recurrence, they studied the differential system satisfied by the gener-
ating function Q(z) :=

∑
nQnz

n and then showed that

Qn ∼ hd,s n
α−1

for some constant hd,s, where 1 < α < 2 solves the indicial equation φ(z) = 0, with

φ(z) := zd−s(z + 1)s − 2d.

In particular, when d = 2, α = (
√
17− 1)/2 and

h2,1 =
Γ(2α)

2Γ3(α)
.

The calculation of the leading constants hd,s remains open for other values of (d, s).
The aim of this paper is to derive more precise asymptotic approximations for Qn

with an explicit expression for hd,s for all cases of (d, s).
Theorem 1. The expected number of nodes visited by performing the range search

of a random partial match query in a random quadtree of n nodes satisfies

Qn = hd,sn
α−1 +O(1 + n�(α2)−1),(1.3)

where

hd,s :=
1

(2d−s − 1)Γ(α)d−sΓ(α+ 1)s

∏
2≤j≤d

Γ(α− αj)

Γ(1− αj)

for 1 ≤ s < d and d ≥ 2, Γ is the Gamma function, and the αj’s are zeros of the
polynomial φ(z):

α = α1 > �(α2) ≥ · · · ≥ �(αd).

See Table 1.1 for numeric values of α and hd,s for d ≤ 6.
Our approach indeed gives a closed-form expression for Qn.
Proposition 1. For n ≥ 1, Qn satisfies

Qn =
∑

1≤k≤n

(
n

k

)
(−1)k+1 2

s(2− α1)k−1 · · · (2− αd)k−1

k!d−s(k + 1)!s
,(1.4)

where (x)k := x(x+ 1) · · · (x+ k − 1).
Once the exact formula (1.4) is known, the proof of (1.3) uses the integral rep-

resentation (or the Rice integral) for (1.4); the remaining analysis is more or less
standard (see Flajolet and Sedgewick [7]). The main step in deriving (1.3) is thus
the proof of (1.4). We propose a very simple elementary proof for (1.4) which uses
only the binomial transform of Qn and a differencing argument. Such a proof was
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Table 1.1
Numeric values of α = αd,s and hd,s for 2 ≤ d ≤ 6; observe that α2d,2s = αd,s.

d s α hd,s
2 1 1.5615 5281 1.5950 9909

3 1 1.7161 8865 1.1094 7781
3 2 1.3948 5867 1.7203 8918

4 1 1.7899 5097 0.9745 2299
4 2 1.5615 5281 1.1052 1638
4 3 1.3055 5316 1.7360 4197

5 1 1.8332 3029 0.9165 1089
5 2 1.6555 6266 0.9218 4703
5 3 1.4632 3881 1.0739 3189
5 4 1.2495 6226 1.7222 1994

6 1 1.8617 0559 0.8862 3369
6 2 1.7161 8865 0.8391 1604
6 3 1.5615 5281 0.8690 3393
6 4 1.3948 5867 1.0385 7434
6 5 1.2110 6870 1.7007 4787

originally motivated by a different approach based on the generating function, dif-
ferential equations, and Euler transforms (cf. Flajolet et al. [4]). We will sketch this
approach as well as an intuitive use of the Mellin–Barnes integral (see [12]) to give
more insight into the problem. Although these approaches are essentially the same
for Qn, the elementary approach is computationally and technically much simpler; we
will see later that it is also more general.

For other results on partial or exact match queries in random quadtrees, see
[1, 5, 10, 11]. On the other hand, explicit characterization of the leading constants of
partial match queries in random k-d trees (k being the dimension) is very different
from that in quadtrees and is much harder (see [6]); this problem is treated elsewhere.

2. Splitting probabilities and recurrence. We first prove the recurrence
(1.1), which is basic to our analysis.

Lemma 1. The expected cost Qn satisfies the recurrence (1.1) with πn,k given by
(1.2).

Proof. Let pn,k denote the probability that the query is conducted in the first
subtree (namely, its root is visited) whose size is k. By our independence assumptions
and by symmetry, we may assume that the first s coordinates of the query are specified.
It follows that Qn satisfies (1.1) with

πn,k = 2−spn,k

=

(
n− 1

k

)∫
(0,1)d

x1 · · ·xs(x1 · · ·xd)k(1− x1 · · ·xd)n−1−kdx,(2.1)

where dx := dx1 · · · dxd. By expanding the factor 1− x1 · · ·xd as

1− x1 · · ·xd = 1− x1 + (1− x2)x1 + · · ·+ (1− xd)xd−1 · · ·x1,

we then have (with the convention that jd+1 = 0)
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πn,k =

(
n− 1

k

) ∑
j1+···+jd=n−1−k

(
n− 1− k

j1, . . . , jd

)

×
∫

(0,1)d


 ∏

1≤i≤s
x
k+1+ji+1+···+jd
i (1− xi)

ji




×

 ∏
s<i≤d

x
k+ji+1+···+jd
i (1− xi)

ji


dx

=
∑

j1+···+jd=n−1−k

(n− 1)!

k!


 ∏

1≤i≤s

(k + 1 + ji+1 + · · ·+ jd)!

(k + 2 + ji + · · ·+ jd)!




×

 ∏
s<i≤d

(k + ji+1 + · · ·+ jd)!

(k + 1 + ji + · · ·+ jd)!




=
1

n(n+ 1)

∑
j1+···+jd=n−1−k

1

(k + 2 + j2 + · · ·+ jd) · · · (k + 2 + js + · · ·+ jd)

× 1

(k + 1 + js+1 + · · ·+ jd) · · · (k + 1 + jd)
,

which is easily seen to be identical to (1.2). By symmetry, we then obtain (1.1).
Corollary 1. The sequence πn,k satisfies

πn,k =
∑

k≤j<n

(
n− 1

j

)(
j

k

)
(−1)j+k(j + 1)−d+s(j + 2)−s.(2.2)

Proof. Expand the factor (1 − x1 · · ·xd)n−1−k in (2.1), and then evaluate the
integral term by term.

Note that, by (1.2) and (2.2), we have the identities

∑
k≤j<n

(
n− 1

j

)(
j

k

)
(−1)j+k(j + 1)−1(j + 2)−1 =

n− k

n(n+ 1)
,

∑
k≤j<n

(
n− 1

j

)(
j

k

)
(−1)j+k(j + 1)−2(j + 2)−1 =

Hn −Hk

n
− n− k

n(n+ 1)
,

∑
k≤j<n

(
n− 1

j

)(
j

k

)
(−1)j+k(j + 1)−1(j + 2)−2 =

(n+ 2)(n− k)

n(n+ 1)2

− (k + 1)(Hn −Hk)

n(n+ 1)
,

corresponding, respectively, to (d, s) = (2, 1), (3, 1), and (3, 2), whereHk :=
∑

1≤j≤k 1/j.
More identities can be derived by considering higher values of d.

3. Binomial transform. The crucial step in proving (1.4) is to consider the
binomial transform

Q�
n :=

∑
1≤k≤n

(
n

k

)
(−1)kQk (n ≥ 1),
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with Q�
0 := 0.

Lemma 2. The sequence Q�
n satisfies the first-order recurrence

Q�
n −Q�

n−1 = − 2d

nd−s(n+ 1)s
Q�
n−1 (n ≥ 2),(3.1)

with Q�
1 = −1.

Proof. By (1.1),

Q�
n −Q�

n−1 = 2d
∑

1≤m≤n

(
n− 1

m− 1

)
(−1)m

∑
1≤k<m

πm,kQk

= −2d
∑

1≤k<n
Qk

∑
k≤m<n

(
n− 1

m

)
(−1)mπm+1,k.

Now the inner sum can be simplified by using (2.1) as follows:

∑
k≤m<n

(
n− 1

m

)
(−1)mπm+1,k

=
∑

k≤m<n

(
n− 1

m

)
(−1)m

(
m

k

)∫
(0,1)d

x1 · · ·xs(x1 · · ·xd)k(1− x1 · · ·xd)m−kdx

=

(
n− 1

k

)
(−1)k

∑
0≤m≤n−1−k

(
n− 1− k

m

)
(−1)m

×
∫

(0,1)d
x1 · · ·xs(x1 · · ·xd)k(1− x1 · · ·xd)mdx

=

(
n− 1

k

)
(−1)k

∫
(0,1)d

x1 · · ·xs(x1 · · ·xd)n−1dx

=

(
n− 1

k

)
(−1)kn−d+s(n+ 1)−s,

which holds for n ≥ 2.
Proof of (1.4). From Lemma 2, it follows that, for n ≥ 2,

Q�
n = −

∏
2≤j≤n

(
1− 2d

(j + 1)sjd−s

)
= −

∏
2≤j≤n

φ(j)

(j + 1)sjd−s
,

which leads to (1.4) by the relation

Qn =
∑

1≤j≤n

(
n

j

)
(−1)jQ�

j .

This proves (1.4).

4. Generating function, differential equation, and Euler transform.
While binomial transform is shown to be the “Eureka!” to our elementary proof of
(1.4), it leaves open how such a transform was linked and applied to our problem. In
this section, we give an alternative approach to deriving the simple recurrence (3.1),
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relying on the generating function Q(z) :=
∑
nQnz

n and the Euler transform (see
[4])

Q�(z) =
1

1− z
Q

(
z

z − 1

)
.(4.1)

Note that the coefficients fn of a function f(z) and those f�n of its Euler transform
f�(z) satisfy the inversion pair




fn =
∑

0≤k≤n

(
n

k

)
(−1)kf�k ,

f�n =
∑

0≤k≤n

(
n

k

)
(−1)kfk.

(4.2)

We start by substituting the expression (2.2) into the sum
∑

1≤k<n πn,kQk, which
gives

∑
1≤k<n

πn,kQk =
∑

1≤k<n

∑
k≤j<n

(
n− 1

j

)(
j

k

)
(−1)j+k(j + 1)−d+s(j + 2)−sQk

=
∑

1≤j<n

(
n− 1

j

)
(−1)j(j + 1)−d+s(j + 2)−sQ�

j .

In terms of generating functions, the recurrence (1.1) then translates into (in view of
(4.2))

Q(z) =
z

1− z
+ 2d

z

1− z
S

(
z

z − 1

)
,(4.3)

where

S(w) =
∑
n≥1

(n+ 1)−d+s(n+ 2)−sQ�
nw

n.

Note that S(w) satisfies

ϑd−s
(
w−1ϑs

(
w2S(w)

))
= w

∑
n≥1

Q�
nw

n =
w

1− w
Q

(
w

w − 1

)
,(4.4)

where ϑ := w(d/dw).
Thus it is natural to consider the Euler transform. Taking z = w/(w − 1) and

then multiplying (4.3) by −w, we obtain

w(w − 1)Q�(w) = w2 + 2dw2S(w).

From (4.4), it follows that

ϑd−s
(
w−1ϑs (w(w − 1)Q�(w))

)− 2dwQ�(w) = 2sw.(4.5)

Taking the coefficients of wn on both sides yields (3.1).
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5. Differential equation and Mellin–Barnes integrals. More light can be
shed on “why the Euler transform really helps” by looking at yet another approach,
this one based on the differential equation derived by using the original form (1.2) for
πn,k used in [3].

The proof starts by showing that the generating function Q(z) satisfies, by (1.1)
and (1.2), the integro-differential equation

(
z(1− z)

d

dz
− 1

)
z

1− z
Q(z) =

z2

(1− z)2
+ 2dJs

z

1− z
Jd−s−1(zQ(z)),(5.1)

where 1 is the identity operator and

Jf(z) :=

∫ z

0

f(t)

t(1− t)
dt.

Introduce now the differential operator J := z(1 − z) d/dz. Then (5.1) can be
shown to be of the form

J d−s 1− z

z
J s
(

z

1− z
Q(z)− z2

(1− z)2

)
− 2dzQ(z) = 0.

An inspiring way to see how to further proceed from this differential equation is
to use the Mellin–Barnes integrals (see [12]) as follows. If a function is expressible
formally as an integral of the form

f(z) =
1

2πi

∫
C
f̃(v)zv(1− z)−v dv

for some contour C in the v-plane, then

J kf(z) = 1

2πi

∫
C
f̃(v)J k (zv(1− z)−v

)
dv

=
1

2πi

∫
C
f̃(v)vkzv(1− z)−v dv (k ≥ 1).(5.2)

Note that no such simplification is available if we use the usual Mellin–Barnes integrals

f(z) =
1

2πi

∫
C
f̃(v)(1− z)−v dv

or

f(z) =
1

2πi

∫
C
f̃(v)z−v dv.

The relation (5.2) suggests that it is natural to apply the Euler transform (4.1),
and we obtain again (4.5).

6. Asymptotics of Q(z). Since Qn is essentially the nth difference of Q�
n, we

have (see [7])

Qn =
1

2πi

∫ σ+i∞

σ−i∞

(−1)nn!
v(v − 1) · · · (v − n)

K(v + 1) dv,(6.1)
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Fig. 6.1. Distribution of the zeros of the polynomial z20−s(z + 1)s = 220 for 1 ≤ s ≤ 19 (top)
and for s = 1 (bottom).

where α1 − 1 < σ < 1 and

K(v) :=
2sΓ(v − α1) · · ·Γ(v − αd)

Γ(v)d−sΓ(v + 1)sΓ(2− α1) · · ·Γ(2− αd)
.

We list some properties of the zeros αj of φ(z) as follows; see Figure 6.1 for a plot of
the zeros of φ(z) when d = 20 and 1 ≤ s ≤ 19.

(i) All zeros lie within the ring 3/2 < |z + 1/2| < 5/2. This follows by noting
that

(|z| − 1/2)d ≤ |z − 1/2|d−s|z + 1/2|s ≤ (|z|+ 1/2)d

and by using the bounds |z| − 1/2 ≥ 2 and |z|+ 1/2 ≤ 2.
(ii) The zero with the largest real part is α. To see this, assume that αj = x+ iy

with x ≥ α and |y| > 0; then we have

| (x+ iy)
d−s

(x+ iy + 1)s| = (x2 + y2
)(d−s)/2 (

(x+ 1)2 + y2
)s/2

> xd−s(x+ 1)s ≥ αd−s(α+ 1)s = 2d.

(iii) If d is odd, then φ(z) has only one real zero α1; if d is even, then φ(z) has
an additional real root lying between −2 and −3.

(iv) All zeros of φ(z) are simple.
From these properties, it follows that the origin is a simple pole of the integrand

in (6.1) (with residue −(2d−s − 1)−1), and there are simple poles at αj − 1 − � for
1 ≤ j ≤ d and � ≥ 0. Other singularities are a pole of order d− s at −1 and a pole at
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−� of order d for � ≥ 2. In particular, the dominant singularity (the singularity with
the largest real part in the half-plane �(v) < 1) is a simple pole at v = α − 1. Also,
by the asymptotic estimate

|Γ(σ + it)| = O(|t|σ−1/2e−π|t|/2) (|t| → ∞)

for fixed σ, we can shift, by absolute convergence, the integration line in (6.1) to
�(v) = σ1, where

max{0,�(α2)− 1} < σ1 < α− 1,

and compute the residue encountered at v = α− 1, which gives

Qn =
(−1)nn!

(α− 1) · · · (α− n− 1)
lim
v→α(v − α)K(v) + En,

where

En :=
1

2πi

∫ σ1+i∞

σ1−i∞

(−1)nn!
v(v − 1) · · · (v − n)

K(v + 1) dv.

Observe that

(−1)nn!
(α− 1) · · · (α− n− 1)

lim
v→α(v − α)K(v)

=
2sΓ(n+ 1)

(α− 1)Γ(n+ 2− α)Γ(α)d−sΓ(α+ 1)s

∏
2≤j≤d

Γ(α− αj)

Γ(2− αj)

= hd,s
Γ(n+ 1)

Γ(n+ 2− α)
,

where we used the identity φ(1) = (1− α1) · · · (1− αd) = 2s − 2d.
By applying the asymptotic approximation

Γ(n+ 1)

Γ(n+ 2− α)
= nα−1

(
1 +O(n−1)

)
,

we deduce that

Qn = hd,sn
α−1

(
1 +O(n−1)

)
+ En.

By a similar argument, we have

En = O(1 + n�(α2)−1).

This proves (1.3).
Remarks. (i) If �(α2) < 1, then

Qn = hd,sn
α−1 − 1

2d−s − 1
+O(nα−2 + n�(α2)−1).(6.2)

In particular, �(α2) < 1 for all d ≤ 6 and 1 ≤ s < d. See Figure 6.2 for a plot of
(Qn + (2d−s − 1)−1)/nα−1 when d = 3.
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Fig. 6.2. Convergence of (Qn + (2d−s − 1)−1)/nα−1 to hd,s for (d, s) = (3, 1) (left) and (3, 2)
(right), where n = 5, . . . , 500.

(ii) If �(α2) = �(α3) > 1, then

Qn = hd,sn
α−1 + 2�(Yd,s(α2)n

i�(α2))n�(α2)−1 +O(nα−2 + 1 + n�(α4)−1),

where

Yd,s(z) =
2s

(z − 1)Γ(z)d−sΓ(z + 1)s

∏
αj =z

Γ(z − αj)

Γ(2− αj)
.

Note that hd,s = Yd,s(α). More terms can be obtained by refining the same analysis.
(iii) By (1.4), the generating function Q(z) can be expressed in terms of the

generalized hypergeometric function (see [8]) as

Q(z) =
z

(z − 1)2
d+1Fd


 2− α1, . . . , 2− αd, 1

3, . . . , 3︸ ︷︷ ︸
s times

, 2, . . . , 2︸ ︷︷ ︸
d−s times

∣∣∣∣∣∣
z

z − 1


 ,

where

d+1Fd

(
a1, . . . , ad+1

b1, . . . , bd

∣∣∣∣ z
)

:=
∑
n≥0

(a1)n · · · (ad+1)n
(b1)n · · · (bd)n · z

n

n!
.

7. General toll functions. The approaches we used can also be applied to a
more general recurrence of the form

fn = tn + 2d
∑

1≤k<n
πn,kfk, (n ≥ 1),(7.1)

where tn is some given sequence, and we may assume that f0 = 0. We obtain the
following first-order recurrence:

f�n − f�n−1 = t�n − t�n−1 −
2d

nd−s(n+ 1)s
f�n−1 (n ≥ 1),



914 HUA-HUAI CHERN AND HSIEN-KUEI HWANG

with t�0 = t0 := 0. Solving this recurrence yields

f�n =
∑

1≤k≤n

(
t�k − t�k−1

) ∏
k<j≤n

(
1− 2d

jd−s(j + 1)s

)
(n ≥ 1).(7.2)

By the binomial inversion formula (4.2), we obtain

fn =
∑

1≤k≤n
(t�k − t�k−1)

∑
k≤m≤n

(
n

m

)
(−1)m

∏
k<j≤m

(
1− 2d

jd−s(j + 1)s

)

for n ≥ 1, where t�n :=
∑

1≤k≤n
(
n
k

)
(−1)ktk.

From this explicit form, the asymptotics of fn can be derived if those of tn are
known.

8. Random full-specified queries. Our elementary approach is also useful
for simplifying the recurrence encountered in the analysis of full-specified queries in
random quadtrees (see [4, 5]):

fn = tn + 2d
∑

1≤k<n
'n,kfk (n ≥ 1),(8.1)

with f0 = t0 := 0, where

'n,k =

(
n− 1

k

)∫
(0,1)d

(x1 · · ·xd)k(1− x1 · · ·xd)n−1−kdx.

From this, we then easily derive the recurrence relation (see [4, 10])

f�n − f�n−1 = t�n − t�n−1 −
2d

nd
f�n−1 (n ≥ 1).

More generally, if

fn = tn +
∑

1≤k<n
βn,kfk (n ≥ 1),

where the sequence βn,k satisfies

∑
k≤m<n

(
n− 1

m

)
(−1)mβm+1,k = −

(
n− 1

k

)
(−1)kεn

for some sequence εn independent of k, then the recurrence for f�n can be “linearized,”

f�n − f�n−1 = t�n − t�n−1 − εnf
�
n−1,

and we obtain the same pattern as above. Note that by (4.2),

βn,k =
∑

k≤j<n

(
n− 1

j

)(
j

k

)
(−1)j+k+1εj+1;

cf. (2.2).
A trivial example is the quicksort recurrence for which βn,k = 2/n for 0 ≤ k < n.

Then εn = 2/n. For other examples for which the Euler transform is particularly
helpful, see [9] and the references therein.

This consideration also shows the limitation of the approach via the generating
function and differential equations, since εn may be very complicated in general, so
that the associated generating functions may not be reduced to simple solvable forms.
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Abstract. The hidden subgroup problem is the foundation of many quantum algorithms. An
efficient solution is known for the problem over abelian groups, employed by both Simon’s algorithm
and Shor’s factoring and discrete log algorithms. The nonabelian case, however, remains open; an
efficient solution would give rise to an efficient quantum algorithm for graph isomorphism. We fully
analyze a natural generalization of the algorithm for the abelian case to the nonabelian case and
show that the algorithm determines the normal core of a hidden subgroup: in particular, normal
subgroups can be determined. We show, however, that this immediate generalization of the abelian
algorithm does not efficiently solve graph isomorphism.
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1. Introduction. Peter Shor’s seminal article [27] presented efficient quantum
algorithms for computing integer factorizations and discrete logarithms, problems
thought to be intractable for classical computation models. A primary ingredient in
these algorithms is an efficient solution to the hidden subgroup problem for certain
abelian groups; indeed computing discrete logarithms directly reduces to the hidden
subgroup problem. Formally, the hidden subgroup problem is the following.

Definition 1.1. Hidden subgroup problem (HSP). Given an efficiently com-
putable function f : G → S, from a finite group G to a set S, that is constant on
(left) cosets of some subgroup H and takes distinct values on distinct cosets, determine
the subgroup H.

The general paradigm, which gives rise to efficient quantum algorithms for this
problem over abelian groups, is the following.

Experiment 1.1 (experiment for the abelian HSP).
1. Prepare the state

1√|G|
∑
g∈G
|g, f(g)〉

and measure the second register f(g). As f takes distinct values on the left cosets of
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H, the resulting state is

1√|H|
∑
h∈H
|ch, f(ch)〉,(1.1)

where c is an element of G selected uniformly at random.
2. Compute the Fourier transform of the “coset” state (1.1), resulting in

∑
ρ∈Ĝ

√
1

|G|

√
1

|H|
∑
h∈H

ρ(ch)|ρ〉,

where Ĝ denotes the set of homomorphisms {ρ : G→ C}.
3. Measure the first register and observe a homomorphism ρ.

A key fact about this procedure is that the resulting distribution over ρ is inde-
pendent of the coset cH arising after the first stage (as the support of the first register
in (1.1)). Thus, repetitions of this experiment result in the same distribution over Ĝ.
We note that by the principle of delayed measurement (see, e.g., [21]), measuring the
second register in the first step can in fact be delayed until the end of the experiment.

It is well known that an efficient solution to the HSP for the symmetric group Sn
gives, in particular, an efficient quantum algorithm for graph isomorphism. It is also
known how to efficiently compute the Fourier transform over many nonabelian groups,
most notably over Sn [2]. This article provides the first general understanding of the
HSP over nonabelian groups: We study a natural generalization of Experiment 1.1
to nonabelian groups and explicitly describe the resulting measurement distribution.
Specifically, we study the following experiment.

Experiment 1.2.
1. Prepare the state

∑
g∈G |g, f(g)〉 and measure the second register f(g). The

resulting state is
∑

h∈H |ch, f(ch)〉, where c is an element of G selected uniformly at
random. As above, this state is supported on a left coset cH of H.

2. Let Ĝ denote the set of irreducible representations of G and, for each ρ ∈ Ĝ,
fix a basis for the space on which ρ acts. Let dρ denote the dimension of ρ. Compute
the Fourier transform of the “coset” state, resulting in

∑
ρ∈Ĝ

dρ∑
i

dρ∑
j

√
dρ
|G|

√
1

|H|

(∑
h∈H

ρ(ch)

)

i,j

|ρ, i, j〉.

3. Measure the first register and observe a representation ρ.
A brief discussion of the representation theory of finite groups and the associated

Fourier transform appears in section 2. As before, we wish the resulting distribution
to be independent of the actual coset cH (and so depend only on the subgroup H).
This is guaranteed by measuring only the name of the representation ρ and leaving
the matrix indices (the values i and j) unobserved. The question we study is whether
this procedure retains enough information to determine H or, more precisely, whether
O(log(|G|)) samples of this distribution are enough to determine H with high prob-
ability. Our analysis of Experiment 1.2 depends on the following theorem, which
describes the distribution resulting from the measurements in the above experiment.

Theorem 1.2. Let H be a subgroup of a group G and let ρ be an irreducible
representation of G with dimension dρ. Let RH(ρ) denote the number of times that
the trivial representation appears in ρ when decomposed as a representation of H, and
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let IH(ρ) denote the number of times that ρ appears in the permutation representation
of G on the left cosets of H. Then the probability of measuring the representation ρ
in Experiment 1.2 when H is the hidden subgroup is

dρ ·RH(ρ) · |H|
|G| =

dρ · IH(ρ) · |H|
|G| .(1.2)

We first apply this to obtain the following positive result.
Theorem 1.3. Let H be an arbitrary subgroup of G, and let HG be the largest

subgroup of H that is normal in G. With high probability, HG is uniquely determined
by observing m = O(log |G|) independent trials of Experiment 1.2 when H is the
hidden subgroup.

When H is normal in G, H = HG, so that this algorithm determines H with high
probability. In fact, we shall see that if ρ1, . . . , ρm are the representations sampled by
m independent runs of Experiment 1.2 andm is sufficiently large, then HG = ∩i ker ρi
with high probability. (Here ker ρ denotes the kernel of the representation ρ.)

Our reconstruction result applies to any normal subgroup H of any group G
without reference to the specific way that the representations or the group elements
are expressed. We proceed at this level of abstraction because there is no known
canonical concise presentation for the representations (or, indeed, the elements) of a
finite group G. In the same vein, there is no general method for computing the Fourier
transform over an arbitrary group. Thus, while we cannot give a unified algorithm
for computing the Fourier transform or a set of generators for a hidden subgroup,
this does yield an algorithm for any group which admits (i) a succinct representation
over which the Fourier transform can be computed, and (ii) an efficient algorithm
for computing the intersection of a (polynomial-size) family of representation kernels.
See section 6, where the above approach is applied to solve the HSP for Hamiltonian
groups, where all subgroups are normal.

Note that it is known [8] that the HSP has polynomial (in log |G|) query com-
plexity for any subgroup, though the only known algorithm which achieves this uses
an exponential number of quantum measurements and, hence, does not give rise to
an efficient quantum algorithm for the HSP.

A corollary of Theorem 1.2 is that conjugate subgroups H1 and H2 (where H2 =
gH1g

−1 for some g ∈ G) produce exactly the same distribution over ρ and hence
cannot be distinguished by this process. In particular, the HSP cannot be solved
by Experiment 1.2 for a group G with two distinct conjugate subgroups H1, H2; the
symmetric group Sn is such a group.

In light of this, one may ask whether Experiment 1.2 can distinguish between a
coset cH of a nontrivial subgroup H and a coset cHe = {c} of the trivial subgroup
He = {e}, as even this would be enough for solving graph isomorphism. However,
even for this weaker problem we show (in section 5) the following.

Theorem 1.4. For the symmetric group Sn, there is a subgroup Hn so that
Experiment 1.2 does not distinguish (even information-theoretically) the case that the
hidden subgroup is the trivial subgroup from the case that the hidden subgroup is Hn.
(Specifically, the distributions induced on ρ in these two cases have exponentially small
distance in total variation.)

1.1. Related work. The HSP plays a central role in most known quantum algo-
rithms. Simon’s algorithm [28] implicitly involves distinguishing the trivial subgroup
from an order 2 subgroup over the group Z

n
2 . Furthermore, he has shown that a

classical probabilistic oracle machine would require exponentially many oracle queries
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to successfully distinguish the two cases with probability greater than 1/2. Shor [27]
then gave efficient algorithms for integer factorization and the discrete log problem.
In addition to solving a special case of the HSP, he also solved specific cases where
the size of the underlying group is not fully known. Other generalizations have been
studied by Boneh and Lipton [3], focusing on cases when a periodic function is not
fixed on a coset, and Hales and Hallgren [11, 12], who generalized the results for the
case when the underlying abelian group is unknown.

The efficient algorithm for the abelian HSP using the Fourier transform is well
known. Other methods have been applied to this same problem by Mosca and Ekert
[19]. Related problems have been studied by Kitaev [17], who gave an algorithm
using eigenvalue estimation for the abelian stabilizer problem, and Hallgren [13], who
gave polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem.

As for computing the Fourier transform, Kitaev showed how to efficiently compute
the Fourier transform over any abelian group. The fastest currently known (quantum)
algorithm for computing the Fourier transform over abelian groups was given by Hales
and Hallgren [12]. Shallow parallel circuits for approximating the Fourier transform
have been given by Cleve and Watrous in [4]. Beals [2] showed how to efficiently
compute the Fourier transform over the symmetric group Sn.

For general groups, Ettinger, Høyer, and Knill [8] have shown that the HSP
has polynomial query complexity, giving an algorithm that makes an exponential
number of measurements. On the other hand, if one considers arbitrary functions
rather than those that arise from HSPs, Aaronson [1] shows that it is not possible to
distinguish a 1-1 function from a 2-1 function, even with a quantum algorithm. Several
specific nonabelian groups have been studied in the context of the HSP. Ettinger and
Høyer [7] give a solution for the HSP over the (nonabelian) dihedral group Dn using
polynomially many measurements and exponential (classical) time. Rötteler and Beth
[24] and Püschel, Rötteler, and Beth [22] have shown similar results for other specific
classes of nonabelian groups. Ivanyos, Mangniez, and Santha [16] have shown how to
solve certain nonabelian HSP instances using a reduction to the abelian case.

Grigni et al. [10] independently showed that measuring the representation is not
enough for graph isomorphism, and they give stronger negative results. They establish
the same bounds even when the row of the representation (i.e., i in Experiment 1.2
above) is measured, and similar bounds if the column (j) is measured, under the as-
sumption that random bases are selected for each representation. They also show that
the problem can be solved when the intersection of the normalizers of all subgroups of
G is large. Other impossibility results have been given by Ettinger and Høyer [6, 5],
determining whether any measurement can distinguish certain subgroup states.

2. Representation theory background. To define the Fourier transform (over
a general group) we require the basic elements of representation theory, defined briefly
below. For complete accounts, consult the books of Serre [26] or Harris and Fulton
[15]. Throughout, we let Id denote the d× d identity matrix, dropping the subscript
when it can be inferred from context.

Linear representations. A representation ρ of a finite group G is a homomorphism
ρ : G → GL(V ), where V is a (finite-dimensional) vector space over C and
GL(V ) denotes the group of invertible linear operators on V . Fixing a basis
for V , each ρ(g) may be realized as a d × d matrix over C, where d is the
dimension of V . As ρ is a homomorphism, for any g, h ∈ G, ρ(gh) = ρ(g)ρ(h)
(this second product being matrix multiplication). The dimension dρ of the
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representation ρ is d, the dimension of V .
A representation provides a means for investigating a group by homomor-
phically mapping it into a family of matrices. With this realization, the
group operation is matrix multiplication, and tools from linear algebra can
be applied to study the group. We shall be concerned with complex-valued
functions on a group G; the representations of the group are relevant to this
study, as they give rise to the natural Fourier transform in this nonabelian
setting.
If ρ : G → GL(V ) is a representation and there is an inner product 〈· ·〉
defined on V , it is always possible to define a new inner product on V so
that each ρ(g) is unitary; we will always work under this assumption. In
particular, we shall always assume an orthonormal basis for V in which the
matrices corresponding to ρ(g) are unitary. We let ρ(g)ij denote the i, jth
entry of the matrix for ρ(g) in this fixed basis. (See, e.g., [26] for more
discussion.)
We say that two representations ρ1 : G→ GL(V ) and ρ2 : G→ GL(W ) of a
group G are isomorphic when there is a linear isomorphism of the two vector
spaces φ : V →W so that for all g ∈ G the diagram

V
ρ1(g)−−−−→ V

φ

� φ

�
W

ρ2(g)−−−−→ W

commutes. That is, for all g ∈ G, φρ1(g) = ρ2(g)φ. In this case, we write
ρ1 ∼= ρ2. Up to isomorphism, a finite group has a finite number of irreducible
representations; we let Ĝ denote this collection (of representations).

Irreducibility. We say that a subspace W ⊂ V is an invariant subspace of a rep-
resentation ρ : G → GL(V ) if ρ(g)W ⊆ W for all g ∈ G. The zero subspace
and the subspace V are always invariant. If no nonzero proper subspaces are
invariant, the representation is said to be irreducible.

Decomposition and reducibility. When a representation does have a nonzero
proper invariant subspace V1 � V , it is always possible to find a comple-
mentary subspace V2 (so that V = V1 ⊕ V2) that is also invariant. Since V1

is invariant, for each g ∈ G, ρ(g) defines a linear map ρ1(g) from V1 to V1 by
restriction, and it is not hard to see that ρ1 : G→ GL(V1) is in fact a repre-
sentation. Similarly, define ρ2(g) to be ρ(g) restricted to V2. As V = V1⊕V2,
the linear map ρ(g) is completely determined by ρ1(g) and ρ2(g), and in this
case we write ρ = ρ1 ⊕ ρ2. Repeating this process, any representation ρ may
be written ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk, where each ρi is irreducible. In partic-
ular, there is a basis in which every matrix ρ(g) is block diagonal, the ith
block corresponding to the ith representation in the decomposition. While
this decomposition is not, in general, unique, the number of times a given
irreducible representation appears in this decomposition (up to isomorphism)
depends only on the original representation ρ.

Characters. The character χρ : G → C of a representation ρ is defined by χρ(g) =
tr (ρ(g)), where tr (·) denotes the trace. This function is basis independent
and, as it turns out, completely determines the representation ρ. Elementary
properties of trace imply that characters are in fact class functions, depending
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only on the conjugacy class of their argument. (Specifically, for every g and
h we have χρ(hgh

−1) = χρ(g).)

Orthogonality. For two complex-valued functions f1 and f2 on a group G, there is
a natural inner product 〈f1 f2〉G given by 1

|G|
∑

g f1(g)f2(g)
∗. The matrix

entries of the representations of a group G are orthogonal according to this
inner product: let ρ and σ be two irreducible representations of G; then

〈ρ(·)ij σ(·)kl〉G =

{
0 if ρ �∼= σ,
δikδjl if ρ = σ.

(It is assumed here that when ρ = σ, the same basis has been selected for
each.) An immediate consequence is that if χσ is the character of a repre-
sentation σ and χρi is the character of an irreducible representation ρi, the
inner product 〈χσ χρi〉G is precisely the number of times the representation
ρi appears in the decomposition of σ. Note that since each ρi is unitary, we
may write

〈χρ χρi〉G =
1

|G|
∑
g∈G

χρ(g)χρi(g
−1).

Orthogonality of the second kind. Let C be a conjugacy class of G. As men-
tioned before, any character χρ is fixed on any conjugacy class C; we denote
this value by χρ(C). It holds that

∑
ρ∈Ĝ
|χρ(C)|2 = |G||C| .(2.1)

This is a special case of a more general principle, and we refer the interested
reader to Sagan’s excellent book [25, Theorem 1.10.3].

Restriction. A representation ρ of a group G is also automatically a representation
of any subgroup H. We refer to this restricted representation on H as ResHρ.
Note that even representations that are irreducible over G may be reducible
when restricted to H.

Induction. There is a dual notion, that of induction, whereby a representation of a
subgroup H < G may be induced to a representation of the whole group G.
We delay discussion of this to section 3.1.

We let ker(ρ) = {g ∈ G : ρ(g) = I} denote the kernel of a representation ρ. As
a representation ρ is a homomorphism, ker(ρ) is always a normal subgroup of G. In
fact, we shall see that any normal subgroup H of G can be written ∩ρ∈I ker(ρ) for
some set I of irreducible representations.

As mentioned above, any representation ρ of G may be decomposed into a di-
rect sum of irreducible representations. In fact, reiterating the comments above, if
ρ1, . . . , ρk are the irreducible representations of G and χσ is the character of the
representation σ, the value

ni = 〈χσ χρi〉G
is precisely the number of times the irreducible representation ρi appears in the de-
composition of the representation σ into irreducible representations. Specifically, af-
ter a unitary change of basis, the matrices σ(g) are block diagonal, consisting of n1
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copies of ρ1(g), followed by n2 copies of ρ2(g), etc. We denote this state of affairs by
σ = n1ρ1 ⊕ · · · ⊕ nkρk.

There are two representations which shall play a central role in our discussion:

The trivial representation. The trivial representation 1maps every group element
g ∈ G to the 1 × 1 identity matrix I. Recalling the orthogonality relations
above, the function g �→ 1 is orthogonal to ρ(·)ij for any nontrivial irreducible
representation ρ; this results in the identity∑

g

ρ(g) = 0 · I,(2.2)

which we record in anticipation of the proof of Theorem 1.2.

The regular representation. Fix a vector space V with an orthonormal basis con-
sisting of vectors eg, one for every element g ∈ G. The regular representation
regG : G → GL(V ) is defined by regG(g) : ex �→ egx for any x ∈ G. V has
dimension |G| and, with the basis above, regG(g) is a permutation matrix for
any g ∈ G.
An interesting fact about the regular representation is that it contains every
irreducible representation of G. In particular, if ρ1, . . . , ρk are the irreducible
representations of G with dimensions dρ1 , . . . , dρk , then

regG = dρ1
ρ1 ⊕ · · · ⊕ dρkρk,

so that the regular representation contains each irreducible representation ρ
exactly dρ times. Counting dimensions yields an important relation between
the dimensions dρ and the order of the group:

|G| =
∑
ρ∈Ĝ

d2ρ.(2.3)

The main tool in quantum polynomial-time algorithms is the Fourier transform.
When G is nonabelian, this takes the form described below.

Definition 2.1. Let f : G → C. The Fourier transform of f at the irreducible
representation ρ, denoted f̂(ρ), is the dρ × dρ matrix

f̂(ρ) =

√
dρ
|G|
∑
g∈G

f(g)ρ(g).

We refer to the collection of matrices 〈f̂(ρ)〉ρ∈Ĝ as the Fourier transform of f .

Thus f is mapped into |Ĝ| matrices of varying dimensions. The total number of
entries in these matrices is

∑
d2ρ = |G|, by (2.3) above. The Fourier transform is

linear in f ; with the constants used above (
√
dρ/ |G|) it is in fact unitary, taking the

|G| complex numbers 〈f(g)〉g∈G to |G| complex numbers organized into matrices.
A familiar case in computer science is when the group is cyclic of order n. Then

the linear transformation (i.e., the Fourier transform) is a Vandermonde matrix over
the nth roots of unity and the representations are all one-dimensional.

In the quantum setting we identify the state
∑

g∈G fg|g〉 with the function f :
G → C defined by f(g) = fg. In this notation,

∑
g∈G f(g)|g〉 is mapped under the

Fourier transform to ∑
ρ∈Ĝ

∑
1≤i,j≤dρ

f̂(ρ)i,j |ρ, i, j〉.
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We remind the reader that f̂(ρ)i,j is a complex number and that when the first portion

of this triple is measured, we observe ρ ∈ Ĝ with probability

∑
1≤i,j≤dρ

∣∣∣f̂(ρ)i,j
∣∣∣2 =

∥∥∥f̂(ρ)
∥∥∥2

2
,

where ‖A‖2 is the natural norm given by ‖A‖22 = tr A∗A.
Let f be the indicator function of a left coset of H in G; i.e., for some c ∈ G,

f(g) =

{
1√
|H| if g ∈ cH,

0 otherwise.

Our goal is to understand the Fourier transform of f , as this determines the probability
of observing ρ. Our choice to measure only the representation ρ (and not the matrix
indices) depends on the following key fact about the Fourier transform, also relevant
to the abelian solution.

Claim 2.1. The probability of observing ρ is independent of the coset.

Proof. We have

f̂(ρ) =

√
dρ
|G|

1

|H|
∑
h∈H

ρ(ch) =

√
dρ
|G|

1

|H|ρ(c)
∑
h∈H

ρ(h)

and, since ρ(c) is a unitary matrix,

∥∥∥f̂(ρ)
∥∥∥2

2
=
dρ
|G|

1

|H|

∥∥∥∥∥ρ(c)
∑
h∈H

ρ(h)

∥∥∥∥∥
2

2

=
dρ
|G|

1

|H|

∥∥∥∥∥
∑
h∈H

ρ(h)

∥∥∥∥∥
2

2

.

Given this we may assume, without loss of generality, that our function f is
1/
√|H| on the subgroup H itself, and zero elsewhere.

3. The probability of measuring ρ. The primary question is that of the
probability of observing a given ρ in Experiment 1.2. We have seen that this is
determined by the linear operator

∑
h∈H ρ(h) and begin by showing that 1

|H|
∑

h ρ(h)
is a projection.

Lemma 3.1. Let ρ be an irreducible representation of G. For every subgroup
H ≤ G, 1

|H|
∑

h∈H ρ(h) is a projection operator.

With the right basis, then, 1
|H|
∑

h∈H ρ(h) is diagonal, each diagonal entry being

either one or zero. The probability of observing a particular representation ρ is then
proportional to the rank of f̂(ρ).

Proof of Lemma 3.1. Given an irreducible representation ρ of G, we are interested
in the sum of the matrices ρ(h) over all h ∈ H. Since we evaluate only ρ on H,
we may instead consider ResHρ without changing anything. As mentioned before,
though ρ is irreducible (over G), ResHρ may not be irreducible over H. We may,
however, decompose ResHρ into irreducible representations over H, writing ResHρ =
σ1⊕· · ·⊕σt for a sequence σi of (possibly repeating) irreducible representations of H.
In an appropriate basis

∑
h∈H ρ(h) is then comprised of blocks, one corresponding to
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each σi. In particular, the matrix
∑

h∈H ρ(h) is

U




∑
h∈H σ1(h) 0 · · · 0

0
∑

h∈H σ2(h) · · · 0
...

...
. . .

...
0 0 · · · ∑

h∈H σt(h)


U†(3.1)

for some unitary transformation U and some irreducible representations σi of H (with
possible repetitions). (Here † denotes conjugate transpose.) Recalling (2.2), each
sum appearing on the diagonal is nonzero only when the irreducible representation is
trivial, in which case it is |H|.

As in the previous section, we let f : G → C be the function f(g) = 1√
|H| for

g ∈ H, and 0 otherwise. Then the probability of observing ρ in Experiment 1.2 is

∥∥∥(f̂(ρ))
∥∥∥2

2
=
dρ
|G|

1

|H|

∥∥∥∥∥
∑
h∈H

ρ(h)

∥∥∥∥∥
2

2

=
dρ
|G|

1

|H| |H|
2 〈χρ χ1〉H

=
|H|
|G| dρ 〈χρ χ1〉H .

We record this result in the following theorem.
Theorem 3.2. For every subgroup H ≤ G, the probability of measuring ρ in

Experiment 1.2, with hidden subgroup H, is

∥∥∥f̂(ρ)
∥∥∥2

2
=
|H|
|G| dρ 〈χρ χ1〉H .

Observe that this establishes the first part of Theorem 1.2, that the measurement
probability equals the first expression of (1.2). Another consequence of the theorem
is that the probability of observing a representation ρ depends only on the character
of ρ restricted to H. As the characters are class functions, conjugate subgroups (two
subgroups H1 and H2 are conjugate if H1 = gH2g

−1 for some g ∈ G) produce exactly
the same distribution over ρ; this rules out using the paradigm of Experiment 1.2 with
representations names alone to solve the HSP for any group containing a nonnormal
subgroup.

3.1. Induced representations. We have discussed the restriction of a repre-
sentation ρ of G to a subgroup H of G. There is a dual operation, induction, which
extends to all of G a representation ρ defined on a subgroup H. We will only need to
work with the representation induced from the trivial representation on H.

Let G/H
def
= {α1, . . . , αt} be a canonical transversal for H, so that G can be

written as the disjoint union α1H ∪ · · · ∪ αtH. Then the induced representation
IndGH1 : G → GL(W ) is defined over the vector space W that has one basis vector
e[αi] for each coset αiH. It is defined by linearly extending the rule

IndGH1(g) : e[αi] → e[αj ],

where αjH is the coset containing gαi. Observe that this representation is a permuta-
tion representation. As suggested by the notation, selection of a different transversal
results in an isomorphic representation.

Example 3.1. IndG{id}1 ∼= regG.
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We now invoke a standard representation-theoretic result to obtain Theorem 1.2.
Lemma 3.3 (a special case of Frobenius reciprocity; see [15, section 3.20]). Let

H < G and let ρ : G→ GL(V ) be an irreducible representation of G. Then

〈χ1 χρ〉H =
〈
χIndGH1 χρ

〉
G
.

Combining this with Theorem 3.2 establishes Theorem 1.2.
Proof of Theorem 1.2. Theorem 3.2 asserts that the probability of measuring the

representation ρ in Experiment 1.2 is |H||G| dρ 〈χ1 χρ〉H . By reciprocity, the number of

times that the trivial representation of H appears in ResHρ is the same as the number
of times that ρ appears in IndGH1, that is,

〈χ1 χρ〉H =
〈
χIndGH1 χρ

〉
G
.

Theorem 1.2 follows.

4. A positive result: Normal subgroups and the core ofH. In this section
we show that O(log |G|) queries suffice to reconstruct any normal subgroup of G. In
general, we show that for any subgroup H of G, the algorithm below outputs HG, the
core of H, which is the largest subgroup of H that is normal in G. As the product
H1H2 of two normal subgroups is again a normal subgroup of G, the core is well-
defined. (In fact, the core is precisely

⋂
g∈G gHg

−1.) The algorithm we study is the
following.

Algorithm 4.1. H is an arbitrary unknown subgroup of G; we are provided an
efficiently computable function f : G→ S, which is constant on (left) cosets of H and
takes distinct values on distinct cosets.

1. For i = 1, . . . , s = 4 log2 |G| , run Experiment 1.2 and measure an irreducible
representation, σi ∈ Ĝ.

2. Let Ni =
⋂i

j=1 kerσj.
3. Output N = Ns.

Recall that each kerσi is a normal subgroup of G, so that the resulting subgroup
N = Ns is normal. We will show that Algorithm 4.1 converges quickly to HG with
high probability in Theorem 4.3. We reduce the proof of this theorem to two lemmas,
described in the following section. Two different sets of proofs of these lemmas are
then presented in sections 4.2 and 4.3, one from the perspective of restricted represen-
tations, and one from the perspective of induced representations. The proof presented
in terms of induction shows that the theorem is a consequence of the standard proof of
the Mackey irreducibility criterion; for readers already acquainted with the criterion
this approach may be more mnemonic than the elementary approach by restriction.

4.1. The general structure. As discussed above, Theorem 4.3 is a consequence
of the following two lemmas.

Lemma 4.1. If the irreducible representation σ can be sampled by Experiment 1.2
(i.e., has nonzero probability), then HG ⊆ ker(σ).

This shows, in particular, that HG ✂Ns ✂ · · ·✂N1 ✂N0 = G.
Lemma 4.2. For any subgroup H ≤ G, if Ni �⊆ H, then Pr [Ni+1 = Ni] ≤ 1/2.
Before discussing the proofs of these lemmas, we show that together they imply

Theorem 4.3. Observe that for a representation ρ of G, if ker ρ ⊂ H, then we must
have ker ρ ⊂ HG, as ker ρ is normal.

Theorem 4.3. Algorithm 4.1 returns HG with probability at least 1−2e− log2|G|/8.
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Proof of Theorem 4.3. Let DH denote the probability distribution over irreducible
representations induced by Experiment 1.2. We now apply a standard martingale
bound (see [20]) to prove the theorem (based on Lemmas 4.2 and 4.1). Let σ1, . . . , σk
be independent random variables distributed according to DH with k = 4 log2 |G|.
Our goal is to show that

Pr[Ns �= HG] ≤ 2e− log2|G|/8.

For each i ∈ {1, . . . , k}, let Xi be the indicator random variable taking value 1 if
Ni ⊆ H or Ni+1 �= Ni, and zero otherwise. The random variables X1, . . . , Xk are not
necessarily independent, but by Lemma 4.2, Pr [Xi = 0 X1, . . . , Xi−1] ≤ 1

2 , and we
may apply a martingale bound. As the variables take values in the set {0, 1}, the sum∑

iXi satisfies the Lipschitz condition (with constant 1), and we can apply Azuma’s
inequality to conclude that

∑
iXi is unlikely to deviate far from its expected value,

which is at least k
2 . In particular, we have Pr

[|∑iXi − k
2 | ≥ λ

] ≤ 2e−λ
2/2k, so with

λ = log2(|G|) we have Pr
[∑k−1

i=0 Xi ≤ log2(|G|)
] ≤ 2e− log2(|G|)/8.

Therefore, with probability at least 1− 2e− log2(|G|)/8 we have Ns ⊆ H. As Ns is
normal in G, it must be the case that Ns ⊆ HG. From Lemma 4.1, HG ⊆ Ns; hence
Ns = H

G, and the algorithm converges to the correct subgroup.

4.2. Restricted representations. We begin by proving Lemmas 4.1 and 4.2
from the perspective of restricted representations.

By Claim 2.1, we may assume that f is distributed over H itself without loss of
generality. In this case, Lemma 3.1 implies that, up to a scalar multiple, each f̂(σ) is

a projection. We begin by showing that when the subgroup H is normal, f̂(σ) is in
fact a multiple of the identity, and is nonzero precisely when H is in the kernel of σ.

Lemma 4.4. Let H ✂ G, ρ ∈ Ĝ have dimension dρ, and let f : G → C be the
function

f(g) =

{
1√
H

if g ∈ H,
0 otherwise.

Then f̂(ρ) = λ · I, where

λ =

{√ |H|
|G| dρ if H ⊆ ker ρ,

0 otherwise.

Proof. The lemma follows from an application of Schur’s lemma (see, e.g., [26]).
If H ⊆ ker ρ, then the lemma follows from the discussion in the previous section.

Suppose H �⊆ ker ρ. We will show that f̂(ρ) must be the zero map. By Lemma 3.1
we can decompose V as Wf

⊕
Wa, where 1

|H|
∑

h∈H ρ(h) pointwise fixes Wf and

annihilates Wa. Our goal is to see that Wf = {0}. Observe that since H �⊆ ker ρ,
there is some h0 ∈ H for which ρ(h0) is not the identity operator and, considering
that each ρ(h) is unitary, their average cannot be the identity operator. (Specifically,
consider a unit vector v for which ρ(h0)v �= v; note now that the average over h of
ρ(h)v can have unit length only if for all h1, ρ(h0)v = ρ(h1)v �= v.) Hence Wf �= V .

Assume that Wf �= {0}. Since ρ is irreducible over G and Wf �= V , there is a
vector w′f ∈Wf and g ∈ G such that ρ(g)w′f �∈Wf ; we may write ρ(g)w′f = wf +wa,
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with wa ∈Wa, wf ∈Wf , and wa �= 0. As 1
|H|
∑

h∈H ρ(h) pointwise fixes Wf we have

wf + wa = ρ(g)w
′
f = ρ(g)

1

|H|
∑
h∈H

ρ(h)w′f

∗
=

1

|H|
∑
h∈H

ρ(h)ρ(g)w′f =
1

|H|
∑
h∈H

ρ(h)(wf + wa) = wf ,

where equality
∗
= follows since H is normal in G. This is a contradiction; hence

Wf = {0}, as desired.
We will now prove Lemma 4.1, which states that if the irreducible representation

σ can be sampled by Experiment 1.2, then HG ⊆ ker(σ).
Proof of Lemma 4.1. Let C be a set of coset representatives for HG in H. We

have

∑
h∈H

ρ(h) =

(∑
c∈C

ρ(c)

)( ∑
h∈HG

ρ(h)

)
,

so by Lemma 4.4 we only observe ρ if
∑

h∈HG ρ(h) is a multiple of the identity (in
which case HG ⊆ ker ρ).

Before proving Lemma 4.2, which is for general subgroups, we will show how the
statement can be proved for normal subgroups.

Lemma 4.5. If H ✂G and Ni �= H, then Pr [Ni+1 = Ni] ≤ 1/2.
Proof. By Lemma 4.4, Theorem 3.2, and (2.3) we have

Pr [Ni ⊆ ker ρi+1] =
∑

ρ∈ĜNi⊆ker ρ

Pr [Observe ρ]

=
∑

ρ∈ĜNi⊆ker ρ

|H|
|G| d

2
ρ

=
|H|
|G|

∑
ρ∈Ĝ/Ni

d2ρ =
|H|
|G|
|G|
|Ni| ≤

1

2
,

where changing the sum follows from the fact that representations of G that map Ni

to the identity can be identified with representations of G/Ni.
We proceed to prove Lemma 4.2, which states that for any H ≤ G, if Ni �⊆ H,

then Pr [Ni+1 = Ni] ≤ 1/2.
Proof of Lemma 4.2. This proof is due to Umesh Vazirani. Let N = ∩ij=1 kerσj

be the intersection of the kernels up to step i. For an irreducible representation ρ,
let rρ be the rank of f̂(ρ), i.e., the number of times the trivial representation of H
appears in ρ. When N �⊆ H, we will show that the probability of N being contained
in the kernel of the next representation we measure is at most 1/2 by showing that

∑
ρ:N⊆ker ρ

|H|
|G| dρrρ ≤

|N ∩H|
|N | ,

which is at most 1/2 when N �⊆ H. Now, if the hidden subgroup had been HN ,
Theorem 3.2 would imply

∑
ρ:ρ∈Ĝ

|HN |
|G| dρr

′
ρ = 1,
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where r′ρ is the number of times the trivial representation of HN appears in ρ. Note
that r′ρ = rρ when N ⊆ ker ρ, since

|H ∩N |
∑
l∈HN

ρ(l) =

(∑
h∈H

ρ(h)

)(∑
n∈N

ρ(n)

)
,

and ρ(n) is the identity. Since |HN | · |H ∩N | = |H| · |N |, we have that
∑

ρ:N⊆ker ρ

|H|
|G| dρrρ =

∑
ρ:N⊆ker ρ

|H|
|G| dρr

′
ρ ≤

∑
ρ∈Ĝ

|H|
|G| dρr

′
ρ ≤
|H ∩N |
|N | ,

as desired.

4.3. Induced representations. We now reprove these two lemmas from the
perspective of induced representations. We begin by computing the kernel of the
representation IndGH1.

Lemma 4.6. ker(IndGH1) = H
G.

Proof. We begin with the forward inclusion. Indeed, if x ∈ ker(IndGH1), then
IndGH1(x) is the identity mapping, i.e., for every g ∈ G, IndGH1(x) : [gH] → [gH], or
equivalently, [xgH] = [gH]. In particular, for g = e we get xH = H, and therefore x ∈
H. Now, as ker(IndGH1) is normal and is contained in H we must have ker(IndGH1) ⊆
HG.

For the reverse inclusion, suppose that x ∈ HG. Then for any g ∈ G, there is
some x′ ∈ HG ⊆ H such that xg = gx′. Therefore, IndGH1(x)[gH] = [xgH] =
[gx′H] = [gH], and we see that IndGH1(x) is the identity mapping. Hence, x ∈
ker(IndGH1).

Now, by Theorem 1.2, any σ that can be sampled by Experiment 1.2 appears
in IndGH1, and we therefore conclude that HG ⊆ ker(IndGH1) ⊆ ker(σ); Lemma 4.1
follows. This also gives a simple decomposition of IndGH1 when H is normal.

Lemma 4.7. Let N ✂G. Then IndGN1 =
⊕

ρ∈Ĝ,N⊆ker(ρ) dρρ.

Proof. Suppose IndGN1 =
⊕

ρ∈Ĝ nρρ. We have

nρ =
〈
χIndGN1 χρ

〉
G

= 〈χ1 χρ〉N =
1

|N |
∑
x∈N

χρ(x) = dρ,

where the second equality is by Frobenius reciprocity, and the last one is because
N ⊆ ker ρ. Note that nρ = 0 if N �⊂ ker ρ.

We now prove Lemma 4.2.
Proof of Lemma 4.2. Denote N = Ni. For ρ ∈ Ĝ, let mρ = 〈χρ χ1〉H . We know

that

Pr
σ∈DH

[Ni ⊆ kerσ] =
|H|
|G|

∑
ρ∈Ĝ

Ni⊆ker(ρ)

mρdρ,

IndGH1 =
⊕
ρ∈Ĝ

mρρ,

IndGN1 =
⊕
ρ∈Ĝ

N⊆ker(ρ)

dρρ,
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where the first equation is by Theorem 3.2, the second because mρ = 〈χρ χ1〉H =
〈χIndGH1|χρ〉G by Frobenius reciprocity (Lemma 3.3), and the last one by Lemma 4.7.

We observe that〈
χIndGH1 χIndGN1

〉
G
=

∑
ρ∈Ĝ

N⊆ker(ρ)

dρmρ 〈χρ χρ〉G =
∑
ρ∈Ĝ

N⊆ker(ρ)

dρmρ

and thus is proportional to the probability that Ni ⊆ ker(σi). We complete the
proof with an argument similar to that given in Serre [26] for the proof of Mackey’s
irreducibility criterion. By Frobenius reciprocity,

〈
χIndGH1 χIndGN1

〉
G
=
〈
χ1 χResH IndGN1

〉
H
.

Decomposing the restricted induction (see [26, section 7.3]) we have

〈
χIndGH1 χIndGN1

〉
G
=

⊕
g∈H\G/N

〈
χ1 χIndHNg1

〉
H
,

where Ng = H ∩ gNg−1 is a subgroup of H, and g runs over all representatives of the
double cosets H \ g/N of G. Using Frobenius reciprocity again we see that

〈
χIndGH1 χIndGN1

〉
G
=

⊕
g∈H\G/N

〈χ1 χ1〉Ng

= |H \G/N |.

However, N is normal in G. Hence for any g ∈ G, H\g/N = HNg. Furthermore, asH
is a group and N is normal in G, HN is also a group. Hence, |H \G/N | = |G|/|HN |.
Thus,

Pr
σ∈DH

[Ni ⊆ kerσ] =
|H|
|G|

∑
ρ∈Ĝ

Ni⊆ker(ρ)

mρdρ =
|H|
|G|

|G|
|HN | =

|H|
|HN | ,

which is at most 1/2 when N �⊆ H.

5. A negative result: Determining triviality in Sn. In this section we show
that a well-known reduction of graph isomorphism for finding a hidden subgroup over
Sn cannot work using Experiment 1.2.

Graph automorphism is the problem of determining whether a graph G has a
nontrivial automorphism and is easier than graph isomorphism [18]. A natural special
case occurs when the graph G consists of two disjoint connected rigid graphs G1, G2

(i.e., Aut(G1) = Aut(G2) = {e}). In this case there are two possibilities for the
automorphism group of G.

Claim 5.1. Let the graph G be the disjoint union of the two connected rigid
graphs G1 and G2 and let n denote the number of vertices of G. Then

1. if G1 �≈ G2, then Aut(G) = {e}, and
2. if G1 ≈ G2, then Aut(G) = {e, σ}, where σ ∈ Sn is a permutation with n/2

disjoint 2-cycles.
Proof. For the first part notice that any automorphism maps a connected com-

ponent onto a connect component. In our case we have two connected components
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G1 and G2. However, G1 and G2 are not isomorphic and have no nontrivial automor-
phisms.

For the second part, let σ reflect an automorphism between G1 and G2. Now,
suppose there was another nontrivial automorphism τ . Then στ is also an auto-
morphism, and στ maps the connected component of G1 onto G1, and G2 onto G2.
As G1 and G2 have no nontrivial automorphisms it follows that στ = 1, τ = σ−1

= σ.
Thus, if one knows how to solve the HSP for Sn, or if one knows how to distinguish

between cosets of a trivial subgroup and the cosets of a nontrivial subgroup, one can
give an efficient quantum algorithm for graph automorphism. In particular, one might
attempt to reconstruct H = Aut(G) based on the result of the following experiment.

Experiment 5.1. Let G be a graph such that either Aut(G) = {e} or Aut(G) =
{e, σ}.

1. Compute Σπ∈Sn |π, π(G)〉 and measure the second register π(G). The result-
ing state is Σh∈H |ch, f(ch)〉 for some coset cH of H. Furthermore, c is uniformly
distributed over G.

2. Compute the Fourier transform of the coset state, which is

∑
ρ∈Ĝ

√
dρ
|G|

√
1

|H|
(∑

h∈H
ρ(ch)

)
i,j

|ρ, i, j〉.

3. Measure the first register and observe a representation ρ.
We show that even for this particular case of graph isomorphism (and graph

automorphism) the experiment fails to distinguish nonisomorphic pairs of graphs from
isomorphic pairs of graphs; Theorem 1.4 follows.

Theorem 5.1. Let G1 and G2 be two rigid, connected graphs with n vertices.
Let DN (ρ) be the probability of sampling ρ in Experiment 5.1 when G1 �≈ G2, and let
DI(ρ) be the probability when G1 ≈ G2. Then |DN −DI |1 ≤ 2−Ω(n).

Proof. We present the proof from [10], which simplifies the proof of [14]. When
G1 �≈ G2, H = {e}, so DN (ρ) = d

2
ρ/n! by Theorem 3.2. When G1 ≈ G2, and G1 and

G2 are both connected and rigid, H = {e, τ}. By Theorem 3.2,

DI(ρ) =
|H|
|G| dρ 〈χ1 χρ〉H .

The subgroup H has only two elements, e and τ ; hence

〈χ1 χρ〉H =
1

2
(χρ(e) + χρ(τ)) =

1

2
(dρ + χρ(τ)).

That is, DI(ρ) =
dρ
n! (dρ + χρ(τ)), and so

∑
ρ

|DI(ρ)−DN (ρ)| = 1

n!

∑
ρ

dρ|χρ(τ)|

≤ 1

n!

√∑
ρ

d2ρ

√∑
ρ

|χρ(τ)|2 = 1√
n!

√∑
ρ

|χρ(τ)|2

by the Cauchy–Schwarz inequality and (2.3).
By (2.1),

∑
ρ∈Ĝ |χρ(τ)|2 = |G|/|{τ}|, where {τ} is the conjugacy class of τ .

However, two permutations share the same conjugacy class if and only if they have
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the same cycle decomposition. In our case τ has cycle decomposition into n/2 pairs.
Thus

|{τ}| =
(

n
n/2

)
(n2 )!

2n/2
,

where
(

n
n/2

)
is the number of possibilities for choosing the first element in each of the

n/2 pairs, (n2 )! is the number of possibilities for arranging the remaining n/2 elements

in the pairs, and each ordering is counted exactly 2n/2 times.
Altogether,

∑
ρ

|DI(ρ)−DN (ρ)| ≤ 1√
n!

√
n!

|{τ}| =

√
2(n/2)(n/2)!

n!
≤ 2−Ω(n),

as desired.

6. Finding hidden subgroups in Hamiltonian groups. A group G is Hamil-
tonian if all subgroups are normal. In light of Theorem 3.2, a hidden subgroup of a
Hamiltonian group G is determined with high probability by O(log |G|) samples of the
distribution induced by Experiment 1.2. In this section we show that for Hamiltonian
groups, generators for the hidden subgroup can be computed efficiently from these
samples. As the Fourier transform over such groups can be efficiently computed, this
gives an efficient quantum algorithm for the HSP over Hamiltonian groups.

All abelian groups are Hamiltonian; the only nonabelian Hamiltonian groups are
of the form

G ∼= Z
k
2 ×B ×Q,

where Q = {±1,±i,±j,±k} is the quaternion group and B is an abelian group with
exponent b coprime with 2. For a detailed description of such groups, see Rotman’s
excellent book [23].

We begin by briefly discussing the case when G is abelian. If G is simply the
cyclic group Zn, the representations are the functions ρs : z �→ exp(2πisz/n), and
the reconstruction algorithm, when it succeeds, yields a collection {ρs|s ∈ S} with
the property that H = ∩s∈S ker ρs. Observe that ρs(h)ρt(h) = ρs+tmodn(h) and that
ρs(h) = 1 implies ρstmodn(h) = 1 for all t ∈ Z. Hence ∩s ker ρs = ker ρd, where d
is the greatest common divisor of n and the elements in S. Then H is the cyclic
subgroup of Zn generated by n/d.

In general, an abelian group G is isomorphic to a direct sum Zn1 ⊕· · ·⊕Znk , and
we assume that this decomposition is known. The irreducible representations are the
functions ρs1,... ,sk(z1, . . . , zk) =

∏k
j=1 exp(2πisjzj/nj), and, as above, we begin with

a collection {ρ s | 3s = (s1, . . . , sk) ⊂ S} so that H = ∩S ker ρ s. Then

(h1, . . . , hk) ∈ H ⇔ for all 3s ∈ S, exp

∑

j

2πisjhj
nj


 = 1

⇔ for all 3s ∈ S,
∑
j

sjqjhj ≡ 0 mod N,(6.1)

where N is the least common multiple of the nj , and qj = N/nj . For convenience,
we treat the family of equalities appearing in line (6.1) as a system of equations over
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the ring ZN ; then a solution 3h of this system corresponds to the element (h1 mod
n1, . . . , hk mod nk) of H. Collect these equations together into a matrix R. Though
ZN may not be a field, it is easy to check that a matrix over ZN may be diagonalized
in polynomial time with the following two operations:

• for some pair i �= j, swap row (column) i with row (column) j;
• for some pair i �= j, add a multiple of row (column) i to row (column) j.

This results in a system D · F · 3h = 30, where D is diagonal and F is invertible. Any
vector 3h′ for which D3h′ = 30 may then be transformed into a solution 3h of the original
equation and, moreover, if 3h′ is selected at random in the null space of D, then the
resulting 3h′ will give rise to a random element of H. Selection of O(log |G|) random
elements in this way yields a generating set for H with high probability.

Finally, consider a Hamiltonian group of the form G = Z
k
2×B×Q. An irreducible

representation ρ of G is a tensor product ζ ⊗ β⊗ κ, where ζ ∈ Ẑk
2 , β ∈ B̂, and κ ∈ Q̂.

(As Z
k
2 and B are abelian, in this case the tensor product may be replaced with the

regular product in C.)
We briefly review the representation theory of the quaternion group. Q has five

irreducible representations: four one-dimensional and one two-dimensional. The one-
dimensional representations arise as the irreducible representations of the abelian
quotient Q/{±1} ∼= Z2 ⊕ Z2. The two-dimensional representation τ realizes Q as a
subgroup of SU2, where

τ(1) =

[
1 0
0 1

]
, τ(i) =

[
0 1
−1 0

]
,

τ(j) =

[
i 0
0 −i

]
, τ(k) =

[
0 −i
−i 0

]
,

and τ(−q) = −τ(q) for each q ∈ Q.
As above, we assume that we have a set of samples S so that

H =
⋂

ζ⊗β⊗κ∈S
ker(ζ ⊗ β ⊗ κ).

It is sufficient to show that for a given element q ∈ Q, one can generate a collection of
random elements of H ∩ Z

k
2 ×B × {q}, for if these collections are large enough, then

their union yields a set of generators for H with high probability.
Fixing an element q ∈ Q, consider a specific sample ζ ⊗ β ⊗ κ. There are two

cases to consider:
• If κ is one-dimensional, the condition ζ(z)⊗β(b)⊗κ(q) = 1 may be interpreted
as an equation over ZN , where N = b2k+1, as in the abelian case above. (Note
that κ(q) = ±1 contributes a constant to the equation; as 2 | N , this constant
can be suitably represented as exp(2πit/N) for t = N/2.)
• If κ is two-dimensional, the condition

ζ(z)⊗ β(b)⊗ κ(q) =
[
1 0
0 1

]

cannot be satisfied unless q = ±1. When q = ±1, this may be interpreted as
a pair of equations over ZN , where N = 2k+1b, each equation corresponding
to a diagonal entry of the matrix. (Note that κ(q) contributes a constant ±1
to each equation; as 2 | N , these constants can be suitably represented as
exp(2iπt/N) for t = N/2.)
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Now the solution proceeds as in the abelian case. For each q ∈ Q, the above proce-
dure is used to compute c log |G| random elements of H ∩ Z

n
2 × B × {q} (unless this

intersection is empty). If c is chosen appropriately, the union of these sets generates
H with high probability.
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[24] M. Rötteler and T. Beth, Polynomial-Time Solution to the Hidden Subgroup Problem for
a Class of Non-Abelian Groups, Los Alamos preprint, quant-ph/9812070, 1998; available
online from http://lanl.arxiv.org/abs/quant-ph/9812070.

[25] B. E. Sagan, The Symmetric Group, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1991.
[26] J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
[27] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM J. Comput., 26 (1997), pp. 1484–1509.
[28] D. R. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), pp. 1474–

1483.



MODELS FOR RANDOM CONSTRAINT SATISFACTION
PROBLEMS∗

MICHAEL MOLLOY†

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 4, pp. 935–949

Abstract. We introduce a class of models for random constraint satisfaction problems. This
class includes and generalizes many previously studied models. We characterize those models from
our class which are asymptotically interesting in the sense that the limiting probability of satisfiability
changes significantly as the number of constraints increases. We also discuss models which exhibit a
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Introduction. In this paper, we introduce a new general model for generating
random constraint satisfaction problems (CSPs). We will generate problems on n
variables, where each variable has a domain of d ≥ 2 permissible values, and each
constraint is on k variables for some fixed k ≥ 2. For the sake of simplicity, we
assume that each variable has the same domain, D = {δ1, . . . , δk}, although this
model can be easily modified to deal with more general situations. All asymptotics
will be as n → ∞, and so d, k are considered to be constants. Thus, typically n will
be much larger than either d or k.

This model generalizes many previously studied models, including virtually all
well-studied models of CSPs, random instances of k-SAT, and CSPs which are equiv-
alent to determining whether a random graph is k-colorable. Using straightforward
methods to simulate constraints of size r by constraints of size t for any t > r, this
model also generalizes models with mixed constraint sizes, such as the (2 + p)-SAT
model studied in [4].

Given a k-tuple of variables, (x1, . . . , xk), a restriction on (x1, . . . , xk) is a k-tuple
of values R = (δ1, . . . , δk), where each δi ∈ D. For each k-tuple (x1, . . . , xk), the set
of restrictions on that k-tuple is called a constraint. The empty constraint is the
constraint which contains no restrictions. We say that an assignment of values to the
variables of a constraint C satisfies C if that assignment is not one of the restrictions
in C. An assignment of values to all variables in a CSP satisfies that CSP if every
constraint is simultaneously satisfied. The constraint hypergraph of a CSP is the k-
uniform hypergraph whose vertices correspond to the variables and whose hyperedges
correspond to the k-tuples of variables which have constraints.

In studying large random CSPs one of the most natural questions is to determine
the likelihood of the problem being satisfiable. For example, we might show that
for some settings of the parameters in the model, a random CSP is almost surely1

(a.s.) satisfiable, while for other settings it is a.s. nonsatisfiable. Of particular interest

∗Received by the editors February 29, 2000; accepted for publication (in revised form) March 13,
2003; published electronically June 10, 2003. A preliminary version of this paper appeared in Pro-
ceedings of the STOC 2002 Conference, Montreal, Canada, 2002.
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1A random CSP almost surely satisfies property P if limn→∞Pr(P ) = 1.

935



936 MICHAEL MOLLOY

are situations where we have a threshold behavior, such as a situation where, as we
modify the number of constraints, a random CSP moves from being a.s. satisfiable to
a.s. not satisfiable.

Some natural and important models are known to have a threshold behavior,
most notably random instances of k-SAT. This fact is probably what led others to
assume that the same is true of many models of random CSP. Unfortunately, and
somewhat surprisingly, such assumptions often turned out to be invalid, as discussed
below. Thus, a mathematically rigorous examination of the threshold behavior of
models of random CSP is necessary. Such a study is the goal of the present paper.

Until recently, the most commonly used random CSP models were the following:

Model A1. Specify M,p (typically M = cn for some constant c and 0 < p ≤ 1
is independent of n). First choose a random k-uniform hypergraph on n vertices
with M hyperedges (where each such hypergraph is equally likely), which will be
the constraint hypergraph of our problem. Next, for each hyperedge e, we choose a
constraint on the k variables of e as follows: Each of the dk possible restrictions is
chosen to be present with probability p (where each choice is, of course, independent
of the corresponding choices for other potential constraints).

Model A2. Specify M,m (typically M = cn for some constant c and 0 < p ≤ 1
is independent of n). Choose the constraint hypergraph as in Model A1. For each
hyperedge e, we choose a constraint with exactly m restrictions uniformly at random

from the set of
(
dk

m

)
such constraints.

Remark 1. Alternatively, we could have chosen the constraint hypergraphs by
making an independent choice for each potential hyperedge, deciding to put it in the
hypergraph with probability p = c×k!

nk−1 . This variation produces models which are
equivalent to Models A1 and A2 in the sense that the models will be a.s. satisfiable
and a.s. unsatisfiable for the same values of c. A similar remark applies to the other
two models described below.

In [5], we observed that Model A1 is asymptotically uninteresting in the sense that
as long as M grows with n, the random CSP will be a.s. unsatisfiable. The problem
is quite simple: a.s. there will be at least one constraint which is overconstraining
in that there is no assignment to its variables which satisfies even that constraint,
i.e., a constraint which includes every possible restriction amongst its k variables.
Model A2 avoided this particular problem but had other equally damaging problems
as long as M was of order Θ(n) (as is usually the case) for all but small values of
m: m < dk−1 (Gent et al. [12] showed that these small values of m are indeed not
flawed). [12] provides a survey of models used in previous research and found that
roughly 3/4 of papers used models which were uninteresting in the sense described
above. Furthermore, those models which were interesting (mostly Model A2 with
m < dk−1) seem to have been “accidentally” interesting in the sense that the authors
were unaware that the small value they chose for m was crucial.

So we proposed an alternative model [5]:

Model B. Specify M (typically M = cn for some constant c). Choose a random
CSP containing M restrictions, where each such CSP is equally likely to be chosen.

We showed that this model was asymptotically interesting in the sense that for
small values of c a random CSP is a.s. satisfiable, while for large values of c it is
a.s. unsatisfiable.

Nevertheless, this model is rather unsatisfactory in the sense that the CSPs which
it generates do not resemble CSPs that researchers tend to find interesting. In par-
ticular, almost every constraint contains only one restriction, while in typical CSPs
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most constraints tend to have several restrictions.

Here, we propose a model which is both asymptotically interesting and which
overcomes the main disadvantage of Model B in that it can generate CSPs whose
constraints have several restrictions. We aim to keep the model as simple as possible,
while at the same time meeting these two (somewhat conflicting) goals. In particular,
our model is symmetric in the variables. It is not necessarily symmetric among the
values of D, although the parameters of the model can be set so that it is.

Gent et al. [12] proposed another model which is both asymptotically interesting
and generates reasonably complex constraints. Their model turns out to be a special
case of the model introduced here. In the terminology introduced subsequently in this
paper, they proved that their model is very well-behaved en route to showing that it
exhibits a transition.

Our New Model is similar in flavor to Models A1 and A2, but we must take
some care in the way that we choose the constraints in order to avoid overconstrained
constraints and similar problems. In particular, we cannot just independently choose
whether or not to put each potential restriction in the constraint—we must choose
the entire constraint en masse.

So, we consider a canonical set of variables, X1, . . . , Xk, and the set of 2d
k − 1

potential nonempty constraints on X1, . . . , Xk. We specify a probability distribution
P which selects a single random constraint, where P does not depend on n.

New Model. Specify M,P (typically M = cn for some constant c). First choose
a random constraint hypergraph with M hyperedges in the usual manner. Next, for
each hyperedge e, we choose a constraint on the k variables of e as follows: we take
a random permutation from the k variables onto {X1, . . . , Xk} and then we select a
random constraint according to P, mapping it onto a constraint on our k variables in
the obvious manner.

Remark 2. Again, we could have chosen the constraint hypergraph by making an
independent choice for each potential hyperedge, deciding to put it in the hypergraph
with probability p = c×k!

nk−1 . This variation produces a model which is, for our purposes,
equivalent to the model described above.

We use CSPn,M (P) to denote a random CSP drawn from our New Model with
parameters n,M,P. We occasionally omit the subscript n,M , depending on the
context. We say that CSP (P) exhibits a partial transition if there exist constants
c1, c2 > 0 such that

(i) if M < c1n, then CSPn,M (P) is not a.s. unsatisfiable;
(ii) if M > c2n, then CSPn,M (P) is a.s. unsatisfiable.

We say that CSP (P) exhibits a transition if there exist c1, c2 > 0 such that

(i) if M < c1n, then CSPn,M (P) is a.s. satisfiable;
(ii) if M > c2n, then CSPn,M (P) is a.s. unsatisfiable.
Note that if CSP (P) exhibits a transition, then it exhibits a partial transition.

Note also that having a transition is a weaker property than having a “sharp thresh-
old,” a notion that will be discussed in the final section of this paper.

Remark 3. It turns out that there is no choice of CSP (P) and c2 such that for
all M > c2n, CSPn,M (P) is neither a.s. satisfiable nor a.s. unsatisfiable. Thus there
is no need for the obvious 3rd and 4th notions of “transition.”

In the next two sections, we will characterize those models CSP (P) which have
transitions and partial transitions. In the final section, we will discuss choices for P
for which CSP (P) has a very sharp threshold of satisfiability.

We set C = supp(P), i.e., the set of constraints, C, for which P(C) > 0. We
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will see that, perhaps surprisingly, for each C, CSP (P) exhibits a transition (partial
transition) for at least one choice of P with C = supp(P) iff CSP (P) exhibits a
transition (partial transition) for every such choice of P. Thus, it makes sense to say
that C exhibits a transition or a partial transition.

A constraint C is unsatisfiable if it has no satisfying assignments, i.e., if it contains
every possible restriction. A constraint C forbids Xi = δ if it has no satisfying
assignments for which Xi = δ. Xi = δ implies Xj = γ in C if there are no satisfying
assignments for C in which Xi = δ and Xj �= γ. A constraint C implies a property
P if every satisfying truth assignment for C has P .

An automorphism of C is a bijection φ : D → D such that C = {(δ11 , . . . , δ1k), . . . ,
(δt1, . . . , δ

t
k)} ∈ C iff φ(C) = {(φ(δ11), . . . , φ(δ1k)), . . . , (φ(δt1), . . . , φ(δtk))} ∈ C. We say

that C is symmetric with respect to D if it is symmetric in the following sense: For
any two values δ, γ ∈ D, there is an automorphism φ of C such that φ(δ) = γ.

Note that we do not require the symmetry to extend to P; i.e., it is possible that
P(C) �= P(φ(C)). Furthermore, C does not need to be symmetric in X1, . . . , Xk. For
example, it could be that every constraint C ∈ C implies that X1 = X2 �= X3, while
at the same time C is symmetric with respect to D. However, the fact that our model
takes a random mapping of the variables from an edge of the constraint hypergraph
onto (X1, . . . , Xk) implies that the model is symmetric with respect to the variables.

Our New Model generalizes several previously studied models of CSP and other
problems which reduce to being random instances of CSP. For example, Model A1 is

simply this model where P(C) = p|C|(1−p)dk−|C|. Model A2 is the case where P(C) =(
dk

m

)−1
if |C| = m, and P(C) = 0 otherwise. Model B is virtually equivalent to the

case where P(C) = 1
dk

if |C| = 1, and P(C) = 0 otherwise. The well-studied problem
of whether a random instance of k-SAT is satisfiable is equivalent to Model B where
d = 2. The problem of deciding whether a random graph is c-colorable is equivalent
to the case where k = 2, d = c and P(C) = 1 where C = {(δ1, δ1), . . . , (δc, δc)}. In
each of these examples, C is symmetric. It is already known that the first of these
examples does not exhibit even a partial transition, that the second one exhibits a
partial transition only if m < dk−1, the third exhibits a transition, and the other two
exhibit transitions for k, c > 2 and partial transitions for k, c = 2.

One final definition: a hypercycle of a k-uniform hypergraph is a set of hyperedges
e1, . . . , em, such that each ei contains a vertex which it shares with ei−1, a different
vertex which it shares with ei+1 (addition and subtraction are mod m), and k − 2
vertices which do not lie in any ej , j �= i. The length of the hypercycle is m, and
we sometimes say that it is an m-hypercycle. If there are no other hyperedges in the
hypergraph, then we say that the hypergraph itself is a hypercycle.

It is important to note that by the nature of the asymptotics involved, this study is
only relevant as the number of variables grows very high. So these asymptotic results
might be completely out-of-sync with experimental results which, due to technological
limitations, are usually performed on a small number of variables, often less than 50.
In fact, it is precisely this difference between the behavior of the model on small
instances and its asymptotic behavior which led to earlier false assumptions about
the asymptotic behavior of Models A1 and A2.

I have recently learned that Creignou and Daudé [8] have independently consid-
ered the special case of this New Model where d = 2 and P is the uniform distribution
over supp(P). They obtain, for those choices of P, results which are similar to those
in sections 1 and 2 below.
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1. The symmetric case. In this section, we focus on the case where C is sym-
metric with respect to D. We say that such a C is well-behaved if it satisfies the
following two properties:

1. There is no C ∈ C, δ ∈ D, and canonical variable Xi such that C forbids
Xi = δ.

2. For every δ ∈ D, there is at least one C ∈ C such that X1 = δ,X2 = δ, . . . ,
Xk = δ does not satisfy C.

C is very well-behaved if, in addition to properties 1 and 2, it also satisfies the
following:

3. If a CSP is formed using constraints from C, and its constraint hypergraph is
a cycle, then it must be satisfiable.

It is worth noting that if property 1 holds, then there is no unsatisfiable constraint
C ∈ C, and so we avoid the main problem with Model A1. However, as we will see, for
CSP (P) to not be a.s. unsatisfiable, it does not suffice to merely have no unsatisfiable
constraint C ∈ C—we need the full power of property 1 in order to avoid a more subtle
problem.

Theorem 1. If C is well-behaved, then for every distribution P with C =
supp(P), CSP (P) exhibits a partial transition. If C is not well-behaved, then for
every distribution P with C = supp(P), CSP (P) does not exhibit a partial transi-
tion.

Note that Theorem 1 immediately implies that Model A2 exhibits a partial tran-
sition iff 1 ≤ m < dk−1, as first shown by Gent et al. [12].

Theorem 2. If C is very well-behaved, then for every distribution P with C =
supp(P), CSP (P) exhibits a transition. If C is not very well-behaved, then for every
distribution P with C = supp(P), CSP (P) does not exhibit a transition.

Proof of Theorem 1. First we prove that our two properties are necessary for
CSP (P) to have a partial transition.

Suppose that property 2 does not hold. Then for at least one value δ, setting
each Xi = δ will satisfy any C ∈ C, and so setting every variable in our CSP equal
to δ will satisfy our formula with probability 1, regardless of M (in fact, since C is
symmetric in D, this is true for every δ ∈ D). Thus, there is no value of M for which
CSPn,M (P) is a.s. unsatisfiable.

Suppose that property 1 does not hold, i.e., that there is some value δ ∈ D,
canonical variable Xi, and C ∈ C such that C forbids Xi = δ. Since C is symmetric in
D, we have that for every δ ∈ D there is some C(δ) ∈ C such that C forbids Xi = δ.

We say that a variable x is impossible if x lies in at least d hyperedges of our
constraint hypergraph, ej1, . . . , e

j
d, and each ej� has the constraint C(δ�) where x is

mapped onto Xi.
It is not hard to see that if x is impossible, then our formula is not satisfiable,

since x is forbidden from being assigned any of δ1, . . . , δd.
Suppose that M = cn for any value of c.
Claim. A.s. CSPn,M (P) has an impossible variable.
Proof. First choose the constraint hypergraph. It is well known2 (and an easy

application of Chebyshev’s Inequality) that a.s. there will be at least ζn vertices with
degree exactly d for a particular constant ζ = ζ(c, k, d) > 0. Let E1 be the event that
we do have this many such vertices. If E1 holds, then a simple greedy algorithm will
produce an independent set I of size at least ζ

(k−1)d+1n containing only vertices of

2See [7] for a proof of the case k = 2. The proof for higher values of k is similar.
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degree d: Simply add vertices of degree d to I one at a time. Each time we add a
vertex to I, we forbid any of its d(k − 1) neighbors from being added to I. We will
always be able to continue until |I| > ζ

(k−1)d+1n.

Next we choose the constraints for each hyperedge. Each vertex v ∈ I will become
impossible with some positive probability p1 > 0. Furthermore, each such event is
independent of the corresponding events for the other vertices in I, since I is an
independent set. Therefore, the probability that there is no impossible variable is at

most Pr(E1) + (1− p) ζ
(k−1)d+1

n = o(1).
Thus, we have shown that if C is not well-behaved, then either CSPn,M (P) is

always a.s. unsatisfiable or it is always a.s. satisfiable, regardless of P, and so C does
not exhibit a partial transition.

Now we show that if C is well-behaved, then it exhibits a partial transition for
any choice of P. First, we prove that property 1 implies that we can take c1 to be
any constant less than 1

k(k−1) ; i.e., for every c <
1

k(k−1) and M < cn, CSPn,M (P) is
a.s. satisfiable.

It is well known3 that for c < 1
k(k−1) , the probability that our constraint hy-

pergraph is acyclic tends to a constant ρ(c) > 0. It is not hard to show that if our
constraint hypergraph is acyclic, then property 1 implies that our CSP is satisfiable.
Thus the probability of satisfiability is at least ρ, and so we are not a.s. unsatisfiable.

For each component of the constraint hypergraph, we pick a variable to be the
root and set it arbitrarily. We then process each hyperedge in sequence, i.e., assign
values to the variables of that hyperedge, such that every time we process a hyperedge,
exactly one of its variables has already been set. Since no C ∈ C forbids any values
from any variables, we will be able to find an assignment for the other variables on
that hyperedge without violating the corresponding constraint.

Finally, we complete our proof by showing that property 2 implies the existence
of c2, using what is by now a standard first moment argument.

Let A be the number of satisfying assignments of our random CSP. We will prove
that there exists c2 such that if p = c/n where c > c2, then Exp(A) = o(1). This
implies that a.s. A = 0, i.e., our CSP is unsatisfiable.

There are dn truth assignments. Consider any one particular assignment A.
There is a value δ such that some set S of at least n

d variables are assigned δ in A. By
property 2, there is some constraint C∗ ∈ C such that setting each Xi = δ violates C

∗.
The probability that A is a satisfying assignment is at most the probability that none
of the k-tuples of S is constrained by C∗. The probability that a randomly chosen
constraint is C∗ applied to a k-tuple of S is

P(C∗)×
(
n/d

k

)
/

(
n

k

)
≈ P(C

∗)
dk

.

From this fact, standard easy arguments yield that

Exp(A) ≤ dn
(
1− P(C

∗)
dk

)cn

< e
n×
(
ln d− cP(C∗)

dk

)
= o(1)

3See [7] for a proof of the case k = 2. See also the branching argument inspired by Karp [13] in
[6]. The proof for higher values of k is similar.
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for c > c2 =
dk ln d
P(C∗) .

Remark 4. In fact, note that we have shown that our CSP is always a.s. unsatis-
fiable iff property 1 does not hold, and it is always a.s. satisfiable iff property 2 does
not hold.

Proof of Theorem 2. First we show why property 3 is necessary for our model to
have a transition. Suppose that it doesn’t hold, i.e., that there is some unsatisfiable
CSP formula C consisting of constraints from C and whose constraint hypergraph
forms an "-cycle.

For any value of c > 0, it is well known4 that the probability that a random
hypergraph with cn edges has an "-cycle tends to a constant ζ1 = ζ1(c, ") > 0. If
our constraint hypergraph has an "-cycle, then the probability of that "-cycle being
constrained by C is equal to some constant ζ2 > 0. Therefore, the probability of being
unsatisfiable tends to at least ζ1ζ2 > 0, and so we are not a.s. satisfiable for any value
of c.

On the other hand, if property 3 does hold, then for c < 1
k(k−1) our CSP is

a.s. satisfiable. It is well known that a.s. the constraint hypergraph will have no
component with more than 1 cycle. If this happens, then the variables of each tree
component can be set as in the proof of Theorem 1. The variables of each unicyclic
component can be set as follows: first set the variables of the cycle in a satisfactory
manner (which will always be possible by property 3), and then set the remaining
variables in the same manner as in a tree component.

The remainder of the theorem follows as in the proof of Theorem 1.

In our proof, we showed that if C = supp(P) exhibits a transition, then CSP (P) is
a.s. satisfiable when M = cn where c is below 1

k(k−1) , the threshold for the constraint

hypergraph to have a giant component. Not surprisingly, for many choices of P, the
same is still true for higher values of M . For example, see the following theorem.

Theorem 3. Suppose that C is such that for every minimally unsatisfiable for-
mula F whose constraints are drawn from C, the ratio of constraints to variables of
F is at least 1

k−1 (1+ ε) for some constant ε > 0. Then there is a constant δ > 0 such

that for any P with supp(P) = C, CSP (P) is a.s. satisfiable for M ≤ 1
k(k−1) (1+δ)n.

Note that for the hypothesis of Theorem 3 to hold, C must be very well-behaved
since a cycle has a hyperedge/vertex ratio of exactly 1

k−1 , and a tree has an even
smaller ratio.

Proof. This is a standard type of argument in random graph theory, but we
include it here because it is not well known.

We can assume that ε is arbitrarily small, say ε ≤ 1
2 . Suppose thatM = cn where

c = 1
k(k−1) (1 + δ), and δ < ε is a small constant to be specified later. We will show

that the expected number of subgraphs of our random constraint hypergraph which
have the required hyperedge/vertex ratio is o(1). Thus, a.s. none exist and so the CSP
must be satisfiable since any unsatisfiable formula contains a minimally unsatisfiable
subformula.

We can assume that such a subgraph has no tree or unicyclic components, since
deleting such a component will only increase the hyperedge/vertex ratio. Thus, the
subgraph must lie within the giant component. The size of the giant component is
well studied5 and is a.s. at most αn where α tends to zero with δ. Thus, we can

4See [7] for a proof of the case k = 2. The proof for higher values of k is similar.
5See, for example, [7] for the case k = 2. The case k > 2 is amenable to similar analysis or to

the simpler branching process analysis found in [6] and inspired by [13].
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restrict our attention to subgraphs of size at most αn.
For any 0 < a ≤ αn, we consider the expected number of subgraphs on a vertices

with b = 1
k−1 (1 + ε)a edges. There are

(
a
2

)
choices for the vertices and

(
M
b

)
choices

for the edges. Given such choices, the probability that all the b edges lie within the

a vertices is at most
(
a
n

)kb
. Therefore, the expected number of such subgraphs is at

most (
n

a

)(
M

b

)(a
n

)kb
≤
(en
a

)a(eM
b

)b (a
n

)kb

=

(
e1+(1+ε)/(k−1)c(1+ε)/(k−1)(k − 1)

1 + ε

(a
n

)ε)a

=
(
K
(a
n

)ε)a
,

where K = K(ε) is a constant. For a ≤ nε/4, this expression is (Θ(n−ε(1−ε/4)))a <
n−ε/2. And for a < αn, it is less than ( 1

2 )
a, where α is sufficiently small in terms of

ε. Thus the expected number of subgraphs is less than

nε/4∑
a=1

n−ε/2 +
∑

a≥nε/4

(
1

2

)a
= o(1)

for δ = δ(α) sufficiently small.
Theorem 3 applies to several common models. For example, a minimally non-r-

colorable graph has edge/vertex ratio at least r/2 since such a graph has minimum
degree at least r. Also, a minimally unsatisfiable instance of k-SAT has clause/variable
ratio at least 2/k since it cannot contain any pure literals. In a future publication
[14], we will characterize the distributions P for which CSP (P) is a.s. unsatisfiable
with M = cn for all c > 1

k(k−1) .

2. The asymmetric case. Here we extend the definitions and theorems of the
previous section to the case where C is not necessarily symmetric in D.

We say that a value δ is 0-bad if there is some canonical variable Xi and constraint
C ∈ C such that C forbids Xi = δ. We say that δ is j-bad if there is some canonical
variable Xi and constraint C ∈ C such that C implies that if Xi = δ, then at least
one other canonical variable must be assigned a j′-bad value for some j′ < j. A value
is bad if it is j-bad for some j. A value is good if it is not bad.

If C is symmetric, then, of course, if one value is bad, then all values are bad, and
so the existence of a bad value would violate property 1 from the previous section.
However, to allow for the case that C is asymmetric, we must modify property 1. We
say that C is well-behaved if it satisfies the following two properties:

1′. There is at least one good value in D.
2. For every δ ∈ D, there is at least one C ∈ C such that X1 = δ,X2 = δ, . . . ,

Xk = δ does not satisfy C.
Remark 5. It is an easy exercise to show that properties 1′ and 2 imply that

there are at least 2 good values in D.
We also must modify property 3 slightly. We say that D is very well-behaved if,

in addition to properties 1′ and 2, it also satisfies the following:
3′. If a CSP is formed using constraints from C, and its constraint hypergraph

is a cycle, then it must have a satisfying assignment where no variable is
assigned a bad value.
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We have the analogous results from the previous section.

Theorem 4. If C is well-behaved, then for every distribution P with C =
supp(P), CSP (P) exhibits a partial transition. If C is not well-behaved, then for
every distribution P with C = supp(P), CSP (P) does not exhibit a partial transi-
tion.

Theorem 5. If C is very well-behaved, then for every distribution P with C =
supp(P), CSP (P) exhibits a transition. If C is not very well-behaved, then for every
distribution P with C = supp(P), CSP (P) does not exhibit a transition.

The proofs are along the same lines as those in the previous section. We present
only the portions of the proofs which are different.

Proof of Theorem 4. First we show that if condition 1′ does not hold, then for
every distribution P and value c > 0, CSP (P) is a.s. unsatisfiable.

For each j ≥ 0 we let bj denote the number of j-bad values. Thus
∑
j≥0 bj = d.

For each 0-bad value δ, we let C(δ) be the constraint and Xi(δ) be the canonical
variable such that C(δ) forbids Xi(δ) = δ. Similarly, if j ≥ 1, then for each j-bad
value δ, we let C(δ) be the constraint and Xi(δ) be the canonical variable such that
if Xi(δ) = δ, then at least one other canonical variable must take a j′-bad value for
some j′ < j.

We define a j-bad tree rooted at a variable v as follows:

• A 0-bad tree rooted at v is a set of b0 hyperedges intersecting at v such that
for each 0-bad value δ, one of the hyperedges receives the constraint C(δ)
with Xi(δ) mapped onto v.

• For j ≥ 1, a j-bad tree rooted at v consists of a j′-bad tree Tj′ rooted at v for
each 0 ≤ j′ < j, along with bj hyperedges e1, . . . , ebj intersecting at v such
that
(i) for each j-bad value δ, a hyperedge ei receives the constraint C(δ) with

Xi(δ) mapped onto v;
(ii) for every vertex u �= v in each ei, u is the root of a (j − 1)-bad tree Tu;
(iii) all of the bad trees {T0, . . . , Tj−1} ∪ {Tu : u is in some ei} are disjoint

except that T0, . . . , Tj−1 all contain v.

It is not hard to argue inductively that if v roots a j-bad tree, then v cannot
receive a j′-bad value for any j′ ≤ j: If j = 0, then for each 0-bad value δ, v is
forbidden δ by C(δ). For j ≥ 1, since for each j′ < j, v roots a j′-bad tree, v cannot
receive a j′-bad value. If v receives some j-bad value, δ, then since v lies in a C(δ)-
constraint, at least one of the other variables in that constraint must receive a j′-bad
value for some j < j. But each of those variables roots a (j − 1)-bad tree and hence
roots a j′-bad tree. Thus it cannot take any j′-bad value.

A bad tree is a j-bad tree where j is the maximum value such that bj > 0. If 1′

does not hold, then every value is a j′-bad value for some j′ < j, and so the root of a
bad tree cannot receive any of them. Therefore, if a CSP contains a bad tree, then it
is unsatisfiable.

Now, we show that for any distribution P and c > 0, a.s. CSP (P) contains a bad
tree. The following fact is well known in random graph theory.

Fact. For any fixed hypertree T independent of n, there exists a constant z > 0
such that a.s. our random constraint hypergraph will contain at least ζn copies of T .

The basic outline for the proof of this fact is as follows: (1) The expected number
of copies of T is ζ ′n by a simple but tedious calculation. (2) Because n grows much
larger than the (constant) size of T , individual potential appearances of T occur nearly
independently. An application of Chebyshev’s Inequality formalizes this and shows
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that the number of copies of T is highly concentrated. In particular, it is a.s. at least
ζn for any ζ < ζ ′. See [7] for details of the case k = 2. The analysis for higher k is
the same.

Naturally, we will apply this fact where T is equal to the underlying hypertree
of a minimum-sized bad tree. Let E1 be the event that our hypergraph contains at
least ζn copies of T . If E1 holds, then using a simple greedy procedure as in the
proof of Theorem 1, we can easily find a set I of ζ

|T |n disjoint copies of T (where |T |
denotes the number of vertices in T ). Upon choosing the constraints, a copy becomes
bad with probability p1 for some p1 > 0 which is not a function of n. Therefore, the
probability that our CSP contains no bad trees is at most

Pr(E1) + (1− p1)
ζ
|T |n = o(1).

To prove that if 1′ holds, then for any P and c < 1
k(k−1) , CSP (P) is not a.s. un-

satisfiable we just have to show that any CSP with constraints from C and whose
constraint hypergraph is a tree is satisfiable.

For such a CSP, choose any variable v to be the root. Assign v a good value.
Since v is good, it is possible to assign good values to every variable which shares a
constraint with v without violating any of those constraints. Now continue through
the CSP as in the proof of Theorem 1, each time assigning only good values, thus
satisfying the CSP.

The remainder of the proof, namely, the relevance of property 2, is identical to
the proof of Theorem 1.

Proof of Theorem 5. This follows almost exactly as the proof of Theorem 2.

If property 3′ does not hold, then with probability tending to some positive con-
stant CSP (P) will contain a subproblem whose constraint hypergraph is a unicyclic
component and (i) the cycle of that component is constrained such that at least one
variable must receive a bad value, and (ii) each variable on that cycle roots a bad
tree. Clearly, such a subproblem is unsatisfiable.

If property 3′ holds, then it is enough to show that any CSP with constraints
from C and whose constraint hypergraph is unicyclic is satisfiable. To satisfy such a
CSP, first assign good values to each variable on the cycle without violating any of
the cycle constraints, and then continue to assign good values to each of the other
variables as in the proof of Theorem 4.

Theorem 3 also applies to the asymmetric case. Again, it would be interesting to
characterize the distributions P for which CSP (P) is a.s. unsatisfiable with M = cn
for all c > 1

k(k−1) .

3. Sharp thresholds. If a model CSP (P) exhibits a transition, then it is nat-
ural to ask if it satisfies the following stronger property:

There exists a constant c > 0 such that for any ε > 0, if M < (c − ε)n, then
CSP (P) is a.s. satisfiable, and if M > (c+ ε)n, then CSP (P) is a.s. satisfiable.

The current “state-of-the-art” in the analysis of sharp thresholds does not allow us
to prove a property this strong even for CNF-satisfiability. Instead, we must weaken
the property slightly as follows.

CSP (P) is said to have a sharp threshold of satisfiability if there exists a func-
tion c(n) bounded away from 0 such that for any ε > 0, if M < (c(n) − ε)n, then
CSPn,M (P) is a.s. satisfiable, and if M > (c(n) + ε)n, then CSPn,M (P) is a.s. satis-
fiable.
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Note that the only difference between this and the stronger property is that
here we allow c to vary with n. All natural models which are known to have sharp
thresholds are conjectured to also satisfy the stronger property where c(n) = c for all
n. However, we do not know how to prove this.

This notion of sharp thresholds was introduced (in a broader context than that in
the preceding definition) by Friedgut [11], who proved that random instances of k-SAT
exhibit a sharp threshold. In doing so, he proved a general theorem characterizing
random graph properties which have sharp thresholds. To describe this theorem, we
must introduce some definitions.

A graph property, P , is monotonically increasing if (i) P is invariant under graph
automorphisms, and (ii) whenever H is a subgraph of G, and H has P , then G
must have P . This definition extends in the obvious manner to properties of CSPs—
condition (ii) becomes the following: if F1, F2 are CSPs where every constraint in F1 is
also contained in F2, and if F1 has P , then F2 must have P . The only property which
concerns us in this paper is that of being unsatisfiable, which is clearly monotonically
increasing.

Given two properties P1, P2, their symmetric difference, P1�P2, is the property
of satisfying one but not both of P1, P2. Given a set of graphs H = {H1, . . . , Hk}, we
define Q(H) to be the property of having a subgraph which is isomorphic to one of
the members of H.

Gn,M is the random graph with n vertices and M edges, where each such graph
is equally likely to be chosen.

We extend our definitions of transition and sharp threshold to the setting of
random graphs in the obvious manner. A monotonically increasing graph property,
P , exhibits a transition if there exist c1, c2 > 0 such that if M < c1n, then a.s. Gn,M
does not have P , and if M > c2n, then a.s. Gn,M has P . A graph property P with a
transition has a sharp threshold if there exists a function c(n) bounded away from 0
such that for any ε > 0, if M < (c(n) − ε)n, then a.s. Gn,M does not have P , and if
M > (c(n) + ε)n, then a.s. Gn,M has P .

Friedgut’s Theorem yields the following.

Friedgut’s Theorem (see [11]).6 If a monotonically increasing graph property
P with a transition does not have a sharp threshold, then for infinitely many val-
ues of n there exists some c(n) such that for every δ > 0 there is a set of graphs
H = {H1, . . . , Hk}, each with at most one cycle, such that when M = c(n) × n, the
probability of Gn,M having P�Q(H) is less than δ. Furthermore, there is a function
B = B(P, δ) such that each Hi has at most B vertices.

In other words, when M = c(n), P can be arbitrarily closely approximated in
probability by the property of having a subgraph from a list of graphs with at most
one cycle, where the sizes of these graphs do not grow with n.

This theorem also extends to random hypergraphs and to random CNF-formulae,
and Friedgut [10] reports that it extends to the random CSP models discussed here.
Thus, roughly speaking, CSP (P) has a sharp threshold of satisfiability iff unsatisfia-
bility cannot be arbitrarily well approximated by containing a subproblem isomorphic
to one of a list of problems whose constraint hypergraphs have at most one cycle and
whose constraints are drawn from C. If CSP (P) exhibits a transition, then all such

6Friedgut’s Theorem is in fact much more general than this in that (i) it shows that this is
essentially an “if and only if” statement, and (ii) it allows for the possibility of a sharp threshold
which occurs when M is not linear in n. We include only this version here for the sake of simplicity
and because it covers all situations which are relevant to this paper.
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problems are satisfiable. Thus, it would be natural to further expect that CSP (P)
has a sharp threshold of satisfiability iff it exhibits a transition. However, this is not
the case, as the following example shows.

Example 1. Suppose that k = 2, d = 4, and that C contains exactly two con-
straints. The first one, C1, forbids (X1, X2) from receiving any pair of values from
{(1, 1), (2, 2), (3, 3), (4, 4)}. The second, C2, forbids any pair (x, y) where one mem-
ber of the pair is from {1, 2} and the other member is from {3, 4}. P(C1) =

1
3 and

P(C2) =
2
3 .

Note that it is easy to verify that CSP (P) exhibits a transition.

Suppose that M = cn, where 3
4 < c <

3
2 . Let Gi be the constraint graph induced

by constraints of type Ci. A.s. G1 will have 1
3M + o(M) = ( 1

2 − c1)n + o(n) edges
and G2 will have (1

2 + c2)n+ o(n) edges for some constants c1, c2 > 0. Therefore, by
the most fundamental theorem in random graph theory (see [9]), a.s. no component
of G1 will have size greater than O(log n), while G2 will have a giant component of
size αn + o(n) for a constant α = α(c) > 0, and every other component of G2 will
have size at most O(log n).

Let T be the vertices of the giant component of G2. Define B to be the event
that G1 has an odd cycle whose vertices all lie in T . It is easy to see that if B holds,
then our CSP is unsatisfiable: the C2 constraints imply that either all variables in
T receive 1 or 2, or they all receive 3 or 4. However, if a set of vertices belongs to
an odd cycle in G1, then among them there must be at least 3 values. Furthermore,
it is not difficult to verify that the probability that B does not hold and the CSP is
unsatisfiable is o(1). Therefore, the probability of satisfiability is 1−Pr(B)+ o(1). It
is also easily computed that Pr(B) tends to a constant (in terms of c) which is strictly
between 0 and 1, and so our CSP is neither a.s. satisfiable nor a.s. unsatisfiable—G1

and G2 are very close to being two independent random graphs, so this is essentially
the probability that a random graph with αn vertices and ( 1

2 − c1)n edges contains
an odd cycle. Therefore this model does not have a sharp threshold despite the fact
that it exhibits a transition.

Achlioptas [2] and Friedgut [10] each pointed out that the following set of problems
are of the type that Friedgut’s Theorem guarantees; i.e., having a subproblem from
this set is a good approximation of being unsatisfiable. For each i, let Hi denote the
set of subproblems such that, when G1, G2 are defined as above,

(i) G1 is a cycle of length 2r + 1 for some positive integer r, with vertices
v1, . . . , v2r+1;

(ii) G2 consists of r disjoint trees T1, . . . , Tr each of size i;
(iii) for each i, vi is in Ti, and these are the only vertices that G1, G2 have in

common.

Let P be the property that our random problem is unsatisfiable. For any δ > 0, we
can choose i large enough that Pr(P�Q(H)) < δ. Almost surely, if G1 has an odd
cycle lying in the giant component of G2, then breadth-first searches, in G2, from each
vertex of the cycle will yield a collection of disjoint trees of length i for any constant
i. Therefore, Pr(P −Q(Hi)) = o(1). On the other hand, the probability that G1 has
a cycle through the vertex of any nongiant component of G2 which has size at least i
tends to a constant δi which tends to 0 as i grows. Choosing i so that δi < δ yields
Pr(Q(Hi)) < δ. We omit the details, which are straightforward to a reader who is
experienced in random graph theory.

It would be quite interesting to determine some necessary and sufficient conditions
on P for CSP (P) to have a sharp threshold. We close this section by noting the
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following sufficient condition.
Theorem 6. If
(a) C is very well-behaved;
(b) every constraint in C has the property that for each value δ and canonical

variable Xi there is at most one restriction with Xi = δ; and
(c) for each C ∈ C, P(C) = 1

|C| ,
then CSP (P) has a sharp threshold.

Remark 6. It is not difficult to weaken conditions (b) and (c) somewhat, but (a)
is, of course, necessary.

Note that this theorem generalizes the fact that random instances of k-SAT have
a sharp threshold for k ≥ 3 and the fact that k-colorability of random graphs has a
sharp threshold for k ≥ 3. This latter fact was proven by Achlioptas and Friedgut
[3], and the proof of Theorem 6 is nearly identical to their proof. To avoid a long
repetition of a proof which is readily available, we only give an outline of our proof.

Proof of Theorem 6. Rather than using Friedgut’s Theorem, we will make use of a
similar theorem proved by Bourgain subsequent to Friedgut’s proof. The statement of
this theorem is somewhat weaker, but it is easily applied to a more general situation,
including the random models considered here.

Consider a set A of items {a1, . . . , ar} and a selection probability p. We will choose
a random subset A ⊆ A as follows: for each ai, we make an independent choice as
to whether to include ai in A, placing it in A with probability p. For example, if
A is the set of possible edges of an n vertex graph, then we are simply choosing the
random graph Gn,p, which is well known (see, for example, [7]) to be in many ways
equivalent to Gn,M , where M = p

(
n
2

)
. Under the assumption that Pr(C) is rational

for each C ∈ C, we can also simulate CSP (P) using this model as follows:
Following Remark 2, we will work in the equivalent model whereby we select each

possible hyperedge to be in the constraint hypergraph independently with probability
p = c×k!

nk−1 .

A is the set of all
(
n
k

)
k!|C| possible constraints. We place each constraint into

A with selection probability p′ (to be named later), and we let our CSP consist of
each constraint C such that (i) C ∈ A, and (ii) none of the other k!|C| − 1 possible
constraints on the same k-tuple of variables is in A. For any k-tuple of variables, that
k-tuple forms a constraint with probability exactly k!|C| × p′(1 − p′)k!|C|−1, and we
choose p′ so that this value is equal to p. Furthermore, each member of C is equally
likely to be that constraint. Thus, this represents our model precisely. (Note that p′

is very close to p—in fact p′ = p(1 +O(n−(k−1)).)
This transformation allows us to apply Bourgain’s Theorem to CSP (P). As with

Friedgut’s Theorem, we will not state Bourgain’s Theorem in its full power; instead,
we will only state its implication to this setting, thus avoiding some technicalities.

Bourgain’s Theorem (see [11]). Suppose that for each c ∈ C, P(C) = 1
|C| .

If CSP (P) does not have a sharp threshold of satisfiability, then there exist absolute
constants T , 0 < α < 1

2 , and β > 0, and for infinitely many values of n there exists
c(n) such that when M = c(n)× n, the probability that CSP (P) is satisfiable is γ for
some α < γ < 1− α and either

(i) with probability at least β, CSP (P) contains an unsatisfiable subproblem F1

of size at most T ; or
(ii) there exists a satisfiable subproblem F1 of size at most T such that condition-

ing on CSP (P) containing F1 lowers the probability of satisfiability to below
γ − β.
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In the remainder of this proof, we will only consider values of n from the infinite
set of values referred to by Bourgain’s Theorem. Because this set is infinite, we can
choose arbitrarily high values of n, and so an asymptotic analysis is valid.

A straightforward and well-known7 random graph argument implies that a.s. ev-
ery subproblem with at most T constraints is unicyclic. If C is very well-behaved,
all such problems are satisfiable. Thus, (i) does not hold, and so we only need to
eliminate the possibility of (ii).

So consider a CSP F1 as in (ii). Without loss of generality, we can assume that
F1 is on the variables x1, . . . , xt for some t ≤ T . Consider any satisfying assignment
x1 = δ1, . . . , xt = δt for F1. The probability that CSP (P) is satisfiable, conditional
on CSP (P) containing F1, is at most the probability that CSP (P) has a satisfying
assignment with x1 = δ1, . . . , xt = δt.

Let D be the set of constraints, other than those in F1, which involve x1, . . . , xt.
A straightforward argument shows that there is an absolute constant R such that with
probability at least 1−β

2 (a) |D| ≤ R, (b) no constraint in D involves two variables
from {x1, . . . , xt}, and (c) no variable outside of {x1, . . . , xt} lies in more than one
constraint in D.

Consider any constraint D ∈ D, say on variables xi, xj1 , . . . , xjk−1
where 1 ≤ i ≤ t

and each other index is greater than t. Since each constraint in C contains at most
one restriction involving xi = δi, insisting that xi = δi at worst reduces to imposing
a single restriction of size k − 1 on xj1 , . . . , xjk−1

. This is no more restrictive than
forbidding a single value for each xjl . Thus, conditional on (a), (b), and (c) holding,
the probability that CSP (P) has a satisfying assignment with x1 = δ1, . . . , xt = δt is
bounded from below by the following experiment:

Fix some collection of values ζ1, . . . , ζR×(k−1). Choose a random CSP from
CSP (P) with M = c(n). Pick R × (k − 1) variables at random and add the ad-
ditional requirements that the ith variable cannot receive ζi.

Since the probability that either (a), (b), or (c) fails is at most β
2 , condition

(ii) implies that these additional requirements do not decrease the probability of
satisfiability by more than β

2 . We will show that this is impossible. To do so requires
two steps:

(1) We show that if adding these R×(k−1) additional requirements decreases the
probability of satisfiability by at least β

2 , then so would increasing M from c(n) × n
to c(n)× n+R′ for an absolute constant R

′
defined in terms of R× (k − 1).

(2) Increasing M from c(n)×n to c(n)×n+R′ will only decrease the probability
of unsatisfiability by o(1).

Step (2) is at least intuitively obvious: adding a relatively very small number
of constraints should not have a significant effect on the probability of satisfiability.
However, it takes a little work to prove it.

The proof of step (1) goes as follows: Suppose that we were adding only one
additional requirement: we pick a random variable and forbid it from receiving ζ1.
Let X1 be the set of variables such that, before this requirement, the only satisfying
assignments set all of X1 equal to ζ1. If this requirement causes our problem to turn
from satisfiable to unsatisfiable, then we must have chosen a random variable in X1.
Thus, in order for this to have a significant probability of happening, X1 would have
to contain at least αn variables for some constant α > 0. Suppose that this is the
case. Then if instead of adding this extra requirement, we added a single additional

7See [7] for a proof of the case k = 2. The proof for higher values of k is similar.
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constraint, we would cause the CSP to become unsatisfiable with probability at least
αk × 1

|C| , which is a positive constant. The reason is that this is the probability that

the entire k-tuple is from X1 and that we choose the restriction which forbids them
from all being assigned the value ζ1. Thus adding an additional constraint has a
serious effect on the probability of satisfiability.

Modifying this argument to the case where we have R(k − 1) additional require-
ments uses the same ideas but is technically a little complicated.

The proofs of steps (1) and (2) are identical to the corresponding steps found in
[3], [11], and [1]. We refer the reader to any of these for more details.

Acknowledgment. I’m grateful to Ehud Friedgut for his many helpful com-
ments and corrections.
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Abstract. The first main result is that if a macro tree translation is of linear size increase, i.e.,
if the size of every output tree is linearly bounded by the size of the corresponding input tree, then
the translation is MSO definable (i.e., definable in monadic second-order logic). This gives a new
characterization of the MSO definable tree translations in terms of macro tree transducers: they are
exactly the macro tree translations of linear size increase. The second main result is that given a
macro tree transducer, it can be decided whether or not its translation is MSO definable, and if it is,
then an equivalent MSO transducer can be constructed. Similar results hold for attribute grammars,
which define a subclass of the macro tree translations.
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1. Introduction. Very often a complex object has a structure that shows how
it is composed from smaller objects by the application of certain operations. The
smaller objects may themselves be composed of other objects. Such a structure
can naturally be described as a tree, and hence the objects are “tree-structured.”
Examples of tree-structured objects are the words of a context-free language (with
derivation trees as structure) or the graphs of bounded tree-width (with tree decom-
positions as structure). Now consider the transformation of a tree-structured object,
based on its structure and independent of the interpretation of the operations, i.e., a
tree-to-tree transformation. We are interested in models of such transformations: tree
transducers. Well-known examples of tree transducers are top-down tree transduc-
ers [46, 48, 1, 32] and attribute grammars [17, 27, 28] (motivated by syntax-directed
semantics and compilers; cf. [35, 37, 40, 53]), unranked tree transducers [43, 2] and
pebble tree transducers [45] (motivated by the transformation of XML documents;
cf. [51]), and macro tree transducers [15, 8, 9, 24, 28] (motivated by syntax-directed
and denotational semantics [35, 47], and used as a model in, e.g., functional program-
ming [52, 39, 41], language prototyping [49], and linguistics [38, 44]). Motivated by
model theory is the idea of “interpretation,” meaning the definition of a (logical) struc-
ture in terms of logical formulas over another structure (cf. Chapter 10 of [13]). For
monadic second-order (MSO) logic, such MSO interpretations have recently been used
to characterize the generation of graphs by context-free graph grammars [5, 7, 23, 16]
(see also [36]). Taking trees as a logical structure, another type of tree transducer is
obtained: the MSO tree transducer, studied in [3, 19] (for strings, see [18]). An im-
portant part of tree transducer theory is comparing the formal power of these different
models of transformation of tree-structured objects and providing effective transla-
tions between these models. This paper compares the power of macro tree transducers
and MSO tree transducers.
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The macro tree transducer (MTT) is a finite state device that translates, in
a recursive top-down fashion, an input tree into an output tree, handling context
information by the use of parameters. The states of the MTT can be viewed as
functions that call each other recursively; the initial state is the main function. The
(tree-to-tree) translations of MTTs form a large class containing the translations of
top-down tree transducers and attribute grammars. In order to prove our results, we
add the feature of regular look-ahead (see, e.g., section 18 of [32]) to top-down tree
transducers, attribute grammars, and MTTs. Note that in the case of MTTs this has
no influence on the translations: the classes of translations realized by MTTs with
and without regular look-ahead are the same [24].

The MSO tree transducer uses formulas in monadic second-order logic to define
tree-to-tree translations. This provides a declarative way of defining a tree translation,
as opposed to the operational way of an MTT. The idea is to define the nodes and
edges of the output tree in terms of MSO formulas that are interpreted in the input
tree, or, more precisely, in a fixed number of disjoint copies of the input tree. Tree
translations definable in MSO logic have nice properties, comparable to those of finite
state transductions on strings. In particular, they are closed under composition and
they can be computed in linear time. Macro tree translations do not possess these
properties.

The question arises, What is the precise relationship between these two different
models? From [3, 19] it is known that every MSO definable tree translation can be
realized by an MTT. However, the converse does not hold for obvious reasons: by
definition, MSO definable tree translations are of linear size increase: the size of the
output tree is at most k times the size of the input tree, where k is the number
of disjoint copies of the input tree, used to define the output tree. On the other
hand, the translations realized by MTTs can be of double exponential size increase
(cf. Lemma 4.22 of [28]). Our first main result is that if we restrict ourselves to
translations of linear size increase, then the two formalisms, MSO tree transducers
and MTTs, have exactly the same power, i.e., the respective classes of translations
coincide.

Let us briefly discuss the proof of the first main result. As mentioned before,
our MTTs are equipped with regular look-ahead. In [19] a characterization of the
MSO definable tree translations in terms of MTTs is given: they are the translations
realized by “finite copying” MTTs. The notion of finite copying was introduced
in [1] for generalized syntax-directed translation schemes, which are closely related
to top-down tree transducers. It requires that there be a bound on the number of
occurrences of states that translate a given node of the input tree. For MTTs this
requirement is called “finite copying in the input,” and an MTT is finite copying [19]
if it is both finite copying in the input and “finite copying in the parameters”; the
latter means that there is a bound on the number of copies made of a parameter. We
want to prove that if the translation realized by an MTT is of linear size increase,
then it is MSO definable. By the above this is equivalent to showing that for every
MTT M that is of linear size increase (i.e., which realizes a translation of linear
size increase), there is an equivalent MTT M ′ that is finite copying. How can we
construct M ′, given M? The idea is that every MTT M can be transformed into a
normal form M ′, called the “proper normal form” of M , such that if M is of linear
size increase, then M ′ is finite copying. Roughly speaking this normal form requires
that all states and parameters of M ′ are really “needed”; more precisely, each state
generates infinitely many output trees (considering all possible input trees), and for
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each parameter y there are infinitely many actual parameter trees being substituted
for y (for all possible input trees). Then for a proper MTT M ′ it can be shown that
(i) if M ′ is of linear size increase, then it is finite copying in the parameters, and (ii)
if M ′ is finite copying in the parameters and of linear size increase, then it is finite
copying in the input. Both (i) and (ii) are proved by a pumping argument; i.e., it is
shown that if M ′ is not finite copying in the parameters, then it is not of linear size
increase, and similarly for (ii).

Our second main result concerns decidability. Given an MTT it can be decided
whether or not its translation is MSO definable, and if so, an equivalent MSO tree
transducer can be constructed. The proof is based on the following results: (1) the
translation realized by an MTT M is MSO definable—i.e., of linear size increase—if
and only if its proper normal form M ′ is finite copying (by the proof of our first
main result, as discussed above); (2) for an MTT it is decidable whether or not it is
finite copying (the proof is based on the fact that the finiteness of ranges of MTTs
is decidable [12]); and (3) from [19, 3] it follows that given a finite copying MTT, an
equivalent MSO tree transducer can be constructed.

Note that very often membership in a subclass is undecidable (such as regularity
of a context-free language). In cases of decidability there is often a characteriza-
tion of the subclass that is independent of the device that defines the whole class,
i.e., a “semantic” rather than “syntactic” characterization, such as our linear size
increase characterization. As another example, in [6] it is shown that an NR (node
replacement) context-free graph language can be generated by an HR (hyperedge
replacement) context-free graph grammar if and only if the number of edges of its
graphs is linearly bounded by the number of nodes.

The idea for our main results stems from [1]; there it is shown that a generalized
syntax-directed translation (gsdt) scheme can be realized by a tree-walking trans-
ducer if and only if it is of linear size increase. Since gsdt schemes are a variation of
top-down tree transducers, and tree-walking transducers are closely related to finite
copying top-down tree transducers [22], our result can be viewed as a generalization
of the result of [1], from top-down tree transducers to MTTs. In fact, since the proper
normal form of a top-down tree transducer is again a top-down tree transducer, we
reobtain their result (in our formalism): the top-down tree translations of linear size
increase are exactly the translations realized by finite copying top-down tree trans-
ducers. Moreover, they are exactly the MSO definable top-down tree translations.

The main result of [19], on which this paper is based, is in turn based on the
main result of [3], which states that the MSO definable tree translations can be char-
acterized by attribute grammars (more precisely, by attributed tree transducers with
look-ahead) that are single-use restricted. The single-use restriction [33, 30, 39, 41] is
interesting, because attribute grammars are closed under left-composition with single-
use restricted attribute grammars. Our results now imply that given an attributed
tree transducer (with look-ahead) it can be decided whether or not there exists an
equivalent one that is single-use restricted, and furthermore that the linear size in-
crease attributed tree translations are precisely the MSO definable tree translations.

This paper is structured as follows. In section 2 trees and tree substitutions are
defined. In particular, the definition of second-order tree substitution is given, which
is the type of substitution that MTTs are based on. Various results about these
substitutions are proved, for example, how to compute the number of occurrences of
a particular symbol in a tree to which a second-order tree substitution is applied. Then
tree languages and tree translations are defined, and the notion of MSO definable tree
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translation is recalled briefly. Section 3 defines MTTs, which are total deterministic
and equipped with regular look-ahead. Some basic results needed in the paper are
recalled, and two subclasses defined by restrictions on the parameters are considered.
Section 4 recalls the notion of finite copying, which consists of two parts: finite copying
in the input and finite copying in the parameters. It is proved that it is decidable for
an MTT whether or not it is finite copying. Moreover, although this is already known
from the result of [19], it is proved for the sake of completeness that if an MTT is
finite copying, then it is of linear size increase. The proof is based on an intermediate,
very natural notion of bounded copying: “finite contribution.” An MTT is of finite
contribution if there is a bound on the number of output nodes that are contributed
by a given node of the input tree. Also in this section the notion of “finite nested
copying in the input” is introduced; it requires a bound on the amount of nesting of
the states that translate a given node of the input tree. In section 5 the proper normal
form is introduced, and it is shown how to construct, given an MTT, an equivalent
one in proper normal form. Section 6 proves our main results: if the translation
realized by a proper MTT M is of linear size increase (for short, “M is lsi”), then M
is finite copying. The proof goes in three stages: (I) If M is lsi, then it is finite nested
copying in the input. (II) If M is lsi and finite nested copying in the input, then it is
finite copying in the parameters. And finally, (III) if M is lsi, finite nested copying
in the input, and finite copying in the parameters, then it is finite copying in the
input. Section 7 presents the main results and their consequences for top-down tree
transducers, attribute grammars, and context-free graph grammars. At last, some
open problems and further research topics are mentioned.

We note that technically this paper is concerned with MTTs only. The links to
MSO tree transducers were established in [3, 19].

2. Preliminaries. The set {0, 1, . . . } of natural numbers is denoted by N. The
empty set is denoted by ∅. For k ∈ N, [k] denotes the set {1, . . . , k}; thus [0] = ∅.
For a set A, |A| is the cardinality of A, and A∗ is the set of all strings over A. The
empty string is denoted by ε. The length of a string w is denoted |w|, and the number
of occurrences of the symbol a in w is denoted by #a(w). For a set B ⊆ A, #B(w) =∑{#a(w) | a ∈ B}. For strings v, w1, . . . , wn ∈ A∗ and distinct a1, . . . , an ∈ A, we
denote by v[a1 ← w1, . . . , an ← wn] the result of (simultaneously) substituting wi for
every occurrence of ai in v. Note that the substitution [a1 ← w1, . . . , an ← wn] is a
homomorphism on strings. Let P be a condition on a and w such that {(a,w) | P}
is a partial function; then we use, similar to set notation, [a ← w | P ] to denote the
substitution [L], where L is the list of all a← w for which condition P holds.

2.1. Trees. A set Σ together with a mapping rankΣ: Σ → N is called a ranked
set. For k ≥ 0, Σ(k) is the set {σ ∈ Σ | rankΣ(σ) = k}; we also write σ(k) to indicate
that rankΣ(σ) = k. For sets Σ and A, 〈Σ, A〉 = Σ × A; if Σ is ranked, then so is
〈Σ, A〉, with rank〈Σ,A〉(〈σ, a〉) = rankΣ(σ) for every 〈σ, a〉 ∈ 〈Σ, A〉. A ranked alphabet
is a finite ranked set.

For the rest of this paper we choose the set of input variables to be X =
{x1, x2, . . . } and the set of parameters to be Y = {y1, y2, . . . }. For k ≥ 0, Xk =
{x1, . . . , xk} and Yk = {y1, . . . , yk}. In this paper (as opposed to other papers) we
allow a ranked set to contain parameters. However, by convention, if a parameter is
an element of a ranked set Σ, then we require that it have rank zero; i.e., we require
that Σ ∩ Y ⊆ Σ(0). Thus, parameters have rank zero.

Let Σ be a ranked set. The set of trees over Σ, denoted by TΣ, is the smallest set
of strings T ⊆ Σ∗ such that if σ ∈ Σ(k), k ≥ 0, and t1, . . . , tk ∈ T , then σ t1 · · · tk ∈ T .
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For better readability we will usually write σ(t1, . . . , tk) for σ t1 · · · tk. For a set of
parameters Y ′ ⊆ Y we will also use TΣ(Y

′) to denote the set of trees TΣ∪Y ′ , where
Σ∪Y ′ is the ranked set with rankΣ∪Y ′(σ) = rankΣ(σ) for σ ∈ Σ, and rankΣ∪Y ′(y) = 0
for y ∈ Y ′.

For every tree t ∈ TΣ, the set of nodes of t, denoted by V (t), is a subset of N
∗

which is inductively defined as follows: if t = σ(t1, . . . , tk) with σ ∈ Σ(k), k ≥ 0, and
for all i ∈ [k], ti ∈ TΣ, then V (t) = {ε} ∪ {iu | u ∈ V (ti), i ∈ [k]}. Thus, ε represents
the root of a tree, and for a node u the ith child of u is represented by ui. A leaf
is a node without children. If u = vw with w ∈ N

∗, then v is an ancestor of u and
u is a descendant of v; if w �= ε, then v is a proper ancestor of u, and u is a proper
descendant of v. The label of t at node u is denoted by t[u]; we also say that t[u]
occurs in t (at u). The subtree of t at node u is denoted by t/u. The substitution
of the tree s ∈ TΣ at node u in t is denoted by t[u ← s]; it means that the subtree
t/u is replaced by s. Formally, these notions can be defined as follows: t[ε] is the
first symbol of t (in Σ), t/ε = t, t[ε ← s] = s, and if t = σ(t1, . . . , tk), i ∈ [k], and
u ∈ V (ti), then t[iu] = ti[u], t/iu = ti/u, and t[iu← s] = σ(t1, . . . , ti[u← s], . . . , tk).

The usual preorder of the nodes of t (which, in fact, is the lexicographical order
on N

∗) is denoted <; thus, ε < iu (for i ≥ 1), if u < v, then iu < iv, and if i < j,
then iu < jv.

The size of a tree t, denoted by size(t), is the number |V (t)| of nodes of t.
For t = σ(t1, . . . , tk), size(t) equals 1 + size(t1) + · · · + size(tk); note that size(t) =∑
σ∈Σ#σ(t) = |t|. For σ ∈ Σ, Vσ(t) denotes the set of nodes of t which are labeled by

σ, i.e., {u ∈ V (t) | t[u] = σ}; note that |Vσ(t)| = #σ(t): the number of occurrences of
σ in t. For a set S ⊆ Σ, VS(t) =

⋃
σ∈S Vσ(t). The height of t is denoted by height(t);

for t = σ(t1, . . . , tk) it equals 1 + max{height(ti) | i ∈ [k]}.
2.2. Tree substitution. In the previous subsection on trees we already defined

a particular tree substitution: for trees t, s and a node u of t, t[u ← s] is the result
of replacing in t the subtree t/u by s. Now we want to consider replacing in t all
occurrences of a symbol σ.

Trees are particular strings and therefore string substitution as defined in the
beginning of these preliminaries is applicable to a tree. In order to guarantee that
the resulting string is again a tree, we require that only symbols of rank zero, i.e.,
leaves, may be replaced by trees; we refer to this type of substitution as “first-order
tree substitution.” Note that top-down tree transducers are based on first-order tree
substitution. In contrast to this, “second-order tree substitution” means that symbols
of arbitrary rank can be replaced by a tree. This is the type of substitution MTTs
are based on. Consider the replacement of a symbol σ of rank k by a tree s in which
the parameter symbols y1, . . . , yk occur to indicate where the subtrees of σ have to
be inserted. Now, if σ occurs at a node u of the tree t, then replacing it by s means
to replace the subtree t/u of t by the tree s[y1 ← t/u1, . . . , yk ← t/uk]. (Hence the
first-order tree substitution is used to define the second-order one.) Now we define
second-order tree substitution formally. Since all occurrences of σ have to be replaced
simultaneously, an inductive definition is appropriate.

Let Σ be a ranked set and let σ1, . . . , σn be distinct elements of Σ − Y , n ≥ 1,
and for each i ∈ [n] let si be a tree in TΣ−Y (YrankΣ(σi)). For t ∈ TΣ, the second-
order tree substitution of σi by si in t, denoted by t[[σ1 ← s1, . . . , σn ← sn]], is
inductively defined as follows (abbreviating [[σ1 ← s1, . . . , σn ← sn]] by [[. . .]]): For
t = σ(t1, . . . , tk) with σ ∈ Σ(k), k ≥ 0, and t1, . . . , tk ∈ TΣ, (i) if σ = σi for an i ∈ [n],
then t[[. . .]] = si[yj ← tj [[. . .]] | j ∈ [k]] and (ii) otherwise t[[. . .]] = σ(t1[[. . .]], . . . , tk[[. . .]]).
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We will say that [[σ1 ← s1, . . . , σn ← sn]] is a second-order tree substitution over Σ.
Note that it is a mapping from TΣ to TΣ. In fact, it is a tree homomorphism [31].
Note also that (just as first-order tree substitution) second-order tree substitution is
associative (by the closure of tree homomorphisms under composition; cf. Theorem
IV.3.7 of [31]), i.e., t[[σ ← s]][[σ ← s′]] = t[[σ ← s[[σ ← s′]]]], and if σ′ �= σ, then
t[[σ ← s]][[σ′ ← s′]] = t[[σ′ ← s′, σ ← s[[σ′ ← s′]]]], and similarly for the general case
(cf. sections 3.4 and 3.7 of [4]). Let P be a condition on σ and s such that {(σ, s) | P}
is a partial function; then we use [[σ ← s | P ]] to denote the substitution [[L]], where L
is the list of all σ ← s for which condition P holds. In second-order tree substitutions
we use for the relabeling σ ← δ(y1, . . . , yk) of σ(k) by δ(k) the abbreviation σ ← δ;
note that this is, in fact, a string substitution.

Note that the restrictions on σi and si in the first sentence of the previous para-
graph are rather subtle. Recall from section 2.1 that Σ can contain parameters.
However, for technical reasons, we do not want a second-order tree substitution to
replace parameters (hence σi ∈ Σ−Y ), and we do not want it to introduce parameters
(hence si ∈ TΣ−Y (YrankΣ(σi)), which means that si ∈ TΣ∪Y , and if yj occurs in si,
then j ≤ rankΣ(σi)).

The second-order tree substitution [[σ1 ← s1, . . . , σn ← sn]] is nondeleting if for
every i ∈ [n], #yj (si) ≥ 1 for all j ∈ [rankΣ(σi)], and it is nonerasing if for every
i ∈ [n], si �∈ Y . It is productive if it is both nondeleting and nonerasing.

Lemma 2.1. Let Σ be a ranked alphabet and Φ = [[σ1 ← s1, . . . , σn ← sn]] a
nondeleting second-order tree substitution over Σ. For all t, t′ ∈ TΣ, if t′ is a subtree
of t, then t′Φ is a subtree of tΦ. In particular, for y ∈ Y , if #y(t) ≥ 1, then
#y(tΦ) ≥ 1.

Proof. For t = σ(t1, . . . , tk), tjΦ is a subtree of tΦ. Hence the result follows
immediately by induction on the structure of t.

If #y(t) ≥ 1, then y is a subtree of t (because, by convention, the parameter y
has rank 0). This means, by the first part of this lemma, that y is also a subtree of
tΦ, i.e., #y(tΦ) ≥ 1. Note that yΦ = y because, by the definition of second-order tree
substitution, σi �∈ Y for all i ∈ [n].

Lemma 2.2. Let Σ be a ranked alphabet and Φ = [[σ1 ← s1, . . . , σn ← sn]] a
nonerasing second-order tree substitution over Σ. For every t ∈ TΣ, if t �∈ Y , then
tΦ �∈ Y .

Proof. Let t = σ(t1, . . . , tk) with σ ∈ Σ(k) − Y . If σ �∈ {σ1, . . . , σn}, then tΦ =
σ(t1Φ, . . . , tkΦ) �∈ Y . If σ = σi for some i ∈ [n], then tΦ = si[yj ← tjΦ | j ∈ [k]] �∈ Y
(because si �∈ Y ).

In order to calculate the number of times that a particular node u of a tree is
copied by the application of a second-order tree substitution, we need to know which
symbols occur at the ancestors of u. For this we define the string obtained by reading
the labels of the ancestors of u in descending order, starting at the root; if u is labeled
by a parameter, then we do not include its label in this string, because in trees of the
form t[[σ1 ← s1, . . . , σn ← sn]] the parameters present in the trees si do not appear
(by the requirement that si ∈ TΣ−Y (YrankΣ(σi))).

For a tree t ∈ TΣ and a node u ∈ V (t), the label path to u (in t), denoted by
lpath(t, u), is the string in (Σ − Y )∗ defined recursively as follows: lpath(t, ε) = ε
if t ∈ Y , and otherwise lpath(t, ε) = t[ε]; for i ≥ 1 and u ∈ N

∗, lpath(t, iu) =
t[ε] lpath(t/i, u). For example, let t be the tree γ(σ(a, y1)); then lpath(t, 12) =
γ lpath(σ(a, y1), 2) = γσ lpath(y1, ε) = γσ, lpath(t, 1) = γσ, and lpath(t, 11) = γσa.

The following lemma shows how a label path in t changes if a second-order tree
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substitution is applied to t.
Lemma 2.3. Let Σ be a ranked alphabet, Φ the second-order tree substitution

[[σ1 ← s1, . . . , σn ← sn]] over Σ, and t ∈ TΣ.
(i) Every label path in tΦ is of the form w0v1w1 · · · vmwm, where m ≥ 0,

w0σi1w1 · · ·σimwm is a label path in t, i1, . . . , im ∈ [n], vj is a label path
in sij for j ∈ [m], and w0, . . . , wm ∈ (Σ− {σ1, . . . , σn})∗.

(ii) If Φ is nondeleting, then for every w, v ∈ Σ∗ such that wσi is a label path in
t and v is a label path in si, there is a w

′ ∈ Σ∗ such that w′v is a label path
in tΦ.

2.3. Number of occurrences. Since this paper is about the size increase of
MTTs, and they are based on second-order tree substitution, we need to know how
the size of a tree t changes when a second-order tree substitution Φ is applied to t.
Recall that size(tΦ) is the sum of the numbers #σ(tΦ) of occurrences of σ in tΦ for
all symbols σ. Thus, we need to determine the number #σ(tΦ). Since second-order
tree substitution is based on first-order tree substitution which is a particular string
substitution, we first determine the number #a(w[. . . ]), where w is a string and [. . . ]
is a string substitution.

The following lemma can be proved by straightforward induction on the length
of w.

Lemma 2.4. Let A be an alphabet. Let w, v1, . . . , vn ∈ A∗ and let a1, . . . , an be
distinct elements of A. For every a ∈ A,

#a(w[a1 ← v1, . . . , an ← vn]) = Sa +
∑
i∈[n]

#ai(w) ·#a(vi),

where Sa = #a(w) if a �∈ {a1, . . . , an}, and otherwise Sa = 0.
In the next lemma we prove the generalization of Lemma 2.4 to second-order tree

substitution. Intuitively we now have to take into account, for a node u of the tree t,
how many times it is copied by the application of the second-order tree substitution
Φ = [[σ1 ← s1, . . . , σn ← sn]]. For each σi that occurs at a proper ancestor u′ of u, u is
in some subtree t/u′j of u′; thus, replacing σi by si generates #yj (si) copies of t/u

′j.
Hence, the product of these numbers #yj (si), for all proper ancestors u

′, determines
the number of copies of u in tΦ. In the lemma this product is denoted

∏
FΦ
t,u, where

the family FΦ
t,u of numbers is defined as follows.

Definition 2.5 (the family FΦ
t,u). Let Σ be a ranked alphabet and Φ = [[σ1 ←

s1, . . . , σn ← sn]] a second-order tree substitution over Σ. For every t ∈ TΣ and
u ∈ V (t), define the family FΦ

t,u as

FΦ
t,u = {fu′}u′ proper ancestor of u,

where

fu′ =

{
1 if t[u′] �∈ {σ1, . . . , σn},
#yj (si) if t[u′] = σi, i ∈ [n], and u = u′ju′′ with j ≥ 1, u′′ ∈ N

∗.

Note that if u = ε, i.e., FΦ
t,u is empty, then

∏
FΦ
t,u = 1.

Lemma 2.6. Let Σ be a ranked alphabet, Φ = [[σ1 ← s1, . . . , σn ← sn]] a second-
order tree substitution over Σ, and t ∈ TΣ. For every σ ∈ Σ,

#σ(tΦ) = Sσ1 + Sσ2 ,
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where

Sσ1 =
∑

u∈Vσ(t)

∏
FΦ
t,u if σ �∈ {σ1, . . . , σn}, and otherwise Sσ1 = 0,

Sσ2 =
∑

u∈Vσi (t),i∈[n]
#σ(si) ·

∏
FΦ
t,u if σ �∈ Y , and otherwise Sσ2 = 0.

Proof. Denote {σ1, . . . , σn} by Σn. Let Oε = Vσ(t) ∩ {ε}, O = Vσ(t) − {ε}, and
for i ∈ [n], Oε,i = Vσi(t) ∩ {ε} and Oi = Vσi(t) − {ε}. Clearly, Sσ1 = T1 + S1, where
for σ �∈ Σn, T1 =

∑
u∈Oε

∏
FΦ
t,u and S1 =

∑
u∈O

∏
FΦ
t,u, and otherwise T1 = 0 and

S1 = 0. Similarly, Sσ2 = T2 + S2, where for σ �∈ Y , T2 =
∑
u∈Oε,i,i∈[n]#σ(si) ·

∏
FΦ
t,u

and S2 =
∑
u∈Oi,i∈[n]#σ(si) ·

∏
FΦ
t,u, and otherwise T2 = 0 and S2 = 0.

The proof that Sσ1 + Sσ2 equals #σ(tΦ) is by induction on the structure of t. Let
t = σ′(t1, . . . , tk) with σ′ ∈ Σ(k), k ≥ 0, and t1, . . . , tk ∈ TΣ.

Case 1. σ′ ∈ Σ− Σn.
Then t[ε] �∈ Σn and hence, for every j ∈ [k] and v ∈ V (tj),

∏
FΦ
t,jv =

∏
FΦ
tj ,v.

Since O equals
⋃
j∈[k]{jv | v ∈ Vσ(tj)}, it follows that

∑
u∈O

∏
FΦ
t,u is equal to∑

v∈Vσ(tj),j∈[k]
∏
FΦ
tj ,v, and similarly for Oi. We can apply the induction hypothesis

for tj to S
σ
1,j+S

σ
2,j , where S

σ
1,j =

∑
v∈Vσ(tj)

∏
FΦ
tj ,v if σ �∈ Σn, and otherwise Sσ1,j = 0,

and Sσ2,j =
∑
v∈Vσi (tj),i∈[n]#σ(si) ·

∏
FΦ
tj ,v if σ �∈ Y , and otherwise Sσ2,j = 0. Since

Oε,i = ∅ we get that T2 = 0 and hence

Sσ1 + Sσ2 = T1 +
∑
j∈[k]

#σ(tjΦ).

Now T1 equals 1 if σ′ = σ, and 0 otherwise. By the definition of #σ this means that
the above is equal to #σ(σ

′(t1Φ, . . . , tkΦ)). This equals #σ(tΦ) by the definition of
second-order tree substitution.

Case 2. σ′ = σi for some i ∈ [n].
For every j ∈ [k] and v ∈ V (tj),

∏
FΦ
t,jv = #yj (si) ·

∏
FΦ
tj ,v. Thus, S1 =∑

j∈[k]#yj (si) · Sσ1,j and S2 =
∑
j∈[k]#yj (si) · Sσ2,j . By induction, Sσ1,j + Sσ2,j =

#σ(tjΦ). Hence S1 + S2 =
∑
j∈[k]#yj (si) ·#σ(tjΦ). Now T1 = 0, and if σ �∈ Y , then

T2 = #σ(si), and otherwise T2 = 0. We can apply Lemma 2.4 to T1 + T2 + S1 + S2
(with a = σ and Sa = T2) to obtain #σ(si[yj ← tjΦ | j ∈ [k]]), which equals #σ(tΦ)
by the definition of second-order tree substitution.

Recall from section 2.2 that the second-order tree substitution Φ = [[σ1 ←
s1, . . . , σn ← sn]] is nondeleting if each si contains at least one occurrence of yj
for every j ∈ [rankΣ(σi)], and nonerasing if no si is in Y . We can now use Lemma 2.6
to prove that if Φ is productive, i.e., both nondeleting and nonerasing, then its appli-
cation does not decrease the size of a tree.

Lemma 2.7. Let Σ be a ranked alphabet and Φ = [[σ1 ← s1, . . . , σn ← sn]] a
second-order tree substitution over Σ. If Φ is productive, then size(tΦ) ≥ size(t) for
every t ∈ TΣ.

Proof. Let Σn = {σ1, . . . , σn}. Since size(tΦ) =
∑
σ∈Σ#σ(tΦ), we can apply

Lemma 2.6 to obtain
∑
σ∈Σ S

σ
1 +

∑
σ∈Σ S

σ
2 , where S

σ
1 and Sσ2 are as in Lemma 2.6.

Since Φ is nondeleting, for every u ∈ Vσ(t),
∏
FΦ
t,u ≥ 1. Thus

size(tΦ) ≥
∑

σ∈Σ−Σn,u∈Vσ(t)
1 +

∑
u∈Vσi (t),i∈[n]

∑
σ∈Σ−Y

#σ(si).



958 JOOST ENGELFRIET AND SEBASTIAN MANETH

Since Φ is nonerasing, each si contains at least one symbol in Σ− Y . Hence

size(tΦ) ≥
∑

σ∈Σ−Σn,u∈Vσ(t)
1 +

∑
σ∈Σn,u∈Vσ(t)

1 =
∑

σ∈Σ,u∈Vσ(t)
1 = size(t).

2.4. Tree languages. A tree language is a subset of TΣ for some ranked alphabet
Σ.

A finite state tree automaton is a tuple (P,Σ, h), where P is a finite set of states,
Σ is a ranked alphabet of input symbols such that Σ is disjoint with P , and h is
a collection of mappings such that for every σ ∈ Σ(k), hσ is a mapping from P k

to P . The extension h̃ of h to a mapping from TΣ to P is recursively defined as
h̃(σ(s1, . . . , sk)) = hσ(h̃(s1), . . . , h̃(sk)) for every σ ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ TΣ.
Throughout this paper we simply write h(s) to mean h̃(s) for s ∈ TΣ. A tree language
L is regular (or recognizable) if there is a finite state tree automaton (P,Σ, h) and a
subset F of P such that L = {s ∈ TΣ | h(s) ∈ F}. For p ∈ P the tree language
{s ∈ TΣ | h(s) = p} is denoted by Lp. Note that, in particular, Lp is regular for every
p ∈ P .

2.5. Tree translations. Let Σ and ∆ be ranked alphabets. A (total) function
τ : TΣ → T∆ is called a tree translation or simply a translation. For a tree language
L ⊆ TΣ, τ(L) denotes the set {t ∈ T∆ | t = τ(s) for some s ∈ L}, and for L ⊆ T∆,
τ−1(L) denotes {s ∈ TΣ | τ(s) ∈ L}. For a class T of tree translations and a class L
of tree languages, T (L) denotes the class of tree languages {τ(L) | τ ∈ T , L ∈ L}.

A tree translation τ : TΣ → T∆ is of linear size increase (for short, lsi) if there is a
c ∈ N such that size(τ(s)) ≤ c · size(s) for all s ∈ TΣ. The class of all tree translations
of linear size increase is denoted LSI.

We will now shortly define MSO definability of a tree translation. This definition
will, however, not be needed in the paper. Let k be the maximal rank of a symbol
in ∆. The tree translation τ : TΣ → T∆ is MSO definable (i.e., definable in monadic
second-order logic) if there is an MSO tree transducer which realizes τ , that is, if
there exist a finite set C and MSO(Σ)-formulas νc(x), ψδ,c(x), and χi,c,d(x, y), with
c, d ∈ C, δ ∈ ∆, and 1 ≤ i ≤ k, such that for every s ∈ TΣ, τ(s) ∈ T∆ is isomorphic to
the tree t with set of nodes {(c, x) ∈ C × V (s) | s |= νc(x)}, node (c, x) has label δ if
and only if s |= ψδ,c(x), and (d, y) is the ith child of (c, x) if and only if s |= χi,c,d(x, y).
An MSO(Σ)-formula is a formula of MSO logic that uses atomic formulas labσ(x) and
childi(x, y), with σ ∈ Σ and i ≥ 1, to express that x has label σ and y is the ith child
of x, respectively. The class of all MSO definable tree translations is denotedMSOTT.
For examples and more details, see, e.g., [5, 3]. Note that, by definition, every MSO
definable tree translation τ is of linear size increase: size(τ(s)) ≤ |C| · size(s). Thus,
MSOTT ⊆ LSI.

3. Macro tree transducers. In this section we recall the definition of MTTs
and some basic lemmas about them. Furthermore, we consider two subclasses of
MTTs which are defined by certain (static) restrictions on the rules of the transducers.

3.1. Basic definitions and results. A macro tree transducer is a syntax-
directed translation device in which the translation of an input tree may depend on its
subtrees, represented by input variables x1, x2, . . . , and on its context, represented by
parameters y1, y2, . . . . A rule of an MTT is of the form 〈q, σ(x1, . . . , xk)〉(y1, . . . , ym)→
ζ, where q is a state of rank m and σ is an input symbol of rank k. The left-hand side
will be viewed as a tree with a root, labeled 〈q, σ(x1, . . . , xk)〉, and m children, labeled
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y1, . . . , ym, respectively. The right-hand side ζ is a tree over output symbols, the pa-
rameters y1, . . . , ym, and symbols 〈q′, xi〉, where q′ is a (ranked) state and 1 ≤ i ≤ k.
Thus, the MTT generalizes the top-down tree transducer in the sense that states have
parameters. Note that symbols 〈q′, xi〉 can occur at any node of ζ, not just at leaves
as in the case of top-down tree transducers.

We consider only total deterministic MTTs. For technical reasons we add the
feature of regular look-ahead to them (this does not change the class of translations;
cf. Theorem 4.21 of [24]). Regular look-ahead means that in a rule as above the input
variables x1, . . . , xk range over regular tree languages. Formally, these regular tree
languages are combined into one finite state tree automaton.

Definition 3.1 (MTT with regular look-ahead). A macro tree transducer with
regular look-ahead (for short, MTTR) is a tuple M = (Q,P,Σ,∆, q0, R, h), where Q
is a ranked alphabet of states, Σ and ∆ are ranked alphabets of input and output
symbols, respectively, ∆ ∩ Y = ∅, q0 ∈ Q(0) is the initial state, (P,Σ, h) is a finite
state tree automaton, called the look-ahead automaton of M , and R is a finite set of
rules of the following form: For every q ∈ Q(m), σ ∈ Σ(k), and p1, . . . , pk ∈ P with
m, k ≥ 0 there is exactly one rule of the form

〈q, σ(x1, . . . , xk)〉(y1, . . . , ym)→ ζ 〈p1, . . . , pk〉(∗)
in R, where ζ ∈ T〈Q,Xk〉∪∆(Ym).

A rule r of the form (∗) is called the (q, σ, 〈p1, . . . , pk〉)-rule and its right-hand
side ζ is denoted by rhs(r) or by rhsM (q, σ, 〈p1, . . . , pk〉); it is also called a q-rule, a
σ-rule, or a (q, σ)-rule. A top-down tree transducer with regular look-ahead (for short,
TR) is an MTTR all states of which are of rank zero. If the look-ahead automaton is
trivial, i.e., P = {p} and hσ(p, . . . , p) = p for all σ ∈ Σ, then M is called an MTT,
and if M is a TR, then M is called a top-down tree transducer. In such cases we omit
the look-ahead automaton and simply denote M by (Q,Σ,∆, q0, R); we also omit the
look-ahead part 〈p1, . . . , pk〉 in every rule (∗).

We now define the derivation relation induced by an MTTR M . Recall from
section 2.2 that in a second-order tree substitution 〈q′, xi〉 ← 〈q′, si〉 is shorthand for
〈q′, xi〉 ← 〈q′, si〉(y1, . . . , yn), where n is the rank of q′.

Definition 3.2 (derivation relation). Let M = (Q,P,Σ,∆, q0, R, h) be an
MTTR. The derivation relation induced by M , denoted by ⇒M , is the binary re-
lation on T〈Q,TΣ〉∪∆(Y ) such that, for every ξ1, ξ2 ∈ T〈Q,TΣ〉∪∆(Y ), ξ1 ⇒M ξ2 if and

only if there exist u ∈ V (ξ1), σ ∈ Σ(k), s1, . . . , sk ∈ TΣ, q ∈ Q(m), and t1, . . . , tm ∈
T〈Q,TΣ〉∪∆(Y ) such that ξ1/u = 〈q, σ(s1, . . . , sk)〉(t1, . . . , tm) and ξ2 = ξ1[u ← ζ],
where ζ equals

rhsM (q, σ, 〈h(s1), . . . , h(sk)〉)[[〈q′, xi〉 ← 〈q′, si〉 | 〈q′, xi〉 ∈ 〈Q,Xk〉]][yj ← tj | j ∈ [m]].

Since the derivation relation ⇒M induced by M is confluent and terminating
(cf., e.g., Chapter 4 of [28]) there is, for every tree ξ ∈ T〈Q,TΣ〉∪∆(Ym), a unique tree
t ∈ T∆(Ym) such that ξ ⇒∗M t (in fact, t is the normal form of ξ with respect to⇒M ).

Definition 3.3 (translation). For every q ∈ Q(m) and s ∈ TΣ the q-translation of
s, denoted by Mq(s), is the unique tree t ∈ T∆(Ym) such that 〈q, s〉(y1, . . . , ym)⇒∗M t.
Thus, for q ∈ Q(m), Mq is a (total) function from TΣ to T∆(Ym). The translation
realized by M , denoted by τM , is the (total) function Mq0 : TΣ → T∆.

Thus, τM = Mq0 and for s ∈ TΣ, τM (s) = Mq0(s) is the unique tree t ∈ T∆
such that 〈q0, s〉 ⇒∗M t. If τM (s) = t, then s is an input tree (of M) and t is the
corresponding output tree (of M).
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An MTTR is of linear size increase (for short, lsi) if τM is lsi (cf. section 2.5). Two
MTTRs M and M ′ are equivalent if τM = τM ′ . The class of all translations which
can be realized by MTTs and MTTRs is denoted by MTT and MTTR, respectively.
The class of all translations which can be realized by TRs is denoted by TR.

Lemma 3.4 (Theorem 4.21 of [24]). MTTR = MTT (effectively).
The q-translations Mq(s) of trees s ∈ TΣ can be characterized inductively as

follows, using second-order tree substitution.
Lemma 3.5 (Lemma 4.8 of [26]). Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR.

For every q ∈ Q, σ ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ TΣ,

Mq(σ(s1, . . . , sk))

= rhsM (q, σ, 〈h(s1), . . . , h(sk)〉)[[〈q′, xi〉 ←Mq′(si) | 〈q′, xi〉 ∈ 〈Q,Xk〉]].
As mentioned in the introduction, macro tree translations can be of double expo-

nential size increase. This is shown in the following example.

Example 3.6. Let M = (Q,Σ,∆, q0, R) be the MTT with Q = {q(0)0 , q(1)},
Σ = {σ(1), α(0)}, ∆ = {δ(2), β(0)}, and R consisting of the following rules:

〈q0, σ(x1)〉 → 〈q, x1〉(β),
〈q0, α〉 → β,
〈q, σ(x1)〉(y1) → 〈q, x1〉(〈q, x1〉(y1)),
〈q, α〉(y1) → δ(y1, y1).

The MTT M translates α into β, and for n ≥ 0 it translates the input tree sn =
σ(σn(α)) into a full binary tree of height 2n + 1 (with 22

n

leaves). Figure 3.1
shows a derivation of M : First 〈q0, sn〉 ⇒M 〈q, σn(α)〉(β). Then, due to the copy-
ing of states of the (q, σ)-rule, 〈q, σn(α)〉(β) is translated into the monadic tree
〈q, α〉(〈q, α〉(· · · 〈q, α〉(β) · · · )) containing 2n occurrences of 〈q, α〉. At last, due to
the copying of parameters of the (q, α)-rule, this monadic tree is translated into a
full binary tree of height 2n + 1. Thus, the input tree sn of size n + 2 is translated
into a tree of size 22

n+1 − 1, and hence the translation realized by M is of double
exponential size increase. Note that the q-translation Mq(σ

n(α)) ∈ T∆({y1}) is the
full binary tree of height 2n+1 in which each leaf is labeled y1, denoted tn in what fol-
lows. In fact, a derivation 〈q, σn(α)〉(y1) ⇒M 〈q, σn−1(α)〉(〈q, σn−1(α)〉(y1)) ⇒∗M tn
can be obtained from Figure 3.1 by removing the first derivation step and changing
every β into y1. Another way of showing that Mq(σ

n(α)) = tn is by induction on
n, using Lemma 3.5. For n = 0, Mq(α) = rhsM (q, α) = δ(y1, y1) = t0. The induc-
tion step is proved as follows: Mq(σ(σ

n(α))) = rhsM (q, σ)[[〈q, x1〉 ← Mq(σ
n(α))]] =

〈q, x1〉(〈q, x1〉(y1))[[〈q, x1〉 ← tn]] = tn[y1 ← tn] = tn+1. This ends the example.
The following two results are often used in this paper.
Lemma 3.7 (Lemma 7.4(1) of [24]). Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR.

For every q ∈ Q(m), m ≥ 0, and regular tree language L ⊆ T∆(Ym), M
−1
q (L) is regular

and can be defined effectively.
Proof. In Lemma 7.4(1) of [24] the result is stated for the casem = 0. The general

case can be reduced to this case as follows: For every r ∈ Q let r be a symbol not in Σ.

Define the MTTR M = (Q,P,Σ∪{r(1) | r ∈ Q},∆∪{y(0)j | j ∈ [m]}, q0, R∪R, h∪h),
where m is the maximal rank of a state of M . For every r ∈ Q(n), n ≥ 0, and p ∈ P
let hr(p) = p, and let the rule

〈q0, r(x1)〉 → 〈r, x1〉(y1, . . . , yn) 〈p〉



MTTs OF LINEAR SIZE INCREASE 961

δ δ

δδ

⇒M〈q0, sn〉 〈q, σn(α)〉

β

⇒M
〈q, σn−1(α)〉

〈q, σn−1(α)〉

β

⇒2
M

〈q, σn−2(α)〉

〈q, σn−2(α)〉

〈q, σn−2(α)〉

β

⇒∗M

〈q, α〉

〈q, α〉

〈q, α〉

β

...

2n

〈q, σn−2(α)〉

⇒∗M
2n − 1

〈q, α〉

〈q, α〉

〈q, α〉
...

〈q, α〉

...

β β

...

ββ

2n + 1

⇒M

22
n

Fig. 3.1. Derivation by ⇒M .

be in R. Clearly, τM (r(s)) = Mr(s)[yj ← yj | j ∈ [n]] for every s ∈ TΣ. Let

L = {t[yj ← yj | j ∈ [m]] | t ∈ L}. By Lemma 7.4(1) of [24], τ−1
M

(L) is (effectively)

regular. Then also τ−1
M

(L) ∩ q(TΣ) = q(M−1q (L)) is (effectively) regular (because
regular tree languages are effectively closed under intersection; cf., e.g., Theorem II.4.2
of [31]). Since there is a linear top-down tree transducer that translates each tree q(t)
into the tree t, and regular tree languages are (effectively) closed under linear top-
down tree translations (see, e.g., Corollary IV.6.6 of [31]), we obtain that M−1q (L) is
(effectively) regular.

The next lemma follows from Theorem 4.5 of [12] and Theorem 7.3 of [24] (and
from the obvious fact that every regular tree language is the range of a nondetermin-
istic top-down tree transducer; cf., e.g., Proposition 20.1(ii) of [32]). Note that we
have not defined nondeterministic MTTRs and that we need to apply Lemma 3.8 only
once to a nondeterministic (top-down) tree transducer (in Lemma 5.7).

Lemma 3.8 (Theorem 4.5 of [12]). For a regular tree language L and a finite num-
ber of (possibly nondeterministic) MTTRs M1, . . . ,Mn it is decidable whether or not
τMn

(τMn−1
(· · · τM1

(L) · · · )) is finite. Moreover, if it is finite, it can be constructed.

3.2. Subclasses defined by restrictions on the parameters. We now define
two restrictions on the occurrences of parameters in the right-hand sides of the rules
of an MTTR M and then show that these restrictions carry over to the q-translations
Mq(s) of M .
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Definition 3.9 (nondeleting, nonerasing, productive). Let M = (Q,P,Σ,∆, q0,
R, h) be an MTTR. If for every q ∈ Q(m), m ≥ 1, σ ∈ Σ(k), k ≥ 0, p1, . . . , pk ∈ P ,
and j ∈ [m],

• yj occurs at least once in rhsM (q, σ, 〈p1, . . . , pk〉), then M is nondeleting;
• rhsM (q, σ, 〈p1, . . . , pk〉) �∈ Y , then M is nonerasing.

If M is both nondeleting and nonerasing, then it is productive.
Lemma 3.10 (Lemma 7.11 of [19]). For every MTTR M there is a productive

MTTR M ′ equivalent to M .
The following lemma shows that the restrictions nondeleting and nonerasing carry

over from the right-hand sides of an MTTR to the q-translations of M . In Lemma 6.7
of [19] a similar result is proved: if in the right-hand side of every q-rule each parameter
yj of q occurs exactly once, then yj occurs exactly once in Mq(s).

Lemma 3.11. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR. For every q ∈ Q(m),
m ≥ 0, j ∈ [m], and s ∈ TΣ,

(1) if M is nondeleting, then #yj (Mq(s)) ≥ 1; and
(2) if M is nonerasing, then Mq(s) �∈ Y .
Proof. The proof is by induction on the structure of s. Let s = σ(s1, . . . , sk) with

k ≥ 0 and s1, . . . , sk ∈ TΣ. Denote by t the tree rhsM (q, σ, 〈h(s1), . . . , h(sk)〉). By
Lemma 3.5, Mq(s) = tΦ with Φ = [[〈q′, xi〉 ←Mq′(si) | 〈q′, xi〉 ∈ 〈Q,Xk〉]].

(1) By induction #yν (Mq′(si)) ≥ 1 for all 〈q′, xi〉 ∈ 〈Q,Xk〉(n) and ν ∈ [n]; i.e.,
the substitution Φ is nondeleting. Since M is nondeleting, #yj (t) ≥ 1 and thus, by
Lemma 2.1, #yj (tΦ) ≥ 1.

(2) By induction Mq′(si) �∈ Y for all 〈q′, xi〉 ∈ 〈Q,Xk〉; i.e., the substitution Φ is
nonerasing. Since M is nonerasing, t �∈ Y and thus, by Lemma 2.2, tΦ �∈ Y .

4. Finite copying restrictions. In this section we define various restrictions
on the copying that is performed by an MTTR. First, in section 4.1, copying restric-
tions for the input variables and for the parameters are defined. Both together form
the “finite copying” restriction which was introduced in [19]; there it was shown (in
Theorem 7.1) that the translations realized by finite copying MTTRs are precisely
the MSO definable tree translations (cf. section 2.5). Since, by their definition, the
MSO definable tree translations are lsi, this means that finite copying MTTRs are
lsi. To keep this paper self-contained, we give, in section 4.3, a direct proof of this
fact, which is based on the notion of “finite contribution.” Intuitively, an MTTR is
of finite contribution if there is a bound on the number of output nodes contributed
by a single node u of the input tree. In the terminology of [50], the node u is called
the “origin” of the nodes of the output tree that it contributes; so, finite contribution
means that there is a bound on the number of nodes that have the same origin. In [50]
it is shown that for a primitive recursive scheme, which is an MTT, every node of an
output tree has exactly one origin.

We also define, in section 4.2, a restriction on the copying that occurs on one
path of the output tree, i.e., a restriction on the amount of nesting of states that
occurs during the derivation of an MTTR. This notion will play an essential role in
section 6, where it is proved that if the translation of an MTTR is lsi, then it can also
be realized by a finite copying MTTR (and hence is MSO definable).

4.1. Finite copying in the input and in the parameters. Here we recall the
definition of finite copying MTTRs from [19] and show that for an MTTR it is decidable
whether or not it is finite copying. The finite copying restriction was introduced in [1]
for generalized syntax-directed translation schemes. For top-down tree transducers it
was investigated in [22]. A top-down tree transducer is finite copying if every subtree
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of the input tree is translated by boundedly many occurrences of states, i.e., the length
of the state sequence is bounded, where the state sequence at a subtree s/u consists
of the states that translate s/u. For an MTT this restriction is called finite copying in
the input (fci), and we additionally have a restriction for the parameters, called finite
copying in the parameters (fcp). The fcp restriction requires that, for every state q
and input tree s, the number of parameters that occur in the q-translation Mq(s) of
s is bounded.

In order to define the state sequence of a tree s at the node u of s, we first extend
an MTTR in such a way that the output tree t, for the input tree s[u← p], contains
the states which process the subtree s/u (assuming that p = h(s/u)). More precisely,
t contains 〈〈q, p〉〉 if the state q translates s/u. Analogous to the definition of 〈Σ, A〉
let, for a ranked set Σ and a set A, 〈〈Σ, A〉〉 be the ranked set of all symbols 〈〈σ, a〉〉 of
rank m for σ ∈ Σ(m) and a ∈ A.

Definition 4.1 (Definition 3.5 of [19]: extension). LetM = (Q,P,Σ,∆, q0, R, h)

be an MTTR. The extension ofM , denoted by M̂ , is the MTTR (Q,P, Σ̂, ∆̂, q0, R̂, ĥ),
where Σ̂ = Σ ∪ {p(0) | p ∈ P}, ∆̂ = ∆ ∪ 〈〈Q,P 〉〉, R̂ = R ∪ {〈q, p〉(y1, . . . , ym) →
〈〈q, p〉〉(y1, . . . , ym) | 〈q, p〉 ∈ 〈Q,P 〉(m)}, ĥp() = p for p ∈ P , and ĥσ(p1, . . . , pk) =
hσ(p1, . . . , pk) for σ ∈ Σ(k), k ≥ 0, and p1, . . . , pk ∈ P .

Note that ifM is nondeleting or nonerasing, then so is M̂ . Before state sequences
and the fci and fcp properties are defined, we present two useful lemmas about the
q-translations of M̂ . The first lemma shows that the q-translation of an input tree s
can be obtained by replacing in the q-translation of the “context” of a node u of s,
M̂q(s[u← p]), each occurrence of 〈〈q′, p〉〉 by the q′-translationMq′(s/u) of the subtree
of s at u. In fact, the lemma is stated in the more general case that s/u may contain
occurrences of symbols in P . The lemma can be seen as a generalization of Lemma 3.5
from the application of a rule at the root of s, to the translation of the context of an
arbitrary node u.

Lemma 4.2 (Lemma 3.6 of [19]). Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR and

M̂ = (Q,P, Σ̂, ∆̂, q0, R̂, ĥ) its extension. Let q ∈ Q, s ∈ TΣ̂, u ∈ V (s), and p = ĥ(s/u)
such that s[u← p] contains exactly one occurrence of an element of P . Then

M̂q(s) = M̂q(s[u← p])[[〈〈q′, p〉〉 ← M̂q′(s/u) | q′ ∈ Q]].

The next lemma is obtained by application of Lemma 3.5 to the M̂q′(s/u) in the
substitution of Lemma 4.2. It shows how to express the translation of the context of a
child node in terms of the translation of the context of its parent and the translations
of the subtrees of its siblings.

Lemma 4.3. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR. Let q ∈ Q, s ∈ TΣ, and
u ∈ V (s). If s[u] = σ ∈ Σ(k), i ∈ [k], pi ∈ P , pj = h(s/uj) for every j ∈ [k] − {i},
and p = hσ(p1, . . . , pk), then

M̂q(s[ui← pi]) = M̂q(s[u← p])[[rhs]][[..]][[i]],

where

[[rhs]] = [[〈〈q′, p〉〉 ← rhsM (q′, σ, 〈p1, . . . , pk〉) | q′ ∈ Q]],
[[..]] = [[〈r, xj〉 ←Mr(s/uj) | r ∈ Q, j ∈ [k]− {i}]], and
[[i]] = [[〈r, xi〉 ← 〈〈r, pi〉〉 | r ∈ Q]].

Proof. Let s′ = s[ui← pi]. Since p = ĥ(s′/u) and s′[u← p] contains exactly one
occurrence of an element of P , we can apply Lemma 4.2 to get M̂q(s

′) = M̂q(s[u ←
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p])[[〈〈q′, p〉〉 ← M̂q′(s
′/u) | q′ ∈ Q]]. Now s′/u = σ(s1, . . . , sk) with si = pi and

sj = s/uj for every j ∈ [k]−{i}. By application of Lemma 3.5 to M̂q′(s
′/u) the above

equals M̂q(s[u ← p])[[〈〈q′, p〉〉 ← rhsM (q′, σ, 〈p1, . . . , pk〉)[[. . .]] | q′ ∈ Q]], where [[. . .]]

denotes [[〈r, xj〉 ← M̂r(sj) | r ∈ Q, j ∈ [k]]]. We now use the associativity of second-

order tree substitution; cf. section 2.2. Since M̂q(s[u← p]) does not contain elements

of 〈Q,Xk〉 we can move [[. . .]] out of the substitution to get M̂q(s[u ← p])[[rhs]][[. . .]].

For every j ∈ [k] − {i}, M̂r(sj) = Mr(sj) does not contain elements of 〈Q, {xi}〉;
moreover, M̂r(si) = 〈〈r, pi〉〉. Thus we can write [[. . .]] as [[..]][[i]].

We now turn to the definition of state sequence and the finite copying properties.
Recall that the preorder of the nodes of a tree is denoted by <.

Definition 4.4 (Definition 3.7 of [19]: state sequence). Let M = (Q,P,Σ,∆, q0,
R, h) be an MTTR, s ∈ TΣ, and u ∈ V (s). Let p = h(s/u) and ξ = M̂q0(s[u← p]) ∈
T〈〈Q,{p}〉〉∪∆, and let {v ∈ V (ξ) | ξ[v] ∈ 〈〈Q, {p}〉〉} = {v1, . . . , vn} with v1 < · · · < vn.
The state sequence of s at u, denoted by stsM (s, u), is the sequence of states q1 · · · qn
such that ξ[vi] = 〈〈qi, p〉〉 for every i ∈ [n].

Observe that |stsM (s, u)| = #〈〈Q,{p}〉〉(M̂q0(s[u← p])), where p = h(s/u).
Definition 4.5 (Definition 6.1 of [19]: fci). Let M = (Q,P,Σ,∆, q0, R, h) be an

MTTR. Then M is fci if there is an N ∈ N such that for every s ∈ TΣ and u ∈ V (s):
|stsM (s, u)| ≤ N . The number N is an input copying bound for M .

Definition 4.6 (Definition 6.2 of [19]: fcp). Let M = (Q,P,Σ,∆, q0, R, h) be an
MTTR. Then M is fcp if there is an N ∈ N such that for every q ∈ Q(m), s ∈ TΣ,
and j ∈ [m], #yj (Mq(s)) ≤ N . The number N is a parameter copying bound forM .

Note that the MTT M of Example 3.6 is neither fci nor fcp. There is exponential
state copying: the state sequence stsM (sn, 11

n) of sn = σ(σn(β)) at 11n equals q2
n

,
and there is double exponential parameter copying: #y1(Mq(σ

n(β))) = 22
n

.
The following lemma shows that if M is fcp, i.e., if the number of occurrences of

yj in Mq(s) is bounded by some N , for all states q and parameters yj of q, then also

for the q-translations of M̂ of input trees s[u ← p], the number of occurrences of yj
is bounded by N . However, we must assume that M is nondeleting.

Lemma 4.7. Let M = (Q,P,Σ,∆, q0, R, h) be a nondeleting fcp MTTR and let
N be a parameter copying bound for M . For every q ∈ Q(m), j ∈ [m], s ∈ TΣ, and
u ∈ V (s), #yj (M̂q(s[u← h(s/u)])) ≤ N .

Proof. Let p = h(s/u). By Lemma 4.2, Mq(s) = ξ[[. . .]] with ξ = M̂q(s[u ←
p]) and [[. . .]] = [[〈〈q′, p〉〉 ← Mq′(s/u) | q′ ∈ Q]]. By Lemma 2.6, #yj (ξ[[. . .]]) =∑
v∈Vyj (ξ)

∏
F
[[...]]
ξ,v . Let Vyj (ξ) = {v1, . . . , vn}. Then the above sum equals

∏
F
[[...]]
ξ,v1

+ · · ·+
∏

F
[[...]]
ξ,vn

= #yj (Mq(s)) ≤ N,

which implies that n = #yj (ξ) ≤ N because
∏
F
[[...]]
ξ,vi
≥ 1 for every i ∈ [n], by the fact

that M is nondeleting, and hence, by Lemma 3.11(1), #yk(Mq′(s/u)) ≥ 1 for every

q′ ∈ Q(m′) and k ∈ [m′].
Finally, the combination of fci and fcp yields the finite copying property.
Definition 4.8 (finite copying). An MTTR is finite copying if it is both fci and

fcp.
We use the subscripts “fci,” “fcp,” or “fc” for classes of translations to denote

that the corresponding MTTRs are fci, fcp, or finite copying, respectively. Thus
MTTR

fc = MTTR
fci,fcp. The main result of [19] is that the translations of finite copying

MTTRs are precisely the MSO definable tree translations (see section 2.5).
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Lemma 4.9 (Theorem 7.1 of [19]). MSOTT = MTTR
fc (effectively).

The main results of this paper are the following: (i) the translations of finite
copying MTTRs are precisely the translations of MTTRs that are of linear size increase
(i.e., MTTR ∩ LSI = MTTR

fc), and (ii) it is decidable for an MTTR M whether or
not there exists an equivalent finite copying MTTR (i.e., whether τM ∈ MTTR

fc). We
now show that it is decidable for an MTTR M whether or not M is finite copying.
The proof is based on Lemma 3.8.

Lemma 4.10. It is decidable for an MTTR M
(i) whether or not M is fci, and
(ii) whether or not M is fcp,

and if so, a copying bound can be obtained effectively.
Proof. Let M = (Q,P,Σ,∆, q0, R, h).
(i) To decide fci we define the MTT N that, when applied to τM̂ (s[u← h(s/u)]),

generates the state sequence stsM (s, u) as a monadic tree. Let N = (Q′,∆∪ 〈〈Q,P 〉〉,
Γ, r0, R

′) with Q′ = {r(0)0 , r(1)} and Γ = {q(1) | q ∈ Q} ∪ {e(0)}. For every k ≥ 0,
〈〈q, p〉〉 ∈ 〈〈Q,P 〉〉(k), and δ ∈ ∆(k) let the following rules be in R′:

〈r0, 〈〈q, p〉〉(x1, . . . , xk)〉 → q(〈r, x1〉(〈r, x2〉(· · · 〈r, xk〉(e) · · · ))),
〈r0, δ(x1, . . . , xk)〉 → 〈r, x1〉(〈r, x2〉(· · · 〈r, xk〉(e) · · · )),
〈r, 〈〈q, p〉〉(x1, . . . , xk)〉(y1) → q(〈r, x1〉(〈r, x2〉(· · · 〈r, xk〉(y1) · · · ))),
〈r, δ(x1, . . . , xk)〉(y1) → 〈r, x1〉(〈r, x2〉(· · · 〈r, xk〉(y1) · · · )).

Then, for every s ∈ TΣ and u ∈ V (s), lpath(τN (τM̂ (s[u ← h(s/u)])), v) =
stsM (s, u)e, where v is the unique leaf of τN (τM̂ (s[u← h(s/u)])).

Let L be the tree language {s[u ← h(s/u)] | s ∈ TΣ, u ∈ V (s)}. Then M is fci
if and only if K = τN (τM̂ (L)) is finite. Note that L = {s ∈ TΣ(P ′) | #P ′(s) = 1},
where P ′ = {p ∈ P | Lp �= ∅}; hence L is (effectively) regular. Thus, finiteness of
K can be decided by Lemma 3.8; in case of finiteness, K can be constructed and an
input copying bound for M is max{size(t) | t ∈ K} − 1.

(ii) LetM be the MTTR defined in the proof of Lemma 3.7 and let ∆ = ∆∪{y(0)j |
j ∈ [m]} be its output alphabet, where m is the maximal rank of a state of M . Let

N = ({r(0)0 , r(1)},∆,Γ, r0, RN ) be the MTT with Γ = {y(1)j | j ∈ [m]} ∪ {e(0)}. For

δ ∈ ∆(k) with k ≥ 0 the (r0, δ)- and (r, δ)-rules are defined as for N in (i). For j ∈ [m]
let the rules 〈r0, yj〉 → yj(e) and 〈r, yj〉(y1)→ yj(y1) be in RN .

Clearly, for every q ∈ Q and s ∈ TΣ, size(τN (τM (q(s)))) = 1 + #Y (Mq(s)).
Now, for the regular tree language L = {q(s) | q ∈ Q, s ∈ TΣ}, M is fcp if and
only if K = τN (τM (L)) is finite. As in (i), this can be decided by Lemma 3.8; in
case of finiteness, K can be constructed and a parameter copying bound for M is
max{size(t) | t ∈ K} − 1.

In fact, the effectiveness of Lemma 4.9 was not completely proved in [19], but with
Lemma 4.10 it can be shown as follows: Given an MTTR

fc M we can use Lemma 4.10
to obtain a parameter copying bound N for M . Then, given M and N we can, by
the proof of Lemma 6.3 of [19], construct an MTTR

fci,surp M
′ equivalent to M (where

“surp” means “single-use restricted in the parameters”). Now, again by Lemma 4.10
we can determine an input copying bound N for M ′. Then, given M ′ and N we
can, by the proof of Lemma 6.10 of [19], construct a single-use restricted MTTR

M ′′ equivalent to M ′. Now by the proofs of Lemmas 5.9, 5.12, and 4.1 of [19], a
single-use restricted attributed tree transducer with look-ahead (for short, ATTR) A
equivalent to M ′′ can be constructed. Given A, the proof of Lemma 7 of [3] shows
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how to construct an equivalent MSO tree transducer. This proves the effectiveness
going from MTTR

fc to MSOTT. For the other direction, that is, starting with an MSO
tree transducer M , we can proceed as follows: The proof of Theorem 14 of [3] gives a
construction of an equivalent single-use restricted ATTR A. The proofs of Lemmas 4.2
and 5.11 of [19] show how to construct an equivalent single-use restricted MTTR M ′.
By the proof of Theorem 6.12 of [19], M ′ is finite copying.

4.2. Finite nested copying in the input. Consider the translation ξ =
M̂q0(s[u ← p]) of the context of a node u of the input tree s, where p = h(s/u).
The symbols of 〈〈Q, {p}〉〉 can occur nested in ξ; i.e., they can occur on a common
label path lpath(ξ, v) to some node v of ξ. Assuming that M is nondeleting, this

means that a lot of copies of v will be generated; namely,
∏
F
[[...]]
ξ,v copies, where [[. . .]]

replaces 〈〈q, p〉〉 by Mq(s/u). Thus, a way to bound the copying carried out by M
is to bound by some B ∈ N the number of elements of 〈〈Q, {p}〉〉 that occur on a
label path in ξ, i.e., to bound the nesting of states. This implies that the number

of elements in the family F
[[...]]
ξ,v is bounded by B. We call this property finite nested

copying in the input (for short, fnest). Clearly, it is a much weaker restriction than

the fci restriction. However, if an MTTR is fnest and fcp, then
∏
F
[[...]]
ξ,v is bounded by

NB if N is a parameter copying bound for M .
Definition 4.11 (fnest). Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR. Then M

is fnest if there is a B ∈ N such that for every s ∈ TΣ, u ∈ V (s), p = h(s/u), and
label path π in M̂q0(s[u ← p]), #〈〈Q,{p}〉〉(π) ≤ B. The number B is a nesting bound
for M .

We use the subscript “fnest” for classes of translations of MTTRs to denote that
the corresponding transducers are fnest. The next lemma shows that the nesting
bound B also holds for trees M̂q(s[u ← p]) with s ∈ Lp′ , provided that 〈〈q, p′〉〉 is
reachable in the following sense.

Definition 4.12 (reachable). Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR, q ∈
Q, and p ∈ P . Then 〈〈q, p〉〉 is reachable if there are s ∈ TΣ and u ∈ V (s) such that
〈〈q, p〉〉 occurs in M̂q0(s[u← p]).

Note that reachability does not require that h(s/u) = p; however, for Lp �= ∅ this
can always be assumed (simply take s′ = s[u ← t] for some t ∈ Lp if h(s/u) �= p).
Note that in that case, q occurs in the state sequence of s at u.

Lemma 4.13. LetM = (Q,P,Σ,∆, q0, R, h) be a nondeleting fnest MTTR and let
B be a nesting bound for M . If 〈〈q, p〉〉 ∈ 〈〈Q,P 〉〉 is reachable, then for every s ∈ Lp,
u ∈ V (s), pu = h(s/u), and label path π in M̂q(s[u← pu]), #〈〈Q,{pu}〉〉(π) ≤ B.

Proof. Since 〈〈q, p〉〉 is reachable, there are t ∈ TΣ, v ∈ V (t), and ρ ∈
V〈〈q,p〉〉(M̂q0(t[v ← p])). We may assume that t/v = s and hence t/vu = s/u.

By Lemma 4.2, M̂q0(t[vu ← pu]) = M̂q0(t[v ← p])[[. . .]] with [[. . .]] = [[〈〈q′, p〉〉 ←
M̂q′(s[u ← pu]) | q′ ∈ Q]]. Clearly, lpath(M̂q0(t[v ← p]), ρ) = w〈〈q, p〉〉 for some

w ∈ (〈〈Q, {p}〉〉 ∪ ∆)∗. Since M is nondeleting (and hence so is M̂), the substitu-
tion [[. . .]] is nondeleting by Lemma 3.11(1), and thus, by Lemma 2.3(ii), there is a
w′ ∈ (〈〈Q, {pu}〉〉 ∪ ∆)∗ such that w′π is a label path in M̂q0(t[v ← p])[[. . .]], i.e., in

M̂q0(t[vu← pu]). Now, #〈〈Q,{pu}〉〉(π) ≤ #〈〈Q,{pu}〉〉(w
′π), which is ≤ B, because B is

a nesting bound for M .
Consider a nondeleting MTTR M and an input tree s ∈ TΣ. In section 6 we will

often be interested in the part of s that lies between two nodes u and v of s, where
v is a descendant of u; this part can be represented by the tree s/u[v′ ← pv], where
v = uv′ and pv = h(s/v). The shaded region in Figure 4.1 shows such a part of s.
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u

v

Fig. 4.1. The tree s with shaded part s/u[v′ ← pv ].

In particular, in section 6.2, we will need to know, if a state q of M processes this
part, how many times the node v′ is processed by a state q′, i.e., how many times
〈〈q′, pv〉〉 occurs in the tree M̂q(s/u[v

′ ← pv]). If M is nondeleting and w is a node
between u and v, i.e., a descendant of u and ancestor of v, then a lower bound for this
number is given by summing for all states r the product of the number of occurrences
of 〈〈r, pw〉〉 in M̂q(s/u[w

′ ← pw]) and #〈〈q′,pv〉〉(M̂r(s/w[v
′′ ← pv])), where v = wv′′.

This is intuitively true because, due to nondeletion, for each occurrence of 〈〈r, pw〉〉
in M̂q(s/u[w

′ ← pw]) there is in M̂q(s/u[v
′ ← pv]) at least one occurrence of the

tree M̂r(s/w[v
′′ ← pv]) (without the parameters), and, due to parameter copying,

there could be more than one such occurrence. This is stated in part (i) of the
following lemma. Part (ii) of the lemma considers the case that M is fnest and fcp;
then we can also give an upper bound for the number of occurrences of 〈〈q′, pv〉〉 in
M̂q(s/u[v

′ ← pv]), because each occurrence of 〈〈r, pw〉〉 in M̂q(s/u[w
′ ← pw]) can only

be copied a bounded number of times.
Lemma 4.14. Let M = (Q,P,Σ,∆, q0, R, h) be a nondeleting MTTR. Let q, q′ ∈

Q, s ∈ TΣ, and u,w, v ∈ V (s) such that u is an ancestor of w and w is an ancestor of
v, i.e., w = uw′ and v = wv′′ for some w′, v′′ ∈ N

∗, and let v′ = w′v′′, pw = h(s/w),
and pv = h(s/v). Finally, let

S =
∑
r∈Q

#〈〈q′,pv〉〉(M̂r(s/w[v
′′ ← pv])) ·#〈〈r,pw〉〉(M̂q(s/u[w

′ ← pw])).

Then the following two statements hold:
(i) #〈〈q′,pv〉〉(M̂q(s/u[v

′ ← pv])) ≥ S.
(ii) If M is fnest and fcp with nesting bound B and parameter copying bound N ,

and 〈〈q, h(s/u)〉〉 is reachable, then #〈〈q′,pv〉〉(M̂q(s/u[v
′ ← pv])) ≤ NB · S.

Proof. Note that for s′ = s/u[v′ ← pv], ĥ(s
′/w′) = pw, s

′[w′ ← pw] = s/u[w′ ←
pw], and s′/w′ = s/w[v′′ ← pv]. Hence, by Lemma 4.2 applied to s′ and w′,
M̂q(s/u[v

′ ← pv]) = ξ[[. . .]], where ξ = M̂q(s/u[w
′ ← pw]) and [[. . .]] = [[〈〈r, pw〉〉 ←

M̂r(s/w[v
′′ ← pv]) | r ∈ Q]], and thus, by Lemma 2.6,

#〈〈q′,pv〉〉(M̂q(s/u[v
′ ← pv])) =

∑
ũ∈V〈〈r,pw〉〉(ξ),r∈Q

#〈〈q′,pv〉〉(M̂r(s/w[v
′′ ← pv]))

∏
F
[[...]]
ξ,ũ .

(×)
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Since M is nondeleting, by Lemma 3.11(1), #yj (M̂r′(s/w[v
′′ ← pv])) ≥ 1 for every

r′ ∈ Q(m) and j ∈ [m]. This implies that
∏
F
[[...]]
ξ,ũ ≥ 1. Thus, the sum in (×) is ≥ S,

because |V〈〈r,pw〉〉(ξ)| equals #〈〈r,pw〉〉(M̂q(s/u[w
′ ← pw])). This proves part (i).

For (ii),
∏
F
[[...]]
ξ,ũ ≤ NB , because the number of elements of 〈〈Q, {pw}〉〉 that occur

in lpath(ξ, ũ) is ≤ B by Lemma 4.13 (using the assumption that 〈〈q, h(s/u)〉〉 is reach-
able) and because, by Lemma 4.7, #yj (M̂r′(s/w[v

′′ ← pv])) ≤ N for every r′ ∈ Q(m)

and j ∈ [m]. Thus, the sum in (×) is ≤ NB ·∑ũ∈V〈〈r,pw〉〉(ξ),r∈Q#〈〈q′,pv〉〉(M̂r(s/w[v
′′ ←

pv])) = NB · S.
Note that point (ii) of Lemma 4.14 can be strengthened by proving an upper

bound of NB−1 · S for the number of occurrences of 〈〈q′, pv〉〉 in M̂q(s/u[v
′ ← pv])).

This is true because in F
[[...]]
ξ,ũ , the node ũ itself (which is labeled by 〈〈r, pw〉〉 for some

state r) is not taken into account; i.e., only proper ancestors of ũ that are labeled
by elements of 〈〈Q, {pw}〉〉 are counted; thus there are at most B − 1 of them. We
decided to leave out the “−1,” because in the application of the lemma in the proof
of Lemma 6.5 this will make the numbers more readable.

4.3. Finite copying implies linear size increase. In this subsection it is
proved that if an MTTR is finite copying, then it is lsi. Note that this result is not
needed, because it follows from Lemma 4.9 (as discussed in the beginning of this sec-
tion). The proof uses an intermediate, very natural notion, called finite contribution.
Intuitively, an MTTR M is of finite contribution if there is a bound c on the num-
ber of output nodes that are contributed by a node of the input tree. Clearly, if M
is of finite contribution, then it is lsi (with bound c). Thus, in order to prove that
finite copying implies lsi, it suffices to prove that if M is finite copying, then it is of
finite contribution (Lemma 4.18). In fact, since one of the main results of this paper
is that MTTRs of linear size increase realize the same class of translations as finite
copying MTTRs (Theorem 7.2 and Lemma 4.9), it means that this is also the class of
translations realized by MTTRs that are of finite contribution.

In order to compute the contribution by a node of the input tree s, we define an
MTTR Ms, which keeps in the label of each output node v the corresponding input
node u that generated v. More precisely, if ∆ is the output alphabet of M , then Ms

has output alphabet 〈∆, V (s)〉, and the contribution by the node u of s is the number
of symbols in 〈∆, {u}〉 that appear in Ms

q0(s
′), where s′ is the “decorated version” of

s; i.e., s′ is obtained from s by changing, for every node w, its label σ into 〈σ,w〉.
Definition 4.15 (the MTTR Ms, decorated version, contribution). Let M =

(Q,P,Σ,∆, q0, R, h) be an MTTR and s ∈ TΣ. ThenMs = (Q,P, 〈Σ, V (s)〉, 〈∆, V (s)〉,
q0, R

s, hs) is the MTTR such that for every 〈σ, u〉 ∈ 〈Σ, V (s)〉(k), k ≥ 0, and p1, . . . , pk
∈ P ,

• hs〈σ,u〉(p1, . . . , pk) = hσ(p1, . . . , pk), and

• rhsMs(q, 〈σ, u〉, 〈p1, . . . , pk〉) = rhsM (q, σ, 〈p1, . . . , pk〉)[[δ ← 〈δ, u〉 | δ ∈ ∆]].
The decorated version of s, denoted by dec(s), is the unique tree in T〈Σ,V (s)〉 such
that V (dec(s)) = V (s), and for every u ∈ V (s), dec(s)[u] = 〈s[u], u〉.

For a node u of s, the set V〈∆,{u}〉(Ms
q0(dec(s))) ⊆ V (Mq0(s)) is the set of output

nodes contributed by u, and the contribution by u, denoted by ContribM (s, u), is the
cardinality #〈∆,{u}〉(Ms

q0(dec(s))) of this set.
Note that every output node is contributed by a unique input node u (called its

origin in [50]). Before we prove our first lemma about contribution, let us note some
easy properties of the MTTR Ms. Let u ∈ V (s) and q ∈ Q.

(P1) hs(dec(s)/u) = h(s/u).
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(P2) For s′ ∈ T〈Σ,V (s)〉, π∆(Ms
q (s
′)) =Mq(π∆(s

′)), where π∆ changes each symbol

〈δ, u〉 into δ; i.e., it is the canonical projection from 〈∆, V (s)〉 to ∆. For M̂s

and M̂ a similar statement holds.
Additionally, note the following two obvious facts about the projection π∆.
Let Ω be a ranked alphabet disjoint with 〈∆, V (s)〉, ξ ∈ TΩ∪〈∆,V (s)〉(Y ), and
ξ′ ∈ TΩ∪〈∆,{u}〉(Y ). We assume that π∆ is the identity on elements of Ω.
(D1) For β ∈ (Ω ∪ Y ), Vβ(π∆(ξ)) = Vβ(ξ).
(D2) For δ ∈ ∆, Vδ(π∆(ξ

′)) = V〈δ,u〉(ξ′).
(P3) Let P0 = {p(0) | p ∈ P}.

(a) For ξ ∈ T〈Σ,V (s)〉, if #〈Σ,{u}〉(ξ) = 0, then #〈∆,{u}〉(Ms
q (ξ)) = 0.

(b) For ξ ∈ T〈Σ,V (s)〉∪P0
, if #〈Σ,{u}〉(ξ) = 0, then #〈∆,{u}〉(M̂s

q (ξ)) = 0.
Let us prove property (P3) by induction on the structure of ξ. Let ξ = 〈σ, v〉(ξ1, . . . , ξk)
with 〈σ, v〉 ∈ 〈Σ, V (s)〉(k) and k ≥ 0 such that #〈Σ,{u}〉(ξ) = 0. By Lemma 3.5,
Ms
q (ξ) = ζ[[〈q′, xi〉 ← Ms

q′(ξi) | 〈q′, xi〉 ∈ 〈Q,Xk〉]] with ζ = rhsMs(q, 〈σ, v〉, 〈hs(ξ1),
. . . , hs(ξk)〉), and thus, by Lemma 2.6, #〈∆,{u}〉(Ms

q (ξ)) = S
〈∆,{u}〉
1 +S

〈∆,{u}〉
2 , where

S
〈∆,{u}〉
1 and S

〈∆,{u}〉
2 are the sums defined in that lemma (summed over all σ ∈

〈∆, {u}〉). Now S
〈∆,{u}〉
1 = 0 because V〈∆,{u}〉(ζ) = ∅ by the definition of the

rules of Ms and by the fact that v �= u (because #〈Σ,{u}〉(ξ) = 0). By induction,

#〈∆,{u}〉(Ms
q′(ξi)) = 0 and therefore also S

〈∆,{u}〉
2 = 0, which concludes the proof

for the (a) case. For the (b) case the same proof holds, except that we have to con-
sider the additional case ξ = p ∈ P0: the right-hand side ζ of the p-rule of M̂s is in
T〈〈Q,{p}〉〉(Y ) and thus #〈∆,{u}〉(ζ) = 0.

First, we want to present a lemma that computes, in the style of Lemma 2.6, the
number ContribM (s, u) of output nodes contributed by u.

Lemma 4.16. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR, s ∈ TΣ, and u ∈ V (s).
Then

ContribM (s, u) =
∑

v ∈ V〈〈q,p〉〉(t)
q ∈ Q

∑
w∈V∆(ζq)

∏
F
[[ ]]
ζq,w

∏
F
[[...]]
t,v

with p = h(s/u), t = M̂q0(s[u← p]), ζq = rhsM (q, σ, 〈p1, . . . , pk〉) for all q ∈ Q, where
σ = s[u] ∈ Σ(k), k ≥ 0, and pi = h(s/ui) for all i ∈ [k], [[ ]] = [[〈q′, xi〉 ← Mq′(s/ui) |
〈q′, xi〉 ∈ 〈Q,Xk〉]], and [[. . .]] = [[〈〈q, p〉〉 ←Mq(s/u) | q ∈ Q]].

Proof. By definition, ContribM (s, u) = #〈∆,{u}〉(Ms
q0(dec(s))). Since, by the

definition of dec, dec(s)[u] = 〈σ, u〉 ∈ 〈Σ, V (s)〉(k), we get by Lemmas 4.2 and 3.5
and property (P1), Ms

q0(dec(s)) = t′[[rhs]][[ ]]′, where t′ = M̂s
q0(dec(s)[u← p]), [[rhs]] =

[[〈〈q, p〉〉 ← ζ ′q | q ∈ Q]] with ζ ′q = rhsMs(q, 〈σ, u〉, 〈p1, . . . , pk〉) for q ∈ Q, and [[ ]]′ =
[[〈q, xi〉 ← Ms

q (dec(s)/ui) | 〈q, xi〉 ∈ 〈Q,Xk〉]]. The application of Lemma 2.6 to
#〈∆,{u}〉(t′′[[ ]]′) with t′′ = t′[[rhs]] gives S1 + S2, where S2 = 0 because #〈∆,{u}〉(Ms

q

(dec(s)/ui)) = 0 by property (P3)(a) and the fact that dec(s)/ui contains no symbol
in 〈Σ, {u}〉 (by the definition of dec). Thus, ContribM (s, u) = S1, which equals

∑
v∈V〈∆,{u}〉(t′[[rhs]])

∏
F
[[ ]]′

t′[[rhs]],v.(∗)

By the claim below, for Φ = [[rhs]] and Ψ = [[ ]]′, the sum in (∗) equals∑
γ∈〈∆,{u}〉

(Sγ1 + Sγ2 ).
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Now Sγ1 equals zero, because V〈∆,{u}〉(t′) = ∅, which holds by property (P3)(b) and
the fact that dec(s)[u ← p] contains no symbol in 〈Σ, {u}〉. Thus, the sum in (∗)
equals

∑
γ∈〈∆,{u}〉 S

γ
2 =

∑
v ∈ V〈〈q,p〉〉(t′)

q ∈ Q

∑
w∈V〈∆,{u}〉(ζ′q)

∏
F
[[ ]]′

ζ′q,w

∏
F
[[...]]′

t′,v ,

where [[. . .]]′ is the substitution [[〈〈q, p〉〉 ← Ms
q (dec(s)/u) | q ∈ Q]]. Let us now show

that this sum equals the one of the lemma. For every q ∈ Q it follows from property
(D1) (for Ω = 〈〈Q, {p}〉〉 and β = 〈〈q, p〉〉) that V〈〈q,p〉〉(t′) = V〈〈q,p〉〉(π∆(t′)), which equals

V〈〈q,p〉〉(t) by (the M̂ -version of) property (P2), where π∆ is the projection defined
in that property. Since ζ ′q ∈ T〈Q,Xk〉∪〈∆,{u}〉(Y ) it follows from property (D2) that
V〈∆,{u}〉(ζ ′q) = V∆(π∆(ζ

′
q)), which equals V∆(ζq) because π∆(ζ

′
q) = ζq by the definition

of the rules ofMs. Now for w ∈ V (ζ ′q) = V (ζq),
∏
F
[[ ]]′

ζ′q,w
=
∏
F
[[ ]]
ζq,w

because for q′ ∈ Q,

by (D1), V〈q′,xi〉(ζ
′
q) = V〈q′,xi〉(π∆(ζ

′
q)), which equals V〈q′,xi〉(ζq), and for y ∈ Y , by

(D1), #y(M
s
q (dec(s)/ui)) = #y(π∆(M

s
q (dec(s)/ui))), which equals #y(Mq(s/ui)) by

(P2). Similarly,
∏
F
[[...]]′

t′,v =
∏
F
[[...]]
t,v for v ∈ V (t′) = V (t) because, as shown above,

V〈〈q,p〉〉(t′) = V〈〈q,p〉〉(t) for q ∈ Q, and for y ∈ Y , by (D1), #y(M
s
q (dec(s)/u)) =

#y(π∆(M
s
q (dec(s)/u))), which equals #y(Mq(s)) by (P2).

It remains to show the following claim, which is a generalization of Lemma 2.6 to
two second-order tree substitutions Φ and Ψ. (More precisely, taking the substitution
Ψ as the identity on Γ− Y gives Lemma 2.6 for the case σ = γ �∈ {σ1, . . . , σn} ∪ Y .)
Note that ΦΨ denotes the composition of Ψ after Φ, i.e., t(ΦΨ) = (tΦ)Ψ.

Claim. Let Γ be a ranked alphabet, Φ = [[σi ← si | i ∈ [n]]] and Ψ = [[τj ←
ξj | j ∈ [m]]] second-order tree substitutions over Γ, and t ∈ TΓ. For every γ ∈
Γ− ({σ1, . . . , σn, τ1, . . . , τm} ∪ Y ),

∑
v∈Vγ(tΦ)

∏
FΨ
tΦ,v = Sγ1 + Sγ2 ,(×)

where

Sγ1 =
∑

v∈Vγ(t)

∏
FΦΨ
t,v and Sγ2 =

∑
v ∈ Vσi (t)
i ∈ [n]

∑
w∈Vγ(si)

∏
FΨ
si,w

∏
FΦΨ
t,v .

Proof of the claim. Note that the statement does not depend on the numbers
#γ(ξj). This is true because the substitution Ψ appears only in the F s. In fact, for

any node v of a tree ζ,
∏
FΨ
ζ,v =

∏
FΨ′
ζ,v for every substitution Ψ′ = [[τj ← ξ′j | j ∈ [m]]]

with the property that #y(ξ
′
j) = #y(ξj) for every y ∈ Y and j ∈ [m]; we denote

this property by E(Ψ,Ψ′). For Sγ1 and Sγ2 a similar statement holds. (Note that
if E(Ψ,Ψ′), then E(ΦΨ,ΦΨ′); this is true because, by associativity of second-order
substitution, ΦΨ = [[σi ← siΨ, τj ← ξj | G]] and ΦΨ′ = [[σi ← siΨ

′, τj ← ξ′j | G]],
where G denotes the statement “i ∈ [n], j ∈ [m] with τj �∈ {σ1, . . . , σn}”; by the

above, E(Ψ,Ψ′) implies that
∏
FΨ
si,v =

∏
FΨ′
si,v for any node v of si, and thus for

every y ∈ Y ,
∑
v∈Vy(si)

∏
FΨ
si,v =

∑
v∈Vy(si)

∏
FΨ′
si,v, which means, by Lemma 2.6,

that #y(siΨ) = #y(siΨ
′).)

The idea of the proof is as follows. We will apply Lemma 2.6 twice: first to
#γ(t

′Ψ′), where t′ = tΦ and Ψ′ is a substitution with E(Ψ,Ψ′), and second to #γ(tB)
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with B = ΦΨ′. The first application will give the left-hand side of the equation (×),
and the second one will give the right-hand side of that equation. Clearly, by definition
of the composition of second-order tree substitutions, #γ(t

′Ψ′) = #γ(tB).
Define Ψ′ = [[τj ← ξ′j | j ∈ [m]]] with E(Ψ,Ψ′) and #γ(ξ

′
j) = 0 for all j ∈

[m]. Then for t′ = tΦ, #γ(t
′Ψ′) equals, by Lemma 2.6, Rγ1 + Rγ2 with Rγ1 =∑

v∈Vγ(tΦ)
∏
FΨ′
tΦ,v and Rγ2 = 0 because all the numbers #γ(ξ

′
j) are zero by the def-

inition of Ψ′. Since E(Ψ,Ψ′), this means that #γ(t
′Ψ′) =

∑
v∈Vγ(tΦ)

∏
FΨ
tΦ,v, which

is the left-hand side of equation (×).
By the associativity of second-order tree substitution, B = ΦΨ′ equals

[[σi ← siΨ
′, τj ← ξ′j | i ∈ [n], j ∈ [m] with τj �∈ Σn]],

where Σn = {σ1, . . . , σn}. The application of Lemma 2.6 to #γ(tB) gives Rγ1 + Rγ2
with Rγ1 =

∑
v∈Vγ(t)

∏
FΦΨ′
t,v and

Rγ2 =
∑

v∈Vσi (t),i∈[n]
#γ(siΨ

′) ·
∏

FΦΨ′
t,v +

∑
v∈Vτj (t),j∈[m],τj �∈Σn

#γ(ξ
′
j) ·
∏

FΦΨ′
t,v .

Since #γ(ξ
′
j) = 0, the second term of Rγ2 equals zero. In the first term of Rγ2 we apply

Lemma 2.6 to #γ(siΨ
′), which gives T γ1 + T γ2 , where T

γ
2 = 0 because #γ(ξ

′
j) = 0,

and T γ1 =
∑
v∈Vσi (t),i∈[n]

∑
w∈Vγ(si)

∏
FΨ′
si,w

∏
FΦΨ′
t,v . Since E(Ψ,Ψ′), Rγ1 = Sγ1 and

T γ1 = Sγ2 , which concludes the proof of the claim.
Using Lemma 4.16 we can now prove that if an MTTR is finite copying, then it

is of finite contribution, which is defined next.
Definition 4.17 (finite contribution). Let M be an MTTR with input alphabet

Σ. Then M is of finite contribution if there is a c ∈ N such that ContribM (s, u) ≤ c
for every s ∈ TΣ and u ∈ V (s).

Consider now a finite copying MTTR M . In the translations of M , every node
of the input tree is translated at most I · N I−1 times (cf. the discussion on page 71
of [19]), where I and N are input and parameter copying bounds for M , respectively.
This implies that the number ContribM (s, u) of output nodes contributed by the node
u is bounded.

Lemma 4.18. Let M be an MTTR. If M is finite copying, then it is of finite
contribution.

Proof. Let M = (Q,P,Σ,∆, q0, R, h), s ∈ TΣ, and u ∈ V (s). Let I be an input
copying bound for M and let N be a parameter copying bound for M . Furthermore,
let m be the maximal size of the right-hand side of a rule of M . By the definition
of fci it follows that for t = M̂q0(s[u ← p]) and p = h(s/u), #〈〈Q,{p}〉〉(t) ≤ I. By

the definition of fcp it follows that, for every v ∈ V〈〈q,p〉〉(t) and q ∈ Q,
∏
F
[[...]]
t,v ≤

N I−1, where [[. . .]] = [[〈〈q, p〉〉 ← Mq(s/u) | q ∈ Q]]. By Lemma 4.16 this means that

ContribM (s, u) ≤ I ·N I−1 ·max{∑w∈V∆(ζq)

∏
F
[[ ]]
ζq,w
| q ∈ Q}, where [[ ]] = [[〈q′, xi〉 ←

Mq′(s/ui) | 〈q′, xi〉 ∈ 〈Q,Xk〉]]. By the definition of m this is ≤ I · N I−1 · m ·
max{∏F

[[ ]]
ζq,w
| q ∈ Q,w ∈ V∆(ζq)} ≤ I ·N I−1 ·m ·Nm−1. Hence ContribM (s, u) ≤ c

for c = I ·N I−1 ·m ·Nm−1.
As discussed in the beginning of this subsection, if an MTTR is of finite contri-

bution, then it is lsi. This holds because, by (P2), size(Mq0(s)) = size(Ms
q0(dec(s)))

=
∑
u∈V (s) ContribM (s, u) ≤ c · size(s). Together with Lemma 4.18 this gives us the

desired result: finite copying implies lsi.
Theorem 4.19. If an MTTR is finite copying, then it is of linear size increase.
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5. Proper normal form. In section 4.3 we showed that if an MTTR is finite
copying, then it is lsi. In sections 6 and 7 we want to prove that the converse also
holds, i.e., that lsi implies finite copying. However, in general this does not hold: there
are lsi MTTRs that are not finite copying. Roughly speaking, the reason for this is
that the part of the output tree of which unboundedly many copies are generated, by
means of input variables or parameters, might be a fixed tree that does not change
for different inputs. So, it can happen that an input tree sn of size n generates a state
sequence of length n, but the number of different output trees that are eventually
generated by the states in the state sequence is finite. Then the MTTR is not finite
copying in the input, but the translation it realizes can still be lsi (cf. the MTTR M
at the beginning of section 5.1). Similarly, a tree Mq(sn) might contain n copies of
a parameter yj , but there are only finitely many different output trees that will be
substituted for yj in the actual output Mq0(s). Then M is not finite copying in the
parameters, but the translation it realizes can be lsi (cf. the MTTR at the beginning
of section 5.2).

Intuitively it should be clear that a state that generates, for any input, only
a finite number of different output trees t is not needed; it can be eliminated by
immediately substituting the correct tree t, which can be determined by regular look-
ahead. This gives rise to a normal form, called input proper, which is treated in
section 5.1. Similarly for a parameter yj of a state q, if the number of actual output
trees t that will be substituted for yj is finite, then this parameter is not needed; it
can be eliminated by immediately substituting the correct t, which can be computed
in the states of the MTTR. This gives rise to a normal form, called parameter proper ;
it is treated in section 5.2.

Altogether, an MTTR will be called proper if it is input proper, parameter proper,
and productive. Again, this is a normal form; i.e., for every MTTR there is an
equivalent one which is proper. Then in section 6 it can be proved that if a proper
MTTR is lsi, then it is finite copying.

5.1. Input proper. Consider the following MTTR M , which is lsi but not

fci. Let M = (Q,Σ,∆, q0, R) with Q = {q(0)0 , q(0), q′(0)}, Σ = {γ(1), a(0), b(0)},
∆ = {σ(2), a(0), b(0)}, and R consisting of the following rules:

〈q0, γ(x1)〉 → σ(〈q, x1〉, 〈q′, x1〉),
〈q, γ(x1)〉 → 〈q, x1〉,
〈q′, γ(x1)〉 → σ(〈q, x1〉, 〈q′, x1〉),
〈r, α〉 → α (for every r ∈ Q and α ∈ {a, b}).

Note thatM is in fact a top-down tree transducer. Intuitively,M translates every
monadic tree sn = γ(. . . γ(α) . . . ) = γn(α) of height n (with α ∈ {a, b}) into a comb
tn = σ(α, σ(α, . . . σ(α, α) . . . )) of height n. Thus, size(τM (s)) ≤ 2 · size(s) for every
s ∈ TΣ and so M is lsi. Clearly, M is not fci because stsM (sn, u) = qnq′ for n ≥ 1
and u = 1n the unique leaf of sn. The reason for this is that M generates n copies of
q, but q generates only a finite number of different trees (viz. the trees a and b). How
can we change M into an equivalent MTTR which is fci? The idea is to simply delete
the state q and to determine by regular look-ahead the appropriate tree in {a, b}. In
this example we just need Lp = {γn(a) | n ≥ 0} and Lp′ = {γn(b) | n ≥ 0}, and then
the q0-rule of M is replaced by two q0-rules with right-hand sides σ(a, 〈q′, x1〉) and
σ(b, 〈q′, x1〉) for look-ahead p and p′, respectively, and similarly for the q′-rule.

We will say that an MTTR M is “input proper” if every state, except possibly
the initial one, produces infinitely many output trees (in T∆(Y )). More precisely, for
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every look-ahead state p of M and every state q �= q0, M should produce infinitely
many output trees taking Lp (the trees for which the look-ahead automaton arrives
in state p) as input; in fact, this is only required if 〈〈q, p〉〉 is reachable, i.e., if 〈〈q, p〉〉
occurs in M̂q0(s[u ← p]) for some s and u (see Definition 4.12). Note that q0 is the
only state that may generate only finitely many output trees; this is to make sure that
an MTTR that generates only finitely many output trees can be transformed into one
that is input proper.

The notion of input properness was defined in [1] for generalized syntax-directed
translation schemes (which are a variant of top-down tree transducers) and was there
called “reduced.” We add two useful technical properties to it.

Definition 5.1 (input proper). An MTTR M = (Q,P,Σ,∆, q0, R, h) is input
proper (for short, i-proper) if

(i) for every q ∈ Q and p ∈ P such that q �= q0 and 〈〈q, p〉〉 is reachable, the set
Out(q, p) = {Mq(s) | s ∈ Lp} is infinite;

(ii) q0 does not occur in the right-hand sides of the rules in R; and
(iii) Lp �= ∅ for every p ∈ P .
Note that Out(q, p) ⊆ T∆(Ym) for q ∈ Q(m). Before it is proved (in Lemma 5.4)

that i-properness is a normal form for MTTRs, we need the following two straightfor-
ward lemmas about finiteness of Out(q, p).

Lemma 5.2. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR. For given q ∈ Q(m)

and p ∈ P it is decidable whether or not Out(q, p) is finite. Moreover, Out(q, p) can
be constructed if it is finite.

Proof. Let M be the MTTR constructed in the proof of Lemma 3.7. Then, for
every s ∈ TΣ, τM (q(s)) = Mq(s)[yj ← yj | j ∈ [m]] and hence Mq(s) = τM (q(s))Π,
where Π = [yj ← yj | j ∈ [m]]. The substitution Π can be realized by a (very simple)
top-down tree transducer. Thus, for the regular tree language L = {q(s) | s ∈ Lp},
Out(q, p) = {Mq(s) | s ∈ Lp} = {τM (s)Π | s ∈ L} = τN (τM (L)). By Lemma 3.8
the finiteness of τN (τM (L)) is decidable, and in case of finiteness τN (τM (L)) can be
constructed.

Lemma 5.3. Let M = (Q,P,Σ,∆, q0, R, h) be a nondeleting MTTR. Let q ∈ Q,
σ ∈ Σ(k), k ≥ 1, and p, p1, . . . , pk ∈ P such that p = hσ(p1, . . . , pk) and Lpj �= ∅ for
every j ∈ [k]. If 〈r, xi〉 ∈ 〈Q,Xk〉 occurs in rhsM (q, σ, 〈p1, . . . , pk〉) and Out(q, p) is
finite, then Out(r, pi) is finite.

Proof. For j ∈ [k] − {i} fix trees sj ∈ TΣ with h(sj) = pj . Let ξ = ζ[[. . .]] with
ζ = rhsM (q, σ, 〈p1, . . . , pk〉) and [[. . .]] = [[〈q′, xj〉 ← Mq′(sj) | q′ ∈ Q, j ∈ [k] − {i}]].
By the definition of Out(q, p), Lemma 3.5, and associativity of second-order tree
substitution, O = {Mq(σ(s1, . . . , sk)) | si ∈ Lpi} = {ξ[[si]] | si ∈ Lpi}, where [[si]]
denotes the substitution [[〈q′, xi〉 ←Mq′(si) | q′ ∈ Q]] is a subset of Out(q, p) and hence
finite. Since M is nondeleting, both [[. . .]] and [[si]] are nondeleting by Lemma 3.11(1).
Hence, by Lemma 2.1, ξ has a subtree 〈r, xi〉(ξ1, . . . , ξm), where m = rankQ(r). Again
by Lemma 2.1, ξ[[si]] has a subtree 〈r, xi〉(ξ1, . . . , ξm)[[si]] = Mr(si)[yj ← ξj [[si]] | j ∈
[m]]. Thus, for every t ∈ Out(r, pi) (i.e., t = Mr(si) for some si ∈ Lpi) the tree
t[yj ← ξj [[si]] | j ∈ [m]] is a subtree of ξ[[si]], i.e., it is a subtree of a tree in the finite
set O. This implies finiteness of Out(r, pi).

We are now ready to prove that i-properness is a normal form. The construction
involved is similar to the one of Lemma 5.5 of [1] except that we apply it repeatedly to
obtain an i-proper MTTR as opposed to their single application, which is insufficient
(also in their formalism, which means that their proof of the lemma is incorrect).

Lemma 5.4. For every MTTR M there is (effectively) an i-proper and productive
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MTTR M ′ equivalent to M . If M is a TR, then so is M ′.
Proof. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR. By Lemma 3.10 we may

assume that M is productive. Moreover, we may assume that q0 does not occur in
the right-hand side of any rule of M (if it does, replace it in all rules by a new state
q′0 which has the same rules as q0).

Before we construct the MTTR M ′ which is i-proper and realizes the same trans-
lation as M , let us define an auxiliary notion. For each p ∈ P , let Fp denote the set
{q ∈ Q | Out(q, p) is finite} of states which produce finitely many output trees in
T∆(Y ) on input trees in Lp. Note that Fp can be constructed effectively, because, by
Lemma 5.2, it is decidable whether or not Out(q, p) is finite. Moreover, Out(q, p) can
be constructed for every q ∈ Fp.

The MTTR M ′ is constructed in such a way that if 〈r, xi〉 occurs in rhsM ′(q, σ,
〈p1, . . . , pk〉), then r �∈ Fpi . This implies point (i) of i-properness of M ′ as follows: If
〈〈r, p〉〉 ∈ 〈〈Q,P 〉〉 is reachable (with r �= q0), then there are s ∈ TΣ and u ∈ V (s) such
that 〈〈r, p〉〉 occurs in M̂ ′q0(s[u← p]). Since r �= q0, u = vi for some i ≥ 1 and v ∈ N

∗.
By Lemma 4.3 this implies that 〈r, xi〉 occurs in the right-hand side of a rule of M ′

with pi = p. This means that r �∈ Fp, i.e., Out(r, p) is infinite.
Note that an example for the construction in this proof can be found in Exam-

ple 5.5.
We first construct the MTTR π(M) by simply deleting occurrences of 〈r, xi〉 with

r ∈ Fpi and replacing them by the correct tree in Out(r, pi), which is determined by
regular look-ahead. Due to the change of look-ahead automaton, an occurrence of
〈r, xi〉 in the (q, σ, 〈p1, . . . , pk〉)-rule of M with r �∈ Fpi might produce only finitely
many trees for the new look-ahead states (pi, ϕi). For this reason we have to iterate
the application of π until the sets Fp do not change anymore. This results in the
desired MTTR M ′.

For each p ∈ P let Φp be the (finite) set of all mappings ϕ : Fp → T∆(Y )
such that there is an s ∈ Lp with ϕ(q) = Mq(s) for every q ∈ Fp. Note that Φp
is finite because ϕ(q) ∈ Out(q, p), which is finite for q ∈ Fp. This also implies
that Φp can be obtained effectively by checking, for the (finitely many) mappings
ϕ : Fp →

⋃
q∈Fp Out(q, p), whether or not ϕ is in Φp. This is decidable because

ϕ ∈ Φp if and only if Kp,ϕ = Lp ∩
⋂
q∈FpM

−1
q ({ϕ(q)}) is nonempty; Kp,ϕ is regular

by Lemma 3.7 (and the closure of the regular tree languages under intersection) and
hence has a decidable emptiness problem (cf., e.g., Theorem II.10.2 of [31]). The
mappings in Φp partition Lp into the sets Kp,ϕ, which can be determined by regular
look-ahead.

We now construct the MTTR π(M) = (Q,P ′,Σ,∆, q0, R′, h′) as follows. Let
P ′ = {(p, ϕ) | p ∈ P,ϕ ∈ Φp}. For σ ∈ Σ(k) and (p1, ϕ1), . . . , (pk, ϕk) ∈ P ′ let, for
every q ∈ Q(m), the rule

〈q, σ(x1, . . . , xk)〉(y1, . . . , ym)→ ζqΘ 〈(p1, ϕ1), . . . , (pk, ϕk)〉
be in R′, where ζq = rhsM (q, σ, 〈p1, . . . , pk〉) and Θ = [[〈r, xi〉 ← ϕi(r) | r ∈ Fpi , i ∈
[k]]], and let h′σ((p1, ϕ1), . . . , (pk, ϕk)) = (p, ϕ), where p = hσ(p1, . . . , pk) and ϕ =
{(q, ζqΘ) | q ∈ Fp, ζq = rhsM (q, σ, 〈p1, . . . , pk〉)}.

Before we prove that the look-ahead automaton of π(M) is as desired, let us show
that it is well defined, i.e., that ϕ ∈ Φp. We must show that there is an s ∈ Lp such
that, for every q ∈ Fp, ϕ(q) = Mq(s). Since ϕi ∈ Φpi for i ∈ [k], there are si ∈ Lpi
such that ϕi(r) = Mr(si) for all i ∈ [k] and r ∈ Fpi . Hence, for q ∈ Fp, ϕ(q) = ζqΘ
with ζq = rhsM (q, σ, 〈p1, . . . , pk〉) and Θ = [[〈r, xi〉 ←Mr(si) | 〈r, xi〉 ∈ 〈Fpi , Xk〉]]. By
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Lemma 5.3 and the definition of Fp, only 〈r, xi〉 with r ∈ Fpi occur in ζq. Therefore
we can extend Θ to all elements of 〈Q,Xk〉. By Lemma 3.5 we get ϕ(q) = Mq(s) for
s = σ(s1, . . . , sk). Since p = hσ(p1, . . . , pk), s ∈ Lp.

Claim 1. Let s ∈ TΣ. If h′(s) = (p, ϕ), then p = h(s) and ϕ(q) =Mq(s) for every
q ∈ Fp.

The proof is by induction on the structure of s. Let s = σ(s1, . . . , sk) with
s1, . . . , sk ∈ TΣ and h′(si) = (pi, ϕi) ∈ P ′ for i ∈ [k]. By definition, p equals
hσ(p1, . . . , pk) = h(s). For q ∈ Fp, ϕ(q) = rhsM (q, σ, 〈p1, . . . , pk〉)Θ. By induc-
tion, ϕi(r) =Mr(si) for all i ∈ [k] and r ∈ Fpi . For the same reason as above we can
extend Θ to all elements of 〈Q,Xk〉 to get Mq(s).

This claim implies that π(M) satisfies point (iii) of i-properness. In fact, if (p, ϕ) ∈
P ′, then ϕ ∈ Φp, and so there exists s ∈ Lp such that ϕ(q) =Mq(s) for every q ∈ Fp.
Thus, by Claim 1, h′(s) = (p, ϕ). Hence, L(p,ϕ) �= ∅.

The MTTR π(M) realizes the same translation as M . This follows from Claim 2
for q = q0.

Claim 2. For q ∈ Q and s ∈ TΣ, π(M)q(s) =Mq(s).
Again we prove this by induction on s. Let s = σ(s1, . . . , sk) with s1, . . . , sk ∈ TΣ

and h′(si) = (pi, ϕi) ∈ P ′ for i ∈ [k]. By the definition of the rules of π(M) and
by Lemma 3.5, π(M)q(s) equals rhsM (q, σ, 〈p1, . . . , pk〉)Θ[[ ]], where [[ ]] = [[〈q′, xi〉 ←
π(M)q′(si) | 〈q′, xi〉 ∈ 〈Q,Xk〉]]. By Claim 1, Θ equals [[〈r, xi〉 ←Mr(si) | r ∈ Fpi , i ∈
[k]]], and by induction [[ ]] = [[〈q′, xi〉 ← Mq′(si) | 〈q′, xi〉 ∈ 〈Q,Xk〉]]. Thus Θ[[ ]] = [[ ]]
and we get rhsM (q, σ, 〈p1, . . . , pk〉)[[ ]], which, by Lemma 3.5, equals Mq(s).

The MTTR π(M) is productive because M is productive and the application of
Θ does not delete nodes. Formally, consider a right-hand side ζqΘ of π(M) with
ζq = rhsM (q, σ, 〈p1, . . . , pk〉), q ∈ Q(m), and m ≥ 0. For every r ∈ Fpi , ϕi(r) =
Mr(s) for some s ∈ TΣ. Thus, by Lemma 3.11(1), #yν (ϕi(r)) ≥ 1 for every ν ∈
[rankQ(r)]; i.e., the substitution Θ is nondeleting. Since, for j ∈ [m], #yj (ζq) ≥ 1 this
implies, by Lemma 2.1, that #yj (ζqΘ) ≥ 1; i.e., π(M) is nondeleting. Analogously, by
Lemma 3.11(2), #yν (ϕi(r)) �∈ Y for r ∈ Fpi and ν ∈ [rankQ(r)]; i.e., the substitution
Θ is nonerasing. Since, for j ∈ [m], ζq �∈ Y this implies, by Lemma 2.2, that ζqΘ �∈ Y ;
i.e., π(M) is nonerasing.

Since π(M) has the same states as M , π(M) is a TR if M is.
We now discuss the reason for iterating π. Consider an occurrence of 〈r, xi〉 in

the right-hand side of a rule of π(M). We know that r �∈ Fpi , because each such
occurrence is removed by the substitution Θ in the definition of the rules of π(M).
Thus, Out(r, pi) is infinite. However, through the new look-ahead, the set Lpi is
partitioned into sets L(pi,ϕi), ϕi ∈ Φpi (to see this, consider an s ∈ Lpi ; then, by
Claim 1, s ∈ L(pi,ϕi), where ϕi is defined as ϕi(q) = Mq(s) for every q ∈ Fpi). Thus,
we merely know, by Claim 2, that the union of Out(r, (pi, ϕi)) for all ϕi ∈ Φpi is
infinite, but for a particular ϕi ∈ Φpi , Out(r, (pi, ϕi)) might be finite, which means
that π(M) is not i-proper (see Example 5.5).

Let us now show that the iterative application of π yields an i-proper MTTR. In
particular, we iterate the application of π until

F(p,ϕ) = Fp for every (p, ϕ) ∈ P ′.(∗)
It follows from (∗) that if 〈r, xi〉 occurs in the right-hand side of a rule of π(M), then
by the definition of Θ, r �∈ Fpi , and hence by (∗), r �∈ F(pi,ϕi). Thus (∗) implies (point
(i) of) i-properness of π(M), as argued in the beginning of this proof.

It remains to show that after a finite number of applications of π, (∗) holds.
Clearly, Fp ⊆ F(p,ϕ) ⊆ Q, because Out(q, (p, ϕ)) ⊆ Out(q, p), as argued above. Let
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us first show that, for every (p, ϕ) ∈ P ′, F(p,ϕ) = Fp implies that (after constructing
π(π(M))) F((p,ϕ),ϕ′) = F(p,ϕ) for every ϕ′ ∈ Φ(p,ϕ). Let ϕ′ ∈ Φ(p,ϕ); i.e., there is
an s ∈ L(p,ϕ) such that ϕ′(q) = π(M)q(s) for every q ∈ F(p,ϕ) = Fp. Since, by
Claims 1 and 2, π(M)q(s) = Mq(s) = ϕ(q) for every q ∈ Fp, it follows that ϕ′ = ϕ.
This means that L((p,ϕ),ϕ′) = {s ∈ L(p,ϕ) | π(M)q(s) = ϕ′(q) for all q ∈ F(p,ϕ)}
equals {s ∈ L(p,ϕ) | Mq(s) = ϕ(q) for all q ∈ Fp} = L(p,ϕ). This implies that
Out(q, ((p, ϕ), ϕ′)) = Out(q, (p, ϕ)) and thus F((p,ϕ),ϕ′) = {q ∈ Q | Out(q, ((p, ϕ), ϕ′))
is finite} = {q ∈ Q | Out(q, (p, ϕ)) is finite} = F(p,ϕ).

Now, after at most k = |Q| iterations of π, (∗) holds. Let (· · · ((p, ϕ1), ϕ2) . . . , ϕk)
be denoted by (p, ϕ1, . . . , ϕk). Then, for every look-ahead state (p, ϕ1, . . . , ϕk) of
πk(M), F(p,ϕ1,...,ϕk−1) = F(p,ϕ1,...,ϕk). This is true because Fp = ∅ implies F(p,ϕ1) =
∅ (since Φp = {ϕ1}), and F(p,ϕ1,...,ϕi) = F(p,ϕ1,...,ϕi+1) implies that F(p,ϕ1,...,ϕj) =
F(p,ϕ1,...,ϕi) for all j ≥ i (by the above). Since a sequence of nonempty subsets of
Q in which each set is a proper subset of the next one has length at most |Q| = k,
F(p,ϕ1,...,ϕk−1) = F(p,ϕ1,...,ϕk). Thus, M

′ = πk(M) is i-proper.

The next example illustrates the construction of an i-proper MTTR following the
proof of Lemma 5.4.

Example 5.5. For simplicity let us consider an MTTR without parameters, i.e.,
a TR. Let M = (Q,P,Σ,∆, q0, R, h) be a TR with Q = {q0, q, q′, i}, P = {p}, Σ =
{α(0), γ(1), σ(1)}, ∆ = {α(0), β(0), γ(1), σ(1), δ(2)}, and let R consist of the following
rules:

〈q0, γ(x1)〉 → δ(〈q, x1〉, 〈i, x1〉) 〈p〉,
〈q0, σ(x1)〉 → 〈q′, x1〉 〈p〉,
〈q, γ(x1)〉 → α 〈p〉,
〈q, σ(x1)〉 → β 〈p〉,
〈q′, γ(x1)〉 → α 〈p〉,
〈q′, σ(x1)〉 → σ(〈i, x1〉) 〈p〉,
〈i, γ(x1)〉 → γ(〈i, x1〉) 〈p〉,
〈i, σ(x1)〉 → σ(〈i, x1〉) 〈p〉,
〈r, α〉 → α for each r ∈ Q.

Let us now defineM1 = π(M) = (Q,P ′,Σ,∆, q0, R′, h′). We obtain Fp = {q} and
Φp = {ϕα, ϕβ} with ϕα = {(q, α)} and ϕβ = {(q, β)}, and thus P ′ = {(p, ϕα), (p, ϕβ)}.
As can easily be verified, the rules of the look-ahead automaton of M1 are the follow-
ing: h′α = (p, ϕα), h

′
γ((p, ϕα)) = h′γ((p, ϕβ)) = (p, ϕα), h

′
σ((p, ϕα)) = h′σ((p, ϕβ)) =

(p, ϕβ).
The q-, q′-, and i-rules in R′ are identical to the ones in R for both new look-ahead

states. The q0-rules in R
′ are the following:

〈q0, γ(x1)〉 → δ(α, 〈i, x1〉) 〈(p, ϕα)〉,
〈q0, γ(x1)〉 → δ(β, 〈i, x1〉) 〈(p, ϕβ)〉,
〈q0, σ(x1)〉 → 〈q′, x1〉 〈(p, ϕα)〉,
〈q0, σ(x1)〉 → 〈q′, x1〉 〈(p, ϕβ)〉.

Note that L(p,ϕα) = {α} ∪ {γ(s) | s ∈ TΣ} and L(p,ϕβ) = {σ(s) | s ∈ TΣ}. Hence

Out(q′, (p, ϕα)) = {α}, and so the TR M1 is not i-proper yet, because F(p,ϕα) =
{q, q′} �= Fp. Thus we have to apply π again. LetM ′ = π(M1) = (Q,P ′′,Σ,∆, q0, R′′,
h′′). We get Φ(p,ϕα) = {ϕ}, with ϕ = {(q, α), (q′, α)} and Φ(p,ϕβ) = {ϕβ}. Thus
P ′′ = {((p, ϕα), ϕ), ((p, ϕβ), ϕβ)}. The look-ahead automaton of M ′ stays the same
as for M1 except for a renaming of states: (p, ϕα) becomes ((p, ϕα), ϕ) and (p, ϕβ)
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becomes ((p, ϕβ), ϕβ). The q-, q′-, and i-rules in R′′ are identical to the ones in R′

(and R) for all look-ahead states. The q0-rules in R
′′ are the following:

〈q0, γ(x1)〉 → δ(α, 〈i, x1〉) 〈((p, ϕα), ϕ)〉,
〈q0, γ(x1)〉 → δ(β, 〈i, x1〉) 〈((p, ϕβ), ϕβ)〉,
〈q0, σ(x1)〉 → α 〈((p, ϕα), ϕ)〉,
〈q0, σ(x1)〉 → 〈q′, x1〉 〈((p, ϕβ), ϕβ)〉.

The TR M ′ is i-proper because F((p,ϕα),ϕ) = {q, q′} = F(p,ϕα) and F((p,ϕβ),ϕβ) =
{q} = F(p,ϕβ). We finally note that it is easy to transformM into a generalized syntax-
directed translation scheme that forms a counterexample to the proof of Lemma 5.5
of [1].

5.2. Parameter proper. Consider the following MTT M which is lsi but not

fcp. Let M = (Q,Σ,∆, q0, R) with Q = {q(0)0 , q(1)}, Σ = {σ(2), γ(2), α(0), β(0)}, and
∆ = {σ(2), γ(2), α(1), β(1), σ̄(0), γ̄(0)}. For all δ ∈ {σ, γ} and a ∈ {α, β}, let the follow-
ing rules be in R:

〈q0, δ(x1, x2)〉 → δ(〈q, x1〉(δ̄), 〈q, x2〉(δ̄)),
〈q, δ(x1, x2)〉(y1) → δ(〈q, x1〉(y1), 〈q, x2〉(y1)),
〈q0, a〉 → a(ā),
〈q, a〉(y1) → a(y1).

Intuitively, M moves the root symbol of the input tree to each of its leaves; e.g.,
for s = σ(γ(α, β), α) we get τM (s) = σ(γ(α(σ̄), β(σ̄), α(σ̄))). Thus, M is lsi (because
size(τM (s)) ≤ 2 · size(s)). Clearly, M is not fcp, because #y1(Mq(s)) equals the
number of leaves of s. This time, the reason is that M generates a lot of parameter
occurrences which have only finitely many “argument trees” (viz., σ̄ and γ̄). A jth
argument tree for q and p is a tree ξj such that 〈〈q, p〉〉(ξ1, . . . , ξm) is a subtree of some

M̂q0(s[u← p]).
The idea of the next normal form is to eliminate parameters yj of q for which

there are only finitely many jth argument trees (for look-ahead p). This can be done
by keeping the information on these argument trees in the states of the new MTTR

and by appropriately replacing yj by the correct argument tree in each right-hand
side. For the example MTT M above, we have to add states qδ, δ ∈ {σ, γ} of rank
zero, and take as rules

〈q0, δ(x1, x2)〉 → δ(〈qδ, x1〉, 〈qδ, x2〉),
〈qδ, ρ(x1, x2)〉 → ρ(〈qδ, x1〉, 〈qδ, x2〉) for ρ ∈ {σ, γ},
〈q0, a〉 → a(ā) for a ∈ {α, β},
〈qδ, a〉 → a(δ̄) for a ∈ {α, β}.

This shows that the translation τM can actually be realized by a top-down tree trans-
ducer (which is in general, of course, not the case).

Definition 5.6 (parameter proper, proper). An MTTR M = (Q,P,Σ,∆, q0, R, h)
is parameter proper (for short, p-proper) if for every q ∈ Q(m), m ≥ 1, j ∈ [m], and
p ∈ P

(i) if 〈〈q, p〉〉 is reachable, then the set Arg(q, j, p) defined as

{t/vj | ∃s ∈ TΣ, u ∈ V (s) : t = M̂q0(s[u← p]), v ∈ V (t), t[v] = 〈〈q, p〉〉}
is infinite; and
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(ii) if 〈〈q, p〉〉 is not reachable, then #yj (Mq(s)) ≤ 1 for all s ∈ Lp.
The MTTR M is proper if it is productive and both i-proper and p-proper.

Note that Arg(q, j, p) ⊆ T〈〈Q,{p}〉〉∪∆. Note also that 〈〈q, p〉〉 is reachable if and
only if Arg(q, j, p) �= ∅.

Point (ii) in Definition 5.6 says that if a parameter appears more than once in
Mq(s), then 〈〈q, h(s)〉〉 is reachable. This (mild) additional requirement is needed
to force an lsi MTTR to be fcp, because Definition 4.6 of the fcp property requires
#yj (Mq(s)) ≤ N for all states q; i.e., 〈〈q, h(s)〉〉 might not be reachable.

Similar to the case of i-properness, we present two lemmas concerning the finite-
ness of Arg(q, j, p). First, let us show that it is decidable whether Arg(q, j, p) is
infinite.

Lemma 5.7. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR. For given q ∈ Q(m),
m ≥ 1, j ∈ [m], and p ∈ P , it is decidable whether or not Arg(q, j, p) is finite.
Moreover, Arg(q, j, p) can be constructed if it is finite.

Proof. Let Kp be the regular tree language {s ∈ TΣ̂ | p occurs exactly once in

s} with Σ̂ = Σ ∪ {p(0)}. Then τM̂ (Kp) ⊆ T〈〈Q,{p}〉〉∪∆. We now construct a partial
nondeterministic top-down tree transducer N which takes a tree in T〈〈Q,{p}〉〉∪∆ as
input and generates as output the jth subtree of an occurrence of 〈〈q, p〉〉. (A partial
nondeterministic top-down tree transducer is defined as in Definitions 3.1 and 3.2,
but for q and σ there may be no or several rules of the form 〈q, σ(x1, . . . , xk)〉 → ζ.)
Let N = ({r(0), id(0)},Γ,Γ, r, R′), where Γ = 〈〈Q, {p}〉〉 ∪ ∆ and R′ consists of the
following rules:

〈r, γ(x1, . . . , xk)〉 → 〈r, xi〉 for all γ ∈ Γ(k), k ≥ 1, i ∈ [k],
〈r, 〈〈q, p〉〉(x1, . . . , xm)〉 → 〈id, xj〉,
〈id, γ(x1, . . . , xk)〉 → γ(〈id, x1〉, . . . , 〈id, xk〉) for all γ ∈ Γ(k), k ≥ 0.

Clearly, τN (τM̂ (Kp)) = Arg(q, j, p), because every tree t in τM̂ (Kp) equals

M̂q0(s[u ← p]) for some s and u, and for every subtree 〈〈q, p〉〉(ξ1, . . . , ξm) of t,
(t, ξj) ∈ τN . The finiteness of L = τN (τM̂ (Kp)) can be decided by Lemma 3.8,
and in case of finiteness L can be constructed.

Lemma 5.8. Let M = (Q,P,Σ,∆, q0, R, h) be an i-proper and productive MTTR.
Let q ∈ Q(n), σ ∈ Σ(k), n, k ≥ 0, and p, p1, . . . , pk ∈ P such that p = hσ(p1, . . . , pk)
and 〈〈q, p〉〉 is reachable. Let 〈r, xi〉(t1, . . . , tm) be a subtree of rhsM (q, σ, 〈p1, . . . , pk〉)
with r ∈ Q(m), m ≥ 0, i ∈ [k], and t1, . . . , tm ∈ T〈Q,Xk〉∪∆(Yn).

For j ∈ [m], the set Arg(r, j, pi) is infinite if in tj there is
(i) an occurrence of yµ ∈ Yn, where Arg(q, µ, p) is infinite, or
(ii) an occurrence of an element of 〈Q,Xk − {xi}〉, or
(iii) an occurrence of yµ ∈ Yn such that there is a ξ ∈ Arg(q, µ, p) for which ξ[[rhs]]

contains an occurrence of an element of 〈Q,Xk −{xi}〉, where [[rhs]] denotes
the substitution [[〈〈q′, p〉〉 ← rhsM (q′, σ, 〈p1, . . . , pk〉) | q′ ∈ Q]].

Proof. Informally, and roughly speaking, the idea of this lemma is the following.
Consider the given rule

〈q, σ(x1, . . . , xk)〉(y1, . . . , yn)→ . . . 〈r, xi〉(t1, . . . , tj , . . . , tm) . . . 〈p1, . . . , pk〉.

In case (i), if ξµ ∈ Arg(q, µ, p), i.e., ξµ is a µth argument tree of q and p, then,
due to the application of the above rule, the tree tj [yµ ← ξµ[[rhs]]] determines a jth
argument tree of r and pi, i.e., an element of Arg(r, j, pi). By “determines” we mean
that the remaining parameters and the input variables �= xi have to be substituted by
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appropriate trees, and then all 〈q′, sν〉 (where sν is substituted for xν �= xi) have to
be substituted by Mq′(sν), and 〈q′, xi〉 by 〈〈q′, pi〉〉. Now, since it is given that there
are infinitely many such ξµ, there are also infinitely many tj [yµ ← ξµ[[rhs]]], and these
determine infinitely many elements of Arg(r, j, pi) because all involved substitutions
are productive (see Lemma 2.7). In case (ii), if tj contains an occurrence of 〈q′, xν〉
with ν �= i, and t ∈ Out(q′, pν), then the tree tj [[〈q′, xν〉 ← t]] determines an element
of Arg(r, j, pi). SinceM is i-proper, Out(q′, pν) is infinite and hence so is Arg(r, j, pi).
Finally, in case (iii), if ξ[[rhs]] contains an occurrence of 〈q′, xν〉 with ν �= i, and t ∈
Out(q′, pν), then tj [yµ ← ξ[[rhs]][[〈q′, xν〉 ← t]]] determines an element of Arg(r, j, pi).
We now turn to the formal proof.

Consider s ∈ TΣ, u ∈ V (s), and ξ1, . . . , ξn ∈ T〈〈Q,{p}〉〉∪∆ such that 〈〈q, p〉〉(ξ1, . . . ,
ξn) is a subtree of M̂q0(s[u ← p]). Consider also sν ∈ Lpν for ν ∈ [k]. Note that
such trees exist because 〈〈q, p〉〉 is reachable and because M satisfies point (iii) of
i-properness.

Let s′ = s[u ← σ(s1, . . . , sk)]. Note that s′/u = σ(s1, . . . , sk) is in Lp and

that s′[u ← p] = s[u ← p]. By Lemma 4.3, M̂q0(s
′[ui ← pi]) = M̂q0(s[u ←

p])[[rhs]]Ψs1,...,sk [[i]], with [[rhs]] as in (iii), Ψs1,...,sk = [[〈q′, xν〉 ←Mq′(sν) | q′ ∈ Q, ν ∈
[k]− {i}]], and [[i]] = [[〈q′, xi〉 ← 〈〈q′, pi〉〉 | q′ ∈ Q]].

SinceM is nondeleting, so is [[rhs]] and, by Lemma 3.11(1), so is Ψs1,...,sk . Then, by

Lemma 2.1, the tree M̂q0(s
′[ui← pi]) has a subtree 〈〈q, p〉〉(ξ1, . . . , ξn)[[rhs]]Ψs1,...,sk [[i]]

= ζΠξ1,...,ξnΨs1,...,sk [[i]] with ζ = rhsM (q, σ, 〈p1, . . . , pk〉) and Πξ1,...,ξn = [yη ← ξη[[rhs]]
| η ∈ [n]]. Again by Lemma 2.1 it has a subtree 〈〈r, pi〉〉(t′1, . . . , t′m), where, for j ∈ [m],

t′j = tjΠξ1,...,ξnΨs1,...,sk [[i]] ∈ Arg(r, j, pi).(∗)

(i) Let j ∈ [m] such that yµ is a subtree of tj . By Lemma 2.1, yµΠξ1,...,ξnΨs1,...,sk [[i]]
= ξµ[[rhs]]Ψs1,...,sk [[i]] is a subtree of t′j . Thus size(t′j) ≥ size(ξµ[[rhs]]Ψs1,...,sk [[i]]),
which is ≥ size(ξµ) by Lemma 2.7 and the fact that [[rhs]] and Ψs1,...,sk are pro-
ductive by Lemma 3.11. We now let ξ1, . . . , ξn vary in (∗): For every ξµ in the
infinite set Arg(q, µ, p) there are s ∈ TΣ, u ∈ V (s), and ξη, η ∈ [n] − {µ} such that

〈〈q, p〉〉(ξ1, . . . , ξn) is a subtree of M̂q0(s[u← p]); then the size of tjΠξ1,...,ξnΨs1,...,sk [[i]] ∈
Arg(r, j, pi) is ≥ size(ξµ). Thus, Arg(r, j, pi) is infinite.

(ii) Let j ∈ [m], q′ ∈ Q(l), l ≥ 0, and ν ∈ [k] − {i} such that tj has a subtree
〈q′, xν〉(t̄1, . . . , t̄l) for some trees t̄1, . . . , t̄l. Then 〈〈q′, pν〉〉 is reachable by the same
argument as given above equation (∗) (where we showed that 〈〈r, pi〉〉 is reachable).
By Lemma 2.1, t′j has the subtree Mq′(sν)[yη ← t̄ηΠξ1,...,ξnΨs1,...,sk [[i]] | η ∈ [l]], the
size of which is ≥ size(Mq′(sν)). Since M satisfies points (i) and (ii) of i-properness,
the set Out(q′, pν) = {Mq′(sν) | sν ∈ Lpν} is infinite. We now let sν vary in (∗):
For every sν ∈ Lpν the size of tjΠξ1,...,ξnΨs1,...,sk [[i]] ∈ Arg(r, j, pi) is ≥ size(Mq′(sν)).
Thus, Arg(r, j, pi) is infinite.

(iii) Let s ∈ TΣ and u ∈ V (s) such that M̂q0(s[u← p]) has a subtree 〈〈q, p〉〉(ξ1, . . . ,
ξn) for trees ξ1, . . . , ξn and ξµ[[rhs]] has a subtree 〈q′, xν〉(t̄1, . . . , t̄l) for some q′ ∈ Q(l),

l ≥ 0, ν ∈ [k] − {i}, and trees t̄1, . . . , t̄l. It follows from Lemma 2.6 (S
〈q′,xν〉
1 = 0)

that ξµ contains some 〈〈q′′, p〉〉, q′′ ∈ Q, such that rhsM (q′′, σ, 〈p1, . . . , pk〉) contains

〈q′, xν〉. Since 〈〈q′′, p〉〉 is reachable (because ξµ is a subtree of M̂q0(s[u← p])), 〈〈q′, pν〉〉
is reachable by the same argument as used above (∗). Thus, Out(q′, pν) is infinite. Let
j ∈ [m] such that yµ occurs in tj . Then, by Lemma 2.1, t′j has a subtreeMq′(sν)[yη ←
t̄ηΨs1,...,sk [[i]] | η ∈ [l]], the size of which is ≥ size(Mq′(sν)). Letting sν range over Lpν
in (∗) this implies, analogous to case (ii), that Arg(r, j, pi) is infinite.
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We are now ready to prove that properness (i.e., i-properness, p-properness, and
productivity) is a normal form for MTTRs.

Theorem 5.9. For every MTTR M there is (effectively) a proper MTTR prop(M)
equivalent to M . If M is a TR, then so is prop(M).

Proof. Let M = (Q,P,Σ,∆, q0, R, h). By Lemma 5.4 we may assume that M is
productive and i-proper. Let q ∈ Q(n) and p ∈ P . The idea of constructing prop(M)
is to delete all parameters yj of q for which Arg(q, j, p) is finite and to keep the
parameters yj1 , . . . , yjm of q for which Arg(q, jν , p) is infinite. The information on the
actual parameter tree which has to be substituted for yj is stored in the states of
prop(M). More precisely, a state of prop(M) will be of the form (q, ϕ), where ϕ is a
mapping which associates with jν the new parameter yν , and with j a tree ξj in the
finite set Arg(q, j, p).

Let us first define an auxiliary notion. For every q ∈ Q(n), n ≥ 0, and p ∈ P , let
Φq,p be the (finite) set of all mappings ϕ from [n] to T〈〈Q,{p}〉〉∪∆ ∪ Y such that there

are s ∈ TΣ, u ∈ V (s), and ξ1, . . . , ξn ∈ T〈〈Q,{p}〉〉∪∆: M̂q0(s[u ← p]) has a subtree
〈〈q, p〉〉(ξ1, . . . , ξn) and Fq,p(ϕ, ξ1, . . . , ξn). The predicate Fq,p(ϕ, ξ1, . . . , ξn) holds if for
all j ∈ [n] the following holds: if j = jη for an η ∈ [m], then ϕ(j) = yη, and otherwise
ϕ(j) = ξj , where {j1, . . . , jm} = {j ∈ [n] | Arg(q, j, p) is infinite} and j1 < · · · < jm.

By the definition of Arg, ϕ(j) �∈ Y implies ϕ(j) ∈ Arg(q, j, p). Note that Φq,p is
finite because ϕ(j) ∈ Ym∪Kj withKj = Arg(q, j, p) for finite Arg(q, j, p), andKj = ∅

otherwise. Therefore, Φq,p can be obtained effectively by checking, for the (finitely
many) mappings ϕ : [n]→ K, whether or not ϕ ∈ Φq,p (whereK = Ym∪

⋃
j∈[n]Kj can

be constructed by Lemma 5.7). This is decidable because, apart from the requirement
that ϕ(jη) = yη for all η ∈ [m] (which is decidable by Lemma 5.7), ϕ is in Φq,p if
and only if τ−1

M̂
(L) ∩ S is nonempty, where S = {s[u ← p] | s ∈ TΣ, u ∈ V (s)}

and L consists of all trees in T〈〈Q,{p}〉〉∪∆ which have a subtree 〈〈q, p〉〉(ξ1, . . . , ξn) with
ξj = ϕ(j) for all j �∈ ϕ−1(Y ). Clearly, L is regular and hence, by Lemma 3.7, τ−1

M̂
(L)

is regular. Since S is regular, so is τ−1
M̂

(L) ∩ S, which implies that its emptiness is
decidable.

We first construct the MTTR π(M) by deleting, in the right-hand side of a rule
(with look-ahead 〈p1, . . . , pk〉), all parameters yj of 〈r, xi〉 for which Arg(r, j, pi) is
finite and replacing them by the appropriate tree in Arg(r, j, pi). This tree is coded
in the states of π(M). Due to the new states of π(M), a parameter yjν of r with
Arg(r, jν , pi) infinite might correspond in π(M) to the parameter yν of a state (r, ϕ)
with finite Arg((r, ϕ), ν, pi). For this reason we have to iterate the application of π
(as in the construction in the proof of Lemma 5.4) until the ranks of the states do not
change anymore. This results in the desired MTTR prop(M).

Define π(M) = (Q′, P,Σ,∆, (q0,∅), R′, h) with Q′ = {(q, ϕ)(m) | q ∈ Q,∃p ∈ P :

ϕ ∈ Φq,p,m = |ϕ−1(Y )|}. For every (q, ϕ) ∈ Q′(m)
, σ ∈ Σ(k), q ∈ Q(n), m,n, k ≥ 0,

and p, p1, . . . , pk ∈ P with p = hσ(p1, . . . , pk), let the rule

〈(q, ϕ), σ(x1, . . . , xk)〉(y1, . . . , ym)→ ζ 〈p1, . . . , pk〉
be in R′ such that if ϕ �∈ Φq,p, then ζ is an arbitrary (“dummy”) tree in T∆(Ym)− Y
with #yj (ζ) = 1 for every j ∈ [m], and if ϕ ∈ Φq,p, then ζ = repl(rhs(ρ)Π), where ρ
is the (q, σ, 〈p1, . . . , pk〉)-rule of M , Π denotes the substitution

[yj ← ϕ(j)[[rhs]] | j ∈ [n]] with [[rhs]] = [[〈〈r, p〉〉 ← rhsM (r, σ, 〈p1, . . . , pk〉) | r ∈ Q]],

and for every subtree t ∈ T〈Q,Xk〉∪∆(Ym) of rhs(ρ)Π the tree repl(t) is recursively
defined as follows:
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• for t ∈ Ym, repl(t) = t,
• for t = δ(t1, . . . , tl) with δ ∈ ∆(l), l ≥ 0, and t1, . . . , tl ∈ T〈Q,Xk〉∪∆(Ym),

repl(t) = δ(repl(t1), . . . , repl(tl)), and
• for t = 〈q′, xi〉(t1, . . . , tl), 〈q′, xi〉 ∈ 〈Q,Xk〉(l), l ≥ 0, and
t1, . . . , tl ∈ T〈Q,Xk〉∪∆(Ym),

repl(t) = 〈(q′, ϕ′), xi〉(repl(tj1), . . . , repl(tjµ)),
where {j1, . . . , jµ} = {j ∈ [l] | Arg(q′, j, pi) is infinite}, j1 < · · · < jµ, and for
j ∈ [l],

ϕ′(j) =
{
yη if j = jη for an η ∈ [µ],
tj [[i]] otherwise

with [[i]] = [[〈r, xi〉 ← 〈〈r, pi〉〉 | r ∈ Q]].
This ends the construction of π(M).

Well-definedness of π(M). To prove that π(M) is well defined, we have to show
that repl(rhs(ρ)Π) is in T〈Q′,Xk〉∪∆(Ym). Since rhs(ρ) ∈ T〈Q,Xk〉∪∆(Yn) and ϕ(Yn) ⊆
Ym ∪ T〈〈Q,{p}〉〉∪∆ (because ϕ ∈ Φq,p), it follows that rhs(ρ)Π ∈ T〈Q,Xk〉∪∆(Ym). To
prove that repl(rhs(ρ)Π) ∈ T〈Q′,Xk〉∪∆(Ym) we must show that, in the definition of
repl, if 〈q′, xi〉(t1, . . . , tl) is a subtree of rhs(ρ)Π, then (q′, ϕ′) ∈ Q′; i.e., there is a p′

such that ϕ′ ∈ Φq′,p′ .
We will show that ϕ′ ∈ Φq′,pi , i.e., that there are s′ ∈ TΣ, u

′ ∈ V (s′), and

ξ′1, . . . , ξ
′
l ∈ T〈〈Q,{pi}〉〉∪∆ such that 〈〈q′, pi〉〉(ξ′1, . . . , ξ′l) is a subtree of M̂q0(s

′[u′ ←
pi]) and Fq′,pi(ϕ

′, ξ′1, . . . , ξ
′
l). Since ϕ ∈ Φq,p, there are s ∈ TΣ, u ∈ V (s), and

ξ1, . . . , ξn ∈ T〈〈Q,{p}〉〉∪∆ such that 〈〈q, p〉〉(ξ1, . . . , ξn) is a subtree of M̂q0(s[u ← p])
and Fq,p(ϕ, ξ1, . . . , ξn). Note in particular that 〈〈q, p〉〉 is reachable. Take s′ = s[u ←
σ(s1, . . . , sk)] with sν ∈ Lpν for all ν ∈ [k], and take u′ = ui. The sν exist, because

M is i-proper (point (iii)). By Lemma 4.3, M̂q0(s
′[u′ ← pi]) equals M̂q0(s[u ←

p])[[rhs]][[..]][[i]], where [[..]] denotes [[〈r, xν〉 ← Mr(sν) | 〈r, xν〉 ∈ 〈Q,Xk − {xi}〉]], and
[[rhs]] and [[i]] are as in the definition of π(M). Since 〈〈q, p〉〉(ξ1, . . . , ξn) is a subtree
of M̂q0(s[u ← p]) it follows, by Lemma 2.1 and the fact that [[..]] is nondeleting by

Lemma 3.11(1), that M̂q0(s
′[u′ ← pi]) has a subtree rhs(ρ)Π′[[..]][[i]], where Π′ = [yµ ←

ξµ[[rhs]] | µ ∈ [n]].
Consider the following two cases: (i) there are t′1, . . . , t

′
l ∈ T〈Q,Xk〉∪∆(Yn) such

that 〈q′, xi〉(t′1, . . . , t′l) is a subtree of rhs(ρ) and t′jΠ = tj for all j ∈ [l], and (ii)
〈q′, xi〉(t1, . . . , tl) is a subtree of ϕ(µ)[[rhs]] for some µ ∈ [n].

(i) Since rhs(ρ) has a subtree 〈q′, xi〉(t′1, . . . , t′l), it follows, by application of

Π′[[..]][[i]] (and Lemma 2.1), that M̂q0(s
′[u′ ← pi]) has a subtree 〈〈q′, pi〉〉(ξ′1, . . . , ξ′l)

with ξ′j = t′jΠ
′[[..]][[i]] for every j ∈ [l]. Let j ∈ [l] such that Arg(q′, j, pi) is finite.

Then by Lemma 5.8(ii) and (iii), both t′j and all ξµ[[rhs]] such that yµ occurs in t′j
do not contain elements of 〈Q,Xk − {xi}〉. Thus ξ′j = t′jΠ

′[[..]][[i]] equals t′jΠ
′[[i]]. By

Lemma 5.8(i), t′j does not contain any yµ ∈ Yn such that Arg(q, µ, p) is infinite. Thus,
since Fq,p(ϕ, ξ1, . . . , ξn), t

′
jΠ
′[[i]] = t′jΠ[[i]] = tj [[i]]. By the definition of ϕ′ this shows

that Fq′,pi(ϕ
′, ξ′1, . . . , ξ

′
l).

(ii) There is an occurrence of yµ in rhs(ρ), becauseM is nondeleting. Since ϕ(µ) =
ξµ, by the fact that Fq,p(ϕ, ξ1, . . . , ξn) holds, this means that in rhs(ρ)Π′[[..]][[i]] there is
a subtree 〈〈q′, pi〉〉(ξ′1, . . . , ξ′l) with ξ′j = tj [[..]][[i]] for j ∈ [l]. Since 〈q′, xi〉(t1, . . . , tl) is a
subtree of ξµ[[rhs]], it follows from the definition of second-order tree substitution that
ξµ has a subtree 〈〈q′′, p〉〉(ζ1, . . . , ζλ) and the right-hand side of the (q′′, σ, 〈p1, . . . , pk〉)-
rule ρ′′ has a subtree 〈q′, xi〉(t′1, . . . , t′l) such that tj = t′j [yν ← ζν [[rhs]] | ν ∈ [λ]] for
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every j ∈ [l]. Note that 〈〈q′′, p〉〉 is reachable because it occurs in ξµ. Now let j ∈ [l]
such that Arg(q′, j, pi) is finite. Then, as in case (i), by Lemma 5.8(ii) and (iii) applied
to ρ′′, both t′j and all ζν [[rhs]] such that yν occurs in t′j do not contain elements of
〈Q,Xk − {xi}〉. Hence tj does not contain elements of 〈Q,Xk − {xi}〉 and thus
ξ′j = tj [[..]][[i]] = tj [[i]]. By the definition of ϕ′ this shows that Fq′,pi(ϕ

′, ξ′1, . . . , ξ
′
l).

Equivalence of π(M) and M . We now prove that π(M) realizes the same trans-
lation as M . This follows from Claim 1 for (q, ϕ) = (q0,∅).

Claim 1. Let s ∈ TΣ, q ∈ Q(n), n ≥ 0, and p = h(s). For every ϕ ∈ Φq,p,
π(M)(q,ϕ)(s) =Mq(s)Π

′, where Π′ = [yj ← ϕ(j)[[〈〈r, p〉〉 ←Mr(s) | r ∈ Q]] | j ∈ [n]].
This claim is proved by induction on the structure of s. Let the induction hy-

pothesis be denoted by IH1. Let s = σ(s1, . . . , sk) with σ ∈ Σ(k), k ≥ 0, and
s1, . . . , sk ∈ TΣ. For i ∈ [k] let pi = h(si) and let m = rankQ′((q, ϕ)).

By Lemma 3.5, π(M)(q,ϕ)(σ(s1, . . . , sk)) = rhsπ(M)((q, ϕ), σ, 〈p1, . . . , pk〉)[[ ]],
where [[ ]] = [[〈r, xi〉 ← π(M)r(si) | 〈r, xi〉 ∈ 〈Q′, Xk〉]]. By the definition of the
right-hand sides of the rules of π(M) we get repl(rhs(ρ)Π)[[ ]], where repl, ρ, and Π
are as in the definition of the rules of π(M).

For t = rhs(ρ)Π it follows from Claim 2 that repl(rhs(ρ)Π)[[ ]] = rhs(ρ)Π[[. . .]],
where [[. . .]] = [[〈r, xi〉 ← Mr(si) | 〈r, xi〉 ∈ 〈Q,Xk〉]]. If we apply [[. . .]] to rhs(ρ)Π and
use Lemma 3.5 for M , then we get Mq(s)Π

′, which proves Claim 1.
Claim 2. Let t ∈ T〈Q,Xk〉∪∆(Ym) be a subtree of rhs(ρ)Π. Then repl(t)[[ ]] = t[[. . .]].
This claim is proved by induction on the structure of t. The induction hypothesis

is denoted by IH2.
If t ∈ Ym, then repl(t)[[ ]] = t[[ ]] = t = t[[. . .]]. If t = δ(t1, . . . , tl) with δ ∈ ∆(l), l ≥

0, and t1, . . . , tl ∈ T〈Q,Xk〉∪∆(Ym), then repl(δ(t1, . . . , tl))[[ ]] equals δ(repl(t1)[[ ]], . . . ,
repl(tl)[[ ]]). By IH2 this equals δ(t1[[. . .]], . . . , tl[[. . .]]) = t[[. . .]].

If t = 〈q′, xi〉(t1, . . . , tl) with 〈q′, xi〉 ∈ 〈Q,Xk〉(l), l ≥ 0, and t1, . . . , tl ∈
T〈Q,Xk〉∪∆(Ym), then repl(t)[[ ]] equals 〈(q′, ϕ′), xi〉(repl(tj1), . . . , repl(tjµ))[[ ]] with
{j1, . . . , jµ} = {j ∈ [l] | Arg(q′, j, pi) is infinite} and ϕ′ as in the definition of repl.
Applying the substitution [[ ]] we get

π(M)(q′,ϕ′)(si)[yη ← repl(tjη )[[ ]] | η ∈ [µ]].

Since ϕ′ ∈ Φq′,pi (as shown for the well-definedness of π(M)), we can apply IH1
to π(M)(q′,ϕ′)(si) and IH2 to repl(tjη [[ ]]) to get

Mq′(si)Π
′′[yη ← tjη [[. . .]] | η ∈ [µ]]

with Π′′ = [yj ← ϕ′(j)[[.]] | j ∈ [l]] and [[.]] = [[〈〈r, pi〉〉 ←Mr(si) | r ∈ Q]].
By the definition of ϕ′ we can write this as

Mq′(si)[yj ← tj [[i]][[.]] | j ∈ [l], j �= jη for η ∈ [µ]]

[yjη ← yη | η ∈ [µ]] [yη ← tjη [[. . .]] | η ∈ [µ]].

Since ϕ′ ∈ Φq′,pi , tj is in T〈Q,{xi}〉∪∆ for j �= jη. Therefore, in tj [[i]][[.]] = tj [[〈r, xi〉 ←
Mr(si) | r ∈ Q]] we can extend the substitution to all elements of 〈Q,Xk〉 to get
tj [[. . .]]. Altogether we get

Mq′(si)[yj ← tj [[. . .]] | j ∈ [l], j �= jη for η ∈ [µ]][yjη ← tjη [[. . .]] | η ∈ [µ]],

which equals Mq′(si)[yj ← tj [[. . .]] | j ∈ [l]] = 〈q′, xi〉(t1, . . . , tl)[[. . .]]. This ends the
proof of Claim 2.
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Nondeleting of π(M). Consider the ((q, ϕ), σ, 〈p1, . . . , pk〉)-rule r of π(M) and let
ϕ−1(Ym) = {j1, . . . , jm} with j1 < · · · < jm. Let ν ∈ [m]. If r is a dummy rule, then
#yν (rhs(r)) = 1. Otherwise rhs(r) = repl(rhs(ρ)Π), where ρ is the (q, σ, 〈p1, . . . , pk〉)-
rule of M . Since M is nondeleting, yjν occurs in rhs(ρ). Since ϕ ∈ Φq,p, ϕ(jν) = yν ;
this means that the substitution Π replaces yjν by yν , and hence yν occurs in rhs(ρ)Π.
To show that yν occurs in repl(rhs(ρ)Π), we prove that for t ∈ T〈Q,Xk〉∪∆(Ym), if yν
occurs in t, then it also occurs in repl(t). The proof is by induction on the structure
of t. It is obvious for t ∈ Ym and t = δ(t1, . . . , tl). For t = 〈q′, xi〉(t1, . . . , tl), let j ∈ [l]
such that yν occurs in tj , and let ϕ′ be as in the definition of repl. By induction, yν
occurs in repl(tj). Then yν occurs also in tj [[i]], where [[i]] is as in the definition of repl.
This means that tj [[i]] �∈ T〈〈Q,{pi}〉〉∪∆ and since ϕ′ ∈ Φq′,pi , this implies that ϕ′(j) = yη

for some η ∈ [µ] with j = j′η, where {j′1, . . . , j′µ} = ϕ′−1(Yµ) and j′1 < · · · < j′µ. By the
definition of repl, repl(tj′η ) = repl(tj) is a subtree of repl(t) and therefore yν occurs in
repl(t).

Nonerasing of π(M). Clearly, from the definition of repl, if repl(t) ∈ Y , then
t ∈ Y . Hence repl(rhs(ρ)Π) ∈ Y implies rhs(ρ)Π ∈ Y and so, obviously, rhs(ρ) ∈ Y .
Thus, since M is nonerasing, so is π(M).

I-properness of π(M). Since π(M) has the same look-ahead automaton as M ,
point (iii) of i-properness is preserved. It follows from the definition of Π and repl
and from i-properness of M that no (q0, ϕ) appears in the right-hand side of a rule of
π(M). Using Lemma 4.3 (and the fact that, in the definition of repl(t), ϕ′ ∈ Φq′,pi) it
is not difficult to see that if 〈〈(q, ϕ), p〉〉 is reachable, then ϕ ∈ Φq,p and hence, by the
definition of Φq,p, 〈〈q, p〉〉 is reachable. Also by Lemma 4.3, if (q, ϕ) �= (q0,∅), then
(q, ϕ) appears in the right-hand side of a rule of π(M), and so q �= q0. By Claim 1,
π(M)(q,ϕ)(s) = Mq(s)Π

′ with Π′ = [yj ← ϕ(j)[[〈〈r, p〉〉 ← Mr(s) | r ∈ Q]] | j ∈ [n]].
Since size(Mq(s)Π

′) ≥ size(Mq(s)), Out((q, ϕ), p) = {Mq(s)Π
′ | s ∈ Lp} is infinite if

{Mq(s) | s ∈ Lp} = Out(q, p) is infinite, which holds by i-properness of M .
P-properness. By constructing π(M) we have kept only those parameter positions

j of q for which Arg(q, j, p) is infinite. But even if Arg(q, j, p) is infinite, there might
be a ϕ ∈ Φq,p for which Arg((q, ϕ), j, p) is finite. This means that π(M) need not
be p-proper yet (see Example 5.10), and, as in the case of i-properness, we have
to iterate the application of π. For the termination condition of this iteration we
only need to consider particular states which are actually used in the derivations of
πk(M). Denote the state (· · · ((q, ϕ1), ϕ2) . . . , ϕk) of πk(M) by (q, ϕ1, . . . , ϕk). The
state (q, ϕ1, . . . , ϕk) is p-uniform if for each 0 ≤ i ≤ k − 1, ϕi+1 ∈ Φ(q,ϕ1,...,ϕi),p. We
iterate the application of π until we obtain the MTTR N (with set of states QN ) such
that

(∗) for every p ∈ P and p-uniform state (q, ϕ) of M ′ = π(N),

rankQ′((q, ϕ)) = rankQN (q),

where Q′ is the set of states of M ′.
Let us now show that, indeed, after a finite number of applications of π, (∗)

holds. For q ∈ Q and p ∈ P , define the tree Tq,p as follows. For k ≥ 0, the
state (q, ϕ1, . . . , ϕk) of πk(M) is a node of Tq,p if it is p-uniform and there is a p-
uniform state (q, ϕ1, . . . , ϕk, . . . , ϕl) of πl(M) with l > k which is of smaller rank
than (q, ϕ1, . . . , ϕk). There is an edge in Tq,p from every node (q, ϕ1, . . . , ϕk) to every
node (q, ϕ1, . . . , ϕk, ϕk+1). Clearly, if Tq,p is finite for every q ∈ Q and p ∈ P , then the
iteration of π terminates: Let l be maximal such that (q, ϕ1, . . . , ϕl) is a leaf of Tq,p for
some q ∈ Q and p ∈ P . Then the statement in (∗) holds for N = πl+1(M), because
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no p-uniform state (q, ϕ1, . . . , ϕl, ϕl+1) is a node of Tq,p and hence, by the definition
of the nodes of Tq,p, every p-uniform state (q, ϕ1, . . . , ϕl+1, ϕl+2) has the same rank
as (q, ϕ1, . . . , ϕl+1). To show the finiteness of Tq,p it suffices, by König’s lemma, to
show that every path ρ of Tq,p is finite. Assume to the contrary that ρ is infinite. Let
u = (q, ϕ1, . . . , ϕk) be a node of ρ. Then there is a descendant of u on the path ρ,
that has lower rank than u. This can be seen as follows: By the definition of the node
u, there is a p-uniform state (q, ϕ1, . . . , ϕk, . . . , ϕl) of πl(M), l > k, which has lower
rank than u. Now, for each i ∈ {k + 1, . . . , l} such that v = (q, ϕ1, . . . , ϕk, . . . , ϕi−1)
is on the path ρ, either v′ = (v, ϕi) = (q, ϕ1, . . . , ϕk, . . . , ϕi) has the same rank as v
and then v′ is on the path ρ because Φv,p = {v′} by the definition of Φv,p or v′ has
a lower rank n than v, and then, by the definition of Φv,p, each state (v, ϕ) has rank
n, in particular the child of v that is on the path ρ. Since each node u of ρ has a
descendant on ρ that has a lower rank than u, there is an infinite sequence of nodes
on ρ with strictly decreasing ranks. This contradicts the finiteness of the rank of q.

Before we show that M ′ is p-proper, we prove a claim about p-uniformity.
Claim 3. Let k ≥ 0, let q be a state of πk(M), and let p ∈ P .
(i) If 〈q, xi〉 appears in the right-hand side of a (q′, σ, 〈p1, . . . , pk′〉)-rule of πk(M)

for some state q′ of πk(M), k′ ≥ 0, i ∈ [k′], and p1, . . . , pk′ ∈ P , then q is
pi-uniform.

(ii) If 〈〈q, p〉〉 is reachable (by πk(M)), then q is p-uniform.
The proof of part (i) of Claim 3 is by induction on k. For k = 0, every state is p-

uniform for all p ∈ P , and thus the statement holds. Now assume the statement holds
for πk(M). If 〈(q, ϕ), xi〉 appears in the right-hand side ζ of the ((q′, ϕ′), σ, 〈p1, . . . ,
pk′〉)-rule of π(πk(M)), then, by the definition of the rules of π(πk(M)), ζ is of the
form repl(rhs(ρ)Π), where ρ is the (q′, σ, 〈p1, . . . , pk′〉)-rule of πk(M). Thus, by the
definition of repl and Π, 〈q, xi〉 occurs in rhs(ρ), which means, by induction, that q is
pi-uniform. In the proof of well-definedness of π(M) it is shown that ϕ ∈ Φq,pi , and
hence also (q, ϕ) is pi-uniform. This proves part (i) of the claim. To prove part (ii),
we may assume that q �= r0, the initial state of πk(M); in fact, r0 = (q0,∅, . . . ,∅)
is p-uniform for every p. If 〈〈q, p〉〉 is reachable (by πk(M)), then, by definition, it

appears in π̂k(M)r0(s[u← p]) for some tree s and node u of s, where π̂k(M) denotes

the extension of πk(M). Since q �= r0, u must be of the form u′j with u′ ∈ N
∗ and

j ≥ 1. Hence, by Lemma 4.3, 〈q, xj〉 must occur in the right-hand side of some rule of
πk(M) with look-ahead 〈p1, . . . , pl〉, l ≥ 1, and pj = p. By part (i) of the claim this
implies that q is p-uniform. This concludes the proof of Claim 3.

Let us now prove (i) of p-properness for N . Let 〈〈q, p〉〉 be reachable (by N).
By Claim 3(ii), q is p-uniform. Since 〈〈q, p〉〉 is reachable, the set Φq,p must, by
definition, contain some element ϕ. Then (q, ϕ) is p-uniform, and it follows from (∗)
that n = |ϕ−1(Y )| and thus {j ∈ [n] | Arg(q, j, p) is infinite} = {1, . . . , n}. Thus (i)
of p-properness holds for N . Now consider M ′. Note that, by the previous argument,

if (q, ϕ) is a p-uniform state of M ′, then ϕ = ϕn, where q ∈ Q
(n)
N and ϕn(j) = yj

for every j ∈ [n]. Clearly, (i) of p-properness also holds for M ′. Formally this can
be shown by proving that Arg((q, ϕn), j, p) = Arg(q, j, p)[[rel]], where [[rel]] denotes the

relabeling [[〈〈q′, p〉〉 ← 〈〈(q′, ϕn′), p〉〉 | q′ ∈ Q(n′)
N , n′ ≥ 0]]. This follows from Claim 4

(for q equal to the initial state of N and ϕ equal to ∅).
Claim 4. Let s ∈ TΣ, u ∈ V (s), and p ∈ P , and let (q, ϕ) be an h(s[u ← p])-

uniform state of M ′. Then

M̂ ′(q,ϕ)(s[u← p]) = N̂q(s[u← p])[[rel]].
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The proof is by induction on the structure of s. Let s = σ(s1, . . . , sk) with σ ∈ Σ(k),
k ≥ 0, and s1, . . . , sk ∈ TΣ. For u = ε we get M̂ ′(q,ϕ)(s[u ← p]) = 〈〈(q, ϕ), p〉〉. Since

ϕ = ϕn, where n is the rank of q, 〈〈(q, ϕ), p〉〉 = 〈〈q, p〉〉[[rel]] = N̂q(s[u ← p])[[rel]]. For
u = ju′ with j ≥ 1 and u′ ∈ N

∗, s[u ← p] = σ(s̃1, . . . , s̃k) with s̃j = sj [u
′ ← p] and

s̃i = si for i ∈ [k] − {j}. By Lemma 3.5 and the definition of the right-hand sides
of M ′, M̂ ′(q,ϕ)(s[u ← p]) = repl(rhs(ρ)Π)[[ ]], where ρ is the (q, σ, 〈h(s̃1), . . . , h(s̃k)〉)-
rule of N and [[ ]] = [[〈(q′, ϕ′), xi〉 ← M̂ ′(q′,ϕ′)(s̃i) | 〈(q′, ϕ′), xi〉 ∈ 〈Q′, Xk〉]]. By

Claim 3(i), if 〈(q′, ϕ′), xi〉 occurs in repl(rhs(ρ)Π), then (q′, ϕ′) is h(s̃i)-uniform and, by

the argument given above Claim 4, ϕ′ = ϕn′ , where q
′ ∈ Q(n′)

N . Clearly, repl(rhs(ρ)Π)

equals rhs(ρ)[[ ]] with [[ ]] = [[〈q′, xi〉 ← 〈(q′, ϕn′), xi〉 | 〈q′, xi〉 ∈ 〈QN , Xk〉(n′), n′ ≥ 0]].
Furthermore, we can restrict the substitution [[ ]] to those 〈(q′, ϕ′), xi〉 which occur
in repl(rhs(ρ)Π) and then apply the induction hypothesis to s̃j = sj [u ← p]. If we
combine the resulting substitution with [[ ]] and apply Claim 1 to s̃i = si for i ∈ [k]−{j}
(where Π′ is the identity), then we get rhs(ρ)[[〈q′, xi〉 ← N̂q′(s̃i)[[rel]] | 〈q′, xi〉 ∈
〈QN , Xk〉 occurs in rhs(ρ)]] = rhs(ρ)[[〈q′, xi〉 ← N̂q′(s̃i)[[rel]] | 〈q′, xi〉 ∈ 〈QN , Xk〉]],
which equals N̂q(s[u← p])[[rel]]. This proves Claim 4.

To show (ii) of p-properness of M ′, note that if ϕ ∈ Φq,p, then 〈〈q, p〉〉 is reachable
(byN), and hence, by Claim 3(ii), q is p-uniform; then also (q, ϕ) is p-uniform, ϕ = ϕn,
and, by Claim 4, 〈〈(q, ϕ), p〉〉 is reachable (byM ′). Thus, if 〈〈(q, ϕ), p〉〉 is not reachable,
then ϕ �∈ Φq,p. This implies a dummy right-hand side for all ((q, ϕ), σ, 〈p1, . . . , pk〉)-
rules with hσ(p1, . . . , pk) = p and therefore #yj (M

′
(q,ϕ)(s)) = 1 for all s ∈ Lp. This

proves (ii) of p-properness and concludes the proof of properness of M ′. Hence, the
lemma holds for prop(M) =M ′.

The following example illustrates the construction of a proper MTTR as given in
the proof of Theorem 5.9.

Example 5.10. LetM = (Q, {p},Σ,∆, q0, R, h) be the MTT withQ = {q(0)0 , q(2)},
Σ = {a(1), b(1), e(0)}, ∆ = {σ(3), γ(1), a(0), b(0), e(0)}, and R consisting of the following
rules (where the only look-ahead 〈p〉 is omitted, as usual):

〈q0, a(x1)〉 → 〈q, x1〉(a, a), 〈q, a(x1)〉(y1, y2) → σ(y1, y2, 〈q, x1〉(a, a)),
〈q0, b(x1)〉 → 〈q, x1〉(b, b), 〈q, b(x1)〉(y1, y2) → σ(y1, y2, 〈q, x1〉(b, γ(y2))),
〈q0, e〉 → e, 〈q, e〉(y1, y2) → σ(y1, y2, e).

Note that M is productive and i-proper. Let us now construct the MTT π(M) as
defined in the proof of Theorem 5.9. Clearly, Arg(q, 1, p) = {a, b} and Arg(q, 2, p) =
{γn(c) | n ≥ 0, c ∈ {a, b}}. Thus, Φq,p consists of the two mappings ϕa and ϕb
with ϕa(1) = a, ϕa(2) = y1, ϕb(1) = b, and ϕb(2) = y1. Therefore the states of
M1 = π(M) are (q0,∅)(0), (q, ϕa)

(1), (q, ϕb)
(1), abbreviated by q0, qa, qb, respectively.

For every c ∈ {a, b}, M1 has the following rules.

〈q0, a(x1)〉 → 〈qa, x1〉(a), 〈qc, a(x1)〉(y1) → σ(c, y1, 〈qa, x1〉(a)),
〈q0, b(x1)〉 → 〈qb, x1〉(b), 〈qc, b(x1)〉(y1) → σ(c, y1, 〈qb, x1〉(γ(y1))),
〈q0, e〉 → e, 〈qc, e〉(y1) → σ(c, y1, e).

Now for M1, Arg(qa, 1, p) = {a} and Arg(qb, 1, p) = {γn(c) | n ≥ 0, c ∈ {a, b}}.
Since 〈〈qa, p〉〉 is reachable this means that M1 is not p-proper.

Following the proof of Theorem 5.9, we have to construct the MTT N = π(M1),
because rankQ′((q, ϕa)) < rankQ(q). Clearly, Φqa,p = {ϕ′a} with ϕ′a(1) = a, and
Φqb,p = {ϕ1} with ϕ1(1) = y1. Thus, the states of N are (q0,∅)(0), (qa, ϕ

′
a)

(0), and
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(qb, ϕ1)
(1), abbreviated by q0, qa, and qb, respectively. The rules of N are as follows:

〈q0, a(x1)〉 → 〈qa, x1〉,
〈q0, b(x1)〉 → 〈qb, x1〉(b),
〈q0, e〉 → e,
〈qa, a(x1)〉 → σ(a, a, 〈qa, x1〉),
〈qb, a(x1)〉(y1) → σ(b, y1, 〈qa, x1〉),
〈qa, b(x1)〉 → σ(a, a, 〈qb, x1〉(γ(a))),
〈qb, b(x1)〉(y1) → σ(b, y1, 〈qb, x1〉(γ(y1))),
〈qa, e〉 → σ(a, a, e),
〈qb, e〉(y1) → σ(b, y1, e).

The MTT N is p-proper because Arg(qb, 1, p) = {γn(c) | n ≥ 0, c ∈ {a, b}} (and
all elements of 〈〈QN , {p}〉〉 are reachable). It is easy to see that N is equivalent toM .

6. From linear size increase to finite copying. In this section we prove
that if a proper MTTR M is lsi, then it is finite copying (i.e., both fci and fcp; see
section 4.1). The proof is split up into the following three stages, using fnest (see
section 4.2) as an intermediate notion:

(I) If M is lsi, then it is fnest.
(II) If M is lsi and fnest, then it is fcp.
(III) If M is lsi, fnest, and fcp, then it is fci.
We first prove (II), then (III), and finally (I). The reason for this order is that

the proof of (I) will use results that are proved in (III). The idea in each stage is
roughly as follows: First, it is proved that if M ’s copying is not bounded (i.e., M is
not fcp, not fci, and not fnest for (II), (III), and (I), respectively), then we can find
an input tree in which some part s can be pumped, i.e., repeated; each repetition of s
will produce a copy of a certain parameter (for (II)) or of a certain state (for (III) and
(I)). Second, it is shown that this repetition gives a size increase that is not linearly
bounded (by any c); in this part the properness of M is used: it is shown that for any
c we can pick a sufficiently large output tree t, a copy of which is generated with each
repetition of s, and a sufficiently large i such that after i repetitions of s the size of
the corresponding output tree is larger than c times the size of the input tree.

6.1. From lsi and fnest to fcp (II). We now present (in Lemma 6.2) a pump-
ing lemma for non-fcp MTTR

fnests, which allows us to prove (in Theorem 6.3) that if
a proper MTTR

fnest is lsi, then it is fcp.

First, for an MTTR M , consider the number k of occurrences of yν in M̂r(t[u← p])
with p = h(t/u). Clearly, if M̂r(t[u← p]) has a subtree 〈〈r1, p〉〉(ξ1, . . . , ξm1) such that
yν occurs in ξν1 for some ν1 ∈ [m1], then, assuming thatM is nondeleting, the number
of yν ’s in Mr(t) must be at least k − 1 plus the number of yν1 ’s in Mr1(t/u). This is
proved in the next lemma, in such a way that the idea can be iterated.

Lemma 6.1. Let M = (Q,P,Σ,∆, q0, R, h) be a nondeleting MTTR. For r0 ∈
Q(m0), r1 ∈ Q(m1), ν0 ∈ [m0], ν1 ∈ [m1], t0 ∈ TΣ, u1 ∈ V (t0), and k ∈ N, let
P(r0, ν0, t0, r1, ν1, u1, k) be the following statement, with p1 denoting h(t0/u1):

#yν0 (M̂r0(t0[u1 ← p1])) ≥ k and M̂r0(t0[u1 ← p1]) has a subtree
〈〈r1, p1〉〉(ξ1, . . . , ξm1) for certain ξ1, . . . , ξm1 such that #yν0 (ξν1) ≥ 1.

Let r2 ∈ Q(m2), ν2 ∈ [m2], u2 ∈ V (t0/u1), and l ∈ N. If P(r0, ν0, t0, r1, ν1, u1, k)
and P(r1, ν1, t0/u1, r2, ν2, u2, l), then P(r0, ν0, t0, r2, ν2, u1u2, k + l − 1).
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Proof. Note that t0/u1u2 = (t0/u1)/u2. Let t1 = t0/u1, p1 = h(t1), and
p2 = h(t0/u1u2) = h(t1/u2). By Lemma 4.2, M̂r0(t0[u1u2 ← p2]) equals t[[. . .]]
with t = M̂r0(t0[u1 ← p1]) and [[. . .]] = [[〈〈q′, p1〉〉 ← M̂q′(t1[u2 ← p2]) | q′ ∈ Q]].
We use Lemma 2.6 to compute the number of occurrences of yν0 ’s in this tree.
By the first assumption, t has at least k leaves u ∈ Vyν0 (t), and it has a subtree
〈〈r1, p1〉〉(ξ1, . . . , ξm1

) with #yν0 (ξν1) ≥ 1. Thus, t has a leaf u ∈ Vyν0 (t) such that∏
F
[[...]]
t,u ≥ #yν1 (M̂r1(t1[u2 ← p2])), which is ≥ l by the second assumption. Hence,

S
yν0
1 + S

yν0
2 of Lemma 2.6 equals S

yν0
1 ≥ k − 1 + l. We have used the fact that

#yν (M̂q′(t1[u2 ← p2])) ≥ 1 for all ν and q′, which follows from Lemma 3.11(1) be-

cause M is nondeleting (and hence so is M̂).
The substitution [[. . .]] is nondeleting, because M̂ is nondeleting. Thus, since t

has a subtree 〈〈r1, p1〉〉(ξ1, . . . , ξm1
), it follows from Lemma 2.1 that M̂r0(t0[u1u2 ←

p2]) = t[[. . .]] has a subtree 〈〈r1, p1〉〉(ξ1, . . . , ξm1
)[[. . .]] = M̂r1(t1[u2 ← p2])[. . . ], where

[. . . ] denotes [yj ← ξj [[. . .]] | j ∈ [m1]].

By the second assumption, M̂r1(t1[u2 ← p2]) has a subtree 〈〈r2, p2〉〉(ζ1, . . . , ζm2
)

with #yν1 (ζν2) ≥ 1. Thus we obtain a subtree 〈〈r2, p2〉〉(ζ1[. . . ], . . . , ζm2
[. . . ]) and

ζν2 [. . . ] has a subtree ξν1 [[. . .]] which contains yν0 (because #yν0 (ξν1) ≥ 1 and M is
nondeleting).

Lemma 6.2. Let M = (Q,P,Σ,∆, q0, R, h) be a nondeleting MTTR
fnest with the

property: if 〈〈q, p〉〉 ∈ 〈〈Q,P 〉〉(m) is not reachable, then #yj (Mq(s)) ≤ 1 for all j ∈ [m]
and s ∈ Lp (property (ii) of Definition 5.6 of p-properness).

If M is not fcp, then there are m ≥ 1, q ∈ Q(m), j ∈ [m], s ∈ TΣ, u ∈ V (s), and
p ∈ P such that

(1) #yj (M̂q(s[u← p])) ≥ 2,

(2) M̂q(s[u← p]) has a subtree 〈〈q, p〉〉(ξ1, . . . , ξm) with #yj (ξj) ≥ 1, and
(3) p = h(s) = h(s/u).
Proof. We first define an auxiliary notion. For t ∈ TΣ, u an ancestor of v ∈ V (t),

q ∈ Q(m), µ ∈ [m], q′ ∈ Q(m′), µ′ ∈ [m′], define (q, µ) →u,v (q′, µ′) if, for ξq,u,v =

M̂q(t/u[v
′ ← pv]) with v = uv′ and pv = h(t/v), #yµ(ξq,u,v) ≥ 2 and ξq,u,v has a

subtree 〈〈q′, pv〉〉(ξ1, . . . , ξm′) such that #yµ(ξµ′) ≥ 1. Note that (q, µ) →u,v (q′, µ′)
if and only if P(q, µ, t/u, q′, µ′, v′, 2), where P is the statement of Lemma 6.1. The
relation → is transitive; i.e., for a descendant w of v,

if (q, µ)→u,v (q′, µ′) and (q′, µ′)→v,w (q′′, µ′′), then (q, µ)→u,w (q′′, µ′′).

This follows from Lemma 6.1, because (q, µ) →u,v (q′, µ′) and (q′, µ′) →v,w (q′′, µ′′)
imply that P(q, µ, t/u, q′′, µ′′, v′w′, 3) with w′ ∈ N

∗ such that w = vw′, and thus
(q, µ)→u,w (q′′, µ′′).

Assume that M is not fcp. Then, in terms of the → notation, the lemma says
that there are m ≥ 1, q ∈ Q(m), j ∈ [m], s ∈ TΣ, u ∈ V (s), and p ∈ P such that

• (q, j)→ε,u (q, j) (points (1) and (2) of the lemma),
• p = h(s) = h(s/u) (point (3) of the lemma).

Since M is not fcp, for every n ∈ N, there are q ∈ Q(m), j ∈ [m], and t ∈ TΣ such
that #yj (Mq(t)) > n. The following claim shows that if #yj (Mq(t/u)) is “large” for
a node u of t, then there must be a descendant v of u, a state r, and a parameter yν
of r such that (q, j)→u,v (r, ν) and #yν (Mr(t/v)) is still “large.” The application of
this claim can be iterated to show the existence of a sequence of descendants v and a
sequence of steps →, which will eventually lead to a repetition of a state-parameter
pair that allows us to define s and u such that (1)–(3) hold.
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Let B be a nesting bound for M . Let η be the maximal height of the right-hand
side of a rule of M , i.e., η = max{height(rhs(ρ)) | ρ ∈ R}, and let κ ≥ 1 be an upper
bound for the number of occurrences of one particular parameter in the right-hand
side of a rule of M , i.e., #y(rhs(ρ)) ≤ κ for every y ∈ Y and ρ ∈ R.

Claim. For every c ≥ 1, t ∈ TΣ, u ∈ V (t), q ∈ Q(m), and µ ∈ [m], if #yµ(Mq(t/u))

is greater than cBη · κB , then there exist a descendant v of u, a state r ∈ Q(m′), and
a ν ∈ [m′] such that (q, µ)→u,v (r, ν) and #yν (Mr(t/v)) > c.

Proof of the claim. Let w be a longest descendant of u such that #yµ(ξq,u,w) = 1.
Clearly, such a w exists, because #yµ(ξq,u,u) = 1. Then there must be a child v of
w that satisfies the requirements of the claim. Assume to the contrary, that if v is
a child of w, then it does not satisfy the requirements, i.e., for every r ∈ Q(m′) and
ν ∈ [m′] with (q, µ)→u,v (r, ν), #yν (Mr(t/v)) ≤ c. This will lead to a contradiction.

By Lemmas 4.2 (applied to t/u and w) and 3.5,

Mq(t/u) = ξq,u,w[[rhs]][[. . .]],

where [[rhs]] = [[〈〈r, pw〉〉 ← rhsM (r, σ, 〈p1, . . . , pk〉) | r ∈ Q]] with σ = t[w] ∈ Σ(k),
k ≥ 0, pw = h(t/w), pi = h(t/wi) for i ∈ [k], and [[. . .]] = [[〈r, xi〉 ← Mr(t/wi) |
〈r, xi〉 ∈ 〈Q,Xk〉]]. Now, #yµ(ξq,u,w[[rhs]]) ≤ κB . This is true because by Lemma 2.6,

#yµ(ξq,u,w[[rhs]]) = S
yµ
1 =

∑
z∈Vyµ (ξq,u,w)

∏
F
[[rhs]]
ξq,u,w,z

, which equals
∏
F
[[rhs]]
ξq,u,w,z

for the

unique z with Vyµ(ξq,u,w) = {z}. Since #yµ(Mq(t/u)) > 1, 〈〈q, h(t/u)〉〉 is reachable by
the assumption of the lemma. Thus, by Lemma 4.13, there are at most B occurrences

of elements of 〈〈Q, {pw}〉〉 on the label path lpath(ξq,u,w, z). Hence,
∏
F
[[rhs]]
ξq,u,w,z

is

the product of at most B numbers #yν (rhsM (r, σ, 〈p1, . . . , pk〉)) ≤ κ for r ∈ Q and

ν ∈ [rankQ(r)], and therefore
∏
F
[[rhs]]
ξq,u,w,z

≤ κB .

Since every label path of ξq,u,w is of the form w0〈〈q1, pw〉〉w1 · · · 〈〈ql, pw〉〉wl with
l ≤ B, q1, . . . , ql ∈ Q, and w0, . . . , wl ∈ ∆∗, it follows from Lemma 2.3(i) that every
label path π in ξq,u,w[[rhs]] is of the form w0v1w1 · · · vlwl, where each vi is a label path
in rhsM (qi, σ, 〈p1, . . . , pk〉). By the definition of η, the length of vi is ≤ η. Thus,
#〈Q,Xk〉(π) =

∑
i∈[l]#〈Q,Xk〉(vi) ≤ Bη.

Let ζ = ξq,u,w[[rhs]]. By Lemma 2.6, #yµ(ζ[[. . .]]) =
∑
z∈Vyµ (ζ)

∏
F
[[...]]
ζ,z . This is

≤ κB ·∏F
[[...]]
ζ,z , where z ∈ Vyµ(ζ) such that

∏
F
[[...]]
ζ,z is maximal, because #yµ(ζ) ≤

κB . Since #〈Q,Xk〉(π) ≤ Bη for π = lpath(ζ, z),
∏
F
[[...]]
ζ,z is the product of at most

Bη numbers #yν (Mr(t/wi)). Let us now show that each such number is ≤ c. We
need to show that (q, µ) →u,wi (r, ν). By the definition of w, #yµ(ξq,u,wi) �= 1.
Since M is nondeleting it follows from Lemma 3.11(1) that #yµ(ξq,u,wi) ≥ 1, and
thus #yµ(ξq,u,wi) ≥ 2. Since 〈r, xi〉 occurs in ζ at some node z′ with z = z′νz′′,
ζ has a subtree 〈r, xi〉(ζ1, . . . , ζm′) for some ζ1, . . . , ζm′ ∈ T〈Q,Xk〉∪∆(Ym), and yµ
occurs in ζν . By Lemma 4.3, ξq,u,wi = ζ[[..]][[i]], with [[..]] and [[i]] as in that lemma.
It follows from Lemma 3.11(1) that [[..]][[i]] is nondeleting. Thus, by Lemma 2.1,
ξq,u,wi has a subtree 〈〈r, pi〉〉(ζ1[[..]][[i]], . . . , ζm′ [[..]][[i]]) and yµ occurs in ζν [[..]][[i]]. This
proves that (q, µ)→u,wi (r, ν) and thus, by assumption, #yν (Mr(t/wi)) ≤ c. We get
#yµ(Mq(t/u)) ≤ cBη · κB , which is a contradiction and ends the proof of the claim.

Now, let c0 = 1 and ci = cBηi−1κ
B for i ≥ 1. Since M is not fcp, for every n ≥ 1

there exist r0 ∈ Q(m0), ν0 ∈ [m0], and t ∈ TΣ such that #yν0 (Mr0(t)) > cn. Let v0 = ε.
We apply the claim for i = 0, 1, . . . , n− 1 to u = vi, q = ri, and µ = νi to obtain that
there exist a descendant vi+1 of vi, a state ri+1 ∈ Q(mi+1), and νi+1 ∈ [mi+1] such
that (ri, νi)→vi,vi+1 (ri+1, νi+1) and #yνi+1

(Mri+1(t/vi+1)) > cn−(i+1).
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Take n = |Q|·m·|P |, wherem is the maximal rank of a state ofM . Then there are
indices 0 ≤ i < i′ ≤ n such that q = ri = ri′ , j = νi = νi′ , and p = h(t/vi) = h(t/vi′).
Then (q, j)→vi,vi′ (q, j) by the transitivity of →. Let s = t/vi and viu = vi′ . Clearly
(3) holds. Moreover, in s, (q, j)→ε,u (q, j), which means that (1) and (2) hold.

We now prove that if a proper MTTR
fnest M is lsi, then it is fcp; i.e., we prove

step (II). The idea is to assume that M is not fcp, and then to “pump” the tree
s[u ← p] of Lemma 6.2 in order to show that this implies that M is not lsi. We
use the following notation to pump a tree. For s ∈ TΣ, u ∈ V (s), p ∈ P , and
s′ ∈ TΣ(P ), let s[u← p] • s′ denote s[u← s′]. Let (s[u← p])0 = p, and for n ∈ N let
(s[u← p])n+1 = (s[u← p]) • (s[u← p])n. Thus, e.g.,

(s[u← p])1 = s[u← p] • p = s[u← p],

(s[u← p])2 = (s[u← p]) • (s[u← p]) = s[u← s[u← p]], and

(s[u← p])3 = (s[u← p]) • s[u← s[u← p]] = s[u← s[u← s[u← p]]].

We will only pump the tree s[u ← p], for a given MTTR, if ĥ(s[u ← p]) = p. Note
that this condition is satisfied in Lemma 6.2 by point (3).

Theorem 6.3. Let M be a proper MTTR
fnest. If M is lsi, then it is fcp.

Proof. Let M = (Q,Σ,∆, q0, R, P, h) be lsi; i.e., there is a c ∈ N such that for
every input tree t,

size(τM (t)) ≤ c · size(t).(∗)

Assume now that M is not fcp. We will derive a contradiction by constructing an
input tree t such that size(τM (t)) > c · size(t). Let q ∈ Q(m), m ≥ 1, j ∈ [m], s ∈ TΣ,
p = h(s), and u ∈ V (s) be such that (1)–(3) of Lemma 6.2 hold. Note that since M
is proper it satisfies the conditions of Lemma 6.2.

The idea of constructing a t such that (∗) does not hold is as follows: Let s0 ∈ TΣ
and u0 ∈ V (s0) such that

M̂q0(s0[u0 ← p]) has a subtree 〈〈q, p〉〉(ξ1, . . . , ξm)(†)

for some trees ξ1, . . . , ξm. Consider input trees ti obtained by i times pumping the tree
s[u ← p] in the tree s0[u0 ← s]. Then the size of the trees ti grows at most linearly
with constant size(s[u← p]). In the output tree τM (ti) there are at least i occurrences
of the subtree ξj [[. . .]] for some second-order tree substitution [[. . .]]. Hence, the size of
the trees τM (ti) grows at least linearly with constant size(ξj). Thus, if we choose s0
and u0 in such a way that size(ξj) is larger than the product of c and size(s[u← p]),
then size(τM (ti)) grows faster than c · size(ti), which implies that we can find an i
such that (∗) does not hold for t = ti.

Recall Definition 5.6 of p-properness. In order to choose s0 and u0 appropriately
we need the set Arg(q, j, p) to be infinite, i.e., to contain arbitrarily large trees. This
is guaranteed by point (i) of Definition 5.6 if 〈〈q, p〉〉 is reachable. The latter holds for
the following reason: Since M is nondeleting, by Lemma 3.11(1), #yν (Mr(s/u)) ≥
1 for every r ∈ Q(m′) and ν ∈ [m′]. By Lemmas 4.2 and 2.6 and the fact that
#yj (M̂q(s[u ← p])) ≥ 2 by (1), this implies that #yj (Mq(s)) ≥ 2. Thus, 〈〈q, p〉〉 is
reachable by point (ii) of Definition 5.6.

We now show the effect of pumping the tree s[u ← p] in the input tree s =
s[u ← p] • s/u. For i ≥ 0 let t′i = (s[u ← p])i • s/u. Then #yj (Mq(t

′
i)) > i. Using

the fact that M is nondeleting, this follows (as above, by Lemmas 4.2 and 2.6) from
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#yj (M̂q(t
′
i[u
i ← p])) > i, which is a consequence of the next claim and the definition

of P (cf. Lemma 6.1).
Claim. For i ≥ 0, P(q, j, t′i, q, j, ui, i+ 1).
The proof of this claim is by induction on i. For i = 0, P(q, j, t′i, q, j, ui1, i + 1)

because ξ = M̂q(s/u[ε ← p]) = 〈〈q, p〉〉(y1, . . . , ym) and thus #yj (ξ) ≥ 1 and ξ has a
subtree 〈〈q, p〉〉(ξ1, . . . , ξm) with #yj (ξj) = #yj (yj) = 1. For i + 1 > 0, by induction,
P(q, j, t′i, q, j, ui, i + 1). Clearly, by (3), h(t′i+1/u

i) = h(s) = p = h(s/u) = h(t′i/u
i),

and t′i+1[u
i ← p] = t′i[u

i ← p]. Thus, P(q, j, t′i+1, q, j, u
i, i + 1). By (1) and (2),

P(q, j, s, q, j, u, 2), which is equivalent to P(q, j, t′i+1/u
i, q, j, u, 2) because t′i+1/u

i = s.
By Lemma 6.1 this means that P(q, j, t′i+1, q, j, u

iu, i+ 2), which concludes the proof
of the claim.

Now let ti = s0[u0 ← t′i], where s0 ∈ TΣ and u0 ∈ V (s0) satisfy (†). Thus, ti is the
result of pumping the tree s[u← p] in the input tree s0[u0 ← s]. Since #yj (M̂q(t

′
i) > i,

we obtain size(τM (ti)) > i · size(ξj) as follows: By Lemma 4.2, τM (ti) = M̂q0(s0[u0 ←
p])[[. . .]], where [[. . .]] = [[〈〈r, p〉〉 ← Mr(t

′
i) | r ∈ Q]]. By Lemma 2.1, M̂q0(s0[u0 ←

p])[[. . .]] has a subtree ξ = 〈〈q, p〉〉(ξ1, . . . , ξm)[[. . .]] = Mq(t
′
i)[yν ← ξν [[. . .]] | ν ∈

[m]]. By Lemma 2.4 (summing for all δ ∈ ∆), size(ξ) = #∆(ξ) = #∆(Mq(t
′
i)) +∑

ν∈[m]#yν (Mq(t
′
i)) ·#∆(ξν [[. . .]]) ≥

∑
ν=j #yν (Mq(t

′
i)) ·#∆(ξν [[. . .]]) = #yj (Mq(t

′
i)) ·

size(ξj [[. . .]]). Since M is productive, Lemmas 2.7 and 3.11 imply that size(ξj [[. . .]]) ≥
size(ξj). Since #yj (Mq(t

′
i)) > i, this implies that size(τM (ti)) > i · size(ξj).

Since Arg(q, j, p) is infinite, we can choose s0 and u0 such that (†) and
size(ξj) > c · c1,

where c1 = size(s[u ← p]) − 1. Let i = c(c0 + c2) for c0 = size(s0[u0 ← p]) − 1 and
c2 = size(s/u). Since size(ti) = c0 + ic1 + c2 this means that size(τM (ti)) > c · size(ti)
because size(τM (ti)) > i ·size(ξj) ≥ i ·(c ·c1+1) = icc1+c(c0+c2) = c(c0+ ic1+c2) =
c · size(ti). This contradicts (∗) and concludes the proof.

6.2. From lsi, fnest, and fcp to fci (III). Here we present a pumping lemma
for MTTR

fnest,fcps that are not fci (Lemma 6.5) and apply it in Lemma 6.6 to show that

if an MTTR
fnest,fcp is lsi, then it is fci. We first define, in general, what is required of an

MTTR in order to get a repetition of states by pumping a part of an input tree; this is
called input pumpable. It means that there is a state q1 that is reachable, i.e., appears
in M̂q0(s0[u0 ← p]) for some input tree s0 and node u0 of s0 (with p = h(s0/u0)), and
going from node u0 to node u0u1 in s0, q1 will generate a copy of itself and of a state
q2; furthermore, the state q2 generates a copy of itself when going from u0 to u0u1.

Definition 6.4 (input pumpable). An MTTR M = (Q,P,Σ,∆, q0, R, h) is
input pumpable if there are q1, q2 ∈ Q, s0 ∈ TΣ, u0 ∈ V (s0), u1 ∈ V (s0/u0), and
p ∈ P such that the following four conditions hold:

(1) 〈〈q1, p〉〉 occurs in M̂q0(s0[u0 ← p]),

(2) 〈〈q1, p〉〉 and 〈〈q2, p〉〉 occur at distinct nodes of M̂q1(s0/u0[u1 ← p]),

(3) 〈〈q2, p〉〉 occurs in M̂q2(s0/u0[u1 ← p]), and
(4) p = h(s0/u0) = h(s0/u0u1).
The following pumping lemma can be viewed as a generalization of Lemma 4.2

of [1] from top-down tree transducers to MTTs.
Lemma 6.5. Let M be a nondeleting MTTR

fnest,fcp. If M is not fci, then it is
input pumpable.

Proof. Let M = (Q,P,Σ,∆, q0, R, h). We first define some auxiliary notions. Let
t ∈ TΣ and u, v ∈ V (t) such that u is an ancestor of v, i.e., v = uv′ for some v′ ∈ N

∗,
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and let pv = h(t/v). For q ∈ Q, if n = #〈〈Q,{pv}〉〉(M̂q(t/u[v
′ ← pv])), then we say

that q contributes n states at u to v. If n ≥ 1, then we say that q contributes at u
to v. For q, q′ ∈ Q we write q →u,v q′ if 〈〈q′, pv〉〉 occurs in M̂q(t/u[v

′ ← pv]). For
r1, r2 ∈ Q we write q →u,v r1, r2 if 〈〈r1, pv〉〉 and 〈〈r2, pv〉〉 occur at distinct nodes of

M̂q(t/u[v
′ ← pv]). Observe the following easy properties:

(P0) q →v,v q′ if and only if q = q′; q contributes one state at v to v.
(P1) q0 →ε,v q if and only if q occurs in stsM (t, v); q0 contributes |stsM (t, v)| states

at ε to v.
(P2) q contributes at u to v if and only if there is a q′ ∈ Q such that q →u,v q′.

Let w be a node of t that is a descendant of u and an ancestor of v.
(P3) If q →u,w q′′ and q′′ →w,v q′, then q →u,v q′.
(P4) If q →u,v q′, then there is a q′′ ∈ Q such that q →u,w q′′ and q′′ →w,v q′.

Note that (P3) and (P4) can be proved using Lemma 4.14: Let w′, v′′ ∈ N
∗ such

that w = uw′ and v = wv′′ (and so v′ above equals w′v′′), and let pw = h(t/w).
For (P3), the number #〈〈q′′,pw〉〉(M̂q(t/u[w

′ ← pw])) is ≥ 1 because q →u,w q′′, and
#〈〈q′,pv〉〉(M̂q′′(t/w[v

′′ ← pv])) is ≥ 1 because q′′ →w,v q′; hence the product of these
two numbers is ≥ 1 and so the sum S of Lemma 4.14 is ≥ 1. Thus, by part (i) of that
lemma, #〈〈q′,pv〉〉(M̂q(t/u[v

′ ← pv])) ≥ 1, i.e., q →u,v q′. For (P4), q →u,v q′ implies
that the sum in (×) of the proof of Lemma 4.14 is ≥ 1, and thus there is an occurrence
of some 〈〈q′′, pw〉〉 ∈ 〈〈Q, {pw}〉〉 in M̂q(s/u[w

′ ← pw]) with #〈〈q′,pv〉〉(M̂q′′(t/w[v
′′ ←

pv])) ≥ 1; i.e., there is a q′′ ∈ Q such that q →u,w q′′ and q′′ →w,v q′.
(P5) q contributes ≥ 2 states at u to v if and only if there are r1, r2 ∈ Q such that

q →u,v r1, r2.
(P6) Let r′1, r

′
2 ∈ Q and w as above. If q →u,w r1, r2 and ri →w,v r′i for i ∈ [2],

then q →u,v r′1, r′2.
Let us prove property (P6). If r′1 �= r′2, then by (P3), q →u,v r′1 and q →u,v r′2,
which means that q →u,v r′1, r

′
2. Now assume that r′1 = r′2. By Lemma 4.14(i),

#〈〈r′1,pv〉〉(M̂q(t/u[v
′ ← pv])) is greater than or equal to

∑
r∈Q

#〈〈r′1,pv〉〉(M̂r(t/w[v
′′ ← pv])) ·#〈〈r,pw〉〉(M̂q(t/u[w

′ ← pw])),(∗)

where pw, w
′, and v′′ are as in the proof of (P3). We distinguish the following two

cases:
(i) r1 �= r2: For r = r1 and r = r2, #〈〈r,pw〉〉(M̂q(t/u[w

′ ← pw])) ≥ 1, be-

cause q →u,w r1, r2. Thus, the sum in (∗) is ≥ #〈〈r′1,pv〉〉(M̂r1(t/w[v
′′ ← pv])) +

#〈〈r′1,pv〉〉(M̂r2(t/w[v
′′ ← pv])), which is ≥ 2, because ri →w,v r′i for i ∈ [2].

(ii) r1 = r2: For r = r1, #〈〈r,pw〉〉(M̂q(t/u[w
′ ← pw])) ≥ 2, because q →u,w r1, r1.

Thus, the sum in (∗) is ≥ #〈〈r′1,pv〉〉(M̂r1(t/w[v
′′ ← pv])) · 2, which is ≥ 2, because

r1 →w,v r′1.
In terms of the → notation the four conditions of input pumpability (cf. Defini-

tion 6.4) say that there are states q1 and q2, a tree s0 ∈ TΣ, and nodes u0 and u0u1
of s0 such that

(1) q0 →ε,u0 q1,
(2) q1 →u0,u0u1 q1, q2,
(3) q2 →u0,u0u1 q2, and
(4) h(s0/u0) = h(s0/u0u1).

Since M is not fci, arbitrary long state sequences can be generated. Thus, for every
m ≥ 1 there are t ∈ TΣ and v ∈ V (t) such that |stsM (t, v)| > m, which, by (P1),
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means that q0 contributes more than m states at ε to v. In Claim 1 below we will
show that if a state q contributes “many” states at u to v, then there must be an
intermediate node w (a descendant of u and ancestor of v) such that q contributes at
least two states at u to w that contribute at w to v, and at least one of these states
still contributes “many” states at w to v. The application of this claim can be iterated
to show the existence of a sequence of intermediate nodes w, which will eventually
lead to an appropriate repetition of states (and look-ahead states) that allows us to
define s0 and nodes u0, u0u1 for which (1)–(4) hold.

Let κ ≥ 1 be an upper bound for the number of occurrences of elements of
〈Q, {xi}〉 for an i ≥ 1 in the right-hand side of any rule of R, i.e., κ ≥ #〈Q,{xi}〉(rhs(ρ))
for every ρ ∈ R and i ≥ 1. Let η be the maximal height of the right-hand side of any
rule in R, i.e., η = max{height(rhs(ρ)) | ρ ∈ R}. Let N ≥ 1 be a parameter copying
bound for M and let B ≥ 1 be a nesting bound for M .

Claim 1. Let 〈〈q, p〉〉 ∈ 〈〈Q,P 〉〉 be reachable, t ∈ TΣ, and u, v ∈ V (t) such that
t/u ∈ Lp and u is an ancestor of v. Let c ≥ 1. If q contributes more than (κN2B+η) ·c
states at u to v, then there is a proper descendant w of u which is an ancestor of v
and there are states r, r′ ∈ Q such that

(a) q →u,w r, r′,
(b) r contributes more than c states at w to v, and
(c) r′ contributes at w to v.
Proof of Claim 1. Let w be the first (shortest) descendant of u and ancestor of

v such that there are r1, r2 ∈ Q with q →u,w r1, r2 and r1,r2 contribute at w to v.
Clearly such a w exists, because q contributes ≥ 2 states at u to v, and thus, by (P5),
there are r1, r2 ∈ Q such that q →u,v r1, r2, and, by (P0), r1, r2 contribute at v to v.
By (P0), q contributes exactly one state at u to u and therefore w �= u. It remains to
show that there is an r ∈ Q such that q →u,w r and r contributes more than c states
at w to v; then r′ is chosen to be one of the r1, r2 such that (a) holds.

In (sub)Claim 2 below we will show that q contributes at most κ ·NB+η states r
at u to w that contribute at w to v. We now show that the number of states that q
contributes at u to v is at most NB times the sum of the contributions of the states
r at w to v, and hence that at least one of these r must contribute > c states.

Let w′, v′, v′′ ∈ N
∗ such that w = uw′ and v = uv′ = wv′′. Let pw = h(t/w)

and pv = h(t/v). By assumption, q contributes > (κN2B+η) · c states at u to v, i.e.,
(κN2B+η) · c is smaller than #〈〈Q,{pv}〉〉(M̂q(t/u[v

′ ← pv])), which, by Lemma 4.14(ii)
(using the fact that 〈〈q, h(t/u)〉〉 is reachable, and summing over all elements of
〈〈Q, {pv}〉〉), is

≤ NB ·
∑
r∈Q

#〈〈Q,{pv}〉〉(M̂r(t/w[v
′′ ← pv])) ·#〈〈r,pw〉〉(M̂q(t/u[w

′ ← pw])).

If #〈〈Q,{pv}〉〉(M̂r(t/w[v
′′ ← pv])) �= 0, then r contributes at w to v. Thus, we can

restrict the above sum to states in Qw,v = {r ∈ Q | r contributes at w to v}. Now

let r ∈ Qw,v be such that q →u,w r (i.e., #〈〈r,pw〉〉(M̂q(t/u[w
′ ← pw])) ≥ 1) and

the number of states it contributes at w to v is maximal; i.e., for all r′ �= r with
q →u,w r′, #〈〈Q,{pv}〉〉(M̂r′(t/w[v

′′ ← pv])) ≤ #〈〈Q,{pv}〉〉(M̂r(t/w[v
′′ ← pv])). Then

the above number is

≤ NB ·#〈〈Q,{pv}〉〉(M̂r(t/w[v
′′ ← pv])) ·#〈〈Qw,v,{pw}〉〉(M̂q(t/u[w

′ ← pw])),

which, by Claim 2, is ≤ NB ·#〈〈Q,{pv}〉〉(M̂r(t/w[v
′′ ← pv])) · (κNB+η). Thus we get
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c < #〈〈Q,{pv}〉〉(M̂r(t/w[v
′′ ← pv])), i.e., r contributes more than c states at w to v,

which concludes the proof of Claim 1.
Claim 2. #〈〈Qw,v,{pw}〉〉(M̂q(t/u[w

′ ← pw])) ≤ κ ·NB+η.
Proof of Claim 2. Since w �= u it follows that w′ �= ε; i.e., there are i ≥ 1 and

ω′ ∈ N
∗ such that w′ = ω′i. Let ω = uω′; i.e., w is the ith child of ω. In the remainder

of this proof we will always write ωi in place of w and ω′i in place of w′, in particular,
pωi = pw and Qωi,v = Qw,v. Let pω = h(t/ω). Using the fact that 〈〈q, h(t/u)〉〉 is
reachable, we can apply Lemma 4.14(ii) to t and u, ω, ωi ∈ V (t), summing over all
〈〈q′, pωi〉〉 in 〈〈Qωi,v, {pωi}〉〉, to get that #〈〈Qωi,v,{pωi}〉〉(M̂q(t/u[ω

′i← pωi])) is

≤ NB ·
∑
r∈Q

#〈〈Qωi,v,{pωi}〉〉(M̂r(t/ω[i← pωi])) ·#〈〈r,pω〉〉(M̂q(t/u[ω
′ ← pω])).

If #〈〈Qωi,v,{pωi}〉〉(M̂r(t/ω[i← pωi])) �= 0, then there is an occurrence of some 〈〈r′, pωi〉〉
in M̂r(t/ω[i ← pωi]), i.e., r →ω,ωi r′, and r′ contributes at ωi to v, i.e., r′ →ωi,v r′′
for some r′′ ∈ Q. Thus, by (P3), r →ω,v r′′, which means by (P2) that r contributes
at ω to v. By the definition of the node ωi there is at most one occurrence of
a 〈〈q′, pω〉〉 ∈ 〈〈Q, {pω}〉〉 in M̂q(t/u[ω

′ ← pω]) such that q′ contributes at ω to v,
and since q contributes at u to v, by (P4) there is at least one such occurrence.
Hence, in the above sum there is only one nonzero product, namely, for r = q′, and
#〈〈q′,{pω}〉〉(M̂q(t/u[ω

′ ← pω])) = 1. We get

NB ·#〈〈Qωi,v,{pωi}〉〉(M̂q′(t/ω[i← pωi])) ≤ NB ·#〈〈Q,{pωi}〉〉(M̂q′(t/ω[i← pωi])).

By Lemma 4.3 with s = t/ω and u = ε, and since M̂q′(t/ω[ε ← pω]) = 〈〈q′, pω〉〉, the
tree M̂q′(t/ω[i ← pωi]) equals rhsM (q′, σ, 〈p1, . . . , pk〉)[[..]][[i]], where [[..]] = [[〈r′, xj〉 ←
Mr′(t/ωj) | r′ ∈ Q, j ∈ [k] − {i}]] and [[i]] = [[〈r′, xi〉 ← 〈〈r′, pωi〉〉 | r′ ∈ Q]]
with t[ω] = σ ∈ Σ(k), k ≥ 1, and pj = h(t/ωj) for each j ∈ [k]. Thus, NB ·
#〈〈Q,{pωi}〉〉(M̂q′(t/ω[i← pωi])) equals N

B ·#〈〈Q,{pωi}〉〉(rhsM (q′, σ, 〈p1, . . . , pk〉)[[..]][[i]]),
which, avoiding the relabeling [[i]], can be written as

NB ·#〈Q,{xi}〉(rhsM (q′, σ, 〈p1, . . . , pk〉)[[〈r′, xj〉 ←Mr′(t/ωj) | r′ ∈ Q, j �= i]]).

The application of Lemma 2.6 and the fact that the trees Mr′(t/ωj) do not con-

tain elements of 〈Q, {xi}〉 gives the number NB ·∑ũ∈V〈Q,{xi}〉(ζ)
∏
F
[[..]]
ζ,ũ , where ζ =

rhsM (q′, σ, 〈p1, . . . , pk〉). Since the height of ζ is at most η,
∏
F
[[..]]
ζ,ũ ≤ Nη, and thus

the above number is ≤ NB+η · |V〈Q,{xi}〉(ζ)|, which is ≤ κ ·NB+η by the definition of
κ. This ends the proof of Claim 2.

Let γ = κN2B+η. Since M is not fci, for every n ≥ 1 there are tn ∈ TΣ and
vn ∈ V (tn) such that |stsM (tn, vn)| > γn. Let r0 = q0 and w0 = ε. We now apply
Claim 1 for i = 0, . . . , n − 1 to q = ri, p = h(tn/wi), t = tn, u = wi, v = vn, and
c = γn−i−1. For i = 0 this is possible because 〈〈q0, h(tn)〉〉 is reachable, and by (P1),
q0 contributes more than γn states at ε to vn. We obtain that there exists a proper
descendant wi+1 of wi and states ri+1, r

′
i+1 such that ri →wi,wi+1

ri+1, r
′
i+1, the state

ri+1 contributes more than γn−i−2 states at wi+1 to vn, and r
′
i+1 contributes at wi+1

to vn. Note that since q0 →ε,wi+1 ri+1 and q0 →ε,wi+1 r
′
i+1 by (P3), both ri+1 and

r′i+1 occur in stsM (tn, wi+1) by (P1) (and thus 〈〈ri+1, h(tn/wi+1)〉〉 is reachable). For
an ancestor w of vn let csts(w) denote stsM (tn, w) restricted to the states q which
contribute at w to vn (i.e., all states that do not contribute to vn are erased from
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stsM (tn, w)). Hence, r occurs in csts(w) if and only if q0 →ε,w r →w,v q for some
state q. In particular, ri+1 and r′i+1 occur in csts(wi+1). Figure 6.1 shows the nodes
wi and the corresponding sequences csts(wi) with the states ri, r

′
i; the arrows mean

→wi,wi+1 .

...
...

w1

w2

wn

vn

= csts(w2)

= csts(wn)

· · · r2 · · · r′2 · · ·

q0 = csts(ε)

= csts(w1)

· · · · · · · · · = stsM (tn, vn)

· · · rn−1 · · · r′n−1 · · ·

· · · r1 · · · r′1 · · ·

· · · rn · · · r′n · · ·

wn−1 = csts(wn−1)

w0

Fig. 6.1. The tree tn with contributing states.

Now take n = |Q| · |P | ·2|Q| and let tn, vn, wi, ri, and r
′
i be as above for 0 ≤ i ≤ n.

Clearly this means that there are indices 0 ≤ i < j ≤ n such that
• ri = rj ,
• p = h(tn/wi) = h(tn/wj), and
• {r ∈ Q | r occurs in csts(wi)} = {r ∈ Q | r occurs in csts(wj)},

because there are exactly |Q| · |P | · 2|Q| different possibilities (ri, p, S) for ri ∈ Q,
p ∈ P , and S ⊆ Q. Let q′1 = ri and let q′2 ∈ Q such that r′i+1 →wi+1,wj q

′
2 and q′2

occurs in csts(wj). Such a q′2 exists by the fact that r′i+1 contributes at wi+1 to vn,
using property (P4) (and also (P2) and (P3)). Since ri+1 →wi+1,wj ri, we can apply
(P6) to get q′1 →wi,wj q′1, q′2. Thus, conditions (1), (2), and (4) of input pumpability
hold for q1 = q′1, q2 = q′2, s0 = tn, u0 = wi, and u0u1 = wj . Clearly, if q′1 = q′2,
then also (3) holds, which proves the lemma for that case. Thus, from now on we
assume that q′1 �= q′2. To realize (3), we will pump the tree tn/wi[w

′
j ← p] in tn, where

wj = wiw
′
j .

For every r ∈ Q that occurs in csts(wi), there is an r′ ∈ Q with r →wi,wj r′, and
r′ occurs in csts(wj) by (P4). Since the same states appear in csts(wi) and csts(wj),
this means that r′ also occurs in csts(wi). Thus, there is a sequence

q′1 →wi,wj q′2 →wi,wj q′3 →wi,wj · · · →wi,wj q′m →wi,wj q′m−ν ,
where 2 ≤ m ≤ |Q|, 0 ≤ ν < m, and q′1, . . . , q

′
m are pairwise different states that occur

in csts(wi). Hence, after m− ν − 1 steps of →wi,wj , starting at q′1, states will repeat
with period ν + 1. Let d be a multiple of ν + 1 with d ≥ m− ν − 1. Then there is a
µ ∈ {m − ν, . . . ,m} such that after d steps of →wi,wj , q′1 reaches q′µ and q′µ reaches
q′µ.

Let q1 = q′1, q2 = q′µ,

s0 = (tn[wi ← p]) • (tn/wi[w′j ← p])d • (tn/wj),
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q′1 · · · q′2 · · · q′3 · · · q′4 · · · q′5

q′1 · · · q′2 · · · q′3 · · · q′4 · · · q′5

q′1 · · · q′2 · · · q′3 · · · q′4 · · · q′5

q′1 · · · q′2 · · · q′3 · · · q′4 · · · q′5

Fig. 6.2. Conditions (2) and (3) of input pumpability for q1 = q′1 and q2 = q′4.

u0 = wi, and u1 = (w′j)
d. Then h(s0/wi(w

′
j)
γ) = p for all 0 ≤ γ ≤ d, which

easily follows by induction, using the fact that ĥ(tn/wi[w
′
j ← p]) = ĥ(tn/wi[w

′
j ←

h(tn/wj)]) = h(tn/wi) = p. In particular h(s0/u0) = h(s0/u0u1) = p; i.e., condition
(4) of input pumpability holds. Clearly, for 0 ≤ γ < d, q →wi,wj q′ in the tree tn if
and only if q →wi(w′j)γ ,wi(w′j)γ+1 q′ in the tree s0, and similarly q →wi,wj q′, q′′ in the

tree tn if and only if q →wi(w′j)γ ,wi(w′j)γ+1 q′, q′′ in the tree s0; this is true because

s0/wi(w
′
j)
γ [w′j ← p] = tn/wi[w

′
j ← p]. Thus, in s0, q2 →u0,u0u1 q2 by the definition

of q′µ (using (P3)), which proves condition (3) of the input pumpable property. To
show condition (2) we use (P6): Since q′1 →wi,wiw′j q′1, q′2, also q′1 →wi,wiw′j q′1 and

thus, by the above and by (P3), q′1 →wiw′j ,wi(w′j)d q′1 holds in s0. By the definition of

q′µ, q
′
2 →wiw′j ,wi(w′j)d q′µ. Therefore, by (P6), q1 →u0,u0u1

q1, q2. Clearly, (1) of input

pumpability holds because q0 →ε,wi ri in tn by the definition of ri, s0[u0 ← p] =
tn[wi ← p], and consequently q0 →ε,u0 ri = q1 holds in s0. Figure 6.2 outlines the
choice of q2 for m = 5 and ν = 2 (thus d = 3 and µ = 4).

Lemma 6.6. Let M be a proper MTTR. If M is input pumpable, then it is not
lsi.

Proof. LetM = (Q,Σ,∆, q0, R, P, h) be input pumpable; i.e., there are q1, q2 ∈ Q,
s0 ∈ TΣ, u0 ∈ V (s0), u1 ∈ V (s0/u0), and p ∈ P such that (1)–(4) of Definition 6.4
hold. Assume now that M is lsi; i.e., there is a c ∈ N such that for every input tree
t ∈ TΣ,

size(τM (t)) ≤ c · size(t).(∗)
In what follows we will derive a contradiction by constructing an input tree t such
that size(τM (t)) > c · size(t). Note first that if we replace in s0 the subtree at u0u1 by
any tree s in Lp, then (1)–(4) still hold. Similar to the proof of Theorem 6.3, the idea
of constructing t is as follows: Consider input trees ti obtained by i times pumping
the tree s0/u0[u1 ← p] in the tree s0[u0u1 ← s]. Then the trees ti grow at most
linearly with constant size(s0/u0[u1 ← p]). In the output tree τM (ti) there are at
least i occurrences of the tree Mq2(s). Hence, the trees τM (ti) grow at least linearly
with constant size(Mq2(s)). Thus, if we choose s in such a way that size(Mq2(s)) is
larger than the product of c and the size of s0/u0[u1 ← p], then size(τM (ti)) grows
faster than c · size(ti); i.e., we can find an i such that (∗) does not hold for t = ti.

In order to choose the tree s appropriately, we need the set Out(q2, p) = {Mq2(s) |
s ∈ Lp} to be infinite, i.e., to contain trees with arbitrarily many output symbols.
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This is guaranteed by i-properness (cf. point (i) of Definition 5.1) if (a) 〈〈q2, p〉〉 is
reachable and (b) q2 �= q0.

(a) Clearly, 〈〈q2, p〉〉 is reachable because it occurs in M̂q0(s0[u0u1 ← p]); this
follows from (1) and (2) using Lemma 4.14(i) (analogous to the proof of (P3) in the
proof of Lemma 6.5; in fact, using the → notation of the proof of that lemma, it
follows from (1) and (2) by (P3) that q0 →ε,u0u1 q2, which means that 〈〈q2, p〉〉 occurs
in M̂q0(s0[u0u1 ← p])).

(b) By (2), M̂q1(s0/u0[u1 ← p]) �= 〈〈q1, p〉〉 = M̂q1(s0/u0[ε ← p]), and thus
u1 �= ε; i.e., u1 = u′1i for some u′1 ∈ N

∗ and i ≥ 1. Also by (2), 〈〈q2, p〉〉 occurs
in M̂q1(s0/u0[u1 ← p]). Hence (by Lemma 4.3 applied to q1, s0/u0, and u

′
1), 〈q2, xi〉

occurs in the right-hand side of a rule of M . By (ii) of i-properness this implies that
q2 �= q0.

We now pump the tree s0/u0[u1 ← p] in the tree s0[u0u1 ← s] = (s0[u0 ←
p]) • (s0/u0[u1 ← p]) • s: for i ≥ 0, let ti = (s0[u0 ← p]) • (s0/u0[u1 ← p])i • s.
It follows from (1)–(4) that for every i ≥ 0, stsM (ti, u0u

i
1) contains at least one

occurrence of q1 and at least i occurrences of q2; this is sketched in Figure 6.3 and
formalized in the following claim.

stsM (ti, u0u
3
1) =

stsM (ti, ε) =

stsM (ti, u0u
2
1) =

stsM (ti, u0u1) =

stsM (ti, u0) =

q0

· · · q1 · · ·

· · · q1 · · · q2

· · · q1 · · · q2 · · · q2

· · · q1 · · · q2 · · · q2 · · · q2

Fig. 6.3. States that appear in state sequences of ti.

Claim. For all i ≥ 0, #〈〈q1,p〉〉(ξi) ≥ 1 and #〈〈q2,p〉〉(ξi) ≥ i, where ξi is the tree

M̂q0(ti[u0u
i
1 ← p]).

The proof of the claim is by induction on i. For i = 0, ti[u0u
i
1 ← p] = s0[u0 ← p]

and by (1), #〈〈q1,p〉〉(M̂q0(s0[u0 ← p])) ≥ 1. For i+1 we apply Lemma 4.14(i) to ti+1,

u = ε, w = u0u
i
1, v = u0u

i+1
1 , and q = q0. Since h(ti+1/u0u

i
1) = h(s0/u0[u1 ← s]) =

ĥ(s0/u0[u1 ← p]) = p by (4) and the fact that s ∈ Lp, h(ti+1/u0u
i+1
1 ) = h(s) = p,

and ti+1[u0u
i
1 ← p] = ti[u0u

i
1 ← p], we get

#〈〈q′,p〉〉(ξi+1) ≥
∑
r∈Q

#〈〈q′,p〉〉(M̂r(s0/u0[u1 ← p])) ·#〈〈r,p〉〉(ξi).

Let q′ = q1. Surely restricting the above sum to r = q1 does not increase the result.
Thus, the sum is ≥ #〈〈q1,p〉〉(M̂q1(s0/u0[u1 ← p])) ·#〈〈q1,p〉〉(ξi). This is ≥ 1 because

#〈〈q1,p〉〉(M̂q1(s0/u0[u1 ← p])) ≥ 1 by (2), and #〈〈q1,p〉〉(ξi) ≥ 1 by induction.
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Let q′ = q2. Now restrict the sum to r ∈ {q1, q2}. If q1 = q2, then the sum
is ≥ #〈〈q2,p〉〉(M̂q1(s0/u0[u1 ← p])) · #〈〈q1,p〉〉(ξi); this is ≥ 2 · max{1, i} ≥ i + 1,

because, by (2), #〈〈q2,p〉〉(M̂q1(s0/u0[u1 ← p])) ≥ 2, and by induction #〈〈q1,p〉〉(ξi) =

#〈〈q2,p〉〉(ξi) ≥ max{1, i}. If q1 �= q2, then the sum is ≥ #〈〈q2,p〉〉(M̂q1(s0/u0[u1 ←
p])) ·#〈〈q1,p〉〉(ξi) +#〈〈q2,p〉〉(M̂q2(s0/u0[u1 ← p])) ·#〈〈q2,p〉〉(ξi); this is ≥ i+ 1, because

#〈〈q2,p〉〉(M̂q1(s0/u0[u1 ← p])) ≥ 1 by (2), #〈〈q2,p〉〉(M̂q2(s0/u0[u1 ← p])) ≥ 1 by (3),
and, by induction, #〈〈q1,p〉〉(ξi) ≥ 1 and #〈〈q2,p〉〉(ξi) ≥ i. This ends the proof of the
claim.

Since #〈〈q2,p〉〉(ξi) ≥ i, we obtain size(τM (ti)) ≥ i · #∆(Mq2(s)) as follows. By
Lemma 4.2 and the fact that ti/u0u

i
1 = s, τM (ti) = Mq0(ti) = ξi[[. . .]] with [[. . .]] =

[[〈〈q, p〉〉 ← Mq(s) | q ∈ Q]]. By Lemma 2.6 (summing for all δ ∈ ∆), size(τM (ti)) =

#∆(ξi[[. . .]]) = S∆
1 + S∆

2 ≥ S∆
2 =

∑
u∈V〈〈q,p〉〉(ξi),q∈Q#∆(Mq(s)) ·

∏
F
[[...]]
ξi,u

. Since M

is nondeleting, it follows from Lemma 3.11(1) that #yj (Mq(s)) ≥ 1 for all q ∈ Q(m)

and j ∈ [m], and thus
∏
F
[[...]]
ξi,u
≥ 1. We get S∆

2 ≥
∑
u∈V〈〈q,p〉〉(ξi),q∈Q#∆(Mq(s)) ≥∑

u∈V〈〈q2,p〉〉(ξi)#∆(Mq2(s)) ≥ i ·#∆(Mq2(s)).

Now let s ∈ Lp such that

#∆(Mq2(s)) > c · c1,

where c1 = size(s0/u0[u1 ← p])−1. Then size(τM (ti)) ≥ i ·(cc1+1) = icc1+i. Let i >
c(c0+c2), where c0 = size(s0[u0 ← p])−1 and c2 = size(s). Since size(ti) = c0+ic1+c2
this means that size(τM (ti)) > c · size(ti) because size(τM (ti)) > icc1 + c(c0 + c2) =
c(c0 + ic1 + c2) = c · size(ti). This contradicts (∗) and concludes the proof.

We are now ready to prove step (III).

Theorem 6.7. Let M be a proper MTTR
fnest,fcp. If M is lsi, then it is fci.

Proof. If M is not fci, then, by Lemma 6.5, M is input pumpable and thus, by
Lemma 6.6, M is not lsi.

6.3. From lsi to fnest (I). In Lemma 6.6 it was proved that if a proper MTTR

M is input pumpable, then it is not lsi. So, in order to prove that M is not lsi if it
is not fnest, we would like to show that if M is not fnest, then it is input pumpable.
This could be done by proving a pumping argument that works on the paths of trees
M̂q0(s[u← p]). We have chosen the following alternative: We can associate with M a
top-down tree transducer A (with the same regular look-ahead as M) in such a way
that

(i) the number of elements 〈〈q′, p〉〉 of 〈〈Q, {p}〉〉 that appear on a path of M̂q(s[u←
p]) is bounded by the number of such elements that appear in Âq(s[u← p]);
and

(ii) if there are n occurrences of 〈〈q′, p〉〉 in Âq(s[u ← p]), then there are at least

n occurrences of 〈〈q′, p〉〉 in M̂q(s[u← p]).

Thus, (i) implies that if M is not fnest, then A is not fci, and (ii) implies that if
A is input pumpable, then so is M . Hence we need to show that if A is not fci,
then A is input pumpable. This is exactly what the application of Lemma 6.5 to A
gives. (The lemma is applicable because, obviously, every top-down tree transducer
is nondeleting, fnest with nesting bound 1, and fcp.)

In order to prove (i) and (ii) we merely need to require that TR A have the same
states as M (but of rank zero) and that every rule of A have the same number of
occurrences of each element of 〈Q,X〉 as the corresponding rule of M .
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Definition 6.8 (associated TR, globally fci). Let M = (Q,P,Σ,∆, q0, R, h) be
an MTTR. The TR A = (QA, P,Σ,∆, q0, RA, h) is associated with M if QA = {q(0) |
q ∈ Q} and for every q, q′ ∈ Q, σ ∈ Σ(k), k ≥ 0, i ∈ [k], and p1, . . . , pk ∈ P ,

#〈q′,xi〉(rhsA(q, σ, 〈p1, . . . , pk〉)) = #〈q′,xi〉(rhsM (q, σ, 〈p1, . . . , pk〉)).
The MTTR M is globally fci (for short, gfci) if every TR associated with M is fci.

We use the subscript “gfci” for classes of translations of MTTRs to denote that
the corresponding transducers are gfci. Note that for TRs A1 and A2 associated with
M , stsA1

(s, u) is a permutation of stsA2
(s, u) (cf. Lemma 6.9 of [19]). Hence, M is

gfci if and only if there exists a TR
fci associated with M . For every MTTR M there is

(effectively) an associated TR A; it can be obtained fromM by simply changing every
right-hand side ofM into an arbitrary right-hand side in T〈QA,Xk〉∪∆ while preserving
the number of occurrences of 〈q, xi〉 for every 〈q, xi〉 ∈ 〈Q,Xk〉.

Let us first prove property (ii) mentioned above.
Lemma 6.9. Let M = (Q,P,Σ,∆, q0, R, h) be a nondeleting MTTR and A =

(QA, P,Σ,∆, q0, RA, h) a TR associated with M . For every q, q′ ∈ Q, s ∈ TΣ, u ∈
V (s), and p ∈ P , #〈〈q′,p〉〉(M̂q(s[u← p])) ≥ #〈〈q′,p〉〉(Âq(s[u← p])).

Proof. The proof is by induction on the structure of s. Let s = σ(s1, . . . , sk) with
σ ∈ Σ(k) and k ≥ 0. Let m = rankQ(q).

If u = ε, then #〈〈q′,p〉〉(M̂q(s[u← p])) = #〈〈q′,p〉〉(〈〈q, p〉〉(y1, . . . , ym)), which equals

(now with q ∈ Q(0)
A ) #〈〈q′,p〉〉(〈〈q, p〉〉) = #〈〈q′,p〉〉(Âq(s[u← p])).

Otherwise u = iv with i ∈ [k] and v ∈ V (si). Thus M̂q(s[u ← p]) equals

M̂q(σ(s̃1, . . . , s̃k)), where s̃ν = sν for ν ∈ [k]− {i} and s̃i = si[v ← p]. For ν ∈ [k] let

pν = ĥ(s̃ν). By Lemma 3.5, M̂q(σ(s̃1, . . . , s̃k)) = t[[. . .]], where t = rhsM (q, σ, 〈p1, . . . ,
pk〉) and [[. . .]] = [[〈r, xν〉 ← M̂r(s̃ν) | 〈r, xν〉 ∈ 〈Q,Xk〉]]. Applying Lemma 2.6 we
obtain that #〈〈q′,p〉〉(t[[. . .]]) equals∑

w ∈ V〈r,xν〉(t),〈r, xν〉 ∈ 〈Q,Xk〉

#〈〈q′,p〉〉(M̂r(s̃ν)) ·
∏

F
[[...]]
t,w .

Since M is nondeleting, by Lemma 3.11(1), #yj (M̂r(s̃ν)) ≥ 1 for all r ∈ Q(n), j ∈ [n],

and ν ∈ [k]. This implies that
∏
F
[[...]]
t,w ≥ 1. Hence,

#〈〈q′,p〉〉(M̂q(s[u← p])) ≥
∑

w ∈ V〈r,xν〉(t),〈r, xν〉 ∈ 〈Q,Xk〉

#〈〈q′,p〉〉(M̂r(s̃ν)).(∗)

By induction, #〈〈q′,p〉〉(M̂r(s̃i)) ≥ #〈〈q′,p〉〉(Âr(s̃i)). For ν ∈ [k] − {i}, s̃ν ∈
TΣ, and therefore #〈〈q′,p〉〉(M̂r(s̃ν)) = #〈〈q′,p〉〉(Mr(s̃ν)) = 0 = #〈〈q′,p〉〉(Ar(s̃ν)) =

#〈〈q′,p〉〉(Âr(s̃ν)). Thus, the sum in (∗) is≥∑w∈V〈r,xν〉(t),〈r,xν〉∈〈Q,Xk〉#〈〈q′,p〉〉(Âr(s̃ν)).
Since A is associated with M , |V〈r,xν〉(ζ)| = |V〈r,xν〉(t)| for every 〈r, xν〉 ∈ 〈Q,Xk〉,
where ζ = rhsA(q, σ, 〈p1, . . . , pk〉). Therefore the above sum does not change if we
replace t by ζ. Then by Lemma 2.4 we get #〈〈q′,p〉〉(ζ[. . . ]) with [. . . ] = [〈r, xν〉 ←
Âr(s̃ν) | 〈r, xν〉 ∈ 〈QA, Xk〉]. By Lemma 3.5 and the fact that Â is a TR, this equals
#〈〈q′,p〉〉(Âq(s[u← p])).

For a nondeleting MTTR M it follows immediately from Lemma 6.9 and Defini-
tion 6.4 that if a TR A associated with M is input pumpable, then M is also input
pumpable.



MTTs OF LINEAR SIZE INCREASE 999

Lemma 6.10. Let M be a nondeleting MTTR and A a TR associated with M . If
A is input pumpable, then so is M .

From Lemma 6.9 it also follows that gfci is a generalization of fci: if #〈〈Q,{p}〉〉(
M̂q0(s[u ← p])) is bounded by some N , then so is #〈〈Q,{p}〉〉(Âq0(s[u ← p])); i.e., if
M is fci, then it is gfci. However, the converse is not true: there are MTTRs which
are gfci but not fci. In fact, even for fcp MTTRs, gfci does not imply fci. To see
this consider an MTT M which contains the following rules (and trivial look-ahead
P = {p}):

〈q0, σ(x1, x2)〉 → 〈q, x1〉(〈q0, x2〉),
〈q0, α〉 → α,
〈q, σ(x1, x2)〉(y1) → σ(y1, y1),
〈q, α〉(y1) → σ(y1, y1).

Now let s0 = α and for n ≥ 0 let sn+1 = σ(α, sn). Then

〈q0, sn〉 ⇒M 〈q, α〉(〈q0, sn−1〉)
⇒M σ(〈q0, sn−1〉, 〈q0, sn−1〉)
⇒∗M σ(σ(〈q0, sn−2〉, 〈q0, sn−2〉), σ(〈q0, sn−2〉, 〈q0, sn−2〉)).

Hence, M̂q0(sn[2
n ← p]) is a full binary tree of height n with all leaves labeled 〈〈q0, p〉〉.

Thus stsM (sn, 2
n) = q2

n

0 , which means that M is not fci. However, M is gfci and
fcp, with bounds 1 and 2, respectively. To see that M is gfci, consider the TR A
with right-hand side σ(〈q, x1〉, 〈q0, x2〉) for the (q0, σ)-rule and right-hand side α for
all other rules. Now A is associated with M , and it is linear in the input variables xi;
i.e., A is fci with bound 1. Moreover,M is not lsi (because τM (sn) is a full binary tree
of height n). Thus, gfci plus fcp cannot be taken as an alternative to the definition
of finite copying: MTTR

fci,fcp � MTTR
gfci,fcp.

As illustrated by the example above, a gfci MTTR M need not be fci, and thus
the number of occurrences of elements of 〈〈Q, {p}〉〉 in M̂q0(s[u ← p]) is in general
unbounded due to parameter copying (in the example above by the rules with right-
hand side σ(y1, y1)). However, the number of such elements that appear on one path
in M̂q0(s[u← p]) is bounded, and thus M is fnest. To see this intuitively, consider a
label path π in a tree in T〈Q,TΣ〉∪∆. The application of a rule r of an MTTR does not
copy any states on the path π; thus, it increases the number of occurrences of q′ on
π by at most #〈{q′},X〉(rhs(r)), which equals #〈{q′},X〉(rhs(r′)) for the corresponding
rule r′ of a TR associated with M . We now give a formal proof of property (i)
mentioned above.

Lemma 6.11. Let M = (Q,P,Σ,∆, q0, R, h) be an MTTR and A = (QA, P,Σ,
∆, q0, RA, h) a TR associated with M . For every q, q′ ∈ Q, s ∈ TΣ, u ∈ V (s), p ∈ P ,
and every label path π in M̂q(s[u← p]), #〈〈q′,p〉〉(π) ≤ #〈〈q′,p〉〉(Âq(s[u← p])).

Proof. The proof is by induction on the length of u.
For u = ε, #〈〈q′,p〉〉(π) = #〈〈q′,p〉〉(〈〈q, p〉〉) = #〈〈q′,p〉〉(Âq(s[u← p])).

For u = u′i it follows from Lemma 4.3 that M̂q(s[u ← p]) = t[[i]][[..]] with t =

M̂q(s[u
′ ← p′])[[rhs]], p′ = ĥ(s/u′[i ← p]), and the substitutions [[rhs]], [[..]], and [[i]]

defined as in Lemma 4.3 (with u′ instead of u, p′ instead of p, and p instead of pi).
By Lemma 2.3(i) applied to t′[[..]] with t′ = t[[i]], the label path π is of the form
w0v1w1 · · · vmwm, m ≥ 0, where π′ = w0〈r1, xν1〉w1 · · · 〈rm, xνm〉wm is a label path
in t′, and for j ∈ [m], rj ∈ Q, νj ∈ [k] − {i}, vj is a label path in Mrj (s/u

′νj), and
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w0, . . . , wm do not contain elements of 〈Q,Xk − {xi}〉. Since Mrj (s/u
′νj) ∈ T∆(Y ),

#〈〈q′,p〉〉(vj) = 0 for all j ∈ [m], which means that #〈〈q′,p〉〉(π) = #〈〈q′,p〉〉(π′).
Clearly, by the definition of [[i]], #〈〈q′,p〉〉(π′) = #〈q′,xi〉(π

′′) for some label path

π′′ in t. Hence, it remains to show that #〈q′,xi〉(π
′′) ≤ #〈〈q′,p〉〉(Âq(s[u ← p])) =

#〈〈q′,p〉〉(ξ[rhs][..][i]) = #〈q′,xi〉(ξ[rhs]), where ξ = Âq(s[u
′ ← p′]) and [rhs], [..], [i] are

the (corresponding first-order variants of the) substitutions of Lemma 4.3.
By Lemma 2.3(i) applied to the tree t = M̂q(s[u

′ ← p′])[[rhs]], π′′ is of the form
w0v1w1 · · · vmwm, m ≥ 0, where ρ = w0〈〈r1, p′〉〉w1 · · · 〈〈rm, p′〉〉wm is a label path in
M̂q(s[u

′ ← p′]) and for j ∈ [m], rj ∈ Q, vj is a label path in rhsM (rj , σ, 〈p1, . . . , pk〉),
and w0, . . . , wm contain no elements of 〈〈Q, {p′}〉〉 (i.e., wj is a string over ∆ ∪ Y ).
Thus, #〈q′,xi〉(π

′′) =
∑
j∈[m]#〈q′,xi〉(vj). Since, for j ∈ [m], vj is a label path in

rhsM (rj , σ, 〈p1, . . . , pk〉), this sum is surely

≤
∑
j∈[m]

#〈q′,xi〉(rhsM (rj , σ, 〈p1, . . . , pk〉)) =
∑
j∈[m]

#〈q′,xi〉(rhsA(rj , σ, 〈p1, . . . , pk〉)),

which can be written as

∑
r∈Q

#〈〈r,p′〉〉(ρ) ·#〈q′,xi〉(rhsA(r, σ, 〈p1, . . . , pk〉)).

By induction this is ≤∑r∈Q#〈〈r,p′〉〉(ξ)·#〈q′,xi〉(rhsA(r, σ, 〈p1, . . . , pk〉)), which equals
#〈q′,xi〉(ξ[rhs]) by Lemma 2.4.

It follows immediately from Lemma 6.11, by taking q = q0 and summing over all
q′ ∈ Q, that if A is fci, then M is fnest, with the same bound. This is stated in the
next lemma.

Lemma 6.12. If an MTTR is gfci, then it is fnest.
We are now ready to prove step (I), i.e., that for a proper MTTR, lsi implies fnest.
Theorem 6.13. Let M be a proper MTTR. If M is lsi, then it is fnest.
Proof. If M is not fnest, then by Lemma 6.12 it is not gfci. By the definition

of gfci this means that any TR A associated with M is not fci. The application of
Lemma 6.5 to A gives that A is input pumpable, and thus by Lemma 6.10 M is input
pumpable. Now Lemma 6.6 implies that M is not lsi.

From Theorems 6.13, 6.3, and 6.7 we obtain the main result of this section: the
converse of Theorem 4.19 for proper MTTRs.

Theorem 6.14. Let M be a proper MTTR. If M is lsi, then it is finite copying.
Recall from section 4.3 the notion of finite contribution. By Lemma 4.18, every

finite copying MTTR is of finite contribution, and by the discussion before Theo-
rem 4.19, every MTTR of finite contribution is lsi. Together with Theorem 6.14 this
shows that a proper MTTR is finite copying if and only if it is of finite contribution. It
can be proved that this even holds for a productive MTTR that satisfies (ii) of Defini-
tion 5.6 (of p-properness). Thus, the notions of finite copying and finite contribution
are closely related.

7. Main results and consequences. In this final section we prove our main
results: (i) a translation is MSO definable if and only if it is a macro tree translation
of linear size increase, and (ii) for a given MTT M it is decidable whether or not τM
is MSO definable. Then we discuss some consequences of these results for top-down
tree transducers, attributed tree transducers, and context-free graph grammars. At
last some open problems and further research topics are mentioned.
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Theorem 7.1. Let M be an MTTR. Then the following statements are equiva-
lent:

(1) τM is MSO definable.
(2) τM is lsi.
(3) prop(M) is finite copying.

Proof. Since every MSO definable tree translation is lsi (see section 2.5), (1) ⇒
(2). Note that this can also be proved using the results from section 4: If τM is MSO
definable, then by Lemma 4.9, τM ∈ MTTR

fc and thus, by Theorem 4.19, τM is lsi.
To show (2) ⇒ (3), let τM be lsi. By Theorem 5.9, there is a proper MTTR prop(M)
with τprop(M) = τM ; i.e., τprop(M) is lsi. By Theorem 6.14, prop(M) is finite copying.
Finally, if prop(M) is finite copying, then, by Lemma 4.9, τM = τprop(M) is MSO
definable. Thus (3) ⇒ (1).

Note that, as discussed at the end of section 6, we could have included “(4)
prop(M) is of finite contribution” as another equivalent statement in Theorem 7.1.

Theorem 7.1 shows that the class MSOTT of MSO definable tree translations can
be characterized as those macro tree translations that are lsi. Recall (from section 2.5)
that LSI denotes the class of all lsi tree translations.

Theorem 7.2. MSOTT = MTT ∩ LSI.
Proof. If τ ∈ MTT ∩ LSI, then there is an MTT M such that τM = τ is lsi. By

Theorem 7.1 τM is MSO definable, and thus MTT ∩LSI ⊆ MSOTT. If τ ∈ MSOTT,
then by Lemma 4.9 there is an MTTR M with τM = τ . By Theorem 7.1 τM is lsi,
and thus MSOTT ⊆ MTTR ∩ LSI. By Lemma 3.4, MTTR = MTT.

By Theorem 7.1, the proper normal form prop(M) (which can be constructed by
Theorem 5.9) of an MTT M is finite copying if and only if τM is MSO definable.
Since the finite copying property is decidable (Lemma 4.10) this implies that for M it
is decidable whether or not τM is MSO definable. If prop(M) is finite copying, then
an MSO tree transducer that realizes τM can be constructed, because the equality
MSOTT = MTTR

fc of Lemma 4.9 is effective (cf. the discussion following Lemma 4.10).

Theorem 7.3. It is decidable for an MTT M whether or not τM is MSO defin-
able, and if it is, then an MSO tree transducer for τM can be constructed.

7.1. Top-down tree transducers. A top-down tree transducer can translate
a monadic tree (of height n) into a full binary tree (of height n). This translation is
of exponential size increase, and hence it is not MSO definable. On the other hand,
there are MSO definable tree translations that cannot be realized by top-down tree
transducers: consider the translation that associates with a tree its yield (i.e., the left-
to-right sequence of the labels of its leaves), seen as a monadic tree. This translation is
MSO definable (cf. Example 1(6, yield) of [3]) but it cannot be realized by a top-down
tree transducer, because it is of exponential height increase (viz. it translates a full
binary tree of height n into its yield, a monadic tree of height 2n), whereas top-down
tree translations are of linear height increase (cf. Lemma 3.27 of [28]). Now, which
translations realized by top-down tree transducers (with regular look-ahead) are MSO
definable? By our results, they are exactly the translations realized by finite copying
TRs.

Theorem 7.4. TR ∩MSOTT = TR
fc.

Proof. LetM be a TR such that τM is MSO definable. By Theorem 7.1, prop(M)
is finite copying. By Theorem 5.9, prop(M) is a TR. Thus, τM = τprop(M) ∈ TR

fc.
Hence, TR ∩MSOTT ⊆ TR

fc. The inclusion TR
fc ⊆ TR ∩MSOTT is immediate from

Lemma 4.9.
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It is shown in Theorem 7.4 of [19] that TR
fc = MSOTTdir: the so-called direction

preserving MSO definable tree translations. An MSO tree transducer (see section 2.5)
is direction preserving if s |= χi,c,d(x, y) implies that y is a descendant of x in the
input tree s. Thus, the descendant relation in the output tree can only hold between
nodes that are also (copies of) descendants in the input tree.

Note that it follows immediately from Theorem 7.1 that TR ∩MSOTT = TR ∩
LSI. Thus, TR

fc = TR∩LSI. Since TR
fcs are closely related to tree-walking transducers

(see Theorem 4.9 of [22]), this may be viewed as the result of [1] that the transla-
tions realized by tree-walking transducers are exactly the generalized syntax-directed
translations of linear size increase.

7.2. Attributed tree transducers. Attributed tree transducers [27, 28] serve
as a formal model for attribute grammars [37]. As argued in [3], adding the feature of
look-ahead to them yields a better model of attribute grammars and a more robust
class of tree translations. Let ATTR denote the class of translations realized by
attributed tree transducers with look-ahead (see [3, 19]) and let the subscript “sur”
denote that the transducers are “single-use restricted” (cf. section 5 in [19]); i.e.,
for every input symbol σ, each outside attribute is used at most once in the set
of rules for σ. It is proved in Theorem 17 of [3] that MSOTT = ATTR

sur. Hence
MSOTT ⊆ ATTR ∩ LSI. Equality of these classes now follows from Theorem 7.2
and the fact that ATTR ⊆ MTT. (The latter inclusion can be proved as follows: By
definition, ATTR consists of all translations that can be realized by the composition
of an attributed relabeling, followed by an attributed tree translation. It follows from
Theorem 4.4 of [19] that attributed relabelings can be realized by TRs. Thus, ATTR ⊆
TR ◦ ATT, where ATT denotes the class of translations realized by attributed tree
transducers. By Lemma 5.11 of [19], ATT ⊆ MTTR and so TR◦ATT ⊆ TR◦MTTR,
which, by Lemma 3.4, equals TR ◦MTT. Since regular look-ahead can be realized
by first running a finite state relabeling, i.e., applying a translation in DBQREL
(cf. Theorem 2.6 of [14]), we get the inclusion in DBQREL ◦ T ◦ MTT, which is
⊆ DBQREL ◦ MTT by Corollary 4.10 of [24], and thus we have the inclusion in
MTTR = MTT.)

Theorem 7.5. MSOTT = ATTR ∩ LSI.
From the fact that ATTR ⊆ MTT (effectively) together with Theorem 7.3 and

the fact that MSOTT = ATTR
sur (effectively), we obtain the following decidability

result for attributed tree transducers.

Theorem 7.6. For an ATTR A it is decidable whether or not there exists an
equivalent single-use restricted ATTR A′, and if so, A′ can be constructed.

The interpretation of Theorem 7.6 in terms of classical attribute grammars in-
volves a technical detail: roughly speaking, the look-ahead part of an ATTR corre-
sponds to the underlying context-free grammar of an attribute grammar. If we want
to apply Theorem 7.6 to an attribute grammar G, then we first have to turn G into
an equivalent ATTR A, i.e., into an ATTR that realizes the same tree-to-tree trans-
lation as G (translating the non-derivation-trees of G into some error symbol). Now
assume that for A there is an equivalent single-use restricted ATTR A′. In general the
look-ahead of A′ will be different from the one of A, which implies that an attribute
grammar G′ equivalent to A′ does not have the same underlying context-free gram-
mar as G, and hence the tree-to-tree translation realized by G′ is different from the
one realized by G. This problem can be avoided by adding boolean-valued attributes
to G′ (cf. the introduction of [3]), which simulate the look-ahead part of A′. In this
way G′ and G have the same underlying context-free grammar and they realize the
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same tree-to-tree translation (however, the boolean-valued attributes are, in general,
not single-use restricted).

7.3. Context-free graph grammars. A context-free graph grammar (see, e.g.,
[16]) generates a graph language. If the graphs are restricted to trees, then we obtain a
tree language. As discussed in the introduction of [19], the class of tree languages that
can be generated by context-free graph grammars (either by hyperedge replacement
(HR), or by node replacement (NR); cf. Section 6 of [16]) can be obtained by applying
the MSO definable tree translations to the regular tree languages. By Theorem 7.2 it
means that this class of tree languages can be obtained by the application of lsi macro
tree translations to the regular tree languages. This is just a straightforward variation
of similar statements in the literature: for single-use restricted ATTs in Corollary 19
of [3], for “single-use restricted” MTTs and for finite copying MTTs in Corollary 7.3
of [19], and for nondeleting MTTs that are finite copying and linear in the parameters
in Theorem 5 of [20] (based on Theorem 8.1 of [10]).

Theorem 7.7. The output tree languages of MTTs of linear size increase applied
to the regular tree languages are the tree languages generated by (HR or NR) context-
free graph grammars.

7.4. Open problems and further research topics. We have proved that for
an MTT it is decidable whether or not the translation it realizes is MSO definable.
What is the complexity of this problem? In fact, the complexity of deciding the
finiteness of ranges of (compositions of) MTTs [12] (cf. Lemma 3.8) is not known,
and our decidability proof is based on this result. Generally speaking, complexity
issues have not yet been studied in the area of MTTs. A first result in that direction
is [42], which shows that for a composition τ of deterministic macro tree translations
and an input tree s, the corresponding output tree τ(s) can be computed in time
linear in the sum of the sizes of s and t.

Is it decidable for an MSO tree transducer whether its translation is in TR, i.e.,
whether it can be simulated by a top-down tree transducer with regular look-ahead
(see section 7.1)?

It would be interesting to find a classification of the possible size increases of
MTTs. For top-down tree transducers such a classification is given in [1], and it is
shown that the size increase of every top-down tree transducer is either polynomial
or exponential. For MTTs it could be the case that every size increase is either
polynomial, exponential, or double exponential.

Is polynomial size increase decidable for MTTs? If so, what is the complexity?
For top-down tree transducers it is shown in [11] that this problem is NLOGSPACE-
complete. It is not clear how MSO definability could be generalized in order to obtain
the class of polynomial size increase macro tree translations. (Note that there are
well-established models of polynomial size increase transducers based on first-order
logic; see, e.g., [13, 34].)

Composition of MTTs yields a proper hierarchy; i.e., there are translations which
can be realized by the composition of m + 1 MTTs but not by the composition of
m MTTs (Theorem 4.16 of [24]). Now, what happens if we restrict our attention to
translations that are of linear size increase? Maybe then composition does not yield
a proper hierarchy, but rather it remains the class of MSO definable tree translations,
i.e., is LSI ∩ ⋃nMTTn = MSOTT. Since compositions of MTTs can be realized
by high-level tree transducers (and vice versa) [25] this question is equivalent to the
following: Are lsi high-level tree translations MSO definable? Again, this question
could also be considered for polynomial instead of linear size increase.



1004 JOOST ENGELFRIET AND SEBASTIAN MANETH

Recently we have shown that the k-pebble tree transducer, introduced in [45]
as a formal model for XML query languages, can be simulated by the composition
of MTTs [21]. Thus, if, as discussed in the previous paragraph, our results would
even hold for compositions of MTTs, then they would also hold for k-pebble tree
transducers.

For both MTTs and MSO transducers there are nondeterministic variants (cf. [24]
and [5], respectively). We would like to know whether our result carries over to the
nondeterministic case, i.e., whether the nondeterministic macro tree translations of
linear size increase are precisely the nondeterministic MSO definable tree translations.

Last but not least: Given an MTT M , is it decidable whether the translation
τM realized by M can be realized by an attributed tree transducer (with look-ahead),
i.e., is it decidable whether τM ∈ ATT (or ATTR)? This question is of interest
because, as shown in [3], ATTR is the class of tree translations that are MSO definable
(by an MSO tree-to-graph transducer; see [5]) when subtrees can be shared in the
output tree. Of course, if τM is MSO definable (without sharing of subtrees), which
can be decided by Theorem 7.3, then the answer to the above question is positive,
because MSOTT = ATTR

sur by the result of [3] (other positive criteria are discussed
in [8, 9, 29]). On the other hand, note that ATTRs are of linear size-to-height increase
(cf., e.g., Lemma 5.40 of [28]). Denote by LSHI the class of all translations of linear
size-to-height increase. Probably it can be proved (by methods similar to those in this
paper) that MTT ∩LSHI = MTTR

fnest and that τM ∈ LSHI if and only if prop(M) is
fnest, which is decidable. Thus, it would be decidable for an MTT whether or not it
is of linear size-to-height increase. If it is not, then it cannot be realized by an ATTR.
But these are only partial answers.
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[40] A. Kühnemann and H. Vogler, Attributgrammatiken, Vieweg-Verlag, Braunschweig, Wies-
baden, Germany, 1997.
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Abstract. The session problem is an abstraction of fundamental synchronization problems in
distributed systems. It has previously been used as a test case to demonstrate the differences in the
time needed to solve problems in several timing models.

The goal of this paper is to compare the computational power of a family of partially synchronous
models by studying the time needed to solve the session problem. Four timing parameters are
considered: the maximum and minimum process step times and message delays. Timing models
are obtained by considering independently whether each parameter is known (i.e., is hard-wired into
the processes’ code) or unknown, giving rise to four shared memory models and 16 message passing
models. The models are compared based on the time complexity, measured in real time, of the
session problem.

This paper presents a modular proof technique for obtaining asymptotically tight bounds on
the time complexity of the session problem for the four shared memory models and the 16 message
passing models. Timing information known in each particular model can be exploited by algorithms
to count sessions in different ways. This paper reports five different counting algorithms. The
matching lower bound for each model suggests that they are the optimal ways to count sessions.
Based on these bounds, a lattice among unknown parameter models is constructed, which confirms
the common belief that as more timing information is known in a model, the model behaves more
like a synchronous system.

Key words. session problem, partially synchronous models, timing information, distributed
computing, upper bounds, lower bounds
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1. Introduction. Early work in distributed computing usually assumed one of
two extreme timing models: the completely synchronous model, in which processes
operate in lockstep rounds of computation and a message sent in a round is deliv-
ered in the next round, or the completely asynchronous model, in which there are
no bounds on process step time or message delay. However, in most distributed
systems, processes operate neither in lockstep nor at completely independent rates.
Furthermore, the asynchrony assumption makes it very difficult to design and verify
distributed algorithms, whereas the perfect synchrony assumption is very expensive,
if not impossible, to implement in real distributed systems.

Based on these observations, researchers (e.g., [1, 2, 4, 5, 8, 9, 10, 11, 17]) began
to investigate the impact on distributed computing if those timing assumptions are
relaxed or tightened to some extent in order to reflect more realistic situations. The
new timing models that are obtained by relaxing or tightening the two extreme timing
assumptions are called partially synchronous models.
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The goal of this paper is to compare the computational power of a family of
partially synchronous models by studying the time needed to solve a distributed com-
puting problem called the session problem.

1.1. The session problem. The (s, n)-session problem was first presented in [3]
and further studied in [5]. Informally, a session is a minimal-length computation
fragment that involves at least one special “synchronization” step by every process in
a distinguished set of n processes. An algorithm that solves the (s, n)-session problem
must guarantee that in every computation there are at least s disjoint sessions and
that eventually all the n processes become idle.

The (s, n)-session problem is an abstraction of the synchronization used in many
distributed computing settings. The (s, n)-session problem, like the mutual exclusion
and dining philosophers problems, concerns possible ordering of process events (e.g., a
process finishing its assigned task) rather than the computation of particular outputs.

Consider, for example, barrier synchronization [13], a fundamental mechanism in
concurrent systems which guarantees that all processes have finished a specified task
in their execution before any proceeds. Barrier synchronization is a special case of the
(s, n)-session problem when s = 2, and solutions for the (2, n)-session problem can be
used to construct barrier synchronization: after each process finishes its specified task,
it keeps taking synchronization steps until the (2, n)-session algorithm terminates.

As discussed in [5], another example of the (s, n)-session problem can be found
in a distributed linear equation solver, where each process holds part of the input
data (cf. [7]) and iterates to solve equations by relaxation. Each process takes one
synchronization step when it changes its data. Sufficient interleavings of synchroniza-
tion steps by different processes ensure a correct output since they imply sufficient
interaction among the intermediate values computed by the processes.

The (s, n)-session problem is also an abstraction of a simple message distribution
system in which a sending process writes a sequence of s messages one at a time on a
board (e.g., port or mailbox) visible to all and waits after each message until all n−1
other processes have read the message before writing the next one. Each reading step
by a process is one synchronization step of the process. Any protocol which ensures
that the sender has waited sufficiently long solves the (s, n)-session problem.

Since the time complexity of the session problem is very sensitive to the timing
assumptions of the underlying model, it has been used as a test case to demonstrate
the theoretical differences in the time needed to solve problems in various timing mod-
els [3, 5, 16, 18, 19]. Using the session problem, we can quantify differences between
various models in terms of the time complexity needed to solve distributed comput-
ing problems. Precise time complexities for various timing models allow us to show
complexity gaps among the models. Time complexity gaps can provide valuable in-
formation to system designers in evaluating and comparing the various timing models
and deciding what timing guarantees they have to provide or do not have to provide
to build efficient yet cost-effective distributed systems.

A solution for the (s, n)-session problem normally involves several methods for
counting sessions during execution. In particular, the first or last session is often
counted in a different way than the other sessions. Hence, the time complexity of a
solution is usually expressed as a function of s, n and some additional terms to account
for the complexity of counting the first or last session. When we qualitatively evaluate
relative time complexities of different timing models, the term associated with s has
more weight than the other terms in deciding the time complexity hierarchy.
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1.2. Timing models. We consider two different interprocess communication
models: shared memory (SM) and message passing (MP). In the SM model, processes
communicate only by means of shared variables.

In the MP model, communication is done by exchanging messages across a net-
work. A process can broadcast a message at a step; the message is guaranteed to be
delivered to every process after some finite time.

Process step time is the amount of time between two consecutive steps of the
same process, and message delay is the amount of time between when a message is
sent and when the message is received. The relevant timing parameters of a model
are the minimum step time, c1, the maximum step time, c2, and additionally, for the
MP model, the minimum message delay, d1, and the maximum message delay, d2.

We consider families of timing models for both SM and MP systems. The timing
models are obtained by considering independently whether each parameter is known
(i.e., can be hard-wired into the processes’ code) or unknown, giving rise to four SM
models and 16 MP models. Some of these models have been studied previously in
both practical and theoretical contexts.

Models with known maximum and minimum step times are commonly called
semisynchronous models and have been previously studied for various distributed
computing problems, including the consensus problem, the mutual exclusion problem,
and the session problem (see [1, 2, 4, 5, 6, 8, 14, 15, 17, 18, 19]). The semisynchrony
models systems where information about timing parameters, such as process step
time, is only approximately known; e.g., processes may have access to inaccurate
clocks that operate at approximately, but not exactly, the same rate.

Models with unknown step times have been studied for the consensus problem
[11] and for the mutual exclusion problem [1]. As those papers argue, these models
provide a useful abstraction of the timing constraints in real systems.

Models in which the minimum step time is known but the maximum step time
is unknown abstract event-driven processing such as responding to user inputs or
nonperiodic device interrupts [18]. In these models, processes can be blocked for an
arbitrarily long (but finite) time waiting for a certain condition to be true or a certain
event to occur but cannot take two consecutive steps faster than a certain amount of
time.

A lower bound result or impossibility result shown for an asynchronous model
does not automatically carry over to a model with unknown bounds. For instance,
the work on the consensus problem in [11] showed that fault-tolerant consensus can
be solved in a model with unknown bounds, although it cannot be solved in an
asynchronous system [12]. There is more leeway in constructing “bad” executions
in an asynchronous system than there is in one with unknown bounds. Thus, it is
worth investigating how knowledge of step time and message delay affects the session
problem.

1.3. Previous work on the session problem. The upper and lower bounds
on the time required to solve the session problem in an asynchronous SM system
shown by Arjomandi, Fischer, and Lynch [3] demonstrated the first such case where
asynchronous systems are less efficient than synchronous systems. In the synchronous
model, all processes run in lockstep, while in the asynchronous model no bounds
on process running rates exist. Their result showed an inherent time complexity
gap between the synchronous and asynchronous models: s steps are sufficient for
s sessions in the synchronous model, i.e., no interprocess communication is needed,
but (s − 1)�loga n� steps are necessary for the asynchronous model. The �loga n�
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factor is essentially the cost of communication, where a is the maximum number of
distinct processes that are ever allowed to access any given shared variable. Thus,
one interprocess communication per session is needed in the asynchronous SM model.

Attiya and Mavronicolas [5] show a similar result for an asynchronous MP system
in which there is a maximum message delay d2 but the minimum message delay d1 is
zero. Their results show that the asynchronous MP model requires (s − 1) · d2 time
to solve the (s, n)-session problem (at least one message delay per session).

The session problem has been studied in a semisynchronous model as well, in
which there are known minimum and maximum step times and there is a (not nec-
essarily known) maximum message delay. The upper bound in the MP model shown
by Attiya and Mavronicolas [5] is (s − 1) ·min{ c22c1

c2, d2}. A nearly matching lower
bound (within a factor of 2 of the upper bound) also appears in [5]. These results
imply that the efficiency of the semisynchronous SM model lies between those of the
synchronous and asynchronous models.

In a periodic model where processes run at a fixed unknown periodic rate, nearly
matching lower and upper bounds shown by [18, 19] indicate that at least one com-
munication is required to solve the session problem. These bounds also indicate the
inherent cost of synchronizing periodically running processes and the existence of time
complexity gaps among the synchronous, periodic, and asynchronous timing models.

1.4. Our results. Our complexity results are organized around “ways to count”
s sessions in a computation. The intuition is that processes must have some way to
count the passage of the other processes’ steps in order to “know” when a session has
occurred.

Note that s · c2 is an obvious lower bound for all models because each process has
to take at least s steps to solve the (s, n)-session problem and each step takes up to
c2 time [3]. We omit from the discussion the obvious lower bound s · c2.

1.4.1. Shared memory results. In order for our results to be comparable to
prior work, we study SM systems with a constant parameter a, which is the maximum
number of distinct processes that are ever allowed to access any given shared variable.
When a is smaller than the total number of processes in the system, it is not pos-
sible for all processes to exchange information in a single step. Instead, information
must be propagated from process to process. Thus, as a gets smaller, the amount of
propagation required increases. The motivation for this restriction on communication
comes from the fact that in a distributed SM system, some part of memory is local
to a process and can be accessed quickly, while the rest is remote and requires more
time for accesses.

Table 1.1 summarizes our results on the time complexity of solving the (s, n)-
session problem in SM models.

Our results indicate that if either the minimum or maximum step time (or both)
is unknown, then the running time for the (s, n)-session problem is (s−1)·c2 ·Θ(logn),
i.e., roughly one communication cost (c2 · Θ(logn)) is required for each session. On
the other hand, if both step times are known, then the running time is (s − 1) · c2 ·
min{ c22c1

,Θ(log n)}. In this model, processes can use timing information about relative
step times to count locally in order to determine when enough sessions have elapsed.
We call this counting technique the step time (ST) method. It was first proposed in
[5] for the semisynchronous MP model. However, if the gap between the minimum
and maximum step times is sufficiently large, then it is more cost-effective to use
explicit communication. We call this counting technique the explicit communication
(EC) method. It was first proposed in [3] for the asynchronous SM model.
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Table 1.1
Time bounds for the (s, n)-session problem in SM models; a is the maximum number of pro-

cesses that can access a shared variable, c1 and c2 are the minimum and maximum step times.

c1 c2 Lower bound Upper bound

unknown unknown (s− 1) · c2 · loga n (s− 1) · c2 ·Θ(logn)
unknown known (s− 1) · c2 · loga n (s− 1) · c2 ·Θ(logn)
known unknown (s− 1) · c2 · loga n (s− 1) · c2 ·Θ(logn)
known known (s− 1) · c2 ·min{ c2

2c1
, loga n} (s− 1) · c2 ·min{ c2

2c1
,Θ(logn)}

These results are analogous to those of [3]: intuitively, if either bound is un-
known, then the system can be considered somewhat “asynchronous”; otherwise the
system behaves “more synchronously.” As we discussed in the introduction, the asyn-
chronous lower bound of [3] does not automatically imply any of the lower bounds in
the unknown bound models; however, it is the case that the proof in [3] also works
in the case where both bounds are unknown. Mavronicolas [16] independently and
concurrently also developed the same bounds for the model where both minimum and
maximum step times are known.

1.4.2. Message passing results. In the MP case, we discovered a pattern of
upper bounds consisting of eight different groups of models. As in the SM case, the
pattern is based on different counting methods. However, there are three additional
counting methods available in message passing, so the relationships are more involved.

In the following, we specify each model by a tuple (c1, c2, d1, d2). Each entry in a
tuple is a real value if that parameter is known, and “?” if it is unknown. For example,
we denote the model in which only the maximum step time is known by (?, c2, ?, ?).

In addition to the two counting methods available in the SM model (EC and
ST), three other counting methods are used in the MP model: (1) The message
delay (MD) method uses the known difference between the minimum and maximum
message delays; (2) combination method 1 (CB1) uses the known minimum step time
in combination with the difference between the minimum and maximum message
delays; and (3) combination method 2 (CB2) uses the known maximum message delay
in combination with the known minimum step time.

Table 1.2 shows the approximate per-session cost for each counting method that is
applicable when specific timing information about the system is available. The upper
bound on the time complexity for a particular timing model is the minimum, over all
applicable counting methods, of the time complexity of the counting methods.

These counting methods divide the models into eight groups, as shown in Table
1.3. Figure 1.1 shows a lattice of timing models based on the counting methods that
a model can use. In the figure, an arrow from one group to another means that
the time required to compute a session in the models comprising the source group is
asymptotically equal to or larger than the time required to compute a session in the
models comprising the target group. For instance, the arrow from G1 to G2 indicates
that computing a session in G1 takes at least as much time as doing so in G2.

The results for group G4, when step time bounds are known, were previously
shown by Attiya and Mavronicolas [5]. All the remaining results are new; as mentioned
before, the asynchronous results in [5] do not automatically imply the same results in
the unknown bound cases, although the proof techniques are similar.

We show that the upper bounds on the time complexity for the timing models
are asymptotically optimal. Some of our lower bounds require certain relationships to
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Table 1.2
The approximate per-session cost of each counting method used to solve the session problem

when the required timing knowledge is available; c1 and c2 are the minimum and maximum step
times, d1 and d2 are the minimum and maximum message delays, and u = d2−d1 is the uncertainty
in message delay.

Counting methods Required Approximate
knowledge per-session cost

Explicit communication (EC) none d2

Step times (ST) c1, c2
c2
c1

c2

Message delays (MD) d1, d2
d2
d1

u

Combination 1 (CB1) c1, d1, d2
c2
c1

u

Combination 2 (CB2) c2, d1
d2
d1

c2

Table 1.3
Groups of models that can use the same counting methods.

Group Models Usable counting method(s)

G1 (?, ?, ?, ?), (?, ?, ?, d2), (?, ?, d1, ?), (?, c2, ?, ?), EC
(?, c2, ?, d2), (c1, ?, ?, ?), (c1, ?, ?, d2), (c1, ?, d1, ?)

G2 (?, ?, d1, d2) EC, MD
G3 (?, c2, d1, ?) EC, CB2
G4 (c1, c2, ?, ?), (c1, c2, ?, d2) EC, ST
G5 (c1, ?, d1, d2) EC, MD, CB1
G6 (?, c2, d1, d2) EC, CB2, MD
G7 (c1, c2, d1, ?) EC, CB2, ST
G8 (c1, c2, d1, d2) EC, CB2, CB1, ST, MD

G1

G3 G4

G7G6

G8

G2

(EC,CB1)

(EC,CB1,CB2,ST,MD)

(EC,CB1,ST)(EC,CB1,MD)(EC,CB2,MD)

G5

(EC,MD)

(EC)

(EC,ST)

Fig. 1.1. A lattice of model groups can be formed based on the counting methods (shown in
parenthesis) and tight time complexity bounds of the timing models.
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hold between some of the parameters. For example, consider the model in which only
c2 and d1 are known. The only applicable counting methods are EC and CB2. Thus,
the per-session cost is (approximately) min{d2,

d2
d1
· c2}. The lower bound we prove

for this model gives a per-session cost of approximately 2d2
3d1
· c2, assuming 2c2 ≤ d1.

Since 2c2 ≤ d1, algebraic manipulation shows that this lower bound is less than d2.
Thus our upper and lower bounds are asymptotically tight if 2c2 ≤ d1.

As in the case of the SM models, the general trend of these bounds is that if a
smaller number of the parameters in a model are known, the model behaves more like
“asynchronous,” and otherwise, more like “synchronous.”

As the time complexity gaps (i.e., the difference between the upper bound in a
model and the lower bound in another model) among the models sometimes overlap,
it is rather difficult to analyze the relative strength qualitatively without making
assumptions on parameters. However, when specific values for each known parameters
are given, the actual bounds can be used to analyze the relative strength of the models
quantitatively.

As process step times become more synchronous (i.e., c1 � c2) and message
delays become erratic (i.e., c2 	 d1 	 d2), the general trend of the bounds is that
{G1, G2, G5} > {G3, G4} > {G6, G7, G8} > S, where S is the synchronous model
and “>” denotes that it takes more time to solve the session problem. As message
delays become more synchronous and smaller (i.e., d1 � d2 and d2 ≥ c22/2c1) and
process step times become more erratic (i.e., c1 	 c2), the trend is that {G1, G6} >
{G2, G5, G3, G4, G7, G8} > S. These trends suggest that when process step times are
fairly “synchronous,” the ST method can be more cost-effective than MD, CB2, and
CB1, while when process step times are more “asynchronous” than message delays,
the opposite is true.

1.4.3. Proof techniques. We unify the lower bound proof techniques of [3]
in the SM model and [5] in the MP model into one “modular” lower bound proof.
Our technique is unique in that, instead of obtaining a lower bound for each model
independently, we develop one sufficient condition for any given lower bound to hold
in any given timing model. This sufficient condition consists of a set of algebraic
relations involving (1) the timing parameters of the given model; (2) the given lower
bound; and (3) some input parameters that need to be provided to prove the lower
bound. Testing whether a lower bound holds in a timing model is a simple algebraic
exercise of finding those input parameters that satisfy the relations.

The upper bounds are also obtained in a modular way. We first find algorithms
(i.e., ways to count sessions) that work correctly when a certain set of timing param-
eters is known. Since several algorithms can be applicable to a model, we provide a
scheme to combine these algorithms without increasing the time complexity of any
of its applicable algorithms. The resulting upper bound of a model is simply the
minimum of the time complexity of all the algorithms applicable to the model.

1.5. Organization. The rest of this paper is organized as follows. Section 2
gives the definition of the system model. Section 3 contains our modular lower bound
result for the time complexity of the session problem. Our algorithmic counting
methods are presented in section 4. Section 5 draws together the results for shared
memory and section 6 does the same for message passing. We conclude in section 7.
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2. Definitions.

2.1. Systems. The system model definition is similar to that defined in [3].
There are finite sets P of processes and V of shared variables. A process has

a set of internal states, including an initial state. Each shared variable has a set
of values that it can contain, including an initial value. A global state is a tuple of
internal states of each process, and values of each shared variable. The initial global
state contains the initial state for each process and the initial value for each shared
variable.

A process can both read and write a shared variable in a single atomic step (i.e.,
the variable supports read-modify-write operations); we do not assume any upper
bound on the size of the variables. A step π consists of simultaneous changes to the
state of some process p and the value of some set of variables x1, . . . , xk (for some
integer k), where p is allowed to access xi, 1 ≤ i ≤ k, depending on the current state
of that process and current values of the variables. More formally, we represent the
step π with a tuple ((q, p, r), (u1, x1, v1), . . . , (uk, xk, vk)), where q and r are old and
new states of a process p ∈ P , and ui and vi are old and new values of a shared
variable xi ∈ V . We define proc(π) = p and var(π) = {x1, . . . , xk}. We say that step
π is applicable to a global state if p is in state q and xi has value ui for all i in the
global state.

An algorithm consists of P , V , and set Σ of possible steps. For all processes
p ∈ P and all global states g, there must exist some step in Σ involving process p
that is applicable to global state g. This condition ensures that p never blocks. A
computation of a system is a sequence of steps π1, π2, . . . such that (1) π1 is applicable
to the initial global state; (2) each subsequent step is applicable to the global state
resulting from the previous step; and (3) if the sequence is infinite, then every process
takes an infinite number of steps. That is, there is no process failure.

A timed computation (α, T ) of a system is a computation α = π1, π2, . . . together
with a mapping T from positive integers to nonnegative real numbers that associates
a real time with each step in the computation. T must be nondecreasing and, if
the computation is infinite, increase without bound. This way of modeling processes
assumes that the time taken for local computation at a step is negligible.

2.1.1. SM model. We specialize the general system into the SM system in
which processes communicate with each other by means of shared variables. Each
step π involves only one shared variable. Associated with each variable is a set of at
most a processes that are allowed to access that variable.

2.1.2. MP model. We specialize the general system into the MP system, in
which processes communicate with each other by exchanging messages. P consists of
the regular processes, denoted by the set R, plus a distinguished process N , called
the network. The network schedules the delivery of messages sent among the regular
processes. V , the set of shared variables, equals {net} ∪ {bufp : p ∈ R}, where the
values taken on by each variable are sets of messages. The variable net models the
state of the network, i.e., the set of messages in transit. The variable bufp holds the
set of messages that have been delivered to p by the network but not yet received
by p.

A step of a process p in R consists of p receiving the set M of messages in its
buffer bufp and based solely on those messages and its current state, changing its local
state and sending out some message m to all the regular processes. More formally,
the result of the step is to set bufp to empty (i.e., receive messages), to add (m, q) to
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net for all q in R (i.e., send a message), and to change state. So, the step involves two
shared variables, bufp and net. A step of N is to deliver some message of the form
(m, q) in net to q. More formally, the result of the step is to remove (m, q) from net
and add m to bufq. We call this step the delivery step of m. Accordingly, the step
also involves two shared variables, net and bufq. We define msg(σ) to be the message
that is involved in a step σ of a process in P .

This definition of the MP model is an abstract model of a reliable strongly con-
nected network with any topology (i.e., for every pair of processes, there exists a
communication path between the two processes).

In a timed computation, each message has a delay, defined to be the difference
between the time of the step that adds it to net and the time of the step that removes
it from net. If the message is never removed, then it has infinite delay. The delay
only counts the time in transit in the network and does not include the time that
the recipient takes to receive the message. Note that after a message is delivered to
a destination process p, p has to take at least one step to receive the message. That
is, the time elapsed between the delivery step of a message m and the step of the
destination process which finally removes m from the buffer is not counted toward
the message delay.

2.2. Timing models. First we consider SM models. Let v and w be two pos-
itive real numbers with v ≤ w. M(v, w), called a submodel, is the set of all timed
computations of a system in which all step times (the time between two consecutive
steps by the same process) are within [v, w].

An SM model is specified by indicating whether the minimum and maximum step
times are known, and if so, what their values are. Formally, an SM model is denoted
M[c1, c2], where ci ∈ {?} ∪R+ (R+ is the set of positive reals). If the minimum step
time is known, then c1 is some positive real; otherwise, c1 = ?. If the maximum step
time is known, then c2 is some positive real; otherwise, c2 = ?.

We define the four SM models of interest as follows:

M[c1, c2] = {M(c1, c2)} if c1 ∈ R+ and c2 ∈ R+.

M[c1, ?] = {M(c1, w) : w ≥ c1} if c1 ∈ R+.

M[?, c2] = {M(v, c2) : 0 < v ≤ c2} if c2 ∈ R+.

M[?, ?] = {M(v, w) : 0 < v ≤ w}.

We now consider MP models. Let v, w, x, and y be four positive real numbers
with v ≤ w and x ≤ y. M(v, w, x, y), called a submodel, is the set of all timed
computations in which all step times are within [v, w] and all message delays are
within [x, y].

The 16 MP models are defined analogously to the four SM models. For example,

M[?, c2, d1, ?] = {M(v, c2, d1, y) : 0 < v ≤ c2 and y ≥ d1} if c2 and d1 ∈ R+.

We number the models 0 through 15 using the binary representation, assuming
a parameter that equals ? is replaced with 0 and otherwise with 1. For instance,
M[?, c2, d1, ?] is numbered 01102 = 6.

We say that a timed computation α is admissible for a submodel M if α is in M ,
and is admissible for a modelM if α is admissible for some M inM.
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2.3. The (s, n)-session problem. We now state the conditions that must be
satisfied for a system to solve the (s, n)-session problem.

There is a distinguished set Y of n shared variables called ports; Y is a subset
of V in SM models; and Y is the set of buf variables in MP models. There is a
unique process in P (in R in MP models) corresponding to each port, which is called
a port process, and no two port processes can be assigned to the same port. A port
step is any step involving a port and its corresponding port process. A port can be
accessed by processes in addition to its corresponding port process, but such a step
is not a port step. There may be some processes which are not port processes; i.e., it
is possible for |P | to be larger than n.1

Each port process in P must have a subset of special states, called idle states.
The set Σ of steps of the system must guarantee that once a process is in an idle state,
it always remains in an idle state, and after a process enters an idle state, it does not
access a port.

A session is a minimal sequence of steps containing at least one port step for
each port in Y . A computation performs s sessions if it can be partitioned into s
segments, each of which is one session. Every infinite admissible timed computation
must perform at least s sessions and eventually all port processes must be in idle
states.

2.4. Time complexity. We give the definitions for the SM models. The time
complexity definitions for MP models are analogous to those for SM models.

An algorithm A in a submodelM(x, y) has running time t if t is the maximal time,
over all admissible computations of A forM(x, y), until all port processes become idle.

Let f be a function from R+ × R+ to R+. We abuse notation and say that an
algorithm A in model M[c1, c2] has upper bound f(c1, c2) if A has running time at
most f(x, y) in every submodel M(x, y) in M[c1, c2]. (This is an abuse of notation
because c1 or c2 might equal ? instead of being a positive real constant.)

M[c1, c2] has lower bound f(c1, c2) if for every algorithm A, there is a submodel
M(x, y) such that A has running time at least f(x, y) in that submodel.

3. Modular lower bound. In this section, we give a modular lower bound
proof that holds for all the timing models, both SM and MP. Our lower bound proof
is motivated by the proofs in [3] and [5]. Our technique is unique in that, instead of
obtaining a lower bound for each model independently, we develop a sufficient condi-
tion for a lower bound to hold in any given timing model. This sufficient condition
consists of a set of algebraic relations on (1) the timing parameters of the given model;
(2) the given lower bound; and (3) some other input parameters (shown below). Thus,
testing whether a lower bound holds in a timing model is a simple algebraic exercise of
finding those input parameters that satisfy the relations. The theorem below proves
the sufficient condition; in its statement, c, c′1, c

′
2, d
′
1, d
′
2, and B are the input param-

eters, and SC1 to SC3 and MC1 to MC5 are the algebraic relations. In the proof of
the theorem, we present some intuitive ideas behind the theorem and then formalize
the ideas.

Theorem 3.1. Let M be a timing model that satisfies the following.

If M =M[c1, c2] is an SM model, then there exist positive real numbers c, c′1, c
′
2

and a function f with B = f(c′1, c
′
2) such that

1This possibility is implicitly contained in [3], which refers to making the port processes the
leaves of a tree network.
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SC1. (B ≤ c′2 · loga n) ∧ (c′1 ≤ c′2).
SC2. (c′1 ≤ 1

2c) ∧ ((c′1 = c1) if c1 �= ?).
SC3. (c′2 ≥ B c

c′2
) ∧ ((c′2 = c2) if c2 �= ?).

If M =M[c1, c2, d1, d2] is an MP model, then there exist positive real numbers c,
c′1, c

′
2, d

′
1, d

′
2 and a function f with B = f(c′1, c

′
2, d
′
1, d
′
2) such that

MC1. (B ≤ d′2) ∧ (c′1 ≤ c′2) ∧ (d′1 ≤ d′2).
MC2. (c′1 ≤ 1

2c) ∧ ((c′1 = c1) if c1 �= ?).
MC3. (c′2 ≥ B c

c′2
) ∧ ((c′2 = c2) if c2 �= ?).

MC4. (d′1 ≤ (d′2 −B) cc′2 + c) ∧ ((d′1 = d1) if d1 �= ?).
MC5. (d′2 ≥ (d′2 +B) cc′2 − c) ∧ ((d′2 = d2) if d2 �= ?).

Then a lower bound on the time complexity of the (s, n)-session problem for M
is (s− 1) · f(c1, c2) if M is an SM model, and (s− 1) · f(c1, c2, d1, d2) if M is an MP
model.

3.1. Proof of Theorem 3.1.

Informal description. By way of contradiction we assume that there exists such
an algorithm A that solves the (s, n)-session problem in model M within less time
than the stated lower bound. We prove that there exists an infinite timed computation
of A that is admissible for M yet contains fewer than s sessions, contradicting the
assumed correctness of A.

More specifically, we first fix a submodel M ′ of M and pick an infinite timed
computation (α, T ) of A that is admissible for M ′. Then we retime and reorder
some steps in α to obtain a new infinite timed computation (α′, T ′) that has only
s − 1 sessions, yet is admissible for some submodel M ′′ of M . (M ′ and M ′′ are not
necessarily the same.)

Real numbers c′1, c
′
2, d

′
1, and d

′
2 are the minimum and maximum step times and

message delays of submodel M ′, respectively, for which (α, T ) is admissible. Real
numbers 1

2c, B
c
c′2
, (d′2−B) cc′2 + c, and (d

′
2+B)

c
c′2
− c are the minimum and maximum

step times and message delays of M ′′ for which (α′, T ′) is admissible.
The conditions in the theorem statement are used to prove thatM ′ andM ′′ really

are submodels of M . Below we provide some intuition for these conditions.
1. B is roughly the time for a process to “recognize” one session in a computa-
tion. The first clause in conditions SC1 and MC1 states that B does not take
more than the lower bound on the maximum communication delay in the SM
and MP models.

2. Conditions SC1 and MC1 ensure that minimum and maximum step times
and message delays (c′1, c

′
2, d
′
1, and d

′
2) in submodel M

′ satisfy the property
that the minimum is not larger than the maximum.

3. Conditions SC2 and MC2 ensure that, if the minimum step time (c1) is known
in M , then in M ′ it is equal to that of M , and in M ′′ it is at least as large
as that of M .

4. Conditions SC3 and MC3 ensure that, if the maximum step time (c2) is known
in M , then in M ′ it is equal to that of M , and in M ′′ it is not larger than
that of M .

5. Condition MC4 ensures that, if the minimum message delay (d1) is known in
M , then in M ′ it is equal to that of M , and in M ′′ it is at least as large as
that of M .
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6. Condition MC5 ensures that, if the maximum step time (d2) is known in M ,
then in M ′ it is equal to that of M , and in M ′′ it is not larger than that of
M .

Since B is roughly the upper bound on the time to have one session, the time
complexity lower bound to solve the (s, n)-session problem cannot be less than (s−1)
times the maximum B, which is determined by the timing parameters of M .

We now need to prove that satisfying the above conditions is sufficient to prove
the time complexity lower bound for solving the (s, n)-session problem. This involves
several procedures.

1. We prove that (α, T ) is admissible for M ′, and M ′ is a submodel of M . In
(α, T ), processes enter an idle state before B · (s− 1).

2. We then reorder steps in α to obtain α′ without violating the causal depen-
dency among process steps. The causal dependency among two process steps
happens, for example, because one step receives a message sent by the other
step. Thus, for example, α′ should not order the receive step before the send
step. This procedure involves several other steps.
(a) We first break α into two segments. The first segment, β, is up to the

last step taken by any process before all processes enter the idle state.
The second segment, γ, is the rest of α. It is clear that β should contain
s sessions because α is a computation of A that solves the (s, n)-session
problem.

(b) We then break β into s−1 equal nonoverlapping segments of time period
B. We reorder the process steps only within each segment without
violating their causal dependency so that each segment by itself does not
contain one session. Since each segment contains less than one session,
the reordered sequence β′ does not contain more than s − 1 sessions.
Since each segment does not violate the causal dependency, all the port
processes will be in the same state as they are in the corresponding
segment in β. Thus, in the end of β′, all the port processes are in the
same state as in β, and α′ = β′γ is an admissible computation for M
because α = βγ is.

3. Reordering steps perturbs the timings of process steps. We show a timing
mapping T ′ for β′ whose minimum and maximum step times are c/2 and B c

c′2
,

and whose minimum and maximum message delays are (d′1 ≤ (d′2−B) cc′2 + c)
and (d′2 ≥ (d′2 + B) cc′2 − c). The conditions in the theorem are used to show

that these retimed parameters are within the constraints of a submodel M ′′

of M .
4. Since there is a timed computation (α′, T ′) that is admissible for a submodel
of M which contains less than s− 1 sessions, this is a contradiction.

Formal description. We now formalize these ideas.

Let M ′ be the submodel of M that has minimum and maximum step times and
message delays equal to c′1, c

′
2, d
′
1, and d

′
2, respectively, where the following hold: (a)

c′1 ≤ c′2; (b) c′1 = c1 if the minimum step time of M (c1) is known; and (c) c
′
2 = c2

if the maximum step time of M (c2) is known. Furthermore, if M is an MP model,
(d) d′1 ≤ d′2; (e) d′1 = d1 if the minimum message delay of M (d1) is known; and (f)
d′2 = d2 if the maximum message delay of M (d2) is known.

Since M ′ is a submodel of M , by the assumption that algorithm A is correct for
M , A has running time in M ′ less than (s − 1) · B, where B = f(c′1, c

′
2) if M is an
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SM model, and B = f(c′1, c
′
2, d
′
1, d
′
2) if M is an MP model.

Let (α, T ) be the infinite timed computation of A in which all the regular processes
take steps at the same speed in round robin order and each process’s ith step occurs
at time i · c′2. Furthermore, if M is an MP model, all the message delays in (α, T ) are
exactly d′2. Note that (α, T ) is admissible for M

′ (and thus for M).
Let α = βγ, where β contains all the steps that occur in (α, T ) during time

interval [0, (s− 1) ·B) and γ contains the rest of α. Note that all the states in γ are
idle states because A solves the (s, n)-session problem in time less than (s− 1) ·B.

Case 1. If B ≤ c′2, then β contains only s− 1 sessions because each process takes
only s− 1 steps in β. This is a contradiction since all regular processes are in an idle
state in γ.

Case 2. For the rest of the proof, assume that B > c′2. For convenience of
presentation, we assume that B is divisible by c′2.

2

We will reorder and retime (i.e., assign new times to) steps in β to obtain (β′, T ′).
To ensure that the retimed computation leads to the same global state, this retiming
should not violate the dependencies among process steps. Informally, a dependency
arises between two steps if they are steps of the same process; if one step reads a
variable previously accessed by the other; or if one step is the receipt of a message
sent by the other. A more precise definition of dependency is given below.

We construct a partial order ≤β on the steps in β, representing dependency. Let
σ ≤β τ for every pair of steps σ and τ in β, and say that τ depends on σ if

• σ = τ , or
• T (σ) < T (τ) and proc(σ) = proc(τ) �= N , or
• T (σ) < T (τ) and msg(σ) = msg(τ) if M is an MP model, or
• T (σ) < T (τ) and var(σ) = var(τ) if M is an SM model.

Close ≤β under transitivity.
Let β = β1 . . . βs−1 such that each βk, which we call segment k, 1 ≤ k ≤ s − 1,

consists of all the steps in (α, T ) during time interval [(k− 1)B, kB). Note that in an
MP model, no message sent in βk is received in βk since B ≤ d′2 by MC1 and d′2 is
the message delay in (α, T ).

Informally speaking, we will reorder steps in each segment βk without violating
the dependencies as follows. We first pick one port variable for each segment in such a
way that the same port variable is not picked for two consecutive segments. Let yi be
the port variable picked for segment βi. Then we reorder the steps of each segment,
resulting in two “subsegments” such that the first subsegment does not contain any
port event accessing yi and the second subsegment does not contain any port event
accessing yi+1. The reordered sequence will contain only s − 1 sessions. Figure 3.1
illustrates an example when s = 4.

However, for the reordered computation to end in the same state as β, this reorder-
ing should not violate relation ≤β within each segment (relation ≤β is not violated
across segments by the reordering because steps are not reordered out of their own
segments). Thus, we must choose the port yk for each segment βk such that the first
step in βk to access yk−1 does not depend on the last step in βk to access yk. The
following claim shows that this can be done.

Claim 3.2. Let y0 be an arbitrary port in Y . For all k, 1 ≤ k ≤ s − 1, there
exists a port variable yk such that it is false that τk ≤β σk, where τk is the first step
in βk that accesses yk−1 and σk is the last step in βk that accesses yk.

2If B is not divisible by c′2, the lower bound we obtain is (s − 1) · � f(c1,c2)
c2

� · c2 instead of

(s− 1) · f(c1, c2) in the SM case, and similarly for the MP case.
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β1Reordering of β2Reordering of β3Reordering of

No port event for y0 No port event for y1 No port event for y1 No port event for y2 No port event for y2 No port event for y3

 Three Sessions

Two Sessions

One Session

Fig. 3.1. An example of reordering when s = 4.

Proof. If M is an MP model, no message sent in βk is delivered in βk because
the size of each segment is less than d′2, and d

′
2 is the message delay. Because there is

no ≤β relation between any two steps of different processes in βk, any port variable
except yk−1 can be chosen as yk.

If M is an SM model, part of the proof of Theorem 2 of [3]3 proves that there
exists such yk if each process takes fewer than loga n steps in a segment. Because in βk
each process takes fewer than loga n steps (cf. SC1), there exists such yk in βk.

Claim 3.2 allows us to use the yk’s to reorder β to obtain a new sequence with
less than s sessions (shown in Claim 3.4). However, the steps in the sequence are not
mapped to time. Thus, we need a scheme to assign new times to the reordered steps
so that the new timed computation does not violate the timing constraints of M .
This is the major difference between our lower bound proof for unknown parameter
models and that in [3] for the asynchronous model; in the latter no timing scheme is
necessary because the asynchronous model imposes no timing constraints.

In the following, we define a retiming scheme that also encompasses the reordering
scheme presented above.

Let us first assign a new mapping T ′′ to every step π in βγ, including all the steps
of the network N if M is an MP model, such that T ′′(π) = T (π) · cc′2 . That is, every
process (except N) takes a step at every time that is a multiple of c. Since in an MP
model, the delivery steps of N are retimed along with other steps, the message delay
is now changed from d′2 to d

′
2 · cc′2 . Note that the assignment of T

′′ does not change
the relative ordering of the steps in β because it changes every step time by the same
proportion (namely, c

c′2
).

We now reorder and assign new times (the mapping T ′) to every step in (βk, T ′′).
Intuitively, in order to obtain a timed computation as in Figure 3.1, σk and every step
that σk depends on have to move earlier in time into the first half of (βk, T

′′), and τk
and every step that depends on τk have to move later in time into the second half of
(βk, T

′′). As a result, σk will occur before τk.
Let tk = k · Bcc′2 , where 0 ≤ k ≤ s− 1. Thus, βk occurs during [tk−1, tk) under T

′′.

Note that tk − tk−1 =
Bc
c′2
.

3The statement of Theorem 2 in [3] does not explicitly include this result. For conciseness, we
do not include a copy of the relevant part of the proof (the middle of pp. 453–455).
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1. (Earlier retiming.) Let π be any step in βk by a process in P that σk depends
on (in an MP model, this means proc(π) = proc(σk)). Retime π such that

T ′(π) = tk−1+T
′′(π)

2 . The step is moved backward halfway to the beginning
of βk.

2. (Later retiming.) Let σ be any step in βk by a process in P that depends on
τk (in an MP model, this means proc(σ) = proc(τk)). Retime σ such that

T ′(σ) = T ′′(σ)+tk−c
2 . The step is moved forward approximately halfway to

the end of βk.
3. (Stationary retiming.) All other steps in βk and all steps in γ are assigned
the same times as in T ′′.

For all k, 1 ≤ k ≤ s− 1, let β′′k be the result of reordering and retiming steps in
βk according to T

′, and let β′′ = β′′1β
′′
2 . . . β

′′
s−1.

If M is an MP model, let β′ be the result of changing the states of the network in
β′′ so that in each step of the network, the state of the network is consistent with all
the send steps of regular processes and all the deliver steps of the network in β′′ that
have happened so far (“consistent” means that a delivery step of a message happens
after its send step). If M is an SM model, let β′ = β′′.

In summary, (β, T ) is now transformed to (β′, T ′) using (β′′, T ′′) as an intermedi-
ate computation. To show the theorem, it suffices to show that (1) β′ is a computation
leading to the same global state as β (Claim 3.3); (2) β′ contains less than s sessions
(Claim 3.4); and (3) (β′γ, T ′) is admissible for M (Claim 3.5).

Claim 3.3. β′ is a computation that leaves the system in the same global state
as β does.

Proof. We first prove that ≤β holds in β′.
For any k, 1 ≤ k ≤ s − 1, pick any two steps π and π′ in βk such that π ≤β π′.

Thus T (π) ≤ T (π′) (recall that T is the original timing). We only need to prove that
T ′(π) ≤ T ′(π′) because π occurs earlier than π′ in T .

Each of π and π′ was retimed by one of the earlier, later, or stationary retiming
methods. Clearly the desired ordering is preserved

(1) when π stays the same and π′ either stays the same or moves later in time; or
(2) when π′ stays the same and π either stays the same or moves earlier in time;

or

(3) when π and π′ both move in the same direction.
The other cases cannot occur, since if π moves later in time, then so does π′, and

if π′ moves earlier in time, then so does π.
Since β′ does not violate ≤β in both SM and MP models, and all the states of

net in β′ are consistent with the steps of β′′ by the definition of β′ in MP, it follows
that β′ is a computation resulting in the same global state as β.

Claim 3.4. β′ contains at most s− 1 sessions.

Proof. For all k, 1 ≤ k ≤ s − 1, let hk = T ′(τk). We show, by induction on k,
that time period [0, hk) in (β

′, T ′) contains at most k − 1 sessions.
For the basis, [0, h1) contains no session because it does not contain any port

event for y0.

Assume, by way of induction, that [0, hk−1) contains at most k − 2 sessions. We
prove that [0, hk) contains at most k − 1 sessions. It is clear from the construction
that (hk−1, tk−1] contains no session because it does not contain any port event of
yk−1 and, similarly, [tk−1, hk) does not contain any session because it contains no port
event of yk−1. Since the port process of yk−1 takes only one step at hk−1, it is clear
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that [hk−1, hk) contains at most one session. Therefore, [0, hk) contains at most k− 1
sessions.

A similar argument shows that [hs−1, ts−1] contains at most one session. Since
[0, hs−1) contains at most s−2 sessions, it follows that there are at most s−1 sessions
in [0, ts−1].

Claim 3.5. (β′γ, T ′) is a timed computation that is admissible for M .

Proof. By Claim 3.3, β′ is a computation that leads to the same global state as β.
Therefore, β′γ is also a computation because βγ is a computation. Since γ is infinite,
so is β′γ. It remains to show that the timing T ′ conforms to the timing constraints
of model M .

Constraints on step time. Let πi and πi+1 be consecutive steps of a single
process in βk for some k. Then, for some ∆ ≥ 0, it is true that T ′′(πi) = tk−1 + ∆
and T ′′(πi+1) = tk−1 +∆+ c.

The distance between the two steps is minimized when both steps are retimed by
the same retiming method because it is not possible that πi is retimed by the later
retiming while πi+1 is retimed by the earlier retiming. If both πi and πi+1 are retimed
by the same retiming method (either later or earlier retiming), T ′(πi+1) − T ′(πi) is
equal to c/2.

None of the retiming methods retimes a step outside its original segment: If a
step is in segment βk, after the retiming, it is still in segment β

′
k. Thus, neither πi

nor πi+1 is retimed outside the segment. Since the maximum time elapsed between πi
and πi+1 in βk is B, and in T

′′, all times are shrunk in proportion to c
c′2
, the distance

between the two steps can never be larger than tk − tk−1 ≤ B c
c′2
.

For the timing of steps in different segments, let πj and πj+1 be the consecu-
tive steps of a process, each of which is in a different segment, say, βk and βk+1,
respectively. Then T ′′(πj) = tk and T

′′(πj+1) = tk + c (this is because B is divisi-
ble by c′2). Since the two steps are in different segments, the distance between the
two steps is minimized when πj is retimed by the later retiming while πj+1 is re-
timed by the earlier retiming. However, neither of these retimings results in a change,
i.e., T ′(πj) = T ′′(πj) and T ′(πj+1) = T ′′(πj+1). Therefore, T

′(πi+1) − T ′(πi) = c.
Since the two steps are in different segments, the distance between the two steps
is maximized when πj is retimed by the earlier retiming while πj+1 is retimed by
the later retiming. In this case, πj moves to (tk−1 + tk − c)/2 and πj+1 moves to
(tk+ tk+1−c)/2. Therefore, the distance between the two steps cannot be larger than
B c
c′2
because T ′(πi+1)− T ′(πi) = tk+1−tk−1

2 ≤ B c
c′2
.

We first check the minimum step time.

• If c1 is unknown, then there exists a positive constant (namely c/2) which is
the minimum step time in (β′, T ′).

• If c1 is known, by condition SC2 (or MC2), the minimum step (c/2) in (β′, T ′)
is bigger than or equal to the minimum step time of M .
• If c2 is known, the minimum step (c/2) is less than or equal to c2 because (1)
by SC3 (MC3), c′2 = c2 and B

c
c2
≤ c2; and (2) by the assumption for Case 2

of the main proof, B > c2.

Now we check the maximum step time.

• If c2 is unknown, then there exists a positive constant (namely B c
c′2
) which

is the maximum step time in (β′, T ′).
• If c2 is known, the maximum step time (B c

c′2
) in (β′, T ′) is less than or equal

to c2 because of SC3 and MC3.
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• If c1 is known, the maximum step time (B c
c′2
) in (β′, T ′) is bigger than or equal

to c1 because (1) by the assumption for Case 2, B > c′2 and thus B
c
c′2
> c;

and (2) by SC2 and MC2, c ≥ c1.
Constraints on message delay. The steps that move the farthest due to the

earlier retiming from T ′′ to T ′ are those at the end of each segment because they do not
move outside their segments. Let πlast be the step at the end of βk. T

′′(πlast) = tk−c.
By the earlier retiming, T ′(πlast) = (tk−1 + tk − c)/2 = tk − 1

2B
c
c′2
− c/2.

The steps that move the farthest due to the later retiming from T ′′ to T ′ are
those at the start of each segment because they do not move outside their segments.
Let πstart be the step at the start of βk. T

′′(πstart) = tk−1. By the later retiming,
T ′(πstart) = (tk−1 + tk − c)/2 = tk − 1

2B
c
c′2
− c/2. Therefore, the maximum distance

that a step can move from T ′′ to T ′ is bounded by 1
2B

c
c′2
− c/2.

Let πs and πr be the send and receive steps of any message in β. Recall that under
T ′′, all the message delays are d′2

c
c′2
. Thus, T ′′(πr) − T ′′(πs) = d′2

c
c′2
. Let d′ = d′2

c
c′2
.

Because both πr and πs can move
1
2 (B

c
c′2
− c) time from T ′ to T ′′, each in opposite

directions, d′ −B c
c2
+ c ≤ T ′(πr)− T ′(πs) ≤ d′ +B c

c2
− c.

We first check the minimum message delay.
• If d1 is unknown, then there exists a positive constant that is the minimum
message delay in (β′, T ′) because (1) T ′(πr)− T ′(πs) ≥ d′ − B c

c2
+ c; (2) by

MC1, d′ −B c
c′2
= (d′2 −B) cc′2 ≥ 0; and (3) c is a positive real.• If d1 is known, the minimum message delay (d′−B c

c′2
+ c) in (β′, T ′) is bigger

than or equal to d1 because of MC4.
We now check the maximum message delay.
• If d2 is unknown, then there exists a positive constant (namely d

′ +B c
c′2
− c)

that is the maximum message delay in (β′, T ′) because d′+B c
c′2
−c ≥ T ′(πr)−

T ′(πs) > 0.
• If d2 is known, the maximum message delay (d′ + B c

c′2
− c) is less than or

equal to d2 because of MC5.
To finish the proof of the main theorem, (β′γ, T ′) is an infinite timed computa-

tion admissible for M but with fewer than s sessions, by Claims 3.4 and 3.5. This
contradicts the assumed correctness of A.

4. Algorithmic counting methods. We develop five methods to count the
number of sessions during a computation (cf. Table 4.1). These methods differ in
the ways they use the known timing information of a model to count sessions. An
(s, n)-session algorithm can be obtained for a model simply by combining all the
applicable methods to the model without increasing the asymptotic time complexity
of any of those methods. This can be done by running each method “side by side,”
halting when the first of them finishes [5]. Since there is only a constant number of
methods running at the same time, the combination does not affect the asymptotic
time complexity of the algorithm. The resulting upper bound on the time needed to
solve the session problem in a model is the minimum of the time complexity of all the
methods applicable to the model.

We now describe each of the counting methods. A message is denoted m(i, j, k),
where i is the identifier of the sending process pi, j is an integer in [0, s− 1], and k is
an integer. We let ∗ be a “don’t care” value. The port for a port process i is denoted
yi. In an MP model, yi denotes process i’s buffer of incoming messages.
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Table 4.1
Counting methods.

Technique Timing information Running time

Explicit communication (EC) None (s− 1) · d2 + c2 or (s− 1) · c2Θ(logn) + c2

Step time (ST) c1, c2 (s− 1) · c2
c1
· c2 + c2

Combination 1 (CB1) c1, d1, d2 (s− 2) · ( c2
c1
· u+ u+ 2c2) + d2 + 3c2

Message delay (MD) d1, d2 (s− 2)( d2
d1
· u+ u+ 2c2) + d2 + 2c2

Combination 2 (CB2) c2, d1 (s− 1) · c2 · d2+c2d1
+ c2

In describing the methods, we use a subroutine called broadcast as a generic
operator for communication. In MP models, broadcast is accomplished by having
each process send a message to all the processes, including itself. In specifying the
algorithm for counting, we use a message format with three fields, m(i, j, k), where i
indicates the identifier of the process sending the message; j is the session number that
process i is currently in; and k is an integer used as a local variable in the algorithm.
When marked with ∗, the field denotes “don’t care” (i.e., a message with any value
on that field).

We now explain how to achieve a broadcast in an SM model. Recall that at most
a processes can access any specific shared variable. We conceptually organize the
processes and shared variables into a tree with Θ(logn) levels. In order for a port
process to broadcast information to all other port processes, the information travels
up the tree to the root and then down from the root to all the leaves. See Appendix A
for more details.

4.1. Explicit communication (EC). The EC method (see Figure 4.1), orig-
inally presented and analyzed in [3] for the asynchronous SM model, and in [5] for
the asynchronous MP model, does not require any timing information to solve the
(s, n)-session problem. It can be used in any timing model because the correctness of
the method does not depend on specific step time or message delay.

session := 0; msgs := ∅;
while ( session < s− 1 )

msgs := msgs ∪ yi; /∗ port event; recall yi = bufi in MP ∗/
if for all j ∈ {1, . . . , n},m(j, session, ∗) is in msgs
then

session := session+ 1;
end if;
broadcast m(i, session, ∗); /∗ port event ∗/

end while;
Enter an idle state.

Fig. 4.1. Technique EC for process i.

Theorem 4.1. EC solves the (s, n)-session problem in time (s−1)·c2·Θ(logn)+c2
in an SM model and in time (s− 1) · d2 + c2 in an MP model.

The basic intuition for the method is that since it does not use any timing infor-
mation, a process relies only on communication with other processes at every session
to recognize that there is one session. Each process executes one port event, broad-
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B := c2
c1
;

count := session := 0;
while ( session < s− 1 )

if (count ≥ B)
then

count := 0;
session := session+ 1;

end if;
count := count+ 1;
access yi; /∗ port event; recall yi = bufi in MP */

end while;
Enter an idle state.

Fig. 4.2. Technique ST for process i.

casts the fact to every process at each step, and repeats this step until it hears that
every process has executed another port event. Then it increments session. It per-
forms these steps s − 1 times. Then, after it executes one additional port event, it
enters an idle state.

4.2. Step time (ST). The ST method (see Figure 4.2), originally presented
and analyzed in [5] for the semisynchronous model, requires information about the
maximum and minimum step times (c2 and c1). For convenience of presentation, we
assume that c2 is divisible by c1. This method can also be used for both an SM model
and an MP model.

In this method, processes use timing information about relative step times to
determine when a session occurs. Each process executes c2

c1
port events. During this

interval, at least c2
c1
· c1 = c2 time elapses, since c1 is the minimum step time. Since

every process performs at least one port event within time c2 (since c2 is the maximum
step time), at least one session has occurred by the time that the process finishes c2

c1
port events. Each process repeats the above procedure s− 1 times. After it executes
one additional port event, it enters an idle state.

Theorem 4.2. ST solves the (s, n)-session problem in time (s− 1) · c2c1 c2 + c2 in
both an SM model and an MP model.

4.3. Combination 1 (CB1). The CB1 method (see Figure 4.3) requires infor-
mation about the minimum step time (c1) and the minimum and maximum message
delays (d1 and d2). For convenience of presentation, we assume that u = d2 − d1 is
divisible by c1.

The correctness of this method relies on the following observation. If a process
pi receives a message m from a process pj at time t, then the message must have
been sent no later than t − d1, because it takes at least d1 time for a message to be
delivered. All the messages received by pi after t+ d2 − d1 must have been sent after
m was, because it takes at most d2 time for a message to be delivered. Based on this
idea, each process broadcasts a message at every step. (1) When a process initially
receives one message from every process, it recognizes there is one session because
each process must have taken one step to send the message. (2) Then when it receives
another set of messages from every process after time u = d2 − d1, there must have
been another session after the initial session because the second set of messages must
have been sent after the first session occurred. Time u can be measured by counting
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B := u
c1
; /* u = d2 − d1 */

count := session := 0;
msgs := ∅;
while (session < s− 1)

msgs := msgs ∪ bufi; /* port event */
if (session = 0) or (count ≥ B)
then

if for all j ∈ {1, . . . , n}, m(j, ∗, ∗) is in msgs
then /∗ condition 1 ∗/

count := 0;
session := session+ 1;
msgs := ∅;

end if;
end if;
broadcast m(i, ∗, ∗); /* port event */
count := count+ 1;

end while;
Enter an idle state.

Fig. 4.3. Technique CB1 for process i.

steps, using the known minimum step time (c1) (i.e., when a process takes
u
c1
local

steps, at least u time is guaranteed to be elapsed).

Each process performs the second procedure s − 2 times. Then it enters an idle
state after taking an additional step. The running time of CB1 is ( c2c1u+ u+2c2)(s−
2)+d2+3c2, as we now explain. It takes at most

u
c1
·c2 time to count u

c1
steps, at most

u + 2c2 time for a process to receive another set of message after it recognizes there
was a session, at most d2 + 2c2 time to receive the initial set of messages, and finally
one more step to accomplish the last session. The detailed proof of the following
theorem can be found in Appendix A.

Theorem 4.3. CB1 solves the (s, n)-session problem within time (s−2) · ( c2c1u+
u+ 2c2) + d2 + 3c2 if c1, d1, and d2 are known.

4.4. Message delay (MD). The MD method (see Figure 4.4) requires infor-
mation about the lower bound d1 and upper bound d2 on message delay. MD differs
from CB1 only in one way: a process recognizes that time u has elapsed by counting
the number of times that a certain message is being passed between two processes,
using the known minimum message delay. For example, when a process pi broadcasts
a message at time t, the message is received by pj no earlier than time t + d1. So if
the message is passed between them (or any process because of the minimum message
delay) more than u/d1 times, then we know at least u time has elapsed. The running
time of MD is equal to that of CB1 with the c2

c1
factor replaced by d2

d1
.

The detailed proof of the following theorem can be found in Appendix A.

Theorem 4.4. MD solves the (s, n)-session problem within time (s− 2) · (d2d1u+
u+ 2c2) + d2 + 3c2 if d1 and d2 are known.

4.5. Combination 2 (CB2). The CB2 method (see Figure 4.5) can be used
if the maximum step time c2 and the minimum message delay d1 are known. The
known minimum message delay (d1) can be used to measure the elapsed time between
the send time of a message and the receive time of the same message. We know at



IMPACT OF TIMING KNOWLEDGE ON THE SESSION PROBLEM 1027

B := u
d1
;

count := session := 0;
msgs := ∅;
while( session < s− 1 )

msgs := msgs ∪ bufi;
if (session = 0) or (count ≥ B)
then

if for all j ∈ [n], m(j, ∗, ∗) is in msgs
then /∗ condition 1 ∗/

count := 0;
session := session+ 1;
msgs := ∅;

end if;
end if;
if there is any m(∗, session, ∗) in msgs
then count := max{count, k : m(∗, session, k) ∈ msgs };
broadcast m(i, session, count+ 1);

end while;
Enter an idle state.

Fig. 4.4. Technique MD for process i.

count := 0;
msgs := ∅;
while( count < s− 1 )

msgs := msgs ∪ bufi;
count := max{k, count : m(∗, ∗, k) ∈ msgs };
broadcast m(i, ∗, count+ c2

d1
);

end while;
Enter an idle state.

Fig. 4.5. Technique CB2 for process i.

least d1 time has passed between the send and receive. In addition, because of the
known maximum step time, it is possible to estimate how many steps a process takes
within time d1 (at least

d1
c2
steps). Therefore, a process can deduce that if it receives

a message sent after the last session, there have been at least d1
c2
sessions after that

last session.

We can inductively apply the above argument starting from session 0. Initially, a
process starts by sending a message to all, and as soon as it receives a message from
all other processes, it knows that there are at least d1

c2
sessions in the computation.

It increments its counter by d1
c2
and sends another message piggybacking the value of

that counter. If it receives a message with a counter x, it knows that there are at
least x+ d1

c2
sessions. Then it updates its counter to x+ d1

c2
and sends another message

with the value of that counter. It continues the above until its counter is larger than
s− 1. Then it takes one more step and enters an idle state.

The detailed proof of the following theorem can be found in Appendix A.

Theorem 4.5. Technique CB2 solves the (s, n)-session problem in time (s− 1) ·
d2+c2
d1

c2 + c2 if c2 and d1 are known.
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5. Shared memory results. In this section, we show that the upper bounds
we presented in section 4 for the SM models are asymptotically tight by obtaining the
matching lower bounds. We use Theorem 3.1 to obtain the lower bounds. To prove a
given lower bound for an SM model, we simply check whether there exist c, c′1, and
c′2 that satisfy SC1, SC2, and SC3.

5.1. Counting with EC. Suppose that only EC is used. The resulting upper
bound is (s− 1) · c2 ·Θ(logn).

We now show that this bound is asymptotically tight. In particular, we show that
if either c1 or c2 (or both) is unknown, then the lower bound is (s− 1) · c2 · loga n.

Corollary 5.1. Let c2 ∈ R+. ForM[?, c2], there exists no algorithm that solves
the (s, n)-session problem within time less than (s− 1) · c2 · loga n.

Proof. Let c = c2/ loga n. Let c
′
1 be some constant less than or equal to c2. Let

c′2 = c2. Let f(x, y) = y · loga n.
As c′1 ≤ c2 and B = f(c′1, c

′
2) = c′2 · loga n, SC1 is satisfied. As B c

c′2
= c′2, SC3 is

satisfied. As c1 is unknown, we do not consider SC2.
Corollary 5.2. Let c1 ∈ R+. ForM[c1, ?], there exists no algorithm that solves

the (s, n)-session problem within time less than (s− 1) · c2 · loga n.
Proof. Let c = 2 · c1. Let c′1 = c1. Let c′2 be some constant greater than or equal

to c1. Let f(x, y) = y · loga n.
As B = f(c′1, c

′
2) = c′2 · loga n, SC1 is satisfied. As 1

2c = c1 and c
′
1 = c1, SC2 is

satisfied. As c2 is unknown, we do not consider SC3.
Each of Corollaries 5.1 and 5.2 separately implies that a lower bound forM[?, ?]

is (s− 1) · c2 · loga n.
5.2. Counting with EC and ST bounds. If processes know c1 and c2, then

they can use both methods ST and EC in order to count. This results in an algorithm
with running time (s− 1) · c2 ·min{ c22c1

,Θ(log n)}+ c2.
We now show that this bound is asymptotically tight.
Corollary 5.3. Let c1, c2 ∈ R+. For M[c1, c2], there exists no algorithm that

solves the (s, n)-session problem within time less than (s− 1) · c2 ·min{ c22c1
, loga n}.

Proof. Let c = 2c1. Let c
′
1 = c1. Let c

′
2 = c2. Let f(x, y) = y ·min{ yx , loga n}.

SC1 holds because B = f(c′1, c
′
2) = c

′
2 ·min{ c

′
2

2c′1
, loga n} ≤ c′2 ·loga n. SC2 holds be-

cause c′1 = c1 ≤ c
2 . SC3 holds because B

c
c′2
= f(c′1, c

′
2) · cc′2 = c

′
2 ·min{ c

′
2

2c′1
, loga n} 2c1

c′2
≤

c′2.

6. Message passing results. In this section, we show that the upper bounds
we presented in section 4 for the MP models are asymptotically tight by obtaining the
matching lower bounds. We use Theorem 3.1 to obtain the lower bounds. To prove
a given lower bound for an MP model, we simply check whether there exist c, c′1, c

′
2,

d′1, and d
′
2 that satisfy MC1 through MC5.

6.1. Counting with EC. The use of EC alone in an MP model gives an upper
bound of (s− 1) · d2 + c2.

We show that if no other method can be used, then this bound is asymptotically
tight. The models that allow the use of EC only are models 0, 1, 2, 4, 5, 8, 9, and
10. Using corollaries to Theorem 3.1, we show that the lower bounds for models 5,
9, and 10 are (s − 1) · d2. The result for model 5 implies the same lower bound for
models 1 and 4 (since 1 and 4 have less timing information than model 5). The result
for model 10 implies the same lower bound for models 2 and 8. The result for model
1 implies the same lower bound for model 0.
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First, we give the corollary for model 5.
Corollary 6.1. Let c2 and d2 be positive reals. For M[?, c2, ?, d2], there exists

no algorithm that solves the (s, n)-session problem within time less than (s− 1) · d2.

Proof. Let c = min{ c22d2 , c22 }. Let c′1 be some constant less than or equal to c2.
Let c′2 = c2. Let d

′
1 be some constant less than or equal to d2. Let d

′
2 = d2. Let

f(w, x, y, z) = z.
MC1 is satisfied by the choice of c′1, c

′
2, d
′
1, and d

′
2 and because B = f(c′1, c

′
2, d
′
1, d
′
2)

= d′2 = d2.

MC3 is satisfied because B · cc′2 ≤ d2 · c
2
2/d2
c′2
≤ c2.

MC5 is satisfied because (d′2 +B)
c
c′2
− c ≤ 2d2 · c2/2c2

− c < d2.

MC2 and MC4 are not considered because c1 and d1 are unknown.
Next we give the corollary for model 9.
Corollary 6.2. Let c1 and d2 be positive reals. For M[c1, ?, ?, d2], there exists

no algorithm that solves the (s, n)-session problem within time less than (s− 1)d2.
Proof. Let c = 2c1. Let c

′
1 = c1. Let c

′
2 = 4c1. Let d

′
1 be some constant less than

or equal to d2. Let d
′
2 = d2. Let f(w, x, y, z) = z.

MC1 is satisfied because B = f(c′1, c
′
2, d
′
1, d
′
2) = d

′
2 = d2.

MC2 is satisfied because c
2 = c1.

MC5 is satisfied because (d′2 +B)
c
c′2
− c ≤ 2d2

2c1
4c1

= d2.

MC3 and MC4 are not considered because c2 and d1 are unknown.
Finally, we give the corollary for model 10.
Corollary 6.3. Let c1 and d1 be positive reals. For M[c1, ?, d1, ?], there exists

no algorithm that solves the (s, n)-session problem within time less than (s− 1) · d2.
Proof. Let c = max{2c1, d1}. Let c′1 = c1. Let c

′
2 be some constant bigger than

or equal to c1. Let d
′
1 = d1. Let d

′
2 be some constant bigger than or equal to d1. Let

f(w, x, y, z) = z.
MC1 is satisfied because B = f(c′1, c

′
2, d
′
1, d
′
2) = d

′
2.

MC2 is satisfied because c
2 ≥ 2c1

2 = c1.
MC4 is satisfied because (d′2 −B) cc′2 + c = c ≥ d1 = d

′
1.

MC3 and MC5 are not considered because c2 and d2 are unknown.

6.2. Counting with EC and ST bounds. If both methods EC and ST can
be used, the resulting algorithm gives an upper bound of (s−1) ·min{d2,

c2
c1
· c2}+ c2.

We show that this bound is asymptotically tight if no other methods can be used
and the following is true:

• c2 ≤ d2.
The models that allow the use of EC and ST alone are models 12 and 13. We

prove a corollary to Theorem 3.1 for model 13, which implies the same lower bound
for model 12.

Corollary 6.4. Let c1, c2, and d2 be positive reals such that c2 ≤ d2. For
M[c1, c2, ?, d2], there exists no algorithm that solves the (s, n)-session problem within
time less than (s− 1) ·min{ c22c1

c2, d2}.
Proof. Let c = 2c1. Let c

′
1 = c1. Let c

′
2 = c2. Let d

′
1 be some constant less than

or equal to d2. Let d
′
2 = d2. Let f(w, x, y, z) = min{ x2wx, z}.

MC1 is satisfied because B = f(c′1, c
′
2, d
′
1, d
′
2) = min{ c

2
2

2c1
, d2} ≤ d2.

MC2 is satisfied because c
2 = c1 = c

′
1.

MC3 is satisfied because B · cc′2 = min{
c22
2c1
, d2} · 2c1

c2
≤ c2.
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For MC5, we need to show that (d′2 + B)
c
c′2
− c ≤ d2. Then it suffices to prove

that d2 − ((d′2 +B) cc′2 − c) ≥ 0.
d2 − ((d′2 +B) cc′2 − c) ≥ d2 − ((d2 +

c22
2c1
) 2c1c2 − 2c1) = d2(1− 2c1

c2
)− (c2 − 2c1) ≥ 0

since c2 ≤ d2.
MC4 is not considered because d1 is unknown.

6.3. Counting with EC and MD. Suppose methods EC and MD are used.
The only model that can use these two methods alone is model 3 (M[?, ?, d1, d2]).
The resulting asymptotic upper bound on the per-session cost is min{d2,

d2
d1
u+ 2c2},

where u = d2 − d1.
We now argue that this bound is asymptotically tight if no other method can be

used. First note that if the 2c2 term in the MD cost dominates the d2
d1
u term, then

the upper bound is Θ(c2) per session, which is obviously tight. Thus we ignore the
2c2 term.

Corollary 6.8 in section 6.7 below shows that the lower bound for model 11
(M[c1, ?, d1, d2]) is (s − 1) · d2

d2+d1
u. Since model 3 is weaker than model 11, the

same lower bound holds for model 3.
(Case 1) Suppose d2 ≤ d2

d1
u. Then d2

d2+d1
u ≥ d2

3 . Thus the asymptotic per-session

upper bound for model 3 is d2 and the lower bound is
d2
3 .

(Case 2) Suppose d2
d1
u < d2. Then

d2
d2+d1

u ≥ d2
3d1
u. Thus the asymptotic per-

session upper bound for model 3 is d2
d1
u and the lower bound is d2

3d1
u.

6.4. Counting with EC and CB2. If methods EC and CB2 are used, the
resulting asymptotic upper bound on the per-session cost is min{d2,

d2+c2
d1
· c2}. The

only model that can use these two methods alone is model 6 (M[?, c2, d1, ?]).
We now show this bound is asymptotically tight if
• 2c2 ≤ 3d1.

Under this assumption, the CB2 term, d2+c2d1
· c2, is at most 5d2

2d1
· c2, which is at

most 15
4 d2.

Corollary 6.5. Let c2 and d1 be positive reals such that c2 ≤ 3
2d1. For

M[?, c2, d1, ?], there exists no algorithm that solves the (s, n)-session problem within
time less than (s− 1) · 2d2

3d1
· c2.

Proof. Let c′1 be some constant less than or equal to c2. Let c
′
2 equal c2. Let d

′
1

equal d1. Let d
′
2 be some constant bigger than d1. Let c =

3d1
2d′2
· c2. Let f(w, x, y, z) =

2z
3y · x.

MC1 holds because B = f(c′1, c
′
2, d
′
1, d
′
2) =

2d′2
3d′1
· c′2. By the assumption that

c2 ≤ 3
2d1, B is less than or equal to d′2.
MC3 holds because B · cc′2 = c

′
2.

MC4 holds because c2 ≤ 3
2d1, and (d

′
2−B)· cc′2+c = 3d1−c2+c ≥ 3d1−3/2d1+c >

d1 = d
′
1.

MC2 and MC5 are not considered because c1 and d2 are unknown.

6.5. Counting with EC, ST, and CB2. If methods EC, ST, and CB2 are
used, the resulting asymptotic upper bound on the per-session cost is min{d2,

c2
c1
· c2,

d2+c2
d1
· c2}. The only model in which exactly these methods can be used is model 14

(M[c1, c2, d1, ?]).
We now argue that this bound is asymptotically tight if no other method can be

used, assuming
• 2c2 ≤ d1.
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Corollary 6.6 shows that the lower bound for model 14 is (s−1)·min{ c22c1
c2,

2d2
3d1
c2},

assuming 2c2 ≤ d1. We show that this bound is asymptotically tight.
Because 2c2 ≤ d1,

2d2
3d1
c2 ≤ d2, and

d2+c2
d1

≤ 3d2
2d1
. Thus the per-session lower

bound is min{ c22c1
c2,

2d2
3d1
c2}, and the per-session upper bound is min{d2,

c2
c1
c2,

3d2
2d1
c2} =

min{ c2c1 c2, 3d2
2d1
c2}.

Corollary 6.6. Let c2 and d1 be positive reals such that 2c2 ≤ d1. For
M[c1, c2, d1, ?], there exists no algorithm that solves the (s, n)-session problem within
time less than (s− 1) ·min{ c22c1

c2,
2d2
3d1
c2}.

Proof. By the hypothesis of the corollary,

d1 ≥ 2c2.(6.1)

Let c′1 = c1. Let c
′
2 = c2. Let d

′
1 = d1. Let d

′
2 be some real number bigger than

c2
2c1
c2. Let c = max{2c1, 3d1

2d′2
c2}.

Let f(w, x, y, z) = min{ x2wx, 2z
3yx}.

We show that they satisfy the hypothesis of Theorem 3.1. MC5 is not considered
since d2 is unknown.

Note that B = f(c′1, c
′
2, d
′
1, d
′
2) = min{ c22c1

c2,
2d′2
3d1
c2}.

Case 1. Suppose c2
2c1
c2 <

2d2
3d1
c2. Then

2c1
c2

>
3d1

2d′2
,(6.2)

and thus c = 2c1. For MC1, clearly B = c2
2c1
c2 < d

′
2 by the definition of d

′
2.

For MC2, c2 = c1.
For MC3, B c

c′2
= c2.

For MC4,

(d′2 −B) cc′2 + c = d
′
2

2c1
c2
− c2 + 2c1

≥ d′2 3d1
2d′2
− c2 because of (6.2)

≥ 3d1
2 − d1

2 because of (6.1)
= d1.

Case 2. Suppose c2
2c1
c2 ≥ 2d′2

3d1
c2. Then

2c1
c2
≤ 3d1

2d′2
,(6.3)

and thus c = 3d1
2d′2
· c2. For MC1, B =

2d′2
3d1

d1
2 < d′2 because of (6.1).

For MC2, c2 =
1
2

3d1
2d′2
c2 ≥ c1 because of (6.3).

For MC3,

B
c

c′2
≤ 2d′2
3d1

c2

3d1
2d′2
c2

c2
= c2.

For MC4,

(d′2 −B) cc′2 + c = (d
′
2 − 2d′2

3d1
c2)

c
c′2
+ c

= 3d1
2 − c2 + c

> 3d1
2 − c2

≥ 3d1
2 − d1

2 because of (6.1)
= d1.
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6.6. Counting with EC, MD, and CB2. If methods EC, MD, and CB2
are used, the resulting asymptotic upper bound on the per-session cost is min{d2,
d2
d1
· u+ 2c2, d2+c2d1

· c2}. The only model in which exactly these methods can be used
is model 7 (M[?, c2, d1, d2]).

We now show this upper bound is asymptotically tight if

• 2c2 ≤ d1, and
• d2 ≤ 3

2d1 or
3
2d1 + c2 ≤ d2.

As in section 6.3, we ignore the 2c2 term in the MD expression.

Corollary 6.7 proves that the per-session lower bound is (s−1)min{ 2d2
3d1
c2,

d2
d2+d1

u}.
We show that this bound is asymptotically tight.

(Case 1) If d2d1u ≤ min{d2,
d2+c2
d1

c2}, then the upper bound is Θ(d2d1u). The lower
bound is d1

3d2
u because d2

d2+d1
u ≥ max{d23 , d13d2

u} (cf. section 6.3); and since c2 ≤ 1
2d1,

d2
d1
u ≤ d2+c2

d1
c2 ≤ 3d2

2d1
c2, and thus

d2
3d1
u < 2d2

3d1
c2.

(Case 2) If d2+c2
d1

c2 ≤ min{d2,
d2
d1
u}, then d2+c2

d1
c2 ≤ 3d2

2d1
c2 because c2 ≤ 1

2d1.

Thus the per-session upper bound is Θ(d2d1 c2). The lower bound is d1
3d2
c2 because

d2
d2+d1

u ≥ max{d23 , d13d2
u}, and because d2

d1
u ≥ d2+c2

d1
c2 >

d2
d1
c2,

d2
3d1
u > d2

3d1
c2.

(Case 3) If d2 ≤ min{d2d1u, d2+c2d1
c2}, then the upper bound is Θ(d2). The lower

bound is 1
3d2 because

d2
d2+d1

u ≥ max{d23 , d13d2
u}, and since c2 ≤ 1

2d1, d2 ≤ d2+c2
d1

c2 ≤
3d2
2d1
c2, and thus

1
3d2 <

2d2
3d1
c2.

Corollary 6.7. Let c2, d1, and d2 be positive reals such that 2c2 ≤ d1 and
either d2 ≤ 3

2d1 or 3
2d1 + c2 ≤ d2. For M[?, c2, d1, d2], there exists no algorithm that

solves the (s, n)-session problem within time less than (s− 1)min{ 2d2
3d1
c2,

d2
d2+d1

u},
Proof.

Case 1. d2 ≤ 3
2d1.

Then min{ 2d2
3d1
c2,

d2
d2+d1

u} ≤ 2d2
3d1
c2 = c2. The lower bound holds because a process

has to take at least s steps to solve the (s, n)-session problem.

Case 2. d2 ≥ 3
2 · d1 + c2 and c2 ≤ 3

2d1.

Let c = 3d1
2d2
c2. Let c

′
1 be some constant less than or equal to c2. Let c

′
2 equal c2.

Let d′1 equal d1. Let d
′
2 equal d2. Let f(w, x, y, z) = min{ 2z

3yx,
z
z+y (z − y)}.

Note that B = f(c′1, c
′
2, d
′
1, d
′
2) = min{ 2d2

3d1
c2,

d2
d2+d1

u}.
MC1 holds because B ≤ 2d2

3d1
c2 < d2, since 2c2 ≤ d1.

MC3 holds because B · cc2 ≤ 2d2
3d1
· c2 · cc2 ≤ c2.

MC4 holds because (d′2−B) cc2+c > (d′2− 2d2
3d1
c2)

3d1
2d2

c2
c2
= 3

2d1−c2. This quantity is
greater than or equal to 3

2d1− 1
2d1 since d1 ≥ 2c2. Thus the expression is greater than

or equal to d1. MC5 holds because (d
′
2+B)

c
c2
−c < (d2+

2d2
3d1
c2)

3d1
2d2

c2
c2
= 3

2d1+c2 ≤ d2

since 3
2d1 + c2 ≤ d2.

MC2 is not considered because c1 is unknown.

6.7. Counting with EC, MD, and CB1. Suppose methods EC, MD, and
CB1 are used. The resulting asymptotic upper bound on the per-session cost is
min{d2,

d2
d1
·u+2c2, c2c1 ·u+2c2}. The only model in which exactly these methods can

be used is model 11 (M[c1, ?, d1, d2]).

Corollary 6.8 below proves that the lower bound for model 11 is (s− 1) · d2
d2+d1

u.
We now show this bound is asymptotically tight. As in section 6.3, we ignore the 2c2
term in the MD and CB1 expressions.
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(Case 1) If c2c1u ≤ d2
d1
u ≤ d2, the upper bound is Θ(

c2
c1
u). Because d2

d1
u ≤ d2, then

d2 ≤ 2d1. Also
d2

d1+d2
u ≥ d2

3d1
u ≥ c2

3c1
u. Thus, the lower bound is c2

3c1
u.

(Case 2) If c2c1u ≤ d2 <
d2
d1
u, the upper bound is Θ( c2c1u). Because

d2
d1
u > d2, then

d2 > 2d1. Also
d2

d1+d2
u ≥ c2

c1
u · d2−d1d2+d1

, which is greater than and equal to d2
3c1
u because

d2−d1
d2+d1

≥ 1
3 . Thus, the lower bound is

c2
3c1
u.

(Case 3) If d2
d1
u ≤ min{d2,

c2
c1
u}, then the upper bound is Θ(d2d1u). The lower

bound is d2
3d1
u because d2

d2+d1
u ≥ max{d23 , d13d2

u}.
(Case 4) If d2 < min{d2d1u, c2c1u}, the upper bound is Θ(d2). The lower bound is

d2
3 because d2

d2+d1
u ≥ max{d23 , d13d2

u}, and d2
3 ≤ 2d2

3d1
c2.

Corollary 6.8. Let c1, d1, and d2 be positive reals. For M[c1, ?, d1, d2], there
exists no algorithm that solves the (s, n)-session problem within time less than (s −
1) · d2

d2+d1
u.

Proof. Let c = 2c1. Let c
′
1 = c1. Let c

′
2 =

4d2c1
d2+d1

. Let d′1 = d1. Let d
′
2 = d2. Let

f(w, x, y, z) = z
z+y · (z − y).

MC1 is satisfied because B = f(c′1, c
′
2, d
′
1, d
′
2) =

d′2
d′2+d

′
1
· (d′2 − d′1) = d2

d2+d1
· (d2 −

d1) < d2.

MC2 is satisfied because c
2 = c1.

MC4 is satisfied because (d′2 −B) cc′2 + c = (d2 − d2u
d2+d1

) 2c1
4d2c1
d2+d1

+ c = d1 + c > d1.

MC5 is satisfied because (d′2 +B)
c
c′2
− c = (d2 +

d2u
d2+d1

) 2c1
4d2c1
d2+d1

− c = d2 − c < d2.

MC3 is not considered because c2 is not known.

6.8. Counting with all methods. Suppose all five methods (EC, ST, MD,
CB1, and CB2) are used. The resulting asymptotic upper bound on the per-session
cost is min{d2,

c2
c1
· c2, d2d1 · u + 2c2, d2+c2d1

· c2, c2c1 · u + 2c2}. The only model in which
all these methods can be used is model 15 (M[c1, c2, d1, d2]).

We now show this upper bound is asymptotically tight if

• 2c2 ≤ d1, and
• d2 ≤ 3

2d1 or
3
2d1 + c2 ≤ d2.

Corollary 6.9 shows that the per-session lower bound for model 15 is min{ c22c1
c2,

2d2
3d1
c2,

d2
d2+d1

u}. As in section 6.3, we ignore the 2c2 term in the MD and CB1 expressions.

(Case 1) If c2c1 c2 ≤ min{d2,
d2
d1
u, d2+c2d1

c2,
c2
c1
·u}, then the upper bound is Θ( c2c1 c2).

The lower bound is c2
3c1
c2 because (1)

c2
2c1
c2 ≥ c2

3c1
c2; (2)

3d2
2d1
c2 ≥ d2+c2

d1
c2 ≥ c2

c1
c2, and

thus 2d2
3d1
c2 >

c2
3c1
c2; and (3)

d2
d2+d1

u ≥ max{d23 , d23d1
u}, and d2

3d1
u ≥ c2

3c1
c2.

(Case 2) If d2d1u ≤ min{d2,
c2
c1
c2,

d2+c2
d1

c2,
c2
c1
u}, then the upper bound is Θ(d2d1u).

The lower bound is d2
3d1
u because (1) c2c1 c2 ≥ d2

d1
u, and thus c2

2c1
c2 ≥ d2

3d1
u; (2) 3d2

2d1
c2 ≥

d2+c2
d1

c2 ≥ d2
d1
u, and thus 2d2

3d1
c2 >

d2
3d1
u; and (3) d2

d2+d1
u ≥ max{d23 , d23d1

u} and d2
3d1
u.

(Case 3) If c2c1u ≤ min{d2,
c2
c1
c2,

d2+c2
d1

c2,
d2
d1
u}, then the upper bound is Θ( c2c1u).

The lower bound is 4c2
15c1

u because (1) c2
2c1
c2 ≥ c2

2c1
u ≥ c2

3c1
u; (2) 3d2

2d1
c2 ≥ d2+c2

d1
c2 ≥ c2

c1
u,

and thus 2d2
3d1
c2 >

c2
3c1
u; and (3) d2

d2+d1
u ≥ max{d23 , d23d1

u}, and d2
3d1
u ≥ c2

3c1
u.

(Case 4) If d2+c2d1
c2 ≤ min{d2,

c2
c1
c2,

c2
c1
u, d2d1u}, then d2+c2

d1
c2 ≥ d2

d1
c2, and the upper

bound is Θ(d2d1 c2). The lower bound is
d2
3d1
c2 because (1)

c2
2c1
c2 ≥ d2

2d1
c2 ≥ d2

3d1
c2; and

(2) d2
d2+d1

u ≥ max{d23 , d23d1
u}, and d2

3d1
u ≥ d2+c2

3d1
c2 >

d2
3d1
c2; and (3)

d2+c2
d1

c2 ≥ d2
d1
c2 ≥

d2
3d1
c2.
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(Case 5) If d2 ≥ min{ c2c1 c2, c2c1u, d2+c2d1
c2,

d2
d1
u}, then the upper bound is Θ(d2).

The lower bound is d2
3 because (1) c2

2c1
c2 ≥ d2

3 ; (2)
d2

d2+d1
u ≥ max{d23 , d23d1

u}; and (3)
3d2
2d1
c2 ≥ d2+c2

d1
c2 ≥ d2, and

3d2
3d1
c2 >

d2
3 .

Corollary 6.9. Let c1, c2, d1, and d2 be positive reals such that 2c2 ≤ d1 and
either d2 ≤ 3

2d1 or 3
2d1+ c2 ≤ d2. ForM[c1, c2, d1, d2], there exists no algorithm that

solves the (s, n)-session problem within time less than min{ c22c1
c2,

2d2
3d1
c2,

d2
d2+d1

u}(s−
1).

Proof.
Case 1. c2 ≥ min{ c22c1

c2,
2d2
3d1
c2,

d2
d2+d1

u}.
The lower bound clearly holds because all processes have to take at least s steps

to solve the (s, n)-session problem and c2 is the upper bound on step time.
Case 2. c2 < min{ c22c1

c2,
2d2
3d1
c2,

d2
d2+d1

u}.
Note that in this case, by the hypothesis of the corollary, the following are true:

d1 ≥ 2c2,(6.4)

d2 ≥ 3d1

2
+ c2.(6.5)

Let c = max{2c1, 3d1
2d2
c2}. Let c′1 = c1. Let c

′
2 = c2. Let d

′
1 = d1. Let d

′
2 = d2.

Let f(w, x, y, z) = min{ x2wx, 2z
3yx,

z
z+y (z − y)}.

We show that they satisfy the hypothesis of Theorem 3.1.
Note that B = f(c′1, c

′
2, d
′
1, d
′
2) = min{ c22c1

c2,
2d2
3d1
c2,

d2
d2+d1

u}.
Case 2.1. Suppose c2

2c1
c2 < min{ 2d2

3d1
c2,

d2
d2+d1

u}. Then B = c2
2c1
c2 and c = 2c1.

Furthermore,

c2
2c1
≤ 2d2

3d1
.(6.6)

For MC1, clearly B = c2
2c1
c2 ≤ d2

d2+d1
u < d2.

For MC2, c2 = c1.
For MC3, B c

c′2
= c2.

For MC4,

(d′2 −B) cc′2 + c = d2
2c1
c2
− c2 + 2c1

≥ d2
3d1
2d2
− c2 because of (6.6)

≥ 3d1
2 − d1

2 because of (6.4)
= d1.

For MC5, it suffices to prove that d2 − ((d′2 +B) cc′2 − c) ≥ 0:

d2 − ((d′2 +B) cc′2 − c)≥ d2 − ((d2 +
c22
2c1
) 2c1c2 − 2c1)

= d2(1− 2c1
c2
)− (c2 − 2c1)

≥ 0 because of (6.4).

Case 2.2. Suppose c2
2c1
c2 ≥ min{ 2d2

3d1
c2,

d2
d2+d1

u}. Then B = min{ 2d2
3d1
c2,

d2
d2+d1

u}
and c = 3d1

2d2
c2. Furthermore,

c2
2c1

>
2d2

3d1
.(6.7)
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For MC1, B ≤ d2
d2+d1

u < d2.

For MC2, c2 =
1
2

3d1
2d2
c2 ≥ c1 because of (6.7).

For MC3,

B
c

c′2
≤ 2d2

3d1
c2

3d1
2d2
c2

c2
= c2.

For MC4,

(d′2 −B) cc′2 + c ≥ (d
′
2 − 2d2

3d1
c2)

c
c′2
+ c

= 3d1
2 − c2 + c

> 3d1
2 − c2

≥ 3d1
2 − d1

2 because of (6.4)
= d1.

For MC5,

(d′2 +B)
c
c′2
− c ≤ (d′2 + 2d2

3d1
c2)

c
c′2
− c

= 3d1
2 + c2 − c

< 3d1
2 + c2

≤ d2 because of (6.5).

7. Conclusion and discussion. This paper concerns timing models in dis-
tributed systems that lie between the synchronous and asynchronous models. Four
timing parameters are considered: the maximum and minimum process step times and
message delays. Timing models are obtained by considering independently whether
each parameter is known (i.e., is hard-wired into the processes’ code) or unknown,
giving rise to four SM models and 16 MP models.

The session problem is an abstraction of synchronization problems in distributed
systems. It has been used as a test case to demonstrate the differences in the time
needed to solve problems in various timing models, for both SM and MP systems. In
this paper, we continue to use the session problem to compare quantitatively a family
of models in which various parameters are either known or unknown.

For each unknown parameter model, we obtain an asymptotically tight time com-
plexity bound on the session problem. Two of the algorithms were previously known,
while the other three are new. We categorize the algorithms in terms of “ways to
count.” The intuition is that processes must have some way to count the passage of
other processes’ steps in order to “know” when a session has occurred. Our matching
lower and upper bounds indicate that the algorithms are the optimal ways to count
and allow us to construct a lattice of timing models in terms of the counting algo-
rithms that are applicable to a model (cf. Figure 1.1). This hierarchy confirms the
common belief that as a model has more timing knowledge, it behaves more like the
synchronous model.

All but one of our lower bound results are new and all of them are obtained
by one modular lower bound proof. The lower bound technique combines those of
[3] for the asynchronous model in the SM system and [5] for the asynchronous and
semisynchronous models in the MP systems. Our technique identifies one sufficient
condition for a lower bound in a timing model to hold in solving the (s, n)-session
problem and is applicable to every unknown parameter model as well as to those
models previously studied for the session problem.
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For several unknown parameter models, we were not able to show the lower bound
without making some assumptions about the timing parameters. It will be interesting
to develop a new lower bound technique that can show either the same or tighter lower
bounds without such assumptions.

It will be also interesting to see whether our modular lower bound proof technique
can be applied to show lower bounds for other distributed computing problems, such as
the mutual exclusion problem and the dining philosophers problem, in many different
timing models.

Appendix A. Communication in SM. Consider an (a − 1)-ary tree with n
leaves in which each level, except possibly the lowest, has the maximum number of
nodes. The number of levels in the tree is �loga−1 n�+ 1. Associated with each node
in the tree are a process and a shared variable. Each port process and its port variable
are associated with a leaf node; the processes and variables associated with internal
nodes are called relay processes and variables. The relay variable associated with a
node is accessed by the process associated with the node and the processes associated
with that node’s children in the tree. Figure A.1 illustrates a tree with a = 4 and
n = 7.

p
1

p
2

p
3

p

p
10

p p
7

p
4

p
5

p
6

9 8

Fig. A.1. A tree network with a = 4 and n = 7, where circles represent processes, empty squares
relay variables, dark squares port variables, and solid lines memory access patterns of processes. Port
processes are p1 through p7.

Each relay variable has two fields, up and down. Each process has two local
variables, lup and ldown; initially they are empty except that lup at a port process
holds the information to be propagated.

Each relay process p other than the root repeats the following two steps. First,
p accesses its own shared variable, saving the contents of the up field in lup and
appending the contents of ldown to the down field. Second, p accesses its parent’s
variable, appending lup to the up field and saving the down field in ldown.

The root continuously accesses its own variable; at each access it copies the up
field to the down field.

In the example of Figure A.1, a piece of information m is transferred from p2 to
p6 as follows: p2 appends m to v9.up; p9 obtains the contents of v9.up and appends
them to v10.up; p10 copies the contents of v10.up to v10.down; p8 obtains the contents
of v10.down and appends them to v8.down; p6 obtains the contents of v8.down and
gets m.

It takes at most c2 · �loga−1 n� time for a piece of information (or a “message”) to
be relayed up to the root for the following reason. In each time interval of length c2,
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every process takes at least one step, and thus every relay process other than the root
passes the message up to its parent. Likewise, it takes additional c2 · (�loga−1 n�+ 1)
time for the message at the root to be relayed down to a leaf node in the tree (the
one additional c2 is for the root to move the message from its up to its down). Thus,
the broadcast is accomplished in c2 · Θ(loga−1 n) time. A similar tree network is
mentioned in [3].

When we say broadcast in the SM model, it implies all of the interactions be-
tween processes in the tree network that are needed to accomplish the broadcasting.
We only describe the role of port processes in an algorithm and assume that broad-
cast encapsulates the interactions among port processes and other processes which
participate in the tree-network communication. In addition, we use the term “step”
interchangeably with “port step”; when necessary, we make the proper distinction.

Appendix B. Correctness proofs of counting methods.

B.1. Correctness proof of CB1.
Theorem B.1. CB1 solves the (s, n)-session problem within time (s−2) · ( c2c1u+

u+ 2c2) + d2 + 3c2 if c1, d1, and d2 are known.
Proof. Consider an arbitrary admissible timed computation C of technique CB1.
For each k, 0 ≤ k ≤ s−1, let pik be the first process that sets its session variable

to k in C. To increment session, a process must receive a set of messages that satisfy
condition 1 in Figure 4.3. Let Mk be the set of messages received by pik that cause
pik to set sessionik to k (M0 is the empty set); let mk be the message which is sent
last among Mk (if there is a tie, choose an arbitrary message among them).

Lemma B.2. Let π be the step which sends mk. There are at least k sessions by
the time that π occurs in C.

Proof. We proceed by induction on k. For the basis, when k = 0, it is always true
that there are at least 0 sessions in C.

Inductively when k > 0, assuming the lemma is true for k−1, we show that when
π occurs, there are at least k sessions.

Let τ be the step that sends mk−1 and let σ be the step in which pik−1
sets

sessionik−1
to k− 1. Such a step exists because sessionik−1

is always incremented by
1. For pik−1

to update sessionik−1
, condition 1 in Figure 4.3 must hold.

Let t be the time when τ occurs and t′ be the time when σ occurs.
The messagemk−1 must arrive at bufik−1

at time between [t+d1, t+d2] because of
the bounds on message delays. Thus, t′− t ≥ d1 because σ occurs after pik−1

receives
mk−1. Note that count in the algorithm is reset whenever session is updated. Let t′′

be the time that pik sets sessionik to k. From the code, because condition 1 should
be true before session is updated, countik must equal to B at time t′′. Thus, when
countik is equal to B, at least B · c1 time has elapsed since time t′ because t′ is the
time that session is updated to k− 1 for the first time in computation C and countik
must be reinitialized after time t. Thus, t′′ ≥ t′+Bc1 = t′+ d2− d1 ≥ t+ d2 because
t′ − t ≥ d1.

Therefore, the difference between times t and t′′ is bigger than d2. Thus, all
messages received at time t′′ or later must be sent after time t, at which time there
were k−1 sessions by the inductive assumption. Since at least one message is sent by
each process after time t, there must be at least one additional step by all processes
between time t and the time π occurs. Therefore, there are at least k sessions by the
time π occurs.

From Lemma B.2, it follows that there are at least s − 1 sessions at the time
that ms−1 is sent. All processes will eventually set their session’s to s − 1. Since
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all processes take additional steps after there are at least s− 1 sessions (to receive a
message), there are at least s sessions in C. Thus the algorithm is correct.

We now calculate the running time of the algorithm. We define for each k,
2 ≤ k ≤ s− 1, Tk = max{t : pi sets sessioni to k at time t in C for all pi ∈ R}. Tk is
the latest time that a process sets session to k.

Lemma B.3. For each k, 2 ≤ k ≤ s− 1, Tk+1 ≤ Tk + c2
c1
u+ u+ 2c2.

Proof. After a process pi sets sessioni to k, it takes at most
u
c1
c2 time for count

to be bigger than B. Then it takes at most ∆ time additionally for condition 1 to
be true (i.e., for at least one message from every process to be received after count
becomes bigger than B). We prove that ∆ ≤ u+ 2c2.

Letm1 be the message that is received from process pj by pi just before condition 1
becomes true in pi (i.e., pi has waited

u
c1
c2 time). Messagem1 exists because condition

1 becomes true only if there are enough messages in msgs, which is emptied only after
condition 1 becomes true. Let t be the time that m1 is sent. pj must broadcast
another message m2 within t + c2 to process i because according to the code, all
processes broadcast a message at every step. m2 will be delivered to bufi by time
t+ c2 + d2 (because it takes at most d2 delay for a message to arrive at a buffer) and
be received by time t+2c2+d2 (because it takes at most c2 time for a process to take
a step).

Process pi will receive m1 at time bigger than or equal to t + d1 because it
is sent at time t and it takes at least d1 time delay for a message to arrive at a
buffer. Since process i receives m2 by time t+2c2+ d2, the maximum time difference
between the time that process i receives m1 and the time that it receives m2 is
(t+ 2c2 + d2)− (t+ d1) = d2 − d1 + 2c1 = u+ 2c2. Therefore, ∆ = u+ 2c2.

By the algorithm, initially it takes at most d2 + 2c2 time to receive at least
one message from all processes in order to accomplish the first session. Therefore
T1 = d2 + 2c1. Using Lemma B.3, Ts−1, which is the latest time that a process sets
session to s− 1, is at most (s− 2) · ( c2c1u+ u+ 2c2) + T1. After Ts−1, a process takes
one step to complete s sessions. Therefore, a process enters the idle state by time
(s− 2) · ( c2c1u+ u+ 2c2) + d2 + 2c2 + c2.

B.2. Correctness proof of MD.
Theorem B.4. MD solves the (s, n)-session problem within time (s− 2) · (d2d1u+

u+ 2c2) + d2 + 2c2 if d1 and d2 are known.
Proof. MD differs from CB1 only in the way that count is incremented and in

that B is set to u/d1. The rest of the code is the same. The correctness proof is
similar to that of technique CB1.

Since count and B affect condition (count ≥ B) in the code, we only need to
prove that when B < count, at least time u has passed since the last time session was
incremented. count is incremented to k only when a process receives m(j, session, k−
1) for any j and for some value of session. When we apply this argument inductively,
we prove that there must be a chain of processes pi1 , pi2 , . . . , pik , where pir receives
m(ir−1, session, r − 1) from pir−1 . Thus, when count is B, at least time Bd1 =
d2 − d1 = u has passed after pi1 sent m(i1, session, 1) because it takes at least d1

message delay for a message to be received after it is sent.
For time complexity, it takes at most time d2+c2 for pik to receivem(ik−1, session,

k − 1) after pik−1
receives m(ik−2, session, k − 2). Therefore, for count to be bigger

than or equal to B, it takes at most B(d2+c2). After that, for condition 1 in the code
to be true it takes at most (u+2c2), as proved in the proof of Lemma B.3. Therefore,
the running time of technique MD is (s− 2) · (d2+c2d1

u+ u+ 2c2) + d2 + 2c2.
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B.3. Correctness proof of CB2.
Theorem B.5. Technique CB2 solves the (s, n)-session problem in time (s−1) ·

d2+c2
d1

c2 + c2 if c2 and d1 are known.
Proof. count is incremented to k only when a process receivesm(j, ∗, k−1) for any

j. When we apply this argument inductively, we prove that there must be a chain
of processes pi1 , pi2 , . . . , pik , where pir receives m(ir−1, ∗, r − 1) from pir−1 . Thus,
when count is B, at least time Bd1 =

c2
d1
(s− 1)d1 has passed after pi1 sent m(i1, ∗, 1)

because it takes at least d1 message delay for a message to be received after it is
sent. Thus, when count > B, at least time c2(s− 1) has passed since the start of the
computation. The theorem follows.
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MULTIRATE REARRANGEABLE CLOS NETWORKS AND A
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Abstract. Chung and Ross [SIAM J. Comput., 20 (1991), pp. 726–736] conjectured that
the minimum number m(n, r) of middle-stage switches for the symmetric 3-stage Clos network
C(n,m(n, r), r) to be rearrangeable in the multirate environment is at most 2n − 1. This problem
is equivalent to a generalized version of the bipartite graph edge-coloring problem. The best bounds
known so far on this function m(n, r) are 11n/9 ≤ m(n, r) ≤ 41n/16+O(1), for n, r ≥ 2, derived by
Du et al. [SIAM J. Comput., 28 (1999), pp. 464–471]. In this paper, we make several contributions.
First, we give evidence to show that even a stronger result might hold. In particular, we give a color-
ing algorithm to show that m(n, r) ≤ �(r + 1)n/2�, which implies m(n, 2) ≤ �3n/2�—stronger than
the conjectured value of 2n−1. Second, we derive that m(2, r) = 3 by an elegant argument. Last, we
improve both the best upper and lower bounds given above: �5n/4� ≤ m(n, r) ≤ 2n−1+�(r−1)/2�,
where the upper bound is an improvement over 41n/16 when r is relatively small compared to n.
We also conjecture that m(n, r) ≤ �2n(1− 1/2r)�.

Key words. Clos network, multirate rearrangeable, bipartite graph, generalized edge-coloring
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1. Introduction. The Clos network has been widely used for data communica-
tions and parallel computing systems. Quite a lot of research efforts [1, 2, 3, 5, 6, 9, 10,
11, 13, 14, 15, 16, 17, 22] have been put into investigating the nonblocking properties
and rearrangeability of the Clos network. The 3-stage Clos network was paid special
attention to since it can be expanded in a “straightforward” way to the multistage
Clos network. Recently, Ngo and Pan [18] observed that the 3-stage Clos network
is “equivalent” to the wavelength division multiplexed (WDM) split cross-connects
[20, 21], giving new applications to the classic Clos networks. Let us first formally
introduce some related concepts.

The Clos network C(n1, r1,m, n2, r2) is a 3-stage interconnection network, where
the first stage consists of r1 crossbars of size n1 ×m, the last stage has r2 crossbars
of dimension m× n2, and the middle stage has m crossbars of dimension r1 × r2 (see
Figure 1). Each input switch Ii (i = 1, . . . , r1) is connected to each middle switch
Mj (j = 1, . . . ,m). Similarly, the middle stage and the last stage are fully connected.
When n1 = n2 = n and r1 = r2 = r, the network is called the symmetric 3-stage
Clos network, denoted by C(n,m, r). Any switch is assumed to be nonblocking; i.e.,
any inlet can be connected to any outlet as long as there is no conflict on the outlet.
A switch of dimension p × q could be thought of as a crossbar of size p × q with pq
cross-points. Having too many cross-points is expensive, and we would like to design
a huge switch using smaller switches with fewer cross-points than when a brute-force
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Fig. 1. The 3-stage Clos network C(n1, r1,m, n2, r2).

design is used. The inlets (outlets) of the input (output) switches are the inputs
(outputs) of the network. Inputs and outputs are referred to as external links, while
links between switches are referred to as internal links.

In the multirate environment, a connection request is a triple (i, j, w), where i is
an inlet, j an outlet, and w the weight. A request frame is a collection of requests
such that the total weight of all requests in the frame involving a fixed inlet or outlet
does not exceed unity. To discuss routing it is convenient to assume that all links are
directed from left to right. Thus a path from an inlet to any outlet always consists of
the following sequence: an inlet link → an input switch → a link → a center switch
→ a link → an output switch → an outlet link. Furthermore, since the crossbars are
assumed to be nonblocking, a request (i, j, w) is routable if and only if there exists a
path from i to j such that every link on this path has unused capacity at least 1−w
before carrying out this request. A request frame is routable if there exists a set of
paths, one for each request, such that for every link the sum of weights of all requests
going through it does not exceed unity. The Clos network C(n,m, r) is said to be
multirate rearrangeable (or just rearrangeable, as in this paper we consider only the
multirate environment) if every request frame is routable.

Let m(n, r) denote the minimum value of m such that C(n,m, r) is multirate
rearrangeable for n, r ≥ 2. (The cases where either n or r are 1 are trivial; hence we
consider only n, r ≥ 2 from here on.) Our problem is to find m(n, r) or at least some
good bounds for this function.

The problem appears to be difficult. Let us preview some previous works on
this problem. Melen and Turner [16] initiated the research on multirate switching
networks. In 1991, Chung and Ross [3] conjectured that m(n, r) ≤ 2n − 1 and until
now no one has been able to prove or disprove the conjecture. The best bounds known
so far on this function m(n, r) were obtained by Du et al. [5]:

11n/9 ≤ m(n, r) ≤ 41n/16 +O(1).

Lin et al. [14] confirmed Chung–Ross conjecture for a restricted discrete bandwidth
case where each connection has a weight chosen from a set {1 ≥ w1 > · · · > wh >
1/2 ≥ wh+1 > · · · > wk} which satisfies the condition that wi is an integer multiple
of wi+1 for i = h+1, . . . , k− 1. Hu et al. [10] studied the monotone routing strategy
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and showed that under this strategy

m(n, r) ≤ 2n+ 1 for n = 2, 3, 4,(1)

m(n, r) ≤ 2n+ 3 for n = 5, 6.(2)

Ngo [17] proposed the grouping algorithm which shows that m(n, r) ≤ 2n− 1+ r and
that m(n, r) ≤ 2n+ n−1

2k
whenever r ≤ n

2k−1
.

In this paper, we give evidence to show that a stronger version of Chung-Ross

conjecture might hold. In particular, we show that m(n, r) ≤ 	 (r+1)n
2 
, which implies

m(n, 2) ≤ ⌈ 3n
2

⌉
. This is stronger than the conjectured value of 2n− 1. We conjecture

that

m(n, r) ≤
⌊
2n

(
1− 1

2r

)⌋
, n, r ≥ 2.

We believe that the new conjectured upper bound is also the correct value for m(n, r).
Second, we verify that Chung and Ross were right on target when n = 2, i.e., m(2, r) =
3, by a new elegant argument. Last, we give better upper and lower bounds for the
general case: ⌈

5n

4

⌉
≤ m(n, r) ≤ 2n− 1 +

⌈
r − 1

2

⌉
.

All these are done in the context of a generalized version of the edge-coloring problem
on weighted bipartite graphs to be introduced in the next section. These weighted
graphs have maximum degree n in the weighted sense.

As a side note, Ngo and Pan [18] showed that the 3-stage Clos network is equiv-
alent to the WDM split cross-connects [20, 21] under this multirate environment;
hence the results in this paper also apply to the split cross-connects. Each rate can
be thought of as the bandwidth fraction of a wavelength obtained from time division
multiplexing.

2. A generalized bipartite graph edge-coloring problem. Given a request
frame F , define a weighted bipartite multigraphGF = (I,O;E), where I (respectively,
O) contains all the input (respectively, output) switches. There is an edge with weight
w between vertices X, Y of G for each request (x, y, w), where x (respectively, y) is
an inlet (respectively, outlet) of X (respectively, Y ). C(n,m, r) is rearrangeable if
and only if for all F the edges of GF can be m-colored such that at every vertex the
total weight of edges of the same color incident to this vertex is at most unity. To see
this, just associate each color with a center switch.

We now formally define the equivalent bipartite graph edge-coloring problem.
Throughout this paper we assume n, r ≥ 2 are integers. Let Bnr be the collection of
edge-weighted r × r bipartite multigraphs G = (A,B;E) (|A| = |B| = r) with weight
function w : E → (0, 1] satisfying the condition that for every v ∈ V (G) = A ∪ B,
the set I(v) of edges incident to v can be partitioned into n groups g(v, i), 1 ≤ i ≤ n,
such that ∑

e∈g(v,i)
w(e) ≤ 1 ∀i = 1, . . . , n.(3)

We shall refer to condition (3) as the grouping condition. The grouping condition
simply refers to the fact that the total weight of all requests from an inlet or to an
outlet is at most unity.
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A k-edge-coloring of G ∈ Bnr is a coloring l : E(G) → C, where C is a set of k
colors, such that for every v ∈ V (G) and every color c ∈ C

∑
e∈I(v)
l(e)=c

w(e) ≤ 1.(4)

Let m(n, r) be the minimum integer k such that every G ∈ Bnr is k-edge-colorable.
Our job is to find good bounds for m(n, r) or the exact value if possible. Notice that
when all the weights are 1, this problem reduces to the edge-coloring of a bipartite
graph with maximum degree at most n. Thus, m(n, r) = n when the weights are all
unity. This can be shown as a trivial consequence of P. Hall’s matching condition or
of König’s line coloring theorem [12].

3. A new lower bound. The main result of this section is the following theo-
rem.

Theorem 3.1. For integers n, r ≥ 2, we have

m(n, r) ≥ m(n, 2) ≥
⌈
5n

4

⌉
when n is even

and

m(n, r) ≥ m(n, 2) ≥
⌈
5n− 1

4

⌉
when n is odd.

Proof. The natural approach to find a lower bound k for m(n, r) is to find a
particular graph G ∈ Bnr which requires at least k colors. The fact that m(n, r) ≥
m(n, 2) is trivial. To show the inequality for even n, consider the following graph
G ∈ B2

r :
• G = ({1, 2}, {1′, 2′};E).
• There are n edges from 1 to 1′ with weight 0.6.
• There are n edges from 1 to 2′ with weight 0.4.
• There are n/2 edges from 2 to 2′ with weight 1.

The grouping condition is easily seen to be satisfiable. The 0.6-edges in I(1) require
n colors. Let k be the number of colors shared by the 0.6-edges and 0.4-edges of I(1).
Then, looking from vertex 1 we need at least n + n−k

2 colors. On the other hand,

looking from vertex 2′ we need at least n
2 + k + n−k

2 colors. Consequently, the total
number of colors needed is at least

max

{
n+

n− k

2
,

n

2
+ k +

n− k

2

}
≥ (n+ n−k

2 ) + (n2 + k + n−k
2 )

2

=
5n

4
.

The case when n is odd can be shown similarly.

4. The exact value of m(2, r). The main result of this section is an algorithm
to color all graphs in B2

r using at most three colors.
Theorem 4.1. When r ≥ 2, we have

m(2, r) = 3.
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Proof. Theorem 3.1 implies m(2, r) ≥ 3. We are left to show that every graph
G ∈ B2

r is 3-colorable. For G = (A,B;E) ∈ B2
r , let A = B = {1, 2, . . . , r}. The

grouping condition indicates that edges incident to each vertex v could be partitioned
into two groups g(v, 1) and g(v, 2) with total weight at each group at most 1. For
i, j ∈ {1, 2} and a ∈ A, b ∈ B, let

wij(a, b) =
∑

e=(a,b)∈E
e∈g(a,i)∩g(b,j)

w(e).(5)

In other words, wij(a, b) is the total weight of all edges e from a ∈ A to b ∈ B, where
e belongs to group i of vertex a and group j of vertex b. The grouping condition
implies that for a fixed i0 ∈ {1, 2} and a0 ∈ A, we have

∑
b∈B

(wi01(a0, b) + wi02(a0, b)) ≤ 1.(6)

Similarly, for a fixed j0 ∈ {1, 2} and b0 ∈ B, we get

∑
a∈A

(w1j0(a, b0) + w2j0(a, b0)) ≤ 1.(7)

Clearly, the number of colors needed to color G does not change if at any vertex
v ∈ V we relabel the groups g(v, 1) and g(v, 2). (Namely, group 1 becomes group 2
and vice versa.) This relabelling does change the values wij(v, b) or wij(a, v), though.
Now, relabel the groups at all vertices of G to maximize the following sum:

∑
a∈A,
b∈B

(w11(a, b) + w22(a, b)) .(8)

To this end, we use three colors to color all edges of G as follows:
• One color is for all edges in

⋃
a∈A,
b∈B

(g(a, 1) ∩ g(b, 1)) .(9)

• Another color is for all edges in
⋃
a∈A,
b∈B

(g(a, 2) ∩ g(b, 2)) .(10)

• The last color is for all edges in
⋃
a∈A,
b∈B

(g(a, 1) ∩ g(b, 2))
⋃ ⋃

a∈A,
b∈B

(g(a, 2) ∩ g(b, 1)) .(11)

It is straightforward to verify that all edges belong to one of the three color classes.
To show that this is a valid coloring, we shall verify that the total weight of edges at
each color class which are incident to the same vertex is at most 1. The total weight
of edges of color class (9) which are incident to vertex a ∈ A is

∑
b∈B

w11(a, b) ≤
∑
b∈B

(w11(a, b) + w12(a, b)) ≤ 1.
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The cases of color class (9) with a vertex b ∈ B and of color class (10) are done
similarly.

Last, the total weight of edges of color class (11) which are incident to vertex
a ∈ A is

∑
b∈B

(w12(a, b) + w21(a, b)) .(12)

If this sum is > 1, then

∑
b∈B

(w11(a, b) + w22(a, b)) < 1,(13)

since
∑
b∈B

(w12(a, b) + w21(a, b)) +
∑
b∈B

(w11(a, b) + w22(a, b))

=
∑
b∈B

(w11(a, b) + w12(a, b)) +
∑
b∈B

(w21(a, b) + w22(a, b))

≤ 2.

However, (13) and the fact that the sum (12) is > 1 imply that relabelling the two
groups g(a, 1) and g(a, 2) would increase the sum (8), contradicting the maximality
of (8).

The above result can be extended in a “straightforward” way to show the following
corollary.

Corollary 4.2.
(i) m(2k, r) ≤ 3k for any positive integer k ≥ 1.
(ii) m(n, r) ≤ 3�log2 n	.
Basically, for part (i) we can induct on k, and part (ii) follows from (i). This

extended result gives good bounds when n is small. In fact, we can also show results
such as m(3, r) ≤ 6 by the same idea, with more tedious analysis. Since these results
are not generally good and the arguments, though intuitively simple, are too tedious
to present, we omit their proofs here.

5. The new upper bounds. Next, we give a coloring algorithm yielding a
general upper bound which is good for small values of r. The new upper bound
implies a stronger value than the conjectured value of 2n− 1 when r = 2.

Theorem 5.1. When n, r ≥ 2, we have

m(n, r) ≤
⌈(

r + 1

2

)
n

⌉
.

Proof. Consider G = (A,B;E) ∈ Bnr . Recall that for each v ∈ V = A ∪ B, we
use I(v) to denote the set of edges incident to v and g(v, i) to denote the set of edges
in group i of v. Now, for each vertex u ∈ A (respectively, B) and each vertex v ∈ B
(respectively, A), define n sets of edges Su(v, i) as follows:

Su(v, i) = g(u, i) ∩ I(v), i = 1, . . . , n.(14)

In other words, Su(v, i) is the set of edges in group i of u which are incident to v. Let
wu(v, i) be the total weight of edges in Su(v, i). (We set wu(v, i) = 0 if Su(v, i) = ∅.)
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Then the grouping condition on G implies that

∑
b∈B

wa(b, i) ≤ 1 ∀a ∈ A, i = 1, . . . , n,(15)

∑
a∈A

wb(a, i) ≤ 1 ∀b ∈ B, i = 1, . . . , n.(16)

To this end, for each u ∈ A (respectively, B) and each v ∈ B (respectively, A),
let Lu(v) be the set of group names i, 1 ≤ i ≤ n, for which wu(v, i) > 1/2, and let
L̄u(v) be the set of the rest of the indices. More formally,

Lu(v) = {i | wu(v, i) > 1/2, i = 1, . . . , n},(17)

L̄u(v) = {1, . . . , n} − Lu(v).(18)

Due to (15), for each index i and a particular vertex a ∈ A, there can be at most
one b ∈ B where wa(b, i) > 1/2. Hence, for each a ∈ A we must have

∑
b∈B
|La(b)| ≤ n.(19)

Similarly, due to (16), for each b ∈ B the following holds:

∑
a∈A
|Lb(a)| ≤ n.(20)

Now, define a weighted bipartite multigraph G′ = (A,B;E′) as follows.
• For each a ∈ A and b ∈ B, there are n edges between a and b in G′, denoted
by e(a, b, i), 1 ≤ i ≤ n. The weight of e(a, b, i), denoted by w′(a, b, i), is
defined below. Note that G′ is rn-regular.

• For each a ∈ A and b ∈ B, if |La(b)| ≤ |Lb(a)|, then

w′(a, b, i) = wa(b, i), i = 1, . . . , n.

Otherwise, when |La(b)| > |Lb(a)| define

w′(a, b, i) = wb(a, i), i = 1, . . . , n.

First, we claim that any valid coloring of G′ induces a valid coloring of G. The
term “valid coloring” here means that the total weight of same color edges which are
incident to a particular vertex of G′ is at most 1. To see this, suppose we are given
a valid coloring of G′ where the edge e(a, b, i) is colored c(a, b, i), say. Then when
|La(b)| ≤ |Lb(a)| we color all edges in the set Sa(b, i) with color c(a, b, i). On the
other hand, when |La(b)| > |Lb(a)| the set Sb(a, i) gets the color instead.

To this end, let H be the spanning bipartite subgraph of G′ obtained from G′ by
taking only edges whose weights are > 1/2. We claim that H has maximum degree
at most n. To see this, consider any vertex a ∈ A of H. We have

degH(a) =
∑
b∈B

min{|La(b)|, |Lb(a)|} ≤
∑
b∈B

La(b) ≤ n,(21)

by (19). Similarly, degH(b) ≤ n for all b ∈ B. Add more edges of G′ into H so
that H is n-regular. This is possible since G′ has n parallel edges between any pair
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(a, b) ∈ A×B. König’s line coloring theorem [12] implies that H is n-edge-colorable.
(The actual coloring algorithms can be found in [4, 7, 8], for instance.) The graph
G′−E(H) is (r−1)n-regular; hence it is (r−1)n-edge-colorable. However, each edge
of G′ − E(H) has weight at most 1/2; hence every two colors can be combined into
one without violating the condition that the total weight of same color edges at each
vertex is at most 1. Consequently, we can color edges of G′ with

n+

⌈(
r − 1

2

)
n

⌉
=

⌈(
r + 1

2

)
n

⌉

colors.
Note that this theorem gives the best upper bounds so far for m(n, r) when r is

small, as formally put in the following corollary.
Corollary 5.2. When n ≥ 2, we have
(i) m(n, 2) ≤ 	 3n2 
,
(ii) m(n, 3) ≤ 2n,
(iii) m(n, 4) ≤ 	 5n2 
.
The argument given in Theorem 5.1 can be extended easily to show the following

corollary, whose proof we omit.
Corollary 5.3. The general 3-stage Clos network C(n1, r1,m, n2, r2) is multi-

rate rearrangeable when

m ≥ (r + 1)n

2
,

where n = max{n1, n2}, and r = max{r1, r2}.
Theorem 3.1 and part (i) of Corollary 5.2 imply 5n/4 ≤ m(n, 2) ≤ 6n/4. Given

that the number 5/4 is somewhat “ugly,” we make the following conjecture.
Conjecture 5.4.

m(n, 2) =

⌊
3n

2

⌋
, n ≥ 2.

In fact, recalling m(2, r) = 3, it is very tempting to also make the following conjecture.
Conjecture 5.5. The symmetric 3-stage Clos network C(n,m, r) is multirate

rearrangeable if there are at least
⌊(

1 +
1

2
+ · · ·+ 1

2r−1

)
n

⌋
=

⌊
2n

(
1− 1

2r

)⌋

middle-stage switches. In other words,

m(n, r) ≤
⌊
2n

(
1− 1

2r

)⌋
.

We believe that the upper bound is also the exact value for m(n, r). However, as
there is no rigorous evidence yet, we have conjectured a weaker result. Next, we
give another upper bound which beats all existing bounds when r is relatively small
compared to n.

Theorem 5.6. When n, r ≥ 2, we have

m(n, r) ≤ 2n− 1 +

⌈
r − 1

2

⌉
.(22)
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Proof. Consider G = (A,B;E) ∈ Bnr . Suppose e and e′ are two edges connecting
two vertices a ∈ A and b ∈ B, with w(e) +w(e′) ≤ 1. Create a new graph G′ from G
by collapsing e and e′ into one edge with weight w(e) + w(e′). Then a valid coloring
of G′ induces a valid coloring of G.

Now, for every pair (a, b) ∈ A×B, as long as there are two edges e and e′ between
a and b for which w(e)+w(e′) ≤ 1, collapse e and e′ into one as described. After this
procedure is finished, between any pair a and b there is at most one edge with weight
≤ 1/2, and the rest have weights > 1/2. Let H be the resulting graph. Call the edges
of H with weight > 1/2 heavy and the rest of the edges light. Since the total weight
of edges incident to each vertex of G is at most n, every vertex of H is incident to at
most 2n − 1 heavy edges. In other words, the heavy degree of any vertex of H is at
most 2n− 1.

We claim that the light degree of any vertex of H is at most r − 1. To see this,
consider a ∈ A. If the heavy degree of A is 2n−1, then no light edge incident to a can
share the same neighbor as a heavy edge of a. Suppose, on the contrary, that there
is a heavy edge e and a light edge e′, both of which connect a and b. Then the total
weight of the other 2n−2 heavy edges of a except e is > n−1; hence w(e)+w(e′) < 1,
as the total weight associated with a is at most n. Consequently, e and e′ must have
been collapsed by our procedure. Thus, the light degree of a is at most r− 1. Now, if
the heavy degree of a is at most 2n− 2, then there is also a vertex b ∈ B with heavy
degree at most 2n − 2. If there was no light edge between a and b, then the light
degree of a is at most r − 1. If there was one light edge between a and b, relabel this
light edge “heavy,” which does not change the fact that the maximum heavy degree
of H is at most 2n− 1. Again, the light degree of a is now at most r − 1.

König’s line coloring theorem [12] implies that we can use at most 2n−1 colors to
color the heavy edges of H and at most r− 1 colors to color the light edges of H. As
the light edges have weights ≤ 1/2, every two colors of r − 1 colors can be combined
into one, for a total of at most 2n − 1 + 	(r − 1)/2
 colors as desired. (Again, the
actual coloring algorithms can be found in [4, 7, 8].)

As we have mentioned, the new bound is good when r is relatively small. This is
formally put in the following corollary.

Corollary 5.7. When r ≤ n
2k−1 + 1, we have

m(n, r) ≤ 2n− 1 +
⌈ n

2k

⌉
.

For example, if r ≤ n+ 1, the Clos network C(n,m, r) is multirate rearrangeable
with at most 	5n/2
−1 middle-stage switches; when r ≤ n/4+1, we need only about
17n/8 − 1 middle-stage switches, and so on . . . . The argument given in Theorem
5.6 generalizes straightforwardly to the general Clos network case. Hence, we get the
following result.

Corollary 5.8. The general 3-stage Clos network C(n1, r1,m, n2, r2) is multi-
rate rearrangeable when

m ≥ 2n− 1 +

⌈
r − 1

2

⌉
,

where n = max{n1, n2}, and r = max{r1, r2}.
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Abstract. We present an approximation algorithm for the problem of finding a minimum-cost
k-vertex connected spanning subgraph, assuming that the number of vertices is at least 6k2. The
approximation guarantee is six times the kth harmonic number (which is O(log k)), and this is also
an upper bound on the integrality ratio for a standard linear programming relaxation.
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laxation, network design, k-outconnected graph, vertex connectivity
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1. Introduction. Let G = (V,E) be an undirected graph, let each edge e ∈ E
have a nonnegative cost ce, and let k be a positive integer. The minimum-cost k-
vertex connected spanning subgraph (mincost k-VCSS) problem is to find a spanning
subgraph H of minimum cost such that H is k-vertex connected. (A graph is called
k-vertex connected if it has at least k+1 vertices, and the removal of any k−1 vertices
leaves a connected graph.) The problem is NP-hard for k ≥ 2, and for k = 1 it is
the minimum spanning tree problem. Our paper addresses the “special case” of the
problem where the graph has order |V | ≥ 6k2; this too is NP-hard for k ≥ 2. (So
for a fixed k, our method handles all graphs except a finite set of “small” graphs,
and our method fails on each of the “small” graphs.) Our approximation guarantee
is six times the kth harmonic number, which is O(log k). Also, this is an upper
bound on the integrality ratio for a standard linear programming relaxation. Several
previous papers have attacked the mincost k-VCSS problem (without restrictions on
|V |), with the goal of improving on the approximation guarantee (see the references).
An approximation guarantee of more than k/2 has been presented in [11]; also, an
upper bound of O(k) on the integrality ratio was known [4, 5]. Better results were not
known for our “special case,” but we mention that our results may not improve on
previous results for small k (k = 2, 3, 4, . . .). (An O(log k) approximation guarantee
was claimed earlier in [15], but subsequently an error has been found, and that claim
has been withdrawn; see [16].) For more discussion on related problems and results,
see the introduction of [3].

Our algorithm is based on two results: (1) a polynomial-time algorithm of Frank
and Tardos [5] for finding a minimum-cost k-outconnected subdigraph of a digraph

∗Received by the editors July 12, 2001; accepted for publication (in revised form) March 19, 2003;
published electronically July 8, 2003.

http://www.siam.org/journals/sicomp/32-4/39228.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,

Canada, N2L 3G1 (jcheriyan@math.uwaterloo.ca). This author’s work was supported in part by
NSERC research grant OGP0138432.
‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(vempala@math.mit.edu). This author’s work was supported in part by NSF Career Award CCR-
9875024.
§Department of Computer Science, McGill University, 3480 University Street, Montreal, Quebec,

Canada, H3A 2A7 (vetta@cs.mcgill.ca). This author’s work was supported in part by NSF Career
Award CCR-9875024.

1050



APPROXIMATING MINCOST k-VERTEX CONNECTED SUBGRAPHS 1051

(directed graph), and (2) an upper bound on the order of 3-critical graphs by Mader
[12]. The Frank–Tardos algorithm has been applied earlier to the mincost k-VCSS
problem by several authors, starting with Khuller and Raghavachari [10]; see also
[1, 2, 11]. The scaling trick used in Lemma 3.2 below has been used earlier by [8, 9].

2. Notation and preliminary results. Throughout, we assume that the input
graph G = (V,E) is k-vertex connected. Let n denote |V |.

2.1. A linear programming relaxation. Let H∗ denote a k-VCSS of mini-
mum cost, and let z∗ = c(H∗) =

∑
e∈E(H∗) ce denote its cost. The following linear

program (LP) P (k) gives a lower bound z(k) on z∗ (Frank discusses this LP in [4]).
There is a variable xe, 0 ≤ xe ≤ 1, for each edge e in G. The intention is that the edge
incidence vector of every k-VCSS H (possibly H = H∗) forms a feasible solution for
P (k). A setpair W = (Wt,Wh) is an ordered pair of disjoint vertex sets, so Wt ⊆ V ,
Wh ⊆ V , and Wt ∩Wh = ∅. An edge uv of G is said to cover W if u ∈ Wt, v ∈ Wh

or v ∈ Wt, u ∈ Wh. Let δ(W ) denote the set of all edges in G that cover W . If Wt

contains at least one vertex, say, p, and Wh contains at least one vertex, say, q, then
note that H has at least k − (n − |Wt ∪Wh|) edges in δ(W ), because on removing
the vertices in V − (Wt ∪Wh) from H, the resulting graph has at least this number
of openly disjoint paths between p and q, and each of these paths contributes one (or
more) distinct edges to δ(W ). (Two paths are called openly disjoint if every vertex
that belongs to both paths is an end vertex of both paths.) Let S denote the set
of all setpairs (Wt,Wh) such that Wt �= ∅ and Wh �= ∅. It is convenient to keep a
parameter �, where � is a positive integer, and write the LP relaxation P (�) for the
mincost �-VCSS problem.

P (�) : z(�) = minimize
∑
e∈E

ce xe

subject to
∑

e∈δ(W )

xe ≥ � − (n− |Wt ∪Wh|) ∀W ∈ S,

0 ≤ xe ≤ 1 ∀ e ∈ E.

Lemma 2.1. Let z∗(�) be the minimum cost of an �-VCSS. Then z∗(�) ≥ z(�).
2.2. k-outconnected subgraphs. A graph is said to be k-outconnected from

a so-called root vertex r if there exist k openly disjoint paths from r to v for each
vertex v, v �= r. The mincost k-OC problem is as follows: given an undirected graph
G = (V,E), a root vertex r ∈ V , and nonnegative costs on the edges, find a minimum-
cost subgraph H of G such that H is k-outconnected from r. This problem is NP-hard
for k ≥ 2.

Theorem 2.2 (see [5, 10]). Let G = (V,E), r, and c : E → R+ be as above.
There is a 2-approximation algorithm for the mincost k-OC problem. Moreover, the
subgraph found by this algorithm has cost at most 2z(k).

Proof. In the directed version Ĝ of G, each edge e of G is replaced by two
oppositely oriented arcs, and each of these two arcs has cost ce. Here is an LP
relaxation (in fact, an LP formulation) P̂ of the directed mincost k-OC problem on

Ĝ (with any vertex r as the root): There is a variable xa for each arc a in Ĝ; let R
denote the set of all setpairsW = (Wt,Wh) such that the root r is inWt andWh �= ∅;
and for W ∈ R let δ̂(W ) denote the set of arcs (u, v) in Ĝ with u ∈Wt, v ∈Wh.
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P̂ : minimize
∑

a∈E(Ĝ)

ca xa

subject to
∑

a∈δ̂(W )

xa ≥ k − (n− |Wt ∪Wh|) ∀W ∈ R,

0 ≤ xa ≤ 1 ∀ a ∈ E(Ĝ).

This LP P̂ has an integer optimal solution (see [4, Theorems 2.1, 2.2]). The Frank–

Tardos algorithm solves the directed mincost k-OC problem on Ĝ by finding a mini-
mum-cost subdigraph Ĥ that is k-outconnected from r, and the cost c(Ĥ) equals the

optimal value of P̂ . (The arc incidence vector of Ĥ forms an optimal solution of P̂ .)

Finally, we claim that the optimal value of P̂ is at most 2z(k); hence the undirected

version of Ĥ satisfies the theorem. (It is a subgraph of G that is k-outconnected from
r, and it has cost at most 2z(k).)

To see that the optimal value of P̂ is at most 2z(k), observe that the LP relax-

ation of the directed mincost k-VCSS problem on Ĝ has optimal value at most 2z(k)
(because a feasible solution x of P (k) (the k-VCSS LP on G) gives a feasible solution

of the directed k-VCSS LP on Ĝ by assigning the value xe to each of the two arcs
corresponding to each edge e). Moreover, an optimal solution of the directed k-VCSS

LP on Ĝ is also a feasible solution of P̂ . Our claim follows.
Remark. Our algorithm may apply this result to find a solution to the mincost

�-OC problem that has cost at most 2z(�), where 1 ≤ � ≤ k.
2.3. 3-critical graphs. For a graph G, let κ(G) denote the vertex connectivity,

i.e., the minimum number of vertices whose removal results in a disconnected graph
or the trivial graph (namely, K1). An �-separator of a connected graph is a set of �
vertices whose removal results in a disconnected graph.

A graph G = (V,E) is called 3-critical if the vertex connectivity decreases by |S|
on removing the vertices in any set S of at most three vertices, that is, if κ(G− S) =
κ(G)−|S| for all S ⊆ V , |S| ≤ 3. If G is not 3-critical, then note that there exists a set
S of three vertices such that no κ(G)-separator contains all the vertices in S. Mader
gives an upper bound on the order of 3-critical graphs [12]. (The proof is written in
German, and the result is discussed (without proof) in two survey papers written in
English [13, 14].)

Theorem 2.3 (see Mader [12]). A 3-critical graph with vertex connectivity k has
fewer than 6k2 vertices.

3. The algorithm and its analysis. The algorithm starts with i := 1 and a
minimum-cost spanning tree H1. Each iteration i = 1, 2, . . . , augments Hi to Hi+1

by adding edges from E(G) − E(Hi) such that the vertex connectivity increases by
at least one, and the “augmenting cost” c(Hi+1)− c(Hi) is approximately minimum.
A detailed description of an iteration follows. Let � = κ(Hi). If � = k, then we stop
and output Hi as the desired k-VCSS. Now, suppose � < k. For each edge in Hi, we
change the cost to zero (the other edges keep the original costs). By Mader’s theorem
(and the fact that n is at least 6k2), there exist three vertices such that no �-separator
of Hi contains all three vertices. We find three such vertices r1, r2, r3 by exhaustively
checking for each vertex set S of cardinality three whether κ(Hi − S) > � − 3. For
each of these three vertices, we apply the Frank–Tardos algorithm with root rj (j = 1,
2, or 3) and the modified edge costs to find a supergraph Hi,j of Hi that is (� + 1)-
outconnected from rj . We take (the edge set of) Hi+1 to be the union of (the edge
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sets of) Hi,1, Hi,2, and Hi,3.
Lemma 3.1. At every iteration i = 1, 2, . . . , we have κ(Hi+1) ≥ κ(Hi) + 1.
Proof. Let � = κ(Hi). Note that � < k. Suppose that κ(Hi+1) = �. Then Hi+1

has an �-separator C, C ⊂ V . Now, Hi is not 3-critical by Mader’s theorem, since
n ≥ 6k2 > 6�2. Hence, there exist three vertices in Hi such that for each �-separator of
Hi, at least one of these three vertices is absent from the �-separator. The algorithm
finds three such vertices r1, r2, r3. Without loss of generality, r1 is absent from C.
The graph Hi,1, which is a subgraph of Hi+1, is (�+ 1)-outconnected from r1. Hence
Hi+1 has (�+1) openly disjoint paths between r1 and v, for every other vertex v, and
one of these paths survives in Hi+1 − C. We have a contradiction, since Hi+1 − C is
connected. The lemma follows.

Lemma 3.2. At every iteration i = 1, 2, . . . , we have c(Hi+1) − c(Hi) ≤ 6z(k)
k−� ,

where � = κ(Hi).
Proof. Note that � < k. We will prove that for each of the three supergraphs Hi,j

(j = 1, 2, or 3) of Hi, the augmenting cost c(Hi,j) − c(Hi) is at most 2z(k)/(k − �).
Then the lemma follows immediately.

Let x : E → R+ be an optimal solution to the LP P (k); note that the cost of x
(with respect to the original edge costs c) is z(k).

Recall that (during the construction ofHi,j , j = 1, 2, 3) the edge costs are modified
such that an edge already in Hi has zero cost, while the other edges have the original
costs. Let x′ : E → R+ be given by

x′e =




1 if e is in Hi,

xe
k − � otherwise.

Clearly, x′ has modified cost at most z(k)/(k − �). We claim that x′ is a feasible
solution to the LP P (�+1). Then, by Theorem 2.2, the Frank–Tardos algorithm finds
an (�+1)-outconnected supergraph of Hi with augmenting cost at most 2z(k)/(k−�).

To see the claim, consider any setpairW ∈ S and its constraint in the LP P (�+1),

∑
e∈δ(W )

x′e ≥ (�+ 1)− q,

where q = n − |Wt ∪Wh|. First, suppose that Hi has no edges in δ(W ). Then since
Hi is �-vertex connected, we have q ≥ �. If q ≥ �+ 1, then, obviously, x′ satisfies this
constraint. Otherwise, if q = �, then x′ satisfies this constraint because (i) x satisfies
the constraint of W in the LP P (k), namely,

∑
e∈δ(W ) xe ≥ k − �, and (ii) each edge

e ∈ δ(W ) has x′e = xe/(k − �). Now, suppose that Hi has p ≥ 1 edges in δ(W ). If
p < (�+ 1)− q, then delete ≤ p vertices from Wt and Wh to obtain a new setpair Ŵ
such that Ŵt �= ∅ �= Ŵh and Hi has no edges in δ(Ŵ ), and then apply the previous
reasoning to Ŵ to infer that x′ satisfies the constraint of Ŵ and hence also of W . If
p ≥ (�+1)− q, then∑e∈δ(W ) x

′
e ≥ |E(Hi)∩ δ(W )| = p ≥ (�+1)− q. Thus the claim

holds.
Theorem 3.3. Suppose that the input graph G = (V,E) is k-vertex connected

and has order |V | ≥ 6k2. Then the algorithm terminates with a k-VCSS that has
cost at most 6(1 + 1

2 + 1
3 + . . . + 1

k )z(k), where z(k) is the optimal value of the LP
relaxation. The algorithm runs in time O(k2n4(n+ k2.5)).

Proof. The vertex connectivity of Hi increases by at least one in every iteration,
starting from one, so the algorithm terminates with a k-VCSS in at most k − 1
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iterations. The cost of the k-VCSS is

≤ c(H1) +

k−1∑
i=1

(c(Hi+1)− c(Hi)) ≤ 2z(k)

k
+
k−1∑
�=1

6z(k)

k − �

≤ 6

(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)
z(k).

(Note that the minimum spanning tree H1 is an optimal solution to the mincost
1-OC problem (with any vertex as the root), and an optimal solution x of the LP
P (k) gives a feasible solution 1

kx of the LP P (1); hence by the proof of Theorem 2.2,

c(H1) ≤ 2z(1) ≤ 2z(k)
k .)

To see the running time, note that each iteration i (1 ≤ i < k) runs the Frank–
Tardos algorithm at most three times and tests κ(Hi − S) for at most n3 sets of
vertices S of cardinality three. Gabow’s algorithm [7] tests the vertex connectivity κ
in time O((n+ κ2.5) · κn), and there is a version of the Frank–Tardos algorithm, due
to Gabow, that runs in time O(k2n2|E|) [6, Theorem 4.5].
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Abstract. In this paper, we show an O(n + m) time Turing reduction from the tree pattern
matching problem to another problem called the subset matching problem. Subsequent works have
given efficient deterministic and randomized algorithms for the subset matching problem. Together,

these works yield an O
(
n log2 m+m

)
time deterministic algorithm and an O(n logn + m) time

Monte Carlo algorithm for the tree pattern matching problem.
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1. Introduction. In the tree pattern matching problem, the text and the pat-
tern are ordered, binary trees, and all occurrences of the pattern in the text are sought.
Here, the pattern occurs at a particular text position if placing the pattern with root
at that text position leads to a situation in which each pattern node overlaps some
text node. This problem has a number of applications (see [6]). Actually, in these
applications, the tree need not be binary and the edges may be labelled; however, as
shown in [4], this general problem can be converted to a problem on binary trees with
unlabelled edges but with a blow-up in size proportional to the logarithm of the size
of the pattern. In fact, this blow-up can also be avoided in our approach, as we will
indicate in our description.

The naive algorithm for tree pattern matching takes time O(nm), where n is
the text size and m is the pattern size. Hoffman and O’Donell [6] gave another
algorithm with the same worst case bound. This algorithm decomposes the pattern
into strings, each string representing a root-to-leaf path. It then finds all occurrences
of each of these strings in the text tree. The first o(nm) algorithm was obtained by
Kosaraju [9], who first noticed the connection of the tree pattern matching problem
to the problem of string matching with don’t-cares and the problem of convolving two
strings. Kosaraju’s algorithm takes O(nm.75 logm) time. Dubiner, Galil, and Magen
[4] improved Kosaraju’s algorithm by discovering and exploiting periodicities in paths
in the pattern. They obtained a bound of O(nm.5 logm). This was the best bound
known to date. Dubiner, Galil, and Magen also made the observation that the naive
algorithm actually takes O(nh) time, where h is the height of the pattern.

In this paper, we show how to reduce the tree pattern matching problem to the
subset matching problem in linear time. The subset matching problem is to find all
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Fig. 1. Example of subset matching.

occurrences of a pattern string p of length m in a text string t of length n, where
each pattern and text location is a set of characters drawn from some alphabet. The
pattern is said to occur at text position i if the set p[j] is a subset of the set t[i+j−1]
for all j, 1 ≤ j ≤ m. It is required to find all text locations at which the pattern
matches; i.e., each pattern set is a subset of the aligned text set (see Figure 1).

The reduction from tree pattern matching to subset matching proceeds in two
steps.

•We show that the general tree pattern matching problem can be reduced to the
following special case, called spine pattern matching, by a linear time Turing reduction.
In spine pattern matching, there is a special path in each of the pattern and text called
their spines. The spine begins at the root of its tree, and in addition each node on
the spine has at most one nonspine child. Spines have additional properties as well,
which will be described later. All matches of the pattern in the text are sought with
the additional restriction that the spine of the pattern must match a portion of the
spine of the text; i.e., nodes on the pattern spine must be aligned with nodes on the
text spine. For intuition, one can think of the spine as being the path of left children
starting at the root (and in fact one can reduce the general problem to this case in
linear time, although we will not do so).

The above reduction may create several instances of the spine pattern matching
problem, but the sum of the sizes of these instances will be linear. This reduction is
completely deterministic. It proceeds by using the periodicity structure of paths and
by decomposing the text tree into periodic paths in a nontrivial manner. Each path
then gives a spine for the spine pattern matching problem.

• Next, we reduce the spine pattern matching problem to the subset matching
problem in linear time. This is, in fact, readily done. The spine of the text tree gives
the text string for the subset matching problem; the subtrees hanging from this spine
determine the various text sets. Analogous facts hold for the pattern.

The two reductions above imply that the tree pattern matching problem can be
reduced to several instances of the subset matching problem, the sum of the sizes
of these instances being linear. Therefore, an algorithm for the subset matching
problem yields an algorithm for the tree pattern matching problem with the same
time complexity.

Cole and Hariharan [1] gave a randomized algorithm for the subset matching
problem running in time O((n + s) log3m), where s is the sum of the sizes of all
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0 0 1 0 0 1 0 0 1
period

Fig. 2. A path and its associated string.

the pattern and text sets. Subsequently, Indyk [7] gave a deterministic algorithm for

the subset matching problem running in time O((n + s)m

√
log logm

logm (1+o(1))). Later,
Cole, Hariharan, and Indyk [3] gave a deterministic algorithm running in time O((n+

s) log3m) and a randomized algorithm running in time O((n+ s) log3m
log logm ). Indyk [8]

also gave a randomized Monte Carlo algorithm with running time O(cn log n) and
failure probability O(1/nc) for any fixed constant c ≥ 1. Finally, Cole and Hariharan
[2] gave a deterministic algorithm running in time O(n log2m). It follows that there is
a deterministic algorithm running in time O(n log2m) and a Monte Carlo randomized
algorithm running in time O(n log n) for the tree pattern matching problem.

This paper is organized as follows. Section 2 gives some required definitions.
Section 3 describes the reduction of the spine pattern matching problem to the subset
matching problem. Section 4 describes the reduction from the tree pattern matching
problem to the spine pattern matching problem.

2. Definitions.

Definition 2.1 (tree pattern matching). We consider ordered binary trees; i.e.,
each internal node has a left and/or a right child. The text tree t has n nodes and
the pattern tree p has m nodes. The problem entails finding all nodes v in t where p
matches; i.e., when the root of p is aligned with v, each node in p is aligned with a
node in t.

Definition 2.2 (paths, strings, and periods). Note that paths in trees p and t
can be expressed as strings over a two character alphabet, one character signifying a
left edge and the other a right edge (see Figure 2: 0 represents a left edge and 1 a
right edge). The period of a string s[1 . . . |s|] is the smallest number j > 0 such that
s[i] = s[i + j] for all i, 1 ≤ i ≤ |s| − j. If no such j exists, then the period of s is
defined to be |s|. The period of a path is defined to be the period of its associated
string.

It is well known that the period can be computed in linear time [5]. The following
lemma is classical [10].

Lemma 2.3. If k ≤ |s| − j is such that the period j of s does not divide k, then
the string s[k + 1 . . . k + j] differs from the string s[1 . . . j].

Definition 2.4 (spine pattern matching). This is a restricted version of the
tree pattern matching problem. In this problem, the text and the pattern each have
one designated path, called their spines. The text and pattern spines originate at their



TREE PATTERN MATCHING TO SUBSET MATCHING 1059

set  of   names 
of  nodes  in  

f

e
d
c

a
b

a

c

g
h

b

f

a
b

c

d e

f

a

b

g

c
f

h

r1 r2 r3 r|π| = φ

r2

p1
r1

p2

p3 r3

p4r4

p5 r5

π

r|π|−1

p|π|

Fig. 3. The spine and its associated set string.

respective roots and are maximal paths having the same period, θ say (the θ needed for
tree pattern matching will be determined later). If the input does not have this form,
it is not a legitimate input for this problem. In fact, both spines when represented as
strings will have the form xkx′, where |x| = θ and x′ is a prefix of x (here, the values
of k and x′ could differ for the pattern spine and the text spine, but x is identical for
both spines). All matches of the pattern in which the pattern spine falls completely on
the text spine are sought.

From maximality, it follows that both spines terminate at nodes with at most
one child (a child which when added to the spine destroys its periodic structure).
Since both spines have the same period θ, it follows that the pattern spine will fall
completely on the text spine only if the root of the pattern is placed at certain nodes
on the text spine. These nodes will occur at integer multiples of θ from the text root
and will be designated “anchor nodes.”

3. Reducing spine pattern matching to subset matching. The spines of
the pattern p and the text t will define the strings for the subset matching problem.
The subsets at each location in these strings will correspond to the off-spine subtrees
of the spine nodes; an off-spine subtree is a subtree whose root is a nonspine node
but the parent of whose root is on the spine. These subsets are obtained by labelling
the nodes of the off-spine subtrees as follows (see Figure 3). The key fact about this
labelling is that two nodes in two distinct off-spine subtrees (both of which could be
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in the pattern or in the text, or, alternatively, one could be in the pattern and the
other in the text) get the same label if and only if the paths from these nodes to the
roots of their respective off-spine subtrees represent identical strings.

The off-spine subtrees of p are labelled first. The subtrees are overlaid to form a
combined pattern subtree; the overlaying aligns the roots of the off-spine subtrees and
recursively overlays their subtrees. Then the combined pattern subtree is traversed
by any convenient method, e.g., a breadth first traversal, and the nodes are labelled
by the associated numbering. For each spine node, we form a subset consisting of the
collection of numbers labelling the nodes of its off-spine subtree. This collection of
subsets defines the pattern for the subset matching problem instance. The off-spine
subtrees of t are labelled using the same labelling. To do this, each off-spine text
subtree and the combined pattern subtree are traversed in lock-step. Consider the
text subtree laid over the combined pattern subtree. Clearly, any text node that lies
beyond the combined pattern subtree will not be part of any match in which the
pattern spine is aligned with a portion of the text spline. Consequently, these text
nodes need not be and are not given labels, and indeed need not be and are not
traversal. As a result, we have the following easy fact about the time complexity of
the above computation.

Fact 1. The labels to nodes in off-spine subtrees of the pattern can be given in
O(m) time. The labels to any one off-spine subtree t′ in the text can be given in time
O(min{|t′|,m}). The total time taken for the labelling is thus O(n+m); consequently,
the size of the resulting subset matching problem is also O(n+m).

Recall our remark from the introduction that the case of larger degree and labelled
trees can be handled without any extra overhead. Larger degree is simply handled
by the usual binarization. Labelled trees are handled by pairing the given labels with
the labels obtained here.

Clearly, there is a match in the subset matching problem beginning at a location
corresponding to an anchor node if and only if there is a match in the spine pattern
matching problem with the pattern tree root aligned with the corresponding anchor
node. This completes the reduction from spine pattern matching to subset matching.

4. Reducing tree pattern matching to one or more instances of spine
pattern matching. Consider two matches of the pattern with the text in which the
pattern instances overlap in m/2 or more locations. To avoid checking such matches
independently, we seek to have the roots of both pattern instances lie on the same
instance of a spine obtained from t.

Definition 4.1. The size of a node v in a tree is defined to be the number of
nodes in the subtree rooted at v. Let tv denote the subtree of t rooted at a node v in
t, and let pv denote the subtree of p rooted at a node v in p.

4.1. Processing the pattern. We define the spine π of the pattern p to be
the following path from the root to a node with at most one child. π consists of two
segments, π1 and π2. π1 is a centroid path; i.e., it is obtained by moving to the child
with larger size at each step, with ties broken arbitrarily. π1 ends when a node x
such that |px| ≤ m

2 is reached. Note that |px| ≥ m
4 . Let θ be the period of π1. π2 is

the longest path starting at x such that the path π continues to have period θ. Note
that π2 has a vertex in common with π1. π is readily computed in linear time. π1 is
terminated at x rather than at a node with at most one child to guarantee an overall
linear-sized construction.
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Fig. 4. A θ-Path in C.

4.2. Decomposing the text.

Definition 4.2 (see Figure 4). A path in t from a node u to a node v in tu is
a θ-path if it has period θ and is identical to the spine of the pattern in the first θ
locations (when both paths are viewed as strings). This path is maximal if extending
it to the distance θ ancestor of u or either child of v results in a path which is not
a θ-path (in fact, v can have only one child). These paths are the candidate spline
paths in the text, but we need to impose some further restrictions. Continuing with the
definitions, the link node l in this path is the node closest to v such that |tl| ≥ m

4 . An
anchor node on this path is a node at distance an integer multiple of θ from the start
node. The strong anchor nodes w on this path also satisfy the following properties. As
we will see, matches occur only when the pattern root is aligned with a strong anchor
node.

1. tw has at least m nodes.
2. The distance from w to l is at least |π1|, and thus has length at least θ.
3. The distance from w to v is at least |π|.
4. Consider the subtrees hanging from the maximal θ-path starting at w. Classify
them as red subtrees if they have at least m

4 nodes and as green subtrees
otherwise. If all these subtrees except exactly one are green, then the green
subtrees plus the path together have at least m/2 nodes.

5. Either u = w or the distance from u to w is an integer multiple of θ.

We form a collection C of maximal θ-paths in t, whose start nodes are strong
anchor nodes; i.e., they satisfy properties 1–5 above.

Clearly, if any of properties 1–3 or 5 do not hold, there cannot be a match with p’s
root aligned with w. To see the need for property (4) we argue as follows. Consider a
match of p in which at most one of the off-spine subtrees R in t is red. As the spine
of p does not match any nodes in R, the subtree of p matching R has size less than
m/2. Consequently, the remainder of p, of size at least m/2, matches the aligned
spine portion in t and its green subtrees, which therefore have combined size at least
m/2.

Note that the paths in C need not be disjoint; however, their combined length
will still be O(n), as we shall show later in Lemma 5.18.

The algorithm for constructing these paths is given next.
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The path decomposition algorithm. The decomposition is obtained using the
following algorithm. For each node x in T , this algorithm first determines the longest
θ-path which begins at x. This is done in O(n) time using a Knuth–Morris–Pratt-
type automaton in conjunction with a depth-first traversal of t as in the algorithm
of Hoffman and O’Donell [6]. Next, the algorithm determines those maximal θ-paths
found above which satisfy properties 1–4, discarding all other paths. To this end, it
computes the size of each subtree, which allows property 1 to be tested. Properties
2–4 are readily tested by means of a subsequent traversal of each path. It will also
be useful to determine, for each such maximal θ-path, whether the node at distance
θ from the start of the path is also a strong anchor node. Since, as we will see, the
sum of the length of paths in C is O(n), the total time taken above is O(n).

Thus determining matches of p at strong anchor nodes on paths in C suffices to
determine all matches of p in t. Further, note that when p is placed with its root at
a strong anchor node on some path in C, the spine of p lies completely on that path.

4.3. Processing paths in C. The purpose of processing a path ρ ∈ C is to
determine whether or not p matches at w for each anchor node w on ρ. Each path ρ
in C will be processed as follows.

Let u be the node at which ρ starts. u itself is a strong anchor node. Whether
or not the pattern matches at u is determined in a brute force manner. This requires
O(m) time. We will show in Lemma 5.17 that there are O(n/m) paths, and hence
the total time taken over all paths in this process is just O(n).

Matches at other strong anchor nodes on ρ are determined differently, i.e., by
reduction to an instance of the spine pattern matching problem.

Consider the portion of ρ starting from the second anchor node onwards, denoted
trunc(ρ). If trunc(ρ) starts with a strong anchor node, it provides the spine of the
text instance. Clearly, there is a match of p rooted at an anchor node on trunc(ρ) if
and only if there is a match at the same location in the corresponding spine pattern
matching problem instance.

This concludes the reduction.

5. The analysis. Let s1, . . . , s|ρ|−θ denote the off-spine subtrees, if any, for
trunc(ρ), in increasing order of distance from the start node of ρ. Some of the si’s
might not exist. By Fact 1, reducing this instance of the spine pattern matching

problem to the subset matching problem takes time O(
∑|ρ|−θ
i=1 min{|si|,m}+ |ρ| − θ)

(plus, of course, O(m) time for processing the pattern, which is common to all the
instances of the spine pattern matching problem which result above); also, it yields a

text of size O(
∑|ρ|−θ
i=1 min{|si|,m}+ |ρ| − θ) and a pattern of size O(m).

The total time taken to process ρ is thus O(m +
∑|ρ|−θ
i=1 min{|si|,m} + |ρ| − θ).

This quantity can be split into four parts: O(m) time for checking for an occurrence of
p at the first anchor node, time proportional to its size for each green subtree hanging
from trunc(ρ), O(m) time for each red subtree hanging from trunc(ρ), and O(|ρ|− θ)
time for the path itself. We need to show that this sums to O(n) over all paths ρ.
By Lemma 5.17, there are O(n/m) paths; hence the first part sums to O(n) time.
By Corollary 5.3, the green subtrees in the truncated paths are disjoint; hence the
second part sums to O(n). By Lemma 5.8, there are O(n/m) red subtrees; hence the
third part sums to O(n). Finally, by Corollary 5.2, the truncated path lengths sum
to O(n), and hence the fourth part sums to O(n) also. This yields O(n) time overall.
The same argument shows the resulting subset matching problems have texts of total
size O(n); also, they each have the same pattern of size O(m).
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Fig. 5. Overlap is at most θ − 1.

5.1. Showing O(n) time.

5.1.1. Some properties of paths in C.

Lemma 5.1. Consider two paths ρ, ρ′ in C starting at nodes u and u′, respectively
(see Figure 5). Suppose u′ lies on ρ. Then at most the first θ− 1 edges of ρ′ are also
present in ρ.

Proof. From the construction of C, the length of the path between u and u′ is
not divisible by θ. The lemma then follows from Lemma 2.3.

Corollary 5.2. If the first θ edges are removed from each path in C, then the
resulting collection of paths is node disjoint. Hence the truncated paths have total
lengths O(n). Also, as the link node is not among the first θ nodes by property 2 of
paths in C, the link node of ρ′ cannot lie on ρ.

Corollary 5.3. The green subtrees hanging from the truncated paths are all
disjoint.

Proof. It suffices to consider the green subtrees hanging from two paths ρ, ρ′ ∈ C,
starting at u, u′, respectively, where u is a proper ancestor of u′ (for if u and u′

are unrelated, then clearly the green trees hanging from ρ and ρ′ are disjoint). By
Corollary 5.2, trunc(ρ) and trunc(ρ′) are disjoint. For a contradiction, suppose that
G is a green subtree hanging from trunc(ρ) and containing v, a node in a green subtree
hanging from trunc(ρ′). It follows from Lemma 5.1 that trunc(ρ′) lies within G. But
trunc(ρ′) includes the first anchor node w′ on ρ′, and the subtree of t rooted at w′

contains at least m nodes. Then G, which contains this subtree, would be red.

Lemma 5.4. Let ρ, ρ′ be as in Lemma 5.1 (see Figure 5). Then ρ′ cannot overlap
a node in ρ which is a proper descendant of ρ’s link node w. Therefore, if ρ′ overlaps
the link node w of ρ, then it branches away from ρ at w.

Proof. By Corollary 5.2, the link node l′ of ρ′ is not on ρ. If ρ′ overlaps a node
w′ in ρ which is a proper descendant of w, then |tw′ | ≥ |tl′ | ≥ m

4 , and therefore w
cannot be the link node of ρ, a contradiction.

Lemma 5.5. Let ρ, ρ′, and ρ′′ be three paths whose start nodes appear in this
order on the path from the root of t to the start node of ρ′′. Suppose that ρ′′ overlaps
ρ′’s link node, and suppose that ρ′ shares at least one edge with ρ. Then ρ and ρ′′ do
not overlap.

Proof. Suppose, for a contradiction, that ρ and ρ′′ overlap. Consider the portion
q of ρ′ up to the start node of ρ′′. By assumption, q lies entirely on ρ, and thus by
Lemma 5.1, |q| ≤ θ − 1. But q is a period of the portion of ρ′ from its start node
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to its link node, as can be seen by considering the overlap of ρ′ with ρ′′. Further,
this portion of ρ′ has π1 as a prefix, and as |π1| ≥ θ, q would also be a period of π1,
contrary to the definition of θ.

5.1.2. Bounding the number of red subtrees. We bound the number of red
subtrees hanging from the truncated paths in C by associating them in part with a
set of O(n/m) nodes of t, called marked nodes. A path with k red subtrees will have
k − 1 marked nodes.

Definition 5.6. A node in t is marked if its left and right subtrees both contain
at least m4 nodes.

Lemma 5.7. The number of marked nodes in t is O( nm ).
Proof. Each subtree of m/4 or more unmarked nodes is contracted to a single

unmarked leaf if its parent is marked. Each maximal subtree of unmarked nodes
whose parent is unmarked is discarded. Finally, maximal paths of unmarked nodes
are replaced by single edges. This reduces the original tree to a new tree in which all
internal nodes are marked and correspond one to one to the original marked nodes,
and all leaves are unmarked, each corresponding to m/4 or more distinct unmarked
nodes in t. Further, each internal node has two children. Thus, as there are at most
4n/m leaves, there are fewer than 4n/m internal nodes.

Lemma 5.8. There are O(n/m) red subtrees hanging from truncated paths whose
first node is a strong anchor.

Proof. Suppose strongly anchored truncated path ρ has k > 1 red subtrees hang-
ing from it. Such a path has k − 1 marked nodes (namely the lcas of the red subtree
roots). By Corollary 5.3, as these truncated paths are disjoint, and by Lemma 5.7,
as there are O(n/m) marked nodes, there can be only O(n/m) anchored truncated
paths with two or more red subtrees.

If a strongly anchored truncated path has only one red subtree then by property
4 of the paths, the path together with its green subtrees contains at least m/2 nodes.
This is also true if it has no red subtrees. By Corollaries 5.2 and 5.3, the paths
and their green subtrees are disjoint from each other. Consequently, there are only
O(n/m) such paths.

5.1.3. Bounding the number of paths. It remains to bound the number of
paths. To this end, we form suitable collections of paths.

Consider the following procedure for forming collections of paths. A collection
starts with a path ρ̃ whose start node is not overlapped by any other path; ρ̃ is called
the root path of the collection. The collection is built up by iterating the following
step. For each path ρ in the collection, every path ρ′, whose start node is on ρ but
which does not overlap the link node of any other path, is added to the collection.
Call these level 1 collections. Level i+ 1 collections are formed in the same way from
paths not in any level h collection, h ≤ i, and ignoring overlaps with paths in level h
collections, h ≤ i.

We will show that there are O(n/m) paths in the collections containing two or
more paths. We will then characterize the one path collections and show that they
too contain O(n/m) paths.

Definition 5.9. The point of attachment for a level i+ 1 collection C, i ≥ 1, is
defined in terms of C’s root path ρ and the parent ρ̃ whose link node l̃ is overlapped
by ρ; the point of attachment for C is link node l̃.

Definition 5.10. The tree for collection C is the tree formed by the edges on its
paths. The reduced tree for collection C is the subtree of its tree rooted at its point of
attachment.
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Lemma 5.11. Each node in the tree for collection C on the path from the tree’s
root to its attachment point has a single child.

Proof. Let C̃ be the collection containing ρ̃, the path whose link node is overlapped
by ρ, the root path of C. Suppose, for a contradiction, that ρ′ were a path in C, with
start node on ρ and which branches away from ρ at or before C’s point of attachment.
We argue that ρ′ would in fact have been added to C̃. Clearly, ρ′’s start node lies
on ρ̃. By assumption, ρ′ does not branch away from ρ̃ at its link node l̃; hence by
Lemma 5.4, it branches away before. If ρ′ overlapped the link node of another path
in C̃, then ρ̃ would overlap this link node too, which is not the case. Thus ρ′ can be
added to C̃, and so would not be in C, a contradiction.

Lemma 5.12. Let C be a level i + 1 collection, i ≥ 1, ρ its root path, ρ̃ the path
whose link node is overlapped by ρ, and C̃ the collection containing ρ̃. Then every
path overlapping ρ̃’s link node is in C.

Proof. By Lemma 5.5, if ρ and ρ′ both overlap ρ̃’s link node, they do not overlap
each other’s link nodes. Thus they would both be added to C.

Lemma 5.13. The reduced trees for the collections are disjoint.

Proof. Without loss of generality, suppose that all the paths are connected (oth-
erwise consider each connected component of paths separately). We will prove that
not only are the reduced trees disjoint but that for each i, the reduced trees for level i
collections are unrelated (for short the level i reduced trees); i.e., no tree is ancestral
to another. The proof is by induction on i, the collection level. Clearly, the trees for
level 1 collections are disjoint and unrelated. Now suppose that the reduced trees for
each level h collection, h ≤ i, are all disjoint and that the level i reduced trees are
unrelated. Then the link nodes appearing in the level i reduced trees are also unre-
lated, for each link node appears on only one path in a collection. By construction,
the root path of each level i+ 1 collection overlaps the link node of a path in a level
i collection. By Lemma 5.12, each such root path overlaps a distinct link node, and
thus the level i+ 1 reduced trees are disjoint from each other and are unrelated.

Lemma 5.14. Each collection of k > 1 paths has its own k − 1 distinct marked
nodes.

Proof. The marked nodes for a collection C of k paths are simply the least
common ancestors (LCAs) of the link nodes for these paths. As t is binary, and these
k link nodes are distinct, there are k− 1 LCAs. Each LCA has a link node in each of
its two subtrees, and consequently each LCA is marked. Finally, Lemma 5.11 implies
that the LCAs all lie in the reduced tree for C, and as by Lemma 5.13 these reduced
trees are disjoint, the marked nodes associated with each collection are distinct.

Corollary 5.15. There are O(n/m) paths in collections of two or more paths.

Now consider the paths in collections of size one. These paths form chains of
paths in which each successive path overlaps the link node of its predecessor.

Lemma 5.16. There are O(n/m) paths in the above chains.

Proof. Two sets Ce and Co of paths are formed. Ce comprises every even index
path on the chains (the second, fourth, . . . paths) and Ce the odd index paths.

By construction, none of the chains overlap. By Lemma 5.5, none of the paths
in Ce overlap (apply the lemma to successive paths ρ2i, ρ2i+1, ρ2i+2 on a chain), and
the same holds for paths in Co.

Now we argue in a similar way to the proof of Lemma 5.11. There are O(n/m)
paths in Ce with one or more marked nodes (as marked nodes on distinct paths must
be distinct). The remaining paths on Ce have at most one red subtree each; by
property 4, each such path includes between its nodes and those of its green subtrees
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at least m/2 distinct nodes (i.e. unshared with any other such path). This is a further
O(n/m) paths. Thus Ce includes O(n/m) paths. The same is true for Co.

We have shown the following lemmas:
Lemma 5.17. There are O(n/m) paths.
Lemma 5.18. The paths have total length O(n).
This leads to the following theorem.
Theorem 5.19. There is a linear time reduction from the tree pattern matching

problem to a collection of instances of the subset matching problem of overall linear
size.

Proof. This is immediate from Corollary 5.2 and Lemma 5.17.

6. Further comments. It is not completely clear whether this construction
maps unlabelled trees to the set strings as compactly as possible, for ancestral infor-
mation is lost in the reduction. Indeed, an unlabelled n-node tree can be represented
using O(n) bits, whereas a size n set problem in general requires Θ(n log n) bits and
will do so after our reduction. In general, n labels would require Θ(n log n) bits, so
it appears the reduction is tight for labelled trees. Thus this raises the question of
whether there are algorithms for unlabelled tree pattern matching that are faster by
a Θ(log n) factor.

Acknowledgment. We thank the referees for their suggestions which helped
improve the presentation.
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Abstract. The circular arc coloring problem consists of finding a minimum coloring of a circular
arc family F such that no two intersecting arcs share a color. Let l be the minimum number of circular
arcs in F that are needed to cover the circle. Tucker shows in [SIAM J. Appl. Math., 29 (1975),
pp. 493–502], that if l ≥ 4, then � 3

2
L� colors suffice to color F , where L denotes the load of F . We

extend Tucker’s result by showing that if l ≥ 5, then �( l−1
l−2 )L� colors suffice to color F , and this

upper bound is tight.
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1. Introduction. The circular arc coloring problem consists of finding a mini-
mum coloring of a set of arcs of a circle such that no two intersecting arcs share a color.
Applications include the problem of allocating bandwidth in all-optical WDM (wave-
length division multiplexing) ring networks [5, 2], compiler design, and scheduling
[9].

There are several results on the circular arc coloring problem [1, 9, 4, 6, 7, 3, 5, 2].
Garey et al. [1] have shown that this problem is NP-hard, and Gavril shows in [3]
that this problem remains NP-hard for Helly circular arc graphs, a subclass of circular
arc graphs. Tucker [9] gave a simple 2-approximation algorithm and conjectured that
3
2ω(F ) colors are sufficient to color any family F of arcs, where ω(F ) represents the size
of a maximum set of pairwise intersecting arcs in F . Karapetyan [4] shows Tucker’s
conjecture. Recently, Kumar [5] gave a randomized (1 + 1/e + o(1))-approximation
algorithm for instances of this problem needing at least ω(lnn) colors, where n is the
number of arcs to be colored. For special cases of this problem, Orlin, Bonuccelli, and
Bovet [6] found a O(m2 lnm) algorithm to color a family of m proper circular arcs
(i.e., no arc is contained in any other). The result of Orlin, Bonuccelli, and Bovet
was improved by Shih and Hsu [7], who found a O(m1.5) algorithm to color a family
of m proper circular arcs. Recently, Gargano and Rescigno [2] show that a family of
hereditary circular arcs can be optimally colored in polynomial time, and they show
that there exists a 4

3 -approximation algorithm to color a larger class of families called
quasi-hereditary families of arcs.

In this paper we give a tighter analysis of a greedy algorithm proposed by Tucker
in [9] to color circular arc graphs.

The organization of the rest of the paper is as follows. In section 2 we give the
preliminaries. Section 3 contains a tighter analysis of Tucker’s greedy algorithm to
color circular arc graphs, and section 4 contains concluding remarks.
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bia (mvalenci@uniandes.edu.co).

1067



1068 MARIO VALENCIA-PABON

2. Preliminaries. Let F = {A1, A2, . . . , Am} be a family of circular arcs, where
each Ai represents an open real interval (ai, bi) on a circle, with ai, bi ∈ Z

+ and
ai �= bi. Let n denote the largest integer among all ai’s and bi’s. Then we can regard
the circle as being divided into n parts by n equally spaced points numbered clockwise
as 1, 2, . . . , n, and each Ai = (ai, bi) represents the circular arc from point ai, which
we call the beginning point of Ai, to point bi, which we call the ending point of Ai,
in the clockwise direction. We may assume that n ≤ 2m (in the worst case, the
beginning and ending points of any two arcs in F are different).

Let χ(F ) denote the minimum number of colors needed to color the arcs of F such
that no two intersecting arcs share a color, and let ω(F ) denote the size of a maximum
set of pairwise intersecting arcs in F . We call the load of F , which we denote by L(F ),
the largest number of arcs containing a common point on the circle. Tucker shows in
[9] that χ(F ) verifies L(F ) ≤ χ(F ) ≤ 2L(F ) − 1. Note that L(F ) is not necessarily
equal to ω(F ). In [9] some families of arcs for which ω(F ) = 2L(F ) − 1 are given.
Moreover, as χ(F ) ≥ ω(F ) holds for any family F of arcs, Karapetyan’s result [4] is
the best deterministic approximation algorithm known for this problem. We denote
by G(F ) the intersection (undirected) graph corresponding to a circular arc family F ,
which is called a circular arc graph. Tucker [9] gives the following greedy algorithm
to properly color a family F of circular arcs.

Tucker’s Algorithm.

1. Pick a point p in the circle such that Sp, the set of arcs in F containing p,
has size L(F ). Let A1 = (a1, b1) be the arc in Sp that extends the least on
the counterclockwise side of p, and let cmax = 1. Assign color cmax to arc
A1.

2. For i = 1, 2, . . . , |F | − 1, we move clockwise round and round the circle
indexing the arc Ai+1 = (ai+1, bi+1) in F \ {A1, A2, . . . , Ai} by the following
rule: Ai+1 is the first unindexed arc to begin after the ending point of Ai.
Assign color cmax to Ai+1 unless there exists an arc Aj , j < i + 1, already
colored with color cmax which intersects Ai+1, in which case we color Ai+1

with color cmax+ 1 and increment cmax.

In Figure 2.1 we show an example of the execution of Tucker’s algorithm.
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Fig. 2.1. Example of the execution of Tucker’s algorithm.

Definition 2.1. Let F be a family of circular arcs. We define the circular-cover
of F to be the smallest size of any subset of arcs of F needed to cover the circle.

Using the previous algorithm, Tucker shows the following theorem, which we
rephrase in terms of the circular-cover of a family of circular arcs.

Theorem 2.2 (see Tucker [9]). Let F be a family of circular arcs with load
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L = L(F ). If the circular-cover of F is at least equal to four, then
⌊

3
2L
⌋
colors suffice

to color F .
Note that it must often be the case in practical situations that the circular-cover

of a family of arcs is significantly greater than four. For instance, consider the task
of assigning workers to jobs in a cyclic schedule. The time periods occupied by the
jobs are the arcs, the colors assigned to the arcs are the workers, and the constraint
that no worker can work on two jobs at once is realized by the constraint that no
intersecting arcs can have the same color. The goal is to minimize the number of
workers employed. Now, if the durations of the jobs are short compared with the
period of the cyclic schedule, then the circular-cover of the corresponding family of
arcs will be large. Therefore, in the following section, we analyze the performance of
Tucker’s greedy algorithm to color circular arc graphs in terms of the circular-cover
of the associated family of arcs.

3. Analysis of Tucker’s greedy algorithm. In this section we give a detailed
analysis of Tucker’s algorithm. Our main result is the following theorem, which ex-
tends Tucker’s given in Theorem 2.2.

Theorem 3.1. Let F be a family of circular arcs with load L = L(F ). If the
circular-cover of F is equal to l, with l ≥ 5, then �( l−1

l−2 )L� colors suffice to color F .
In order to prove Theorem 3.1, we need the following definitions. Let F be a family

of circular arcs with load L(F ), and assume that we use Tucker’s greedy algorithm
to color the arcs in F . Let A1 = (a1, b1) be the first arc in F considered by Tucker’s
algorithm. Let us denote the beginning point of arc A1 as t. We say that Tucker’s
algorithm has completed k rounds if the algorithm has traversed the point t k + 1
times, where arc A1 counts. We let Tk be the set of arcs colored during the kth round,
and we let Fk =

⋃k
i=1 Ti be the subfamily of arcs colored until the kth round.

Proof of Theorem 3.1. Let m be the largest integer used in the description of
the arcs in F . W.l.o.g. assume that each two consecutive points p and p + 1 on the
circle, 1 ≤ p ≤ m, are traversed by exactly L arcs from F . Otherwise, if some two
consecutive points p and p + 1 are traversed by r < L arcs, then we add L − r arcs
of the form (p, p+ 1) (or (m, 1) if p = m) to F without changing its colorability. We
assume that we use Tucker’s algorithm to color the arcs in F , and we proceed by
induction on L. If L = 1, the result is trivial. Assume that the result holds when
L(F ) < L for any F and some L ≥ 2, and we shall prove that the result holds for any
F with L(F ) = L. By hypothesis, the circular-cover l of F verifies l ≥ 5. Let A1 be
the first arc in F colored by Tucker’s algorithm, and let t be the beginning point of arc
A1. For i = 1, 2, . . . , let Ai denote the first arc in F colored i. Thus, considering the
way Tucker’s algorithm colors the arcs in F , we can deduce the following properties.
We prove only Property 3, because Properties 1 and 2 can be easily deduced.

Property 1. For each i, i > 1, Ai intersects Ai−1.
Property 2. For each i, i ≥ 1, L(F \ Fi) ≤ L(F ) − i, where L(F \ Fi) is the

load induced by the subfamily of arcs F \ Fi.
Property 3. For each i, 1 ≤ i ≤ l − 2, Tucker’s algorithm uses at most i + 1

colors to color the arcs in Fi, where l is the circular-cover of the family F .
Proof of Property 3. We proceed by induction on i. If i = 1, the result is trivial.

Assume that the result holds for j < i, and we will prove that the result holds for
j = i. Let i > 1. Let Ai be the first arc in Ti−1 colored with color i, and let Afi be the
last arc in Ti−1 colored with color i that traverses the point t for the ith time (note

that Ai and Afi can be the same arc (see Figure 3.1(b)). By induction hypothesis,
these arcs exist; otherwise, the number of colors used by the algorithm to color the
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arcs in Fi−1 is at most i − 1, and the result trivially follows. Now, let Ai+1 be the
first arc in Ti colored with color i + 1. By Property 1, we have that Ai+1 intersects
Ai. Let Afi+1 be the last arc in Ti that traverses the point t for the (i + 1)th time.

Suppose that Afi+1 cannot be colored with color i+ 1. Thus, by Property 1, we have

that Ai+1 intersects Afi+1, and so the i + 1 arcs A2, A3, . . . , Ai, Ai+1, A
f
i+1 cover the

circle (see Figure 3.1(c)). However, i ≤ l− 2, which implies that the circular-cover of
F is at most l − 1, which is a contradiction. This ends the proof of this property.
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Fig. 3.1. (a), (b) Examples of possible configurations in the proof of Property 3 for i = 2 and
l = 7. (c) Example of forbidden configuration in the proof of Property 3 for i = 2 and l = 7.

Now, the proof of Theorem 3.1 can be easily deduced from Properties 2 and 3 as
follows. By Property 2, we have that L(F \ Fl−2) ≤ L − (l − 2) and, by Property 3,
we have that Tucker’s algorithm uses at most l − 1 colors to color the arcs in Fl−2.
Therefore, by induction hypothesis, the theorem holds.

The following corollary can be deduced directly from Theorem 3.1.
Corollary 3.2. Let F be a family of circular arcs with load L = L(F ) on a

circle on n points. For all k ≥ 3, if each arc in F spans at most n/k points of the
circle, then the number of colors used by Tucker’s algorithm to color F is at most
�( k
k−1 )L�.
It is easy to verify that in the complementary case of Corollary 3.2, i.e., when

each circular arc in a family F spans more than half of the points in a circle, the
intersection graph of the arcs in F is a complete graph on |F | vertices.

Proposition 3.3. Let F be a family of circular arcs on a circle. If each arc in
F spans more than half of the points in the circle, then F can be optimally colored in
linear time.

The following proposition gives us an idea of the tightness of the upper bound
obtained in Theorem 3.1.

Proposition 3.4. For any odd integer l, l ≥ 3, and for any even integer L,
L ≥ 2, there exists a family F of circular arcs with load L and circular-cover l such
that χ(F ) = �( l

l−1 )L�.
Proof. In order to prove Proposition 3.4, we use a result of Stahl [8] concerning

the r-tuple colorings of graphs. An r-tuple coloring of a graph G is an assignment of
r distinct colors to each vertex of G in such a manner that no two adjacent vertices
share a color. In the special case of a cycle Cl with odd length l, l ≥ 3, Stahl shows
in [8] that the minimum number of colors for an r-tuple coloring of Cl, r ≥ 1, is equal

to 2r+1+  2(r−1)
l−1 �. Thus, F is constructed as follows. Let r = L/2, and assume that
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the vertices of Cl are labeled clockwise by 0, 1, . . . , l− 1. For all i = 0, 1, . . . , l− 1, F
contains r copies of the arc (i, i+2 mod l). By construction, it is easy to verify that if
L = 2 (and thus r = 1), then the intersection graph of the arcs in F is isomorphic to Cl
and therefore the circular-cover of F is equal to l. Hence, for any even integer L = 2r,
with r ≥ 1, there exists a family F of circular arcs with load L and circular-cover l
such that χ(F ) = 2r + 1 +  2r−2

l−1 � = L+ 1 + L−2
l−1 � = �( l

l−1 )L�.
Note that we cannot hope that, for any family F with load L and circular-cover

l ≥ 5, ( l−1
l−2 )L� colors suffice to color the arcs in F . In fact, by Proposition 3.4,

we have that any cycle graph Cl with odd length l, l ≥ 5, can be represented by a
family of l arcs with load 2 and circular-cover equal to l. Thus, ( l−1

l−2 )2� = 2, but the
chromatic number of Cl is 3. The following proposition shows that there are instances
of the circular arc coloring problem where the upper bound in Theorem 3.1 is reached.

Proposition 3.5. The upper bound in Theorem 3.1 is tight.

Proof. Let Cl be a cycle graph on l vertices, with l = 2k + 1 for any positive
integer k ≥ 2. By Proposition 3.4, we have that for all r, 1 ≤ r ≤ k − 1, an r-
tuple coloring of Cl can be represented by a family F of arcs with load L = 2r
and circular-cover l. Moreover, the minimum number of colors needed to color F is
exactly 2r + 1. By Theorem 3.1, we have that the arcs in F can be colored using at
most �( l−1

l−2 )L� = � 4kr
2k−1� = �2r + 2r

2k−1� = 2r + 1 colors. This ends the proof of this
proposition.

Let F be a family of arcs with load L(F ). By Property 2 in Theorem 3.1, we have
that for each i, i ≥ 1, the load of the subfamily F \ Fi is at most equal to L(F )− i.
Moreover, for each round i, Tucker’s algorithm uses at most two new colors to color
the arcs in Ti. Therefore, in the general case (i.e., if the circular-cover l of F verifies
l < 4), the number of colors used by Tucker’s algorithm to color the arcs in F is at
most equal to 2L(F ), and thus it gives a 2-approximation algorithm for the circular
arc coloring problem, as noted earlier by Tucker in [9].

4. Conclusion. We have shown a tighter analysis of Tucker’s greedy algorithm
to color a family of circular arcs. We have proved that Tucker’s algorithm is quasi-
optimal for families of arcs having a large circular-cover. Our results extend a previous
one given by Tucker. An interesting open problem is the complexity of the circular
arc coloring problem for families of arcs having bounded spans and unbounded load.
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i.e., such that for each string si ∈ B there exists a length-L substring ti of si with d(s, ti) ≤ db (close
to bad strings), and for every substring ui of length L of every string gi ∈ G, d(s, ui) ≥ dg (far from
good strings).

We present a polynomial time approximation scheme to settle the problem; i.e., for any constant
ε > 0, the algorithm finds a string s of length L such that for every si ∈ B there is a length-L
substring ti of si with d(ti, s) ≤ (1 + ε)db, and for every substring ui of length L of every gi ∈ G,
d(ui, s) ≥ (1 − ε)dg if a solution to the original pair (db ≤ dg) exists. Since there is a polynomial
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approximation required by the corresponding application problems.
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1. Introduction. Research effort in molecular biology, such as the human ge-
nome project, has been revealing the secret of our genetic composition, the long DNA
sequences that can determine many aspects of life. Applications that use this informa-
tion have posed new challenges to the design and analysis of efficient computational
methods.

A frequently recurring problem in biological applications is to find one substring
of length L that appears (with a few substitutions) at least once in each of a set of
bad strings (such as bacterial sequences) and is not “close” to any substring of length
L in each of another set of good strings (such as human and livestock sequences). The
problem has various applications in molecular biology such as the design of universal
PCR primers, identification of genetic drug targets, and design of genetic probes
[8, 2, 12, 5]. In particular, the genetic drug target identification problem searches for
a sequence of genes that is close to bad genes (the target) but far from all good genes
(to avoid side-effects). Our study develops a polynomial time approximation scheme
in both measures simultaneously.
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1.1. The mathematical model. The distinguishing substring selection prob-
lem has as input two sets of strings, B and G. It is required to find a substring of
unspecified length (denoted by L) that is, informally, close to a substring of every
string in B and far away from every length-L substring of strings in G. Since G can
be reconstructed to contain all substrings of length L in each of all the good strings,
we can assume that every string in G has the same length L.

Therefore, here we formally define the problem as follows: Given a set B =
{s1, s2, . . . , sn1

} of n1 (bad) strings of length at least L, a set G = {g1, g2, . . . , gn2
}

of n2 (good) strings of length exactly L, and two integers db and dg (db ≤ dg), the
distinguishing substring selection problem (DSSP) is to find a string s such that for
each string si ∈ B there exists a length-L substring ti of si with d(s, ti) ≤ db, and for
any string gi ∈ G, d(s, gi) ≥ dg. Here d(, ) represents the Hamming distance between
two strings. If all strings in B are also of the same length L, the problem is called the
distinguishing string problem (DSP).

1.2. Previous results. The best previous known approximation ratio for DSSP
(and DSP) is 2 [5]. In another direction, many simplified versions were proposed to
make the task easier in terms of computation/approximation, conceding more general
applicability.

The problem is NP-hard, even when only one objective is to be met [1, 5]. To
approximate the center string that is far away from each of the good strings is not
difficult and is shown to have a polynomial time approximation scheme by Lanctot
et al. [5]. The problem of finding a center string s that is close to all the bad strings
is nontrivial, and it has taken intensive investigation by several research groups [5, 3]
to finally develop a polynomial time approximation scheme [6].

There are also several modifications and variations on this initial strategy, e.g.,
the d-characteristic string [4], the far from most string [5], and the formulation of
Ben-Dor et al. [1].

The DSSP problem that contains two objective functions has remained elusive
despite the above-mentioned intensive research effort. To meet the requirements of
many application problems, however, we would need to have a solution for DSSP.

1.3. Our contribution. In this paper, we settle this difficult problem by pre-
senting a polynomial time approximation scheme in both requirements. If a solution
to the original problem exists, for any constant ε > 0, our algorithm computes a string
s of length L such that for every si ∈ S there is a length-L substring ti of si with
d(ti, s) ≤ (1 + ε)db, and for every gi ∈ G, d(gi, s) ≥ (1− ε)dg. Here db and dg are two
important parameters supplied by users to specify the distances from the distinguish-
ing string s to the set of bad strings and the set of good strings. Our algorithm gives
a solution that approximately meets the requirements, i.e., (1 + ε)db and (1− ε)dg, if
a solution to the original requirements, i.e., db and dg, exists.

1.4. Sketch of our approach. Design and analysis of good algorithms for ap-
proximating multiple objective functions are not simple in general (see [11] for a
general approach and related works).

The standard techniques for related center string problems follow a linear program
approach combined with randomized rounding. That works for DSP and DSSP when
the parameters are sufficiently large. The main difficulty for our problem lies in the
case when objective function value is relatively small but still too large for enumeration
methods to work.

To overcome this difficulty, we sample a constant number of strings and find the
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positions at which the samples have the same letters (bases). We denote this set of
positions by Q and the set of the rest by P . Our breakthrough starts with a key
lemma that states that there is a set of samples for which there are y positions in Q
such that, when we choose the y positions in Q carefully, choose the letters of the rest
of |Q|−y positions to be the same as the samples, and choose letters at positions in P
by the linear program approach, then we can obtain the right approximate solution.

An interesting case is when y < O(log(n)), i.e., y is small, but not small enough for
a brute-force enumeration method to go through directly. A new method is designed
to handle this case. Since similar situations occur in many combinatorial optimization
problems, we expect that this idea may have wider application.

1.5. Organization of the paper. We focus on the polynomial time approx-
imation scheme for DSP in sections 2 through 4. Section 2 introduces the related
notation and the standard integer programming formulation, which works well when
both db and dg are large, i.e., at least Ω(L). Section 3 gives the key lemma. We
discuss the methods for finding a good approximation of the set of y positions in Q
in section 4.

In section 5, we show that the established algorithm for DSP can be extended
to work for the general case, the DSSP. We conclude our work in section 6 with
discussion and remarks.

2. Preliminaries. We consider two sets of strings: G (good strings) and B (bad
strings). We call db the upper radius for bad strings (B) and dg the lower radius for
good strings (G). Let n = n1 + n2 be the total number of good and bad strings in
G ∪ B.

For the DSP, every good or bad string is of the same length L. The distance
d(x, y) of two strings x and y is their Hamming distance, i.e., the number of positions
at which they differ from each other. We are to find the string x of length L such that

{
d(si, x) ≤ db, si ∈ B, i = 1, . . . , n1,
d(gj , x) ≥ dg, gj ∈ G, j = 1, . . . , n2.

(1)

In this section, we present an approximation algorithm that works well for a spe-
cial case of the DSP. The restriction is that L, db, and dg are large; more specifically,
L ≥ (4log(n1 + n2))/ε

2, dg = Ω(L), and db = Ω(L), where ε is the parameter control-
ling the performance ratio and n1 and n2 are the numbers of bad and good strings,
respectively.

This is achieved via a standard method using integer linear programming. Define
χ(s, i, k, a) = 0 if si[k] = a, and χ(s, i, k, a) = 1 if si[k] �= a. Similarly, define
χ(g, j, k, a) = 0 if gj [k] = a, and χ(g, j, k, a) = 1 if gj [k] �= a. The problem becomes
the following integer linear programming (LP) problem:




∑
a∈Σ xk,a = 1, k = 1, 2, . . . , L,∑
1≤k≤L

∑
a∈Σ χ(s, i, k, a)xk,a ≤ db, i = 1, 2, . . . , n1,∑

1≤k≤L
∑
a∈Σ χ(g, j, k, a)xk,a ≥ dg, j = 1, 2, . . . , n2,

xk,a ∈ {0, 1}, a ∈ Σ, k = 1, 2, . . . , L.
(2)

Let x̄k,a be a solution for LP relaxation of (2). For each 0 ≤ k ≤ L, with
probability x̄k,a, we set xk,a = 1 and set xk,a′ = 0 for any a

′ �= a. We choose the
random variables independently for different k. This results in an integer solution for
(2) (and hence a solution for (1)) if db is replaced by (1 + ε)db and dg by (1 − ε)dg,
as shown in Theorem 2. Standard derandomization methods [10] transfer it to a
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deterministic algorithm in Theorem 3. The following lemma is useful for the proof of
Theorem 2.

Lemma 1. Let X1, X2, . . . , Xn be n independent random 0-1 variables, where Xi
takes 1 with probability pi, 0 < pi < 1. Let X =

∑n
i=1Xi and µ = E[X]. Then for

any 0 < δ ≤ 1, Pr(X > µ+δ n) < exp(− 1
3nδ

2), and Pr(X < µ−δ n) ≤ exp(− 1
2nδ

2).
Theorem 2. Let δ > 0 be any constant. Suppose that L ≥ (4log(n1 + n2))/δ

2,
dg ≥ cgL, and db ≥ cbL. There is a randomized algorithm that finds a solution,
i.e., a string x of length L, with high probability such that for each string si in B,
d(si, x) < (1 + δ/cb)db, and for any string gj in G, d(gj , x) > (1− δ/cg)dg.

Proof. We can see that
∑
a∈Σ χ(s, i, k, a)xk,a and

∑
a∈Σ χ(g, j, k, a)xk,a take 1

or 0 randomly and independently for different k’s. Thus we have that d(s, i, x) =∑
1≤k≤L

∑
a∈Σ χ(s, i, k, a)xk,a is a sum of L independent 0-1 random variables. Sim-

ilarly, d(g, j, x) =
∑

1≤k≤L
∑
a∈Σ χ(g, j, k, a)xk,a is also a sum of L independent 0-1

random variables. Moreover,

E[d(s, i, x)] =
∑

1≤k≤L

∑
a∈Σ

χ(s, i, k, a)E[xk,a]

=
∑

1≤k≤L

∑
a∈Σ

χ(s, i, k, a) x̄k,a

≤ d̄ ≤ db,(3)

E[d(g, j, x)] =
∑

1≤k≤L

∑
a∈Σ

χ(g, j, k, a)E[xk,a]

=
∑

1≤k≤L

∑
a∈Σ

χ(g, j, k, a) x̄k,a

≥ dg.(4)

Thus, for any fixed δ > 0, using Lemma 1, we have

Pr (d(s, i, x) > db + δL) < exp

(
−1
3
δ2L

)
,

Pr (d(g, j, x) < dg − δL) ≤ exp
(
−1
2
δ2L

)
.

Considering all bad and good strings, respectively, we have

Pr (d(s, i, x) > db + δL for at least one si ∈ B) < n1 × exp
(
−1
3
δ2L

)

and

Pr (d(g, j, x) < dg − δL for at least one gj ∈ G) ≤ n2 × exp
(
−1
2
δ2L

)
.

When L ≥ (4log(n1 + n2))/δ
2, we get n1 × exp(− 1

3δ
2L) ≤ n−

1
3

1 and n2 ×
exp(− 1

2δ
2L) ≤ n−1

2 . For db = Ω(L) and dg = Ω(L), there exist positive constants cb
and cg such that db ≥ cbL and dg ≥ cgL. Thus we get a randomized algorithm to find a
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solution x for (1) with probability at least 1−(n− 1
3

1 +n−1
2 ) such that for i = 1, 2, . . . , n1,

d(s, i, x) ≤ (1 + δ/cb)db, and for j = 1, 2, . . . , n2, d(g, j, x) ≥ (1− δ/cg)dg.
Theorem 3. There exists a polynomial time approximation scheme (PTAS) for a

DSP when dg = Ω(L) and db = Ω(L). Specifically, when dg = cg×L and db = cb×L,
the PTAS runs in O(L× |Σ|(4log(n1+n2))/δ

2

) time and finds a solution, i.e., a string x
of length L, such that for each string si in B, d(si, x) < (1 + ε)db, and for any string
gj in G, d(gj , x) > (1− ε)dg, where δ = ε×min{cg, cb}.

Proof. When L ≥ (4log(n1 + n2))/δ
2, the following derandomized algorithm is a

PTAS.
Let xj,a be a fractional solution for (2) for j = 1, 2, . . . , L. We can arbitrarily

decompose the L positions into disjoint sets of positions L1, L2, . . . , Lk such that
|Li| ≥ (4log(n1 + n2))/δ

2 and |Li| < (8log(n1 + n2))/δ
2 for i = 1, 2, . . . , k. Let

µs,l,i =
∑

1≤j≤|Li|
∑
a∈Σ χ(s, l, j, a)xj,a and µg,l,i =

∑
1≤j≤|Li|

∑
a∈Σ χ(g, l, j, a)xj,a.

For each Li, replacing {1, 2, . . . , L} with Li in (2), we know that there exists a string
xi of length |Li| such that for each string sl ∈ B,

d(sl|Li , xi) ≤ µs,l,i + δ|Li|,

and for each string gl ∈ G,

d(gl|Li , xi) ≥ µg,l,i − δ|Li|.

Thus, we can enumerate all strings of length |Li| in |Σ|(4log(n1+n2))/δ
2

time to deter-
mine xi. Concatenating all xi’s, we have a string x of length L such that for each
string sl ∈ B,

d(sl, x) ≤
k∑
i=1

(µs,l,i + δ|Li|) = db + δL ≤ db + εdb,

and for each string gl ∈ G,

d(gl, x) ≥
k∑
i=1

(µl,i − δ|Li|) = dg − δL ≥ dg − εdg.

Thus, we obtain a desired string x in O(L × |Σ|(4log(n1+n2))/δ
2

) time, which is poly-
nomial in terms of the input size when |Σ| is a constant.

When L ≤ (4log(n1 + n2))/δ
2, we can enumerate all possible strings of length L

in O(|Σ|(4log(n1+n2))/δ
2

) time. Thus, we can get a desired solution.

3. A key lemma. To obtain our PTAS algorithm, we need to introduce two
parameters: an integer r and a positive number δ. The constant r is introduced in
this section and depends purely on ε. The constant δ > 0 will be introduced in the
next section and depends on both ε > 0 and r.

For any r > 2, let 1 ≤ i1, i2, . . . , ir ≤ n1 be r distinct numbers. Let Qi1,i2,...,ir
be the set of positions at which si1 , si2 , . . . , sir agree. Let s be a feasible solution of
length L for the distinguishing string selection problem with the upper radius db for
bad strings (B) and lower radius dg for good strings (G). Pi1,i2,...,ir = {1, 2, . . . , L} −
Qi1,i2,...,ir is the set of positions at which at least one pair of strings sij and sij′ differ.
Then, at such positions, s differs from at least one of sij . The number of positions
at which s differs from one of sij is no more than db. Therefore, the total number of
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positions at which s differs from at least one of sij (j = 1, 2, . . . , r) is no more than rdb.
It follows that rdb ≥ |Pi1,i2,...,ir | = L − |Qi1,i2,...,ir |. That is, |Qi1,i2,...,ir | ≥ L − rdb.
In addition, we immediately obtain the following result, which is often applied late in
the proof of our main result.

Claim 4. Assuming that dg ≥ db, we have rdg ≥ rdb ≥ L − |Qi1,i2,...,ir | =
|Pi1,i2,...,ir |.

Let B = {s1, s2, . . . , sn1
}. Let pi1,i2,...,ik be the number of mismatches between

si1 and s at the positions in Qi1,i2,...,ik . Let ρk = min1≤i1,i2,...,ik≤n1 pi1,i2,...,ik/db. The
following claim is a variant of a claim in [6], but the proof is identical.

Claim 5. For any k such that 2 ≤ k ≤ r, where r is a constant, there are indices
1 ≤ i1, i2, . . . , ir ≤ n1 such that for any 1 ≤ l ≤ n1

|{j ∈ Qi1,i2,...,ir | si1 [j] �= sl[j] and si1 [j] �= s[j]}| ≤ (ρk − ρk+1) db.

Proof. Consider indices 1 ≤ i1, i2, . . . , ik ≤ n such that pi1,i2,...,ik = ρkdopt. Then
for any 1 ≤ ik+1, ik+2, . . . , ir ≤ n and 1 ≤ l ≤ n we have

|{j ∈ Qi1,i2,...,ir | si1 [j] �= sl[j] and si1 [j] �= s[j]}|
≤ |{j ∈ Qi1,i2,...,ik | si1 [j] �= sl[j] and si1 [j] �= s[j]}|(5)

= |{j ∈ Qi1,i2,...,ik | si1 [j] �= s[j]}
− {j ∈ Qi1,i2,...,ik | si1 [j] = sl[j] and si1 [j] �= s[j]}|

= |{j ∈ Qi1,i2,...,ik | si1 [j] �= s[j]} − {j ∈ Qi1,i2,...,ik,l | si1 [j] �= s[j]}|
= pi1,i2,...,ik − pi1,i2,...,ik,l(6)

≤ (ρk − ρk+1) dopt,

where inequality (5) holds because Qi1,i2,...,ir ⊆ Qi1,i2,...,ik and equality (6) holds
because Qi1,i2,...,ik,l ⊆ Qi1,i2,...,ik .

From Claim 5, we can immediately obtain the following proposition.
Proposition 6. For any constant r, there are indices 1 ≤ i1, i2, . . . , ir ≤ n1

such that for any sl ∈ B,

|{j ∈ Qi1,i2,...,ir | si1 [j] �= sl[j] and si1 [j] �= s[j]}| ≤
1

r − 1 db.

Proof. Note that

(ρ2 − ρ3) + (ρ3 − ρ4) + · · ·+ (ρr − ρr+1) = ρ2 − ρr+1 ≤ 1.

Therefore, one of (ρk−ρk+1) is at most
1
r−1 . Thus, Claim 5 immediately implies that

the lemma is true.
The following corollary will also be useful later.
Corollary 7. For any Q ⊆ Qi1,i2,...,ir (as in Proposition 6), we have that, for

any sl ∈ B,

|{j ∈ Q | si1 [j] �= sl[j] and si1 [j] �= s[j]}| ≤
1

r − 1 db.

Moreover, let P = {1, 2, . . . , L} −Q. Then, for any sl ∈ B,

d(sl, si1 |Q) + d(sl, s|P ) ≤
r

r − 1db.
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Proof. The first part is obvious by Proposition 6. For the second part, consider

Ak = {j ∈ Q | si1 [j] �= sk[j] and si1 [j] �= s[j]}
and

Bk = {j ∈ Q | si1 [j] �= sk[j] and si1 [j] = s[j]}.
Then d(sk, si1 |Q) = |Ak| + |Bk|. By the first part of the corollary, |Ak| is no

more than 1
r−1db. By definition, |Bk| ≤ d(sk, s|Q). Therefore, |Bk| + d(sk, s|P ) ≤

d(sk, s|Q) + d(sk, s|P ) = d(sk, s) ≤ db. The rest of the corollary follows.
Informally, Proposition 6 implies that si1 is a good approximation of s at positions

in Qi1,i2,...,ir for the bad strings; i.e., for any Q ⊆ Qi1,i2,...,ir ,

d(sl, si1 |Q) ≤ d(sl, s|Q) +
1

r − 1 db.

Before we present our key lemma, we need a boosting proposition that, when
applied together with Corollary 7, obtains a better and better solution.

Proposition 8. Let Q ⊂ Qi1,i2,...,ir (as in Proposition 6). Consider the index
k : 1 ≤ k ≤ n1 and the number y ≥ 0 such that, for any sl ∈ B, d(sl, si1 |Q) +
d(sl, s|P ) ≤ d(sk, si1 |Q) + d(sk, s|P ) = r

r−1db − y (where P = {1, 2, . . . , L} − Q).
Then we have

|{j ∈ Qk|si1 [j] �= s[j]}| ≤ y,
where Qk = {j ∈ Q : si1 [j] = sk[j]}.

Proof. Dividing d(sk, si1 |Q) into two parts, we have

d(sk, si1 |Q−Qk) + d(sk, si1 |Qk) + d(sk, s|P ) =
r

r − 1db − y.(7)

By Corollary 7 and with the further restriction that sl[j] = s[j], we have that, for
any string sl ∈ B,

|{j ∈ Q | si1 [j] �= sl[j] and si1 [j] �= s[j] and sl[j] = s[j]}| ≤
1

r − 1 db.

That is, for any string sl ∈ B,

|{j ∈ (Q−Ql)|sl[j] = s[j]}| ≤ 1

r − 1 db.(8)

From (8), there exists β with β ≤ 1 such that for any sl ∈ B, |{j ∈ (Q −
Ql) | sl[j] = s[j]}| ≤ |{j ∈ (Q − Qk) | sk[j] = s[j]}| = β 1

r−1 db. On the other hand,

|{j ∈ (Q−Qk) | sk[j] �= si1 [j]}| is no more than |{j ∈ (Q−Qk) | }|, which is the sum
of |{j ∈ (Q−Qk) | sk[j] = s[j]}| and |{j ∈ (Q−Qk) | sk[j] �= s[j]}|. Combining those
two formulae, we have

d(sk, s|Q−Qk) ≥ d(sk, si1 |Q−Qk)− β
1

r − 1 db.(9)

Moreover, combining (7) and (9), we have

d(sk, s|Q−Qk) + β

r − 1 db + d(sk, si1 |Q
k) + d(sk, s|P )

≥ r

r − 1db − y.(10)
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Since

d(sk, s|Q−Qk) + d(sk, s|Qk) + d(sk, s|P ) ≤ db,(11)

then (10) implies

d(sk, s|Qk) ≤ d(sk, si1 |Qk) +
β − 1
r − 1 db + y

=
β − 1
r − 1 db + y ≤ y.(12)

Here (12) is from the facts that d(sk, si1 |Qk) = 0 and β ≤ 1. Therefore,

|{j ∈ Qk|si1 [j] �= s[j]}| ≤ y.(13)

This completes the proof.
Here is our main lemma.
Lemma 9. For any constant r, there exist indices 1 ≤ i1, i2, . . . , it ≤ n1, r ≤ t ≤

2r, and a number 0 ≤ y ≤ db such that |{j ∈ Qi1,i2,...,it |si1 [j] �= s[j]}| ≤ y. (Note that
this implies d(g, si1 |Qi1,i2,...,it) ≥ d(g, s|Qi1,i2,...,it) − y.) If we use si1 as the distin-
guishing string at positions in Qi1,i2,...,it , and s (the original distinguishing string) at
the rest of the positions, then for any sl ∈ B, d(sl, si1 |Qi1,i2,...,it)+d(sl, s|Pi1,i2,...,it) ≤
r+1
r−1db − y, where Pi1,i2,...,it = {1, 2, . . . , L} −Qi1,i2,...,it .

Proof. We shall repeatedly apply Proposition 8 up to r times for the proof.
We start with Q = Qi1,i2,...,ir . By Corollary 7, for any sl ∈ B, d(sl, si1 |Q) −

|{j ∈ Q | si1 [j] �= sl[j] and si1 [j] = sl[j]}| ≤ 1
r−1 db. Notice that |{j ∈ Q | si1 [j] �= sl[j]

and si1 [j] = sl[j]}| ≤ d(sl, s |Q). We get

d(sl, si1 |Q) + d(sl, s|P )| ≤
1

r − 1 db + d(sl, s) ≤
r

r − 1 db.

Therefore, there exist an index k (denoted by ir+1) and number z
0 ( r

r−1 db ≥ z0 ≥ 0)
such that for any sl ∈ B,

d(sl, si1 |Q) + d(sl, s|P )| ≤ d(sir+1 , si1 |Q) + d(sir+1 , s|P )| =
1

r − 1 db − z
0.

By Proposition 8, |{j ∈ Qi1,i2,...,ir,ir+1
|si1 [j] �= s[j]}| ≤ z0. Now apply Corollary 7

again to the index set Q′ = Qi1,i2,...,ir+1
. Then, for any sl ∈ B, d(sl, si1 |Qi1,i2,...,ir+1

)+
d(sl, s|{1, . . . , L} − Qi1,i2,...,ir+1

) ≤ r
r−1db. Again, choose k

′ (and denote it by ir+2

later) and y′ ≥ 0 such that

d(sl, si1 |Qi1,i2,...,ir+1) + d(sl, s|{1, . . . , L} −Qi1,i2,...,ir+1) ≤
r

r − 1db − y
′

and such that equality holds for l = k′.
If y′ ≥ z0 − 1

r−1db, then our lemma follows with t = r+1 and y = z
0. Therefore,

we need to consider only the case y′ ≤ z0 − 1
r−1db. Notice that if z

0 < 1
r−1db, we will

reach a contradiction here. We should also have z0 ≥ 1
r−1db, or the lemma holds.

Define z1 = y′. The conditions of Proposition 8 hold with y = z1 and Q =
Qi1,i2,...,ir+1 . Therefore, we are able to repeat the above process. Notice that z

1 ≤
z0− 1

r−1db, and it is no smaller than
1
r−1db. The same holds each time we repeat the
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process. Therefore, the process can only be repeated up to r times before we obtain
the result as claimed.

In Lemma 9, we decompose the L positions into two parts, Qi1,i2,...,it and Pi1,i2,...,it .
In Pi1,i2,...,it , either the linear programming approach in section 2 or a brute-force
enumeration method can go through since |Pi1,i2,...,it | ≤ rdb. Details will be given
in the next section. Thus, we can get a good approximation solution at positions in
Pi1,i2,...,it .

By Lemma 9, at positions in Qi1,i2,...,it there are at most y positions where the
letters for a feasible (optimal) solution are different from the letters in si1 . This implies
that d(g, si1 |Qi1,i2,...,it) ≥ d(g, s|Qi1,i2,...,it) − y. We may need to carefully choose y
positions inQi1,i2,...,it in si1 to change to s

′
i1
so that the condition d(g, s′i1 |Qi1,i2,...,it) ≥

d(g, s|Qi1,i2,...,it) is satisfied (with negligible error) for each g ∈ G.
On the other hand, again by Lemma 9, if any y positions chosen in Qi1,i2,...,it

are changed to obtain a string s′i1 , i.e, d(si1 , s
′
i1
) = y, then d(sl, s|Pi1,i2,...,it) +

d(sl, s
′
i1
|Qi1,i2,...,it) ≤ (1+ 1

r−1 )db. That is, the total error produced for every string in

B will be at most 1
r−1db no matter which y positions in Qi1,i2,...,it are chosen. There-

fore, to choose y positions in Qi1,i2,...,it , we can simply consider the good strings in G
and ignore the strings in B. This dramatically reduces the difficulty of the problem.

The main contribution of Lemma 9 is to transform the original DSP into the
problem of how to choose y positions in Qi1,i2,...,it to modify the string si1 into a
string s′ such that d(g, s′i1 |Qi1,i2,...,it) ≥ d(g, s|Qi1,i2,...,it). Though we do not know
the value of y, we can enumerate all y: y = 0, 1, . . . , db in the algorithm. We will
elaborate on this in the next section.

4. Choice of a distinguishing string. In general, we aim at constructing
an approximate solution s′i1 that differs from si1 at y positions (up to negligible
error) in Qi1,i2,...,it . Though we do not know the value of y, we can enumerate all y:
y = 0, 1, . . . , db in the algorithm. However, if dg ≥ (r − 1)y, we can simply use si1 at
all positions in Qi1,i2,...,it . For good strings g ∈ G, the error at positions in Qi1,i2,...,it
will be 1

r−1dg, which will be good enough for a PTAS. For bad strings sl ∈ B, the
error created by making si1 the approximate solution at positions in Qi1,i2,...,it will
be at most 2

r−1db (again, good enough for a PTAS) by Lemma 9. Therefore, we can
assume that dg < (r − 1)y.

For any string gi ∈ G, if d(gi, si1 |Qi1,i2,...,it) ≥ (r − 1)y, then the selected y
positions in Qi1,i2,...,it will cause error by at most

1
r−1dg. In fact, let s

′
i1
be the string

obtained from si1 by changing y positions in Qi1,i2,...,it . Then d(gi, s
′
i1
|Qi1,i2,...,it) ≥

(r − 2)y. Recalling the assumption that dg < (r − 1)y, we get for any gi ∈ G,

d(gi, s
′
i1) ≥ d(gi, s′i1 |Qi1,i2,...,it) ≥

r − 2
r − 1dg =

(
1− 1

r − 1
)
dg.

Therefore, we have to consider only the strings gi ∈ G with the restriction that
d(gi, si1 |Qi1,i2,...,it) < (r− 1)y. (This condition can be verified in polynomial time for
each g ∈ G.) In summary, without loss of generality, we have the following.

Assumption 1. For every string gi ∈ G, d(gi, si1 |Qi1,i2,...,it) < (r − 1)y and
dg ≤ (r − 1)y.

In the remaining part of the section, several different methods will be used to
carefully select y positions in Qi1,i2,...,it , each dealing with one of the three cases. Let
L′ = |Qi1,i2,...,it |. The complete algorithm is given in Figure 1.

In addition to the constant integer r, we need to introduce another positive num-
ber δ0 > 0. We should first choose r to be sufficiently large but remain a constant.
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Algorithm gdistString
Input B = {s1, s2, . . . , sn1

} and G = {g1, g2, . . . , gn2
}.

Output a center string s of length L.
1. if Case 1 holds, then use the method in section 2 to solve the problem.
2. for each 2r-element subset {si1 , si2 , . . ., si2r} of the n1 input strings in
B do
(a) Q = {1 ≤ j ≤ L | si1 [j] = si2 [j] = · · · = sit [j]}, P = {1, 2, . . . , L} −Q.
(b) For the positions in Qi1,i2,...,it , use the methods described in Cases 2

and 3 to obtain a string of length |Qi1,i2,...,it |. Notice that the algorithm
described in Case 1 produces directly a string s′ of length L which is a
PTAS.

(c) Solve the optimization problem at the positions in |P | using either an
LP formulation (randomized rounding approach) (when |P | ≥ O(log n))
or an exhaustive search method (when |P | ≤ O(log n)) to get an ap-
proximate solution x of length |P |.

3. Output the best solution obtained above.

Fig. 1. Algorithm for DSP.

Then we should choose δ0 to be sufficiently small to achieve the required bound (1+ε)
(and (1 − ε)) for PTAS. Notice that, since δ0 is chosen after r is fixed, it may be a
function of r. However, since r is a constant, we can make δ0 sufficiently small (as a
function of r) and at the same time δ0 remains a constant. Therefore, in some of the
asymptotic notation (Ω and big-O) used in this section, the constant may be a func-
tion of r. However, since we should set the value of r to a sufficiently large constant
first, both r and δ0 are constant when we later set the value of δ0 > 0 sufficiently
small.

Case 1. L′ ≤ (r − 1)2y and y ≥ (4log(n1 + n2))/δ0
2. In this case, it follows that

db ≥ y ≥ (8log(n1+n2))/δ0
2. Moreover, we should prove that db ≥ cbL and dg ≥ cgL,

where cb = cg = min{ 1
4r ,

1
2(r−1)2 }.

Because L′ ≥ y and L′ ≤ (r − 1)2y, it follows that y = eL′ for some e : 1
(r−1)2 ≤

e ≤ 1. Since db ≥ y and db ≤ dg ≤ (r − 1)y (from Assumption 1), we have db = xy
for 1 ≤ x ≤ r − 1. Thus, db = xy = xeL′ and 1

(r−1)2 ≤ xe ≤ r − 1. Note that
L = L′ + |P | and |P | ≤ tdb by Claim 4. We consider two subcases. (a) |P | ≤ 0.5L.
Then L′ ≥ 0.5L. Thus db = xeL′ ≥ 0.5xeL. Since db ≤ L, we have db = c′L for
some c′ : 1

2(r−1)2 ≤ c′ ≤ 0.5(r − 1). (b) |P | > 0.5L. Then by Claim 4, db ≥ |P |/t ≥
0.5L/t ≥ L/4r. Recall that we also assume that dg ≥ db in the problem setting. It
follows that dg ≥ db > cgL.

Since db ≥ cbL and dg ≥ cgL, we can directly use the method described in
section 2.

Case 2. L′ > (r − 1)2y and y ≥ (4log(n1 + n2))/δ0
2. By Assumption 1,

d(gi, si1 |Qi1,i2,...,it) < (r − 1)y. Thus, for any gi ∈ G, si1 and gi agree at most of
the positions (at least (r−1)(r−2) out of (r−1)2 positions) in Qi1,i2,...,it . Intuitively,
if we randomly select y positions in Qi1,i2,...,it and change them into any different
letters from si1 to get yi1 , then yi1 and gi should differ at most of the y positions.
Therefore, we can apply the following simple randomized algorithm:

1. Arbitrarily divide the L′ positions into y sets of positions Y1, Y2, . . . , Yy such

that |Y1| = |Y2| = · · · = |Yy−1| = �L′y �.
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2. For each Yi, independently randomly select a position in Yi.
3. Let Y = {j1, j2, . . . , jy} be the y selected positions in step 2, and yi1 be a
string of length |Qi1,i2,...,it | obtained from si1 by changing the letters at these
positions in Y (to any different letters) such that d(yi1 , si1 |Qi1,i2,...,it) = y.

This algorithm gives us the needed solution for Case 2. We have the following
proposition.

Proposition 10. The randomized algorithm for Case 2 produces a center string
yi1 of length |Qi1,i2,...,it | with high probability such that

(i) for any si ∈ B, d(yi1 , si|Qi1,i2,...,it) + d(s, si|Pi1,i2,...,it) ≤ r+1
r−1db, and

(ii) for any gj ∈ G, d(yi1 , gj |Qi1,i2,...,it) + d(s, gj |Pi1,i2,...,it) ≥ (1− 2
r−1 − 2δ0)dg,

where s is a feasible (optimal) distinguishing string.
Proof. (i) arises directly from Lemma 9.

Now, we show that (ii) is true for the case where �L′y � = L′
y . (The general case is

left to interested readers.) Consider a string g ∈ G. Let Zi be the set of positions j
in Yi with si1 [j] = g[j]. Let Xi be a 0/1 random variable. Xi = 1 indicates that ji is

in Zi. The probability that Xi = 1 is
|Zi|
|Yi| . Then we get

µ = E

[
y∑
i=1

Xi

]
=

y∑
i=1

|Zi|
|Yi| =

y

L′

y∑
i=1

|Zi| ≥ y(L
′ − (r − 1)y)
L′

.

The last inequality is by the fact from Assumption 1 that d(g, si1 |Qi1,i2,...,it) < (r−1)y.
Since L′ > (r − 1)2y, µ ≥ y(r−2)

r−1 . By Lemma 1,

Pr

(
y∑
i=1

Xi < µ− δ0y
)
< exp

(
−1
2
δ20y

)
≤ n−2

2 .

The last inequality is from the fact that y ≥ 4 log(n1 + n2)/δ
2
0 .

Let yi1 be the string obtained from si1 by changing the letters at y positions using
the randomized algorithm. Then for the string g ∈ G,

d(yi1 , g|Qi1,i2,...,it) +
(
y −

y∑
i=1

Xi

)
− d(si1 , g|Qi1,i2,...,it) ≥

y∑
i=1

Xi.

The above inequality is due to the facts that (1) si1 and yi1 differ at the y selected
positions, (2) yi1 and g differ at every position i with Xi = 1, and (3) yi1 and g may
agree at the rest of the y −∑y

i=1Xi positions. Thus, we have

d(yi1 , g|Qi1,i2,...,it)− d(si1 , gl|Qi1,i2,...,it) + y
2

≥
y∑
i=1

Xi.

Therefore, we get

Pr

(
d(yi1 , g|Qi1,i2,...,it)− d(si1 , g|Qi1,i2,...,it) + y

2
< µ− δ0y

)

≤ Pr

(
y∑
i=1

Xi < µ− δ0y
)
< exp

(
−1
2
yδ20

)
≤ n−2

2 .

Substituting µ ≥ y(r−2)
r−1 into the above inequality, and after some calculation, we have

Pr

(
d(yi1 , g|Qi1,i2,...,it)− d(si1 , g|Qi1,i2,...,it) ≤

y(r − 3)
r − 1 − 2δ0y

)
≤ n−2

2 .
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From Lemma 9, d(si, g|Qi1,i2,...,it) ≥ d(s, g||Qi1,i2,...,it)− y, so we get

Pr

(
d(s, g|Qi1,i2,...,it)− d(yi1 , g|Qi1,i2,...,it) > 2δ0y +

2y

r − 1
)
≤ n−2

2 .

Considering all good strings, we get

Pr

(
d(s, g|Qi1,i2,...,it)− d(yi1 , g|Qi1,i2,...,it) > 2δ0y +

2y

r − 1 for any g ∈ G
)
≤ n−1

2 .

Therefore, with high probability we get that

d(yi1 , g|Qi1,i2,...,it) ≥ d(s, g|Qi1,i2,...,it)−
(

2

r − 1 + 2δ0
)
dg,

that is,

d(yi1 , g|Qi1,i2,...,it) + d(s, g|Pi1,i2,...,it)
≥ d(s, gl)−

(
2
r−1 + 2δ0

)
dg ≥ dg −

(
2
r−1 + 2δ0

)
dg =

(
1− 2

r−1 − 2δ0
)
dg.

Now, we give a derandomized algorithm for Case 2.
Lemma 11. There is a deterministic algorithm that runs in time equal to

O(d2b(n1+n2)
log(2(r−1)2e)8/δ20 ) and finds a string yi1 from si1 such that for any g ∈ G,

d(yi1 , g|Qi1,i2,...,i2r )− d(si1 , g|Qi1,i2,...,i2r ) ≥
r − 3
r − 1y − 2δ0y.

Proof. Proposition 10 holds when L′ = (r − 1)2y, since in that case µ = y(r−2)
r−1 .

Therefore, if L′ > (r − 1)2y, we can arbitrarily select a subset Q ⊂ Qi1,i2,...,it of size
(r − 1)2y and try to select y positions in Q.

Next, if y is big enough, i.e., y = (4log(n1 + n2))/δ0
2, then Proposition 10 holds.

That is, a good approximation solution, i.e., a set of y positions, exists in Q. We can
try all possible ways to choose y positions in Q. The time required is Cy(r−1)2y. Note

that

Cym =
m(m− 1) · · · (m− y + 1)

y!
≤ m

y

y!
≤
(
m

y

)y
ey.

We have

Cy(r−1)2y ≤ ((r − 1)2)yey = (n1 + n2)
log((r−1)2e)4/δ20 .

Thus, the time required is at most O((n1 + n2)
log((r−1)2e)4/δ20 ) if y = (4log(n1 +

n2))/δ0
2.

When y > (4log(n1 + n2))/δ0
2, we cannot directly choose y positions from Q

since the time complexity is higher. Let y = x × (4log(n1 + n2))/δ0
2 + z, where

x ≥ 1 is an integer and z < (4log(n1 + n2))/δ0
2. We divide Q into x disjoint

subsets Q1, Q2, . . . , Qx such that |Qi| = (r − 1)y/x for i = 1, 2, . . . , x − 1 and
Qx = Q−Q1−Q2−· · ·−Qx−1. Proposition 10 ensures that each Qi contains a good
approximation solution, i.e., a set of (4log(n1 + n2))/δ0

2 positions, such that y1 and

g differ at most of the positions (at least (r−2)
r−1 %). Thus, we can try all possible ways

to choose the right (4log(n1 + n2))/δ0
2 positions from each Qi. (We have to choose
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(4log(n1 + n2))/δ0
2 + z positions from Qx.) Therefore, the time required for each Qi

is O((n1 + n2)
log(2(r−1)2e)8/δ20 ). Since there are at most y Qi’s and we have to try

different values of y, the total time required is O(d2b(n1 + n2)
log(2(r−1)2e)8/δ20 ).

Case 3. y < (4log(n1+n2))/δ0
2. For any q good strings gj1 , gj2 , . . . , gjq , we define

Rj1,j2,...,jq = {j ∈ Qi1,i2,...,it | si1 [j] �= gjl [j] for at least one l ∈ {1, 2, . . . , q}}

and

R̄j1,j2,...,jq = Qi1,i2,...,it −Rj1,j2,...,jq .

From the definition of Rj1,j2,...,jq and R̄j1,j2,...,jq , we have that for any integers p, q
(p < q),

Rj1,j2,...,jp ⊆ Rj1,j2,...,jq , R̄j1,j2,...,jq ⊆ R̄j1,j2,...,jp .

Let y1 = d(si1 , s|Rj1,j2,...,jr ) and y2 = d(si1 , s|R̄j1,j2,...,jr ). Then y1 + y2 ≤ y.
The following lemma is important in dealing with Case 3.
Lemma 12. There exist r indices 1 ≤ j1, j2, . . . , jr ≤ n2 such that for any g ∈ G,

|{j ∈ R̄j1,j2,...,jr | si1 [j] �= g[j] and si1 [j] �= s[j]}| ≤
y

r
.

Proof. Take gj1 ∈ G, and let

Uj1 = {j ∈ Qi1,i2,...,it | si1 [j] �= s[j] and si1 [j] �= gj1 [j]}

such that |Uj1 | is as large as possible. Clearly, Uj1 ⊆ Rj1 .
If |Uj1 | ≤ y

r , let j2, . . . , jr be any other indices and g ∈ G be any good string; it
follows that

|{j ∈ R̄j1,j2,...,jr | si1 [j] �= s[j] and si1 [j] �= g[j]}|
≤ |{j ∈ Qj1,j2,...,jt | si1 [j] �= s[j] and si1 [j] �= gj1 [j]}|
= |Uj1 | ≤ y

r .

Thus we may assume that |Uj1 | > y
r . Take gj2 ∈ G, and let

Uj1,j2 = {j ∈ Qi1,i2,...,it − Uj1 | si1 [j] �= s[j] and si1 [j] �= gj2 [j]}

such that |Uj1,j2 | is as large as possible. Clearly, Uj1,j2 ⊆ Rj1,j2 .
If |Uj1,j2 | ≤ y

r , let j3, . . . , jr be any other indices and g ∈ G be any good string; it
follows that

|{j ∈ R̄j1,j2,...,jr | si1 [j] �= s[j] and si1 [j] �= g[j]}|
= |{j ∈ Q11,i2,...,it −Rj1,j2,...,jr | si1 [j] �= s[j] and si1 [j] �= g[j]}|
≤ |{j ∈ Q11,i2,...,it − Uj1 | si1 [j] �= s[j] and si1 [j] �= gj2 [j]}|
= |Uj1,j2 | ≤ y

r .

The inequality comes from the fact Uj1 ⊆ Rj1 ⊆ Rj1,j2,...,jr and the choice of gj2 . So
we have to consider only |Uj1,j2 | > y

r since otherwise we are done.
In general, we can get a list of sets of positions

Uj1 , Uj1,j2 , . . . , Uj1,j2,...,jq ,



1086 X. DENG, G. LI, Z. LI, B. MA, AND L. WANG

where Uj1,j2,...,jq = {j ∈ Q11,i2,...,it − Uj1,j2,...,jq−1
| si1 [j] �= s[j] and si1 [j] �= gjq [j]}

and |Uj1,j2,...,jq | is as large as possible such that
• Uj1,j2,...,js ∩ Uj1,j2,...,jt = ∅, 1 ≤ s �= t ≤ q,
• |Uj1,j2,...,jp | > y

r , p = 1, . . . , q,• q is as large as possible.
Note that Uj1 ∪ Uj1,j2 ∪ · · · ∪ Uj1,j2,...,jq ⊆ {j ∈ Qi1,i2,...,it | si1 [j] �= s[j] and

si1 [j] �= gjl [j] for at least one l ∈ {1, 2, . . . , q}} ⊆ {j ∈ Qi1,i2,...,it | si1 [j] �= s[j]}.
Therefore, we get

qy

r
< |Uj1 ∪ Uj1,j2 ∪ · · · ∪ Uj1,j2,...,jq | ≤ |{j ∈ Qi1,i2,...,it | si1 [j] �= s[j]}| ≤ y,

and thus q < r.
Finally, take gjq+1 ∈ G, and let
Uj1,j2,...,jq+1

= {j ∈ Qi1,i2,...,it − Uj1,j2,...,jq | si1 [j] �= s[j] and si1 [j] �= gjq+1 [j]}
such that |Uj1,j2,...,jq+1

| is as large as possible. Clearly, Uj1,j2,...,jq+1
⊆ Rj1,j2,...,jq+1 .

By the maximality of q, |Uj1,j2,...,jq+1 | ≤ y
r , let jq+2, . . . , jr be any other indices

and g ∈ G be any good string; it follows that
|{j ∈ R̄j1,j2,...,jr | si1 [j] �= s[j] and si1 [j] �= g[j]}|

= |{j ∈ Qi1,i2,...,it −Rj1,j2,...,jr | si1 [j] �= s[j] and si1 [j] �= g[j]}|
≤ |{j ∈ Qi1,i2,...,it − Uj1,j2,...,jq | si1 [j] �= s[j] and si1 [j] �= gjq+1 [j]}|
= |Uj1,j2,...,jq+1

| ≤ y
r .

Lemma 12 is now proved.
Now, we consider the two parts Rj1,j2,...,jr and R̄j1,j2,...,jr , respectively.
Assumption 1 and the definition of Rj1,j2,...,jr ensure that

|Rj1,j2,...,jr | = |{j ∈ Q11,i2,...,it | si1 [j] �= gjl [j] for at least one l ∈ {1, 2, . . . , r}}|
≤ ∑r

l=1 |{j ∈ Q11,i2,...,it | si1 [j] �= gjl [j]}|
=

∑r
l=1 d(si1 , gjl |Q11,i2,...,it) ≤ r(r − 1)y < r2y.

Keep in mind that we are dealing with the case y ≤ (4log(n1 + n2))/δ0
2. Thus, we

have |Rj1,j2,...,jr | ≤ (4log(n1 + n2))/δ0
2. We can try all possible ways to achieve the

optimal distinguishing string s at the positions in Rj1,j2,...,jr . The time required is

y∑
y1=0

Cy1r2y ≤ 2r
2y ≤ O((n1 + n2)

4r2/δ20 ).

Thus we can assume that we know the optimal distinguishing string s at the positions
in Rj1,j2,...,jr .

Now, let us focus on the positions in R̄j1,j2,...,jr . For any g ∈ G, define Set(g, si1)
be the set of positions in R̄j1,j2,...,jr , where g and si1 do not agree. From Lemma 12,
we know that there exists a set of y2 positionsKy2 = {kj ∈ R̄j1,j2,...,jr | si1 [kj ] �= s[kj ]}
such that for any g ∈ G, |Ky2 ∩ Set(g, si1)| ≤ y

r . Though we do not know the exact
value of y2, again we can guess it in O(y) time. Thus, we can assume that y2 is known.

Let si1(Ky2) be the string obtained from si1 by changing the letters at the po-
sitions in Ky2 to any different letters. From Lemma 12, we can see that for any
g ∈ G,

d(g, si1(Ky2)|R̄j1,j2,...,jr ) ≥ d(g, s|R̄j1,j2,...,jr )−
1

r
y.(14)
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Now, the only remaining task is to select y2 positions in R̄j1,j2,...,jr to approximate
the set Ky2 . Recall that |{j ∈ R̄j1,j2,...,jr | si1 [j] �= s[j]}| = y2. From this we have
that for every good string g ∈ G,

d(g, si1 |R̄j1,j2,...,jr )− d(g, s|R̄j1,j2,...,jr ) ≥ −y2.(15)

Next we are going to show that we can find a set K ′y2 of y2 positions in R̄j1,j2,...,jr
in polynomial time such that for any g ∈ G, |K ′y2 ∩ Set(g, si1)| ≤ y

r . If this is true,
by changing the letters of si1 on the positions in K

′
y2 , the distance between si1(K

′
y2)

and g has to increase at least y2 − y
r . To do this, let m ≤ |R̄j1,j2,...,jr | be an integer

and R̄j1,j2,...,jr (m) ⊆ R̄j1,j2,...,jr be any subset of R̄j1,j2,...,jr with m elements.
The following two lemmas are the keys to solving the problem.
Lemma 13. If m ≥ 2r

2 × y × (n + 1) ry + y
r , then there exists a set K ′y2 ⊆

R̄j1,j2,...,jr (m) of y2 positions such that for any g ∈ G,

|K ′y2 ∩ Set(g, si1)| ≤
y

r
.

Proof. Consider a string g in G. Let K ′′y2 ⊆ R̄j1,j2,...,jr (m) denote a set of y2
positions. By Assumption 1, that d(si1 , g|Qi1,i2,...,it) < ry, for any fixed g ∈ G, the
number of different K ′′y2 ’s such that

|K ′′y2 ∩ Set(g, si1)| ≥
y

r

is at most

C
y2− yr
m−ryC

y
r
ry + C

y2− yr−1
m−ry C

y
r+1
ry + · · ·+ 1 ≤ Cy2−

y
r

m−ry(C
y
r
ry + C

y
r+1
ry + · · ·+ 1)

≤ Cy2−
y
r

m−ry2
ry.(16)

There are at most n2 ≤ n2 + n1 = n strings in G. Thus, if there is no K ′′y2 ⊆
R̄j1,j2,...,jr (m) such that

|K ′′y2 ∩ Set(g, si1)| ≤
y

r
,

then

n2 ≥ Cy2m

2ryC
y2− yr
m−ry

=
m(m− 1) · · · (m− y2 + 1)(y2 − y

r )!

y2!(m− ry)(m− ry − 1) · · · (m− ry − y2 + y
r + 1)2

ry

≥ m(m− 1) · · · (m− y
r + 1)

y2(y2 − 1) · · · (y2 − y
r + 1)2

ry

≥ (m−
y
r + 1)

y
r

y
y
r · 2ry >

(m− y
r )

y
r

y
y
r 2ry

=
(m− y

r )
y
r

y
y
r (2r2)

y
r

=

(
m− y

r

2r2y

) y
r

≥ n+ 1.

The last inequality is from the fact that m ≥ 2r2 × y × (n + 1) ry + y
r . This is a

contradiction. Thus, we can conclude that the lemma holds.
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Lemma 13 says that a good solution exists at the positions in R̄j1,j2,...,jr (m) if

m = 2r
2 × y × (n + 1) ry + y

r . On the other hand, the following lemma shows that

m = 2r
2 × y× (n+1) ry + y

r is not too big so that we can find such a good solution in
polynomial time by looking at all Cy2m possible choices.

Lemma 14. If m = 2r
2 × y× (n+1) ry + y

r and y ≤ (4log(n1+n2))/δ0
2, then Cym

is O((n1 + n2)
(4r2+4+4 log e)/δ20+r.

Proof.

Cym =
m(m− 1) · · · (m− y + 1)

y!
≤ m

y

y!

≤
(
m

y

)y
ey ≤

(
2(m− y

r )

y

)y
ey(17)

=

(
2(m− y

r )

2r2y

)y
(2r

2

)yey = 2y(n+ 1)r(2r
2

)yey.(18)

Since y ≤ (4log(n1 + n2))/δ0
2, from (18), Cym is O((n1 + n2)

(4r2+4+4 log e)/δ20+r.
Lemma 15. For Case 3, the time required to select y positions in Qi1,i2,...,i+2r is

O(rLd2b(n1 + n2)
(4r2+4+4 log e)/δ20+2r).

Proof. The time to deal with Rj1,j2,...,jr is smaller than that of R̄j1,j2,...,jr . It

requires O((n1 + n2)
(4r2+4+4 log e)/δ20+r) time to deal with an R̄j1,j2,...,jr . Obtain-

ing an R̄j1,j2,...,jr needs O(n
r
2Lr) time. We also have to guess y and y2 (thus y1)

in d2b time. Thus, the total time required to select y positions in Qi1,i2,...,i+2r is

O(rLd2b(n1 + n2)
(4r2+4+4 log e)/δ20+2r).

Theorem 16. There is a PTAS for the DSP. The PTAS runs in O(L ×
|Σ|O(log(n1+n2)(r−1)6)) time and finds a distinguishing string s such that for every
si ∈ B, d(si, s) ≤ (1 + 1

r−1 )db, and for every gi ∈ G, d(gi, s) ≥ (1 − 1
r−1 )dg if a

solution to the original pair (db ≤ dg) exists.
Proof. According to Theorem 3, step 1 in Algorithm gdistString (Figure 1) re-

quires O(L × |Σ|4 log(n1+n2)/δ
2

) time, where δ = εmin{ 1
4r ,

1
2(r−1)2 }, and the perfor-

mance ratios are (1 + ε) and (1− ε) for bad strings and good strings, respectively.
Consider step 2 of Algorithm gdistString. We discuss Cases 2 and 3 separately.
Case 2. Lemma 11 shows that for a fixed Qi1,i2,...,i2r we can find a string yi1 from

si1 such that for each g ∈ G we have

d(yi1 , g|Qi1,i2,...,i2r )− d(si1 , g|Qi1,i2,...,i2r ) ≥
r − 3
r − 1y − 2δ0y

in O(d2b(n1 + n2)
log((r−1)2e)8/δ20 ) time.

For the positions in Pi1,i2,...,i2r , we can use the LP approach to solve the following
inequalities:



∑
a∈Σ xk,a = 1, k = 1, 2, . . . , |Pi1,i2,...,i2r |,∑
k∈Pi1,i2,...,i2r

∑
a∈Σ χ(s, i, k, a)xk,a ≤ r+1

r−1db − d(si1 , si|Qi1,i2,...,i2r )− y,
i = 1, 2, . . . , n1,∑

k∈Pi1,i2,...,i2r
∑
a∈Σ χ(g, j, k, a)xk,a ≥ dg − d(si1 , gj |Qi1,i2,...,i2r )− y,

j = 1, 2, . . . , n2,
xk,a ∈ {0, 1}, a ∈ Σ, k ∈ Pi1,i2,...,i2r .

(19)

Since |Pi1,i2,...,i2r | ≤ 2rdb, from Theorem 3, the run time required is O(2rd2b ×
|Σ|4 log(n1+n2)×/δ2) for δ = ε/(2r) since we have to guess the value of y. Since we
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have to try all Qi1,i2,...,i2r ’s and the values of db and dg, the total time required

is O(L4n2r
1 [(n1 + n2)

log((r−1)2e)8/δ20 + r × |Σ|4 log(n1+n2)×/δ2 ]). The total errors are
(1 + ε+ 2

r−1 )db and (1− ε− 2
r − 2δ0)dg.

Case 3. Lemmas 13 and 15 show that we can find a string yi1 in O(rLy
2(n1 +

n2)
(4r2+4+4 log e)/δ20+2r) time such that for any g ∈ G we have d(yi1 , g|Qi1,i2,...,i2r ) ≥

d(s, g|Qi1,i2,...,i2r )− 2
r .

For positions in Pi1,i2,...,i2r , we do the same thing as in Case 2. The time re-

quired is O(rd2b × |Σ|4 log(n1+n2)×/δ2) for δ = ε/(2r). Thus, the total time required

is O(rd4n2r
1 [L(n1 + n2)

(4r2+4+4 log e)/δ20+2r + |Σ|4 log(n1+n2)×/δ2 ]). The total errors are
(1 + ε+ 2

r−1 )db and (1− ε− 2
r )dg in this case.

Case 1 dominates the time complexity when the errors are small. For example, if
e = 1

r−1 , then the algorithm finds a distinguishing string s such that for every si ∈ B,
d(si, s) ≤ (1 + 1

r−1 )db; for every gi ∈ G, d(gi, s) ≥ (1− 1
r−1 )dg; and the running time

is O(L× |Σ|O(log(n1+n2)(r−1)6)).

5. The DSSP. In this section, we present the algorithm for the DSSP. The
idea is to combine the sampling technique in [9] with the algorithm for the DSP. The
difficulty here is that for each si ∈ B, we do not know the substring ti of si. The
sampling approach in [9] is as follows: For any fixed r > 0, by trying all the choices of
r substrings of length L from B, we can assume that ti1 , ti2 , . . . , tir are the r substrings
of length L that satisfy Lemma 13 by replacing sl with tl and sij with tij . Let Q be the
set of positions at which ti1 , ti2 , . . . , tir agree and P = {1, 2, . . . , L}−Q. By Lemma 13,
ti1 |Q is a good approximation to s|Q. However, we do not know the letters at positions
in P . Thus, we randomly pick O(log(mn)) positions from P , where m is the length of
bad strings. Suppose that the multiset of these random positions is R. By trying all
length-|R| strings, we can assume that we know s|R. Then for each 1 ≤ i ≤ n1 we find

the substring t′i from si such that f(t
′
i) = d(s, t

′
i|R)× |P ||R| + d(ti1 , t′i|Q) is minimized.

Let s be the optimal distinguishing string. Then ti denotes the substring of si that
is closest to s. Let s∗ be a string such that s∗|P = s|P and s∗|Q = ti1 |Q. Then
[9] shows the following.

Fact 1. With probability 1− ((nm)−2 + (nm)−
4
3 ), d(s∗, t′i) ≤ d(s∗, ti) + 2ε|P | for

all 1 ≤ i ≤ n.
After obtaining a t′i of si for every si ∈ B, we have the DSP, which can be solved

by using the algorithms developed in section 3.
Theorem 17. There is a polynomial time approximation scheme that takes ε > 0

as part of the input and computes a center string s of length L such that for every
si ∈ B there is a length-L substring ti of si with d(si, s) ≤ (1 + ε)db, and for every
gi ∈ G, d(gi, s) ≥ (1− ε)dg if a solution exists.

Proof. Let s′ be the solution obtained by our algorithm. Lemma 9 and Fact 1
ensure that for each si ∈ B, s(t′i, s′) ≤ r

r−1db + ε
′|P |, where 1

r−1db is the error at the
positions in Q and ε′|P | (ε′ = 2ε+ε′′) is the total error at the positions in P produced
by both the random sampling method and the algorithm for the DSP. Lemma 9,
together with sections 3 and 4, ensures that for each g ∈ G, d(g, s′) ≥ (1− ε)dg, where
ε is the error rate introduced by the algorithm for the DSP.

The randomized algorithm can be derandomized by the standard methods; [7]
gives a short and clear explanation.

6. Discussion and remarks. Our work concludes the search for provably good
algorithms for the DSSP by presenting a PTAS. Some techniques have been developed
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here dealing with values of parameters smaller than log(n) but larger than O(1). They
may have other applications to similar problems.
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[2] J. Dopazo, A. Rodŕiguez, J. C. Sáiz, and F. Sobrino, Design of primers for PCR amplifi-
cation of highly variable genomes, Comput. Appl. Biosci., 9 (1993), pp. 123–125.

[3] L. Ga̧sieniec, J. Jansson, and A. Lingas, Efficient approximation algorithms for the Ham-
ming center problem, in Proceedings of the 10th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’99), Baltimore, MD, 1999, SIAM, Philadelphia, 1999, pp. S905–
S906.

[4] M. Ito, K. Shimizu, M. Nakanishi, and A. Hashimoto, Polynomial-time algorithms for
computing characteristic strings, in Proceedings of the 5th Annual Symposium on Combi-
natorial Pattern Matching, Asilomar, CA, 1994, pp. 274–288.

[5] J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang, Distinguishing string selection prob-
lems, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’99), Baltimore, MD, 1999, SIAM, Philadelphia, 1999, pp. 633–642.

[6] M. Li, B. Ma, and L. Wang, Finding similar regions in many strings, in Proceedings of the
31st ACM Symposium on Theory of Computing, Atlanta, GA, 1999, pp. 473–482.

[7] M. Li, B. Ma, and L. Wang, On the closest string and substring problems, J. Assoc. Comput.
Mach., 49 (2002), pp. 157–171.
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Abstract. The windows scheduling problem is defined by the positive integers n, h, and
w1, . . . , wn. There are n pages where the window wi is associated with page i, and h is the num-
ber of slotted channels available for broadcasting the pages. A schedule that solves the problem
assigns pages to slots such that the gap between any two consecutive appearances of page i is at
most wi slots. We investigate two optimization problems. (i) The optimal windows scheduling prob-
lem: given w1, . . . , wn find a schedule in which h is minimized. (ii) The optimal harmonic windows
scheduling problem: given h find a schedule for the windows wi = i in which n is maximized. The
former is a formulation of the problem of minimizing the bandwidth in push systems that support
guaranteed delay, and the latter is a formulation of the problem of minimizing the startup delay in
media-on-demand systems. For the optimal windows scheduling problem we present an algorithm
that constructs asymptotically close to optimal schedules, and for the optimal harmonic windows
scheduling problem we show how to achieve the largest known n’s for all values of h.
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1. Introduction. The windows scheduling problem is defined as follows, using
terminology borrowed from a broadcasting system environment:

Given are h slotted channels and n pages, 1, . . . , n, each associated
with a window wi ≥ 1 that is an integral number. Is it possible to
schedule the n pages on the h channels, one page per one channel at
each time slot, such that the gap between two consecutive appear-
ances of page i is no more than wi?

If for a given h and W = 〈w1, . . . , wn〉 the answer to the windows scheduling problem
is positive, the schedule that solves the problem is called an 〈h,W 〉-schedule. The nat-
ural optimization problem is to find for a givenW the minimum h, denoted by H(W ),
such that there exists an 〈h,W 〉-schedule. We call this problem the optimal windows
scheduling problem. Since a restricted version of the optimal windows scheduling
problem is NP-hard even for one channel [3], we will be looking for approximation
solutions.

As an example of a windows scheduling problem consider the vectorW = 〈2, 4, 5〉,
which can be scheduled on one channel as follows:

[
2 4 2 5 2 4 2 5 · · · ] .(1)
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Note that 2 is scheduled every 2 slots and 4 is scheduled every 4 slots, but 5 is
scheduled every 4 slots. Clearly, this problem cannot be solved in any fewer number
of channels so that H(W ) = 1.

The harmonic windows scheduling problem is a special case of the windows schedul-
ing problem in which wi = i for 1 ≤ i ≤ n. If for given h and n the answer to the
harmonic windows scheduling problem is positive, then the schedule that solves the
problem is called an 〈h, n〉-schedule. Here, for a given n the minimum h such that
there exists an 〈h, n〉-schedule is denoted by H(n). However, an optimization objec-
tive that is more natural to the harmonic windows scheduling problem is to find for a
given h the maximum n, denoted by N(h), such that there exists an 〈h, n〉-schedule.
We call this problem the optimal harmonic windows scheduling problem.

It is not difficult to see that N(1) = 1 and N(2) = 3 using the 〈2, 3〉-schedule[
1 1 1 1 · · ·
2 3 2 3 · · ·

]
.(2)

A more interesting example is the 〈3, 9〉-schedule demonstrating that N(3) ≥ 9:
 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
2 4 2 5 2 4 2 5 2 4 2 5 · · ·
3 6 7 3 8 9 3 6 7 3 8 9 · · ·


 .(3)

This 〈3, 9〉-schedule is known from the literature [15], but it is unknown whether
the schedule is optimal. There may be a 〈3, 10〉-schedule, but there is no 〈3, 11〉-
schedule (as implied by Theorem 3). Note also that the windows scheduling problem
W = 〈2, 4, 5〉 has a solution as the second channel of the 〈3, 9〉-schedule above. Thus,
the windows scheduling problem is not only a generalization of the harmonic windows
scheduling problem, but solutions to windows scheduling problems can be merged
together to solve a harmonic windows scheduling problem.

We note that the performance criterion for these two optimization problems is
based on the max metric and not the average metric. That is, the next appearance of a
page depends only on its previous appearance. In the traditional scheduling problems
the focus was on the average metric, where in a way the next appearance of a page
depends on all of its previous appearances.

The optimal windows scheduling problem is a formulation of the problem of min-
imizing the bandwidth of push systems that support guaranteed delay for the broad-
casted pages. The optimal harmonic windows scheduling problem is an alternative
formulation of the problem of minimizing the guaranteed startup delay in recently
proposed media-on-demand systems.

1.1. The push systems application. In push systems, servers broadcast pages
over broadcast channels to clients. Clients who wish to access one of the broadcasted
pages listen to the channels until they receive this page. In traditional push systems
(e.g., the Teletext problem [2] and the broadcast disks problem [1]), the server broad-
casts more popular pages more frequently to minimize the average access time for
clients. In some situations, the server does not have this freedom since it broadcasts
information of some providers who “paid” for a certain quality of service.

These situations were considered by [7, 4]. In their push systems model they
assume that the broadcasting environment is composed of three groups of “players”:
(i) Clients who wish to access information pages from broadcast channels. (ii) Servers
who broadcast the information pages on channels. (iii) Providers who supply the infor-
mation pages. Servers “sell” quality of service to providers who “pay” proportionally
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to the inverse of the maximum gap (access time) between any two appearances of
their page on any of the channels.

After the selling process, the server is left with the optimal windows scheduling
problem. That is, the server tries to minimize the number of channels that are needed
to guarantee the quality of service “bought” by the providers.

1.2. The media-on-demand application. Media-on-demand is the demand
by clients to play back, view, listen, or read various types of media such as video,
audio, or large files with startup delays as small as possible and with no interruptions.
The solution of dedicating a private channel to each client for the required media is
implausible even with the ever-growing availability of network bandwidth. Thus,
multicasting popular media to groups of clients seems to be the ultimate solution to
the ever-growing demand for media. The first, and most natural, idea to exploit the
advantage of multicasting is to batch clients together. This implies a tradeoff between
the overall server bandwidth and the guaranteed startup delay. The main advantage
of the batching solutions lies in their simplicity. The main disadvantage is that the
guaranteed startup delay may still be too large.

The pyramid broadcasting paradigm, pioneered by Viswanathan and Imielinski
[17], was the first solution that reduced dramatically the bandwidth requirements
for servers by using a larger receiving bandwidth for clients and by adding buffers
to clients. The novelty of the pyramid broadcasting paradigm is that clients with
more complicated equipment are able to receive more bandwidth than they need for
playback. This way they can buffer later portions of the required transmission to
play them back on time. Many papers followed this line of research with various
models. All of them demonstrated that with added complexity to the system, a huge
improvement can be achieved over the traditional batching solutions.

To demonstrate the huge gain, suppose first that a server dedicates two channels
to a two-hour movie. In traditional systems, by staggering the transmissions over the
two channels, the server can guarantee a one-hour startup delay. In systems with the
new paradigm, the server can guarantee a startup delay of 40 minutes. Now suppose
that a server dedicates 12 channels to a two-hour movie. In this case, the improvement
will be from ten minutes to less than two seconds with a simple solution using the new
paradigm and to less than one-tenth of a second with a more complicated solution
found in this paper.

In this paper, we adopt the model of [9, 11] that focuses on the tradeoff between
the server bandwidth and the guaranteed startup delays and ignores the other two
parameters, the receiving bandwidth of clients and their buffer size. In this model,
the transmission is divided into n equal-size segments and the time is slotted with
slots of size 1/n of the transmission length. Servers broadcast the n segments on
h channels according to some transmission schedule. Clients who wish to receive
the transmission wait for a beginning of a slot, and thereafter they buffer the first
appearance of segment i for 1 ≤ i ≤ n. If for all 1 ≤ i ≤ n segment i appears
in one of the ith slots after the client arrival time, then the client is guaranteed an
uninterrupted playback. This is because when the client needs to play back the ith
segment, it is either in its buffer or transmitted on one of the channels. It is assumed
that clients have large enough buffers that can store a full transmission and that they
can receive data from all the channels concurrently.

We demonstrate this model with the simple case of a server with two channels (see
schedule (1) in the introduction). The transmission is divided into three segments.
The first segment is broadcasted repeatedly on the first channel. The second and
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third segments are broadcasted alternately on the second channel. A client has two
possible starting times for receiving the transmission. The first is before a slot in
which the second segment is broadcasted on the second channel and the second is
before a slot in which the third segment is broadcasted on the second channel. (i) In
the first time slot, in both cases, the client plays back the first segment from the first
channel. At the same time, in the first case the client buffers segment two, and in the
second case the client buffers segment three. (ii) In the second time slot, in the first
case the client plays back segment two from its buffer while buffering segment three.
In the second case, the client plays back segment two from the second channel. (iii) In
the third time slot, in both cases, the client plays back segment three from its buffer.
In this example, the guaranteed startup delay is one-third the transmission length.

A necessary and sufficient condition for clients to view the transmission with
no interruptions is that segment i is broadcasted at least once in any consecutive i
slots. In particular, a channel must be dedicated to the first segment, and the second
segment must appear in at least every other slot on one of the other channels. Thus,
if an 〈h, n〉-schedule exists, then clients can view the movie with no interruption with
a guaranteed startup delay of 1/n of the movie length. To see this, assume first that
clients arrive only at the beginning of slots; in this case a client may view the movie
immediately with no interruptions. This is because the ith segment will be either on
one of the channel’s i time slots after the arrival time of the client or in the client’s
buffer. As a result, clients who arrive in arbitrary times need to wait for a beginning
of a slot in order to view the movie with no interruptions. The maximum startup
delay is therefore 1/n of the movie length.

Remark. A “fractional” version of the problem allows mixing segments together
in each channel. With this capability, the papers [10, 13, 14] present solutions that
almost match the lower bound of [6]. However, this fractional model does not apply
to the general windows scheduling problem and to the push systems application. Fur-
thermore, even for the media-on-demand application, in many systems the “integral”
version of the problem is more realistic.

1.3. Previous results and our contributions. To the best of our knowledge
there are no published solutions for the optimal windows scheduling problem as for-
mulated in this paper. Papers [8, 11] present a simple

〈
h, 2h − 1〉-schedule for the

harmonic windows scheduling problem. The best known results for the harmonic
windows scheduling problem appear in [15, 12]. The pagoda scheme [15] starts with
a 〈3, 9〉-schedule and then generalizes this schedule for h > 3 as follows. For an even

h > 3, the Pagoda scheme is an 〈h, (4/5)√5h − 1〉-schedule, and for an odd h > 3,

it is an 〈h, (2/√5)√5h − 1〉-schedule. Asymptotically, the pagoda scheme implies an
N(h) = O(

√
5
h
) ≈ O(2.236h) solution. The new pagoda scheme [12] deals with small

values of h. Their lower bounds on N(h) for h = 3, 4, 5, 6, 7 are 9, 26, 66, 172, 442,
respectively (see Table 1).

We first present an asymptotic result for the optimal windows scheduling problem.
Define h(W ) =

∑n
i=1 1/wi. A simple argument shows that 	h(W )
 is a lower bound

for H(W ) since page i requires at least a 1/wi portion of a channel. We show that
a schedule exists that uses at most h(W ) + e ln(h(W )) + 7.3595 channels.1 In other
words, this schedule is within a factor of 1 + O (ln(h(W ))/h(W )) of optimal. This

translates into a solution with (e−O (ln(h)/h))
h
pages for the harmonic windows

1The symbol e is the base of the natural logarithm ln. All decimal constants are at the precision
provided by the software package Mathematica for a predetermined number of decimal points [18].
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scheduling problem where h is the number of given channels and 0.561463eh is an
upper bound for N(h).

The second part of our contribution focuses on “practical” approximate solutions
to the optimal harmonic windows scheduling problem. Recall that in this case we fix
the number of channels h and seek to find an 〈h, n〉-schedule for the largest possible n.
An optimal solution would be an 〈h,N(h)〉-schedule. The asymptotic result implied by
the solution to the optimal windows scheduling problem does not generate schedules
“good” enough for small h. Most of the known constructions are based on more
restrictive schedules. For example, the

〈
h, 2h − 1〉-schedule (see section 2) schedules

each page at fixed intervals, schedules a page only on one channel, and on each channel
schedules only consecutive pages. In this paper, all of the constructions schedule each
page on only one channel. Most of them will schedule a page at fixed intervals. We
call such schedules perfect schedules.

We first describe a greedy schedule that approaches the upper bound for N(h)
for small values of h. This greedy scheme is based on a tree representation of perfect
schedules introduced in [5]. The greedy strategy can be applied to the general windows
scheduling problem as well to obtain good bounds for H(W ) for cases in which h(W )
is small. Next we develop a technique that combines an 〈h1, n1〉-schedule with an
〈h2, n2〉-schedule to get an 〈h1 + h2, ((n1 + 1)(n2 + 1))/2− 1〉-schedule. With this
technique, we get the best results for the number of channels for which we cannot
run the greedy algorithm. Finally, we present our nontrivial nonperfect schedules for
h = 4, 5, 6 channels. These schedules were constructed using the tree representation
technique with some modifications to accommodate nonperfect schedules.

Table 1
Results for 1 to 12 channels.

# of channels 1 2 3 4 5 6 7 8 9 10 11 12

Upper bound 1 3 10 30 82 226 615 1673 4549 12366 33616 91379
Best bound 1 3 9 28 77 211 570 1573 4325 11759 31677 86428

Greedy 1 3 9 25 73 201 565 1522 4284 11637 31677 86428
Pagoda 1 3 9 26 66 172 442 499 1249 2499 6249 12499

We summarize the bounds for 1 to 12 channels in Table 1. For a given h, we
compare four values for N(h): the upper bound, our best lower bound, the bound
of the basic greedy algorithm described in section 4, and the best lower bound of
the pagoda scheme [15] and the new pagoda scheme [12]. Our best bounds for small
h (4, 5, 6) were achieved by hand tuning the results of the greedy algorithm and for
larger h by modifications to the greedy algorithm. To interpret Table 1 imagine that
we can devote 8 channels to a two-hour movie. Without any of these schemes a new
movie can start every 120/8 = 15 minutes. With the pagoda scheme a movie can
start every 7200/499 ≈ 14.5 seconds. With our best bound a movie can start every
7200/1573 ≈ 4.6 seconds. No such scheme can guarantee starting any faster than
every 7200/1673 ≈ 4.3 seconds.

1.4. Organization. Section 2 presents some definitions and notation used later
in the paper. Section 3 presents the upper bound and the asymptotic lower bounds for
the optimal windows scheduling problem and the optimal harmonic windows schedul-
ing problem. Section 4 describes the greedy algorithm which is an approximation
algorithm for the optimal harmonic windows scheduling problem. Section 5 presents
the combination technique for the optimal harmonic windows scheduling problem.
Section 6 illustrates our best solutions for small numbers for the harmonic windows
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scheduling problem. Finally, section 7 discusses some work in progress and open
problems.

2. Preliminaries. In subsection 2.1, we present some of our definitions in a
more formal way. In subsection 2.2, we describe a tree representation for perfect
schedules that does not cover all the possible perfect schedules but is enough to serve
as a base for our greedy algorithm and to represent most of our solutions for small
numbers. The idea is borrowed from [5]. We describe what is needed to understand
this paper.

2.1. Definitions and notation. A more formal definition of the windows sche-
duling problem and its special case, the harmonic windows scheduling problem, is
as follows. We are asked to create an h ×∞ matrix C in which the entry C(j, t) is
the page number that is scheduled at time slot t on the jth channel for 1 ≤ j ≤ h
and 1 ≤ t ≤ ∞. The requirement from the matrix is that for any 1 ≤ i ≤ n and
1 ≤ t ≤ ∞, i is an element in the submatrix C[1..h, t..t+ wi − 1]. That is, i appears
in one of the entries in the following submatrix:




C(1, t) . . . C(1, t+ wi − 1)
...

...
C(h, t) . . . C(h, t+ wi − 1)


 .

For the harmonic windows scheduling problem the same definition holds where wi = i.
Although a schedule is formally defined by an infinite matrix, any reasonable solution
will be defined as the infinite concatenation of a finite schedule C which is a finite
h× � matrix for some �. Although it is not required, in all of our solutions each page
is scheduled on a single channel. Such a solution has the property that for each page
i, there is a channel hi such that i ∈ {C(h′, t) : h′ = hi and 1 ≤ t ≤ �}. Because of
this we can focus on the schedules for individual channels.

Let W = 〈w1, . . . , wn〉 be a window vector. For a sequence S = 〈s0, . . . , s�−1〉
with si ∈ {0, 1, . . . , n}, define MS ⊆ {1, . . . , n} as the set of nonzero numbers in the
sequence S. The sequence S is a potential row of a finite schedule for W . If si = 0,
then no page is assigned to position i in the schedule. We define S = 〈s0, . . . , s�−1〉
to be a channel schedule for W if for each i ∈ MS , if i(1) < i(2) < · · · < i(ni) are
all the indices such that si(j) = i, then i(j + 1) − i(j) ≤ wi for 1 ≤ j < ni and
� − i(ni) + i(1) ≤ wi. This is equivalent to saying that when we repeat the schedule
infinitely, for each i, i appears in the infinite schedule in every consecutive wi slots.
A channel schedule S is perfect if there exists a w′i ≤ wi such that i(j+1)− i(j) = w′i
for 1 ≤ j < ni and �− i(ni)+ i(1) = w′i. We call w

′
i the window size of i in the perfect

channel schedule S. If we repeat a perfect schedule infinitely, then in the infinite
schedule, for each i, i appears periodically every w′i slots. A channel schedule S is
fully utilized if si = 0 for all i, that is, every position in the schedule has some page
assigned to it. The following proposition should be clear.

Proposition 1. If S is a (perfect) channel schedule, then so is the result of a
finite concatenation of S with itself, a cyclic shift of S, and the reversal of S.

A finite schedule for W can be formed from h channel schedules S1, . . . , Sh of
lengths �1, . . . , �h, respectively, where ∪hi=1MSi = {1, 2, . . . , n}. Let � be the least
common multiple of {�1, . . . , �h}. By a finite concatenation of each channel schedule
with itself, Si can be transformed into a channel schedule of length �. These channel
schedules form the rows of a finite schedule matrix. A perfect schedule for W is one
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formed from perfect channel schedules. We define a perfect 〈h, n〉-schedule to be a
perfect schedule for the window vector 〈1, 2, . . . , n〉 using h channels.

2.2. A tree representation for perfect channel schedules. Let T be an
ordered tree with n labeled leaves. Assume first that all the labels (pages) are distinct.
We describe a procedure that generates a perfect channel schedule on the n pages from
T , computes the length of this channel schedule, and computes the window size of
each page.

Procedure Tree-to-Schedule.
Input: A tree T with n leaves that are labeled with the labels p1, . . . , pn that represent

the pages. Assume T has d ≥ 0 subtrees.
Output: A perfect channel schedule S for these pages in which each page pi has a

fixed window size w′i.
A leaf tree: If n = 1, then the schedule is S = 〈p1〉.
The recursive step: If n > 1 and therefore d > 0, do the following:

• Recursively construct the channel schedules S1, . . . , Sd of all the d sub-
trees of T . Assume their respective lengths are �1, . . . , �d.

• Replicate each channel schedule and make all of them have the same
length �′ = LCM {�1, . . . , �d}. Let the new schedules be S′1, . . . , S′d. By
Proposition 1, a replication of a perfect channel schedule results in a
perfect channel schedule.
• The final channel schedule S of length � = d�′ is constructed by al-
ternately picking �′ times the next page from the d channel schedules
S′1, . . . , S

′
d.

<D><C>

<CD>

<B><A>

<E>

<AEBHCFAHBGDH>

<EHFHGH>

<H>

<EFG>

<G><F>

<ABCABD>

Fig. 1. An example of a tree for pages A,B,C,D,E, F,G,H.

A simple example is the round-robin tree. This is a tree whose root has d chil-
dren, all of them leaves. If they are labeled by the numbers p1, p2, . . . , pd, then
the channel schedule represented by this tree is the round-robin channel schedule
S = 〈p1, p2, . . . , pd〉. A more complicated example is the tree in Figure 1. The labels
are A,B, . . . ,H. Applying Procedure Tree-to-Schedule on the left and right subtrees
yields the channel schedules 〈ABCABD〉 and 〈EHFHGH〉, respectively. Hence, the
schedule representation of the tree is 〈AEBHCFAHBGDH〉.

We now give the condition for when Procedure Tree-to-Schedule generates a per-
fect channel schedule. Let W = 〈w1, . . . , wn〉 be a window vector and let T be a
tree with leaf labels L ⊆ {1, . . . , n}. Let W ′ = ∪i∈L {wi} be the window vector W
restricted to the labels L. For i ∈ L, define w′i =

∏k
j=1 dj , where d1, . . . , dk are the
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degrees of all the ancestors of the leaf labeled i in T from the root to the parent of
the leaf labeled i. That is, d1 is the degree of the root and dk is the degree of the
parent of the leaf labeled i. Let � = LCM{w′1, . . . , w′|L|}.

Theorem 2. Procedure Tree-to-Schedule always produces a perfect channel sched-
ule. This schedule satisfies W ′ if w′i ≤ wi for all i ∈ L. In this case, w′i is the window
size of i in a channel schedule of length �.

Proof. We prove by induction on |L| that the sequence S = 〈s0, . . . , s�−1〉 pro-
duced by Procedure Tree-to-Schedule has the following perfect property:

for each i ∈ L, if i(1) < i(2) < · · · < i(ni) are all the indices such that
si(j) = i, then i(j+1)−i(j) = w′i for 1 ≤ j < ni and �−i(ni)+i(1) =
w′i.

The theorem follows immediately from this.
For trees with one leaf this is clearly true. If the root of T has d1 children, then

by the induction hypothesis the procedure run on each of the d1 subtrees produces
the sequences S1, . . . , Sd1 , each with the perfect property. It follows that S

′
1, . . . , S

′
d1

defined by the procedure also have the perfect property because each is just a repli-
cation of a sequence with the perfect property (Proposition 1). In the final schedule
S produced by the procedure, the label i occurs once every w′i = d1w

′′
i slots, where

w′′i =
∏k
j=2 dj and d2, . . . , dk are the degrees of ancestors of the leaf labeled i in the

subtree of T that contains i. Hence, the sequence S satisfies the perfect property.
Finally, it is not hard to verify from the definition of the procedure that the length of
S is � = LCM{w′1, . . . , w′|L|}.

Remark. So far we assumed that all the labels are distinct. This is not imperative.
However, if two labels are the same, then the window size of the corresponding page
may get more than one value. We use nonperfect trees in our solutions for h = 4, 5, 6.

Example. Figure 2 illustrates the h trees representing all the channel schedules
in the

〈
h, 2h − 1〉 perfect schedule. The window size of 1 ≤ i ≤ 2h − 1 is 2j , where

2j ≤ i < 2j+1.

22273 4 5 6 −1hhh−1h−1 −22+1

1

2
������������������ ��

Fig. 2. The 〈h, 2h − 1〉-schedule.

3. Asymptotic bounds. Let W = 〈w1, w2, . . . , wn〉 be a window vector and let
h(W ) =

∑n
i=1 1/wi. Recall that H(W ) is the minimum h such that there exists an

〈h,W 〉-schedule. In subsection 3.1 we show that 	h(W )
 ≤ H(W ). In subsection 3.4
we show that H(W ) ≤ h(W )+e ln(h(W ))+O(1). The lower bound comes from a sim-
ple observation, while the upper bound comes from the construction of a perfect sched-
ule forW with the required bound on the number of channels. For the upper bound, in
subsection 3.2 we present optimal solutions to special cases for the window vector, and
then in subsection 3.3 we give an outline of our algorithm and demonstrate it with an
example. We conclude this section with subsection 3.5 that shows that these bounds
translate to bounds for N(h) for the optimal harmonic windows scheduling problem.

3.1. Lower bound for H(W ). We begin with the lower bound.
Theorem 3. For any window vector W = 〈w1, . . . , wn〉,

H(W ) ≥ 	h(W )
 .
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Proof. We need at least h channels where h−1 <∑n
i=1 1/wi ≤ h. This is because

page i requires at least a 1/wi fraction of a channel.

3.2. Optimal solutions to special window vectors. The upper bound on
H(W ) is achieved by constructing a perfect schedule. There are a number of steps
in the construction, and we start with the simple case where the window sizes are
all powers of 2. In this case there is a perfect schedule in which page i is scheduled
exactly every wi slots.

Lemma 4. If all the wi are of the form 2vi for some vi ≥ 0, then there exists a
perfect schedule for the windows scheduling problem that uses exactly H(W ) = 	h(W )

channels, where �h(W )� channels are fully utilized.

Proof. To start, assume that h(W ) is an integer and, without loss of generality,
that w1 ≤ · · · ≤ wn. The proof is by induction on n. If n = 1, then w1 = 1 and
the lemma holds using exactly h(W ) = 1 channel. If n > 1, then there are two
cases. In the first case wn = 1, which immediately implies that w1 = · · · = wn = 1.
Then n = h(W ) and the solution dedicates a separate channel to each page. In the
second case wn > 1. We claim that wn = wn−1, since otherwise the sum cannot be
an integral number because all the 1/wi for 1 ≤ i ≤ n − 1 are strictly larger than
1/wn. Let W

′ be the window vector that is constructed from W by deleting wn−1

and wn and adding w′ = wn/2. Since wn−1 = wn, it follows that h(W
′) = h(W ).

By the induction hypothesis on W ′, we get a solution with h(W ′) channels in which
page 1 ≤ i ≤ n − 2 is scheduled every wi slots and the new page is scheduled every
wn/2 = wn−1/2 slots. Furthermore, all h(W

′) channels are fully utilized. We replace
this new page alternately with pages n and n − 1. In this way these two pages are
scheduled perfectly each every wn = wn−1 slots and all the h(W ) channels are fully
utilized.

Now, suppose that h(W ) is not an integer. Because we are assuming powers
of 2, the window vector W can be partitioned into two vectors W ′ and W ′′ such
that h(W ′) = �h(W )� and h(W ′′) < 1. By the proof above W ′ can be scheduled
perfectly in �h(W )� fully utilized channels. The window vector W ′′ can be scheduled
in one additional channel as follows. Choose a positive integer y < 2vn such that
h(W ′′) + y/2vn = 1. Such a y exists since 2vn is divided by wi for 1 ≤ i ≤ n. Add
y dummy pages each with a window of size 2vn to the window vector W ′′ to form a
window vector W ∗ with h(W ∗) = 1. By the proof above we obtain a perfect schedule
forW ∗ using one channel. To obtain a perfect one channel schedule forW ′′ we simply
omit the dummy pages.

As a consequence of Lemma 4, we have our first upper bound that is achieved by
simply rounding the window sizes down to the nearest power of 2.

Lemma 5. For any window vector W , there exists a perfect schedule that uses no
more than 	2h(W )
 channels.

Proof. Let W = 〈w1, w2, . . . , wn〉. For each wi let vi be the nonnegative integer
such that 2vi ≤ wi < 2vi+1. Let W ′ = 〈2v1 , . . . , 2vn〉. Any schedule for W ′ is also a
schedule for W . By Lemma 4, there is a perfect schedule for W ′ that uses 	h(W ′)

channels. Since wi/2 < 2

vi ,

h(W ′) =
n∑
i=1

1

2vi
< 2

n∑
i=1

1

wi
= 2h(W ).

Thus, at most 	2h(W )
 channels are used in the schedule.
We now improve the upper bound by generalizing Lemma 4. We consider in-

stances in which all the window sizes are powers of 2 multiplied by the same number.
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Lemma 6. If all the wi are of the form u2vi for some u ≥ 1 and some vi ≥ 0, then
there exists a perfect schedule for the windows scheduling problem that uses exactly
H(W ) = 	h(W )
 channels, where �h(W )� channels are fully utilized.

Proof. Consider the set of windows w′i = wi/u. By Lemma 4, we can schedule
the pages with the w′i windows on⌈

n∑
i=1

1

w′i

⌉
=

⌈
u

n∑
i=1

1

wi

⌉
≤ u 	h(W )


channels, where

⌊
n∑
i=1

1

w′i

⌋
=

⌊
u

n∑
i=1

1

wi

⌋
≥ u �h(W )�

channels are fully utilized. If needed, we add dummy channels with empty schedules
to get a schedule with exactly u 	h(W )
 channels. We now combine sets of u channels
together in a round-robin fashion by picking pages alternately from the u channels.
In this way the window of each page is multiplied by u. This is fine since by definition
wi = uw′i. Overall, we reduced the number of channels by a factor of u. Hence we
used at most 	h(W )
 channels. When combining the channels, we do it so that the
u �h(W )� fully utilized channels are combined u at a time. This yields �h(W )� fully
utilized combined channels.

3.3. Algorithm outline. Our goal is to construct an algorithm that for a given
window vector W creates a perfect schedule with about h(W ) + e ln(h(W )) channels
(see Lemma 7 for the exact bound). The algorithm is recursive and is based on
Lemmas 4 and 6. We first give a high-level description of the algorithm with an
illustrative example. The exact details of the algorithm and its analysis appear in
subsection 3.4.

An instance of the algorithm is determined by two parameters k and x that are
optimized to obtain the best bound. The parameter k represents the depth of the
recursion, and the parameter x is optimized for each value of k. First assume that
k = 1. Here we use Lemma 5 to get a schedule with at most 	2h(W )
 channels.
Now, fix k > 1. Partition the vector of windows into x vectors denoted by Wu for
x ≤ u < 2x. Each window wi ∈ Wu will be rounded down to a window w′i such that
w′i = 2

viu′, where u = 2vu′ for an odd number u′. We round down the window wi such
that w′i is maximal. The set of all the windows w

′
i such that wi ∈ Wu is denoted by

W ′u. By Lemma 6, we need 	h(W ′u)
 channels to schedule all the new windows in W ′u.
This schedule uses �h(W ′u)� channels perfectly with no “waste,” while the remaining
windows (if they exist) are scheduled on the last channel. This implies a partition
of the set W into the perfect vector W p and the residual vector W r. Each window
wi ∈ W p is scheduled perfectly according to its corresponding w′i. To schedule the
windows in W r, we recursively apply the algorithm for some k′ < k.

For each k, we pick the best value for x. We will show that when x is larger,
then the w′i values are closer to the original wi values. However, the residual set W

r

is too big. In order to use the recursion on a smaller residual set, we need a smaller
value for x that in turn implies that some of the w′i are too small compared with their
corresponding wi. This is the tradeoff that dictates the optimization process for the
value of x. Finally, we will find the maximum value for k that can be used by this
recursive algorithm to get our desired bound.
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Example. Consider the following window vector:

W = 〈2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19〉 .

It follows that 2 < h(W ) < 3, and therefore we need at least 3 channels to schedule
the windows in W . Let us examine first the case k = 1 (cf. Lemma 5), in which the
new set of windows is

W ′ = 〈2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16〉 .

The best schedule for W ′ requires 4 channels. Now assume k = 2 and choose x = 3.
We get the following three vectors W3,W4,W5 and their corresponding three vectors
W ′3,W

′
4,W

′
5:

W3 = 〈3, 6, 7, 12, 13, 14, 15〉 ,
W ′3 = 〈3, 6, 6, 12, 12, 12, 12〉 ,
W4 = 〈2, 4, 8, 9, 16, 17, 18, 19〉 ,
W ′4 = 〈2, 4, 8, 8, 16, 16, 16, 16〉 ,
W5 = 〈5, 10, 11〉 ,
W ′5 = 〈5, 10, 10〉 .

For example, the window 7 is rounded down to 6 and therefore belongs to W3, and
the windows 16, 17, 18, 19 all are rounded down to 16 and therefore belong to W4. We
can use one channel to schedule all the windows in W ′3. We use another channel to
schedule the windows 〈2, 4, 8, 8〉 from W ′4. Hence, we get

W p = 〈2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15〉 ,
W r = 〈5, 10, 11, 16, 17, 18, 19〉 .

Now we apply the case k = 1 to schedule the windows in W r. We get

W r ′ = 〈4, 8, 8, 16, 16, 16, 16〉 ,

which needs only one channel. All together, we need 3 channels: 2 for W p and 1 for
W r.

3.4. Upper bound for H(W ). We are now ready for the major technical
lemma which leads to our upper bound. Define r to be a mapping from the positive
integers to the reals by

r(k) =

{
1 for k = 1,

r(k − 1) + e(k−1)/k

(e(k−1)2/k−1)
for k ≥ 2.

Obviously, the function r is a monotonic increasing function. Furthermore, the
limk→∞ r(k) exists and is approximately 4.6412.

Lemma 7. For any window vector W and all positive integers k, if ek−1 <
h(W ) ≤ ek, then there exists a perfect schedule with the number of channels bounded
above by

h(W ) + kh(W )1/k + r(k) .
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Proof. Let W = 〈w1, w2, . . . , wn〉. We begin with k = 1. By Lemma 5, for any
value of h(W ), there exists a perfect schedule, denoted by S1, that uses no more than
	2h(W )
 < 2h(W ) + 1 = h(W ) + 1h(W )1/1 + r(1) channels.

Let k > 1. Let ek−1 < h(W ) ≤ ek and assume that the lemma holds for k′,
1 ≤ k′ < k, using the perfect schedule Sk′ . The schedule Sk for W is defined as
follows. Let x =

⌊
h(W )(k−1)/k

⌋
. We partition the n windows of window vector W

into the x window vectors Wx, . . . ,W2x−1 and define a new window size w
′
i ≤ wi for

each window wi as follows.
Case wi < x. Let u = 2viwi for vi such that x ≤ 2viwi < 2x. Put wi in Wu and

set w′i = wi.
Case wi ≥ x. Let u, x ≤ u < 2x, be such that 2viu ≤ wi < 2vi(u + 1) for some

vi ≥ 1. Put wi in Wu and set w
′
i = 2

viu.
Let W ′u contain those w′i such that wi ∈ Wu. This implies a partition into x

independent window vectors W ′x, . . . ,W
′
2x−1. All the windows in W ′u have the form

u′2v for an odd u′ such that u = u′2v
′
. Hence by Lemma 6, there exists a perfect

schedule Tu forW
′
u with 	hu
 channels, where hu = h(W ′u) =

∑
w′
i
∈W ′u 1/w

′
i. A careful

inspection of the proof of this lemma reveals that this schedule uses �hu� channels
perfectly with no “waste,” where the remaining windows (if they exist) are scheduled
on the last channel. This implies a partition of the vector Wu into the perfect vector
W p
u and the residual vectorW

r
u . W

p
u contains all the windows wi ∈Wu for which their

corresponding pages are scheduled on one of these no-waste channels. W r
u contains

the rest of the windows in Wu. As a result, h
p
u =

∑
{i|wi∈Wp

u} 1/w
′
i is an integer and∑

{i|wi∈W r
u} 1/w

′
i < 1. Since 1/wi ≤ 1/w′i, it follows that hru =

∑
{i|wi∈W r

u} 1/wi < 1.
Define W p = ∪x≤u<2xW

p
u and W r = ∪x≤u<2xW

r
u . The schedule Sk schedules all the

windows in W p using the perfect schedules Tu with exactly
∑2x−1
u=x hpu channels.

Before describing how to schedule the pages whose windows are inW r, we analyze
the number of channels needed for W p. For the windows scheduling problem W p,
window sizes < 2x do not change and window sizes ≥ 2x are rounded down in each
schedule Tu. The worst case happens when wi = 2

vi(u+1)−1 for u = x and therefore
w′i = 2

vix. This implies that wiw′
i
≤ x+1

x . Hence, the number of channels in the schedule

for W p is
∑

wi∈Wp

1

w′i
≤ x+ 1

x

∑
wi∈Wp

1

wi
=

x+ 1

x
h(W p) =

x+ 1

x
(h(W )− h(W r))

≤ h(W ) +
h(W )

x
− h(W r) .(4)

The quantity h(W )/x can be bounded as follows. Since x =
⌊
h(W )(k−1)/k

⌋
, k > 1,

and ek−1 < h(W ), we have

h(W )/x = h(W )/
⌊
h(W )(k−1)/k

⌋

≤ h(W )/(h(W )(k−1)/k − 1)
= h(W )1/k/(1− h(W )−(k−1)/k)

= h(W )1/k
∞∑
i=0

(h(W )−(k−1)/k)i

= h(W )1/k + h(W )1/k/(h(W )(k−1)/k − 1)
< h(W )1/k + e(k−1)/k/(e(k−1)2/k − 1).(5)
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The final inequality holds because the function z/(zk−1−1) is decreasing for all k > 1
and z > 1.

We are left with the remaining windows, W r, to be scheduled. Because hru < 1
for each u and h(W ) ≤ ek, we have h(W r) ≤ ek−1, as can be seen in the derivation

h(W r) =
∑

wi∈W r

1

wi
=

2x−1∑
u=x

hru ≤ x =
⌊
h(W )(k−1)/k

⌋
≤ h(W )(k−1)/k(6)

≤ (ek)(k−1)/k = ek−1 .(7)

There are two cases to consider depending on whether h(W r) ≤ 1.
Case 1. h(W r) ≤ 1. In this case by Lemma 5, W r has a perfect schedule with

the number of channels bounded above by 	2h(W r)
 ≤ 2h(W r) + 1. By this and
inequalities (4) and (5), there is a perfect schedule for W that has the number of
channels bounded above by

h(W ) + h(W )1/k + h(W r) + 1 + e(k−1)/k/(e(k−1)2/k − 1) .
Since k−1 ≥ 1 and h(W ) > ek−1 it follows that 1 < (k−1)h(W )1/k. Since h(W r) ≤ 1
it follows that h(W r) < (k− 1)h(W )1/k. Furthermore, 1 + e(k−1)/k/(e(k−1)2/k − 1) ≤
r(k). Hence, we have our bound.

Case 2. h(W r) > 1. By inequality (7), we have ek
′−1 < h(W r) ≤ ek

′
for some

k′ < k. By the induction hypothesis, the perfect schedule Sk′ for W
r has the number

of channels bounded by

h(W r) + k′h(W r)1/k
′
+ r(k′) .

Claim. k′h(W r)1/k
′ ≤ (k − 1)h(W r)1/(k−1).

Proof of Claim. We show that az1/a ≤ bz1/b for 1 ≤ a ≤ b for 1 ≤ z ≤ ea. If
a = b, we are done. If a < b, then the function z1/a−1/b is increasing for z ≥ 1 and
has value 1 at z = 1. Hence, the equation z1/a−1/b = b/a has exactly one solution.
Equivalently, the functions az1/a and bz1/b intersect exactly once. Since az1/a < bz1/b

for z = 1, it suffices to show that az1/a ≤ bz1/b for z = ea. By calculus the function
ey/y in the range (0,∞) has a minimum at y = 1. Hence, e ≤ ey/y for all y > 0.
Letting y = a/b we have e ≤ ea/b/(a/b), which is equivalent to a(ea)1/a ≤ b(ea)1/b.
The claim follows for a = k′ ≤ b = k − 1 since h(W r) ≤ ek

′
.

Because of the above claim and the fact that r(m) is increasing in m, we have
that the number of channels for the schedule Sk′ for W

r is bounded by

h(W r) + (k − 1)h(W r)1/(k−1) + r(k − 1) .
By inequality (6), we have that the number of channels for the schedule Sk′ for W

r

is bounded by

h(W r) + (k − 1)h(W )1/k + r(k − 1) .(8)

Combining the bounds (4), (5), and (8), we have that the number of channels for the
combined perfect schedules for W p and W r together is bounded by

h(W ) + kh(W )1/k + r(k − 1) + e(k−1)/k/(e(k−1)2/k − 1) ,
which by the definition of r yields our result.
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We are now ready to prove the upper bound on H(W ).
Theorem 8. Every window vector W , with h(W ) > 1, has a perfect schedule

using the number of channels bounded above by h(W )+e ln(h(W ))+η, where η < 7.36.
Proof. The quantity η = e + limk→∞ r(k). Choose k = 	ln(h(W ))
. Hence,

ek−1 < h(W ) ≤ ek. By Lemma 7, there exists a perfect schedule with the number of
channels bounded above by h(W ) + kh(W )1/k + r(k). This is no more than h(W ) +
(ln(h(W )) + 1)(ek)1/k + r(k), which is equivalent to the claim of the theorem.

The proof of Theorem 8 implies an approximation algorithm for the optimal
windows scheduling problem.

Theorem 9. There exists an algorithm for the optimal windows scheduling prob-
lem yielding a solution that is within a factor of 1+O(ln(h(W ))/h(W )) of the optimal
solution for any window vector W .

Proof. Let the algorithm of Theorem 8 produce a schedule with A(W ) channels.
Recall that H(W ) is the optimal number of channels. Without loss of generality we
can assume that h(W ) ≥ 2. We have

h(W ) ≤ H(W ) ≤ A(W ) ≤ h(W ) + e ln(h(W )) + η .

Hence,

A(W )

H(W )
≤ h(W ) + e ln(h(W )) + η

h(W )
= 1 +O

(
ln(h(W ))

h(W )

)
.

3.5. Bounds on N(h). In the optimal harmonic windows scheduling problem
the window vectors are restricted to be of the form Wn = 〈1, 2, . . . , n〉. Our lower
bound on H(Wn) = H(n) (Theorem 3) leads to the following natural upper bound
on N(h).

Theorem 10.

N(h) ≤ c · eh

for c = e−0.57721 < 0.5615.
Proof. By Theorem 3, H(n) ≥ h(Wn) =

∑n
i=1 1/n. The quantities

∑n
i=1 1/n

(n ≥ 1) are the well-known harmonic numbers which are known to be bounded below
by ln(n) + γ, where γ ≈ 0.57721... is Euler’s constant. Hence, h = H(N(h)) >
ln(N(h)) + γ, which implies the theorem.

We conclude this section with a lower bound for N(h) that is derived from the
upper bound on H(W ) from Theorem 8.

Theorem 11.

N(h) ≥ eh

eη+γhe
≈ eh

e7.93669he
.

Proof. By Theorem 8, we are looking for n such that h(Wn)+e ln(h(Wn))+η ≤ h.

For any such n, N(h) ≥ n. Since h(n) = ln(n) + γ, it follows that for n = � eh

eη+γhe �,

h(Wn) = h

(⌊
eh

eη+γhe

⌋)
= ln

(⌊
eh

eη+γhe

⌋)
+ γ ≤ h− e ln(h)− η .

Hence,

h(Wn) + e ln(h(Wn)) + η ≤ h− e ln(h)− η + e ln(h) + η = h .
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With some arithmetic manipulations, one can prove the following corollary.

Corollary 12. For large enough value of h we have that N(h) ≥ (e− c ln(h)
h )h

for some constant c.
Later, in section 5, we will see that the pagoda scheme [15] and our combination

technique generalization yield asymptotic results in which N(h) ≥ (e− c′)h for some
constant c′. Thus, obviously Corollary 12 presents a better asymptotic result.

4. The greedy algorithm. In this section, we describe a greedy strategy for
the harmonic windows scheduling problem. It will be clear how this strategy can be
generalized to the general windows scheduling problem. However, we do not have
analytical bounds for this greedy approach, and we use it only as a heuristic to get
better bounds than those produced by our other methods for the harmonic scheduling
problem.

The greedy algorithm proceeds in rounds, where in the rth round a perfect place-
ment for page r is found in the channel that minimizes the difference r−r′, where r′ is
the distance between placements of page r. The best placement would be to choose,
if possible, the channel in which r′ = r. This might not be possible; for example,
when there are just two channels and we have already perfectly placed 1 in the first
channel and 2 in the second channel, then 3 must be placed in the second channel
with a distance of 2 apart. In this case r − r′ = 1. In order to keep track of where
placements can be made we represent each channel by a tree, where pages are assigned
only to some of the leaves of the tree. If, in some round r, page r cannot be placed
perfectly in any tree, then the algorithm terminates having successfully placed r − 1
pages.

More formally, let an open tree be a tree whose leaves are labeled with two types
of labels: pages and windows. A closed tree is an open tree that has only page labels.
An open forest is a collection of open trees, and a closed forest is a collection of closed
trees. The algorithm maintains an open forest composed of h trees. Initially, all the
trees are singleton open trees with window labels whose value is 1. The algorithm
terminates when the forest becomes a closed forest. The algorithm runs in rounds.
In round r, the algorithm places page r in one of the open trees as follows:

1. Let w1 ≤ w2 ≤ · · · ≤ wk be the ordered list of the labels of all the leaves in
the forest whose labels are of type window.
(a) Let mj = (r mod wj) for 1 ≤ j ≤ k.
(b) Let i be an index for which mi is the minimum among all the mj .

We break ties by selecting the index that is associated with the largest
window label.

(c) Let di = �r/wi�.
(d) Let Ts be the tree that contains wi.

2. If di = 1, then replace the window label wi with the page label r in the tree
Ts. We call this the replacement operation.

3. Otherwise, add di children to the leaf associated with wi replacing this leaf
with di new leaves. The first child is labeled with the page label r, and the
rest are labeled with the window label wi ·di. We call this the split operation.

Note that since mi = r − widi, we see that our choice of mi achieves the goal
of minimizing r − r′, where r′ = widi is the distance between placements of r in the
perfect channel schedule that is produced by Ts.

Theorem 13. The greedy algorithm constructs a perfect 〈h, n〉-schedule for some
value n.

Proof. By definition, the algorithm produces h trees that represent h perfect
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schedules. The value of n is the last round r in which the forest was still an open
forest. It remains to show that indeed the window size of page i is no larger than
i. This is true since in both the replacement operation and the split operation,
the window size assigned to page i is widi, which is less than r by definition (step
(1c)).
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Fig. 3. The evolution of the greedy algorithm for h = 3.

In Figure 3, we show the evolution of the greedy algorithm for h = 3. The final
schedule is the perfect 〈3, 9〉-schedule that first appeared in [15]. In the illustration,
we use numbers for page labels and numbers in parenthesis for window labels. In
addition, we use black circles and white circles to denote leaves with page labels and
leaves with window labels, respectively. At the top level, we illustrate the initial open
forest that is composed of three singleton open trees whose labels are windows of size
1. In round 1, the label of the first tree becomes the page label 1. This tree is now
a closed tree. In round 2, a split operation occurs in the second tree, and it becomes
a tree whose root has two children, one with a page label 2 and one with a window
label 2. In round 3, a split operation occurs in the third tree, and it becomes a tree
whose root has three children, one with a page label 3 and two with a window label 3.
Note that since (3 mod 1) < (3 mod 2), the algorithm selects for the split operation
the window label 1 in the third tree rather than the window label 2 in the second
tree. The second level of the figure illustrates the three trees after the third round.
In round 4, the algorithm splits the node in the second tree with the window label 2
and creates two new leaves: one with a page label 4 and one with a window label 4.
This is because (4 mod 2) < (4 mod 3). Hence, before round 5, the list of available
window sizes is 3, 3, 4. Therefore, the algorithm assigns the page label 5 to the leaf
in the second tree with the window label 4. Hereafter, the second tree is closed. The
third level of the figure illustrates the three trees after the fifth round. In round 6,
the second child of the root of the third tree is split into two leaves: one gets the
page label 6 in round 6 and the other gets the page label 7 in round 7. Finally, in
round 8, the third child of the root of the third tree is split into two leaves: one gets
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the page label 8 in round 8 and the other gets the page label 9 in round 9. At this
stage all the trees are closed and the algorithm terminates with the final round r = 9,
and therefore n = 9 as well. The output of the algorithm is illustrated in the fourth
level of the figure. Note that pages 2, 3, 4, 6 get the maximum possible window size,
whereas pages 5, 7, 8, 9 get a smaller than required window size. However, this is the
best known solution to the harmonic window scheduling problem for h = 3.

3

6 7 9

5

10

8

2

4

16

25

18 19 22 23

17

2411 12 13 14

20 21

15

Fig. 4. The greedy 〈4, 25〉-schedule.

Figure 4 illustrates the output of the greedy algorithm for h = 4. The greedy
algorithm outputs a 〈4, 25〉-schedule where there exists a 〈4, 26〉-schedule [12]. In
particular, this version of the greedy algorithm is not efficient for pages 24 and 25.
It could do better by assigning 16 and 17 as siblings of 15 and then assigning 24, 25,
and 26 as the children of the sibling of 8.

This leads us to modify the greedy algorithm. We propose two possible modifi-
cations. Both try to keep leaves with small window labels open as long as possible.

• The first modification changes the split operation. When di is a composite
number, it is done in several steps following an increasing order of the prime
factors of di. For example, if di = 12 for a node with a window label wi,
then the node is twice split into two nodes and once into three nodes, thus
creating five new leaves whose window labels are 2wi, 4wi, 12wi, 12wi, 12wi.
One of the window labels 12wi becomes a page label, but the rest remain
window labels. In the greedy algorithm that was described earlier, there will
be 11 new window labels 12wi and one page label 12wi.

• In the second modification, the algorithm follows a different rule in step 1(b)
of the algorithm. It sometimes becomes biased towards assigning the new
label r to a large window label at the expense of not minimizing r − r′.
This way, it leaves in the tree smaller window labels for possibly better split
operations.

We implemented the greedy algorithm with and without the two modifications
above. Unfortunately, it was not the case that one version always outperforms the
other versions. However, in most cases the basic greedy algorithm with both modifi-
cations was the best. We were able to run our implementations of the basic greedy
algorithms for 1 ≤ h ≤ 20 and modified versions for 1 ≤ h ≤ 10. Table 1 shows
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results of the greedy algorithm for 1 ≤ h ≤ 12. The best results for 5 ≤ h ≤ 10 come
from modifications of the basic greedy algorithm. Note that for h = 12 the greedy
algorithm is within 6% of optimal. In results not shown in the table, for 15 ≤ h ≤ 20
the greedy solution is within 3% of optimal.

5. The combination technique. In this section, we develop a technique for
solving the optimal harmonic windows scheduling problem. We generalize the tech-
nique of [15]. Their pagoda scheme is a special case of the results of this section. We
show how to combine schedules together to get new schedules for a larger number of
channels. For example, we can combine the 〈3, 9〉-schedule with the 〈4, 28〉-schedule
to produce a 〈7, 289〉-schedule (see Theorem 15). However, for h ≤ 20, the greedy
algorithm outperforms any possible combination. Since we have the output of the
greedy algorithm only for h ≤ 20, the combination technique yields our best results
for 21 ≤ h < H for some large integer H. An estimate for H is 1789 and is computed
at the end of this section. For h ≥ H the asymptotic algorithm of section 3 yields the
best bound.

We start with a technical lemma. For u ≤ v, let an 〈h, u, v〉-schedule be a schedule
on the pages u, . . . , v on h channels such that page i appears at least once in any
consecutive i slots for u ≤ i ≤ v. In particular, an 〈h, n〉-schedule is an 〈h, 1, n〉-
schedule and an 〈h− 1, 2, n〉 schedule since page 1 gets a dedicated channel. The
techniques of this section show how to build new schedules from old ones. As such
we define the following notation:

〈h1, u1, v1〉 , . . . , 〈hm, um, vm〉 ⇒ 〈h, u, v〉
if an 〈h, u, v〉-schedule can be built from 〈h1, u1, v1〉- , . . . , 〈hm, um, vm〉-schedules.
The next lemma shows how to transform an 〈h, u, v〉 schedule into another schedule
for pages from a larger range. We call this the magnification lemma.

Lemma 14 (magnification lemma). 〈h, u, v〉 ⇒ 〈h, �u, �(v + 1)− 1〉 for any inte-
ger � ≥ 1.

Proof. Let S be an 〈h, u, v〉-schedule. We transform S, which is a schedule on
the pages u, . . . , v, into another schedule S′ on the pages �u, . . . , �(v + 1) − 1. We
replace page u with pages �u, . . . , �(u + 1) − 1 by “stretching” the schedule by a
factor of �. In general, we replace the appearances of page u+ j in S with the pages
�(u+j), . . . , �(u+j+1)−1 for 0 ≤ j ≤ v−u. Since in S the window size of u+j is at
most u+ j, it follows that each of the pages �(u+ j), . . . , �(u+ j+1)−1 is guaranteed
to have a window of size �(u+ j). Thus the scheduling of these pages is as required.
The smallest page that replaces an appearance of u is �u, and the largest page that
replaces an appearance of v is �(u+ (v − u+ 1))− 1 = �(v + 1)− 1. This gives us an
〈h, �u, �(v + 1)− 1〉-schedule.

As an example of Lemma 14, we magnify the 〈2, 1, 3〉-schedule
[
1 1 1 1 · · ·
2 3 2 3 · · ·

]
.

Choosing � = 10, we can create the 〈2, 10, 39〉-schedule
[
10 · · · 19 10 · · · 19 10 · · · 19 10 · · · 19 · · ·
20 · · · 29 30 · · · 39 20 · · · 29 30 · · · 39 · · ·

]
.

The above lemma implies our main combination theorem. Here we use 〈h, n〉 as
an abbreviation for 〈h, 1, n〉.
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Theorem 15 (combination theorem).

〈h1, n1〉 , 〈h2, n2〉 ⇒ 〈h1 + h2, (n1 + 1)(n2 + 1)− 1〉 .

Proof. The 〈h2, n2〉-schedule is by definition an 〈h2, 1, n2〉-schedule. By Lemma
14, for � = n1 + 1, there exists an 〈h2, n1 + 1, (n1 + 1)(n2 + 1)− 1〉-schedule. The
schedule with h1 + h2 channels is obtained by scheduling pages 1, . . . , n1 on the first
h1 channels following the 〈h1, n1〉-schedule and scheduling pages n1 + 1, . . . , (n1 +
1)(n2 + 1)− 1 on the last h2 channels.

From our examples in the introduction of 〈3, 9〉 and 〈2, 3〉 we can construct a
〈5, 39〉. The first three channels consist of the 〈3, 1, 9〉-schedule and the last two chan-
nels consist of the 〈2, 10, 39〉-schedule constructed above as an example of Lemma 14.

Corollary 16. 〈h, n〉 ⇒ 〈h+ 1, 2n+ 1〉.
Proof. Apply Theorem 15 using 〈1, 1〉 and 〈h, n〉.
The above corollary is simple but serves as the base in constructing the folklore〈

h, 2h − 1〉-schedule. This schedule is obtained by applying h − 1 times Corollary
16 starting with the 〈1, 1〉-schedule. A better asymptotic result than the 〈h, 2h − 1〉-
schedule may be obtained by taking a known schedule on h > 1 channels and applying
the combination theorem, Theorem 15, again and again as in the next theorem.

Theorem 17. 〈k, n〉 ⇒ 〈
�k, (n+ 1)� − 1〉 for any integer � ≥ 1.

Proof. We prove the theorem by induction on �. For � = 1 the theorem follows
trivially. For � > 1, assume the claim holds for � − 1. That is, there exists an〈
(�− 1)k, (n+ 1)�−1 − 1〉-schedule. Then by Theorem 15, using this schedule and

the 〈k, n〉-schedule, there exists an 〈(�− 1)k + k, ((n+ 1)�−1 − 1 + 1)(n+ 1)− 1〉 =〈
�k, (n+ 1)� − 1〉-schedule.
The following corollary is equivalent to Theorem 17.

Corollary 18. 〈k, n〉 ⇒ 〈h, ( k√n+ 1)h − 1〉 for h = �k.

Corollary 18 implies the existence of an 〈h, ( 3
√
10
)h〉-schedule, provided that 3

divides h, and the existence of an 〈h, ( 4
√
29
)h〉-schedule, provided that 4 divides h.

The former is based on the 〈3, 9〉-schedule and the latter on the 〈4, 28〉-schedule.
Both are better than the

〈
h, 2h − 1〉-schedule but asymptotically far from a potential〈

h, 0.56147eh
〉
-schedule that is implied by Theorem 10. A slightly better asymptotic

result than the one in Theorem 17 can be obtained by using the fact that an 〈h, n〉-
schedule is also an 〈h− 1, 2, n〉-schedule.

Theorem 19. For an odd n, 〈k, n〉 ⇒ 〈
�(k − 1) + 1, 2((n+ 1)/2)� − 1〉 for any

� ≥ 1.
Proof. We prove the theorem by induction on �. For � = 1 the theorem follows

since �(k−1)+1 = k and 2((n+1)/2)�−1 = n. For � > 1 assume the claim holds for �−
1. That is, there exists an

〈
(�− 1)(k − 1) + 1, 2((n+ 1)/2)�−1 − 1〉-schedule. We have

a 〈k, n〉 ⇒ 〈k − 1, 2, n〉-schedule by deleting the first channel. By Lemma 14 using the
factor ((n+1)/2)�−1, we get 〈k − 1, 2, n〉 ⇒ 〈

k − 1, 2((n+ 1)/2)�−1, 2((n+ 1)/2)� − 1〉.
The claim of the theorem follows by adding the k − 1 channels of the 〈k − 1, 2((n +
1)/2)�−1, 2((n+1)/2)�−1〉-schedule on the pages 2((n+1)/2)�−1, . . . , 2((n+1)/2)�−1
to the (� − 1)(k − 1) + 1 channels of the 〈(�− 1)(k − 1) + 1, 2((n+ 1)/2)�−1 − 1〉-
schedule on pages 1, . . . , 2((n+ 1)/2)�−1 − 1 to obtain an 〈�(k − 1) + 1, 2((n+ 1)/2)�
−1〉-schedule.

The following corollary is equivalent to Theorem 19.

Corollary 20. For an odd n, 〈k, n〉 ⇒ 〈h, 2( k−1
√
(n+ 1)/2)

h−1 − 1〉 for h =
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�(k − 1) + 1. Equivalently, 〈k, n〉 ⇒ 〈h, c( k−1
√
(n+ 1)/2)

h − 1〉 for h = �(k − 1) + 1
and c = 2/ k−1

√
(n+ 1)/2.

By the preceding corollary, the 〈3, 9〉-schedule implies an approximately

〈h, 0.894427 (2.23607)h〉-schedule, provided that 2 divides h − 1 (the pagoda scheme
of [15]), and the 〈4, 27〉-schedule implies an approximately 〈h, 0.829827 (2.41014)h〉-
schedule, provided that 3 divides h− 1. Note that we cannot use the 〈4, 28〉-schedule
since in this case n is even.

Comparing the asymptotic results. We implemented the greedy algorithm for
1 ≤ h ≤ 20, yielding in particular for h = 20 a 〈20, 265133521〉-schedule. This in
turn implies an asymptotic

〈
h, 0.747366(2.67606)h

〉
-schedule, provided that 19 divides

h− 1 (Corollary 20). This value is “close” to the upper bound of 0.56147eh on N(h)
(Theorem 10). Using Mathematica [18], we get that this schedule is smaller than
the eh/(e7.93669he) bound (Theorem 11) for h > 1789. That is, the combination
technique yields our best results for h in the range [21..1789]. However, implementing
the greedy algorithm for h > 20 would increase the 1789 threshold. On the other
hand, implementing the asymptotic algorithm for W = 〈1, . . . , n〉 would definitely
imply a better bound than the one from Theorem 11 and hence would decrease the
1789 threshold. This is because the bounds in section 3 are mainly for the general
windows scheduling problem.

6. Solutions for small h. In this section we describe our best constructions
to the harmonic windows scheduling problem for small h. For h = 2 the general〈
h, 2h − 1〉-schedule shown in Figure 2 yields a 〈2, 3〉-schedule, which is optimal. For
h = 3 the greedy algorithm example shown in Figure 3 yields a 〈3, 9〉-schedule, which is
not known to be optimal. The best possible would be a 〈3, 10〉-schedule. For h = 4, 5,
we illustrate the 〈4, 28〉 and the 〈5, 77〉 nonperfect schedules using the tree represen-
tation. We omit the details of our tree representation for the 〈6, 211〉 nonperfect
schedule.
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171615

Fig. 5. The 〈4, 28〉-schedule.

Our 〈4, 28〉-schedule is not a perfect schedule. The first channel is dedicated to
page 1. Figure 5 uses the tree representation to illustrate the schedules of the second,
third, and fourth channels. Channels 1, 2, and 3 have perfect channel schedules
but channel 4 does not. This is because pages 7, 14, 27, 28 occur at multiple leaves
of tree 4. The window sizes for page 7 are 7, 7, 6 repeatedly, for page 14 they are
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Fig. 6. The 〈5, 77〉-schedule.

14, 13, 13 repeatedly, and for pages 27, 28 they are 27, 27, 26 repeatedly.

Figure 6 illustrates the four trees representing the second, third, fourth, and fifth
schedules in the nonperfect 〈5, 77〉-schedule. The first two trees represent perfect
schedules; in the other two trees pages 11, 13, 32, 33, 34 do not have a fixed window
size.

7. Open problems. In this section, we discuss some open problems related to
the windows scheduling problem, to the harmonic windows scheduling problem, and
to the two motivating applications, the push systems with guaranteed delay and the
new media-on-demand systems.

The harmonic windows scheduling problem.

• Is the 〈3, 9〉-schedule optimal? We conjecture that the answer is yes. However,
to show this, more complicated arguments are needed to improve the upper
bound of N(3) ≤ 10 to be N(3) ≤ 9. These arguments should rely on the gcd
relationship among the numbers 2 to 9. However, we are able to show that
for perfect schedules N(3) ≤ 9.
• For the media-on-demand application efficient solutions for small values of h
are important. Are there better schedules for h = 4, 5, 6? The gap for h = 4
is 28 ≤ N(4) ≤ 30, for h = 5 it is 77 ≤ N(5) ≤ 82, and for h = 6 it is
211 ≤ N(5) ≤ 226. For 7 ≤ h ≤ 20, our best solutions are outputs of the
greedy algorithm. Is there a better algorithm?
• Is there any analytic bound for our greedy algorithm?
• The combination technique yields our best results for 21 ≤ h ≤ 1789. A
further improvement would be obtained by looking for the best combination
for any h using a dynamic programming implementation of the combination
theorem.
• We believe that for the optimal harmonic windows scheduling we can get a
better lower bound than that given in Theorem 11. This is because we know
the exact behavior of the algorithm described in the proof of Lemma 7 in
the first stage of the recursion for any choice of x. In the work in progress,
we plan to implement the asymptotic algorithm and will probably get better
bounds than those implied by the combination technique for h ≤ 1789.
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• Is there another new technique that can yield a provably better asymptotic
algorithm for the harmonic windows scheduling problem?

The optimal windows scheduling problem.

• Our asymptotic approximation uses h(W ) + e ln(h(W )) + O(1) channels. Is
there an h(W ) +O(1) solution, or can that be shown to be impossible?
• Unlike the special case of the optimal harmonic scheduling problem, it is
not clear how to define the dual problem of the general windows scheduling
problem. One needs a notion of “throughput” to evaluate the performance of
a solution for a given number of channels that cannot accommodate all the
requested windows.

The media-on-demand and the push systems applications.

• Apparently, the windows scheduling problem does not require a fixed window
size or that a page appear only on one channel. Combinatorially, adding these
two restrictions separately or combined could be very interesting. Moreover,
one could imagine a media-on-demand model in which these restrictions could
be useful. In this paper, we have two nonperfect schedules for the small values
of h = 4, 5. Still, each page is scheduled only on one channel. On one hand,
we conjecture that without these restrictions better solutions can be found.
On the other hand, we conjecture that asymptotically these restrictions do
not reduce the value of N(h).

• Consider the case in which the receiving bandwidth of the clients is less than
h. Capitalizing on the work of [16] and with the help of this paper’s results
we can improve the tradeoff results between N(r, h) and r/h, where N(r, h) is
the maximum number of pages that can be scheduled on h channels, provided
that the receiving bandwidth of clients is r < h. This is a work in progress.
The main idea is that having good solutions for N(r) can improve the results
for N(r, h).
• In the push systems application, if the servers have a fixed number of channels,
there is a need to devise a strategy for “selling” windows. (This is related to
the last item of the previous paragraph.)
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1. Introduction. A fundamental problem in biology and linguistics is that of
inferring the evolutionary history of a set of taxa, each of which is specified by the set
of traits or characters that it exhibits [4, 6, 15]. Formally, let C be a set of characters,
and for every c ∈ C let Ac be the set of allowable states for character c. Let m = |C|
and rc = |Ac|. A species s is an element of A1 × · · · × Am; c(s) is referred to as the
state of character c for s. A phylogeny for a set of n distinct species S is tree T with
the following properties:

(C1) S ⊆ V (T ) ⊆ A1 × · · · × Am,
(C2) every leaf in T is in S.

Define the length of a phylogeny T for S as

length(T ) =
∑

(u,v)∈E(T )

dist(u, v),

where, for any two species u, v, dist(u, v) denotes the number of character states in
which u and v differ (that is, dist(u, v) is the Hamming distance between u and v).
The Steiner tree problem in phylogeny (STP) is to find a phylogeny T of minimum
length for a given set of species S.

STP and many of its variants are known to be NP-hard [7, 3]. While polynomial-
time approximation algorithms with constant ratio bound are known for this problem
(for a recent example, see [11]), there are limits to the approximability of STP [5].

STP is related to the problem of determining whether S has a perfect phylogeny,
i.e., one that satisfies (C1), (C2), and the following:

(C3) For every c ∈ C and every σ ∈ Ac, the set of all u ∈ V (T ) such that c(u) = σ
induces a subtree of T .
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The perfect phylogeny problem was shown to be NP-complete by Bodlaender, Fellows,
and Warnow [2] and, independently, by Steel [14]. This motivated the study of the
fixed-parameter versions of the problem, where either m or r is fixed. Both versions
have been shown to be polynomially solvable, the first by McMorris, Warnow, and
Wimer [13], and the second by Agarwala and Fernández-Baca [1]. The time bound of
the latter’s algorithm was improved by Kannan and Warnow [12].

If a set of species admits a perfect phylogeny, the underlying set of characters
C is compatible; thus, the perfect phylogeny problem is often called the character
compatibility problem. In practice most sets of characters are incompatible, and thus
a natural problem is to find a maximum-cardinality subset of C that is compatible.
This problem is, unfortunately, equivalent to CLIQUE [8] and hence not only NP-
hard, but also extremely hard to solve approximately [10].

The difference between m and the maximum-cardinality compatible subset of C
is one measure of the degree of compatibility of a set of species. Here we study a
measure of incompatibility that we believe is equally natural, which is motivated by
the following result [1, 9].

Theorem 1. Let T ∗ be a phylogeny for S. Then length(T ∗) ≥∑c∈C(rc−1) and
T ∗ is a perfect phylogeny if and only if length(T ∗) =

∑
c∈C(rc − 1).

Thus, the length of a perfect phylogeny (assuming one exists) gives a tight lower
bound on the length of any phylogeny for S. Motivated by this observation, let us
define the penalty of a phylogeny T as

penalty(T ) = length(T )−
∑
c∈C

(rc − 1).

Obviously, STP can be rephrased as the problem of finding a phylogeny T such that
penalty(T ) is minimum. We are interested in the fixed-parameter version of the
problem, namely, given a set of species S and an integer q, does S have a phylogeny
with penalty at most q? We show that for each fixed q and r, the resulting “near-
perfect” phylogeny problem can be solved in polynomial time. The running time of
our algorithm is a polynomial whose degree depends on the parameters, making the
algorithm practical only for small values of the parameters. On the other hand, the
flexibility of allowing one or more characters to violate condition (C3) by some fixed
amount may extend the range of applicability of character-based methods.

Our near-perfect phylogeny algorithm shares several ideas with earlier work on
the perfect phylogeny problem [1, 12]. As in the algorithms for the latter problem,
we rely on the observation that there is a polynomially bounded number of ways in
which species can be partitioned into subfamilies that respect state boundaries for
some character. (See section 2 for a precise definition.) The approach is to build
subphylogenies for these subfamilies, proceeding by increasing cardinality. Subphylo-
genies are joined through their roots to form subphylogenies for larger subfamilies.

The construction of subphylogenies is complicated by issues that do not arise
in the perfect phylogeny problem. Each edge in a perfect phylogeny corresponds to
a character partition, i.e., a partition of S into subfamilies such that there exists
a character c on which no state is shared between species of different subfamilies.
This property and the fact that the number of character partitions is polynomially
bounded when r is fixed are keys to the efficient solution of the perfect phylogeny
problem. Unfortunately, it can easily be seen that imperfect phylogenies may have
bad edges, i.e., edges not inducing character partitions. We show, however, that
the number of bad edges is polynomially bounded when the penalty is bounded.
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Our strategy to build a subphylogeny for a subset of species is therefore to generate
different candidate trees consisting only of bad edges and use them as skeletons from
which to hang subphylogenies for character subfamilies. From among all of the trees
thus enumerated, we select the one that results in the least penalty. It is nontrivial
to determine which subphylogenies to connect to a candidate bad tree, because there
is no a priori bound on the degree of a vertex. (Such a bound would imply that the
subphylogenies could be found in polynomial time by simply trying all combinations of
character subfamilies.) We show that it suffices to enumerate a polynomially bounded
number of labeled candidate trees.

The rest of the paper is organized as follows. Section 2 gives definitions and
notation. Section 3 explains how to compute perfect phylogenies. The properties of
low-penalty phylogenies and subphylogenies are studied in section 4. In particular,
bounds are derived there on the number of bad edges in a near-perfect phylogeny and
on the amount of information that must be enumerated to construct such a phylogeny.
Our near-perfect phylogeny algorithm is presented in section 5. Section 6 concludes
the paper.

2. Basic definitions and notation. The vertex sets of all trees are assumed
to be subsets of A1 × · · · ×Am. Note that this implies that every two adjacent nodes
are distinct. No generality is lost, since a tree that does not satisfy this condition can
be transformed into one that does and that has at most the same length.

Throughout the paper, r denotes maxc∈C rc.
Let c be a character. We assume that each state in Ac is exhibited by some

element of S. Obviously, any state that is not exhibited by any species can be deleted
from Ac. We assume that Ai ∩ Aj = ∅ for i �= j. No generality is lost by making
this assumption, since it can always be enforced by replacing each state σ on every
character c by the state (σ, c).

Let T be a tree, and let σ ∈ Ac. Then T [σ] denotes the subgraph of T induced
by all nodes v such that c(v) = σ. For any edge (u, v) ∈ T , Tu and Tv denote the
components of T − {(u, v)} containing u and v, respectively.

Definition 1. Let T be a phylogeny for S. Character c is convex in T if for
every σ ∈ Ac, T [σ] is connected. If T [σ] is not connected, σ is a penalty state in T
and c is nonconvex in T .

In what follows, Cp ⊆ C denotes a set of characters that are required to be convex.
Definition 2. Let T be a phylogeny for S. T is q-near-perfect if penalty(T ) ≤ q.

T is Cp-perfect if every c ∈ Cp is convex in T . If Cp = C, T is simply called perfect.
A minimum Cp-perfect phylogeny is a Cp-perfect phylogeny of minimum length.

An example of a Cp-perfect phylogeny is shown in Figure 1. For clarity, the set
of states for every character is written as {0, 1, 2, 3, 4}; in reality, Aci = {(j, ci)}4j=0

for i = 1, 2, 3, 4. We shall refer to Figure 1 throughout the paper to illustrate various
concepts.

Clearly, a Cp-perfect phylogeny may not exist for a given set Cp. Note also
that, by Theorem 1, all perfect phylogenies have the same (minimum) length, so it is
redundant to talk about minimum perfect phylogenies.

Definition 3. Two subsets X, Y of S share a state on c ∈ C if there exists a
state σ of c such that c(x) = c(y) = σ for some x ∈ X, y ∈ Y . State σ is referred to
as a shared state.

Definition 4. A character partition with respect to a character c is a partition
(S1, S2) of S such that no species in S1 shares a state of c with any species of S2. The
subsets S1 and S2 are character subfamilies. A character subfamily Q is proper if at
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c1 c2 c3 c4
s1 0 2 1 2
s2 4 2 1 1
s3 0 2 3 1
s4 0 4 4 0
s5 0 1 0 0
s6 3 2 1 0
s7 2 0 1 3
s8 1 0 1 2
s9 0 2 2 4
s10 0 3 2 2

x
☛

✡

✟

✠
0 2 1 1
✏✏✏✏✏✏✏✏

��������

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
s1

☛

✡

✟

✠
0 2 1 2 y

☛

✡

✟

✠
0 2 1 0 s2

☛

✡

✟

✠
4 2 1 1 s3

☛

✡

✟

✠
0 2 3 1

✏✏✏✏✏✏✏✏

��������
s4

☛

✡

✟

✠
0 4 4 0 v

☛

✡

✟

✠
0 2 1 2 s5

☛

✡

✟

✠
0 1 0 0

✏✏✏✏✏✏✏✏

��������
u
☛

✡

✟

✠
2 0 1 2 s6

☛

✡

✟

✠
3 2 1 0 w

☛

✡

✟

✠
0 2 2 2

�
��

❅
❅❅

�
��

❅
❅❅

s7

☛

✡

✟

✠
2 0 1 3 s8

☛

✡

✟

✠
1 0 1 2 s9

☛

✡

✟

✠
0 2 2 4 s10

☛

✡

✟

✠
0 3 2 2

Fig. 1. Top: A set of ten species described by their states on a set of characters C =
{c1, c2, c3, c4}, each with five states. Bottom: A Cp-perfect phylogeny for the set of species, where
Cp = {c1, c2, c3}. The length of the tree is 18; its penalty is 2.

most one state is shared between Q and S −Q for every c ∈ Cp.
From this point forward, all character subfamilies that we consider are assumed

to be proper.

The number of character subfamilies is O(2rm), since at most 2r are defined
by the states of any given character [1]. This bound is polynomial when r is fixed,
which motivates the following approach to computing minimum Cp-perfect phyloge-
nies: Enumerate the subfamilies by increasing cardinality, and for each subfamily find
a minimum-length rooted Cp-perfect phylogeny made up of phylogenies for smaller
subfamilies. Since our goal is to compose the phylogenies by linking roots through
edges, the permissible states for the roots are partially determined by convexity. To
formalize these ideas, we need some definitions. In what follows, ∗ denotes an unspec-
ified state, which is in none of the Ai’s.

Definition 5. Let Q ⊆ S be a character subfamily. The splitting vector of Q is
the species Sv(Q) where, for each character c, if c ∈ Cp and Q and S −Q share state
σ on character c, then c(Sv(Q)) = σ; otherwise, c(Sv(Q)) = ∗.

Definition 6. Let Q, Q1 be character subfamilies such that Q1 ⊂ Q. Q and Q1

are compatible if for every c ∈ Cp such that c(Sv(Q)), c(Sv(Q1)) �= ∗, c(Sv(Q)) =
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c(Sv(Q1)).
Intuitively, if Q and Q1 are compatible, there conceivably exists a Cp-perfect

phylogeny for Q ∪ {Sv(Q)} such that one of the subtrees of Sv(Q) is a phylogeny for
Q1 ∪{Sv(Q1)}. In such a phylogeny, the states of the root on some characters c ∈ Cp
such that c(Sv(Q)) = ∗ may have to take on specific values, because a state on c may
be shared between Q1 and S − Q1 that is not shared between Q and S − Q. This
motivates the following definition.

Definition 7. Let Q,Q1 be compatible character subfamilies such that Q1 ⊂ Q.
The splitting vector for (Q,Q1) is the species Sv(Q,Q1) where for each character c,
if c ∈ Cp and state σ is shared between Q and S −Q or between Q1 and S −Q1, then
c(Sv(Q,Q1)) = σ; otherwise, c(Sv(Q,Q1)) = ∗.

Definition 8. Let Q ⊆ S and x be a species. Then ∼x denotes the equivalence
relation on Q defined as the transitive closure of the following relation Rx: For s, t ∈
Q, (s, t) ∈ Rx if there exists a character c such that c(s) = c(t) �= c(x) �= ∗. Denote
by Q/x the collection of equivalence classes of ∼x.

Observe that each of the sets in Q/x must be in the same connected component
of T − {x} for any perfect (not just Cp-perfect) phylogeny T for Q ∪ {x}.

Definition 9. Let T be a phylogeny for S and let e = (u, v) be an edge of T .
Then (S∩V (Tu), S∩V (Tv)) is an edge partition of S (with respect to T ). The subsets
S ∩ V (Tu) and S ∩ V (Tv) are edge subfamilies. Edge (u, v) is good if the partition
(S ∩ V (Tu), S ∩ V (Tv)) induced by e is a character partition; otherwise, e is bad.

To close this section, we illustrate some of the concepts introduced here, making
reference to Figure 1. Let Q1 = {s9, s10} and Q = {s7, s8, s9, s10}. Then, Sv(Q1) =
(0, 2, ∗, ∗) and Sv(Q) = (0, 2, 1, ∗); thus, Q1 and Q are compatible, and Sv(Q,Q1) =
(0, 2, 1, ∗). In the phylogeny shown, edges (s1, x), (x, y), and (y, v) are bad; all other
edges are good.

3. Finding perfect phylogenies. Before studying near-perfect phylogenies,
we review the perfect phylogeny algorithm of Agarwala and Fernández-Baca and the
improvements devised by Kannan and Warnow. The algorithm relies on two facts.
The first is the aforementioned polynomial bound (for fixed r) on the number of
character subfamilies. The second is that perfect phylogenies can be assembled from
phylogenies for character subfamilies, because, as shown in [1], every edge in a perfect
phylogeny for S is good.

Definition 10. Let Q be a character subfamily. A perfect subphylogeny for Q
is a rooted perfect phylogeny for Q, whose root x satisfies c(x) = c(Sv(Q)) for all c
such that c(Sv(Q)) �= ∗, and c(x) = c(s) for some s ∈ Q otherwise.

It is straightforward to verify that if Q1 and Q2 = S −Q1 have perfect subphy-
logenies T1 and T2, respectively, then the tree obtained by connecting the roots of T1

and T2 by an edge is a perfect phylogeny for S.
Definition 11. Let Q,Q1 be compatible character subfamilies such that Q1 ⊂ Q.

A perfect subphylogeny for (Q,Q1) is a rooted perfect phylogeny for Q, whose root x
is such that (i) c(x) = c(Sv(Q,Q1)) for all c such that c(Sv(Q)) �= ∗, and c(x) = c(s)
for some s ∈ Q otherwise, and (ii) the removal of x partitions Q into subsets some of
which union to Q1.

The following result is proved in [12, 1].
Lemma 2. Suppose that Q is a character subfamily and that Q1 ⊂ Q has a

subphylogeny. Let Q2 = Q−Q1. Then, (Q,Q1) has a subphylogeny if and only if (i)
Q2 has a subphylogeny or (ii) every element of Q2/Sv(Q,Q1) has a subphylogeny. In
case (ii), c(Sv(Q,Q1)) �= ∗ for every character c.
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Subphylogeny(Q).
For each subfamily Q1 ⊂ Q compatible with Q do the following:

1. Let TQ1
= N(Q1).

2. If TQ1
�= ∅, then do the following:

(a) Let Q2 = Q−Q1 and TQ2
= N(Q2).

(b) If TQ2
�= ∅, then let TQ be the subphylogeny for Q whose root is a

node xQ satisfying c(xQ) = c(Sv(Q,Q1)) for every c ∈ C such that
c(Sv(Q,Q1)) �= ∗, and c(xQ) = c(xQ1

) for every other c, where xQ1
is

the root of TQ1
. Set N(Q) = TQ and return.

(c) Otherwise, let {Pi}ki=1 be the set of equivalence classes Q2/Sv(Q,Q1).
If TPi = N(Pi) �= ∅ for every i ∈ {1, . . . , k}, then let TQ be the subphy-
logeny for Q whose root xQ satisfies c(xQ) = c(Sv(Q,Q1)) for every
c ∈ C and whose subtrees are TQ1

and TP1
, . . . , TPk . Set N(Q) = TQ

and return.

Perfect-Phylogeny(S,C).
1. Allocate a table N with one entry for each character subfamily Q. Set

N(Q) = ∅ for each such Q.
2. Enumerate, by increasing cardinality, each character subfamily Q, and run

Subphylogeny(Q).
3. If there exists a pair of subfamilies Q1, Q2 such that Q2 = S − Q1 and

N(Q1),N(Q2) �= ∅, then return the tree T obtained by linking the roots of
TQ1 = N(Q1) and TQ2

= N(Q2) by an edge. Otherwise, return ∅.

Fig. 2. The perfect phylogeny algorithm.

This leads to the algorithm of Figure 2. The main procedure, Perfect-Phy-
logeny, considers character subfamilies by increasing cardinality; it attempts to build
a subphylogeny for each one using procedure Subphylogeny, inserting the result into
a table N.

Perfect-Phylogeny iterates over all O(2rm) character subfamilies Q. For
each of these, Subphylogeny considers O(2rm) choices of Q1. Kannan and Warnow
show how to find the equivalence classes of Q2/Sv(Q,Q1) in O(n) time at the expense
of precomputing, in O(2rnm2) time, the equivalence classes of S/Sv(G) for every
subfamily G (see [12]). An O(22rnm2) bound follows.

4. Near-perfect phylogenies. The algorithm of Figure 2 relies heavily on the
fact that perfect phylogenies have no bad edges, a property that may not hold for
near-perfect phylogenies. In this section, we show that near-perfect phylogenies can
be decomposed into perfect and imperfect parts. The former can be handled by
the techniques described in the previous section. We prove that the latter can be
generated by examining an amount of information that is polynomial for each fixed q.
As before, Cp denotes a set of characters required to be convex. Before proceeding,
we need some definitions.

Definition 12. A penalty state assignment is a function α that maps each
c ∈ C − Cp to an element α(c) of Ac. The penalty state assignment of a species s is
the penalty state assignment αs, where αs(c) = c(s) for each c ∈ C − Cp.

Definition 13. Let Q be a character subfamily and α be a penalty state assign-
ment. A subphylogeny for (Q,α) is a rooted Cp-perfect phylogeny T for Q whose root
x satisfies the following properties:
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(i) For every c ∈ Cp, c(x) = c(Sv(Q)) if c(Sv(Q)) �= ∗; otherwise, c(x) = c(u)
for some u ∈ Q.

(ii) For every c ∈ C − Cp, c(x) = α(c).

T is a minimum-length subphylogeny if it has the smallest length among all subphy-
logenies for (Q,α).

Definition 14. Let T be a subphylogeny with root x for (Q,α). Let (u, v) be
an edge of T , where u is the parent of v. Then, (u, v) is good if S ∩ V (Tv) is a
character subfamily; otherwise (u, v) is bad. The maximal subtree T that contains x
and only bad edges is the bad tree of T and is denoted B(T ). T is in normal form if,
for every good edge (u, v) in T such that u is in B(T ), Tv is a subphylogeny for some
pair (Qv, αv), where Qv ⊆ Q.

Note that, by the maximality of B = B(T ), if an edge of T is not in B but is
adjacent to an edge of B, then it is good; i.e., the associated edge subfamily is a
character subfamily as well.

Definition 15. Let T be a subphylogeny, v be a node of B = B(T ), and u be a
child of v not in B. Then the subset of S contained in Tu is an edge subfamily at v.
An edge subfamily Q at v is perfect if no state is shared between Q and S −Q on a
character c except (possibly) c(v), and Q∪{v} has a perfect phylogeny. All other edge
subfamilies at Q are imperfect.

For a node v in B, Pe(v) and Im(v) stand for the sets of perfect and imperfect
edge subfamilies at v, respectively. P(v) is the union of all perfect edge subfamilies
at v, and F(v) is the union of all edge subfamilies at v.

Let T be a subphylogeny for (Q,α), and let v be a node in T . Then, by definition,
the subtree of T consisting of v, together with all Tu such that S ∩ V (Tu) is a perfect
edge subfamily at v, is a subphylogeny for P(v).

We now illustrate some of the notions introduced so far, making reference to
Figure 1. The subtree rooted at y in that diagram is a subphylogeny for (Q,α),
where Q = {s4, s5, s6, s7, s8, s9, s10} and α(c4) = 0; its bad tree consists of edge (y, v).
Indeed, if the set P = {s1, . . . , s10} is a character subfamily within a larger set S such
that P and S−P share (say) state (1, c3), then the whole tree at x is a subphylogeny
for (P, α), where α(c4) = 1. The bad tree in this case consists of edges (s1, x), (x, y),
and (y, v). Both of the subphylogenies we have described are in normal form. Observe
that Pe(v) = {{s7, s8}, {s9, s10}} and Im(v) = {{s6}}.

The results that follow characterize the structure of near-perfect phylogenies and
subphylogenies.

Lemma 3. Let T be a Cp-perfect phylogeny, and let (u, v) be a bad edge in T .
Then, for each c ∈ Cp, c(u) = c(v). Furthermore, there is some c ∈ C −Cp such that
c(u) �= c(v).

Proof. We first show that for each c ∈ Cp there exists a shared state on c between
Qu = S ∩ V (Tu) and Qv = S ∩ V (Tv). Suppose that this is false. Then (Qu, Qv) is a
character partition and (u, v) is, by definition, a good edge, a contradiction.

Because of the state shared between Qu and Qv on c ∈ Cp and the fact that T is
Cp-perfect, we must have c(u) = c(v). We must have c(u) �= c(v) for some c ∈ C−Cp
because we are dealing with phylogenies where every two nodes differ in at least one
state.

Lemma 4. Let T be a Cp-perfect phylogeny such that penalty(T ) ≤ q. Then T
has at most qr bad edges.

Proof. Let C ′ = C − Cp. For each c ∈ C ′ let lc be the number of edges (u, v)
in T such that c(u) �= c(v). Since penalty(T ) ≤ q, |C ′| ≤ q. By Lemma 3, for every
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bad edge (u, v) there must be some c ∈ C ′ such that c(u) �= c(v). Thus, the number
of bad edges is at most

∑
c∈C′ lc. Moreover,

∑
c∈C′(lc − (rc − 1)) ≤ q. Hence, the

number of bad edges is bounded by q +
∑
c∈C′(rc − 1) ≤ qr.

Lemma 5. Suppose that Q is a character subfamily having a rooted Cp-perfect
phylogeny T , with root x such that, for every c ∈ Cp, c(x) = c(Sv(Q)) if c(Sv(Q)) �= ∗.
Let α be the penalty state assignment of x. Then, (Q,α) has a subphylogeny of length
at most length(T ).

Proof. T is a subphylogeny for (Q,α), except that there might be some c ∈ Cp
such that c(x) �= c(u) for any u ∈ Q. For each such c, carry out the following step
until it no longer applies:

Let c(x) = σ be such that σ �= c(u) for any u ∈ Q. Let A be the
connected component of T [σ] containing x, and let (u, v) be any edge
of T such that u ∈ A and v �∈ A. Then, c(u) = β �= σ. Set c(w) equal
to β for all w in A.

Each application of the above step preserves perfection with respect to Cp; fur-
thermore, it does not affect the contribution of the nonconvex characters to the length.
When the step no longer applies, T is a subphylogeny.

Lemma 6. Suppose that the pair (Q,α) has a subphylogeny. Then, (Q,α) has a
minimum-length subphylogeny in normal form.

Proof. Let T be a minimum-length subphylogeny for (Q,α), and let B = B(T ).
If T is in normal form, we are done, so suppose it is not. Successively consider each
good edge (u, v) in T such that u is in B and Tv is not a subphylogeny for (Qv, αv),
where Qv = S ∩ V (Tv) and αv is the penalty state assignment of v. For each such
edge, apply the following transformation to T : Let T ′v be a subphylogeny for (Qv, αv)
such that length(T ′v) ≤ length(Tv); such a tree T ′v exists by Lemma 5, since Tv is a Cp-
perfect phylogeny for Qv where, for every c ∈ Cp, c(v) = c(Sv(Qv)) if c(Sv(Qv)) �= ∗.
Replace Tv by T ′v by deleting Tv and making the root of T ′v a child of u.

Each application of the transformation preserves the properties that T is of min-
imum length and that T is a subphylogeny for (Q,α). After the final application, T
is in normal form.

Lemma 7. Let T be a subphylogeny for (Q,α), let B = B(T ), and let

U = (S −Q) ∪ {u ∈ P : P ∈ Im(v), v ∈ B}.

Then, for each v ∈ V (B), P(v) = G(v) − U for some set G(v) =
⋂l
i=1Qi, where

{Qi}li=1 is a set of character subfamilies for different characters c ∈ C − Cp.
Proof. Pick G(v) as follows. For each node v of B and each nonconvex character

c, let Q(v, c) be the character subfamily consisting of all species s ∈ S such that
c(s) = c(x) for some x ∈ P(v). The set G(v) is the intersection of Q(v, c) over all
characters c ∈ C − Cp.

To prove the claim, we show containment in both directions:
• Suppose s ∈ P(v). Then, s ∈ Q(v, c) for each c ∈ C−Cp. Hence, s ∈ G(v)−U .
• Suppose s ∈ G(v)− U . By definition of G(v), for each c ∈ C − Cp there is a

species x ∈ P(v) such that c(x) = c(s). Also, there must exist a node u ∈ B
such that s ∈ F(u). Since s �∈ U , c(s) = c(v) = c(u) for every c ∈ C − Cp.
But then, by Lemma 3 we must have u = v. Hence, s ∈ P(v).

Lemma 8. Let T be a subphylogeny for (Q,α) such that penalty(T ) ≤ q and B
be the bad tree of T . Then, |⋃v∈B Im(v)| ≤ 4q.

Proof. An edge subfamily P at v is imperfect if either (a) P shares a state σ
with S − P on character c and c(v) �= σ or (b) P ∪ {v} does not have a perfect
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Near-Perfect-Phylogeny(S,C, q).
1. Let T = Perfect-Phylogeny(S,C). If T �= NIL, then return T .
2. If |S| ≤ qr + 1, then use exhaustive enumeration to search for a minimum-

length q-near-perfect phylogeny for (S,C). Return NIL if no such phylogeny
exists. Otherwise, return any such phylogeny.

3. For each Cp ⊆ C such that |Cp| ≥ m− q, find a minimum-length Cp-perfect
phylogeny TCp of penalty at most q for S, if one exists, as follows:
(a) Allocate a table N with one entry for each possible pair (Q,α), where

α is a penalty state assignment and Q is a subfamily. Initialize N(Q,α)
to NIL for every pair (Q,α).

(b) Enumerate, by increasing cardinality of Q, the pairs (Q,α) such that
α is a penalty state assignment and Q is a subfamily. For each (Q,α),
attempt (using Lemma 9) to find a minimum-length Cp-perfect sub-
phylogeny of penalty at most q. If such a subphylogeny TQ exists, set
N(Q,α) = TQ.

(c) Let TCp be the minimum-length tree from among those that can
be obtained by putting an edge between the roots of subphylo-
genies for (Q1, α1) and (Q2, α2) such that Q2 = S − Q1 and
N(Q1, α1),N(Q2, α2) �= NIL.

4. Return the tree TCp that minimizes length(TCp) over all sets Cp enumerated
in the previous step. If no tree exists, return NIL.

Fig. 3. The near-perfect phylogeny algorithm.

phylogeny. The number of subfamilies of the latter sort is at most q, since each of
them contributes at least 1 to the total penalty. Let K be the set of subfamilies
P that satisfy (a). Let K0 be the subset of K consisting of all subfamilies P such
that there is a character c and species s ∈ P satisfying the requirements that P is
a subfamily at v ∈ V (B), c(v) �= c(s), and c(s) = c(s′) for some s′ ∈ S − Q. Since
each P ∈ K0 contributes at least 1 to the total penalty, |K0| ≤ q. Let J be the graph
whose vertex set is K−K0 and whose edge set is defined as follows. Let Qu ∈ K−K0

and Qv ∈ K −K0 be imperfect subfamilies at u and v, respectively. There is an edge
between Qu and Qv in J if and only if there are a character c and species su ∈ Qu
and sv ∈ Qv such that c(u) �= c(su) = c(sv) �= c(v). Let µ be the size of a maximum
matching in J . One can verify that

q ≥ µ+ |K −K0| − 2µ ≥ |K −K0|/2.

Therefore, |K −K0| ≤ 2q, and the lemma follows.

5. The algorithm. Our near-perfect phylogeny algorithm is shown in Figure 3.
Its analysis relies on the result below, proved in the next subsection.

Lemma 9. A minimum-length subphylogeny for a pair (Q,α) can be found in

|Q|mO(q)2O(q2r2) time and O(q(r + logm)) space.
We now have the main result of this paper.
Theorem 10. The algorithm Near-Perfect-Phylogeny runs in time

|S|mO(q)2O(q2r2). That is, for fixed q and r, the problem of determining whether
S has a q-near-perfect phylogeny, and, if so, finding such a tree of minimum length,
can be solved in polynomial time.

Proof. Step 1 takes O(22rnm2) time, as explained in section 3. By Theorem 1, if
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S has a perfect phylogeny, this tree must also be an optimum near-perfect phylogeny.
It can be shown that step 2 can be completed within the claimed time bound.

We now argue that step 3 of Near-Perfect-Phylogeny finds an optimal phy-
logeny for each choice of Cp. Assume that step 3(b) correctly computes a minimum-
length subphylogeny for each pair (Q,α) it considers (or determines that no such tree
exists). Let T be any minimum-length Cp-perfect phylogeny for S. It suffices to prove
that in step 3(c) the algorithm encounters a Cp-perfect phylogeny T ′ for S such that
length(T ′) = length(T ).

By Lemma 4 and the fact that |S| > qr + 1, T must have at least one good edge
e = (u1, u2). For i = 1, 2, let αi be the penalty state assignment of ui, and let Qi =
S ∩V (Tui). Then, for i = 1, 2, Qi is a character subfamily and, by Lemma 5, (Qi, αi)
has a subphylogeny T ′i of length at most length(Ti). Without loss of generality, assume
that this T ′i is generated in step 3(b). Then, step 3(c) generates a tree T ′ by putting an
edge between the roots of T1 and T2. By the minimality of T , length(T ′) = length(T ),
as claimed.

Note that Near-Perfect-Phylogeny enumerates only sets Cp of size at least
m− q, because a q-near-perfect phylogeny has at most q nonconvex characters. Thus,
the result returned by step 4 is a minimum-length q-near-perfect phylogeny for S, if
one exists.

The total number of sets Cp considered in step 3 is

m∑
i=m−q

(
m

i

)
= O(qmq),

and step 3(b) enumerates O(m2rrq) (Q,α) pairs. By Lemma 9, this leads to a total

running time of |S|mO(q)2O(q2r2).

5.1. Computing a subphylogeny. We now prove Lemma 9 by giving an al-
gorithm to find a minimum-length Cp-perfect subphylogeny T for (Q,α). The key
idea is given by Lemma 6, which suggests that, to find a Cp-perfect subphylogeny T
of minimum penalty, it suffices to guess B = B(T ) and, for each node v of B, the
perfect and imperfect edge subfamilies at v. Our procedure enumerates a sequence of
candidates, each of which is used to generate a potential tree. A candidate consists
of four pieces of information:

• B̃, a guess as to the bad tree of T .
• For each node v of B̃, a penalty state assignment αv such that αv = α if v is

the root of B̃.
• P̃, a mapping from each vertex v of B̃ to a subset of S representing a guess

as to the union of perfect edge subfamilies at v.
• ˜Im, a mapping from each vertex v of B̃ to a collection of subsets of S repre-

senting a guess as to the collection of imperfect edge subfamilies at v.

Assume that the candidate is a correct guess as to the various components of
a subphylogeny for (Q,α). We now describe how to construct such a subphylogeny
from this information.

We first find, for each v ∈ B̃, the decomposition P̃e(v) of P̃(v) into perfect edge
subfamilies. As in algorithm Subphylogeny (Figure 2), we rely on Lemma 2, which
states that if we know one of the subfamilies R such that R ⊆ P̃(v), we have one of
two possibilities:
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(i) P̃e(v) = {R, P̃(v)−R} or
(ii) P̃e(v) = R ∪ (P̃(v) − R)/v, where c(v) = c(Sv(P̃(v), R)) for every character

c ∈ C.

In the latter case, c(Sv(P̃(v), R)) �= ∗ for every character c. There are polyno-
mially many (for fixed r) choices for R; one of these must enable us to make the
appropriate decomposition of P(v) if the candidate is a correct guess.

The distribution of perfect and imperfect edge subfamilies across the vertices of
B̃ forces the states of some its nodes to assume certain values in order to maintain the
convexity of the corresponding characters. For a vertex v in B̃, let Qv be the set of all
species in the subtree of T rooted at v. The state of vertex v in B̃ on character c ∈ Cp
is forced to equal σ if either Qv and S −Qv share a state on character c or there are
distinct subtrees T1, T2 at v, where T1, T2 contain species x1, x2, respectively, such
that c(x1) = c(x2). The remaining unforced states are set in any way that is consistent
with convexity of the characters in Cp. This can be done in time polynomial in n, m,
and r.

We now produce a subphylogeny for (Q,α) by doing the following for each v ∈ B̃:

(a) For each R ∈ ˜Im(v), enumerate all penalty state assignments γ to find the pair
(R, γ) such that TR = N(R, γ) �= ∅ and length(TR) + dist(u, v) is minimum,
where u is the root of TR. Connect the root of TR to v.

(b) For every R ∈ P̃e(v), enumerate all penalty state assignments γ to find a pair
(R, γ) such that TR = N(R, γ) �= ∅ and the tree obtained by linking v to the
root of TR is a perfect phylogeny for R ∪ {v}. Connect the root of TR to v.

There is, of course, no guarantee that a candidate is a correct guess from which
a minimum-length subphylogeny can be constructed. Indeed, it is possible that a
candidate simply cannot be used to produce a subphylogeny for (Q,α). For instance,
a candidate is invalid if some s ∈ Q is neither a vertex in B̃ nor contained in some
set in either ˜Im(v) or P̃e(v) for some v ∈ V (B̃). A candidate is also invalid if
it is impossible to make a state assignment for B̃ on the characters in Cp in any
consistent way. Finally, in either of steps (a) or (b) above, it may be impossible to
find the required subtrees of a node v ∈ B̃. In any case, if an invalid candidate is
encountered, we dismiss it. If no valid candidate can be generated for a (Q,α) pair,
we set N(Q,α) = ∅.

It is also possible that a candidate allows us to generate a subphylogeny but not a
minimum-length one. This issue is resolved by enumerating all potential candidates.
The tree T stored in N(Q,α) is the one that minimizes the length among all trees
generated from valid candidates.

5.2. Generating candidates. We now describe how candidates are generated
and derive a bound on their number. First, observe that, by Lemma 4, we need to
consider only trees B̃ with at most qr edges. Thus, qrO(qr) distinct tree topologies
B̃ are generated. Enumerating them takes time qrO(qr) and space O(qr log qr). The

number of penalty state assignments enumerated for the nodes in B̃ is rO(q2r). These
can be generated in time 2O(q2r2) and space O(q2r2).

Suppose that B̃ is indeed the bad tree of a subphylogeny T for (Q,αQ). By
Lemma 8, there is some set of at most 4q character subfamilies containing all imper-
fect edge subfamilies at v; each of these is a potential choice for ˜Im(v). There are
mO(q)2O(qr) choices of subfamilies and (qr)O(q) ways in which these subfamilies can
be distributed among the vertices of B̃.

By Lemma 7, for every v ∈ B̃ we can restrict our attention to P̃(v) of the form
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P̃(v) = G(v)− U, where

U = (S −Q) ∪ {u ∈ P : P ∈ ˜Im(v), v ∈ B̃} and G(v) =

k⋂
i=1

Qi

such that {Qi}ki=1 is a set of character subfamilies for different characters c ∈ C−Cp.
For every node v in B̃, G(v) is the intersection induced by ˜Im(v).

Thus, the total number of candidates is mO(q)2O(q2r2). These can be generated
in time mO(q)2O(q2r2) and space O(q(logm+ r)).

It can be verified that processing a candidate takes time O(|Q|rq). The total time

to find a minimum-penalty subphylogeny for (Q,α) is therefore |Q|mO(q)2O(q2r2), and
the space used is O(q(r + logm)). This concludes the proof of Lemma 9.

6. Conclusions and open questions. We have shown that a relaxed version of
the perfect phylogeny problem, parameterized by the degree q to which the resulting
phylogeny deviates from perfection, can be solved in polynomial time. Since the
perfect phylogeny model is too restrictive, our algorithm may have some practical
use. Unfortunately, its practicality is limited by its running time, which is bounded
by a polynomial whose degree depends on q. We note, however, that the time bound
is based on the perhaps overly pessimistic assumption that all bad edges can occur
together in a bad tree. One may ask whether this is likely to happen in practice. Also,
is there a parameter that is smaller than q in practice, in terms of which to express
the time bound? One candidate is the maximum size of a bad tree.

Perhaps the most important open question raised by our algorithm is whether
it is possible to make the degree of the polynomial describing the running time in-
dependent of the parameters; that is, whether there is an algorithm with running
time O(f(q)p(|S|,m)), where p is a polynomial whose degree does not depend on q.
Alternatively, one could try to show that the case where r is fixed and q is the only
parameter is hard for W [1].

Acknowledgments. We thank the referee and editor for their suggestions, which
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Abstract. The 3-colorability problem is known to be NP-complete in the class of graphs with
maximum degree four. On the other hand, due to the celebrated theorem of Brooks, the problem
has a polynomial-time solution for graphs with maximum degree three. To make the complexity gap
more precise, we study a family of intermediate graph classes between these two extremes and classify
all of them according to the computational complexity of the problem. In particular, we generalize
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in that class is 3-colorable, unless it is a complete graph on four vertices.
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1. Introduction. A 3-coloring of a graph is a mapping from the set of vertices
to {1, 2, 3} such that any two adjacent vertices have different colors. By Brooks’s
theorem [1] every connected graph with the maximum vertex degree at most three
has a 3-coloring or is isomorphic to a complete graph on four vertices K4. Hence,
the decision problem, whether a given graph G has a 3-coloring, is trivial for graphs
with maximum degree three. On the other hand, the complexity of the problem jumps
from triviality to NP-completeness when we turn to the class of graphs with maximum
degree four (see [4]). To make the complexity gap more precise, we study a family
of graph classes that are intermediate between these two extremes. Every class X in
the family is associated with a subset H′ of the set of graphs on four vertices and is
defined as follows: a graph G belongs to X if and only if each vertex of G has degree at
most four, and the neighborhood of each 4-degree vertex induces a graph isomorphic
to a member of the set H′. The main result of the paper is that dichotomy holds: for
a given subset H′, the problem either

(1) is NP-complete or

(2) can be solved in linear time.

Subject to the assumption P �= NP both cases exclude each other. For the linear-
time cases we present an algorithm which not only decides existence but also finds
a 3-coloring, if there is one. One of the classes in the family is of particular interest
because of the fact that every connected graph in that class is 3-colorable, except for
a K4. Thereby, we extend Brooks’s theorem in the case of 3-colorability.

Our work is related to [6, 7, 9, 10, 11, 13], where the complexity of finding a
3-coloring in graphs defined by “forbidden induced subgraph” conditions is studied.
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1H

2 2KK1 K224 1K

NP−complete

Diamond

Claw 4P

Paw

C4

2H

P3K1

4K3KK1

Polynomial

Fig. 2.1. Problem-specific partition of H.

2. Basic notations and main result. For graph theoretic terminology not
defined in this paper, the reader is referred to [3]. All graphs considered are finite,
undirected, and without loops and multiple edges. The set of vertices and the set of
edges of a graph G are denoted by V (G) and E(G), respectively. We let n(G) denote
the number of vertices of G and n4(G) denote the number of vertices of degree four
in G. For a vertex v ∈ V (G), we write NG(v) for the neighborhood of v, i.e., the
set of vertices adjacent to v. The closed neighborhood of v is defined as NG[v] :=
NG(v) ∪ {v}. The degree of v is denoted by dG(v) and the maximum degree of a
vertex in G by ∆(G). If no confusion arises, we omit the subscript G in the above
notations.

Given a subset X ⊆ V (G), we denote by G[X] the subgraph of G induced by
the vertices in X, and let G − X := G[V (G) − X]. If X = {v}, we write G − v for
simplicity. We also write G− e to denote the subgraph of G obtained by deleting an
edge e ∈ E(G). If G contains no induced subgraph isomorphic to a graph H, we say
that G is H-free.

Throughout the paper, Pk and Ck stand, respectively, for a chordless path and a
chordless cycle on k vertices, and Kr stands for a complete graph on r vertices. In
particular, K3 is a triangle. The set of all 4-vertex graphs will be denoted H. This
set contains 11 pairwise nonisomorphic graphs represented in Figure 2.1 along with
their notations. By H1, H2, we refer to the subsets of H depicted in Figure 2.1.

A 4-vertex graph of particular interest is a diamond (see Figure 2.1). The nonad-
jacent vertices of a diamond will be called its pick vertices and the other two vertices
the diagonal vertices. Importance of this graph for the 3-colorability problem is due
to the following simple observation.

Proposition 2.1. Let G be a 3-colorable graph containing a diamond as an
induced subgraph. Then the pick vertices of the diamond have the same color in any
3-coloring of G.

In this paper we study the following problem. Let H′ be a fixed subset of H.
H′-ISOM-3-COL

Instance: A graph G with maximum degree four in which the neighborhood of each
4-degree vertex induces a graph isomorphic to a member of H′.
Question: Does there exist a 3-coloring of G?

Obviously, if H′ = ∅, we deal with the 3-colorability problem restricted to graphs
with maximum degree three, which is polynomially solvable according to Brooks’s
theorem. The main result of this paper asserts that H′-ISOM-3-COL is NP-complete
if and only if H′ contains one of the graphs in the set H1.
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GN  (x)

x

y1

y2

x2x1

N   (x)G’

Fig. 2.2. Reduction for the case 2K1 ∪K2 ∈ H′.

Theorem 2.2. The problem H′-ISOM-3-COL is

(i) NP-complete if H′ ∩H1 �= ∅,
(ii) solvable in linear time if H′ ∩H1 = ∅.
Proof. Now we prove only (i). The rest is proved in the next two sections.

Obviously, the problem is in NP for any choice of H′. If 4K1 ∈ H′, then the
statement holds by the result of Maffray and Preissmann [9], who proved that the
3-colorability problem is NP-complete for K3-free graphs with maximum degree four.

Applying the transformation shown in Figure 2.2 to every vertex of degree four in a
K3-free graph G with ∆(G) ≤ 4, we obtain a graph G′, which is obviously an instance
of H′-ISOM-3-COL in the case that 2K1∪K2 ∈ H′. According to Proposition 2.1, G′

is 3-colorable if and only if G is 3-colorable, which implies the statement in this case.

If 2K2 ∈ H′, we refer the reader to the result of Holyer [5], who has shown that
it is an NP-complete problem to decide whether a cubic K3-free graph G is 3-edge-
colorable. This result can be translated to the terminology of vertex colorability by
associating with each graph G its line graph, denoted L(G) and defined as follows:
the vertex set of L(G) is E(G), and two vertices are adjacent in L(G) if and only if
the respective edges of G have a vertex in common. It is not hard to verify that if G
is a triangle-free cubic graph, then L(G) is a 4-regular diamond- and claw-free graph.
Therefore, the result of Holyer implies NP-completeness of vertex 3-colorability in the
class of 4-regular diamond- and claw-free graphs. Moreover, we may suppose that
any graph G in this class is K4-free, since a K4 is not 3-colorable. But now G is an
instance of the problem in question, and the conclusion holds.

3. Polynomial-time results. Let R denote the class of graphs every vertex of
which has degree at most four, and the neighborhood of each 4-degree vertex induces
a graph isomorphic to a member of H2. If G ∈ R, then A(G) denotes the set of
4-degree vertices x in G such that G[N(x)] �= K1 ∪ P3.

Lemma 3.1. Suppose we have a graph G ∈ R together with A(G). If A(G) �= ∅,
then we can construct in a constant time a graph G∗ ∈ R together with A(G∗) such
that n(G∗) < n(G), G∗ is 3-colorable if and only if G∗ is 3-colorable, and every
3-coloring ϕ∗ of G∗ can be transformed into a 3-coloring ϕ of G in a constant time.

Proof. In order to construct the desired graph G∗ we use finitely many operations
of vertex/edge deletion/addition or set G∗ = K4. A trivial consequence of this is that
A(G) can be transformed into A(G∗) in a constant time as well.

Let x ∈ A(G). If G[N(x)] contains a triangle, G is not 3-colorable, and we can
set G∗ = K4. If G[N(x)] contains no triangle, then exactly one of the following cases
may occur.

Case 1. G[N(x)] is a claw. Let N(x) = {y1, y2, y3, x′} and x′ have degree three
in G[N(x)]. Denote by G∗ the graph obtained from G by deleting the vertices of N [x]
and introducing a new vertex y adjacent to those vertices in V (G) −N [x] that have
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a neighbor in {y1, y2, y3}.
Clearly, n(G∗) < n(G). Assume ϕ is a 3-coloring of G. Then, according to

Proposition 2.1, y1, y2, y3 have the same color, and we may transform ϕ into a 3-
coloring of G∗ by assigning to the vertex y the value ϕ(y1). The inverse direction
follows by analogy. Thus G∗ is 3-colorable if and only if G∗ is, and every 3-coloring
ϕ∗ of G∗ can be transformed into a 3-coloring ϕ of G in a constant time.

To prove that G∗ ∈ R, let us notice that each yj has at most one neighbor in
V (G)−N [x], since otherwise N(yj) would induce in G a member of H1. This implies
that y has degree at most three in G∗. Obviously, the degree of any other vertex of
G∗ is at most four. Suppose now that G∗ contains a vertex z of degree four such that
NG∗(z) induces a graph H ∈ H1. Notice that G[NG(z)] either coincides with H if
NG(z) ∩ {y1, y2, y3} = ∅ or is isomorphic to a spanning subgraph of H otherwise. In
both cases, G[NG(z)] ∈ H1, contradicting the assumption.

Case 2. G[N(x)] = C4. Let N(x) = {y0, y1, y2, y3} and yi be adjacent to yi+1

for i = 0, 1, 2, 3 (mod 4). Denote by G∗ the graph obtained from G by deleting the
vertices of N [x], introducing a pair of adjacent vertices yodd and yeven, and connecting
yodd (respectively, yeven) to those vertices in V (G) − N [x] that have a neighbor in
the set {y1, y3} (respectively, {y0, y2}) in G. The proof of the lemma in this case is
similar to the proof of Case 1.

Case 3. G[N(x)] = P4. Let N(x) = {y0, y1, y2, y3} and yi be adjacent to yi+1

for i = 0, 1, 2. Denote by G′ the graph obtained from G by deleting the vertices
of N [x], introducing a pair of adjacent vertices yodd and yeven, and connecting yodd
(respectively, yeven) to those vertices in V (G)−N [x] that have a neighbor in the set
{y1, y3} (respectively, {y0, y2}) in G. Clearly G′ has a 3-coloring if and only if G does,
and n(G′) < n(G). Furthermore, it is not difficult to verify that

(*) ∆(G′) ≤ 4 and for every vertex z ∈ V (G) − N [x] with dG′(z) = 4, the
neighborhood NG′(z) induces a member of H2.

If G′ ∈ R, then G∗ = G′ has the desired properties.

Let G′ /∈ R. Then by (*), the neighborhood of yodd or yeven induces in G′ a graph
isomorphic to a member of H1. Assume

(0) yeven has degree four in G′ with N(yeven) = {yodd, z0, z1, z2} for some ver-
tices z0, z1, z2 ∈ V (G) − N [x]. Without loss of generality let NG(y0) =
{x, y1, z0, z1} and NG(y2) = {x, y1, y3, z2}.

(Note that the case when yodd has degree four in G′ is similar.) If the subgraph of G′

induced by N(yeven) belongs to H1, then we have the following:

(1) z1 (or z0) is adjacent to y1 in G, and hence to yodd in G′, since otherwise the
neighborhood of y0 would induce in G a graph isomorphic to a member of
H1; thus NG(y1) = {x, y0, y2, z1}.

(2) y3 is adjacent neither to z0 nor to z2, since otherwise the subgraph of G′

induced byN(yeven) does not belong toH1; for the same reason, z1 is adjacent
neither to z0 nor to z2.

(3) The subgraph ofG′ induced byN(yodd) does not belong toH1, since otherwise
z2 should be adjacent to y3 by analogy with (1).

Under conditions (0)–(3), let us define G∗ to be the graph obtained from G
by deleting the vertices of the set U := {x, y1, y3, z1}, introducing a pair of adjacent
vertices w and yodd, and connecting yodd (respectively, w) to those vertices in V (G)−U
that have a neighbor in the set {y1, y3} (respectively, {x, z1}) in G.

We check that G∗ ∈ R. It is obvious that for any vertex z ∈ V (G)−U , dG∗(z) ≤
dG(z). In order to show that w has degree at most four in G∗, let us observe that
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z1 has degree at most three in G, since otherwise NG(z1) would induce in G a graph
isomorphic to a member ofH1. Denoting a possible third neighbor of z1 in G (different
from y0 and y2) by v, we therefore conclude that w has at most four neighbors in G∗:
y0, y2, yodd, and v. Similarly, y3 has degree at most three in G, and hence yodd is
of degree at most four in G∗. In the subgraph H of G∗ induced by N(w) the vertex
yodd has degree at least two, and therefore H /∈ H1. Analogously, the subgraph of G∗

induced byN(yodd) also is not a member ofH1. For any other vertex z of the graphG∗,
we use the same arguments as before: if z has degree four in G∗, then z has degree four
in G as well. Moreover, the subgraph G[NG(z)] is isomorphic to a spanning subgraph
of the graph induced by the neighborhood of z in G∗. Therefore, G∗ /∈ R would imply
G /∈ R. To check the other desired properties for G∗ is straightforward.

4. Dart graphs. By means of reductions from Lemma 3.1, any graph G ∈ R
can be transformed in linear time into a graph G′ with ∆(G′) ≤ 4 such that the
neighborhood of each 4-degree vertex in G′ induces either a K1 ∪ P3 or a graph
containing a triangle. In the latter case, G′ obviously is not a 3-colorable graph, since
it contains a K4. Therefore, according to Lemma 3.1, the graph G is not 3-colorable
too. In the present section we fix the remaining case; i.e., we solve the problem for
graphs with maximum degree four in which the neighborhood of each 4-degree vertex
induces a graph isomorphic to K1 ∪ P3. In other words, each vertex of degree four
together with its neighborhood induces the graph depicted in Figure 4.1. This graph
is known in the literature under the name dart. Thus, we call the graphs in the class
under consideration dart graphs.

The class of dart graphs is an extension of the graphs with maximum degree
three. According to the classical result of Brooks [1], every connected graph with
vertex degree at most three is 3-colorable, unless it is a K4. It turns out that this
proposition remains valid in the larger class of dart graphs.

In a dart graph G, a vertex v will be called a diagonal (respectively, pick) vertex
if v is a diagonal (respectively, pick) vertex of an induced diamond in G.

Lemma 4.1. In a dart graph G, the subsets of pick and diagonal vertices are
disjoint. As a result,

(a) in G no pick vertex has degree more than three;
(b) in the subgraph of G induced by the diagonal vertices, no vertex has degree

more than two.
Proof. Let u be a pick vertex of an induced diamond D in G with the diagonal

(the edge connecting the diagonal vertices of D) v1v2. By contradiction, assume uw
is the diagonal of another induced diamond D′ in G. Notice that w neither coincides
with vi nor is adjacent to vi, since otherwise G[N [vi]] is not a dart (i = 1, 2). But
then u has at least five neighbors in G: v1, v2, w, and the two pick vertices of D′.
This contradiction shows that the subsets of pick and diagonal vertices are disjoint
in G.

By definition, every vertex of degree four in G is a diagonal vertex, which implies
(a). Every diagonal vertex has at least two nondiagonal (pick) neighbors, which
implies (b).

Consider a connected component C of the graph induced by the diagonal vertices
of a dart graph G. Due to Lemma 4.1(b), C is either a chordless path or a chordless
cycle. By adding to C all the diamonds containing the vertices of C we obtain a
subgraph of G (not necessarily induced) that will be denoted by F . If F contains
a vertex which has degree four in G, we call F a diamond bracelet. The number
of diamonds in the bracelet will be called the size of the bracelet. An example of a
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Fig. 4.1. The dart.

x1

y1

x2

y2

z1 z2t 1 t 2

. . .

xr

zr t r

yr

Fig. 4.2. A diamond bracelet.

bracelet of size r is depicted in Figure 4.2. Notice that the vertices z1 and tr may have
degree three in G. They also may be adjacent if C is a cycle. We denote the family
of diamond bracelets of G by B(G). Notice that B(G) = ∅ if and only if n4(G) = 0.

Lemma 4.2. Suppose we have a K4-free dart graph G together with B(G). If
n4(G) > 0, then we can construct in a constant time a K4-free dart graph G

∗ together
with B(G∗) such that n(G∗) ≤ n(G), n4(G∗) < n4(G), and every 3-coloring ϕ∗ of
G∗ can be transformed into a 3-coloring ϕ of G in a constant time.

Proof. In order to construct the desired graph G∗ we use finitely many operations
of vertex/edge deletion/addition. A trivial consequence of this is that B(G) can be
transformed into B(G∗) in a constant time as well. In most cases it is straightforward
to see that G∗ is a K4-free dart graph. When this fact is not that obvious, we provide
necessary explanations.

The lemma is trivial if G contains a vertex of degree four with a neighbor v of
degree at most two: in this case G∗ = G−v, and ϕ∗ can be extended to ϕ by assigning
to v a color missing in the neighborhood of v. Thus, in the course of the proof we
shall assume that every neighbor of a 4-degree vertex has degree at least three.

Since n4(G) > 0, we may consider a diamond bracelet F ∈ B(G) of size r ≥ 1.
We use the notation of vertices of F as indicated in Figure 4.2. In our case analysis
we distinguish the following seven cases that exhaust all possibilities for F .

1. r ≥ 3.
2. r ∈ {1, 2}, and at least one of the vertices z1 and tr has degree three.

If r ∈ {1, 2} and both vertices z1 and tr have degree four, we denote by t0 and zr+1

the neighbors of z1 and tr different from x1, t1, y1 and xr, zr, yr, respectively. With
these notations, we divide the general case when z1 and tr have degree four into the
following subcases:

3. r = 2 and z1t2 ∈ E(G) (i.e., t0 = t2 and z3 = z1).
4. r = 2, z1t2 /∈ E(G), and t0 �= z3.
5. r = 2 and t0 = z3.
6. r = 1, and t0, z2 have no common neighbor of degree four.
7. r = 1, and t0, z2 have a common neighbor of degree four.

Moreover, cases 5 and 7 are subdivided into further subcases depending on certain
specific conditions arising in the proof.

Having outlined the case analysis, let us proceed with the proof according to our
plan.
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Fig. 4.3.

Case 1. r ≥ 3. Let G∗ be the K4-free dart graph arising from G by deleting the
edges t1z2, t2z3 and adding a new edge t1z3. Then n(G∗) = n(G), n4(G∗) = n4(G)−2
and for any 3-coloring ϕ∗ of G∗ the colors ϕ∗(z2) and ϕ∗(t2) are different and can
interchange. Moreover, the colors ϕ∗(t1) and ϕ∗(z3) also are different. Therefore, by
possible switching of colors of the vertices z2 and t2 we can transform ϕ∗ into ϕ so
that ϕ(t1) �= ϕ(z2) and ϕ(t2) �= ϕ(z3), which means ϕ is a 3-coloring of G.

Case 2. r ∈ {1, 2}, and at least one of the vertices z1 and tr has degree three.
Assume tr is of degree three. Then zr has degree four in G (otherwise F does not cover
any vertex of degree four). Let u denote the fourth neighbor of zr, i.e., u �= tr, xr, yr.
The vertices zr and u are not the neighbors of a same 4-degree vertex. Therefore,
G∗ = G − zru is a K4-free dart graph, and furthermore n(G∗) = n(G), n4(G∗) ≤
n4(G)− 1. If ϕ∗ is a 3-coloring of G∗, then, clearly, the colors ϕ∗(zr) and ϕ∗(tr) are
different and can interchange, and hence we may transform ϕ∗ into a 3-coloring ϕ of
G in a constant time.

From now on, let N(z1) = {t0, x1, y1, t1} and N(tr) = {zr, xr, yr, zr+1}.
Case 3. r = 2 and z1t2 ∈ E(G) (i.e., t0 = t2 and z1 = z3). Consider G∗ =

G− {z1t2, z2t1}, which is clearly a K4-free dart graph with n(G∗) = n(G), n4(G∗) =
n4(G) − 4. Since the colors ϕ∗(z1) and ϕ∗(t1) (and similarly ϕ∗(z2) and ϕ∗(t2)) are
different and can interchange, we conclude that ϕ∗ can be transformed into ϕ in a
constant time.

Case 4. r = 2, z1t2 /∈ E(G), and t0 �= z3. If both t0 and z3 belong to F ,
say, t0 = x2 and z3 = x1, consider the graph G∗ = G − {z1, t1, x1, z2, t2, x2}. Then
n(G∗) = n(G)−6, n4(G∗) = n4(G)−4, and ϕ∗ can be easily extended to a 3-coloring
of G in a constant time.

If z3 /∈ F , then we apply exactly the same arguments as in Case 1: transform
G into G∗ by deleting the edges t1z2, t2z3 and adding a new edge t1z3, and then
transform ϕ∗ into ϕ by color interchanging, analogously if t0 /∈ F .

Case 5. r = 2 and t0 = z3. Remember that each of the vertices x1, y1, x2, y2, t0
has degree exactly three. Let us denote their respective neighbors different from
z1, t1, z2, t2 by u1, u2, u3, u4, u5 (see Figure 4.3). Notice that t0 �= u1, . . . , u4, but
some of the vertices u1, . . . , u5 may coincide.

Transform G into a graph G′ by deleting the vertices of F and introducing a
pair of new vertices w1, w2 with N(w1) = {u1, u2, w2} and N(w2) = {u3, u4, w1} (see
Figure 4.3).

Case 5.1. Assume first that G′ is a K4-free dart graph. Then set G∗ = G′. Now
n(G∗) = n(G)−6, n4(G∗) = n4(G)−4, and ϕ∗ can be transformed into ϕ in the follow-
ing way. If at least two values among ϕ∗(u1), ϕ∗(u2), ϕ∗(u5) are equal, we can assign
to the vertices x1, y1, t0 the same color which is not in the set {ϕ∗(u1), ϕ∗(u2), ϕ∗(u5)}.
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Fig. 4.4.

The rest is trivial: define ϕ(x2) = ϕ(y2) /∈ {ϕ∗(u3), ϕ∗(u4)}, ϕ(t2) /∈ {ϕ(x2), ϕ(t0)},
ϕ(z2) /∈ {ϕ(x2), ϕ(t2)}, ϕ(t1) /∈ {ϕ(z2), ϕ(x1)}, ϕ(z1) /∈ {ϕ(x1), ϕ(t1)}. If ϕ∗(u1),
ϕ∗(u2), ϕ∗(u5) are pairwise different, then at least two values among ϕ∗(u3), ϕ∗(u4),
ϕ∗(u5) must be equal (otherwise ϕ∗ is not a 3-coloring of G∗), and we can apply
symmetrical arguments.

Case 5.2. Let G′ be a dart graph containing a K4. Then both new vertices
w1 and w2 belong to the K4 (indeed, w1 /∈ K4 implies w2 /∈ K4, since w2 has at
most two neighbors except w1, but then G contains the same K4). Therefore, up
to symmetry, u1 = u3, u2 = u4, and u1u2 ∈ E(G). Under this assumption, u1 and
u2 cannot have degree four in G, and hence t0 is a cut-point of G. Setting G∗ =
G′−{w1, w2, u1, u2} we obtain a K4-free dart graph G∗ such that n(G∗) = n(G)−10,
n4(G∗) = n4(G) − 4. A 3-coloring ϕ∗ of G∗ can be extended to a 3-coloring ϕ of G
as follows: ϕ(z1) = ϕ(z2) = ϕ(u1) �= ϕ∗(t0), ϕ(t1) = ϕ(t2) = ϕ(u2) /∈ {ϕ∗(t0), ϕ(z1)},
ϕ(xi) = ϕ(yi) = ϕ∗(t0), i = 1, 2.

Case 5.3. Suppose that G′ is not a dart graph. Then at least one of the vertices
u1, . . . , u4, say u1, has degree four in G′, but G′[N [u1]] is not a dart. Therefore,

– u1 has degree four in G;
– u1 �= u3, u4; otherwise G[N [u1]] is not a dart; as a result, u1w2 /∈ E(G′);
– u1 �= u2, and u1 is adjacent to u2; otherwise G[N [u1]] is not a dart;
– u1 is not adjacent to t0; otherwise G[N [u1]] is not a dart.

Denote the other two neighbors of u1 in G, different from u2 and x1, by v1 and v2.
A straightforward analysis reveals two possible combinations of the vertices in the
neighborhood of u1 in the graph G, shown in Figure 4.4. Notice that vertices v3
and v4 must exist in both cases. In the case of Figure 4.4(a), this follows from our
assumption that every vertex in the neighborhood of u1 has degree at least three.
In the case of Figure 4.4(b), the vertex v3 exists, since otherwise we could apply the
arguments of Case 2 to the diamond induced by u1, u2, v1, v2.

Assume first that v3 = t0 (or, equivalently, v1 = u5). Then the subgraph H of G
induced by the vertices of F together with u1, u2, v1, v2, t0 has at most three neighbors
in the remaining part of G: u3, u4, and v4. In this case, we define G∗ = G − V (H)
and extend ϕ∗ to ϕ according to the following rules: ϕ(x2) = ϕ(y2) = ϕ(t0) /∈
{ϕ∗(u3), ϕ∗(u4)}, ϕ(x1) = ϕ(y1) = ϕ(v2) /∈ {ϕ∗(v4), ϕ(x2)}. The rest is simple. The
case v4 = t0 can be analyzed by analogy.

If neither v3 nor v4 coincides with t0, then we define G∗ to be the graph obtained
from G by deleting the vertices u1, u2, v1, v2 and adding new edges x1v3 and y1v4.
Let us show that G∗ is a dart graph without a K4. The K4-freeness is obvious. It
is also easy to see that every vertex of G∗ has degree at most four. Assume now
that G∗ contains a vertex w of degree four such that G∗[N [w]] is not a dart. Then
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w /∈ {v3, v4}; otherwise G[N [w]] also is not a dart. Therefore, the dart G[N [w]] has
been destroyed under the transformation G → G∗ because of a new edge connecting
two vertices adjacent to w, say y1 and v4. However, the vertices y1 and v4 have no
common neighbor of degree four in G, unless v4 = t0. Thus G∗ is the desired graph
with n(G∗) = n(G)− 4, n4(G∗) = n4(G)− 2. A 3-coloring ϕ∗ of G∗ can be extended
to a 3-coloring ϕ of G in the following way. For the configuration in Figure 4.4(a),
define ϕ(v1) = ϕ(v2) = ϕ∗(x1), ϕ(u1) �= ϕ∗(x1), and ϕ(u2) /∈ {ϕ(u1), ϕ∗(x1)}. For
the configuration in Figure 4.4(b), define ϕ(u1) = ϕ∗(v4), ϕ(v1) = ϕ∗(x1), ϕ(u2) =
ϕ(v2) /∈ {ϕ∗(x1), ϕ∗(v4)}.

Case 6. r = 1, and t0, z2 have no common neighbor of degree four. If t0, z2 have
two common neighbors v1, v2 of degree three which are adjacent to each other, then
G∗ = G − {t0, z2, v1, v2} is a K4-free dart graph with n(G∗) = n(G) − 4, n4(G∗) =
n4(G) − 2, and we can trivially extend ϕ∗ to ϕ in a constant time. Suppose that
t0, z2 have no common adjacent neighbors of degree three. Then deleting the edges
t0z1, t1z2 and adding a new edge t0z2 (if t0z2 /∈ E(G)) results in a K4-free dart graph
G∗ such that n(G∗) = n(G), n4(G∗) = n4(G) − 2. In any 3-coloring ϕ∗ of G∗ the
colors of z1, t1 are different and can interchange, and the colors of t0, z2 are different.
Therefore, ϕ∗ can be transformed into a 3-coloring ϕ of G so that ϕ(t1) �= ϕ(z2) and
ϕ(z1) �= ϕ(t0).

Case 7. r = 1, and t0, z2 have a common neighbor of degree four. Then, there
must exist another diamond bracelet F ′ containing that neighbor. Without loss of
generality we may suppose that the size of F ′ is 1, since otherwise we can apply to
F ′ the arguments in Cases 1–5. Moreover, as for F , we assume that both diagonal
vertices of F ′ have degree four, and we denote the vertices of F ′ and the respective
neighbors of its diagonal vertices by analogy with F , i.e., z′1, t

′
1, x
′
1, y
′
1, t
′
0, z
′
2. Up to

symmetry, we may suppose that the common neighbor of t0 and z2 is z′1, and z2
coincides with x′1. For t0, there remain two possibilities: either t0 = y′1, in which case
we say that F strongly depends on F ′, or t0 = t′0, in which case we say that F weakly
depends on F ′. To avoid Case 6 for F ′, we conclude that there is a bracelet F ′′ of
size 1 (else apply Cases 1–5 to F ′′) such that F ′ depends on F ′′ either strongly or
weakly.

Case 7.1. F depends on F ′ weakly. Observe that in this case F ′ must depend on
F ′′ weakly. Indeed, if F ′ depends on F ′′ strongly, then, according to the definition,
t′0 is a pick vertex of F ′′, and the neighborhood of t′0 contains z1, z′1, and the two
diagonal vertices of F ′′, contradicting Lemma 4.1.

Case 7.1.1. z′2 ∈ F . Then F = F ′′ (see Figure 4.5(a)). In this case we obtain
G∗ by deleting from G all vertices of F and F ′ together with t0. Clearly, G∗ is
a K4-free dart graph with n(G∗) = n(G) − 9, n4(G∗) ≤ n4(G) − 4. Given a 3-
coloring ϕ∗ of G∗, we can always extend it to a 3-coloring ϕ of G in such a way that
ϕ(y1) = ϕ(y′1) /∈ {ϕ∗(u1), ϕ∗(u2)} and ϕ(t0) /∈ {ϕ∗(u3), ϕ(y1)}. The rest is trivial.

Case 7.1.2. z′2 /∈ F . With the help of Lemma 4.1 we conclude that F ′′ is disjoint
from F ∪ F ′. Moreover, we may suppose that

– no diagonal vertex of F ′′ has a neighbor in F ′; otherwise we are in conditions
of Case 7.1.1 for the pair of bracelets F ′ and F ′′;

– one of the diagonal vertices of F ′′ is adjacent to t0 by the definition of weak
dependency;

– the other diagonal vertex of F ′′ is adjacent to a pick vertex of F ; otherwise
Case 6 can be applied to F ′′.

Therefore, we have the situation indicated in Figure 4.5(b). We define G∗ to be
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Fig. 4.5.

the graph obtain from G by deleting all vertices of F , F ′, and F” along with t0.
Given a 3-coloring ϕ∗ of G∗, we can always extend it to a 3-coloring ϕ of G in
such a way that ϕ(y1) = ϕ(y′1) /∈ {ϕ∗(u1), ϕ∗(u2)}, ϕ(y′′1 ) /∈ {ϕ(y1), ϕ∗(u3)}, and
ϕ(t0) /∈ {ϕ(y1), ϕ(y′′1 )}. The rest is trivial.

Case 7.2. F depends on F ′ strongly. If F ′ depends on F ′′ weakly, we are in
conditions of Case 7.1 for the pair of bracelets F ′, F ′′. If F ′ depends on F ′′ strongly
and F �= F ′′, we delete from G the vertices of F ′ and connect the diagonal vertices
of F to the pick vertices of F ′′, obtaining the desired K4-free dart graph G∗ with
n(G∗) = n(G) − 4, n4(G∗) = n4(G) − 2. Any 3-coloring of G∗ can be extended to
a 3-coloring of G by coloring the vertices of F ′ analogously to the vertices of F . If
F = F ′′, then G[V (F ∪ F ′)] is a 3-colorable component of G, and hence the graph
G∗ = G− V (F ∪ F ′) has the required properties.

Theorem 4.3. A dart graph G is 3-colorable if and only if it has no component
isomorphic to a K4. If G is 3-colorable, then a 3-coloring of G can be found in linear
time.

Proof. The necessity of the first part of the theorem is trivial. To see the suf-
ficiency, observe that a dart graph is K4-free if and only if it has no component
isomorphic to a K4. The same is true if G is a graph with vertex degree at most
three. Therefore, the sufficiency follows from Lemma 4.2 and Brooks’s theorem [1].

We can check whether a dart graph G is K4-free in linear time. Analogously, the
set of 4-degree vertices and the set B(G) of diamond bracelets of G can be found in
linear time. Consequently, by means of Lemma 4.2 we can create in linear time a
K4-free graph G′ without vertices of degree more than three such that any 3-coloring
of G′ can be transformed into a 3-coloring of G in linear time. By [8] (see also [12]),
a 3-coloring of G′ can be found in linear time, which proves the statement.

End of the proof of Theorem 2.2. In linear time we can decide whether G ∈ R
and construct A(G). By Lemma 3.1, in linear time we can construct a graph G′ such
that n(G′) ≤ n(G), A(G′) = ∅, and G′ is 3-colorable if and only if G is 3-colorable. If
G′ contains a K4, which can be checked in linear time for graphs of bounded degree,
then both G′ and G are not 3-colorable. Otherwise, G′ is a K4-free dart graph, and
hence both G′ and G have a 3-coloring by Theorem 4.3.

5. Outline of the algorithm. Let us summarize the above arguments in the
following linear-time procedure, 3COL4MAX4, that decides not only existence but
also finds a 3-coloring, if there is one, for any graph G ∈ R.

Procedure 3COL4MAX4.

Input: Graph G ∈ R.

Output: “NO” if G is not 3-colorable; a 3-coloring of G otherwise.
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(1) While G has a vertex v such that G[N(v)] is either a claw or a C4 or a P4,
apply reductions from Lemma 3.1.

(2) If G contains a K4 as an induced subgraph, then output “NO” and STOP.
(3) Apply reductions of Lemma 4.2 to produce a graph of vertex degree at most

three, color this graph, and then transform the found 3-coloring into a 3-
coloring of the input graph as suggested by Lemmas 4.2 and 3.1.

The correctness and linear-time bound of the procedure follow from the results of
the preceding sections, where we described in detail all steps of the algorithm, except
for 3-coloring of graphs with vertex degree at most three. The algorithmic proof of
Brooks’s theorem proposed by Lovász [8] suggests an idea how to find a 3-coloring
in such graphs. Recent developments in [12] provide a simpler way to implement
Lovász’s algorithm in linear time. To make the paper self-contained we present the
algorithmic proof of Brooks’s theorem below. Bryant [2] simplified this proof with
the following characterization of cycles and complete graphs, highlighting thereby the
exceptional role of the cycles and complete graphs in Brooks’s theorem.

Proposition 5.1. Let G be a 2-connected graph. Then G is a cycle or a complete
graph if and only if G − {u, v} is not connected for every pair {u, v} of vertices at
distance two.

Proof (Randerath and Schiermeyer [10]). Let G be a 2-connected graph of order
n. If G is a cycle or a complete graph, then obviously G−{u, v} is not connected for
any pair {u, v} of vertices at distance two. Hence, assume that G is neither a cycle
nor a complete graph and that G − {u, v} is not connected for each pair {u, v} of
vertices at distance two. Since G is 2-connected, there must exist at least one cycle
in G. Let C be a longest cycle in G. Assume that C is not a Hamiltonian cycle
of G. Since C is a longest cycle and G is connected, there exist vertices y, z of C
and x ∈ V (G) − V (C) such that z is adjacent to x and y, and x is not adjacent
to y; i.e., distG(x, y) = 2. Denote the path connecting x to y and containing all
the vertices of C by P1. According to our assumption, G − {x, y} is not connected,
and due to the 2-connectivity of G, there exists a second path P2 connecting x to
y, which is vertex disjoint with P1, except for the endpoints. But then P1 and P2

form a cycle C ′ of length greater than C, a contradiction to the special choice of
C. Thus, C = v0v1, . . . , vn−1v0 is a Hamiltonian cycle. Now we consider a vertex vi
with 2 < dG(vi) < n − 1, which must exist since G is neither a cycle nor a complete
graph. Then there is j /∈ {i− 1, i+ 1} such that vi is adjacent to vj but nonadjacent
(without loss of generality) to vj−1. Since G − {vi, vj−1} is not connected, vj is not
adjacent to vj−2. Therefore, G−{vj , vj−2} is not connected, and hence dG(vj−1) = 2.
Specifically, vj−1 is not adjacent to vj+1. But now, on the one hand, G−{vj−1, vj+1}
is not connected according to our assumption, and, on the other hand, vj is adjacent
to vi. This contradiction completes the proof of the proposition.

Theorem 5.2 (Brooks [1]). Let G be a connected graph which is neither an odd
cycle nor a complete graph. Then G is ∆(G)-colorable.

Algorithmic proof of Brooks’s theorem [8]. Obviously, if the graph G with ∆(G) =
∆ is a cycle of even length, then G is 2-colorable. Hence, assume that G is neither
a complete graph nor a cycle. Moreover, we shall assume that G is 2-connected,
since otherwise the problem can be reduced to blocks of G. By Proposition 5.1 there
exists a pair {u, v} of vertices at distance two in graph G such that G′ = G− {u, v}
is connected. Suppose that w ∈ NG(u) ∩ NG(v), and label the vertices of G as
v1 = u, v2 = v, and the remainder as v3, v4, . . . , vn = w in nonincreasing order of
their distance from w in G′. Then color the vertices v1, v2, . . . , vn in that order using
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colors 1, 2, . . . ,∆ so that at each step the color used for the vertex vi is the lowest-
numbered color not yet used at a vertex adjacent to vi. Hence, we apply a greedy
algorithm along our vertex ordering. The labeling of the vertices ensures that at each
stage, vi (1 ≤ i ≤ n) is adjacent to at least one higher numbered (and hence presently
uncolored) vertex. Thus, vi is adjacent to at most ∆ − 1 colored vertices, and one
of the ∆ colors will be available for it. Finally, the vertex vn = w is adjacent to at
most ∆ vertices, at least two of which (v1 = u and v2 = v) have the same color 1.
Hence, there will be a color available for w. Therefore, the algorithm provides a
vertex-coloring of G with at most ∆ colors.
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Abstract. We investigate efficient algorithms for computing Boolean function properties rel-
evant to query complexity. Such properties include, for example, deterministic, randomized, and
quantum query complexities; block sensitivity; certificate complexity; and degree as a real polyno-
mial. The algorithms compute the properties, given an n-variable function’s truth table (of size
N = 2n) as input.

Our main results are the following:
- O(N log2 3 logN) algorithms for many common properties,
- an O(N log2 5 logN) algorithm for block sensitivity,
- an O(N) algorithm for testing “quasi symmetry,”
- a notion of a “tree decomposition” of a Boolean function, proof that the decomposition is

unique, and an O(N log2 3 logN) algorithm for finding it,
- a subexponential-time approximation algorithm for space-bounded quantum query com-

plexity. To develop this algorithm, we give a new way to search systematically through
unitary matrices using finite-precision arithmetic.

The algorithms discussed have been implemented in a linkable library.

Key words. algorithm, Boolean function, truth table, query complexity, quantum computation
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1. Introduction. The query complexity of Boolean functions, also called black-
box or decision-tree complexity, has been well studied for years [7, 9, 18]. Counting
how many queries are needed to evaluate a function is easier than counting how many
computational steps are needed; thus, nontrivial lower bounds are more readily shown
for the former measure than for the latter. Also, query complexity has proved to be
a powerful tool for studying the capabilities of quantum computers [2, 3, 4, 7, 13].

Numerous Boolean function properties relevant to query complexity have been
defined, such as sensitivity, block sensitivity, randomized and quantum query com-
plexity, and degree as a real polynomial. But many open questions remain concerning
the relationships between the properties. For example, are sensitivity and block sen-
sitivity polynomially related? How small can quantum query complexity be, relative
to randomized query complexity? Lacking answers to these questions, we may wish
to gain insight into them by using computer analysis of small Boolean functions. But
to perform such analysis, we need efficient algorithms to compute the properties in
question. Such algorithms are the subject of the present paper.

Let f : {0, 1}n → {0, 1} be a Boolean function, and let N = 2n be the size of the
truth table of f . We seek algorithms that have modest running time as a function of
N , given the truth table as input. Table 1 lists some properties important for query
complexity, together with the complexities of the most efficient algorithms for them
of which we know.
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Table 1
Properties important for query complexity, with the complexities of the most efficient current

algorithms. Here “LP” stands for linear programming reduction, and “SDP” for semidefinite pro-
gramming reduction.

Query property Complexity Source

Deterministic query complexity D(f) O(N1.585 logN) [12]
Certificate complexity C(f) O(N1.585 logN) [10]
Degree as a real polynomial deg(f) O(N1.585 logN) This paper

Approximate degree d̃eg(f) LP Obvious
Randomized query complexity R0(f) LP This paper
Block sensitivity bs(f) O(N2.322 logN) This paper
Quasi symmetry O(N) This paper
Tree decomposition O(N1.585 logN) This paper
Quantum query complexity Q2(f) SDP [5]
Randomized certificate complexity RC(f) LP Obvious

There is also a complexity-theoretic rationale for studying algorithmic problems
such as those considered in this paper. Much effort has been devoted to finding
Boolean function properties that do not naturalize in the sense of Razborov and
Rudich [20], and that might therefore be useful for proving circuit lower bounds. In our
view, it would help this effort to have a better general understanding of the complexity
of problems on Boolean function truth tables—both upper and lower bounds. This
paper is a step towards such an understanding.

In an earlier version of this paper, we raised as our “most interesting” open
question whether there exists a polynomial-time algorithm to compute (or even ap-
proximate) quantum query complexity. Subsequently Barnum, Saks, and Szegedy [5]
managed to answer this question in the affirmative, using semidefinite programming.
In section 7 we present a weaker result, namely an O(Npolylog(N)) constant-factor ap-
proximation algorithm for bounded-error quantum query complexity if the memory
of the quantum computer is restricted to O(log n) qubits. The main issue here, which
is only partly addressed by results of Bernstein and Vazirani [8], is how to represent
unitary operators with limited-precision arithmetic. Our results on this issue are used
in the detailed analysis of the algorithm of Barnum, Saks, and Szegedy.

We have implemented most of the algorithms discussed in this paper in a linkable
C library, which is available for download.1

The paper is organized as follows. Section 2 gives preliminaries, and section 3
reviews simple algorithms for deterministic query complexity, certificate complexity,
degree as a real polynomial, randomized query complexity, and randomized certifi-
cate complexity. Section 4 gives an O(N log2 5 logN) algorithm for computing block
sensitivity, and section 5 gives an O(N) algorithm for testing “quasi symmetry.” Sec-
tion 6 defines a notion of the “tree decomposition” of a Boolean function, proves that
the decomposition is unique, and gives an O(N log2 3 logN) algorithm for constructing
it. Section 7 presents our results on algorithms for quantum query complexity, and
section 8 concludes with some open problems.

2. Preliminaries. A Boolean function f is a total function from {0, 1}n onto
{0, 1}. We use Vf to denote the set of variables of f , and use X, or alternatively
x1, . . . , xn, to denote an input to f . The restriction of f to R is denoted f|R. If
X is an input, |X| denotes the Hamming weight of X; if S is a set, |S| denotes the

1Available at http://www.cs.berkeley.edu/˜aaronson/bfw
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cardinality of S. Particular Boolean functions to which we refer are ANDn, ORn, and
XORn, the AND, OR, and XOR functions, respectively, on n inputs.

Throughout, we assume a RAM model of computation, in which for any input
X, f(X) can be obtained in O(1) time.

3. Basic properties. To our knowledge, no algorithms for block sensitivity,
quasi symmetry, or tree decomposition have been previously published. But algo-
rithms for simpler query properties have appeared in the literature.

3.1. Deterministic query complexity. A decision tree T is a binary tree in
which each nonleaf vertex is labeled with an index (1 through n) and each leaf vertex
is labeled with an output (0 or 1). Evaluation begins at the root. At a vertex v labeled
with i, if xi = 0, we evaluate the left subtree of v, while if xi = 1, we evaluate the
right subtree. When we reach a leaf vertex we halt and return the appropriate output.
T represents a Boolean function f if, for all settings of x1, . . . , xn, the output of T
equals f(x1, . . . , xn). Then the deterministic query complexity D(f) is the minimum
height of a decision tree for f .

Guijarro, Lav́ın, and Raghavan [12] give a simple O(N1.585 logN) dynamic pro-
gramming algorithm to compute D(f). We present a similar algorithm for complete-
ness. The idea is that, at any time, a decision tree for f has reduced f to one of
its 3n possible restrictions: each of the n variables either (1) has been queried and
is a 0, (2) has been queried and is a 1, or (3) has not yet been queried. Thus we
can represent a restriction S by an element of {0, 1, ∗}n, where the asterisk represents
“not yet queried.” We can also impose a lexicographic ordering on restrictions by
stipulating that 0 comes before 1 comes before asterisk.

The algorithm consists of two loops, both of which proceed through all states
in lexicographic order. The first loop fills in an array called A, which stores, for
each restriction, whether it is a constant function and, if so, what its value is. The
second loop uses A to fill in an array called D, which stores the deterministic query
complexity of each restriction. In the algorithm, S(i) represents the ith element of S,
and SS(i)=k represents S with S(i) set to the value k.
Algorithm 1 (computes deterministic query complexity).
loop over all S ∈ {0, 1, ∗}n in lexicographic order {

if (S ∈ {0, 1}n), then set A[S] := f(S) else {
choose an i such that S(i) = ∗;
if (A[SS(i)=0] = A[SS(i)=1]), then set A[S] := A[SS(i)=0];
else set A[S] := NONCONSTANT;

}
}
loop over all S ∈ {0, 1, ∗}n in lexicographic order {

if (A[S] �= NONCONSTANT), then set D[S] := 0;
else set D[S] := 1 + minS(i)=∗[max(D[SS(i)=0], D[SS(i)=1])];

}
return D[∗n];
That f is given as a truth table is crucial: if f is nontotal and only the inputs

for which f is defined are given, then deciding whether D(f) ≤ k for some k is NP-
complete [16]; a related problem is NP-hard even to approximate within a constant
factor [23].

3.2. Certificate complexity. Given an input X to f , a certificate for X is a
constant-valued restriction that agrees with X on the fixed variables. The size of
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the certificate is the number of fixed variables; note that querying these variables is
sufficient to prove that f(X) = 0 or f(X) = 1, as the case may be. The certificate
complexity CX(f) of X is the minimum size of any certificate for X. The certificate
complexity C(f) of f is the maximum of CX(f) over all inputs X. (Equivalently,
C(f) is the minimum height of a nondeterministic decision tree for f .)

Czort [10] gives an O(N1.585 logN) algorithm to compute C(f). We can obtain
such an algorithm by reusing the same array A that was used for deterministic query
complexity in section 3.1. Consider a directed acyclic graph G in which the vertices
are the 3n possible restrictions of f , and an edge is drawn from S to T if and only
if T is obtained from S by changing one 0 or 1 to an asterisk. The main loop of the
algorithm fills in an array called q, proceeding in reverse lexicographic order. The
array q stores, for each restriction S of f , the maximum length of any path in G from S
to a nonconstant function, given that the path must halt once it reaches a nonconstant
function. (Therefore, if S itself is nonconstant, then the length must be 0.) The
certificate complexity is obtained by taking the maximum, over all S ∈ {0, 1}n, of
n− q[S] + 1.
Algorithm 2 (computes certificate complexity).
loop over all S ∈ {0, 1, ∗}n in reverse lexicographic order {

if (A[S] = NONCONSTANT), then
set q[S] := 1 + max(−1,maxS(i)∈{0,1} q[SS(i)=∗]);

else set q[S] := 1 + maxS(i)∈{0,1} q[SS(i)=∗];
}
return maxS∈{0,1}n(n− q[S]);
Again, if f is not given as a full truth table, then deciding whether C(f) ≤ k for

some k is NP-complete [14].

3.3. Degree as a polynomial. Let deg(f) be the minimum degree of an n-
variate real multilinear polynomial p such that, for all X ∈ {0, 1}n, p(X) = f(X).
Degree was introduced to query complexity by Nisan and Szegedy [19], who observed
the relationship deg(f) ≤ D(f). Later Beals et al. [7] related degree to quantum query
complexity by showing that deg(f) ≤ 2 QE(f).

The following lemma, adapted from Lemma 4 of [9], is easily seen to yield an
O(n3n) = O(N1.585 logN) dynamic programming algorithm for deg(f). Say that a
function obeys the parity property if the number of inputs X with odd parity for
which f(X) = 1 equals the number of inputs X with even parity for which f(X) = 1.
Lemma 3.1 (folklore). deg(f) equals the size of the largest restriction of f for

which the parity property fails.
Proof. Let cS be the coefficient of the monomial

∏
vk∈S vk. By the Möbius

formula,

cS =
∑
X⊆S

(−1)|X|+|S|f(X),

where X ⊆ S means that every i for which xi = 1 is in S. Now f has degree less than
d if and only if, for all S with |S| ≥ d, cS = 0. But for each fixed value of |S|, |S| (in
the formula above) can affect the sign of cS but not whether cS = 0. Therefore for
all δ, cS = 0 for all S with |S| = δ is equivalent to the parity property holding for all
restrictions of size δ.

Lemma 3.1 leads to an O(N log2 3 logN) dynamic programming algorithm for com-
puting deg(f), as follows.
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Algorithm 3 (computes degree as a real polynomial).
loop over all S ∈ {0, 1, ∗}n in lexicographic order {

if (S ∈ {0, 1}n), then set d[S] := f(S);
else set d[S] := d[SS(i)=0]− d[SS(i)=1] for some i such that S(i) = ∗;

}
return maxd[S] �=0(number of ∗’s in S);

3.4. Randomized query complexity. A randomized decision tree TR is simply
a collection T1, . . . , Tk of ordinary decision trees, each Ti associated with a probability
pi satisfying p1+· · ·+pk = 1. TR represents f if each tree Ti in the collection represents
f . Let h(T,X) be the number of queries tree T makes on input X. Then we define

h(TR) = max
X∈{0,1}n

[p1h(T1, X) + · · ·+ pkh(Tk, X)].

Then the zero-error randomized query complexity R0(f) is the minimum height of a
randomized decision tree that represents f . One can also discuss the bounded-error
randomized query complexity R2(f), which is the minimum height of a randomized
decision tree that represents f with a probability of error at most 1/3. Nisan showed
that R0(f)2 ≥ D(f) and R2(f)3 = Θ(D(f)) (see [18]). On the other hand, the
best known separation between deterministic and randomized query complexity is
R0(f) = R2(f) = D(f)0.753... [21, 22] for f an AND/OR tree with two children per
node.

Whether better separations are possible is a long-standing open question, and one
that might be fruitfully investigated with computer analysis.2 Unfortunately, though,
we do not know how to compute R0(f) or R2(f) in polynomial time without reliance
on linear programming. Here we sketch the reduction to a linear program.

As before, at any time the query algorithm has reduced f to one of its 3n re-
strictions. Also, for each restriction, the algorithm has up to n+ 2 possible moves: it
can query any variable not yet queried, halt and return 0, or halt and return 1. So
consider a directed acyclic graph in which the vertices are the restrictions S1, . . . , S3n

(together with halting states S(0) and S(1)) and the edges (Si1 , Sj1), . . . , (Sim , Sjm)
are the possible moves of the algorithm. With each edge e we associate a probability
weight p(e); these weights are the variables of the linear program. Let C(X) be the
subset of N restrictions that are compatible with input X. There are four classes of
constraints:

1. Well-formedness. The sum of the probability weights leaving the initial state
must be 1. Formally

∑
i p(S0, Si) = 1, where S0 is the initial state (no

variables yet queried).
2. Conservation of probability. The sum of the probability weights entering each

state must equal the sum of the probability weights leaving it. For all j �= 0,∑
i p(Si, Sj) =

∑
k p(Sj , Sk).

3. Probability of correctness. For each input, the probability of returning the
correct answer must be at least 1− ε, where ε = 0 for R0(f) and ε = 1/3 for
R2(f). For all X with f(X) = 1,

∑
Si∈C(X) p(Si, S(1)) ≥ 1−ε. For f(X) = 0,

substitute p(Si, S(0)).

2We have done such analysis for all 4-variable Boolean functions dependent on all 4 inputs. The
two functions exhibiting the largest deterministic/randomized complexity gap (D(f) = 4, R0(f) = 3)
are both AND/OR trees, namely, A AND (B OR C OR D) and (A OR B) AND (C OR D). Ran-
domization yields at least some speedup for 60 out of the 208 Boolean functions that are distinct up
to negating inputs and outputs and permuting inputs.



ALGORITHMS FOR BOOLEAN FUNCTION QUERY PROPERTIES 1145

4. Minimum running time. For each input, the expected running time must be
at most T . For all X,

∑
Si∈C(X)Q(Si)[p(Si, S(0)) + p(Si, S(1))] ≤ T , where

Q(Si) is the number of queries that have been made in state Si.
The objective is to minimize T .
Finally, let us briefly mention randomized and quantum certificate complex-

ity. Given X ∈ {0, 1}n, Aaronson [1] defined the randomized certificate complexity
RCX(f) to be the minimum expected number of queries used by a randomized al-
gorithm that accepts with 2/3 probability, given X as input, and rejects with 2/3
probability, given any Y for which f(Y ) �= f(X). Then RC(f) is the maximum of
RCX(f) over allX. The quantum certificate complexity QC(f) is defined analogously,
but with quantum instead of randomized algorithms. Aaronson showed that for any
X, the optimal (up to a constant factor) randomized certificate forX queries the input
nonadaptively. Furthermore, QC(f) is exactly characterized (again up to a constant
factor) as the square root of RC(f). From these results, it readily follows that both
RC(f) and QC(f) are approximable to within a constant factor in polynomial time,
using linear programming.

4. Block sensitivity. Block sensitivity, introduced by Nisan [18], is a Boolean
function property that is used to establish lower bounds. There are several open
problems that an efficient algorithm for block sensitivity might help to investigate
[18, 7, 9].

Let X be an input to Boolean function f , and let B (a block) be a nonempty
subset of Vf . Let X(B) be the input obtained from X by flipping the bits of B.
Definition 4.1. A block B is sensitive on X if f(X) �= f(X(B)), and minimal

on X if B is sensitive and no proper subblock S of B is sensitive. Then the block
sensitivity bsX(f) of X is the maximum number of disjoint minimal (or equivalently,
sensitive) blocks on X. Finally bs(f) is the maximum of bsX(f) over all X.

The obvious algorithm for computing bs(f) (compute bsX(f) for each X using
dynamic programming, then take the maximum) uses Θ(N2.585 logN) time. Here we
show how to reduce the complexity to O(N2.322 logN) by exploiting the structure of
minimal blocks. Our algorithm has two main stages: one to identify minimal blocks
and store them for fast lookup, another to compute bsX(f) for each X using only
minimal blocks. The analysis proceeds by showing that no Boolean function has too
many minimal blocks, and therefore that if the algorithm is slow for some inputs
(because of an abundance of minimal blocks), then it must be faster for other inputs.
Algorithm 4 (computes bs(f)). For each input X do the following:
1. Construct an array M of all minimal blocks of X. To do this, loop over all

blocks B in lexicographic order ( {x1}, {x2}, {x1, x2}, {x3}, . . . ), and mark (i)
whether B is a minimal block and (ii) whether B contains a minimal block.
B is minimal if B is sensitive and, for all xi ∈ B, B \ {xi} does not contain
a minimal block. B contains a minimal block if B is minimal or B \ {xi}
contains a minimal block for some xi ∈ B.

2. Create 2n−1 lists, one list LS for each nonempty subset S of variables. Then,
for each minimal block B in M , insert a copy of B into each list LS such that
B ⊆ S. The result is that, for each S, LS = 2S ∩M , where 2S is the power
set of S.

3. Let a state be a partition (P,Q) of Vf . The set P represents a union of
disjoint minimal blocks that have already been selected; the set Q represents
the set of variables not yet selected. Then bsX(f) = θ(∅, Vf ), where θ(P,Q)

is defined via the recursion θ(P,Q)
	
= 1 + maxB∈LQ θ(P ∪B,Q\B). Here the
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maximum evaluates to 0 if LQ is empty. Compute θ(P,Q) using depth-first
recursion, caching the values of θ(P,Q) so that each needs to be computed
only once.

The block sensitivity is then the maximum of bsX(f) over all X.
Let m(X, k) be the number of minimal blocks of X of size k. The analysis of

Algorithm 4’s running time depends on the following lemma, which shows that large
minimal blocks are rare in any Boolean function.
Lemma 4.2.

∑
X m(X, k) ≤ 2n−k

(
n
k

)
for k ≥ 2.

Proof. The number of positions that can be occupied by a minimal block of size
k is

(
n
k

)
for each input, or 2n

(
n
k

)
for all inputs. Consider an input X with a minimal

block B = {b1, . . . , bk} of size k. Block B has 2k − 1 nonempty subsets; label them
S1, . . . , S2k−1. By the minimality of B, for each Si the input X(Si) has {b1}, . . . , {bk}
as minimal blocks if Si = B, and B \ Si as a minimal block if Si �= B. Therefore,
since k ≥ 2, X(Si) cannot have B as a minimal block. So of the 2n

(
n
k

)
positions, only

one out of 2k can be occupied by a minimal block of size k.
Theorem 4.3. Algorithm 4 takes O(N2.322 logN) time.
Proof. Step 1 takes time O(N2 logN), totaled over all inputs. Let us analyze

step 2, which creates the 2n − 1 lists LS . Since each minimal block B is contained in
2n−|B| sets of variables, the total number of insertions is at most

∑
X

n∑
k=0

m(X, k)2n−k =

n∑
k=0

[
2n−k

∑
X

m(X, k)

]
≤

n∑
k=0

22n−2k

(
n

k

)
= N log2 5.

Since each insertion takes O(logN) time, the total time is O(N2.322 logN).
We next analyze step 3, which computes block sensitivity using the minimal

blocks. Each θ(P,Q) evaluation is performed at most once and involves looping
through a list of minimal blocks contained in Q, with each iteration taking O(log n)
time. For each block B, the number of distinct (P,Q) pairs such that B ⊆ Q is at
most 2n−|B|. Therefore, by the previous calculation, the time for each input X is at
most (logN)

∑n
k=0m(X, k)2n−k, and a bound of O(N2.322 logN) follows.

5. Quasi symmetry. A Boolean function f(X) is symmetric if its output de-
pends only on |X|. Query complexity is well understood for symmetric functions: for
all nonconstant symmetric f , D(f) = n, R0(f) = Θ(n), and QE(f) = Θ(n) [7]. Thus,
a program for analyzing Boolean functions might first check whether a function is sym-
metric, and if it is, dispense with many expensive tests. We call f quasi-symmetric if
some subset of input bits can be negated to make f symmetric. There is an obvious
O(N2) algorithm to test quasi symmetry; here we give a linear-time algorithm.

For an integer p, call a restriction of f a p-left-restriction if each variable vi is fixed
if and only if i ≤ p. The basic idea of the algorithm is to loop through all 2n+1−1 such
restrictions, with p decreasing from n to 0. Given a p-left-restriction S, let S0 and S1

be the two (p+1)-left-restrictions that agree with S. If either f|S0
or f|S1

is not quasi-
symmetric, then f|S (and hence f) cannot be quasi-symmetric. If, on the other hand,
f|S0

and f|S1
are both quasi-symmetric, then the algorithm tries to fit them together in

such a way that f|S itself is seen to be quasi-symmetric. If the fitting-together process
succeeds, then the algorithm returns a structure g[S], containing both the output of
f|S (encoded in compact form, as a symmetric function) and the direction, meaning the
set of input bits that must be flipped to make f|S symmetric. Note that g[S] occupies
only O(n−p) bits of space. Most of the algorithm deals with the special cases that f|S
is an XOR function or a constant function; in both cases f|S is symmetric no matter
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which set of input bits is flipped. In the pseudocode, these cases are handled using
the tags XOR (for an XOR function), CONSTANT (for a constant function), and
NORMAL (for any other quasi-symmetric function). Whenever the algorithm fails
(meaning that f has been found not to be quasi-symmetric), the whole algorithm
terminates; whenever g[S] is assigned a value, the current iteration terminates. To
avoid ambiguity about whether f|S is an XOR, CONSTANT, or NORMAL function,
we start p at n− 2 rather than n.
Algorithm 5 (tests quasi symmetry).
For all p-left-restrictions S for p ≤ n− 2, with p decreasing from n− 2 to 0,
1. If p = n − 2, then let g[S] be the appropriate NORMAL, CONSTANT, or

XOR function for the 2-input Boolean function f|S. If f|S is not quasi-
symmetric, then fail (meaning f is not quasi-symmetric).

2. If g[S0] and g[S1] are NORMAL functions but have different directions, then
fail.

3. Let 0k be a string of k zeroes. If g[S0] and g[S1] are CONSTANT functions,
then
• If f|S0

(0n−p−1) = f|S1
(0n−p−1), then let g[S] be a CONSTANT function

with output f|S0
(0n−p−1); otherwise fail.

4. If g[S0] and g[S1] are XOR functions, then
• If f|S0

(0n−p−1) �= f|S1
(0n−p−1), let g[S] be an XOR function with

f|S(0n−p) = f|S0
(0n−p−1); otherwise fail.

5. For i ∈ {0, 1}, if g[Si] is a CONSTANT function and g[S1−i] is an XOR
function, then halt and return failure.

6. For i ∈ {0, 1}, if g[Si] is a CONSTANT or XOR function, then make g[Si]
a NORMAL function with the same direction as g[S1−i].

7. For i ∈ {0, 1} and j ∈ {0, . . . , n − p − 1}, let a
(i)
j = f|Si(X) for all X ∈

{0, 1}n−p−1 of Hamming distance j from the direction string.
• If the strings a(0) and a(1) overlap each other on n− p− 2 bits, so that

for either i = 0 or i = 1,

a
(i)
1 = a

(1−i)
2 , . . . , a

(i)
n−p−2 = a

(1−i)
n−p−1,

then let g[S] be a NORMAL function with outputs described by the
(n− p)-bit overlap string and appropriate direction. Otherwise fail.

Since the time used by each invocation is linear in n− p, the total time used is

n∑
p=0

2p(n− p) = O(N).

The following lemma shows that the algorithm deals with all of the ways in which a
function can be quasi-symmetric, which is key to the algorithm’s correctness.
Lemma 5.1. Let f be a Boolean function on n inputs. If two distinct (and

noncomplementary) sets of input bits A and B can be flipped to make f symmetric,
then f is either XORn, 1−XORn, or a constant function.

Proof. Assume without loss of generality that B is empty. Then A has cardinality
less than n. We know that f(X) depends only on |X|, and also that it depends only

on /X/
	
=
∑n

i=1 κ(xi), where κ(x) = 1− x if xi ∈ A and κ(x) = x otherwise. Choose
any Hamming weight 0 ≤ w ≤ n− 2, and consider an input Y with |Y | = w and with
two variables vi and vj such that vi ∈ A, vj /∈ A, and Y (i) = Y (j) = 0. Let Z be Y
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with Y (i) = Y (j) = 1. We have |Z| = |Y |+2, but, on the other hand, /Z/ = /Y/, and
thus f(Y ) = f(Z) by symmetry. Again applying symmetry, f(P ) = f(Q) whenever
|P | = w and |Q| = w + 2. Therefore f is either XORn, 1 − XORn, or a constant
function.

6. Tree decomposition. Many of the Boolean functions of most interest to
query complexity are naturally thought of as trees of smaller Boolean functions: for
example, AND-OR trees and majority trees. Thus, given a function f , one of the most
basic questions we might ask is whether it has a tree decomposition and, if so, what
it is. In this section we define a sense in which every Boolean function has a unique
tree decomposition, and we prove its uniqueness. We also sketch an O(N1.585 logN)
algorithm for finding the decomposition.
Definition 6.1. A distinct variable tree is a tree in which
(i) every leaf vertex is labeled with a distinct variable (which may or may not be

negated);
(ii) every nonleaf vertex v is labeled with a Boolean function having one variable

for each child of v, and depending on all of its variables;
(iii) every nonleaf vertex has at least two children.
Such a tree represents a Boolean function in the obvious way. We call the tree

trivial if it contains exactly one nonleaf vertex. For instance, the majority function
on 3 inputs can only be represented by a trivial tree.

A tree decomposition of f is a separation of f into the smallest possible compo-
nents, with the exception of (�) ANDk, (�) ORk, and (�) XORk components (where
(�) denotes possible negation), which are left intact. The choice of AND, OR, and
XOR components is not arbitrary; these are precisely the three components that
“associate,” so that, for example, AND(x1,AND(x2, x3)) = AND(AND(x1, x2), x3).
Formally we have the following.
Definition 6.2. A tree decomposition of f is a distinct variable tree representing

f such that
(i) no vertex is labeled with a function f that can be represented by a nontrivial

tree, unless f is (�) ANDk, (�) ORk, or (�) XORk for some k;
(ii) no vertex labeled with (�) ANDk has a child labeled with ANDl;
(iii) no vertex labeled with (�) ORk has a child labeled with ORl;
(iv) no vertex labeled with (�) XORk has a child labeled with (�) XORl;
(v) any vertex labeled with a function that is constant on all but one input is

labeled with (�) ANDk or (�) ORk.
Let double-negation be the operation of negating the output of a function at some

nonroot vertex v, then negating the corresponding input of the function at v’s parent.
Double-negation is a trivial way to obtain distinct decompositions. This caveat aside,
we can assert uniqueness as follows.
Theorem 6.3. Every Boolean function has a unique tree decomposition, up to

double-negation.
We will build up to this uniqueness theorem via a sequence of preliminary results.

Given a vertex v of a distinct variable tree, let L(v) be the set of variables in the
subtree of which v is the root. Assume that f is represented by two distinct tree
decompositions, S and T , such that S has a vertex vS and T has a vertex vT with
L(vS) and L(vT ) incomparable (i.e., they intersect, but neither contains the other).
We partition Vf into four sets of variables as follows: A = L(vS) − L(vT ), B =
L(vT ) − L(vS), I = L(vS) ∩ L(vT ), and U = Vf − L(vS) − L(vT ). Our strategy will
be to derive increasingly strong constraints on how S and T can combine information
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from A, B, I, and U . We do this by repeatedly restricting variables—considering f as,
say, a function of I only—and then exploiting the fact that S and T must produce the
same output, even though information travels along different routes in the two trees.
Ultimately (in Lemma 6.5) we show that f is a function of s(A), r(I), and t(B) for
some Boolean functions s, r, and t. The problem thereby reduces to which Boolean
functions of three variables have nonunique decompositions—and we can check that
the only possibilities, AND, OR, and XOR, are ruled out by the definition of a tree
decomposition.

Call a set of variables unifiable if there exists a vertex v, in any decomposition
of f , such that L(v) = V . The preceding results imply that no pair of unifiable sets
VS , VT is incomparable (Lemma 6.6): either VS ∩ VT = φ, VS ⊆ VT , or VT ⊆ VS .
From there, it is readily shown that any decomposition must contain a vertex v with
L(v) = V for every unifiable V , from which the uniqueness theorem follows.

A remark on notation: we use subscripts to name Boolean functions (i.e., s0, s1,
etc.) in order of their appearance, and superscripts to list which of A, B, I, and U
are currently being restricted.
Lemma 6.4. There exist Boolean functions r, t00, and t10 such that f is a function

of A, r(I), t
r(I)
0 (B), and U .

Proof. For any restriction u of U , we can write the output of S as Su[s1(A, I), B],
where Su and s1 are Boolean functions. Similarly we can write the output of T as
Tu[A, t1(I,B)]. We have that, for all settings of U ,

Su[s1(A, I), B] = Tu[A, t1(I,B)].

Consider a restriction b of B. This yields

Su,b[s1(A, I)] = Tu[A, tb2(I)]

for some Boolean function tb2. Therefore, for each b, s1 depends on only a single bit
obtained from I, namely, tb2(I). Thus we can write s1(A, I) as s3(A, tb2(I)) for some
Boolean function s3—or, even more strongly, as s3(A, s4(I)), since we know that s1
does not depend on B. By analogous reasoning we can write t1(I,B) as t3(t4(I), B)
for some functions t3 and t4. Thus we have

Su[s3(A, s4(I)), B] = Tu[A, t3(t4(I), B)].

Next we apply the restrictions A = a and B = b, obtaining

Su,b[sa3(s4(I))] = Tu,a[tb3(t4(I))],

which implies that, for some functions s5 and t5,

s5(s4(I)) = t5(t4(I))

for all I. This shows that s4(I) and t4(I) are equivalent up to negation of output,
since S and T must depend on I for some restriction of A and B. Thus we have

Su[s
r(I)
0 (A), B] = Tu[A, t

r(I)
0 (B)](*)

for some Boolean functions r(I), si5, and ti5 (r ∈ {0, 1}).
We will henceforth think of r(I) as a single Boolean variable.
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Lemma 6.5. There exist Boolean functions s and t such that f is a function of
s(A), r(I), t(B), and U .

Proof. Starting from (*), we next apply the restrictions A = a and r(I) = i:

Su,a,i[B] = Tu,a[ti0(B)].

Thus, for all restrictions of A and r(I), S depends on only a single bit obtained from
B, namely, ti0(B). Note that ti0 does not depend on A. Analogously, for both possible
restrictions i of r(I), T depends on only a single bit obtained from A, namely, si0(A).
Thus we can write

su6 [si0(A), ti0(B)] = tu6 [si0(A), ti0(B)],

where su6 and tu6 are two-input Boolean functions. We claim that s00 = s10 and t00 = t10.
There must exist a restriction u of U such that su6 depends on both si0 and ti0.

Suppose there exists a restriction b of B such that t00(b) �= t10(b). Now, si0 must be a
nonconstant function, so find a constant c such that su6 [c, ti0(b)] depends on ti0, and
choose restrictions A = a and r(I) = i such that si0(a) = c. (If su6 is an XOR function,
then either c = 0 or c = 1 will work, whereas if su6 is an AND or OR function, then
only one value of c will work.) For su6 to be well defined, we need that whenever
si0(a) = c, the value of i is determined, since

su6 [si0(A), ti0(B)] = Su[si0(A), B]

and so the only access that su6 has to i is through si0. This implies that si0 has
the form s(A) ∧ i or s(A) ∧ �i for some function s. Therefore su6 can be written as
su7 [s(A), i, ti0(B)] for some function su7 . Now repeat the argument for tu6 . We obtain
that tu6 can be written as tu7 [si0(A), i, t(B)] for some functions tu7 and t. Therefore

su7 [s(A), i, ti0(B)] = tu7 [si0(A), i, t(B)].

Thus we can take ti0(B) = t(B) and si0(A) = s(A) and write su7 (as well as tu7 ) as
su7 [s(A), r(I), t(B)].

Recall that a set V ⊆ Vf is unifiable if there exists a vertex v, in some decompo-
sition of f , such that L(v) = V .
Lemma 6.6. If VS and VT are unifiable, then either VS ∩ VT = φ, VS ⊆ VT , or

VT ⊆ VS.
Proof. Let VS = L(vS) in decomposition S, and VT = L(vT ) in decomposition T ,

and suppose that VS and VT are incomparable. Let gS be the function at vS , and gT
the function at vT . Defining A, I, B, and U as before, from Lemma 6.5 there exist
Boolean functions s(A), r(I), and t(B) such that

gS = hS(s(A), r(I)),

gT = hT (r(I), t(B))

for some two-variable Boolean hS and hT . Also, there exists a restriction U = u for
which f depends on all three of s(A), r(I), and t(B). So the question reduces to
which Boolean η(a, i, b)’s dependent on all three inputs are associative, in the sense
that there exist Boolean η1, η2 and hS , hT for which

η(a, i, b) = η1(hS(a, i), b) = η2(a, hT (i, b)).
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It is easily checked that the only possibilities are

(�) XOR(a, i, b) or (�) AND((�)a, (�)i, (�)b),

where (�) denotes possible negation. Furthermore, η is determined up to negation,
given hS and hT , so η cannot depend on u. In both the XOR and the AND (or equiva-
lently OR) cases, vS and vT would have been collapsed to a single vertex in both S and
T , by properties (ii)–(v) of a tree decomposition. Thus we have a contradiction.

Now that we have ruled out the possibility of incomparable subtrees, we can
establish uniqueness.

Proof of Theorem 6.3. It remains only to show that any decomposition must
contain a vertex v with L(v) = V for each unifiable V . Suppose that V is not
represented in some decomposition F . Certainly V �= Vf , so let VP be the parent
set of V in F : that is, the unique minimal set such that V ⊂ VP and there exists
a vertex vP in F with L(vP ) = VP . Then the function at vP is represented by a
nontrivial tree containing a vertex v with L(v) = V . Were it not so represented, then
for any Boolean function g on V there would exist a setting W of VP − V such that
W , together with g(V ), would not suffice to determine the function h at vP . Since f
depends on h for some setting of Vf − VP , it follows that v could not be a vertex in
any decomposition. Furthermore, the function at vP cannot be (�) ANDk, (�) ORk, or
(�) XORk. If it were, then again v could not be a vertex in any decomposition, since
it would need to be labeled correspondingly with (�) ANDk, (�) ORk, or (�) XORk.
Having determined the unique set of vertices that comprise any decomposition, the
vertices’ labels are also determined up to double-negation.

We now consider algorithms for finding the tree decomposition. First, given
a subset G of Vf , there is a linear-time algorithm for deciding whether a Boolean
function tree representing f could have a vertex u with L(u) = G. Consider the set F
of 2n−|G| restrictions on G induced by setting all the variables in Vf −G to constant
values. A vertex could have L(u) = G if and only if all restrictions in F are identical
up to negation, omitting constant functions. This can be checked in O(N) time,
which leads to an O(N2) algorithm for finding all vertices in the tree decomposition.
(As a postprocessing step, the algorithm prunes superfluous ANDk, ORk, and XORk

vertices.)
However, we can reduce the running time to O(N log2 3 logN) by being more care-

ful about how we check whether all restrictions in F are identical. The idea is to
represent each restriction by a concise code number, which takes up only O(n) bits
rather than 2|G| bits. We create the code numbers recursively, starting with the small-
est restrictions and working up to larger ones. The code numbers need to satisfy the
following conditions:

1. Two restrictions S and T over the same set of variables get mapped to iden-
tical code numbers if and only if S = T .

2. If S is constant or S is the negation of T , then these facts are easy to tell,
given the code numbers of S and T .

We can satisfy these conditions by building up a binary tree of restrictions at each
recursive call, then assigning each restriction a code number based on its position in
the tree: 1 if it is the leftmost leaf, 2 if it is the second-to-leftmost, and so on. There
are two exceptions: the constant 0 and 1 restrictions are assigned special code numbers
Φ0 and Φ1, respectively, and if the negation of S was already assigned code number J ,
then S is assigned code number −J . For all G �= φ, each object inserted into the tree is
two code numbers of size |G|−1 restrictions concatenated together. Because this pair
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of code numbers is then “hashed down” to a single number based on its position in
the tree, the numbers always remain of size O(n). In the pseudocode, B is the binary
tree, J [S] is the codeword of restriction S, and the operation � denotes concatenation.
The set VERTICES stores the final result, namely, all sets H ⊆ Vf such that there
is a vertex u in the decomposition of f having L(u) = H. After the main loop of
the algorithm, a postprocessing step deletes redundant ANDk, ORk, and (�) XORk

vertices. This step looks for vertices u and v with L(u) and L(v) incomparable, which
by Theorem 6.3 can only have arisen by ANDk, ORk, or (�) XORk.

Algorithm 6 (decomposes a Boolean function).

For all G ⊆ Vf (in lexicographic order, starting with G = φ):

1. Initialize an empty self-balancing binary tree B.
2. Let Z be the set of all restrictions S ∈ {0, 1, ∗}n that fix exactly those variables

not in G. Also, if G �= φ, then let k be the minimum i such that vi ∈ G.
3. For all S ∈ Z,

• If G = φ, then insert Φf(S) into B. Otherwise, let S0 and S1 be further
restrictions of S that fix vk to 0 and 1, respectively, and insert J [S0]�
J [S1] into B.

4. For all S ∈ Z, assign S a code number J [S] as follows:
• For i ∈ {0, 1}, if J [S0] = J [S1] = Φi, then J [S] = Φi also.
• Otherwise, if (−J [S0])� (−J [S1]) (corresponding to the negation �S of
S) is to the left of J [S0]� J [S1] in B, then J [S] = −J [�S].
• Otherwise, if J [S0]�J [S1] is the tth leaf of B in left-to-right order, then
J [S] = t.

5. If |G| ≥ 2 and, for all S ∈ Z, |J [S]| is identical (omitting those S for which
J [S] = Φ0 or J [S] = Φ1), then add G to VERTICES; otherwise do not.

For each i ∈ {1, . . . , n}, find all G ∈ VERTICES such that vi ∈ G. Attempt
to sort them into an ascending sequence G1 ⊂ G2 ⊂ · · · . If a Gi to be inserted is
incomparable with some Gj in the sequence, then leave Gj in the sequence, do not
insert Gi, and flag both Gi and Gj for removal.

Both the main loop and the second loop effectively perform an O(logN)-time
operation for all subsets of subsets of Vf . Therefore the total running time is
O(N log2 3 logN).

7. Quantum query complexity. The quantum query complexity of a Boolean
function f is the minimum number of oracle queries needed by a quantum computer
to evaluate f . Here we are concerned only with the bounded-error query complexity
Q2(f) (defined in [7]), since approximating unitary matrices with finite precision in-
troduces bounded error into any quantum algorithm. A quantum query algorithm Γ
proceeds by an alternating sequence of T + 1 unitary transformations and T query
transformations: U0 → Q1 → U1 → · · · → QT → UT+1. Then Q2(f) is the minimum
of T over all Γ that compute f with bounded error.

As mentioned in section 1, Barnum, Saks, and Szegedy [5] have recently obtained a
polynomial-time algorithm to approximate Q2(f). Here we show a weaker result: that
if we limit the number of qubits, we can obtain a subexponential-time approximation
algorithm via careful exhaustive search.

7.1. Overview of result. For what follows, it will be convenient to extend
the quantum oracle model to allow intermediate observations. With an unlimited
workspace, this cannot decrease the number of queries needed [8]. In the space-
bounded setting, however, it might make a larger difference.
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We define a composite algorithm Γ′ to be an alternating sequence Γ1 → D1 →
· · · → Γt → Dt. Each Γi is a quantum query algorithm that uses Ti queries and at
most m qubits of memory for some m ≥ log2 n + 2. When Γi terminates, a basis
state |ψi〉 is observed. Each Di is a decision point, which takes as input the sequence
|ψ1〉, . . . , |ψi〉, and as output decides whether to (1) halt and return f = 0, (2) halt
and return f = 1, or (3) continue to Γi+1. (The final decision point, Dt, must choose
between (1) and (2).) There are no computational restrictions placed on the decision
points. However, a decision point cannot modify the quantum algorithms that come
later in the sequence; it can only decide whether to continue with the sequence. For a
particular input, let pk be the probability, over all runs of Γ′, that quantum algorithm
Γk is invoked. Then Γ′ uses a total number of queries

∑t
k=1 pkTk.

We define the space-bounded quantum query complexity SQ2,m(f) to be the min-
imum number of queries used by any composite algorithm that computes f with error
probability at most 1/3 and that is restricted to m qubits. We give an approxi-
mation algorithm for SQ2,m(f) taking time 2O(4mmn), which when m = O(log n) is

O(Npolylog(N)). The approximation ratio is
√

22/3 + ε for any ε > 0. The difficulty
in proving the result is as follows.

A unitary transformation is represented by a continuous-valued matrix, which
might suggest that the quantum model of computation is analog rather than digital.
But Bernstein and Vazirani [8] showed that, for a quantum computation taking T
steps, the matrix entries need to be accurate only to within O(log T ) bits of precision
in the bounded-error model. However, when we try represent unitary transformations
on a computer with finite precision, a new problem arises. On the one hand, if we
allow only matrices that are exactly unitary, we may not be able to approximate
every unitary matrix. So we also need to admit matrices that are almost unitary. For
example, we might admit a matrix if the norm of each row is sufficiently close to 1,
and if the inner product of each pair of distinct rows is sufficiently close to 0. But
how do we know that every such matrix is close to some actual unitary matrix? If it
is not, then the transformation it represents cannot even approximately be realized
by a quantum computer.

We resolve this issue as follows. First, we show that every almost-unitary matrix is
close to some unitary matrix in a standard metric. Second, we show that every unitary
matrix is close to some almost-unitary matrix representable with limited precision.
Third, we upper-bound the precision that suffices for a quantum algorithm, given a
fixed accuracy that the algorithm needs to attain.

An alternative approach to approximating SQ2,m(f) would be to represent each
unitary matrix as a product of elementary gates. Kitaev [17] and independently
Solovay [24] showed that a 2m× 2m unitary matrix can be represented with arbitrary
accuracy δ > 0 by a product of 2O(m) polylog(1/δ) unitary gates. But this yields a

22O(m) polylog(mn)

algorithm, which is slower than ours. Perhaps the construction or its
analysis can be improved; in any case, though, this approach is less natural for the
setting of query complexity.

7.2. Almost-unitary matrices. Let u • v denote the conjugate inner product
of u and v. The distance |A − B| between matrices A = (aij) and B = (bij) in the
Lmax norm is defined to be maxi,j |aij − bij |.
Definition 7.1. A matrix A is q-almost-unitary if |I −AA†| < q.
In the following lemma, we start with an almost-unitary matrix A and construct

an actual unitary matrix U that is close to A in the Lmax norm.
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Lemma 7.2. Let A be a q-almost-unitary s× s matrix, with s ≥ 2 and q ≤ 1/4s.
Then there exists a unitary matrix U such that |A− U | < 4.91q

√
s.

Proof. We first normalize each row Ai so that Ai •Ai = 1. For each entry aij ,

|aij/(Ai •Ai)− aij | = |aij ||1− (Ai •Ai)|/|Ai •Ai| < q(1 + q)/(1− q).

We next form a unitary matrix B from A by using the classical Gram–Schmidt (CGS)
orthogonalization procedure. The idea is to project A2 to make it orthogonal to A1,
then project A3 to make it orthogonal to both A1 and A2, and so on. Initially we set
B1 ← A1. Then for each 2 ≤ i ≤ s we set Bi ← Ai −

∑i−1
j=1(Ai •Bj)Bj . Therefore

Ai •Bk = (Ai •Ak)−
k−1∑
j=1

(Ai •Bj)(Ak •Bj).

We need to show that the discrepancy between A and B does not increase too
drastically as the recursion proceeds. Let σk = maxiAi •Bk. By hypothesis, σ1 < q.
Then σk ≤ σ1 +

∑k−1
j=1 σ

2
j . Assume that σk < q + 4q2s for all k ≤ K. By induction,

σK+1 < q +K(q + 4q2s)2 ≤ q + 4q2s

since q ≤ 1/4s and K ≤ s. So for all k, σk < q + 4q2s.

Let φ = |A − B|. By the definition of B, φ ≤ σ1|w1| + · · · + σs|ws|, where
w is a column of B. Since |w1|2 + · · · + |ws|2 = 1, φ is maximized when wi =
σi
√
s/(σ1 + · · ·+ σs), or

φ ≤ σ2
1 + · · ·+ σ2

s

√
s/(σ1 + · · ·+ σs) ≤ (q + 4q2s)2

√
s/q.

Adding q(1 + q)/(1 − q) from normalization yields a quantity less than
(4 + 9

√
2/14)q

√
s ≈ 4.91q

√
s. This can be seen by working out the arithmetic for

the worst case of s = 2, q = 1/4s.

The next lemma, which is similar to Lemma 6.1.3 of [8], is a sort of converse to
Lemma 7.2: we start with an arbitrary unitary matrix and show that truncating its
entries to a precision δ > 0 produces an almost-unitary matrix.

Lemma 7.3. Let U and V be s× s matrices with s ≥ 2 and |U − V | < δ. If U is
unitary, then V is (2δ

√
s+ δ2s)-almost-unitary.

Proof. First,

Ui • Ui =

s∑
k=1

|uk + γk|2 = 1 +

s∑
k=1

(ukγ
∗
k + u∗kγk + γkγ

∗
k),

where the uk’s are entries of U and the γk’s are error terms satisfying |γk| < δ. Thus,
by the Cauchy–Schwarz inequality, Ui • Ui differs from 1 by at most 2δ

√
s + δ2s.

Second, for i �= j,

Ui • Uj =

s∑
k=1

(uk + γk)(uk + ηk)∗,

where the γk’s and ηk’s are error terms, and the argument proceeds analogously.
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7.3. Searching for quantum algorithms. In this section we use the results
on almost-unitary matrices to construct an algorithm. First we need a lemma about
error buildup in quantum algorithms, which is similar to Corollary 3.4.4 of [8] (though
the proof technique is different).

Lemma 7.4. Let U1, . . . , UT be s × s unitary matrices, Û1, . . . , ÛT be s × s ar-
bitrary matrices, and v be an s × 1 vector with ‖v‖2 = 1. Suppose that, for all i,

|Ûi − Ui| < 1/cs, where c > T/2. Then Û1 · · · ÛT v differs from U1 · · ·UT v by at most
2T/[
√
s(2c− T )] in the L2 norm.

Proof. For each i, let Ei = Ûi−Ui. By hypothesis, every entry of Ei has magnitude
at most 1/cs; thus, each row or column w of Ei has ‖w‖2 ≤ 1/(c

√
s). Then

Û1 · · · ÛT v = (U1 + E1) · · · (UT + ET )v.

The right-hand side, when expanded, has 2T terms. Any term containing k matrices
Ei has L2 norm at most s−1/2c−k and can therefore add at most c−k/

√
s to the

discrepancy with U1 · · ·UT v. Thus the total discrepancy is at most

s−1/2
T∑

k=1

(
T

k

)
(1/c)k < s−1/2(eT/c − 1).

Since d ln t/dt evaluated at t = 2c is 1/2c and since ln t is concave,

ln(2c+ T )− ln(2c− T ) ≥ 2T/2c = T/c

when T < 2c. Therefore eT/c ≤ (2c + T )/(2c − T ), and the discrepancy is at most
2T/[
√
s(2c− T )] in the L2 norm.

Applying Lemmas 7.2, 7.3, and 7.4, we now prove the main theorem.
Theorem 7.5. There exists an approximation algorithm for SQ2,m(f) taking

time 2O(4mmn), with approximation ratio
√

22/3 + ε.
Proof. Given f , we want, subject to the following two constraints, to find an

algorithm Γ that approximates f with a minimum number of queries. First, Γ uses at
most m qubits, meaning that s = 2m and the relevant matrices are 2m× 2m. Second,
the correctness probability of Γ is known to a constant accuracy ±ε. Certainly the
number T of queries never needs to be more than n, for, although each quantum
algorithm is space-bounded, the composite algorithm need not be. Let λ be the Lmax

error we can tolerate in the matrices, and let ∆ be the resultant L2 error in the final
states. Setting c = 1/(λ2m), by Lemma 7.4 we have

∆ ≤ 2n/[2m/2(21−m/λ− n)].

From the Cauchy–Schwarz inequality, one can show that ε ≤ 2∆. Then solving for
1/λ, 1/λ ≤ 2m/2n(2/ε + 1), which, since ε is constant, is O(2m/2n). Solving for
c, we can verify that c > T/2, as required by Lemma 7.4. If we generate almost-
unitary matrices, they need to be within λ of actual unitary matrices. By Lemma 7.2
we can use λ/(4.91

√
s)-almost-unitary matrices. Finally we need to ensure that we

approximate every unitary matrix. Let δ be the needed precision. Invoking Lemma
7.3, we set λ/(4.91

√
s) ≥ 2δ

√
s+ δ2s and obtain that

δ ≤ max[λ/(9.82s), λ1/2/(2.22s3/4)]

is sufficient.
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Therefore the number of bits of precision needed per entry, log(1/δ), is O(m).
We thus need only O(4mmn) bits to specify Γ, and can search through all possible
Γ in time 2O(4mmn). The amount of time needed to evaluate a composite algorithm
Γ′ is polynomial in m and n and is absorbed into the exponent. The approximation
algorithm is this: first let ε > 0 be a constant at most 0.0268, and let ω = 22

9 + 4
3ε−8ε2.

Then find the smallest T such that the maximum probability of correctness over all
T -query algorithms Γ′ is at least 2/3−ε (subject to ±ε uncertainty), and return T

√
ω.

The algorithm achieves an approximation ratio of
√
ω, for the following reasons. First,

T ≤ SQ2,m(f). Second, ωT ≥ SQ2,m(f), since by repeating the optimal algorithm Γ∗

until it returns the same answer twice (which takes either two or three repetitions), the
correctness probability can be boosted above 2/3. Finally, a simple calculation reveals
that Γ∗ returns the same answer twice after expected number of invocations ω.

8. Open problems. Implicit in the paper of Ambainis [3] is a novel Boolean
function property, which is used to obtain lower bounds on quantum query complexity.
To take a special case, given a function f and a set S of inputs, let the “Ambainis
density” ADS(f) be the minimum, over all X ∈ S, of the number of i such that
X(i) ∈ S and f(X) �= f(X(i)). (Here X(i) denotes X with the ith bit negated.) Then
let AD(f) be the maximum of ADS(f) over all S. Ambainis shows that Q2(f) =
Ω(AD(f)). How efficient an algorithm can we find for AD(f)? Additionally, Bar-
Yossef, Kumar, and Sivakumar [6] have defined “approximate” versions of measures
such as block sensitivity. Can we extend the algorithms given in this paper to compute
those measures?
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ON TESTING CONVEXITY AND SUBMODULARITY∗
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Abstract. Convex and submodular functions play an important role in many applications,
and in particular in combinatorial optimization. Here we study two special cases: convexity in one
dimension and submodularity in two dimensions. The latter type of functions are equivalent to the
well-known Monge matrices. A matrix V = {vi,j}i=n1,j=n2

i,j=0 is called a Monge matrix if for every

0 ≤ i < i′ ≤ n1 and 0 ≤ j < j′ ≤ n2 we have vi,j + vi′,j′ ≤ vi,j′ + vi′,j . If inequality holds in the
opposite direction, then V is an inverse Monge matrix (supermodular function). Many problems,
such as the traveling salesperson problem and various transportation problems, can be solved more
efficiently if the input is a Monge matrix.

In this work we present testing algorithms for the above properties. A testing algorithm for a
predetermined property P is given query access to an unknown function f and a distance parameter
ε. The algorithm should accept f with high probability if it has the property P and reject it with
high probability if more than an ε-fraction of the function values should be modified so that f
obtains the property. Our algorithm for testing whether a 1-dimensional function f : [n] → R is
convex (concave) has query complexity and running time of O ((logn)/ε). Our algorithm for testing
whether an n1 ×n2 matrix V is a Monge (inverse Monge) matrix has query complexity and running
time of O ((logn1 · logn2)/ε).

Key words. property testing, convex functions, Monge matrices, approximation algorithms,
randomized algorithms
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1. Introduction. Convex functions and their combinatorial analogues, submod-
ular functions, play an important role in many disciplines and applications, including
combinatorial optimization, game theory, probability theory, and electronic trade.
Such functions exhibit a rich mathematical structure (see Lovász [Lov83]), which of-
ten makes it possible to efficiently find their minimum [GLS81, IFF01, Sch00] and
thus leads to efficient algorithms for many important optimization problems. Convex
functions over discrete domains are defined as follows.

Definition 1 (convex and concave). Let f be a function defined over a discrete
domain X. The function f is convex if for all x, y ∈ X and for all 0 ≤ α ≤ 1 such that
αx+(1−α)y ∈ X, it holds that f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y). The function
f is concave if for all x, y ∈ X and for all 0 ≤ α ≤ 1 such that αx+ (1− α)y ∈ X, it
holds that f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y).

Submodular functions are defined as follows: Let I = I1× I2× · · ·× Id, d ≥ 2, be
a product space where Iq ⊆ R. In particular, we are interested in discrete domains
Iq = {0, . . . , nq}. The join and meet operations are defined for every x, y ∈ I as
follows:

(x1, . . . , xd) ∨ (y1, . . . , yd)
def
= (max{x1, y1}, . . . ,max{xd, yd})
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and

(x1, . . . , xd) ∧ (y1, . . . , yd)
def
= (min{x1, y1}, . . . ,min{xd, yd}) ,

respectively.

Definition 2 (submodularity and supermodularity). A function f : I → R is
submodular if for every x, y ∈ I, f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y). The function f
is supermodular if for every x, y ∈ I, f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

Certain subclasses of submodular functions are of particular interest. One such
subclass is that of submodular set functions, which are defined over binary domains.
That is, Iq = {0, 1} for every 1 ≤ q ≤ d, and so each x ∈ I corresponds to a subset
of {1, . . . , d}. Such functions are used, for example, in the scenario of combinatorial
auctions on the Internet (e.g., [dVV00, LLN01]).

Another important subclass is the class of Monge functions, which are obtained
when the domain is large but the dimension is d = 2. Since such functions are 2-
dimensional, it is convenient to represent them as 2-dimensional matrices, which are
referred to as Monge matrices. When the function is a 2-dimensional supermodular
function the corresponding matrix is called an inverse Monge matrix .

The first problem that was shown to be solvable more efficiently if the underly-
ing cost matrix is a Monge matrix is the classical Hitchcock transportation problem
(see Hoffman [Hof63]). Since then it has been shown that many other combinatorial
optimization problems can be solved more efficiently in this case (e.g., weighted bi-
partite matching and NP-hard problems such as the traveling salesperson problem).
See [BKR96] for a comprehensive survey on Monge matrices and their applications.

1.1. Testing convexity and submodularity. In this paper we approach the
questions of convexity and submodularity from within the framework of property
testing [RS96, GGR98]. (For surveys on property testing see [Ron01, Fis01].) Let f
be a fixed but unknown function, and let P be a fixed property of functions (such as
the convexity or submodularity of a function). A testing algorithm for the property
P should determine, by querying f , whether f has the property P or whether it is
ε-far from having the property for a given distance parameter ε. By ε-far we mean
that more than an ε-fraction of the values of f should be modified so that f obtains
the desired property P.

Our results. We present efficient testing algorithms for discrete convexity in one
dimension and for Monge matrices. Specifically, we do the following:

• We describe and analyze an algorithm that tests whether a function f : [n]→ R

is convex (concave). The running time of this algorithm is O (log n/ε).

• We describe and analyze a testing algorithm for Monge and inverse Monge ma-
trices whose running time is O ((log n1 · log n2)/ε) when given an n1×n2 matrix.

Furthermore, the testing algorithm for inverse Monge matrices can be used to
derive a testing algorithm, with the same complexity, for an important subfamily
of Monge matrices called distribution matrices. A matrix V = {vi,j} is said to be
a distribution matrix if there exists a nonnegative density matrix D = {di,j} such
that every entry vi,j in V is of the form vi,j =

∑
k≤i
∑
�≤j dk,�. In other words,

the entry vi,j corresponds to the cumulative density of all entries dk,� such that
k ≤ i and � ≤ j.

In both cases the complexity of the algorithms is linear in 1/ε and polylogarithmic in
the size of the domain.
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1.2. Techniques.

Convexity in one dimension. We start with the following basic observation: A
function f : [n]→ R is convex if and only if for every 1 ≤ i ≤ n−1, (f(i+1)−f(i))−
(f(i) − f(i − 1)) ≥ 0. Given this characterization, consider the difference function
f ′, which is defined as f ′(i) = f(i)− f(i− 1). The function f ′ can be viewed as the
discrete analogue of the first derivative of f . By the above observation we have that f
is convex if an only if f ′ is monotone nondecreasing. Hence, a tempting approach for
testing whether f is convex would be to test whether f ′ is monotone nondecreasing,
where this can be done in time O(log n/ε) [EKK+00, BRW99, DGL+99].

Unfortunately, this approach does not work. There are functions f that are very
far from convex, but their difference function f ′ is very close to monotone.1 Therefore,
instead of considering only consecutive points i, i+1, we consider pairs of points i, j ∈
[n] that are not necessarily consecutive. More precisely, we select intervals {i, . . . , j}
of varying lengths and check that for each interval selected, certain constraints are
satisfied. If f is convex, then these constraints are satisfied for every interval. On
the other hand, we show that if f is ε-far from convex, then the probability that we
observe a violation of some constraint is sufficiently large.

Monge matrices. As stated above, it is convenient to represent 2-dimensional sub-
modular functions as 2-dimensional Monge matrices. Thus a function f : {0, . . . , n1}×
{0, . . . , n2} → R can be represented as the matrix V = {vi,j}i=n1,j=n2

i,j=0 , where vi,j =
f(i, j). Observe that for every pair of indices (i, j′), (i′, j) such that i < i′ and j < j′

we have that (i, j′) ∨ (i′, j) = (i′, j′) and (i, j′) ∧ (i′, j) = (i, j). It follows from Defi-
nition 2 that V is a Monge matrix (f is a 2-dimensional submodular function) if and
only if

∀i, j, i′, j′ s.t. i < i′, j < j′ : vi,j + vi′,j′ ≤ vi,j′ + vi′,j

and V is an inverse Monge matrix (f is a 2-dimensional supermodular function) if
and only if

∀i, j, i′, j′ s.t. i < i′, j < j′ : vi,j + vi′,j′ ≥ vi,j′ + vi′,j .

That is, in both cases we have a constraint for every quadruple vi,j , vi′,j′ , vi,j′ , vi′,j
such that i < i′ and j < j′.2 Our algorithm selects such quadruples according to
a particular (nonuniform) distribution and verifies that the constraint is satisfied for
every quadruple selected. Clearly, the algorithm always accepts Monge matrices. The
main thrust of the analysis is in showing that if the matrix V is far from being Monge,
then the probability of obtaining a “bad” quadruple is sufficiently large.

A central building block in proving the above is the following combinatorial prob-
lem, which may be of independent interest. Let C be a given matrix, possibly con-
taining negative values, and let R be a subset of positions in C. We are interested
in refilling the entries of C that reside in R with nonnegative values such that the
following constraint is satisfied: for every position (i, j) that does not belong to R,
the sum of the modified values in C that are below3 (i, j) is the same as in the original

1In particular, consider the function f such that for every i ≤ n/2, f(i) = i, and for i > n/2,
f(i) = i− 1. In other words, f ′(i) = 1 for every i except i = n/2, where f ′(i) = 0. Then f ′ is very
close to monotone, but it is not hard to verify that f is far from convex.

2It is easy to verify that for all other i, j, i′, j′ (with the exception of the symmetric case where
i′ < i and j′ < j), the constraint holds trivially (with equality).

3We denote the lower left position of the matrix C by (0, 0).
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matrix C. That is, the sum of the modified values in entries (k, �) such that k ≤ i
and j ≤ � remains as it was.

We provide sufficient conditions on C and R under which the above is possible
and describe the corresponding procedure that refills the entries of C that reside in
R. Our starting point is a simple special case in which R corresponds to a submatrix
of C. In such a case it suffices that for each row and each column in R, the sum
of the corresponding entries in the original matrix C is nonnegative. Under these
conditions a simple greedy algorithm can modify C as required. Our procedure for
general subsets R is more involved but uses the submatrix case as a subroutine.

1.3. Further research. We suggest the following open problems. First, it re-
mains open to determine the complexity of testing discrete convexity (concavity)
when the dimension d of the input domain is greater than 1 and for testing submod-
ular (supermodular) functions when the dimension d is greater than 2. Note that
though submodular functions can be viewed as a certain interpretation of convexity
in dimensions d ≥ 2, they do not necessarily satisfy Definition 1.

It seems that our algorithm for testing Monge matrices and its analysis can be
extended to work for testing the special case of distribution matrices of dimension d >
2, where the complexity of the resulting algorithm is O((

∏d
q=1 log nq)/ε). However,

as opposed to the d = 2 case, where Monge matrices are only slightly more general
than distribution matrices, for d > 2 Monge matrices are more expressive. Hence it
is not immediately clear how to adapt our algorithm to testing Monge matrices in
higher dimensions.

It would also be interesting to find an efficient testing algorithm for the subclass
of submodular set functions, which are defined over binary domains.

Finally, in many optimization problems it is enough that the underlying cost
matrix is a permutation of a Monge matrix. In such cases it may be useful to test
whether a given matrix is a permutation of some Monge matrix or far from any
permuted Monge matrix.

Organization. The testing algorithm for convexity is described in section 2. The
remainder of the paper is dedicated to testing Monge matrices. In section 3 we describe
several building blocks that will be used by our testing algorithm for Monge matrices.
In section 4 we describe a testing algorithm for Monge matrices whose complexity is
O(n/ε), where we assume for simplicity that the matrix is n × n. Building on this
algorithm and its analysis, in section 5 we present a significantly faster algorithm
whose complexity is O

(
(log2 n)/ε

)
. We conclude this section with a short discussion

concerning distribution matrices.

2. Testing convexity in one dimension. As noted in the introduction, in the
case that the domain is X = [n] = {0, . . . , n}, we get the following characterization
for convexity, whose proof is included for completeness.

Claim 1. A function f : [n] → R is convex if and only if for all 1 ≤ i ≤ n − 1,
f(i)− f(i− 1) ≤ f(i+ 1)− f(i).

Proof. If f is convex, then in particular for x = i− 1, y = i+ 1, and α = 1/2 we
have αx + (1 − α)y = i−1

2 + i+1
2 = i. By Definition 1, f(i) ≤ 1

2f(i − 1) + 1
2f(i + 1),

or, equivalently, f(i)− f(i− 1) ≤ f(i+ 1)− f(i).
In the other direction, suppose that f(i) − f(i − 1) ≤ f(i + 1) − f(i) for every

1 ≤ i ≤ n− 1. Consider any x, y ∈ [n] and 0 < α < 1 such that z = α · x+ (1− α) · y
is an integer. Assume without loss of generality that x < y. Now we have that

f(y)−f(y−1) ≥ f(y−1)−f(y−2) ≥ · · · ≥ f(z+1)−f(z) ≥ f(z)−f(z−1) ≥ · · · ≥ f(x+1)−f(x).
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Then, since the differences are monotone nonincreasing, the average of the first
α(y− x) differences is greater than or equal to the average of the next (1−α)(y− x)
differences. Since z = y − α(y − x) = x+ (1− α)(y − x), we have that

(f(y)− f(y − 1)) + (f(y − 1)− f(y − 2)) + · · ·+ (f(z + 1)− f(z))

α(y − x)
(1)

≥ (f(z)− f(z − 1)) + (f(z − 1)− f(z − 2)) + · · ·+ (f(x+ 1)− f(x))

(1− α)(y − x)
.(2)

This is equivalent to (1− α)(f(y)− f(z)) ≥ α(f(z)− f(x)); that is, f(z) ≤ αf(x) +
(1− α)f(y) as required.

Denote by Ii,j the interval {i, i + 1, . . . , j} of points. Let mid = �(i+ j)/2� be
the midpoint of Ii,j .

Definition 3. For every 0 ≤ i < j ≤ n such that j − i > 7, we say that the
interval Ii,j is good with respect to f if the following holds:

f(i+ 1)− f(i) ≤ f(mid− 1)− f(i+ 1)

(mid− 1)− (i+ 1)
≤ f(mid)− f(mid− 1) ≤ f(mid+ 1)− f(mid)

≤ f(mid+ 2)− f(mid+ 1) ≤ f(j − 1)− f(mid+ 2)

(j − 1)− (mid+ 2)
≤ f(j)− f(j − 1).

Otherwise, we say that the interval is bad with respect to f . If j − i ≤ 7, then Ii,j
is good with respect to f if and only if the function f is convex over Ii,j.

In order to test if f is convex we test recursively if subintervals of I0,n are good.
Algorithm 1 (Test-Convex).
1. Repeat 2/ε times: Test-Interval(I0,n).
2. If all of the tests in step 1 accepted, then accept; otherwise, reject.
Procedure 1 (Test-Interval(Ii,j)).
1. Check that Ii,j is good with respect to f . If not, reject.
2. If j − i > 7, then: Uniformly at random call either Test-Interval(Ii,mid) or

Test-Interval(Imid+1,j), where mid = �(i+ j)/2�.
3. If the test in step 2 accepted, then accept; otherwise, reject.
Theorem 1. If f is convex, then Algorithm 1 always accepts, and if f is ε-far

from convex, then the algorithm rejects with a probability of at least 2/3.
Proof. For the sake of brevity, unless stated otherwise, when we say that an

interval is good, then we mean with respect to f . If f is convex, then all intervals
Ii,j are good, and hence Algorithm 1 accepts with probability 1. In order to prove
that if f is ε-far from convex, then the algorithm rejects with probability of at least
2/3, we prove the contrapositive statement. Assume that the algorithm accepts with
a probability greater than 1/3. We will show that f is ε-close to a convex function.

To this end we define a tree whose vertices correspond to all possible intervals Ii,j
that may be tested recursively in calls to Test-Interval(Ii,j). Specifically, the root of
the tree corresponds to I0,n. The children of the internal vertex corresponding to Ii,j
are the vertices corresponding to Ii,mid and Imid+1,j , where mid = �(i+ j)/2�. The
leaves of the tree correspond to the smallest intervals tested, that is, intervals Ii,j for
which j − i ≤ 7.

We say that an internal vertex in the tree is good if the corresponding interval is
good. We say that a leaf is good if its corresponding interval and all its ancestors are
good. Otherwise, the vertex (leaf) is bad. We say that a path from the root to a leaf
is good if all vertices along it are good. Otherwise, the path is bad. For each level
� in the tree, � = 0, . . . , log n, let B� be the subset of vertices in the �th level of the
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tree that are bad but whose ancestors are all good. Let B =
⋃
� B�, and let ε� be the

fraction of vertices in level � of the tree that belong to B�.
Subclaim 1. If Algorithm 1 accepts f with a probability greater than 1/3, then∑

� ε� ≤ ε.
Proof. Assume by contradiction that

∑
� ε� > ε. Observe that by the definition of

B, all leaves which are descendents of a vertex in B are bad, and every bad leaf either
belongs to B or has a single ancestor in B. Therefore, if

∑
� ε� > ε, then the fraction

of bad leaves is greater than ε. But in such a case, the probability that the algorithm
does not follow a bad path to a bad leaf (passing through a vertex in B) in any one of
its 2/ε iterations is at most (1− ε)2/ε < e−2 < 1/3. This contradicts our assumption
that the algorithm accepts with a probability greater than 1/3.

Hence we assume from now on that
∑
� ε� ≤ ε. Note also that in this case I0,n /∈ B.

We show how to modify f in at most ε·n places so that the resulting function, denoted
g, is convex. In particular, we shall modify the value of f on every bad interval Ii,j
whose corresponding vertex in the tree belongs to B. The value of g is defined to be
the same as the value of f on all points outside of these intervals. Since

∑
� ε� ≤ ε,

the total fraction of points modified is at most ε as required. Observe that by the
definition of the tree and B, for every two intervals whose corresponding vertices
belong to B, the intersection of the intervals is empty. Hence we can modify each one
of these intervals independently.

Let Ii,j be a bad interval corresponding to a vertex in B. We modify f on points
in Ii,j as follows:

• f(i), f(i+ 1), f(j − 1), and f(j) remain unchanged. That is, set g(i) = f(i),
g(i+ 1) = f(i+ 1), g(j − 1) = f(j − 1), and g(j) = f(j).

• For every t, i+1 < t < j− 1, set g(t) = f(i+1)+ f(j−1)−f(i+1)
(j−1)−(i+1) · (t− (i+1)).

Subclaim 2. Let Ii,j be a bad interval corresponding to a vertex in B. Then for
every i < t < j, g(t)− g(t− 1) ≤ g(t+ 1)− g(t).

Proof. By definition of B, the parent of Ii,j is good (the parent exists by our
assumption that I0,n �∈ B). Hence

f(i+ 1)− f(i) ≤ f(j − 1)− f(i+ 1)

(j − 1)− (i+ 1)
≤ f(j)− f(j − 1).(3)

By definition of g(·), g(i+1)−g(i) = f(i+1)−f(i), g(j)−g(j−1) = f(j)−f(j−1),

and for every i+ 1 < t ≤ j − 1, g(t)− g(t− 1) = f(j−1)−f(i+1)
(j−1)−(i+1) . Therefore, for every

i+1 < t < j− 1, g(t)− g(t− 1) = g(t+1)− g(t), and for both t = i+1 and t = j− 1,
we have g(t)− g(t− 1) ≤ g(t+ 1)− g(t) as required.

Subclaim 3. The function g is convex.
Proof. We shall first show that all intervals Ii,j corresponding to vertices in the

tree are good with respect to g, and from this we derive the convexity of g.
We start with the first part. Consider any such interval Ii,j whose corresponding

vertex in the tree is v. Let Anchor = {i, i+1,mid− 1,mid,mid+1,mid+2, j− 1, j}
be the set of points which participate in the definition of a good interval Ii,j . We will
show that the value of g on points p ∈ Anchor is such that the interval Ii,j is good
with respect to g. There are two cases:

1. The interval Ii,j is good with respect to f , and v does not have any ancestors
in B. If v also has no descendents in B, then it clearly remains good with
respect to g, since no modification is performed on any point in the interval,
and so g(t) = f(t) for every i ≤ t ≤ j. Otherwise, v has a descendent in B.
In this case, let p ∈ Anchor, let v′ be a descendent of v, and let Ii′,j′ denote
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the interval corresponding to v′. If i′ ≤ p ≤ j′, then by definition of the tree,
either p = i′ or p = i′ + 1 or p = j′ − 1 or p = j′. Therefore, even if v′ ∈ B
and the interval Ii′,j′ is modified, then by the definition of g we have that
g(p) = f(p) for every p ∈ Anchor. Thus Ii,j remains good with respect to g.

2. Either v ∈ B or v has an ancestor in B. In the former case, let v′ = v,
and in the latter case let v′ be the ancestor that v has in B. Let Ii′,j′ be
the corresponding interval of v′. By definition, Ii,j ⊆ Ii′,j′ . By Subclaim 2,
g(t) − g(t − 1) ≤ g(t + 1) − g(t) for every i′ < t < j′, and in particular for
every i < t < j. It follows that Ii,j is good with respect to g.

Hence all intervals corresponding to vertices in the tree are good with respect to g.
We now prove that for every 0 < t < n it holds that g(t)− g(t− 1) ≤ g(t+ 1)− g(t),
and thus g is convex. Let Ii,j be the smallest interval in the tree such that i < t < j.
If j − i ≤ 7, then we are done, since the goodness of Ii,j in this case means that
g is convex over the whole interval. Otherwise, either t = mid or t = mid + 1,
where mid = �(i+ j)/2�. To verify this, note that if this were not the case, then
either i < t < mid or mid + 1 < t < j. Hence t is contained in a smaller interval
in the tree, contradicting the minimality of Ii,j . But since Ii,j is good with respect
to g, g(mid) − g(mid − 1) ≤ g(mid + 1) − g(mid), and g(mid + 1) − g(mid) ≤
g(mid + 2) − g(mid + 1). Thus we are done with the proof of Subclaim 3, and
Theorem 1 follows.

3. Building blocks for our algorithms for testing inverse monge. From
this point on we focus on inverse Monge matrices. Analogous claims hold for Monge
matrices. We also assume for simplicity that the dimensions of the matrices are
n1 = n2 = n. In what follows we provide a characterization of inverse Monge matrices
that is exploited by our algorithms. Given any real valued matrix V = {vi,j}i,j=ni,j=0 we

define an (n+ 1)× (n+ 1) matrix C ′V = {ci,j}i,j=ni,j=0 as follows:

• c0,0 = v0,0.
• For i > 0: ci,0 = vi,0 − vi−1,0.
• For j > 0: c0,j = v0,j − v0,j−1.
• And for every i, j > 0,

ci,j = (vi,j − vi−1,j)− (vi,j−1 − vi−1,j−1)

= (vi,j − vi,j−1)− (vi−1,j − vi−1,j−1).(4)

Let CV = {ci,j}i,j=ni,j=1 be the submatrix of C ′V that includes all but the first (0th)
row and column of C ′V . The following two claims are well known and easy to verify.
We include their proofs for completeness.

Claim 2. For every 0 ≤ i, j ≤ n, vi,j =
∑i
k=0

∑j
�=0 ck,�.

Proof. The claim is proved by induction on i and j.

The base case i, j = 0 holds by definition of c0,0.

Consider any i > 0 and assume that the claim holds for every k < i, j = 0. We
prove it for i and for j = 0. By definition of ci,0 we have vi,0 = vi−1,0 + ci,0. By the

induction hypothesis, vi−1,0 =
∑i−1
k=0 ck,0, and the induction step follows. The claim

is similarly proved for every j > 0 and i = 0.

Finally, consider any i, j > 0 and assume that the claim holds for every k < i
and � ≤ j, and for every k ≤ i and � < j. We prove it for i, j. By definition of ci,j ,
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vi,j = vi−1,j + (vi,j−1 − vi−1,j−1) + ci,j . By the induction hypothesis,

vi−1,j + (vi,j−1 − vi−1,j−1) =

i−1∑
k=0

j∑
�=0

ck,� +

j−1∑
�=0

ci,�,

and the induction step follows.
Claim 3. A matrix V is an inverse Monge matrix if and only if CV is a nonneg-

ative matrix.
Proof. If V is an inverse Monge matrix, then, in particular, for every i, j ≥ 1 we

have that vi,j+vi−1,j−1 ≥ vi,j−1+vi−1,j , which is equivalent to the condition ci,j ≥ 0.
In the other direction, consider any two points (i, j) and (i′, j′) such that 0 ≤ i <

i′ ≤ n, 0 ≤ j < j′ ≤ n. Using Claim 2 we obtain

vi′,j′ − vi′,j − vi,j′ + vi,j

=

i′∑
k=0

j′∑
�=0

ck,� −
i′∑
k=0

j∑
�=0

ck,� −
i∑

k=0

j′∑
�=0

ck,� +

i∑
k=0

j∑
�=0

ck,�

=

i′∑
k=i+1

j′∑
�=j+1

ck,�.(5)

But CV is nonnegative, and therefore vi′,j′ − vi′,j − vi,j′ + vi,j ≥ 0 as required.
It follows from Claim 3 that if we find some entry of CV that is negative, then we

have evidence that V is not an inverse Monge matrix. However, it is not necessarily
true that if V is far from being an inverse Monge matrix, then CV contains many
negative entries. For example, suppose that CV is 1 in all entries except the entry
cn/2,n/2 which is −n2. Then it can be verified that V is very far from being an inverse
Monge matrix (this can be proved by showing that there are Θ(n2) disjoint quadruples
vi,j , vi′,j′ , vi,j′ , vi′,j in V such that from any such quadruple at least one value should
be changed in order to transform V into an inverse Monge matrix). However, as our
analysis will show, in such a case there are many submatrices in CV whose sum of
elements is negative. Thus our testing algorithms will sample certain submatrices of
CV and check that the sum of elements in each submatrix sampled is nonnegative.
We first observe that it is possible to check this efficiently.

Claim 4. Given access to V it is possible to check in time O(1) if the sum of
elements in a given submatrix A of CV is nonnegative. In particular, if the lower-left
entry of A is (i, j) and its upper-right entry is (i′, j′), then the sum of elements of A
is vi′,j′ − vi′,j−1 − vi−1,j′ + vi−1,j−1.

Proof. Assume that A = (ck,�)
k=i′,�=j′
k=i,�=j is a submatrix of CV . Recall that for any

q, p, we have vq,p =
∑q
k=0

∑p
�=0 ck,�. Thus the sum of elements of A is

i′∑
k=i

j′∑
�=j

ck,� =

i′∑
k=0

j′∑
�=j

ck,� −
i−1∑
k=0

j′∑
�=j

ck,�

=


 i′∑
k=0

j′∑
�=0

ck,� −
i′∑
k=0

j−1∑
�=0

ck,�


−


i−1∑
k=0

j′∑
�=0

ck,� −
i−1∑
k=0

j−1∑
�=0

ck,�




= (vi′,j′ − vi′,j−1)− (vi−1,j′ − vi−1,j−1) .

Therefore computing the sum of elements of any submatrix A of CV can be done by
checking only four entries in the matrix V .
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3.1. Filling submatrices. An important building block for the analysis of our
algorithms is a procedure for “filling in” a submatrix. That is, given constraints on
the sum of elements in each row and column of a given submatrix, we are interested
in assigning values to the entries of the submatrix so that these constraints are met.

Specifically, let a1, . . . , as and b1, . . . , bt be nonnegative real numbers such that∑s
i=1 ai ≥

∑t
j=1 bj . Then it is possible to construct an s× t nonnegative real matrix

T such that the sum of elements in column j is exactly bj and the sum of elements in

row i is at most ai. In the special case that
∑s
i=1 ai =

∑t
j=1 bj , the sum of elements

in row i will equal ai. In particular, this can be done by applying the following
procedure, which is the same as the one applied to obtain an initial feasible solution
for the linear-programming formulation of the transportation problem.

Procedure 2 (fill matrix T = (ti,j)
i=s,j=t
i,j=1 ).

Initialize āi = ai for i = 1, . . . , s and b̄j = bj for j = 1, . . . , t.
(In each of the following iterations, āi is an upper bound on what remains to be
filled in row i, and b̄j is what remains to be filled in column j.)
For j = 1,. . . ,t:

For i = 1,. . . ,s:
Assign to entry (i, j) the value x = min{āi, b̄j}.
Update āi = āi − x, b̄j = b̄j − x.

Claim 5. Procedure 2 fills the matrix T with nonnegative values ti,j such that

at the end of the procedure,
∑s
i=1 ti,j = bj for every j = 1, . . . , t, and

∑t
j=1 ti,j ≤ ai

for every i = 1, . . . , s. If initially
∑t
j=1 bj =

∑s
i=1 ai, then

∑t
j=1 ti,j = ai for every

i = 1, . . . , s.

Proof. Notice that initially āi = ai ≥ 0 and b̄j = bj ≥ 0. Thus when we update
āi = āi − x = āi −min{āi, b̄j} ≥ 0 and similarly b̄j = b̄j − x = b̄j −min{āi, b̄j} ≥ 0.
Therefore the āi’s and b̄j ’s are always nonnegative. Hence all values x filled in T are
nonnegative, since x = min{āi, b̄j} ≥ 0. Furthermore, after each such update the new
sum over the āi’s equals the old sum over the āi’s minus x, and a similar statement
holds for the sum over the b̄j ’s. Thus at all stages of the procedure,

∑s
i=1 āi ≥∑t

j=1 b̄j , and if initially
∑s
i=1 ai =

∑t
j=1 bj , then

∑s
i=1 āi =

∑t
j=1 b̄j .

We now show that the sum of elements in each column is as required. Observe
that the procedure fills the columns one by one. Therefore when we start to fill
column j we have b̄j = bj . Since

∑s
i=1 āi ≥

∑t
j=1 b̄j at this stage, and all āi’s are

nonnegative, necessarily,
∑s
i=1 āi ≥ b̄j = bj . Let 1 ≤ k ≤ s be the minimum integer

such that
∑k
i=1 āi ≥ bj . Then by definition of the procedure, for every i < k, the

entry (i, j) is filled with the value āi, and the entry (k + 1, j) is filled with the value

bj −
∑k
i=1 āi. The total is hence bj as required.

As for the rows, at all stages āi equals ai minus the sum of all elements filled so
far in row i. Therefore since āi ≥ 0, then the sum of elements in row i is at most
ai. Furthermore, if initially

∑s
i=1 ai =

∑t
j=1 bj , then the sum of elements in row i

will be exactly ai. To show this note that at the end of the procedure,
∑t
j=1 b̄j = 0,

since each b̄j equals bj minus the sum of all elements in column j, and we have shown

that the sum of elements in column j is bj . But
∑s
i=1 āi =

∑t
j=1 b̄j , and therefore

also
∑s
i=1 āi = 0 at the end. Since āi ≥ 0, this means that āi = 0. Hence the sum of

elements in row i must be ai.

4. A testing algorithm for inverse monge matrices. We first present a
simple algorithm for testing if a matrix V is an inverse Monge matrix whose running
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time is O(n/ε). In the next section we show a significantly faster algorithm that is
partly based on the ideas presented here. We may assume without loss of generality
that n is a power of 2. This is true since our algorithms probe the coefficients matrix
CV , and we may simply “pad” it by 0’s to obtain rows and columns that have lengths
which are powers of 2 and run the algorithm with ε← ε/4. We shall need the following
two definitions for both algorithms.

Definition 4 (subrows, subcolumns, and submatrices). A subrow in an n × n
matrix is a consecutive sequence of entries that belong to the same row. The subrow
((i, j), (i, j+1), . . . , (i, j+t−1)) is denoted by [ ]1,ti,j . A subcolumn is defined analogously

and is denoted by [ ]s,1i,j = ((i, j), (i+ 1, j), . . . , (i+ s− 1, j)). More generally, an s× t

submatrix whose bottom-left entry is (i, j) is denoted [ ]s,ti,j .

Definition 5 (legal submatrices). A subrow in an n×n matrix is a legal subrow
if it can result from bisecting the row of length n that contains it in a recursive manner.

That is, a complete (length n) row is legal, and if [ ]1,ti,j is legal, then so are [ ]
1,t/2
i,j and

[ ]
1,t/2
i,j+t/2. A legal subcolumn is defined analogously. A submatrix is legal if both its

rows and its columns are legal.

Note that the legality of a subrow [ ]1,ti,j is not dependent on the actual row i it
belongs to, but rather it depends on its starting position j and ending position j+t−1
within its row. An analogous statement holds for legal subcolumns. See also Figure 1
for an illustration of the concept of legal submatrices.
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2

1

1615141312111098765432 1

Fig. 1. An illustration of three legal submatrices. One of the legal submatrices is a square
(4 × 4) submatrix, and the other two are rectangular (but legal) submatrices. The 8 × 1 submatrix
on the top-right is a legal subcolumn.

Although a submatrix is just a collection of positions (entries) in an n×n matrix,
we talk throughout the paper about sums of elements in certain submatrices A of CV .
In this we mean the sum of elements of CV determined by the set of positions in A.

Definition 6 (good and bad submatrices). We say that a submatrix A of CV is
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good if the sum of elements in each row of A is nonnegative and the sum of elements
in each column of A is nonnegative. Otherwise, A is bad.

Definition 7 (good and bad points). We say that point (i, j) is good if all legal
square submatrices A of CV which contain (i, j) are good. Otherwise, the point is
bad.

Algorithm 2 (Test-Monge I).

1. Choose 8/ε points in the matrix CV and check that they are good.
2. If all points are good, then accept; otherwise, reject.

By Claim 4, it is possible to check in constant time that the sum of elements in
a subrow (subcolumn) of CV is nonnegative. Therefore, it is possible to test that an
s× s square submatrix A of CV is good in time Θ(s). Notice that every point in an
n× n matrix is contained in logn legal square submatrices. Hence the time required
to check whether a point is good is O(n)+O(n/2)+ · · ·+O(n/2i)+ · · ·+O(1) = O(n),
and the complexity of the algorithm is O(n/ε).

Theorem 2. If V is an inverse Monge matrix, then Algorithm 2 always accepts,
and if V is ε-far from being an inverse Monge matrix, then Algorithm 2 rejects with
probability at least 2/3.

Proof. The first part of the theorem follows directly from Claim 3. In order to
prove the second part of the theorem, we show that if V is ε-far from being inverse
Monge, then CV contains more than (ε/4)n2 bad points. The second part of the
theorem directly follows because the probability in such a case that no bad point is
selected by the algorithm is at most (1− ε/4)(8/ε) < e−2 < 1/3.

Assume contrary to the claim that CV contains at most (ε/4)n2 bad points. We
shall show that by modifying at most εn2 entries in V we obtain an inverse Monge
matrix (in contradiction to our assumption concerning V ). Let us look at the set of
bad points in CV , and for each such bad point look at the largest bad legal square
submatrix in CV that contains this bad point. By our assumption on the number of
bad points, it must be the case that the area of all these maximal bad submatrices is
at most (ε/4)n2, because all the points in a bad submatrix are bad.

For each maximal bad legal square submatrix B of CV we will look at the legal
square submatrix A that contains B. By definition of legal square submatrices, the
matrix A is uniquely defined. By the maximality of B, the submatrix A must be
good. Indeed, since B is maximal, if it is of size s × s, where s < n, then the legal
square submatrix of size 2s × 2s that contains it must be good. But if s = n, then
B = CV , implying that all n2 points in CV are bad, contradicting our assumption on
the number of bad points.

Next observe that every two different maximal bad legal square submatrices B
and B′ are disjoint. This is true since every two different legal square submatrices are
either disjoint or one is contained in the other. Combining this with the fact that for
each maximal bad legal square submatrix we take the good square legal submatrix
that is four times its size, the area of the union of all these good submatrices is at
most 4 · (ε/4)n2 = εn2.

Turning to the collection of resulting good submatrices, note that every two of
these submatrices are either disjoint, or are exactly the same, or one is contained in
the other. If a good submatrix is strictly contained in another one, then we ignore it
and deal only with the larger good submatrix containing it. Thus we have a set of
disjoint good submatrices that contain all negative entries in the matrix. For each of
these good submatrices A, we modify A so that it contains only nonnegative elements,
and the sum of elements in each row and column of A remains as it was. This can
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be done by applying Procedure 2 to A as described in section 3.1 (using the actual
(nonnegative) sums of rows and columns of A as the input to the procedure).

Note that after modifying all these good submatrices of CV , the new matrix CV
is nonnegative, and thus the corresponding new matrix V must be an inverse Monge
matrix. It remains to show that at most εn2 values were changed in V following the
changes to CV . Notice that we made sure that the sum of elements in each row and
column of each modified submatrix A remains as it was. Therefore the values of all
points vk,� in V that are outside A are not affected by the change to A, since by

Claim 2 we have that vk,� =
∑k
i=0

∑�
j=0 ci,j .

5. A faster algorithm for inverse monge matrices. Algorithm 2 described
above has running time linear in n, which is already sublinear in the size of the matrix,
n2. In this section we show how to significantly improve the dependence on n. We
present a variant of the algorithm whose running time is O(ε−1 log2 n). The new
algorithm will be based on a similar principle as that of Algorithm 2. That is, it
will uniformly select points and verify that certain submatrices that contain them are
good. However, there will be two main differences which we now describe briefly.

Algorithm 2 suffers from a relatively slow running time, since for each submatrix
that the algorithm checks, it verifies that the sum of elements in every row and
column is nonnegative. Therefore, we first relax the concept of a good submatrix and
demand only that the sum of all its elements be nonnegative (instead of the sum of
every row and column). This change, however, requires us to check for each point
selected by the algorithm, not only that the legal square submatrices which contain
it are good, but rather to verify that all legal submatrices that contain the point are
good. Actually, we check something slightly stronger: The algorithm will verify for
each legal submatrix T that it examines that the four legal equal-size submatrices
that reside within T and are half of T ’s length in each dimension are good as well. In
order to formalize the above, we first redefine the concepts of good (bad) submatrices
and good (bad) points, and introduce the notion of tainted submatrices and tainted
points.

Definition 8 (good and bad submatrices and points). A (legal) submatrix T of
CV is good if the sum of all its elements is nonnegative. Otherwise, T is bad.

A point is good if every legal submatrix of CV that contains it is good. Otherwise,
the point is bad.

Definition 9 (tainted submatrices and points). A good legal submatrix T of CV
is tainted if any one of the four legal submatrices that it contains and that are half
its height and half its width is bad. A point is tainted if some legal submatrix that
contains it is tainted.

Note that every bad point is tainted, but good points may be tainted as well.
For the sake of the presentation, we shall assume that every row and every column

in CV (that is, every subrow and subcolumn of length n) have nonnegative sums. In
subsection 5.2 we explain how to remove this assumption. Note that this assumption
implies that every s × n submatrix is good, and similarly every n × s submatrix is
good (but of course it has no implications on smaller submatrices).

Algorithm 3 (Test-Monge II).
1. Uniformly select 2/ε points in the matrix CV and check for each of them

whether it is tainted.
2. If no point selected is tainted, then accept; otherwise, reject.

Note that by Definition 5, each point in an n×n matrix is contained in O(log2 n)
legal submatrices. Thus by Claim 4, checking whether a point is tainted takes time
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O(log2 n). Therefore the running time of the algorithm is O((log2 n)/ε).

Theorem 3. If V is an inverse Monge matrix, then Algorithm 3 always accepts,
and if V is ε-far from being an inverse Monge matrix, then Algorithm 3 rejects with
probability at least 2/3.

5.1. Outline of the proof of Theorem 3. If V is an inverse Monge matrix,
then by Claim 3 all elements in CV are nonnegative. This directly implies that all
(legal) submatrices are good, and so all points are good and are not tainted. Hence
in this case the algorithm always accepts. Suppose that V is ε-far from being inverse
Monge. We claim that in such a case CV must contain more than εn2 tainted points,
causing the algorithm to reject with probability at least

1− (1− ε)(2/ε) > 1− e−2 > 2/3.

Assume contrary to the claim that CV contains at most εn2 tainted points. Our goal
from this point on is to show that in such a case V is ε-close to being an inverse Monge
matrix.

The proof of this part will follow along similar lines to those used in the proof of
Theorem 2. That is, we consider all maximal bad legal submatrices of CV , and for each
such bad submatrix we consider the legal good submatrix that is four times its area
and contains it. Once again, this submatrix is unique. By Definition 9, this submatrix
is tainted. We then take the union of all these good but tainted submatrices. By our
assumption on the number of tainted points, the area of this union is at most εn2

since all points in the union are tainted.

Finally, we show how to modify the values in this union so that the resulting
matrix is an inverse Monge matrix. This time, however, since the maximal bad
submatrices may intersect (which was not the case in the slower algorithm), the
good tainted submatrices that contain them may intersect in nontrivial ways (that
is, not only by coinciding or by strict containment). As a result, the union of the
good submatrices has a possibly complex structure (and in particular it is no longer
a simple union of disjoint submatrices), and the process of properly modifying this
union is much more involved. We now describe precisely the necessary definitions and
proceed with a detailed proof.

Definition 10 (maximal bad legal submatrix). A bad legal submatrix T of CV
is a maximal bad legal submatrix of CV if it is not contained in any larger bad legal
submatrix of CV .

Now consider all maximal bad legal submatrices of CV . Note that every negative
entry in CV is contained in the union of these bad submatrices. For each such subma-
trix B let us take the (unique) legal submatrix T that contains it and has twice the
number of rows and twice the number of columns of B (by our assumption that all
full rows and columns have a nonnegative sum it is indeed possible to double the rows
and columns of B). Then by the maximality of B, the resulting submatrix is good.
We now take the union of all these good (but tainted) legal submatrices. Recall that
the area of the union of all tainted (legal) submatrices of CV is at most εn2. Denote
the union of all these good tainted submatrices by R. See, for example, Figure 2.

In subsections 5.3 and 5.4 we show that it is possible to change the (at most εn2)
entries of CV within R to nonnegative values so that the following property holds.

Property 1 (sum property for R). For every point (i, j) outside of R, the sum
of the elements in the modified entries (i′, j′) within R such that i′ ≤ i and j′ ≤ j is
the same as in the original matrix CV .
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Fig. 2. An example of the structure of a subset R, where R is the union of all gray cells in
the matrix (both dark and light gray). All values in cells outside of R are nonnegative and are not
displayed for the sake of simplicity. The bad legal submatrices determining R are the dark gray
submatrices. Each is contained inside a good but tainted legal submatrix that has twice the number
of rows and twice the number of columns (good tainted submatrices are marked both by light and
dark gray). For example, there is a bad submatrix in column 1, rows 13 and 14, and the good legal
submatrix containing it is the submatrix over columns 1 and 2 and rows 13 through 16. Observe
that maximal bad legal submatrices may intersect. For example, the bad submatrix containing the
two cells in row 9 and columns 5 and 6 intersects with the bad submatrix containing the two cells in
column 5 and rows 9 and 10. Their corresponding good submatrices also intersect.

Let C̃V be the matrix obtained from CV by modifying R so that Property 1 holds,
and let Ṽ be the matrix which corresponds to C̃V . Then it follows from Claim 2 that Ṽ
is at most ε-far from the original matrix V , and this completes the proof of Theorem 3.
Before we continue with showing how to obtain Property 1, we explain shortly how
to remove the assumption that all (full) rows and columns in CV have a nonnegative
sum.

5.2. Dealing with rows/columns having a negative sum. Suppose first
that ε ≤ 4/n. Then we may directly check in time O(1/ε) that in fact all rows and
columns of the matrix CV have nonnegative sums (using Claim 4) and reject if some
row or column has a negative sum. Hence in this case our assumption is valid. Thus
assume that ε > 4/n.

First we slightly modify Algorithm 3 so that it uniformly selects 4/ε points in CV
(instead of 2/ε). In such a case, if CV contains more than (ε/2)n2 tainted points, then
the algorithm rejects with probability at least 2/3. We thus assume that CV contains
at most (ε/2)n2 tainted points and strive to show that in such a case V is ε-close to
being an inverse Monge matrix. Since we do not assume that every row and column
in CV has a nonnegative sum, we first modify CV so that it has this property.

Consider each row i in CV whose sum of elements in negative. Suppose that
we modify the last entry in the row, ci,n, so that the new sum of all elements is 0.
Similarly, we modify the last entry cn,j in each column j that has a negative sum.
Let C̄V be the resulting matrix, and let V̄ be the matrix corresponding to C̄V . Then
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all rows and columns in C̄V have a nonnegative sum, and by Claim 2 V̄ and V differ
on at most 2n− 1 < (ε/2)n2 entries (at most all elements in the last column and last
row).

Now we may define the region R as we did in the previous subsection. Note that
in this case the area of the region R is at most (ε/2)n2. We can therefore continue in
proving that it is possible to modify only the elements within R so that they are all
nonnegative and Property 1 holds. This will imply that the total number of entries
that should be modified (first to obtain nonnegative rows and columns, and then to
refill R) is at most εn2, as desired.

5.3. Refilling R to obtain Property 1. Let R be as defined in section 5.1.
Recall that R consists of a union of good legal submatrices. (The fact that they are
tainted is no longer relevant.) In the following discussion, when we talk about elements
in submatrices of R we mean the elements in CV determined by the corresponding
set of positions in R.

We are interested in refilling the entries in R with nonnegative values so that
Property 1 will hold. Note that if R is just a submatrix (block) of CV , then we can
use Procedure 2 to refill R as desired. However, in general the structure of R is more
complex. We show that there is a way to partition R into disjoint blocks and refill
each block using Procedure 2. In subsection 5.3.1 we define precisely what blocks
are and present several other notions that are needed for the refilling procedure. The
refilling procedure for R is described in subsection 5.3.2, and its correctness is proved
in subsection 5.4.

5.3.1. Preliminaries for the refilling procedure. As stated above, the re-
filling procedure will partition R into disjoint blocks (submatrices) and fill each block
separately with nonnegative values so that Property 1 is maintained. We start with
defining the following term that will be needed to define blocks.

Definition 11 (maximal (legal) subrow/column). Given a subset R of entries
in an n × n matrix, a subrow T is a maximal (legal) subrow with respect to R if T
is contained in R and there is no larger (legal) subrow T ′ such that T ⊂ T ′ ⊆ R. A
maximal (legal) subcolumn with respect to R is defined analogously.

For the sake of succinctness, whenever it is clear what R is, we shall just say
maximal (legal) subrow and drop the suffix “with respect to R.” Note that a maximal
subrow is simply a maximal consecutive sequence of entries in R that belong to the
same row, while a maximal legal subrow is a more constrained notion. In particular,
a maximal subrow may be a concatenation of several maximal legal subrows. We can
now define blocks as follows.

Definition 12 (maximal block). A maximal block B = [ ]s,ti,j in R is a submatrix
contained in R which has the following property: It consists of a maximal consecutive
sequence of maximal legal subcolumns of the same height. The maximality of each
subcolumn is as in Definition 11. That is, for every j ≤ r ≤ j + t − 1, the column
[ ]s,1i,r is a maximal legal subcolumn (with respect to R).

The height of a maximal block B is the height of the columns in B (equivalently,
the number of rows in B).

The maximality of the sequence of subcolumns in a block B = [ ]s,ti,j means that
we can extend the sequence of columns neither to the left nor to the right. That is,
neither [ ]s,1i,j−1 nor [ ]s,1i,j+t is a maximal legal subcolumn in R. (Specifically, each either
is not fully contained in R or R contains a larger legal subcolumn that contains it.)

We shall sometimes refer to maximal blocks simply as blocks. Observe that by
this definition, R is indeed partitioned in a unique way into maximal disjoint blocks.
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Fig. 3. An example of the partition of R shown in Figure 2 into maximal blocks (numbered
B1–B7). Note that the ratio between the heights of any two blocks is always a power of 2.
Furthermore, the blocks are aligned in the following way. Suppose a block B has height s, and
a block B′ has height s′ ≤ s and some of their subrows belong to the same row of the matrix
(e.g., B3 and B4, or B4 and B5). Then the shorter block B

′ must be aligned with either the
first or second half of B, or with one of the quarters of B, or with one of its eighths, etc.

See Figure 3 for an illustration to how the subset R from Figure 2 is partitioned into
maximal blocks.

Three additional notions that will be needed for the refilling procedure are defined
below. The first two are illustrated in Figure 4.

Definition 13 (covers). We say that a submatrix A covers a given block B with
respect to R if B ⊆ A ⊆ R and the number of rows in A equals the height of B.

We say that A is a maximal row-cover with respect to R if A consists of maximal
subrows with respect to R.

Definition 14 (borders). We say that a submatrix T = [ ]s,ti,j borders another

submatrix T ′ = [ ]s
′,t′
i′,j′ if i′ ≤ i + s − 1 and i ≤ i′ + s′ − 1, and either j′ = j + t (so

that T is to the left of T ′) or j′ + t′ = j (so that T is to the right of T ′).
Definition 15 (sums). For a given submatrix T , we denote the sum of the

elements in T by sum(T ).

5.3.2. The procedure for refilling R. We now describe the procedure that
refills the entries of R with nonnegative values so as to obtain Property 1. Recall
that R is a disjoint union of maximal blocks. Hence if we remove a maximal block
from R, then the maximal blocks of the remaining structure are simply the remaining
maximal blocks of R. For simplicity of this introductory discussion, after removing
a block from R, we refer to the remaining structure as R. The procedure described
below will remove the blocks of R one by one, in order of increasing (nondecreasing)
height, and refill each block separately using Procedure 2.

Recall that when (re)filling an s× t submatrix, Procedure 2 is provided with non-
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Fig. 4. An illustration of the notions of covers and borders. Here the submatrix A (extending
from row 9 to 12 and from column 5 to 12) covers the block B3 (but is not a maximal row-cover
with respect to R). The submatrix A borders block B1 (from the left of A) and block B4 (from the
right of A).

negative values a1, . . . , as and b1, . . . , bt such that
∑s
i=1 ai ≥

∑t
j=1 bj . It then fills the

submatrix with nonnegative values so that the sum of elements in column j is exactly
bj and the sum of elements in row i is at most ai. Whenever we apply Procedure 2 to
a block B, the column sums b1, . . . , bt are simply set to be the sums of the elements in
the corresponding subcolumns of B in CV . By definition of (maximal) blocks, these
subcolumns are maximal legal subcolumns, and as we show in subsection 5.4.1, this
ensures that their sums are nonnegative.

The setting of the upper bounds a1, . . . , as for the row sums is a little more
involved. At any point in the algorithm, each maximal subrow L is associated with
a designated sum, denoted sum(L). This is the sum we intend it to have when the
refilling procedure terminates. Initially, for every maximal subrow L in R, we set
sum(L) = sum(L). That is, sum(L) is equal to the original sum of subrow L in CV .
In subsection 5.4.1 we show that these sums are all nonnegative. When refilling a block
B, we first find the row-cover A of B that is a maximal row-cover with respect to (the
current) R. Since the blocks are filled by order of height and blocks are removed after
they are filled, such a maximal row-cover must exist when B is covered and is unique.
We then use the designated sums of the (maximal) rows of A as the upper bounds
a1, . . . , as for the sums of rows of B. As we prove subsequently, it always holds that∑s
i=1 ai ≥

∑t
j=1 bj as required by Procedure 2. After removing a block B from R, we

obtain new, shorter, maximal subrows in the remaining structure R \B, and we must
associate with these shorter subrows new designated sums. Procedure 2 is used here
as well to determine how to set these designated row sums, in a manner explained in
detail in step 3 below. For an illustration, see Figure 5.
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Fig. 5. An illustration of one iteration of step 3 in Procedure 3, where we apply the procedure
to the matrix illustrated in Figures 2 and 3. The first block filled may be either B2, B4, or B6 (all
three have height 2, which is the minimum among all blocks). Here we have selected to refill B4 first.
On the left we see the maximal row-cover A that covers B4, where the designated sums of the two
rows of A are 8 and 7 (in accordance with the values appearing in Figure 2). On the right we see
the values that the Procedure 2 has entered in the cells of B4. We also see the two submatrices, A′
and A′′, that remain of A after B4 is removed from R and the designated sums of the new maximal
rows in A′ and A′′.

Procedure 3 (refill R).

1. We assign each maximal subrow L in R a designated sum of elements for that
row, which is denoted by sum(L). Initially, we set sum(L) to be sum(L).

2. Let m be the number of maximal blocks in R, and let R1 = R.
3. For p = 1, . . . ,m we do the following:

(a) Let Bp be a maximal block in Rp whose height is minimum among all
maximal blocks of Rp, and assume that Bp is an s × t submatrix. Let
Ap be a maximal row-cover of Bp with respect to Rp. For 1 ≤ � ≤ s, let
L� denote the subrow of Ap that covers the �th subrow of Bp.

(b) Refill Bp by applying Procedure 2 (see section 3.1), where the sum filled
in the kth subcolumn of Bp, 1 ≤ k ≤ t, should be the original sum of this
subcolumn in CV , and the sum filled in the �th subrow of Bp, 1 ≤ � ≤ s,
is at most sum(L�).
For each 1 ≤ � ≤ s, let x� denote the sum of elements filled by Proce-
dure 2 in the �th subrow of Bp.

(c) Let Rp+1 = Rp \ Bp. We next assign designated sums to the rows of
Rp+1 that have been either shortened or broken into two parts by the
removal of Bp from Rp. This is done as follows:
The set Ap \Bp is the union of two nonconsecutive submatrices, A′ and
A′′, so that A′ borders Bp from the left of Bp and A′′ borders Bp from the
right of Bp (where it is possible that one or both of these submatrices does
not exist). Let L′� and L′′� be the subrows in A′ and A′′, respectively, that
are contained in subrow L� of Ap. We assign to L′� and L′′� nonnegative
designated sums, sum(L′�) and sum(L′′� ), that satisfy the following:

sum(L′�) + sum(L′′� ) = sum(L�)− x�
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and, furthermore,

∑
row L∈A′

sum(L) = sum(A′),
∑

row L∈A′′
sum(L) = sum(A′′).

This is done by applying Procedure 2 to a 2 × s matrix whose sums of
columns are sum(A′) and sum(A′′) and sums of rows are sum(L�)−x�,
where 1 ≤ � ≤ s.
(Note that one or both of A′ and A′′ may not exist. This can happen if
Bp bordered Ap \Bp on one side and its boundary coincided with Rp or
if Ap = Bp. In this case, if, for example, A′ does not exist, then we view
it as a submatrix of height 0, where sum(A′) = 0.)

5.4. Proving that Procedure 3 is correct. In order to prove that Procedure 3
is correct we have to prove two claims. First, we have to show that the procedure
does not “get stuck,” namely, that all iterations of the procedure can be completed.
Second, we have to prove that at the end of the procedure, the refilled structure R
has Property 1. Before we prove these two claims we first prove some properties
relating to the sum of elements in maximal blocks and other submatrices of R. These
properties will be used to show that the procedure does not get stuck.

5.4.1. Sums of blocks and other submatrices. We first prove the following
simple lemma regarding the sum of elements in maximal legal subrows and subcolumns
of R.

Lemma 6. The sum of elements in every maximal legal subrow and every maximal
legal subcolumn in R is nonnegative.

Proof. We prove the lemma for maximal legal subrows. The claim for maximal
legal subcolumns is analogous. Assume, contrary to the claim, that R contains some
maximal legal subrow L = [ ]1,ti,j whose sum of elements is negative. Let T be the
maximal bad legal submatrix in CV that contains L. By the maximality of L, neces-
sarily T = [ ]s,ti′,j for some i′ ≤ i and s ≥ 1. That is, the rows of T (one of which is
L) are of length t. By the construction of R, R must contain a good legal submatrix
T ′ that contains T and is twice as large in each dimension. But this contradicts the
maximality of L.

It directly follows from Lemma 6 that every maximal row in R has a nonnega-
tive sum and that every maximal block has a nonnegative sum. We would like to
characterize other submatrices of R whose sum is necessarily nonnegative.

Lemma 7. Consider any two maximal blocks B = [ ]s,ti,j and B′ = [ ]s
′,t′
i′,j′ , where

i ≤ i′ ≤ i+s−1, i′+s′ ≤ i+s. That is, B has height s and B′ has height s′ ≤ s, and
B′ starts at row i′ ≥ i and ends at row i′+ s′− 1 ≤ i+ s− 1. Consider the submatrix

T of height s “between them.” That is, T = [ ]
s,j′−(j+t)
i,j+t or T = [ ]

s,j−(j′+t′)
i,j′+t′ . Suppose

that T ⊂ R. Then sum(T ) ≥ 0.
See Figure 6 for a illustration of the lemma and its proof.
Proof. Assume without loss of generality that B′ is to the right of B (that is,

j′ ≥ j + t and T = [ ]
s,j′−(j+t)
i,j+t ). If T is empty, then the claim follows trivially since

sum(T ) = 0. Hence we may assume from now on that T is not empty, and we separate
the proof into two cases.

Case 1. T is a legal submatrix. Assume, contrary to the claim, that sum(T ) < 0.
That is, T is a bad legal submatrix. Let T ′ be the maximal bad legal submatrix
containing T (where T ′ may equal T ). By construction of R, R should contain a good
legal submatrix T ′′ that contains T ′ and has twice the number of rows and twice the
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Fig. 6. An illustration for Lemma 7. The figure on the top illustrates the case in the proof
of Lemma 7, where T is a legal submatrix (for simplicity, we assume T ′ = T ). The figure on the
bottom illustrates the second case in the proof when T is a union of legal submatrices (all having the
height of B).

number of columns. But this would contradict the maximality of the subcolumns of B
or of B′. To see why this is true, assume without loss of generality that for any legal
subcolumn [ ]s,1i,r , the legal column that is twice its height is [ ]2s,1i,r (the case in which it

is [ ]2s,1i−s,r, is treated analogously). Then T ′′ must contain either the subcolumn [ ]2s,1i,j′

or the subcolumn [ ]2s,1i,j+t−1 (depending on the identity of the legal subrows that are
twice the length of the rows of T ). In the first case we would get a contradiction to the
fact that B′ is a maximal block, and in the second case we would get a contradiction
to the fact that B is a maximal block.

Case 2. T is not a legal submatrix. Observe that its columns are necessarily legal
subcolumns (given that the columns of B are legal). Hence, only its rows are not legal
subrows. Therefore, T can be partitioned into submatrices T1, . . . , Tk such that each
is of height s and is a maximal legal submatrix with respect to T . We claim that for
every T�, sum(T�) ≥ 0. Consider any fixed T�. By its maximality with respect to T ,
we know that the legal subrows that contain the rows of T� and are twice their length
are not strictly contained in T , but rather they extend either to the right or to the left
of T . Hence these rows (or some of them in case the height of B′ is strictly smaller
than the height of T�) must intersect either B or B′. Assume, contrary to what we
claim, that sum(T�) < 0. Let T ′� be the maximal bad legal submatrix with respect
to R that contains T�, and let T ′′� be the good legal submatrix that contains T ′� and
has twice its height and twice its width. Then T ′′� intersects either B or B′, and in
this intersection, the (legal) subcolumns of T ′′� strictly contain the subcolumns of B
or B′ (as in the case considered in the previous paragraph). But this contradicts the
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Fig. 7. An illustration for Corollary 8. Here A covers the blocks B1, B2, and B3 and borders
the blocks D1 and D2. The submatrices T0–T4 are parts of larger blocks (that extend above and/or
below A).

maximality of B or B′.
By Lemma 7, we get the following corollary whose proof is illustrated in Figure 7.
Corollary 8. Let A be a submatrix of R that covers a given block B. If on

each of its sides A either borders a block with height smaller than the height of B or
its border coincides with the border of R, then sum(A) ≥ sum(B).

Proof. Let B1, . . . , Bk be the set of maximal blocks that are covered by A (where
B = Bi for some 1 ≤ i ≤ k). Note that by definition of maximal blocks and covers,
they are all of the same height, which is the height of A. Let D1 and D2 be two
shorter blocks that border A on the left side and the right side of A, respectively. (If
there is no such block on one of the sides, then we think of the corresponding Di as
having height 0.) Let T0, . . . , Tk be the submatrices between these blocks (that have
the same height as the blocks). That is, T0 is between D1 and B1, Tk is between Bk
and D2, and for 1 ≤ i ≤ k − 1, Ti is between Bi and Bi+1. Then, by Lemma 7 and
the fact that every block has a nonnegative sum we get that

sum(A) =
k∑
i=1

sum(Bi) +

k∑
i=0

sum(Ti) ≥ sum(B).(6)

5.4.2. Proving that Procedure 3 does not get stuck. Recall that for each
1 ≤ p ≤ m, Rp is what remains of R at the start of the pth iteration of Procedure 3. In
particular, R1 = R. In this section we show that the procedure does not “get stuck.”
That is, for each iteration p, Procedure 2 can be applied to the block Bp selected
in this iteration, and it is possible to update the designated sums of the rows that
have been shortened by the removal of Bp. Note that since the blocks are selected
according to increasing (nondecreasing) height, then in each iteration there indeed
exists a unique cover Ap of Bp that is a maximal row-cover with respect to Rp.

For every 1 ≤ p ≤ m, let sp be the minimum height of the maximal blocks of Rp,
and let s0 = 1. Observe that whenever sp increases, it does so by a factor of 2k for
some k. This is true because the columns of maximal blocks are legal subcolumns.

Lemma 9. For every 1 ≤ p ≤ m, Procedure 2 can be applied to the block
Bp selected in Rp, and the updating process of the designated sum of rows can be
applied. Moreover, if A is a submatrix of Rp with height of at least sp−1 whose
columns are legal subcolumns and whose rows are maximal rows with respect to Rp,
then

∑
row L∈A sum(L) = sum(A).

Proof. Let Bp be the block selected in iteration p, where Bp is an s × t subma-
trix, and let Ap be the maximal row-cover of Bp with respect to Rp. As noted in
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subsection 3.1, all that is required for Procedure 2 to work is the following:
(1) For every column K in Bp, sum(K) ≥ 0.
(2) For every row L in Ap, sum(L) ≥ 0.
(3)

∑
row L∈Ap sum(L) ≥∑column K∈Bp sum(K).

In order for the updating process to succeed in step 3 of Procedure 3, we must have
the following:

(4) For each 1 ≤ � ≤ s, let x� be the sum of elements filled in the �th subrow
of Bp, and let L� be the subrow of Ap that covers this subrow of Bp. Then
sum(L�)− x� ≥ 0.

(5) If Ap \Bp consists of the two submatrices A′ and A′′ (between which resided
B), then sum(A′) ≥ 0, sum(A′′) ≥ 0, and

∑
row L�∈Ap

(sum(L�)− x�) = sum(A′) + sum(A′′).

By Lemma 6, item (1) holds at the start of every iteration. In order to prove the
other items for every p, we first extend and generalize item (2):

(2’) Let A be any submatrix in Rp having height at least sp−1 whose columns are
legal subcolumns and whose rows are maximal rows with respect to Rp. Then
for every row L of A we have sum(L) ≥ 0, and

∑
row L∈A sum(L) = sum(A).

Observe that if item (2’) holds at the start of iteration p, then in particular it holds
for Ap. Hence by Corollary 8

∑
row L∈Ap

sum(L) = sum(Ap) ≥ sum(Bp)(7)

and so item (3) holds as well.
Furthermore, if items (1)–(3) hold at the start of iteration p, then Procedure 2 can

be applied successfully. Thus item (4) necessarily holds by definition of Procedure 2.
The first part of item (5), concerning the nonnegativity of A′ and A′′, follows from
Lemma 7 very similarly to the way Corollary 8 follows from this lemma. The second
part of item (5) follows from item (2’) holding for Ap and the fact that

∑s
�=1 x� =

sum(Bp) (since Procedure 2 completed successfully). Hence,

∑
row L�∈Ap

(sum(L�)− x�) = sum(Ap)− sum(Bp) = sum(A′) + sum(A′′)(8)

as required.
Hence, it remains to prove that item (2’) holds at the start of every iteration p. We

do so by induction on p. Consider the base case, p = 1, so that Rp = R1 = R. By the
initialization of Procedure 3, for every maximal subrow L of R, sum(L) = sum(L).
By Lemma 6 (applied to the maximal legal subrows that partition L), we know that
sum(L) ≥ 0. Furthermore, for every submatrix A of R having height of at least
sp−1 = s0 = 1 and whose rows are maximal subrows of R,

∑
row L∈A

sum(L) =
∑

row L∈A
sum(L) = sum(A)(9)

as required.
Assuming that the induction claim holds for p − 1, we prove it for p. Consider

any submatrix A having height at least sp−1 whose columns are legal subcolumns and
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whose rows are maximal subrows with respect to Rp. If A also consisted of maximal
subrows with respect to Rp−1, then we are done by the induction hypothesis.

Otherwise, the block Bp−1 of height sp−1 that was removed from Rp−1 bordered
A on one of its sides. Let A1, . . . , Aq be the disjoint submatrices of height sp−1 such
that A = ∪qh=1A

h. That is, A1, . . . , Aq are located one on top of the other (for an
illustration, see Figure 8). In this case, all but at most one of these submatrices, say
Aq, consisted of maximal subrows with respect to Rp−1, and Bp−1 bordered Aq.

For each of the submatrices A1, . . . , Aq−1 we can apply the induction hypothesis
(item (2’)). We get the following for each such Ah: (a) for every row L in Ah,
sum(L) ≥ 0; and (b)

∑
row L∈Ah sum(L) = sum(Ah).

As for Aq, assume without loss of generality that Bp−1 bordered Aq from the
right of Aq. Let A′ be the submatrix that bordered Bp−1 from the right of Bp−1

(A′ may be empty). This means that Ap−1 is of the form Ap−1 = Aq ∪ Bp−1 ∪ A′

(see Figure 8). But then, by definition of the updating rule and since it succeeded
by the induction hypothesis (items (4) and (5)), we have that for every row L in Aq,
sum(L) ≥ 0 and

∑
row L∈Aq sum(L) = sum(Aq).

It follows that for every row L in A we have sum(L) ≥ 0 and

∑
row L∈A

sum(L) =

q∑
h=1

∑
rowL∈Ah

sum(L) =

q∑
h=1

sum(Ah) = sum(A) .(10)

The induction step is proven.

p-1

B p-1

B 

A

Ap-1 (= )

(=

A4 U U A’

A1

A UUU )

A4

A3

A2

A A A1 2 3 4

A’

Fig. 8. An illustration for the induction step in the proof of Lemma 9 (where q = 4).

5.4.3. Proving that Property 1 holds at the end of Procedure 3. Finally,
we have to show that when Procedure 3 terminates and R is refilled with nonnegative
values, then Property 1 holds. This will complete the proof of Theorem 3.

Let C̃V = {c̃i,j} be the matrix resulting from the application of Procedure 3 to
the matrix CV = {ci,j}. For any submatrix T of CV (and in particular of R), we

let s̃um(T ) denote the sum of elements of T in C̃V . By definition of the procedure,
s̃um(K) = sum(K) for every maximal legal subcolumn K of R. Hence this holds also
for every maximal subcolumn of R. We next prove a related claim concerning rows.

Lemma 10. For every subrow L in R such that L is assigned sum(L) as a
designated sum at some iteration of Procedure 3, we have that s̃um(L) = sum(L).
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Observe that by combining Lemma 10 with Lemma 6 we get that for every max-
imal subrow L of R, s̃um(L) = sum(L) = sum(L).

Proof. Let L be the set of subrows L of R such that L is assigned sum(L) as
a designated sum at some iteration of Procedure 3. Observe that the set L consists
exactly of those rows that are maximal subrows for some Rp. We prove the lemma
by induction on the length of L ∈ L. For the base of the induction, consider any
subrow L ∈ L that is shortest among all subrows in L. Since L is shortest, it must be
completely filled in a single iteration as part of a block B (or otherwise there would be
a shorter L′ ⊂ L with a designated sum sum(L′)). But by definition of the procedure,
we get that s̃um(L) = sum(L) as required.

Assume that the claim holds for every L of length less than �; we prove it for L
having length �. Consider the first iteration after which L became a maximal subrow
(and thus received the designated sum sum(L)) in which part of L is filled. If all
of L is filled, then the induction claim follows as in the base case. Otherwise, let
x be the sum of elements that was filled in the part P ⊂ L. Let L′ and L′′ be
what remains of L to the left and right of P , respectively. Then the procedure sets
sum(L′) + sum(L′′) = sum(L) − x. But L′ and L′′ are strictly shorter than L, and
therefore by the induction hypothesis s̃um(L′) = sum(L′) and s̃um(L′′) = sum(L′′).
Thus s̃um(L) = s̃um(L′) + s̃um(L′′) + x = sum(L′) + sum(L′′) + x = sum(L) as
required.

Definition 16 (boundary). We say that a point (i, j) is on the boundary of R
if (i, j) ∈ R, but either (i + 1, j) /∈ R, or (i, j + 1) /∈ R, or (i + 1, j + 1) /∈ R. We
denote the set of boundary points by B.

Definition 17. For a point (i, j), 1 ≤ i, j ≤ n, let R≤(i, j) denote the subset
of points (i′, j′) ∈ R, i′ ≤ i, j′ ≤ j, and let sumR(i, j) =

∑
(i′,j′)∈R≤(i,j) ci′,j′ and

s̃um
R
(i, j) =

∑
(i′,j′)∈R≤(i,j) c̃i′,j′ .

Property 1 and therefore Theorem 3 will follow directly from the next two lemmas.
Lemma 11. For every point (i, j) ∈ B, s̃um

R
(i, j) = sumR(i, j).

Proof. Consider any point (i, j) ∈ B, and let U = R≤(i, j). Let C(U) =
{B1, . . . , Bq} be the minimal set of (maximal) blocks whose union contains U . For
each Bh ∈ C(U) we know that s̃um(Bh) = sum(Bh). In particular, this is true for
every Bh ⊂ U . Let C1(U) = {Bh ∈ C(U) : Bh ⊂ U}. Hence we have that

∑
Bh∈C1(U)

s̃um(Bh ∩ U) =
∑

Bh∈C1(U)

s̃um(Bh) =
∑

Bh∈C1(U)

sum(Bh) .(11)

If every Bh ∈ C(U) is fully contained in U , then C1(U) = C(U) and we are done.
Otherwise, consider the remaining Bh’s in C(U) \ C1(U) (i.e., blocks that are not

fully contained in U but rather intersect it). Each of them contains either a column
that is a subcolumn of column j+1 or a row that is a subrow of row i+1 (recall that
U = R≤(i, j)). Let the former subset be denoted C2(U) and the latter C3(U). Thus
C2(U) contains blocks that “intersect U from the right,” and C3(U) contain blocks
that “intersect U from the top.” See, for example, Figure 9.

It is important to note that C2(U) ∩ C3(U) = ∅: If there existed a block Bh ∈
C2(U) ∩ C2(U), it would necessarily contain both (i, j) and the three neighboring
points, (i+ 1, j), (i, j + 1), and (i+ 1, j + 1). But this contradicts the fact that (i, j)
is a boundary point.

For each Bh ∈ C2(U), Bh∩U is a subset of maximal legal subcolumns with respect
to R (since each Bh ∈ C2(U) cannot extend beyond row i). Let K2(U) denote the set
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B1

B3

B4

B2
B5
B6

B7

B9

B10

B11

B8

(i,j)

Fig. 9. An illustration for the proof of Lemma 11. The solid line denotes the outline of
U = R≤(i, j), where point (i, j) is in the top-right corner. Blocks B1–B6 are fully contained in
U and therefore belong to C1(U). Blocks B7 and B8 belong to C2(U) and blocks B9–B11 belong to
C3(U). Block B10 is twice the height of B9 and B11 and thus “extends out of the figure.”

of all maximal legal subcolumns that belong to
⋃
Bh∈C2(U)(Bh ∩ U). Since for every

maximal legal subcolumn K it holds that s̃um(K) = sum(K), we have that

∑
Bh∈C2(U)

s̃um(Bh ∩ U) =
∑

K∈K2(U)

s̃um(K) =
∑

K∈K2(U)

sum(K).(12)

Next consider the blocks Bh ∈ C3(U). Let L3(U) be the set of subrows in U that
are maximal subrows with respect to

⋃
Bh∈C3(U)(Bh∩U). Thus,

⋃
Bh∈C3(U)(Bh∩U) =⋃

L∈L3
L. We next observe that for every Bh ∈ C3(U), all blocks that border Bh and

belong either to C1(U) or to C2(U) must be strictly shorter than Bh. This follows
from the definition of legal subcolumns. Hence, the blocks in C1(U) and C2(U) are all
removed before the blocks in C3(U).

For each subrow in L3(U) there exists the first iteration p in which it becomes a
maximal subrow with respect to Rp (following the removal of some block in C1(U) ∪
C2(U) from Rp−1). We partition the rows in L3(U) accordingly. Let Lp3(U) denote all
subrows in L3(U) that are maximal subrows with respect to Rp but were not maximal
subrows with respect to Rp−1. Observe that, in particular, L1

3(U) is the set of subrows
in L3(U) that were already maximal subrows with respect to R. By this definition
the subrows in Lp3(U) constitute a submatrix of height sp−1. By the second part of
Lemma 9,

∑
L∈Lp3(U) sum(L) =

∑
L∈Lp3(U) sum(L), and by applying Lemma 10 we
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get that
∑
L∈L3(U) s̃um(L) =

∑
L∈L3(U) sum(L). Therefore,

∑
Bh∈C3(U)

s̃um(Bh ∩ U) =
∑

L∈L3(U)

s̃um(L) =
∑

L∈L3(U)

sum(L).(13)

By combining (11)–(13) we get

s̃um(U) =
∑

Bh∈C(U)

s̃um(Bh ∩ U)

=

3∑
q=1

∑
Bh∈Cq(U)

s̃um(Bh ∩ U)

=
∑

Bh∈C1(U)

sum(Bh) +
∑

K∈K2(U)

sum(K) +
∑

L∈L3(U)

sum(L)

= sum(U)

L1

R(i’,j’)
<=

L2 L3
L4

L5 L6

(i’,j’)

(i,j)

Fig. 10. An illustration for the proof of Lemma 12. The point (i′, j′) is as defined in the proof,
and the rows L1, . . . , L6 are all maximal subrows of R that belong to rows i′ + 1, . . . , i and end by
column j (that is, the set L(i, i′, j)).

Lemma 12. Let (i, j) be any point such that (i, j) /∈ R. Then s̃um
R
(i, j) =

sumR(i, j).
Proof. Let (i′, j′) ∈ R, i′ < i, j′ ≤ j, be the point for which j′ is maximized, and if

there are several such points, let it be the one amongst them for which i′ is maximized.
Thus, (i′, j′) is maximal in the sense that for every (i′′, j′′), i′′ < i, j′′ ≤ j such that
(i′′, j′′) > (i′, j′) it holds that (i′′, j′′) /∈ R. Furthermore, among all such maximal
points it is the right-most one (i.e., it belongs to the column with the highest index).
By definition, (i′, j′) belongs to B, since (i′+1, j′) necessarily does not belong to R. Let
L(i, i′, j) be the subset of all maximal subrows of R that belong to rows i′ + 1, . . . , i

and end by column j. Then s̃um
R
(i, j) = s̃um

R
(i′, j′) +

∑
L∈L(i,i′,j) s̃um(L). By
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applying Lemma 11 and Lemma 10, we get that s̃um
R
(i, j) = sumR(i, j). For an

illustration, see Figure 10.

5.5. Distribution matrices. As noted in the introduction, a subfamily of in-
verse Monge matrices that is of particular interest is the class of distribution ma-
trices. A matrix V = {vi,j} is said to be a distribution matrix if there exists a
nonnegative density matrix D = {di,j} such that every entry vi,j in V is of the form
vi,j =

∑
k≤i
∑
�≤j dk,�. In particular, if V is a distribution matrix, then the corre-

sponding density matrix D is simply the matrix C ′V (as defined in section 3). Hence,
in order to test that V is a distribution matrix, we simply run our algorithm for
inverse Monge matrix on C ′V instead of CV .

Acknowledgments. We would like to thank Noam Nisan for suggesting to ex-
amine combinatorial auctions in the context of property testing. We would also like
to thank the anonymous referees for their comments which helped us improve the
presentation of this paper.
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Abstract. We prove lower bounds on the number of product gates in bilinear and quadratic
circuits that compute the product of two n × n matrices over finite fields. In particular we obtain
the following results:

1. We show that the number of product gates in any bilinear (or quadratic) circuit that
computes the product of two n× n matrices over GF(2) is at least 3n2 − o(n2).

2. We show that the number of product gates in any bilinear circuit that computes the product
of two n× n matrices over GF(q) is at least (2.5 + 1.5

q3−1 )n
2 − o(n2).

These results improve the former results of [N. H. Bshouty, SIAM J. Comput., 18 (1989), pp. 759–
765; M. Bläser, Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Los Alamitos, CA, 1999, pp. 45–50], who proved lower bounds of
2.5n2 − o(n2).

Key words. matrix product, lower bounds, linear codes
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DOI. 10.1137/S0097539702405954

1. Introduction. The problem of computing the product of two matrices is
one of the most studied computational problems. We are given two n × n matrices
x = (xi,j), y = (yi,j), and we wish to compute their product; i.e., there are n2 outputs,
where the (i, j)th output is

(x · y)i,j =
n∑
k=1

xi,k · yk,j .

In 1969, Strassen surprised the world by showing an upper bound of O(nlog2 7)
[Str69]. This bound was later improved, and the best upper bound today is O(n2.376)
[CW90] (see also [Gat88] for a survey). The best known lower bound, 2.5n2 − o(n2),
on the number of products needed to compute the function is due to [Bsh89, Bla99].
Thus the following problem is still open: Can matrix products be computed by a
circuit of size O(n2)?

The standard computational model for computing polynomials is the model of
arithmetic circuits, i.e., circuits over the base {+, ·} over some field F. This is
indeed the most general model, but for matrix products two other models are usually
considered, quadratic circuits and bilinear circuits. In the quadratic model we require
that product gates be applied on only two linear functions. In the bilinear model
we also require that product gates be applied on only two linear functions, but in
addition we require that the first linear function be linear in the variables of x and
that the second linear function be linear in the variables of y. These models are more
restricted than the general model of arithmetic circuits. However, it is interesting to
note that over infinite fields we can always assume w.l.o.g. that any circuit for a matrix
product is a quadratic circuit [Str73]. In addition we note that the best circuits that
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we have today for matrix products are bilinear circuits (except for very small values
of n, where the best circuits are quadratic circuits; see [Win68, Wak70, BCS97]).

In this paper we prove that any quadratic circuit that computes matrix products
over the field GF(2) has at least 3n2−o(n2) product gates, and that any bilinear circuit
for matrix products over the field GF(q) must have at least (2.5 + 1.5

q3−1 )n
2 − o(n2)

product gates.
From now on we will use the notation MPn to denote the problem of computing

the product of two n× n matrices.

1.1. Known lower bounds. In contrast to the major advances in proving up-
per bounds, the attempts to prove lower bounds on the size of bilinear circuits that
compute MPn were less successful. Denote by qF

∗ (MPn) and blF∗ (MPn) the smallest
number of product gates in a quadratic circuit for MPn, and in a bilinear circuit for
MPn, respectively, over a field F. We also denote by blFtot(MPn) the total number of
gates in a smallest bilinear circuit for MPn. In 1978, Brockett and Dobkin proved
that blF∗ (MPn) ≥ 2n2 − 1 over any field F (see [BD78]). This lower bound was later
generalized by Lafon and Winograd to a lower bound on qF

∗ (MPn) over any field

[LW78]. In 1989, Bshouty showed that q
GF(2)
∗ (MPn) ≥ 2.5n2 − O(n log n) [Bsh89].

Recently, in a series of works, Bläser managed to prove a lower bound of 2.5n2 − 3n
on qF

∗ (MPn) over any field [Bla99, Bla00, Bla01].
In [RS01] it is shown that any bounded depth circuit for MPn, over any field,

has a superlinear (in n2) size. Notice, however, that the best known circuits for MPn
have depth Ω(logn).

1.2. Bilinear rank. An important notion that is highly related to the problem
of computing matrix product in bilinear circuits is the notion of bilinear rank.

A bilinear form in two sets of variables x, y is a polynomial in the variables of
x and in the variables of y, which is linear in the variables of x and linear in the
variables of y. Clearly each output of MPn is a bilinear form in x = {xi,j}, y = {yi,j}.
The bilinear rank of a set of bilinear forms {b1(x, y), . . . , bm(x, y)} is the smallest
number of rank-1 bilinear forms that span b1, . . . , bm, where a rank-1 bilinear form
is a product of a linear form in the x variables and a linear form in the y variables.
We denote by RF(b1, . . . , bm) the bilinear rank of {b1, . . . , bm} over the field F. For
further background see [BCS97, Gat88].

We denote by RF(MPn) the bilinear rank over F of the n2 outputs of the matrix
product; i.e., it is the bilinear rank of the set {∑n

k=1 xi,k · yk,j}i,j over F.
The following inequalities are obvious (over any field):
• qF
∗ (MPn) ≤ blF∗ (MPn) ≤ 2qF

∗ (MPn).
• RF(MPn) = blF∗ (MPn).

The following statement is less obvious, but also not so hard to see. When n grows
to infinity, blF∗ (MPn) and blFtot(MPn) are (roughly) of the same order of magnitude.
This statement is formulated and proved in the appendix.

1.3. Results and methods. We prove that any quadratic circuit that computes

MPn over the field GF(2) has at least 3n2− o(n2) product gates (i.e., q
GF(2)
∗ (MPn) ≥

3n2 − o(n2)). We also prove that over the field GF(q) every bilinear circuit for

MPn must have at least (2.5 + 1.5
q3−1 )n

2 − o(n2) product gates (i.e., blGF(q)
∗ (MPn) ≥

(2.5 + 1.5
q3−1 )n

2 − o(n2)). Both of these results actually hold for the bilinear rank as
well.

The proof of the lower bound over GF(2) is based on techniques from the theory
of linear codes. However, we cannot use known results from coding theory in a
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straightforward way, since we are not dealing with codes in which every two words
are distant, but rather with codes on matrices in which the distance between two code
words, of two matrices, is proportional to the rank of the difference of the matrices.
The reduction from circuits to codes and the proof of the bound are given in section 4.

The proof of the second bound is based on a lemma proved by Bläser in [Bla99].
We prove that in the case of finite fields we can use the lemma with better parameters
than those used by Bläser. This result is proved in section 5.

1.4. Organization of the paper. In section 2 we present the models of bi-
linear circuits and quadratic circuits. In section 3 we present some algebraic and
combinatorial tools that we need for the proofs of our lower bounds.

In section 4 we introduce the notion of linear codes of matrices and prove our lower
bound on bilinear and quadratic circuits that compute MPn over GF(2). In section 5
we prove our lower bound on bilinear circuits that compute MPn over GF(q).

Finally we discuss the limits of our techniques in section 6.

2. Arithmetic models. In this section we present the models of quadratic cir-
cuits and bilinear circuits. These are the models for which we prove our lower bounds.
We first give the definition of a general arithmetic circuit. An arithmetic circuit over
a field F is a directed acyclic graph as follows. Nodes of in-degree 0 are called inputs
and are labeled with input variables. Nodes of out-degree 0 are called outputs. Each
edge is labeled with a constant from the field, and each node other than an input is
labeled with one of the operations { + ; · }; in the first case the node is a plus gate
and in the second case a product gate. The computation is done in the following way.
An input just computes the value of the variable that labels it. Then, if v1, . . . , vk
are the vertices that fan into v, we multiply the result of each vi with the value of the
edge that connects it to v. If v is a plus gate, we sum all the results; otherwise v is a
product gate, and we multiply all the results. Obviously the value computed by each
node in the circuit is a polynomial over F in the input variables.

We are interested in the problem of computing the product of two n×n matrices,
MPn. The input consists of two n× n matrices x, y. The output is the matrix x · y,
i.e., there are n2 outputs, and the (i, j)th output is

(x · y)i,j =
n∑
k=1

xi,k · yk,j .

Each output (x · y)i,j is hence a bilinear form in x and y.
Since each output of MPn is a bilinear form, it is natural to consider bilinear

arithmetic circuits for it. A bilinear arithmetic circuit is an arithmetic circuit with
the additional restriction that product gates are applied on only two linear functions,
one function linear in the variables of x and the other function linear in the variables
of y. Thus, bilinear circuits have the following structure. First, there are many plus
gates computing linear forms in x and linear forms in y. Then there is one level of
product gates that compute bilinear forms, and finally there are many plus gates that
eventually compute the outputs. We will be interested in bounding from below the
number of products in any bilinear circuit for MPn. This model is more restricted
than the general model of arithmetic circuits, but we note that all the known upper
bounds (over any field) for MPn are achieved using bilinear circuits.

Another model that we will consider is the model of quadratic circuits. A quadratic
circuit is an arithmetic circuit with the additional restriction that product gates are
applied on only two linear functions. Notice that the only difference between quadratic
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circuits and bilinear circuits is that in the quadratic model the product gates compute
quadratic forms in x, y, whereas in the bilinear model the product gates compute bi-
linear forms in x, y. This model is more general than the model of bilinear circuits,
but it is still more restricted than the general model. However, it is interesting to note
that over infinite fields we can assume w.l.o.g. that any arithmetic circuit for MPn is
a quadratic circuit [Str73].

3. Algebraic and combinatorial tools. In this section we present some alge-
braic and combinatorial tools that we will use.

The following lemma is a weak variant of the famous Schwartz–Zippel lemma,
which shows that every nonzero polynomial (nonzero as a formal expression) over a
large enough field has a nonzero assignment in the field (see [Sch80, Zip79]).

Lemma 3.1. Let P be a polynomial of total degree d in x1, . . . , xn over some field
F such that d < |F| and such that at least one of the coefficients of P is not zero.
Then we can find an assignment, ρ ∈ Fn, to the xi’s such that P (ρ1, . . . , ρn) �= 0.

We say that two polynomials p, q in n variables are equivalent over a field F if
p(x1, . . . , xn) = q(x1, . . . , xn) for any x1, . . . , xn ∈ F. We define p ≡ q if p and q are
equivalent over F. (We omit F from the notation, as the field that we are dealing with
will be clear from the context.)

Lemma 3.2. Let P be a polynomial of total degree d in the variables x1, . . . , xn
over a field F. If P �≡ 0, then we can find an assignment, ρ ∈ Fn, to the xi’s such
that at most d of the ρi’s get a nonzero value and such that P (ρ1, . . . , ρn) �= 0.

Proof. P is equal (as a function) to a polynomial P̄ in which the degree of each
variable is at most |F|−1. We call P̄ the reduction of P ; notice that the total degree of
P̄ is at most the total degree of P . Consider some monomial M in P̄ whose coefficient
is not zero. We assign all the variables that do not appear in M to zero. The resulting
polynomial (after the assignment) is a polynomial in the variables of M , which is not
the zero polynomial, as it is a reduced polynomial which has a monomial with a
nonzero coefficient (M , of course). Therefore according to Lemma 3.1 there is some
assignment to the variables ofM that gives this polynomial a nonzero value. Therefore
we have found an assignment which gives nonzero values only to the variables of M
(and there are at most d such variables) under which P �= 0.

The following useful lemma, which is a straightforward implication of the previous
lemma, is the key lemma in most of our proofs. It deals with linear forms in n2

variables. From now on we shall think about such linear forms as linear forms in the
entries of n× n matrices.

Lemma 3.3. Let µ1, . . . , µn2 be n2 linearly independent linear forms in n2 vari-
ables over some field F. Let P be a polynomial of total degree d in kn2 variables over
F; i.e., we can view P as a polynomial P (x1, . . . , xk) in the entries of k matrices,
x1, . . . , xk, each of size n × n. Assume that P �≡ 0. Then we can find k matrices
a1, . . . , ak ∈ Mn(F) such that P (a1, . . . , ak) �= 0 and such that there exist n2−d linear
forms among µ1, . . . , µn2 that vanish on all the ai’s.

Proof. The idea of the proof is the following. Let b1, . . . , bn2 be the dual basis
of µ1, . . . , µn2 , i.e., a basis of Mn(F) satisfying ∀i, j, µi(bj) = δi,j . We wish to find k
matrices a1, . . . , ak such that P (a1, . . . , ak) �= 0 and such that there exist bi1 , . . . , bid
that span all of them. If we manage to find such matrices, then since the bi’s are the
dual basis to the µi’s, we will get that n2 − d of the µi’s, vanish on a1, . . . , ak. The
way to find such matrices, which are contained in the span of a small subset of the
bi’s, is based on Lemma 3.2.

Thus let b1, . . . , bn2 be the dual basis to µ1, . . . , µn2 ; i.e., ∀i, j, µi(bj) = δi,j . We
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now change the variables of P . Let αi,j , j = 1, . . . , k, i = 1, . . . , n2, be a set of kn2

variables. Define xj =
∑n2

i=1 αi,jbi. Thus we can write

P (x1, . . . , xk) = P


 n2∑
i=1

αi,1bi, . . . ,

n2∑
i=1

αi,kbi


 = Q(α1,1, . . . , αn2,k) .

Thus we have that Q �≡ 0 is a polynomial in the αi,j ’s of total degree at most d. Hence,
according to Lemma 3.2 there exists an assignment ρ to the αi,j ’s such that at most

d of them get a nonzero value and such that Q is nonzero. Define aj =
∑n2

i=1 ρi,jbi.
Clearly P (a1, . . . , ak) �= 0. Since at most d of the ρi,j ’s have nonzero values, we see
that there are at most d bi’s such that all the aj ’s are linear combinations of them.
Since the bi’s are the dual basis to µ1, . . . , µn2 , we get that there are at least n2 − d
of the µi’s that vanish on all the aj ’s. Therefore a1, . . . , ak satisfy the requirements
of the lemma.

The next lemma will enable us to translate properties of matrices over large fields
of characteristic p to properties of matrices (of higher dimension) over GF(q).

Lemma 3.4. There exists an injective ring homomorphism φ : GF(qn) ↪→
Mn(GF(q)). That is, there exists a mapping φ : GF(qn) �→ Mn(GF(q)) such that

• φ is one-to-one.
• φ(1) = I, where I is the n× n identity matrix.
• φ is linear, i.e., ∀x, y ∈ GF(qn) we have that φ(x+ y) = φ(x) + φ(y).
• φ is multiplicative, i.e., ∀x, y ∈ GF(qn) we have that φ(xy) = φ(x) · φ(y).

This homomorphism also induces a homomorphism Mk(GF(qn)) ↪→ Mnk(GF(q)).
This lemma is a standard tool in algebra, but for completeness we give the proof.
Proof. GF(qn) is an n dimensional vector space over GF(q). Each element

x ∈ GF(qn) can be viewed as a linear transformation x : GF(qn) �→ GF(qn) in
the following way:

∀y ∈ GF(qn), x(y) = x · y.

Clearly this is a linear transformation of GF(qn) into itself, as a vector space over
GF(q). Therefore, by picking a basis to GF(qn) we can represent the linear transfor-
mation corresponding to each x ∈ GF(qn) by a matrix ax ∈ Mn(GF(q)). Thus, we
have defined a mapping φ : GF(qn) �→ Mn(GF(q)) such that φ(x) = ax, and it is easy
to verify that this mapping is an embedding of GF(qn) into Mn(GF(q)). The way to
generalize it to an embedding of Mk(GF(qn)) into Mnk(GF(q)) is the following. Let
a = (ai,j) ∈ Mk(GF(qn)) be some matrix. Every entry of ai,j of a is some element of
GF(qn). We can now replace ai,j with the matrix φ(ai,j). Thus the resulting matrix
will be a kn × kn matrix whose entries are in GF(q). Again it is easy to verify that
this is indeed an embedding of Mk(GF(qn)) into Mnk(GF(q)).

In addition to the algebraic lemmas we also need the following combinatorial
tools.

Definition 3.5. Let F be a field, and let v, u be two vectors in Fm. We denote
by weight(v) the number of nonzero coordinates of v. Let dH(v, u) = weight(v−u);
i.e., dH(v, u) is the number of coordinates on which u and v differ. dH(v, u) is also
known as the Hamming distance of u and v. We also denote by agree(u, v) the
number of coordinates on which u and v are equal; i.e., agree(u, v) = m−dH(v, u).

The next lemma shows that if a vector space contains a set of vectors such that
every pair/triplet of them disagrees on many coordinates (i.e., their Hamming distance
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is large), then it is of large dimension. There are numerous similar lemmas in coding
theory, and in particular the first part of our lemma is the famous Plotkin bound (see
[Lin92]).

Lemma 3.6.
1. In every set of k vectors in GF(q)t such that q < k there are two vectors that

agree on at least ( tq − t
k ) coordinates.

2. In every set of k vectors in GF(q)t such that 2q < k there are three vectors
that agree on at least ( tq2 − 3t

qk ) coordinates.

Proof. We begin by proving the first claim. Let v1, . . . , vk be k vectors in GF(q)t.
We are going to estimate

∑
i<j agree(vi, vj) in two different ways. On the one hand,

this sum is at most
(
k
2

)
times the maximum of agree(vi, vj). On the other hand,

consider a certain coordinate. For every α ∈ GF(q) denote by nα the number of

vectors among the vi’s that are equal to α on this coordinate. Clearly
∑q−1
α=0 nα = k.

The contribution of this coordinate to
∑
i<j agree(vi, vj) is exactly

∑q−1
α=0

(
nα
2

)
. By

convexity

q−1∑
α=0

(
nα
2

)
≥ p · 1

2
· k
q

(
k

q
− 1

)
=

k(k − q)

2q
.

We get that

(
k

2

)
·max
i<j

(agree(vi, vj)) ≥
∑
i<j

agree(vi, vj) ≥ t · k(k − q)

2q
.

Therefore

max
i<j

(agree(vi, vj)) ≥ t

q
· k − q

k − 1
≥ t

q
· k − q

k
=

t

q
− t

k
.

The proof of the second claim is similar. We give two different estimates for our∑
i<j<l agree(vi, vj , vl) (the number of coordinates on which vi, vj , and vl are the

same). In the same manner as before we get that

max
i<j<l

(agree(vi, vj , vl)) ≥ t

q2
· k − q

k − 1
· k − 2q

k − 2
≥ t

q2
− 3t

qk
.

Corollary 3.7. If GF(2) contains k vectors v1, . . . , vk such that 2 < k and
dH(vi, vj) ≥ N ∀i �= j, then t ≥ 2N − 4 N

k+2 .
Proof. According to Lemma 3.6 there are two vectors, w.l.o.g. v1 and v2, such

that agree(v1, v2) ≥ t
2 − t

k . Since dH(v1, v2) = t− agree(v1, v2), we get that

t−
(

t

2
− t

k

)
≥ dH(v1, v2) ≥ N,

and the result follows.

4. Lower bound over GF(2). In this section we prove our main theorems.

Theorem 4.1. blGF(2)
∗ (MPn) ≥ 3n2 − O(n

5
3 ) (in other words, RGF(2)(MPn) ≥

3n2 −O(n
5
3 )).

The second theorem that we shall prove is a lower bound for quadratic circuits.
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Theorem 4.2. q
GF(2)
∗ (MPn) ≥ 3n2 − O(n

5
3 ); i.e., the number of product gates

in any quadratic circuit that computes the product of two n× n matrices over GF(2)

is at least 3n2 −O(n
5
3 ).

Clearly Theorem 4.2 implies Theorem 4.1, but we first prove Theorem 4.1, as its
proof is more intuitive and simple. We begin by introducing the notion of linear codes
of matrices.

4.1. Linear codes of matrices.
Definition 4.3. A linear code of matrices is a mapping

Γ : Mn(GF(2)) �→ GF(2)
m

(for some m) with the following properties:
• Γ is linear.
• For any matrix a, weight(Γ(a)) ≥ n · rank(a).

From the linearity of Γ and the requirement on weight(Γ(a)) we get the following
corollary.

Corollary 4.4. Γ is a one-to-one mapping, and for any two matrices a and b,
dH(Γ(a),Γ(b)) ≥ n · rank(a− b).

The following theorem shows that the dimension of the range of any linear code
of matrices is large (i.e., m must be large).

Theorem 4.5. Let Γ : Mn(GF(2)) �→ GF(2)
m

be a linear code of matrices; then

m ≥ 3n2 −O(n
5
3 ).

Proof. Define

Γ(a) = (µ1(a), . . . , µm(a)).

The proof is based on the following lemma that shows that we can find k = n
1
3

matrices a1, . . . , ak ∈ Mn(GF(2)), with the following properties:
• ∀i �= j, ai − aj is an invertible matrix.

• There are n2 − (k2)n linear forms among the µi’s that vanish on all the ai’s.

We state the lemma for every k < 2n, but we apply it only to k = n
1
3 .

Lemma 4.6. For every n, k such that k < 2n, and for any µ1, . . . , µn2 lin-
early independent linear forms in n2 variables, over GF(2), there are k matrices
a1, . . . , ak ∈ Mn(GF(2)) such that for every i �= j, ai−aj is an invertible matrix, and

such that n2 − (k2)n of the µi’s vanish on them.
Proof. Consider the following polynomial P in k matrices:

P (a1, . . . , ak) = determinant


∏
i<j

(ai − aj)


 .

Clearly a set of k matrices a1, . . . , ak satisfy P (a1, . . . , ak) �= 0 iff all the matrices
ai − aj are invertible. In addition, it is easy to see that deg(P ) =

(
k
2

)
n. Therefore if

we show that P �≡ 0 over GF(2), then according to Lemma 3.3 we will get what we
wanted to prove.

In order to show that P �≡ 0 we just have to prove the existence of k matrices
such that the difference of every two of them is invertible. Lemma 3.4 assures us
that we can embed the field GF(2n) into Mn(GF(2)). Denote this embedding by
Φ : GF(2n) ↪→ Mn(GF(2)). We take k distinct elements in GF(2n), x1, . . . , xk. Their
images, Φ(x1), . . . ,Φ(xk), are matrices in Mn(GF(2)) such that the difference of every
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two of them, Φ(xi)−Φ(xj) = Φ(xi − xj), is an invertible matrix. This is because the
xi’s are distinct (i.e., xi−xj �= 0), and every nonzero element in GF(2n) is invertible.
Thus, Φ(x1), . . . ,Φ(xk) are exactly the k matrices that we were looking for. This
concludes the proof of the lemma.

We proceed with the proof of Theorem 4.5. Let k = n
1
3 . Since Γ is a one-to-one

mapping, there are n2 independent linear forms among µ1, . . . , µm. Therefore we can
use Lemma 4.6 and get that there are k matrices a1, . . . , ak such that for every i �= j,
ai − aj is invertible, and such that, w.l.o.g., µm−r+1, . . . , µm vanish on a1, . . . , ak for

some r ≥ n2 − (k2)n ≥ n2 − n
5
3 .

Since the last r linear forms vanish on all the ai’s, we are going to restrict our
attention to only the first m − r linear forms. Thus from now on we consider only
Γ(ai) restricted to its first m− r coordinates.

Since each of the differences ai − aj (∀i �= j) is an invertible matrix, we get that

dH(Γ(ai),Γ(aj)) ≥ n2. Thus, Γ(a1), . . . ,Γ(ak) are k vectors contained in GF(2)
m−r

(we consider only their first m − r coordinates!) such that the Hamming distance of
every pair of them is at least n2. Therefore according to Corollary 3.7 we get that

m− r ≥ 2n2 − 4
n2

k + 2
.

Since r ≥ n2 − n
5
3 and k = n

1
3 , we get that

m ≥ 3n2 −O(n
5
3 ),

which is what we wanted to prove. This concludes the proof of the theorem.

4.2. Proof of Theorem 4.1. Assume that blGF(2)
∗ (MPn) = m. Let C be a

smallest bilinear circuit for MPn. Let

µ1(x) · η1(y), . . . , µm(x) · ηm(y)

be the m bilinear forms computed in the product gates of C. We will show that these
bilinear forms define in a very natural way a code on Mn(GF(2)). The code thus
defined will have the property that the dimension of the space, into which the code
maps Mn(GF(2)), is exactly m. Thus, according to Theorem 4.5 we will get that

m ≥ 3n2 −O(n
5
3 ), which is what we wanted to prove.

We begin by defining a mapping fromMn(GF(2)) to GF(2)
m
. Let Γ : Mn(GF(2)) �→

GF(2)
m

be the following mapping:

Γ(x) = (µ1(x), . . . , µm(x)).

Notice that we ignore the ηi’s in the definition of Γ.
Lemma 4.7. Γ is a linear code of matrices.
Proof. Clearly Γ is a linear transformation from Mn(GF(2)) to GF(2)

m
. Thus we

only have to prove that, for every matrix x ∈ Mn(GF(2)), weight(Γ(x)) ≥ n·rank(x).
Let x be a matrix of rank r. Assume w.l.o.g. that µ1(x) = · · · = µk(x) = 1 and that
µk+1(x) = · · · = µm(x) = 0, i.e., weight(Γ(x)) = k. We shall show that k ≥ nr.
For every y ∈ Mn(GF(2)), the n2 entries of x · y are determined by the values of
µ1(x) · η1(y), . . . , µm(x) · ηm(y). Since µk+1(x) = · · · = µm(x) = 0, we get that
η1(y), . . . , ηk(y) determine x · y. Therefore there are at most 2k different matrices of
the form x · y. Since rank(x) = r, we get that there are exactly 2nr different matrices
of the form x · y. Therefore k ≥ nr. This concludes the proof of the lemma.
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Therefore Γ is a linear code of matrices, and so according to Theorem 4.5 we get
that m ≥ 3n2 −O(n

5
3 ), which is what we wanted to prove. This concludes the proof

of Theorem 4.1.

4.3. Proof of Theorem 4.2. As in the proof of Theorem 4.1, we will show
that every quadratic circuit for MPn defines a code on Mn(GF(2)). The code thus
defined will have the property that m (i.e., the dimension of the space into which the
code maps Mn(GF(2))) is exactly the number of product gates in the circuit. Thus,

according to Theorem 4.5 we will get that m ≥ 3n2−O(n
5
3 ), which is what we wanted

to prove.
Let C be a quadratic circuit for MPn. Assume that the product gates of C

compute the quadratic forms µ1(x, y) · η1(x, y), . . . , µm(x, y) · ηm(x, y). Thus, each of
the outputs (x · y)i,j can be written as a sum of these quadratic forms:

(x · y)i,j =
m∑
k=1

α
(k)
i,j · µk(x, y) · ηk(x, y),

where α
(k)
i,j ∈ GF(2).

We would like to have a proof similar to the proof of Theorem 4.1. In that proof we
defined a code of matrices using the linear transformation µ1, . . . , µm. Unfortunately
that method will fail here, as µi is a linear function in both the variables of x and the
variables of y and not just in the variables of x as in the proof of Theorem 4.1. In
order to overcome this obstacle we introduce a new set of variables z = {zi,j}i,j=1,...,n.
We think about z as an n× n matrix. Define the following m linear forms in z:

γk(z) =
∑
i,j

α
(k)
i,j zi,j , k = 1, . . . ,m.

We get that

m∑
k=1

µk(x, y) · ηk(x, y) · γk(z)

=
m∑
k=1


∑

i,j

zi,j · α(k)
i,j


 · µk(x, y) · ηk(x, y)

=
∑
i,j

zi,j

m∑
k=1

α
(k)
i,j · µk(x, y) · ηk(x, y)(4.1)

=
∑
i,j

zi,j · (x · y)i,j = trace(x · y · zt),

where (zt)i,j = zj,i. The computation just performed shows that the γk’s that we in-
troduced are quite natural. We also notice that z plays the same role in trace(x·y ·zt)
as do x and y. These observations motivate us to try to repeat the proof of Theo-
rem 4.1 using the γk’s instead of the µi’s.
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Define a linear mapping Γ : Mn(GF(2)) �→ GF(2)
m

by

Γ(z) = (γ1(z), . . . , γm(z)).

Lemma 4.8. Γ is a linear code of matrices.
Proof. Clearly Γ is a linear mapping. So we have to prove only the claim about

the weights. Let z0 be a matrix of rank r, and assume w.l.o.g. that γ1(z0) = · · · =
γk(z0) = 1 and γk+1(z0) = · · · = γm(z0) = 0. We wish to prove that k ≥ nr. From
(4.1) we get that

trace(x · y · z0
t) =

k∑
h=1

µh(x, y) · ηh(x, y).

We now consider the discrete derivatives of this equation. Let ei,j be the matrix of
all zeros but one in the (i, j)th place. Define

∂

∂xi,j
trace(x · y · z0

t)
def
= trace((x+ ei,j) · y · z0

t)− trace(x · y · z0
t).

On the one hand,

trace((x+ ei,j) · y · z0
t)− trace(x · y · z0

t) = trace(ei,j · y · z0
t) = (z0 · yt)i,j .

On the other hand, we have that

trace((x+ ei,j) · y · z0
t)− trace(x · y · z0

t)

=

k∑
h=1

(µh(x+ ei,j , y) · ηh(x+ ei,j , y)− µh(x, y) · ηh(x, y))

=

k∑
h=1

(µh(ei,j , 0) · ηh(x, y) + µh(x, y) · ηh(ei,j , 0))(4.2)

+

k∑
h=1

µh(ei,j , 0) · ηh(ei,j , 0),

where the last equality follows from the linearity of the µh’s and the ηh’s. Since
(z0 · yt)i,j is a linear form in y, we actually get that

(z0 · yt)i,j = ∂

∂xi,j
trace(x · y · z0

t)

=
k∑
h=1

(µh(ei,j , 0) · ηh(x, y) + µh(x, y) · ηh(ei,j , 0))

∈ span(µh(x, y), ηh(x, y))
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in the vector space of all linear forms in x, y. (Since (z0 · yt)i,j is a linear form, the
third summand of (4.2) sums to 0.) In the same manner we define

∂

∂yi,j
trace(x · y · z0

t)
def
= trace(x · (y + ei,j) · z0

t)− trace(x · y · z0
t).

We get that

(xt · z0)i,j =
∂

∂yi,j
trace(x · y · z0

t)

=

k∑
h=1

(µh(0, ei,j) · ηh(x, y) + µh(x, y) · ηh(0, ei,j))

∈ span(µh(x, y), ηh(x, y)).

Denote by PD the set of all the discrete partial derivatives
{

∂

∂xi,j
trace(x · y · z0

t),
∂

∂yi,j
trace(x · y · z0

t)

}
i,j

.

We just proved that PD is contained in the linear span of

{µh(x, y), ηh(x, y)}kh=1 .

Therefore

dim(span(PD)) ≤ dim(span{µh(x, y), ηh(x, y)}kh=1) ≤ 2k.(4.3)

We also showed that{
∂

∂xi,j
trace(x · y · z0

t),
∂

∂yi,j
trace(x · y · z0

t)

}
i,j

=
{
(xt · z0)i,j , (z0 · yt)i,j

}
i,j

.

Therefore, using our assumption that rank(z0) = r, we get that

dim(span(PD)) = dim(span
{
(xt · z0)i,j , (z0 · yt)i,j

}
i,j
) = 2nr.(4.4)

Combining (4.3) and (4.4), we get that 2k ≥ 2nr.
Theorem 4.2 now follows from applying Theorem 4.5 to the linear code of matrices

Γ.

5. Other finite fields. In this section we prove the following theorem.
Theorem 5.1. The number of product gates in any bilinear circuit that computes

the product of two n×n matrices over GF(q) is at least (2.5+ 1.5
q3−1 )n

2−O(n
7
4 ) (i.e.,

blGF(q)
∗ (MPn) ≥ (2.5 + 1.5

q3−1 )n
2 −O(n

7
4 ) over GF(q)).

Let C be a bilinear circuit for MPn over GF(q). Assume that µ1(x) · η1(y), . . . ,
µm(x)·ηm(y) are the bilinear forms computed in the product gates of C. The following
lemma of Bläser is the main tool in the proof of the theorem.
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Lemma 5.2 (see [Bla99]). Let [a, b] = ab − ba. If there are two matrices a, b
such that [a, b] is an invertible matrix and such that there are t linear forms among
µ1, . . . , µm such that each of them vanishes on I, a, b, then m ≥ t+ 1.5n2.

We are going to prove that we can find a, b such that (1 − 1
q3 )n

2 + m
q3 − O(n

7
4 )

linear forms among µ1, . . . , µm vanish on I, a, b and such that [a, b] is invertible.
We are going to prove the theorem only for n even. (This certainly implies the

lower bound for odd n as well.) Thus from now on we assume that n is an even
number.

Proof of Theorem 5.1. We begin by proving that (w.l.o.g.) many of the µi’s
vanish on I. The following lemma shows that we can always find an invertible matrix
such that many of the µi’s vanish on it. As before, we assume that µ1, . . . , µn2 are
independent linear forms.

Lemma 5.3. There exists an invertible matrix c such that at least (1 − 1
q )n

2 +
m
q − O(n

5
3 ) of the µi’s vanish on it, where n2 − O(n

5
3 ) of the µi’s that vanish on it

are among µ1, . . . , µn2 .
In the proof of the lemma we assume for simplicity that n2 < m < 10n2, as it

will not change the results.
Proof. An analogue of Lemma 4.6 over GF(q) guarantees that we can find k = n

1
3

matrices a1, . . . , ak ∈ Mn(GF(q)) such that for i �= j, ai−aj is invertible and such that

n2−(k2)n linear forms among µ1, . . . , µn2 vanish on all of the ai’s. Define r = n2−(k2)n,
and assume w.l.o.g. that µ1, . . . , µr vanish on all the ai’s.

Let us consider the following k vectors in GF(q)m−r:

Γ(ai)
def
= (µr+1(ai), . . . , µm(ai)), i = 1, . . . , k .

As in the proof of Theorem 4.1, we get that since ai − aj is an invertible matrix
∀i �= j, then dH(Γ(ai),Γ(aj)) ≥ n2. According to Lemma 3.6, two of these vectors
agree on at least m−r

q − m−r
k coordinates. Assume that Γ(a1) and Γ(a2) are these

vectors. Define c = a1− a2. We have that c is an invertible matrix such that the first
r = n2− (k2)n linear forms (which are independent) vanish on it and such that all the
linear forms that Γ(a1) and Γ(a2) agree on vanish on it as well. Therefore there are
at least

r +
m− r

q
− m− r

k

linear forms that vanish on c. Since r = n2 − (k2)n and k = n
1
3 , we get that at least

(
1− 1

q

)
n2 +

m

q
−O(n

5
3 )

linear forms vanish on c, and n2 − O(n
5
3 ) of them are among µ1, . . . , µn2 . This

completes the proof of the lemma.
Lemma 5.3 does not specify c, but using the sandwiching method (see below), we

can assume that c = I: We know that x · y is computed using the bilinear forms

µ1(x) · η1(y), . . . , µm(x) · ηm(y).

We now do the following trick: x ·y = (x · c) · (c−1 ·y); therefore x ·y can be computed
using the bilinear forms

µ̃1(x) · η̃1(y), . . . , µ̃m(x) · η̃m(y),
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where

µ̃i(x)
def
= µi(x · c) and η̃i(y)

def
= ηi(c

−1 · y).
Thus, if µi(c) = 0, then we get that µ̃i(I) = µi(I · c) = 0. This trick is called
sandwiching; for further background, see [Bla99, Gro78].

Thus, by combining the sandwiching method and Lemma 5.3, we get that we can
assume w.l.o.g. that (1 − 1

q )n
2 + m

q − O(n
5
3 ) of the µi’s, where n2 − O(n

5
3 ) of them

are among µ1, . . . , µn2 , vanish on I. The next lemma now assures us that we can find
two matrices a, b that satisfy the requirements of Lemma 5.2.

Lemma 5.4. There are two matrices a, b such that [a, b] is an invertible matrix

and such that at least (1− 1
q3 )n

2 + m
q3 −O(n

7
4 ) of the µi’s vanish on I, a, b.

Proof. The proof of this lemma is similar to the proof of Lemma 5.3. Let k =
n

1
4 . The following lemma shows that we can find k matrices such that many of the

µi’s vanish on all of them and such that among their differences there are matrices
satisfying the requirements of Lemma 5.2.

Lemma 5.5. For every n, k such that q
n
2 > 4

(
k
3

)
, and for any µ1, . . . , µn2 linearly

independent linear forms, in n2 variables, over GF(q), there are k matrices a1, . . . , ak
such that ∀i < j < l, [ai − al, aj − al] is invertible and such that n2 − 2

(
k
3

)
n of the

µi’s vanish on all the ai’s.
Proof. Again we use Lemma 3.3. Let P be the following polynomial:

P (a1, . . . , ak) = determinant


 ∏
i<j<l

[ai − al, aj − al]


 .

Clearly deg(P ) = 2
(
k
3

)
n (as a polynomial in the entries of the ai’s). Therefore if

we prove that P �≡ 0, i.e., that there exist k matrices on which P is not zero, then
according to Lemma 3.3 we are done. This is guaranteed by the following lemma.

Lemma 5.6. If q
n
2 > 4

(
k
3

)
, then there exist k matrices in Mn(GF(q)), a1, . . . , ak,

such that ∀i < j < l, [ai − al, aj − al] is invertible.
This lemma is the reason that we assume that n is even. We do not know how to

prove it for odd values of n.
Proof. Consider the following polynomial in 4k variables (i.e., a polynomial in k

matrices over M2(GF(q
n
2 ))!):

Q(x1, . . . , xk) = determinant


 ∏
i<j<l

[xi − xl, xj − xl]


 .

Q is a polynomial of degree d = 4
(
k
3

)
over GF(q) in the entries of the ai’s. Clearly

Q is not the zero polynomial (as it is a product of nonzero polynomials). Consider
the field F = GF(q

n
2 ). Since d < |F|, we get by Lemma 3.1 that there are k matrices

ρ1, . . . , ρk ∈ M2(F ) such that Q(ρ1, . . . , ρk) �= 0. That is, ∀i < j < l, [ρi − ρl, ρj − ρl]
is an invertible matrix. According to Lemma 3.4 we can embed M2(F ) in Mn(GF(q)).
Therefore there are k matrices in Mn(GF(q)) satisfying ∀i < j < l, [ai− al, aj − al] is
an invertible matrix, which is what we wanted to prove.

This concludes the proof of Lemma 5.5.
We proceed with the proof of Lemma 5.4. We now restrict our attention to the

linear forms among µn2+1, . . . , µm that vanish on I. We shall prove that three of
the matrices guaranteed by Lemma 5.5 agree on many of these linear forms (more
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formally on m−n2

q3 −O(n
7
4 ) of them). Thus, if a1, a2, a3 are these three matrices, then

we get that (1− 1
q3 )n

2+ m
q3 −O(n

7
4 ) linear forms vanish on I, (a1−a3), (a2−a3), and

that [(a1 − a3), (a2 − a3)] is an invertible matrix, which is what we wanted to prove.
Assume w.l.o.g. that the linear forms µn2+1, . . . , µn2+r vanish on I (beside those

among µ1, . . . , µn2 that vanish on it), where r ≥ m−n2

q − O(n
5
3 ). Let a1, . . . , ak be

the matrices guaranteed by Lemma 5.5. Consider the following vectors: ∀1 ≤ i ≤ k,

vi = (µn2+1(ai), . . . , µn2+r(ai)) ∈ GF(q)
r
.

According to Lemma 3.6 three of these vectors, namely v1, v2, v3, agree on at least
r
q2 − 3r

qk coordinates. Therefore there are r
q2 − 3r

qk linear forms among µn2+1, . . . , µn2+r

that vanish on a1 − a3 and a2 − a3. In addition there are n2 − 2
(
k
3

)
n linear forms

among µ1, . . . , µn2 that vanish on a1, a2, a3; hence there are n2 − 2
(
k
3

)
n linear forms

among µ1, . . . , µn2 that vanish on a1−a3 and on a2−a3. Let a = a1−a3, b = a2−a3.
We get that there are r

q2 − 3r
qk linear forms among µn2+1, . . . , µn2+r that vanish

on I, a, b. Since n2 − O(n
5
3 ) of the first n2 µi’s vanish on I, we get that at least

n2 − 2
(
k
3

)
n − O(n

5
3 ) of the first n2 µi’s vanish on I, a, b. Putting it all together, we

get that at least

n2 − 2

(
k

3

)
n−O(n

5
3 ) +

r

q2
− 3r

qk

linear forms among µ1, . . . , µm vanish on I, a, b. Since r ≥ m−n2

q −O(n
5
3 ) and k = n

1
4 ,

we get that at least

(
1− 1

q3

)
n2 +

m

q3
−O(n

7
4 )

of the µi’s vanish on I, a, b as well. This concludes the proof of Lemma 5.4.
Putting everything together, we get by Lemmas 5.2 and 5.4 that

m ≥ 1.5n2 +

(
1− 1

q3

)
n2 +

m

q3
−O(n

7
4 ).

Therefore

m ≥
(
2.5 +

1.5

q3 − 1

)
n2 −O(n

7
4 ).

This concludes the proof of Theorem 5.1.

6. Limits of our technique. The proof of our lower bound over GF(2) was
based on a coding theoretic argument. We claimed that every code with a certain
rate and minimal distance must have high length (Theorem 4.5). This lower bound
implied the lower bound for bilinear circuits over GF(2). We also notice that any
improvement of the lower bound in the theorem will improve, in the same way, our
lower bound for bilinear circuits. The best techniques today are due to McEliece
et al. [MRRW77], which yield a lower bound of ≈ m ≥ 3.57n2 on the minimal m for

which there is a linear code from GF(2)
n2

to GF(2)
m
, of minimal distance n2. Since

any such linear code also gives a code of matrices, we cannot hope to prove anything
better than m ≥ 3.57n2 (unless we improve on [MRRW77], which is a major open



LOWER BOUNDS FOR MATRIX PRODUCT 1199

problem). On the other hand, we know that there are such linear codes with, say,
m < 5n2 (e.g., random linear codes). So even if we do improve on [MRRW77], we
cannot prove any lower bound better than 5n2. Thus, new techniques are needed in
order to prove better lower bounds.

Appendix. On the relation between blF∗ (MPn) and blFtot(MPn).
Theorem A.1. If for some n0 there exists a bilinear circuit that computes the

product of two n0 × n0 matrices over F, with n0
2+w multiplications and t additions,

then for a large enough n we have that blFtot(MPn) = O(n2+w).
A similar claim was first proved by Strassen [Str69]. We give the proof for com-

pleteness (see also [BCS97, Proposition 15.1]).
Proof. The idea of the proof is to use Strassen’s recursion method. Assume that

we have a bilinear circuit that computes the product of two n0×n0 matrices and has
m multiplication gates and t plus gates. Then, given two n× n matrices (n� n0) X
and Y , we partition each of them into n0

2 submatrices of size n
n0
× n

n0
each. We now

think about X,Y as matrices of size n0 × n0, whose elements come from the ring of
matrices. For clearance we denote by X̃ and Ỹ the matrices X and Y when we think
about them as n0×n0 matrices whose elements are also matrices. In order to compute
X ·Y we apply the bilinear circuit for computing the product of two n0×n0 matrices
on the input X̃, Ỹ . When we have to compute a product of the form X̃i,j · Ỹk,l, we
recursively compute the product of the relevant n

no
× n
n0

matrices. Whenever we have
to compute a plus gate (which now adds two n

n0
× n

n0
matrices), we compute all the

relevant ( nn0
)2 sums. We thus have the following recursion formula:

blFtot(MPn) ≤ m · blFtot(MP n
n0

) + t ·
(

n

n0

)2

.

Hence

blFtot(MPn) ≤ m
logn
logn0 + t · n2

n0
2
· (

m
n0

2 )
logn
logn0 − 1

m
n0

2 − 1
.

Thus, if m = (n0)
2+w and t is arbitrary, then we get

blFtot(MPn) ≤ n2+w + t · n2

no2
· nw − 1

n0
w − 1

= O(n2+w) .

As a corollary we get that the exponents of the total complexity and of the
multiplicative complexity of matrix multiplication are the same. Formally let

ωtot(F ) = inf{τ ∈ R | blFtot(MPn) = O(nτ )}
and

ω∗(F ) = inf{τ ∈ R | blF∗ (MPn) = O(nτ )}.
Then the above theorem implies that ωtot(F ) = ω∗(F ).
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SEARCHING FOR SORTED SEQUENCES OF KINGS IN
TOURNAMENTS∗
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Abstract. A tournament Tn is an orientation of a complete graph on n vertices. A king in a
tournament is a vertex from which every other vertex is reachable by a path of length at most 2. A
sorted sequence of kings in a tournament Tn is an ordered list of its vertices u1, u2, . . . , un such that
ui dominates ui+1 (ui → ui+1) and ui is a king in the subtournament induced by {uj : i ≤ j ≤ n}
for each i = 1, 2, . . . , n−1. In particular, if Tn is transitive, searching for a sorted sequence of kings in
Tn is equivalent to sorting a set of n numbers. In this paper, we try to find a sorted sequence of kings
in a general tournament by asking the following type of binary question: “What is the orientation of
the edge between two specified vertices u, v?” The cost for finding a sorted sequence of kings is the
minimum number of binary questions asked in order to guarantee the finding of a sorted sequence
of kings. Using an adversary argument proposed in this paper, we show that the cost for finding a
sorted sequence of kings in Tn is Θ(n3/2) in the worst case, thus settling the order of magnitude of
this question. We also show that the cost for finding a king in Tn is Ω(n4/3) and O(n3/2) in the
worst case. Finally, we show a connection between a sorted sequence of kings and a median order in
a tournament.

Key words. adversary argument, divide-and-conquer algorithm, king, recursive relation, sorted
sequence of kings, tournament

AMS subject classifications. 05C20, 05C85, 68W40

DOI. 10.1137/S0097539702410053

1. Introduction. A digraph G = (V,E) contains a vertex set V and an edge set
E, where each edge contains a tail u and a head v (and thus the orientation u→ v).
For a vertex u in G, the outdegree d+(G, u) of u is the number of edges with tail u,
and the indegree d−(G, u) of u is the number of edges with head u. We will use d+(u)
and d−(u) to denote d+(G, u) and d−(G, u), respectively, if G is specified from the
context. A tournament Tn is an orientation of a complete graph on n vertices; that
is, between any two distinct vertices u, v, there is exactly one edge: either u → v or
v → u (but not both). This concept is used to model a tournament of n players where
every two players compete in a game and player u beats player v if and only if the
vertex u dominates the vertex v (u → v) in Tn. (Suppose no game has a draw.) A
vertex u is called a king in Tn if every other vertex is reachable from u by a path of
length at most 2; that is, for each v �= u, either u→ v or u→ w → v for some vertex
w dependent of v. It is known [11] that a vertex with the maximum outdegree is
always a king in Tn. A sorted sequence of kings in Tn is an ordered list of its vertices
u1, u2, . . . , un such that ui → ui+1 and ui is a king in the subtournament induced by
{uj : i ≤ j ≤ n} for each i = 1, 2, . . . , n − 1. In particular, if Tn is transitive (that
is, u→ v and v → w imply u→ w), searching for a sorted sequence of kings in Tn is
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u1 u6

u5

u4u3

u2

Fig. 1. A sample tournament.

equivalent to sorting a set of n numbers.
The existence of a sorted sequence of kings in any tournament was shown by

Lou, Wu, and Sheng in [7], where an insertion sort algorithm with the worst case
complexity of O(n3) was presented. A modified insertion sort algorithm with the
worst case complexity of O(n2) was given by Wu and Sheng in [12]. It is easy to
prove that a tournament has a unique sorted sequence of kings if and only if it is
transitive. Thus in a general tournament the sorted sequence of kings is not unique.
For example, Figure 1 shows the graph representation of a tournament. One sorted
sequence of kings of the tournament is u2 → u4 → u1 → u5 → u3 → u6, and another
one is u2 → u6 → u4 → u1 → u5 → u3.

In this paper, we try to find a sorted sequence of kings in Tn by asking the following
type of binary question: “What is the orientation of the edge between two specified
vertices u, v?” The cost for finding a sorted sequence of kings is the minimum number
of questions asked in order to guarantee the finding of a sorted sequence of kings. In
particular, if we are told that Tn is transitive, the worst case cost for finding a sorted
sequence of kings in Tn is Θ(n log n), which is the number of comparisons needed to
sort n numbers in the worst case. We set to determine the worst case cost for finding
a sorted sequence of kings in Tn (which may not be transitive).

For a vertex u in a digraph, let Γ+(u) = {v : u→ v} be the first out-neighborhood
of u, Γ++(u) = {w : u→ v → w for some v} \ Γ+(u) be the second out-neighborhood
of u, and Γ−(u) = {v : v → u} be the first in-neighborhood of u. The following lemma
follows easily from the fact that each vertex in Γ+(u) is reachable from each vertex
in Γ−(u) by a path of length at most 2.

Lemma 1. For a vertex u in Tn, let u1, . . . , ut be a sorted sequence of kings in the
subtournament of Tn induced by Γ−(u), and let ut+2, . . . , un be a sorted sequence of
kings in the subtournament of Tn induced by Γ+(u). Then u1, . . . , ut, u, ut+2, . . . , un
form a sorted sequence of kings in Tn. In particular, u1 is a king in Tn.

One can apply the above lemma recursively to obtain a divide-and-conquer algo-
rithm for the search of a sorted sequence of kings in Tn as follows:

1. Choose a pivot vertex u arbitrarily.
2. Use n − 1 questions to find the edge orientation between u and every other

vertex, and thus obtain Γ−(u) and Γ+(u).
3. Apply the procedure recursively to Γ−(u) and Γ+(u).
4. Chain the outcomes of Γ−(u) and Γ+(u) with u in the way provided by

Lemma 1.
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This divide-and-conquer algorithm performs similarly to quick sort. It is known that
quick sort has an average case performance of Θ(n log n) and the worst case perfor-
mance of Θ(n2). The average cost for finding a sorted sequence of kings by using the
above divide-and-conquer algorithm is satisfactory (Θ(n log n)) since it is equivalent
to applying quick sort to n numbers [2]. On the other hand, the worst case cost by
using this algorithm is n(n− 1)/2 if at each stage of divide-and-conquer either Γ+(u)
or Γ−(u) is the empty set. Similarly, one can also have a divide-and-conquer algo-
rithm to search for a king in Tn with a satisfactory average cost of Θ(n log n) and the
worst case cost of n(n− 1)/2. The motivation of this paper is to provide alternative
algorithms for the search of a king and a sorted sequence of kings, respectively, in the
case that avoiding the above mentioned worst case is crucial. We achieve this goal
with some sacrifice in the average performance.

Let f(n) and g(n) be the cost in the worst case for finding a king and a sorted
sequence of kings, respectively, in Tn. Using an adversary argument proposed in this
paper, we prove that

√
3

3
(n− 1)3/2 − 3

2
n ≤ g(n) ≤ 8

√
2

3
n3/2 + 25n5/4.

Therefore, the worst case asymptotic cost for finding a sorted sequence of kings in Tn
is Θ(n3/2). We also prove that

3 3
√

2

4
(n− 1)4/3 − 3

2
(n− 1) ≤ f(n) ≤ 4

√
2

3
n3/2.

That is, the worst case asymptotic cost for finding a king in Tn is Ω(n4/3) and O(n3/2).
Our proofs for both upper bounds provide algorithms for finding a king and a sorted
sequence of kings, respectively, in Tn both with a complexity of O(n3/2). To prove
the lower bounds for f(n) and g(n), we design a pro-small-outdegree-strategy for
an adversary argument [5]. We prove that if the adversary uses this strategy, no
algorithms can succeed with cost smaller than the above mentioned lower bounds in
the worst case.

The paper is organized as follows. Section 2 introduces the idea of improving
the worst cast performance with the sacrifice of the average performance, presents
a pro-small-outdegree-strategy for the use of an adversary argument, and uses both
ideas to prove an upper bound and a lower bound, respectively, for the worst case
cost for finding a king in Tn. Section 3 is devoted to the proof that the worst case
asymptotic cost for finding a sorted sequence of kings in Tn is Θ(n3/2). Section 4 shows
a connection between a sorted sequence of kings and a median order in a tournament.
Section 5 concludes the paper and raises two open problems.

2. Worst case cost for finding a king. If one uses the divide-and-conquer
algorithm introduced in the previous section to search for a king in Tn, the worst case
happens when Γ+(u) = ∅ at each stage of divide-and-conquer. So in order to avoid
the worst case, one should carefully choose a pivot vertex u with Γ+(u) large enough
at each stage of divide-and-conquer. If we merge this idea into the divide-and-conquer
algorithm, we call it the revised-divide-and-conquer algorithm. For this purpose, we
need the following lemma for the choice of a pivot vertex.

Lemma 2 (Landau [6]). Suppose d+
1 ≤ d+

2 ≤ · · · ≤ d+
n is the outdegree sequence

of Tn. Then, for each i,

i− 1

2
≤ d+

i ≤
n+ i− 2

2
.
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A simple idea to use a revised-divide-and-conquer algorithm to prove f(n) =
O(n3/2) is as follows. First, we can use n questions to obtain the orientation of all
edges in a subtournament of roughly

√
2n vertices. (Note that this part is the sacrifice

of the average performance.) We choose a vertex with the maximum outdegree in
this subtournament as the pivot vertex to apply Lemma 1. Then, at each stage
of divide-and-conquer, at least

√
2n/2 vertices are eliminated with a total cost of(√

2n
2

)
+ n −√2n < 2n. Once the size of remaining vertices is sufficiently small, say√

2n/2, use the direct method to find a king. Thus eliminating n− 1 vertices with a
king remaining costs at most 2n ·n/ (√2n/2

)
= 2
√

2n3/2. We use a recursive relation

to prove an improved coefficient for n3/2 in the next theorem.
Theorem 1. One can find a king in Tn with cost at most (4

√
2)n3/2/3; that is,

f(n) ≤ 4
√

2

3
n3/2.

Proof. Let S be a subset of vertices in Tn with |S| =
⌈√

2n
⌉
. Let TS be the

subtournament of Tn induced by S. Then we can obtain the orientation of all edges

in TS with cost
(�√2n�

2

)
. Let u be a vertex with the maximum outdegree within the

subtournament TS . By Lemma 2, the outdegree of u within TS is

d+(TS , u) ≥ |S| − 1

2
=

⌈√
2n
⌉− 1

2
.

Next we can obtain the orientation of the edge between u and each v ∈ V (Tn) \ S
with cost n− ⌈√2n

⌉
. Then

|Γ−(u)| = n− 1− |Γ+(u)| ≤ n− 1− d+(TS , u) ≤ n−
√

2n

2
.

To find a king in Tn, by Lemma 1, it suffices to find a king in the subtournament of
Tn induced by Γ−(u) with cost at most f(|Γ−(u)|). Thus

f(n) ≤ f(|Γ−(u)|) +

(⌈√
2n
⌉

2

)
+ n−

⌈√
2n
⌉
≤ f

(
n−
√

2n

2

)
+ 2n−

√
2n

2
.

Now we use induction to prove f(n) ≤ 4
√

2n3/2/3 for all n ≥ 1. It holds for n = 1
trivially. Suppose it holds for all cases less than n. Then

f(n) ≤ f
(
n−

√
2n
2

)
+ 2n−

√
2n
2

≤ 4
√

2
3

(
n−

√
2n
2

)3/2

+ 2n−
√

2n
2

≤ 4
√

2
3

(
n−

√
2n
2

)(√
n−

√
2

4

)
+ 2n−

√
2n
2

< 4
√

2
3 n3/2.

Remark 1. In the actual implementation of the revised-divide-and-conquer algo-
rithm given in Theorem 1, an extra number of Θ(|S|) comparisons in determining the
vertex with the maximum outdegree in Ts will be introduced at each recursive call in
selecting a pivot vertex. However, since the total number of extra comparisons needed
is O(n), the algorithm will have a complexity of at most 4

√
2n3/2/3 +O(n).
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Remark 2. We note that if only
√

2n/2 vertices are eliminated in the first stage of
divide-and-conquer, a complete subtournament of

√
2n/2 vertices remains. Then we

can take advantage of having known all edges within this remaining subtournament to

obtain a second complete subtournament of
√

2n vertices with a cost of only
(√

2n
2

)−(√
2n/2
2

) ≈ 3n/4 for the second stage of divide-and-conquer. This shows that either

more than
√

2n/2 vertices can be eliminated in the first stage of divide-and-conquer
or the second stage of divide-and-conquer can be performed with cost less than 2n. If
this is taken into consideration recursively, a much longer and tedious estimate shows
that f(n) ≤ 2

√
6n3/2/3 + o(n3/2).

In order to prove a lower bound for the worst case cost for finding a king in Tn,
we use an adversary argument. Our idea is to design a strategy for the adversary
to answer each question. The adversary chooses his/her answers to try to force the
algorithm to work hard. Suppose e1, e2, . . . , el, where l = f(n) is a sequence of edges

that we ask the adversary about regarding their orientation. Let
→
e 1,
→
e 2, . . . ,

→
e l be

the answers of the adversary. We define a sequence of digraphs G0, G1, . . . , Gl as
follows:

1. Let G0 be the empty digraph with the same vertex set as Tn.

2. Let Gi = Gi−1+
→
e i for each i = 1, 2, . . . , l; that is, Gi is obtained by adding

the edge
→
e i to Gi−1.

Suppose vi and wi are the two vertices incident to ei. We design the following strategy
for the adversary to determine his/her answer to the question about the orientation
of ei:

1. Let vi → wi if d+(Gi−1, vi) < d+(Gi−1, wi).
2. Let wi → vi if d+(Gi−1, vi) > d+(Gi−1, wi).
3. Orientate ei arbitrarily if d+(Gi−1, vi) = d+(Gi−1, wi).

We call the above strategy the pro-small-outdegree-strategy and call Gl the digraph
constructed by using the pro-small-outdegree-strategy. From now on we use d(v) to
denote d+(Gl, v) if there is no confusion from the context.

Lemma 3. Suppose v is a vertex in Gl constructed by using the pro-small-
outdegree-strategy. Then, for any S ⊆ Γ+(v),

∑
w∈S

d(w) ≥
(|S|

2

)
.

Proof. We may order the vertices of Γ+(v) = {wi : 1 ≤ i ≤ d(v)} according to the
ordering of the questions whose answers are of the type “v → w.” Then d(wi) ≥ i− 1
by the pro-small-outdegree-strategy. Thus

∑
w∈S

d(w) ≥
∑

1≤i≤|S|
(i− 1) =

(|S|
2

)
.

Lemma 4. Suppose v is a vertex in Gl constructed by using the pro-small-
outdegree-strategy. Then, for any S ⊆ Γ++(v),

∑
w∈S

d(w) ≥ d(v) ·
(|S|/d(v)

2

)
.

Proof. Let Γ+(v) = {wi : 1 ≤ i ≤ d(v)}. Since S ⊆ Γ++(v), we can partition S
into pairwise disjoint sets as follows:
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1. S = ∪d(v)i=1 Si. (It is possible that some Si may be empty.)
2. Si ⊆ Γ+(wi) for each i, 1 ≤ i ≤ d(v).

(Note that such a partition of S may not be unique since a vertex in S could be
dominated by more than one vertex in Γ+(v).) By Lemma 3,

∑
w∈S

d(w) =

d(v)∑
i=1

∑
w∈Si

d(w) ≥
d(v)∑
i=1

(|Si|
2

)
≥ d(v) ·

(∑ |Si|/d(v)
2

)
= d(v) ·

(|S|/d(v)
2

)
,

where the last inequality holds since the function
(
x
2

)
is concave upward.

Theorem 2. No algorithm can find a king in Tn with cost less than 3 3
√

2(n −
1)4/3/4− 3(n− 1)/2 in the worst case.

Proof. Suppose Gl (l = f(n)) is the digraph constructed by using the pro-small-
outdegree-strategy. Let v be a king in Gl. Then V (Gl) = {v} ∪ Γ+(v) ∪ Γ++(v), and
so |Γ++(v)| = n− d(v)− 1. By Lemmas 3 and 4,

f(n) = l = |E(Gl)| = d(v) +
∑

w∈Γ+(v)

d(w) +
∑

w∈Γ++(v)

d(w)

≥ d(v) +

(
d(v)

2

)
+ d(v) ·

(
(n− d(v)− 1)/d(v)

2

)

> 1
2

(
(n−1)2

d(v) + (d(v))2 − 3n+ 3
)

≥ 3
4

3
√

2(n− 1)4/3 − 3
2 (n− 1),

where the last inequality follows from minimizing the function (n− 1)2/x+ x2.
By combining Theorems 1 and 2, we conclude that the worst case asymptotic cost

for finding a king in Tn is Ω(n4/3) and O(n3/2).

3. Worst case cost for finding a sorted sequence of kings. If one uses the
divide-and-conquer algorithm introduced in section 1 to search for a sorted sequence
of kings in Tn, the worst case happens when either Γ+(u) = ∅ or Γ−(u) = ∅ at each
stage of divide-and-conquer. Therefore, in order to avoid the worst case, one should
carefully choose a pivot vertex u with both Γ+(u) and Γ−(u) large enough at each
stage of divide-and-conquer. Similar to the proof of Theorem 1, we can first use n
questions to obtain the orientation of all edges in a subtournament of roughly

√
2n

vertices. (Again note that this part is the sacrifice of the average performance.) We
choose a vertex with the median outdegree in this subtournament as the pivot vertex
u to apply Lemma 1. Then, by Lemma 2, each of Γ+(u) and Γ−(u) contains at least√

2n/4 vertices.
Theorem 3. One can find a sorted sequence of kings in Tn with cost at most

(8
√

2)n3/2/3 +O(n5/4); that is,

g(n) ≤ 8
√

2

3
n3/2 + cn5/4

for some constant c; for example, one may choose c = 25.
Proof. Let S be a subset of vertices in Tn with |S| = ⌈√

2n
⌉

+ 2. Let TS be the
subtournament of Tn induced by S. Then we can obtain the orientation of all edges

in TS with cost
(�√2n�+2

2

)
. Let d+

1 (TS) ≤ d+
2 (TS) ≤ · · · ≤ d+

|S|(TS) be the outdegree

sequence of vertices within TS . Let u be a vertex in TS such that d+(TS , u) = d+
t (TS),
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where t =
⌈⌈√

2n
⌉
/2
⌉

+ 1. (That is, u is a vertex with the median outdegree in TS .)
By Lemma 2, we have

d+(TS , u) ≥ t− 1

2
≥
√

2n

4

and

d−(TS , u) = |S| − 1− d+(TS , u) ≥ |S| − 1− |S|+ t− 2

2
≥
√

2n

4
.

Next we can obtain the orientation of the edge between u and each v ∈ V (Tn) \ S
with cost n− 2− ⌈√2n

⌉
. Then

√
2n

4
≤ d+(TS , u) ≤ |Γ+(u)| ≤ n− 1− d−(TS , u) ≤ n−

√
2n

4

and, similarly,

√
2n

4
≤ |Γ−(u)| ≤ n−

√
2n

4
.

To find a sorted sequence of kings in Tn, by Lemma 1, it suffices to find sorted
sequences of kings in both subtournaments of Tn induced by Γ+(u) and by Γ−(u),
respectively, with total cost at most g(|Γ+(u)|) + g(|Γ−(u)|). Thus

g(n) ≤ g(|Γ+(u)|) + g(|Γ−(u)|) +

(⌈√
2n
⌉

+ 2
2

)
+ n− 2− ⌈√2n

⌉

≤ g(|Γ+(u)|) + g(|Γ−(u)|) + 2n+ 3
√

2n
2 .

Now we use induction to prove g(n) ≤ h(n), where h(n) = 8
√

2n3/2/3 + 25n5/4, for
all n ≥ 1. It holds for n = 1 trivially. Suppose it holds for all cases less than n. Then

g(|Γ+(u)|) + g(|Γ−(u)|) ≤ h(|Γ+(u)|) + h(|Γ−(u)|) ≤ h
(√

2n

4

)
+ h

(
n−
√

2n

4

)
,

where the last inequality holds since the function h(x) = 8
√

2x3/2/3+25x5/4 is concave
upward. Thus

g(n) ≤ h
(√

2n
4

)
+ h

(
n−

√
2n
4

)
+ 2n+ 3

√
2n

2

≤ 8
√

2
3

(√
2n
4

)3/2

+ 25
(√

2n
4

)5/4

+ 8
√

2
3

(
n−

√
2n
4

)(√
n−

√
2

8

)

+ 25
(
n−

√
2n
4

)(
4
√
n−

√
2

16 4
√
n

)
+ 2n+ 3

√
2n

2

< 8
√

2
3 n3/2 + 25n5/4.

Remark 3. In the actual implementation of the revised-divide-and-conquer algo-
rithm given in Theorem 3, an extra number of Θ(|S|) comparisons will be introduced
at each recursive call to select a median. The median can be determined using a
linear selection algorithm [2]. It is still unknown exactly how many comparisons are
needed to determine the median. Dor and Zwick [3] showed that the upper bound is
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slightly less than 2.95|S| and the lower bound is slightly more than 2|S|. Again, since
the total number of extra comparisons needed is O(n), the revised-divide-and-conquer
algorithm will have a complexity of at most 8

√
2n3/2/3 + 25n5/4 +O(n).

Theorem 4. No algorithm can find a sorted sequence of kings in Tn with cost
less than

√
3(n− 1)3/2/3− 3n/2 in the worst case.

Proof. Suppose Gl (l = g(n)) is the digraph constructed by using the pro-small-
outdegree-strategy. Suppose u1, u2, . . . , un form a sorted sequence of kings in Gl.
Since g(n) = l = |E(Gl)|, it suffices to prove |E(Gl)| ≥

√
3(n − 1)3/2/3 − 3n/2. The

proof is split into two cases.
Case 1. Suppose d(ui) ≥

√
3(n− i)/2 for all i, 1 ≤ i ≤ n. Then

|E(Gl)| =
n∑
i=1

d(ui) ≥ 1

2

n∑
i=1

√
3(n− i) ≥ 1

2

∫ n−1

0

√
3x dx =

√
3

3
(n− 1)3/2.

Case 2. Suppose d(ui) <
√

3(n− i)/2 for some i, 1 ≤ i ≤ n. Let t be the

smallest i satisfying d(ui) <
√

3(n− i)/2. Let S1 = Γ+(ut) ∩ {ui : i ≥ t + 1} and
S2 = Γ++(ut) ∩ {ui : i ≥ t + 1}. By the definition of a sorted sequence of kings,
we know that S1 and S2 form a disjoint partition of {ui : i ≥ t + 1} and, hence,
|S2| = n− t− |S1|. Since |S1| ≤ d(ut) <

√
3(n− t)/2, by Lemma 4,

n∑
i=t+1

d(ui) ≥
∑
ui∈S2

d(ui)

≥ d(ut) ·
(

(n− t− |S1|)/d(ut)
2

)

≥ 1
2

(
(n−t)2
d(ut)

− 2n|S1|
d(ut)

− n
)

≥ 1
2

(
2(n−t)2√

3(n−t) − 3n

)

=
√

3
3 (n− t)3/2 − 3

2n.

Thus

|E(Gl)| ≥
t−1∑
i=1

d(ui) +

n∑
i=t+1

d(ui)

≥ 1
2

t−1∑
i=1

√
3(n− i) +

√
3

3 (n− t)3/2 − 3
2n

≥
√

3
2

∫ n−1

n−t

√
x dx+

√
3

3 (n− t)3/2 − 3
2n

=
√

3
3 (n− 1)3/2 − 3

2n.

By combining Theorems 3 and 4, we conclude that the worst case asymptotic cost
for finding a sorted sequence of kings in Tn is Θ(n3/2).

4. Connection with median order. A sorted sequence of kings may also be
viewed as a weak approximation for ranking players in a tournament. In general, the
tournament ranking problem [8] is a difficult one without applausive solution. Suppose
u1, u2, . . . , un is a ranking of players such that ui is ranked in the ith place. For any
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pair of players ui, uj with i < j, a happiness is an outcome that ui beats uj , while
an upset is an outcome that uj beats ui. A ranking strategy introduced in [10] is to
minimize the number of total upsets. A median order of a tournament is defined as
a ranking of players with the minimum number of total upsets. Similarly, a median
order of a digraph can be defined as an ordered list of vertices which induces an
acyclic digraph with the maximum number of edges. It is known that determining a
median order of a digraph is NP-complete and that the complexity for determining a
median order for a tournament is still unknown [1]. Now suppose u1, u2, . . . , un form
a median order for Tn. Havet and Thomassé [4] showed that u1 is a king for Tn. By
the definition of a median order, it is easy to see that ui, ui+1, . . . , un form a median
order for the subtournament induced by {uj : i ≤ j ≤ n} for each i ≤ n. These
facts reveal the following connection between a median order and a sorted sequence
of kings in a tournament.

Theorem 5. Any median order in a tournament is a sorted sequence of kings.
Theorem 5 suggests that one does not have to check all n! possible orderings of

vertices in order to find a median order of Tn. Instead, one may narrow the search
within all sorted sequences of kings.

5. Conclusion. In this paper, we have shown that the worst case asymptotic
cost for finding a sorted sequence of kings in Tn is Θ(n3/2). We have also shown that
the worst case asymptotic cost for finding a king in Tn is Ω(n4/3) and O(n3/2). The
lower bounds are derived by using an adversary argument called pro-small-outdegree-
strategy proposed in this paper. In addition, we have provided a revised-divide-and-
conquer algorithm that finds a sorted sequence of kings (including a king) with a cost
of Θ(n3/2) in the worst case. It is still an open problem on exactly how many binary
questions are needed in the worst case to determine a sorted sequence of kings in a
tournament. Also it would be interesting to know the worst case asymptotic cost for
finding a king in a tournament.
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Abstract. We present a deterministic algorithm A that, in O(m2) time, verifies whether a
given m by m bipartite graph G is regular, in the sense of Szemerédi [Regular partitions of graphs, in
Problèmes Combinatoires et Théorie des Graphes (Orsay, 1976), Colloques Internationaux CNRS 260,
CNRS, Paris, 1978, pp. 399–401]. In the case in which G is not regular enough, our algorithm outputs
a witness to this irregularity. Algorithm A may be used as a subroutine in an algorithm that finds an
ε-regular partition of a given n-vertex graph Γ in time O(n2). This time complexity is optimal, up
to a constant factor, and improves upon the bound O(M(n)), proved by Alon et al. [The algorithmic
aspects of the regularity lemma, J. Algorithms, 16 (1994), pp. 80–109], where M(n) = O(n2.376) is
the time required to square a 0–1 matrix over the integers.

Our approach is elementary, except that it makes use of linear-sized expanders to accomplish a
suitable form of deterministic sampling.

Key words. Szemerédi’s regularity lemma, quasi-randomness, deterministic sampling, expander
graphs, regular pairs
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1. Introduction and the main result. Szemerédi’s regularity lemma [31] is a
fundamental result in graph theory (see [25] for an excellent survey). Roughly speak-
ing, this lemma states that any graph admits a partition of its vertex set so that most
pairs induce “pseudorandom” or regular bipartite graphs. The original proof of the
regularity lemma was nonconstructive, but Alon et al. [1, 2] succeeded in developing
a fast deterministic algorithm for finding such a partition. Many of the existential
results based on the regularity lemma could then be turned into algorithmic results.
The algorithm in [1, 2] finds a regular partition of an n-vertex graph in O(M(n))
deterministic time, where M(n) = O(n2.376) (see [11]) is the time required to square
a 0–1 matrix over the integers. More recently, Frieze and Kannan [18] (see also [19])
showed that sampling can be used to develop a O(n) time randomized algorithm
that, given an n-vertex graph G, outputs a partition for G that is regular with high
probability.

In both algorithms above (and in all algorithms for variants of the regularity
lemma), the main algorithmic problem is to decide whether a given m by m bipartite
graph G is regular; if G is not regular, we are required to find a “witness” for this
irregularity. In this paper, we present a deterministic algorithm that solves this
problem in O(m2) time. Given our algorithm, one can derive in a standard way
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an algorithm for Szemerédi’s regularity lemma that finds a regular partition of an n-
vertex graph in time O(n2). A key feature of our approach lies in the use of linear-sized
expanders for carrying out a certain procedure that may be thought of as deterministic
sampling.

1.1. The main result. Let G = (A,B;E) be a bipartite graph. If ∅ �= U ⊂ A,
∅ �= V ⊂ B, the density of (U, V ) in G is d(U, V ) = e(U, V )/|U ||V |, where we write
e(U, V ) = eG(U, V ) for the number of edges with one endpoint in U and the other
endpoint in V . For ε > 0, we say that G is ε-regular if, for all U ⊂ A, |U | ≥ ε|A|, and
V ⊂ B, |V | ≥ ε|B|, we have

|d(U, V )− d(A,B)| ≤ ε .(1.1)

In case G is not ε-regular and a certain pair (U, V ) certifies this fact, then we say
that (U, V ) is a witness to the ε-irregularity of G.

Let Γ = (V,E) be a graph. A partition (Vi)
k
i=0 of the vertex set V , V =

⋃k
i=0 Vi,

is said to be an equitable partition (with the exceptional class V0) if |V1| = · · · = |Vk|.
If V =

⋃k
i=0 Vi is an equitable partition of V such that the size of the exceptional class

|V0| ≤ εn and at least (1− ε)
(
k
2

)
pairs (Vi, Vj), where 1 ≤ i < j ≤ k, are ε-regular, we

say that the partition (Vi)
k
i=0 is an ε-regular partition. We say that a pair (U,W ) is

ε-regular if the bipartite graph induced by (U,W ) is ε-regular.
Szemerédi’s remarkable result may be stated as follows.
Theorem 1.1. For any ε > 0 and any k0 ≥ 1, there is K0(ε, k0) such that any

graph Γ admits an ε-regular partition into k parts for some k satisfying k0 ≤ k ≤
K0(ε, k0).

Alon et al. [1, 2] proved the following algorithmic version of Theorem 1.1.
Theorem 1.2. There is a deterministic algorithm A0 that, given ε > 0, k0 ≥ 1,

and Γ, produces an ε-regular partition for Γ into k parts for some k satisfying k0 ≤
k ≤ K ′0, where K ′0 = K ′0(ε, k0) depends only on ε and k0. Moreover, algorithm A0

runs in time O(M(n)) = O(n2.376) if Γ has n vertices.
Consider now the following closely related decision problem.
Problem 1.3. Given a graph G, a pair (U,W ) of nonempty, pairwise disjoint

sets of vertices of G, and a positive ε, decide whether (U,W ) is ε-regular with respect
to G.

As it turns out, the problem above is coNP-complete [1, 2]. However, as observed
already in [1, 2], to prove Theorem 1.2 it suffices to solve an approximate version of
the decision problem above. For instance, the following result [15] suffices.

Theorem 1.4. There exists an algorithm A1 for which the following holds. When
A1 receives as input an ε > 0 and a bipartite graph G = (A,B;E) with |A| = |B| =
m ≥ (2/ε)5, it either correctly asserts that G is ε-regular or else it returns a witness
for the ε′-irregularity of G, where ε′ = ε′A1

(ε) = ε5/16. The running time of A1 is
O(M(m)) = O(m2.376).

(See Frieze and Kannan [20] for a somewhat different approach to verifying reg-
ularity, based on singular values of matrices.) Our main result is an improvement of
Theorem 1.4 above and may be stated as follows.

Theorem 1.5 (the main result). There exists an algorithm A for which the
following holds. When A receives as input an ε > 0 and a bipartite graph G =
(A,B;E) with |A| = |B| = m ≥ m0(ε), it either correctly asserts that G is ε-regular
or else it returns a witness for the ε′-irregularity of G, where ε′ = ε′A(ε) = ε20/1024.
The running time of A is O(m2).
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We describe our algorithm A in section 3.1. Deriving an algorithm for the regu-
larity lemma from Theorem 1.5 is standard (cf. section 3.2).

Corollary 1.6. There is a deterministic algorithm A′0 that, given ε > 0, k0 ≥ 1,
and a graph Γ, produces an ε-regular partition for Γ into k parts for some k satis-
fying k0 ≤ k ≤ K ′′0 , where K ′′0 = K ′′0 (ε, k0) depends only on ε and k0. Moreover,
algorithm A′0 runs in time O(n2) if Γ has n vertices.

Clearly, algorithm A′0 above has optimal time complexity, up to the constant
implicit in the big-O notation. In [1, 2], several algorithmic consequences are derived
from Theorem 1.2. In the examples presented there, the time complexity of the
algorithms is O(M(n)). Using A′0 from Corollary 1.6, one obtains algorithms with
optimal time complexity O(n2). We also observe that a similar improvement may
be obtained from Theorem 1.5 for the subgraph counting algorithm given by Duke,
Lefmann, and Rödl [15].

Let us also mention that an important variant of the regularity lemma, suitable
for finding induced subgraphs, was recently discovered by Alon et al. [3, 4] in the
context of property testing (see, e.g., [21] and [22, 23]). In the applications of their
regularity lemma in [3, 4] the authors do not need algorithms for finding their regular
partitions; however, they observe that an algorithmic version of their lemma readily
follows from results such as Theorem 1.4. Again, an O(n2) time algorithm follows
immediately from Theorem 1.5.

Finally, we mention that one may prove a “nonbipartite version” of Theorem 1.5.
This variant of our result implies that one may check in time O(n2) whether a given
n-vertex graph Γ is quasi-random in the sense of Chung, Graham, and Wilson [10].
Moreover, if Γ is not quasi-random, then our algorithm will produce a suitable witness
proving this, i.e., an induced subgraph with Ω(n) vertices whose density deviates
substantially from the density of Γ (see section 1.3.5 for more details).

1.2. Local conditions for regularity. One may prove Theorem 1.4 by consid-
ering a certain “local condition” on G = (A,B;E) that is essentially equivalent to the
regularity of G. For simplicity, let us suppose that G is degree-regular. The condition
is simply that the following inequality should hold:

∑
x, y∈A

∣∣dG(x, y)− p(G)2m
∣∣ ≤ δp(G)2m3,(1.2)

where dG(x, y) = |NG(x) ∩ NG(y)| is the so-called codegree of x and y, and p(G) =
|E|/|A||B| = |E|/m2, with m = |A| = |B|, is the density of G. Clearly, inequality (1.2)
may be checked in O(m3) time, and, in fact, using fast matrix multiplication, one may
verify (1.2) in O(M(m)) = O(m2.376) time. The precise meaning of the equivalence
of the ε-regularity of G and the validity of (1.2) is as follows: for all ε > 0 there is
δ > 0 such that if (1.2) holds, then G is ε-regular. Moreover, for all δ > 0, there
is ε′ > 0 such that if (1.2) fails, then G is not ε′-regular, and, in fact, a witness
to this ε′-irregularity may be constructed explicitly in the same deterministic time.
Some of the ideas described in this paragraph have appeared in the literature under
many guises. (For a detailed discussion on the combinatorial aspects, see [24]; for
applications of these ideas in theoretical computer science, see [28] and the references
therein.) Basically, we are obtaining a somewhat surprising amount of information
from “pairwise independence.” We do not go into the details here.

The key idea in the proof of Theorem 1.5 is that we may restrict the sum in (1.2)
to a small, randomly selected collection of pairs {x, y} (and, naturally, scale down the
right-hand side). This would not be so satisfactory, as we would have a randomized
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procedure: we in fact show that we may achieve the same effect by “deterministic sam-
pling,” using the edge set of a linear-sized expander J (see the definition of property
P(J, δ) in section 3.1.2).

1.3. Algorithmic applications. As mentioned above, algorithms A and A′0
immediately imply improvements on deterministic algorithms that are based on Sze-
merédi’s regularity lemma. Here we present a few typical examples of such algorithms.
For more algorithmic applications of the regularity lemma see [2] and [15].

1.3.1. MAXCUT in dense graphs. There has been considerable interest in
the following computational problem recently.

Problem 1.7 (MAXCUT). Given a graph G, find a partition (U,W ) of the
vertex set of G so that the number of edges e(U,W ) between U and W is maximum.

It follows from the algorithmic version of the regularity lemma that one may
design a polynomial time approximation scheme (PTAS) for MAXCUT if the input
graphs G are restricted to dense graphs. Let us be more precise.

Let α be a fixed positive real. In this section, we consider only graphs G with

edge density e(G)
(|V (G)|

2

)−1 ≥ α. Theorem 1.2 implies the following result: for any
ε and α > 0, there exist a constant C(ε, α) and a deterministic algorithm AMC so
that, given an n-vertex graph G with edge density ≥ α, algorithm AMC returns a
solution (U ′,W ′) for MAXCUT such that

e(U ′,W ′) ≥ (1− ε)e(U∗,W ∗),(1.3)

where (U∗,W ∗) is an optimal solution for G. Furthermore, the running time of AMC

is ≤ C(ε, α)M(n).
Algorithm AMC uses algorithm A0 in Theorem 1.2 as a subroutine; we may use,

instead, algorithm A′0 in Corollary 1.6: let A′MC be the corresponding algorithm.
Theorem 1.8. On input G as above, the deterministic algorithm A′MC produces

a partition (U,W ) satisfying (1.3) in time ≤ C ′(ε, α)n2, where C ′(ε, α) is a constant
that depends only on ε and α.

We remark that a randomized algorithm with time complexity O(n2) was already
given by de la Vega [14]. For related results concerning randomized algorithms, the
reader is referred to Frieze and Kannan [18, 19].

1.3.2. The quasi-Ramsey number and maximum acyclic subgraphs. Let
f : E(Kn)→ {−1, 1} be a function and set f(S) =

∑
e∈(S2) f(e), where S ⊆ [n]. Here,

as usual, Kn stands for the complete graph on n vertices and
(
S
2

)
denotes the set of

all pairs on the set S.
The quasi-Ramsey number g(n) is defined as

g(n) = min
f

max
S⊆[n]

|f(S)| .

Erdős and Spencer [17] showed that

c1n
3/2 ≤ g(n) ≤ c2n

3/2

for some absolute constants c1 and c2 > 0.
Let Tn be a tournament and Pn a transitive tournament both on n vertices. Set

|Tn ∩ Pn| to be the number of common oriented arcs of Tn and Pn. The tournament
ranking function h(n) is defined by

h(n) = min
Tn

max
Pn
|Tn ∩ Pn|;
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i.e., h(n) is the maximum number of edges one can choose in any tournament of
order n without creating an oriented cycle. Spencer [29, 30] showed that

c1n
3/2 ≤ h(n)− 1

2

(
n

2

)
≤ c2n

3/2

for some absolute constants c1 and c2 > 0.

A polynomial time approximation scheme (PTAS) for a maximization problem
is a family of algorithms {S� : 0 < ' < 1} as follows. For any given 0 < ' < 1,
algorithm S� runs in polynomial time and finds a solution whose value is at least
(1 − ')OPT, where OPT in the optimal value. Using a constructive version of the
regularity lemma, Czygrinow, Poljak, and Rödl [13, Theorem 3] designed a PTAS for
the “dense” quasi-Ramsey problem and for tournament ranking.

For f : E(Kn) → {−1, 1} set OPT(f) = maxS⊆[n] |f(S)|. Our algorithm for
the regularity lemma implies an improvement on the time complexity of the PTAS
designed in [13].

Theorem 1.9. Let c > 0 be fixed. For every 0 < ' < 1, there is a O(n2) time
algorithm that constructs a set S such that

|f(S)| ≥ (1− ')OPT(f)

for any instance f : E(Kn)→ {−1, 1} with OPT(f) ≥ cn2.

Now, let OPT(Tn) = maxPn |Tn ∩ Pn|, where Tn is a tournament. Algorithm A′0
in Corollary 1.6 improves the time complexity of the PTAS designed in [13] to O(n2).

Theorem 1.10. Let 0 < ' < 1. Then there is a O(n2) time algorithm that,
given a tournament Tn, constructs an ordering σ of the vertices of Tn so that at least
(1− ')OPT(Tn) arcs agree with σ.

1.3.3. Robustly high-chromatic graphs. Goldreich, Goldwasser, and Ron
[22, 23] have recently initiated a systematic study of property testing for combinatorial
structures. Roughly speaking, in property testing one has a property P of interest,
and one is given an object X and a real number ε > 0. The task is then to decide
whether X has P or if it is ε-far from any object Y having P (we suppose our objects
are in some metric space). Furthermore, we wish to perform this test extremely
quickly; typically, the tests examine a small random portion of X and distinguish
between the two cases above with high probability of success. Thus, in an appropriate
computational model, the tests have sublinear complexity (see [22, 23] for details).

A graph property P that has been proved to be testable [22, 23] is the prop-
erty of having chromatic number at least k for any fixed k. This result was in fact
implicit in [16], where the regularity lemma is used to prove that “robustly high-
chromatic graphs” admit witnesses of bounded size. Indeed, the existential result in
Theorem 1.11 below was proved in [16]. The algorithmic result in Theorem 1.11, but
with time complexity O(M(n)), was proved in [1, 2].

Theorem 1.11. Let k ≥ 3 be an integer, and let ε > 0 be a real constant. Then
there exist integers n0 = n0(k, ε) and f = f(k, ε) and a constant ν = ν(k, ε) > 0 such
that if G = (V,E) is a graph with n ≥ n0 vertices, then either

(i) there exists a graph H on h ≤ f vertices with chromatic number χ(H) ≥ k
that occurs in G at least νnh times as a subgraph or else

(ii) there exists a set E′ ⊆ E with |E′| ≤ εn2 such that the subgraph G′ =
(V,E \ E′) satisfies χ(G′) < k.
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Furthermore, there is a deterministic algorithm that receives as input a graph G =
(V,E) as above and, in time O(n2), outputs either a graph H as in (i) or else it
outputs a set of edges E′ as in (ii), together with a proper coloring ∆: V → {1, . . . ,
k − 1} of the subgraph G′.

The approach in [22, 23] does not use the regularity lemma and implies the ex-
istential part of Theorem 1.11. Moreover, that approach also gives a randomized,
polynomial time algorithm for the constructive part of Theorem 1.11.

Finally, we mention that Czumaj and Sohler [12] have recently proved that the
property of having chromatic number at least k is also testable for hypergraphs.

1.3.4. Counting subgraphs. In this section, we describe an algorithm for ap-
proximately counting small subgraphs in large graphs. This algorithm will also be an
application of algorithm A′0 from Corollary 1.6.

We need to introduce some notation. We shall follow [15]. Let G = (V,E) be a
graph on n vertices whose vertex set V = {v1, . . . , vn} is ordered by v1 < · · · < vn.
Let the set W = {w1, . . . , wk} be ordered by w1 < · · · < wk. We say that a graph H
with vertex set W is order isomorphic to an induced subgraph H ′ of G if there exists
an isomorphism φ : H → H ′ with the property that for each i and j, if wi < wj ,

then φ(wi) < φ(wj). Let H1, . . . , Ht, where t = 2(
k
2), be the list of all graphs on the

set W , and let σk(G) = (h1, . . . , ht) be the t-dimensional vector in which each hi is
the number of induced subgraphs of G to which Hi is order isomorphic.

The following proposition asserts the existence of a certain type of approximation
algorithm for the vector σk(G). For more details, see [15].

Theorem 1.12. Let k ≥ 3 be a fixed integer, and suppose δ > 0 is a fixed
real. There is an algorithm that, on input G, a labeled, ordered graph on n vertices,
produces an approximation σk(G) = (h1, . . . , ht) to the vector σk(G) = (h1, . . . , ht)
with the property that

|hi − hi| ≤ δ

(
n

k

)

for all 1 ≤ i ≤ t. This algorithm runs in time O(n2).

In [15], the authors consider the problem of approximating σk(G) for k = k(n)
slowly increasing functions of n. Our results may be used to improve on the time
complexity of the algorithms given in [15] for such k = k(n), but we shall not go into
the details.

1.3.5. Checking quasi-randomness. Thomason [32] and Chung, Graham,
and Wilson [10] initiated a systematic study of quasi-random properties of graphs:
these are properties that are shared by almost all graphs and are in fact deterministi-
cally asymptotically equivalent; i.e., if a large graph has one of these properties, then
it in fact has all of them.

The investigation of quasi-randomness in combinatorics turned out to be a very
rich line of research, as shown in the series of papers by Chung and Graham on
the subject (for recent developments, see [9] and the references therein). Besides
graphs, other combinatorial structures such as tournaments, set-systems, and subsets
of Z/nZ have been studied from this perspective (see [6, 7, 8]). Finally, we mention
that applications of some of the underlying ideas in this area have occurred in the
literature in different contexts; the interested reader is referred to [5, Chapter 9]
and [24].
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In this section, we shall consider the computational problem of determining
whether or not a given graph is quasi-random. We are also interested in an ad-
ditional requirement: in the case in which the input graph is not quasi-random, a
“witness” to certify this fact should be efficiently produced.

We shall use the following definition.
Definition 1.13. Let reals 0 < ε ≤ 1 and 0 < δ ≤ 1 be given. We shall say that

a graph G is (1/2, ε, δ)-quasi-random if, for all U , W ⊂ V (G) with U ∩W = ∅ and
|U |, |W | ≥ δn, we have ∣∣∣∣eG(U,W )− 1

2
|U ||W |

∣∣∣∣ ≤ 1

2
ε|U ||W |.

In [24] the authors consider a new quasi-random property to develop an algorithm
for testing quasi-randomness. Let G be a graph on n vertices, and let J be a (', L)-
uniform graph on the same vertex set (for the definition, see section 2). To state the
results we need to introduce some notation. For a vertex i of G we set N(i) to be its
neighborhood. Further, we write N(i)�N(j) for the symmetric difference of the sets
N(i) and N(j).

To decide about the quasi-randomness of G we introduce the following couple
of properties. Let 0 < ε, δ ≤ 1 be real numbers. We say that G satisfies property
T	(J, ε) if we have

∑
{i,j}∈E(J)

∣∣∣∣|N(i)�N(j)| − 1

2
n

∣∣∣∣ ≤ 1

2
εne(J) .

Note that this property is closely related to our property P introduced below. Simi-
larly, we say that G satisfies property T ′	(J, γ, ε) if the inequality

∣∣∣∣|N(i)�N(j)| − 1

2
n

∣∣∣∣ ≤ 1

2
εn

fails for at most γe(J) edges {i, j} ∈ E(J).
The following two characterization theorems are proved in [24, Theorems 56

and 57].
Theorem 1.14. For any 0 < ε, δ ≤ 1 and any L, there exist ε0 = ε0(ε, δ, L) > 0

and r0 = r0(ε, δ, L) ≥ 1 for which the following holds. Let G and J be two graphs on
the same vertex set of n vertices. Assume further that J is a (', L)-uniform graph
with the average degree r = 'n ≥ r0. Then, if G satisfies the property T	(J, ε′) for
some 0 < ε′ ≤ ε0, then G is (1/2, ε, δ)-quasi-random.

Theorem 1.15. For any 0 < γ, ε ≤ 1 and any L, there exist ε1 = ε1(γ, ε, L) > 0,
δ1 = δ1(γ, ε, L) > 0, r1 = r1(γ, ε, L) ≥ 1, and N1 = N1(γ, ε, L) ≥ 1 for which the
following holds. Let G and J be two graphs on the same vertex set of n ≥ N1 vertices.
Assume further that J is a (', L)-uniform graph with the average degree r = 'n ≥ r1.
Then, if G is (1/2, ε′, δ′)-quasi-random for some 0 < ε′ ≤ ε1 and 0 < δ′ ≤ δ1, then
property T ′	(J, γ, ε) holds for G.

It is straightforward to see that the properties T and T ′ can be checked in
O(n2) deterministic time. Moreover, if a graph G does not satisfy property T ′	(J, γ, ε),
then one can, using the ideas from our present paper, construct a witness for the non–
quasi-randomness of G in O(n2) time.

2. Preliminaries. In this section, we discuss some basic properties and the
algorithmic construction of certain very well known random looking graphs.
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2.1. (�, L)-uniformity. Let 0 < ' ≤ 1 and L > 0 be fixed. We say that a
graph J on m vertices is (', L)-uniform if, for any U , W ⊂ V (J) with U ∩W = ∅, we
have

∣∣eJ(U,W )− '|U ||W |∣∣ ≤ L
√

r|U ||W |,(2.1)

where r = 'm. The following lemma is immediate.

Lemma 2.1. Let R = (V,E) be a (', L)-uniform, m-vertex graph and let ∅ �= A ⊂
V be given. Put J = R[A]. Then J is an (', L′)-uniform graph with L′ = L

√
m/|A|.

Notation 2.2. We use the following nonstandard notation: we write O1(x) for
any term y such that |y| ≤ x.

We shall need estimates on the number of edges induced on subsets of (', L)-
uniform graphs. Below, if Γ is a graph, we write e(Γ) for the number of edges in Γ.

Lemma 2.3. Let J = (V,E) be a (', L)-uniform graph, and let S ⊆ V be a
nonempty subset of vertices of J . Then

e(J [S]) = '

(|S|
2

)
+ O1

(
Lr1/2(|S|+ 1)

)

= '
|S|2
2

+ O1

(
2Lr1/2|S|),(2.2)

where r = '|V |.
Proof. Put s = |S|. Note that, for any 1 ≤ t < s, we have 2e(S)

(
s−2
t−1

)
=∑

T e(T, S \ T ), where the sum is extended over all T ⊂ S with |T | = t. Thus

e(S) =
1

2

(
s

t

)(
s− 2

t− 1

)−1 {
'|T ||S \ T |+ O1

(
L{rt(s− t)}1/2)}

for any 1 ≤ t < s. We use this relation with t = �s/2�. Note that

(
s

�s/2�
)(

s− 2

�s/2� − 1

)−1

=
s(s− 1)

�s/2��s/2� ≤ 4,

and so

e(S) = '

(
s

2

)
+ O1

(
2L{r�s/2��s/2�}1/2) = '

(
s

2

)
+ O1

(
Lr1/2(s + 1)

)
,

and the result follows.

In what follows, the following simple consequences of Lemma 2.3 will be useful.

Lemma 2.4. Let η > 0 and L > 0 be given. Then there is an r = r(η, L) such
that any m-vertex (', L)-uniform graph J with 'm ≥ r has the two properties below.

(a) If S ⊂ V (J) is such that |S| = νm ≥ ηm, then

e(J [S]) = (1 + O1(η))ν
2e(J) .(2.3)

(b) If S ⊂ V (J) is such that |S| < ηm, then

e(J [S]) < 2η2e(J) .(2.4)



1218 Y. KOHAYAKAWA, V. RÖDL, AND L. THOMA

2.2. Auxiliary results on expander graphs. The celebrated Ramanujan
graphs of Lubotzky, Phillips, and Sarnak [26, 27] are explicitly constructible examples
of linear-sized (', 2)-uniform graphs. We shall make crucial use of their construction.

The Ramanujan graphs Xp,q constructed in [26, 27] depend on certain primes p
and q, which have to satisfy certain simple arithmetical conditions. The graphs Xp,q

that we shall be interested in are (p+1)-regular and have q(q2−1)/2 vertices. However,
we shall need to construct linear-sized (',O(1))-uniform graphs with m vertices and
average degree around r, where m and r are arbitrary integers (which we may assume
to be large). The main result of this section, Lemma 2.5, asserts that this can be
done efficiently. As the reader will see, we shall simply check that, given m and r, we
may find suitable primes p and q so that an induced subgraph of Xp,q will do.

Lemma 2.5. There exists an algorithm E satisfying the following properties.
There is an absolute constant r1 such that for all r0 ≥ r1 there are constants m0 =
m0(r0) and C0 = C0(r0) for which the following holds. Algorithm E receives as input
integers r0 ≥ r1 and m ≥ m0 = m0(r0), and returns an adjacency list representation
of a particular (', 3)-uniform graph J on m vertices with r = 'm satisfying r0 ≤ r ≤
2r0. Furthermore, algorithm E runs in time ≤ C0m(logm)2.

In the remainder of this section, we prove Lemma 2.5 for completeness.

2.2.1. Ramanujan graphs. Before we start with the proof of Lemma 2.5, we
recall the construction of Lubotzky, Phillips, and Sarnak [26, 27].

As usual, in what follows, if a is an integer and p is a prime with a not divisible
by p, the Legendre symbol (ap ) is defined as 1 if a is a quadratic residue modulo p and

as −1 if a is a quadratic nonresidue modulo p. To describe the construction in [26, 27],
let p and q be two unequal primes satisfying

p, q ≡ 1 (mod 4)(2.5)

and (
p

q

)
= 1.(2.6)

We now let S and T be the following sets. Below, i is an arbitrary fixed integer such
that i2 ≡ −1 (mod q). We let

S =
{
(α0, α1, α2, α3) ∈ Z

4 : α2
0 + α2

1 + α2
2 + α2

3 = p

with α0 > 0, odd, and α1, α2, α3 even},
T =

{ (
α0 + iα1 α2 + iα3

−α2 + iα3 α0 − iα1

)
: (α0, α1, α2, α3) ∈ S

}
.(2.7)

We now consider PSL(2,Z/qZ) (the projective special linear group), which consists
of the 2 × 2 matrices over Z/qZ whose determinants are nonzero quadratic residues
mod p, quotiented out by the equivalence relation that makes two such matrices
equivalent if one is a nonzero scalar multiple of the other.

It will be convenient to observe that each element of PSL(2,Z/qZ) (i.e., each
equivalence class) may be represented by a matrix whose second row is either (0, 1)
or (1, x), where x is some arbitrary element of Z/qZ. The existence of this simple
“canonical representation” for the elements of PSL(2,Z/qZ) will be helpful below.

Observe that if we consider the entries of the matrices in T modulo q, we get 2×2
matrices over Z/qZ, with determinant p (mod q), which is a nonzero quadratic residue
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modulo q (cf. (2.6)). By a well-known result of Jacobi and some simple arguments,
one may check that there are p + 1 elements in T and that they are all distinct in
PSL(2,Z/qZ).

The graph Xp,q constructed in [26, 27] is the Cayley graph of PSL(2,Z/qZ) rela-
tive to the set T . The vertices of Xp,q are the elements of PSL(2,Z/qZ), and the edge
set of Xp,q is so that {x, y} is an edge of Xp,q if and only if there is a t ∈ T such that
x = ty (one may check that this is a symmetric relation). A key result concerning the
graphs Xp,q is the following.

Theorem 2.6. The graph Xp,q is a nonbipartite (p + 1)-regular graph on n =
q(q2 − 1)/2 vertices. Moreover, if the eigenvalues of Xp,q are |λ1| ≥ · · · ≥ |λn|, then
λ1 = p + 1 and

|λj | ≤ 2
√
p for all j > 1.(2.8)

Because of (2.8), the graphs Xp,q are called Ramanujan graphs. We now state
the following well-known pseudorandom property of the graphs Xp,q, which follows
from (2.8) (see, e.g., Corollary 9.2.5 in [5]).

Corollary 2.7. The graph Xp,q is (', 2)-uniform, where ' = (p + 1)/n.
Having covered the basics of the Lubotzky, Phillips, and Sarnak construction, we

turn to the proof of Lemma 2.5.

2.2.2. Proof of Lemma 2.5. We start with a simple lemma asserting the ex-
istence of appropriate primes p and q.

Lemma 2.8. There exists an absolute constant r1 such that, for any r0 ≥ r1, there
exists an integer m0 = m0(r0) for which the following holds. There is an algorithm P
that, on input (r0,m), where r0 ≥ r1 and m ≥ m0 = m0(r0), produces a pair of
primes p and q which satisfy

p �= q, p, q ≡ 1 (mod 4), and

(
p

q

)
= 1,(2.9)

1.4r0 ≤ p + 1 ≤ 2r0,(2.10)

and

3
√

2.1m ≤ q ≤ 1.1
3
√

2.1m.(2.11)

Algorithm P runs in time ≤ C1m
1/2(logm)2, where C1 = C1(r0) depends only on r0.

Proof. Let us start recalling Dirichlet’s theorem on primes in arithmetic progres-
sions. In particular, the quantitative version of Dirichlet’s theorem implies that for
integers a and b with (a, b) = 1, there is an integer ta,b such that for all t ≥ ta,b there
is a prime p ≡ a (mod b) in the interval [t, 11t/10] = {x : t ≤ x ≤ 11t/10}.

We let r1 = t1,8 + 1 and proceed to show that this choice of r1 will do. Thus,
let an arbitrary integer r0 ≥ r1 be given, and let us define m0 = m0(r0) as required
in our lemma. To that end, first observe that, by the choice of r1, there is a prime
p ≡ 1 (mod 8) satisfying (2.10). We fix such a prime p. Observe that we have p ≡ 1
(mod 4). Moreover, since p ≡ 1 (mod 8), we have that

2 is a quadratic residue modulo p.(2.12)

Since (4, p) = 1, by the Chinese remainder theorem, there is a unique integer s with
1 ≤ s ≤ 4p satisfying

s ≡ 2 (mod p) and s ≡ 1 (mod 4).(2.13)
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We are finally ready to define m0 = m0(r0). We let

m0 = m0(r0) = max

{
10

21
t3s,4p,

8

2.1
r3
0

}
.(2.14)

Our aim now is to show that the choice for m0 = m0(r0) in (2.14) will do. Thus,
let m ≥ m0(r0) be given. We shall now describe a procedure P to find the primes p
and q as required. Our description will be quite informal.

The prime p with p ≡ 1 (mod 8) satisfying (2.10) may be found easily. We now
need to determine a suitable value for q. We choose q among the integers in the
arithmetic progression {4pk + s : k = 0, 1, 2, . . . }, where s is the integer satisfying
1 ≤ s ≤ 4p and (2.13). By Dirichlet’s theorem and our choice of m0 ≥ (10/21)t3s,4p,
there is a prime q ≡ s (mod 4p) satisfying (2.11). We claim that our choice of s
implies all properties promised for q. Indeed, q ≡ s ≡ 1 (mod 4). Furthermore, the
quadratic reciprocity law implies (pq ) = ( qp ), since both p, q ≡ 1 (mod 4). Using that

q ≡ s ≡ 2 (mod p) and recalling (2.12), we have

(
p

q

)
=

(
q

p

)
=

(
s

p

)
=

(
2

p

)
= 1.

Finally, note that m0 ≥ 8r3
0/2.1 guarantees q > p and, consequently, condition (2.9)

is satisfied. Therefore, the primes p and q, as required, do exist.
Let us now consider the time complexity of our procedure P above. We first ob-

serve that the search for p < 2r0 takes a quantity of steps that depends only on r0. To
find q, we have enough time to check all integers in the interval [ 3

√
2.1m, 1.1 3

√
2.1m].

Since this interval is of length O(m1/3), this will take O(m1/3 · m1/6(logm)2) =
O(m1/2(logm)2) steps. The (logm)2 term accounts for the time complexity of arith-
metic operations with integers having O(logm) digits.

We now describe algorithm E , the existence of which is asserted in Lemma 2.5.
Consider the integer r1 and the function m0(r0) whose existences are guaranteed by
Lemma 2.8. On input (r0,m), where r0 ≥ r1 and m ≥ m0(r0), algorithm E performs
the following steps.

1. Run algorithm P on input (r0,m) to obtain primes p and q as in the statement
of Lemma 2.8.

2. List all elements of PSL(2,Z/qZ), i.e., the vertex set of Xp,q, by enumerating
all the canonical representatives of the elements in PSL(2,Z/qZ).

3. Find all solutions to α2
0 +α2

1 +α2
2 +α2

3 = p that belong to S and construct T
(see (2.7)).

4. For each vertex x of Xp,q, construct its adjacency list.
5. Set J to be any induced subgraph of Xp,q on m vertices.

The following claim will finish the proof of Lemma 2.5.
Claim 2.9. Algorithm E produces a graph J that is (', 3)-uniform in time ≤

Cm(logm)2, where r = 'm satisfies r0 ≤ r ≤ 2r0, and C is a constant that depends
only on r0.

Proof. We start with the correctness of E . We already know that P produces
suitable primes p and q. Hence, we need only to argue that the graph J obtained in
step 5 has the required properties.

By Theorem 2.6 and Corollary 2.7, the graph Xp,q constructed in steps 2–4 has
n = q(q2 − 1)/2 vertices, is (p + 1)-regular, and is (', 2)-uniform with ' = (p + 1)/n.
Furthermore, note that (2.11) implies 1 ≤ n/m ≤ 1.05(1.1)3. Lemma 2.1 implies
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J is a (', L)-uniform graph with ' = (p + 1)/n and L = 2
√

n/m ≤ 2.1
√

231/200 =
2.256 · · · < 3. Thus J is indeed a (', 3)-uniform graph.

Since 1 ≤ n/m ≤ 1.05(1.1)3, we deduce that r = 'm = (p + 1)m/n is such that

r ≤ 2r0

and

r ≥ 1.4r0 · 20
21

(
10

11

)3

≥ r0 .

Finally, we argue about the time complexity of each of the steps in algorithm E .
By Lemma 2.8, we already know that step 1 takes time ≤ C1(r0)m(logm)2, where
C1(r0) is a constant that depends only on r0.

Recalling the form of the canonical representatives of the elements in PSL(2,Z/qZ),
we see that step 2 may be performed in time O(m(logm)2). The time complexity of
step 3 depends only on r0.

In step 4, we take one by one the vertices of Xp,q, i.e., the elements of PSL(2,Z/qZ),
and generate their adjacency lists. Since |T | = p+1 ≤ 2r0, to generate the adjacency
list of a particular vertex takes only O((log q)2) steps.

Finally, taking m vertices of Xp,q arbitrarily and adjusting their adjacency lists to
create an adjacency list representation for the corresponding induced subgraph takes
O(m logm) time. Therefore, the time complexity of algorithm E is≤ C0(r0)m(logm)2,
as promised.

3. Algorithms. Before we describe the algorithm, let us introduce some no-
tation. Let Γ = (V,E) be a graph and v ∈ V a vertex. We write Γ(v) for the
neighborhood of v, i.e., for the set of all vertices adjacent to v in Γ, and d(v) for the
degree of v, i.e., d(v) = |Γ(v)|. To shorten our notation we will use that same letter
to denote a graph and the set of its edges. For example, Γ will also stand for E(Γ),
and hence e(Γ) = |Γ|.

3.1. Regularity of bipartite graphs. In this section we describe algorithm A
which takes as an input a bipartite graph G = (A,B;E), |A| = |B| = m, and 0 <
ε < 1. The algorithm in time O(m2) either confirms that G is ε-regular or finds sets
A′ ⊆ A,B′ ⊆ B, |A′| ≥ ε′m, |B′| ≥ ε′m, such that

|d(A′, B′)− d(A,B)| ≥ ε′ .

Our algorithm A consists of the preprocessing stage AP and the main procedure AM .

3.1.1. The preprocessing stage. In order to describe the preprocessing stage
we need to define

ε′ =
( ε

10

)20 1

104
.(3.1)

To describe AP we need the constants ε and ε′ only. Note that other constants are
used for describing the other part AM ; these other constants will be defined later in
section 3.1.2 and will be related to ε and ε′ above.

Algorithm AP is based on the following standard observation and Lemma 3.1.
We observe that if the bipartite graph G on vertex set A ∪B, |A| = |B| = m, is such
that p(G) := d(A,B) = |G|/m2 ≤ ε3, then G is ε-regular (we omit the proof of this
standard observation).
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Lemma 3.1 quantifies a further observation that we may remove some vertices of
our graph G so that we either obtain a subgraph H ⊆ G that is essentially degree-
regular (all degrees are about the same) or else in the process of removing these
vertices we locate a witness to the ε′-irregularity of G. This is formalized as follows.

Lemma 3.1. Suppose G is a bipartite graph with vertex set A∪B, |A| = |B| = m,
and suppose that p(G) > ε3 holds. There is a procedure that runs in time O(m2) that
either (i) produces a witness to the ε′-irregularity of G or (ii) produces a bipartite
subgraph H ⊆ G, say H = (U, V ;F ), such that

(a)

(1− 2ε′)m < |U |, |V | ≤ m ,(3.2)

(b)

∣∣p(H)− p(G)
∣∣ ≤ 5ε′,(3.3)

where p(H) = |H|/|U ||V |, and
(c) for all u ∈ U and v ∈ V we have

d(u) = (p(H) + O1(10ε
′)) · |V | ,(3.4)

d(v) = (p(H) + O1(10ε
′)) · |U | .

Proof. We first omit the vertices v in V for which the condition

d(v) = (p(G) + O1(ε
′))m(3.5)

fails. If the number of such vertices is ≥ 2ε′m, we may easily produce a witness to
the ε′-irregularity of G as in (i) in the statement of our lemma. Suppose therefore
that the number of such vertices is < 2ε′m. Let V ⊆ B be the resulting subset of B.
Hence |V | > (1− 2ε′)m. We now omit the vertices u ∈ A for which the condition

d(u) = (p(G) + O1(ε
′)) · |V |(3.6)

fails. Again, if the number of such vertices is ≥ 2ε′m, we may easily produce a witness
to the ε′-irregularity of G. If the number of such vertices is < 2ε′m, the resulting
graph H is as in (ii) in the statement of our lemma.

The time complexity assertion will be verified in the proof of Lemma 3.4 (cf. al-
gorithm AP below).

For convenience, we let Ψ(m, ε′) be the family of subgraphs H of G that satisfy
(a)–(c) in (ii) of Lemma 3.1 above.

Now we are ready to describe algorithm AP :
1. Given G and ε, decide if p(G) < ε3.
2. If p(G) ≤ ε3, then G is ε-regular and AP halts.
3. If p(G) > ε3, apply Lemma 3.1 to construct a subgraph H of G which satisfies

(a)–(c). (Algorithm AM will be applied to H.)

3.1.2. The main procedure. In view of step 3 in algorithmAP (cf. Lemma 3.1)
we will now assume that H ∈ Ψ(m, ε′).

(a) Definition of constants. Before describing algorithm AM we will define con-
stants needed for it. Recall that algorithm A, and thus AM , is given 0 < ε < 1. In
section 3.1.1 we already defined ε′ = (ε/10)20/104.
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We first let

δ =
1

4

(ε
2

)5

, L = 5, and rA =
106

ε8
.(3.7)

We now let

µ =
( ε

10

)10 1

100
(3.8)

and put

η =
µ

3
.(3.9)

We also let rB = r(η, L) be as given in Lemma 2.4 and let

r0 = max{rA, rB}.(3.10)

Finally, we set

ε1 =
1

4

(ε
2

)16

.(3.11)

This will be used only later in a proof. However, it might be helpful to see the relation
of ε1 to the other constants introduced here.

The reader may find it useful to keep in mind the following hierarchy of the
constants for ε small:

ε′ < ε20 � ε1 < ε16 � η =
µ

3
< ε10 � δ � ε3 � ε, p .(3.12)

(Here inequalities “<” are used to compare two quantities which differ by an absolute
constant.) Note that for the description of AM we need only to know r0 and δ defined
above. The other constants are needed in the proofs below.

(b) Property P(J, δ). We introduce some notation. Let H be a bipartite graph
with vertex set U ∪ V . Let J be a (', L)-uniform graph with vertex set U . We say
that H has property P(J, δ) if∑

{u,u′}∈J

∣∣dH(u, u′)− p(H)2 · |V |∣∣ ≤ δp(H)2|V | · |J |(3.13)

holds. Recall that due to our notation {u, u′} ∈ J means that {u, u′} is an edge
of J . Moreover, let us write Jv (v ∈ V ) for the graph J [H(v)] induced by the
neighborhood H(v) of v in H. We define a 0–1 matrix M = (m(e, v))e,v indexed by
J × V as follows:

m(e, v) =

{
1 if e ∈ Jv,

0 otherwise.
(3.14)

Therefore, clearly, m(e, v) = 1 if and only if both endpoints of e are adjacent to v.
(c) Description of AM . We assume AM is given a bipartite graph H ∈ Ψ(m, ε′)

having vertex set U ∪ V . Algorithm AM now proceeds as follows:
1. Apply procedure E to construct a (', L)-uniform graph J with vertex set U

and average degree r = ' · |U | satisfying
r0 = r0(η) ≤ r ≤ 2r0(3.15)

(cf. Lemma 2.5).
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2. Verify whether H has P(J, δ). If it does, then G is ε-regular (see Lemma 3.2
below) and AM halts.

3. If P(J, δ) fails for H, construct matrix M = (m(e, v))e,v defined above. Find
and fix a vertex v0 ∈ V such that

∑
v∈V

∑
e∈Jv0

m(e, v) ≥
(
1 +

δ2

2

)
p(H)4|V | · |J |.(3.16)

(The existence of such a vertex v0 is proved later; cf. Lemma 3.5.)
4. Set U ′ = H(v0) and

V ′ =

{
v′ ∈ V :

∑
{m(e, v′) : e ∈ Jv0

} ≥
(
1 +

δ2

4

)
p(H)4 · |J |

}
.(3.17)

5. AM outputs (U ′, V ′) and claims that this is a witness to the ε′-irregularity
of G.

3.1.3. Correctness and analysis of algorithm A. The correctness of A fol-
lows from Lemmas 3.2 and 3.3. The first lemma says that if algorithm AM , and
hence A, claims that G is ε-regular in step 2, then this is indeed the case.

Lemma 3.2. If H enjoys property P(J, δ), then G is ε-regular.
Lemma 3.3. If property P(J, δ) fails for H, then G is not ε′-regular, and the

pair (U ′, V ′) produced by algorithm AM is indeed a witness for the ε′-irregularity
of G.

We shall prove the two lemmas above in section 4. The next two lemmas imme-
diately imply that A has time complexity O(m2).

Lemma 3.4. Algorithm AP described in section 3.1.1 has time complexity O(m2).
Proof. The steps of AP have the following time complexity. The only computa-

tions are in steps 1 and 3.
Step 1. Since p(G) = |G|/m2, it takes at most O(m2) steps to compute p(G) and

decide whether p(G) < ε3.
Step 3. Based on the proof of Lemma 3.1, a vertex of G is put into H if and

only if it satisfies (3.4). Hence, we proceed through all 2m vertices of G, each time
checking (3.4), which takes O(m) steps. Thus, this step takes O(m2) steps, too.

The overall time complexity of AP is O(m2).
Lemma 3.5. Algorithm AM described in section 3.1.2 runs in time O(m2).
Proof. The steps of AM have the following time complexity.
Step 1. To perform procedure E we need O(m(logm)2) steps; cf. Lemma 2.5.
Step 2. To verify P(J, δ) we need to add |J | = O(m) summands. Computing

each of these summands takes O(m) steps. Consequently, one can decide P(J, δ) in
O(m2) time.

Step 3. Deciding if m(e, v) = 1 or 0 can be performed in constant time. Thus,
constructing M takes O(|J ||V |) = O(m2) time. To check (3.16), we first write it in
the equivalent form

∑
e∈Jv0

∑
v∈V

m(e, v) ≥
(
1 +

δ2

2

)
p(H)4|V | · |J | .(3.18)

Using matrix M we compute the column sums
∑

v∈V m(e, v) for each e ∈ J . This
takes O(m2) steps.
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Now to check (3.18) for a fixed vertex v0 ∈ V , we first find Jv0 , which takes
|Jv0 | = O(m) steps. Then we add together the column sums

∑
v∈V m(e, v) for all

e ∈ Jv0
and decide about the truth of (3.18). This takes another O(m) steps. In the

worst case we need to check all v0 ∈ V . Since |V | = m, to find v0 that satisfies (3.18)
will take at most O(m2) steps.

Step 4. Since for each v′ ∈ V the condition
∑

e∈Jv0 m(e, v′) ≥ (1+ δ2/4)p(H)4|J |
can be verified in O(m) time, the set V ′ can be constructed in O(m2) time.

Step 5. This step takes a constant time.
Therefore, the time complexity of AM is O(m2). Finally, let us point out that

the fact that J has O(m) edges was crucial.

3.2. The regularity lemma. For the sake of completeness, we include an al-
gorithm necessary for proving Corollary 1.6. Given Theorem 1.5 we can derive the
necessary algorithm in a standard way.

Let V0, V1, . . . , Vk be an equitable partition P of the set of vertices of a graph.
We define the index of P (cf. [31]) by

ind(P ) =
1

k2

∑
1≤r<s≤k

d(Vr, Vs)
2 .

To present a proof of Corollary 1.6 we will use the following lemma, which was
proved in [31]. Note that no comment is made in [31] on the running time. However,
the proof of the lemma implies an algorithm of time complexity O(n).

Lemma 3.6. Fix k and γ, and let G = (V,E) be a graph on n vertices. Let
P be an equitable partition of V into classes V0, V1, . . . , Vk. Assume |V1| > 42k and
4k > 600γ−5. Given proofs that more than γk2 pairs (Vr, Vs) are not γ-regular (where
by proofs we mean subsets X = X(r, s) ⊆ Vr, Y = Y (r, s) ⊆ Vs that violate the
condition of γ-regularity of (Vr, Vs)), then one can find in O(n) time an equitable
partition P ′ (which is a refinement of P ) into 1 + k4k classes, with the exceptional
class of cardinality at most |V0|+ n/4k, and such that

ind(P ′) ≥ ind(P ) +
γ5

20
.

Proof of Corollary 1.6. Theorem 1.5 and Lemma 3.6 already imply Corollary 1.6.
Let ε > 0 and k0 be a positive integer. Let ε′ = ε20/1024. We set N = N(ε, k0) and
T = T (ε, k0) as follows: Let a be the least positive integer such that

4a > 600

(
ε′

4

)−5

, a ≥ k0 .(3.19)

Let ki be a sequence of integers defined inductively as

k0 = a, ki+1 = ki4
ki .

Set T = k10(ε′/4)−5� and N = max{T42T , 2T/ε′2}. Finally, we set K ′′0 = N ≥ T .
Let Γ = (V,E) be a graph on n vertices, n ≥ N . The following algorithm

constructs an ε-regular partition of Γ into k + 1 classes with k0 ≤ k ≤ T ≤ K ′′0 .
Algorithm A′0 proceeds as follows:
1. Arbitrarily divide the vertices of Γ into an equitable partition P1 with classes

V0, V1, . . . , Va, where |V1| = �n/a� and |V0| < a. Set k1 = a.
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2. For every pair (Vr, Vs) of Pi, verify if it is ε-regular or find V ′r ⊆ Vr, V
′
s ⊆ Vs,

|V ′r | ≥ (ε′/4)|Vr|, |V ′s | ≥ (ε′/4)|Vs|, such that |d(V ′r , V ′s )− d(Vr, Vs)| ≥ ε′.
3. If there are at most ε

(
ki
2

)
pairs that are not verified as ε-regular, then stop.

The partition Pi is an ε-regular partition.
4. Apply Lemma 3.6, where P = Pi, k = ki, and γ = ε′/4, and obtain a

partition P ′ with 1 + ki4
ki classes.

5. Let ki+1 = ki4
ki , Pi+1 = P ′, and i = i + 1, and go to step 2.

Claim 3.7. Algorithm A′0 as described is correct and runs in O(n2) time.
Proof. To prove correctness of algorithm A′0 is quite standard. Since the index

of partitions Pi constructed by A′0 strictly increases and at the same time is bounded
by 1 from above, algorithm A′0 uses Lemma 3.6, and thus Theorem 1.5, only finitely
many times. Each such use takes O(n2) time.

4. Proofs of the main lemmas. We use the notation introduced in section 3.1.
Before the proofs let us point out a straightforward estimate on the size of neighbor-
hoods used throughout the proofs.

Remark 4.1. Let H ∈ Ψ(m, ε′) be the graph in the statement of Lemma 3.1, and
let u ∈ U and v ∈ V be vertices of H. As an immediate consequence of (3.4) and the
definition of ε′ and µ, we get

|H(u)| = (p(H) + O1(10ε
′))|V | = (1 + O1(µ))p(H)|V | ,(4.1)

|H(v)| = (p(H) + O1(10ε
′))|U | = (1 + O1(µ))p(H)|U | .

4.1. Proof of Lemma 3.2. Let H ∈ Ψ(m, ε′) be the input graph of algo-
rithm AM . Let U ∪ V be the vertex set of H. Set mU = |U |, mV = |V |, and
p := p(H) = |H|/mUmV .

We say that the graph H has property Q(J, δ) if the inequality

∑
{u,u′}∈J

∣∣dH(u, u′) + p2mV − (dH(u) + dH(u′))p
∣∣ ≤ δp2mV · |J |(4.2)

holds true.
Claim 4.2. Let δ > 0 be fixed. If a graph H ∈ Ψ(m, ε′) has property P(J, δ),

then it has property Q(J, 2δ).
Proof. Since H enjoys P(J, δ) and H ∈ Ψ(m, ε′), we have

∑
{u,u′}∈J

∣∣dH(u, u′) + p2mV − (dH(u) + dH(u′))p
∣∣

≤
∑

{u,u′}∈J

∣∣dH(u, u′)− p2mV

∣∣

+ 2p
∑
u∈U

∣∣pmV − dH(u)
∣∣dJ(u)

≤ δp2mV |J |+ 20pε′mV

∑
u∈U

dJ(u)

≤ 2δp2mV |J | ,

since ε′ ≤ δε3/40 ≤ δp/40 (see (3.1), (3.7)).
In view of Claim 4.2, we are going to prove the following claim.
Claim 4.3. Every H ∈ Ψ(m, ε′) that has property Q(J, 2δ) is (ε/2)-regular.
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The proof is presented below. First, let us observe that the ε/2-regularity of H
implies the ε-regularity of G. Indeed, let X ⊆ A, |X| ≥ ε|A|, and Y ⊆ B, |Y | ≥ ε|B|.
Set X ′ = X ∩ U and Y ′ = Y ∩ V . By Lemma 3.1,

|X ′| ≥ ε|A| − 2ε′|A| ≥ (ε− 2ε′)|U | ≥ ε

2
|U |

and, similarly,

|Y ′| ≥ ε

2
|V | .

A standard argument based on the fact that X ′ and Y ′ are almost equal to X and Y
(recall Lemma 3.1) shows that |d(X,Y ) − d(X ′, Y ′)| ≤ ε/4. Thus, using the ε/2-
regularity of H and Lemma 3.1, we get

|d(X,Y )− d(A,B)| ≤ |d(X,Y )− d(X ′, Y ′)|+ |d(X ′, Y ′)− d(U, V )|
+ |d(U, V )− d(A,B)| ≤ ε

4
+

ε

2
+ 5ε′ < ε .

Hence, G is ε-regular.
Proof of Claim 4.3. Let A = (au,v)u,v be a matrix indexed by U × V with entries

au,v =

{
−(1− p) if {u, v} ∈ H,

p otherwise.

Moreover, for u ∈ U , let ξu = (au,1, . . . , au,mV
) be the uth row of A. The following

claim follows easily from the definition of property Q (see (4.2)).
Claim 4.4. For every H ∈ Ψ(m, ε′) that has property Q(J, 2δ), the row-vectors

of A satisfy the following inequality:

∑
{u,u′}∈J

|〈ξu, ξu′〉| ≤ 2δp2mV |J | .(4.3)

Proof. Since

〈ξu, ξu′〉 = dH(u, u′)(1− p)2 − (dH(u) + dH(u′)− 2dH(u, u′))p(1− p)

+ (mV − (dH(u) + dH(u′)− dH(u, u′))p2

= dH(u, u′)[(1− p)2 + 2p(1− p) + p2] + mV p
2 − (dH(u) + dH(u′))p

= dH(u, u′) + mV p
2 − (dH(u) + dH(u′))p

for any pair of vertices u, u′ ∈ U , we have that
∑
{u,u′}∈J |〈ξu, ξu′〉| equals the sum on

the left-hand side of (4.2). Thus the claim follows.

Let U ′ ⊆ U and V ′ ⊆ V . To shorten our notation
∑U ′

u,u′∈J will denote summation
over {u, u′} ∈ J such that u, u′ ∈ U ′. Furthermore, for u ∈ U ′ let ψu be the restriction

of the vector ξu to V ′, i.e., ψu = (au,v)v∈V ′ . We clearly have
∑U ′

u,u′∈J |〈ξu, ξu′〉| ≤∑
{u,u′}∈J |〈ξu, ξu′〉|. We now compare

∑U ′

u,u′∈J〈ξu, ξu′〉 with
∑U ′

u,u′∈J〈ψu, ψu′〉. We
have

∑U ′

u,u′∈J〈ξu, ξu′〉 =
∑U ′

u,u′∈J〈ψu, ψu′〉+
∑
v �∈V ′

∑U ′

u,u′∈J au,vau′,v.(4.4)
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For v ∈ V we set SU ′
v =

∑U ′

u,u′∈J au,vau′,v and proceed to estimate this quantity. Let
S := H(v)∩U ′ ⊆ U ′ be the set of neighbors of the vertex v in U ′ and T := (U ′\S) ⊆ U ′

be the set of nonneighbors of the vertex v in U ′.
Set α = |S|/|U ′| and β = |T |/|U ′|. Note α + β = 1. Thus we can write

SU ′
v = eJ(S)(1− p)2 + eJ(T )p2 − eJ(S, T )p(1− p).(4.5)

The (', L)-uniformity of J implies the following claim. Recall that for two numbers
a, b we write a = O1(b) if and only if |a| ≤ b.

Claim 4.5. For all v ∈ V ′ and U ′ ⊆ U , we have

SU ′
v =

'

2
|U ′|2 · [α(1− p)− βp

]2
+ O1

(
3L
√
r · |U ′|) .(4.6)

Proof. Set m′ = |U ′|. Since J is a (', L)-uniform graph, Lemma 2.3 implies

eJ(S) =
'

2
|S|2 + O1

(
2L
√
r · |S|)

=
'

2
(αm′)2 + O1

(
2L
√
r · αm′) ,

eJ(T ) =
'

2
|T |2 + O1

(
2L
√
r · |T |)

=
'

2
(βm′)2 + O1

(
2L
√
r · βm′) ,

eJ(S, T ) = '|S| · |T |+ O1

(
L
√

r|S| · |T |)
= 'αβ(m′)2 + O1

(
L
√

rαβ ·m′) .
Using (4.5) we get

SU ′
v =

['
2
(αm′)2 + O1

(
2L
√
r · αm′)] (1− p)2

+
['
2
(βm′)2 + O1

(
2L
√
r · βm′)] p2

−['αβ(m′)2 + O1

(
L
√

rαβ ·m′)]p(1− p)(4.7)

=
'

2
(m′)2

[
α(1− p)− βp

]2
+ ∆,

where

∆ = O1

(
2L
√
r · αm′(1− p)2 + 2L

√
r · βm′p2 + L

√
rαβ ·m′p(1− p)

)
.(4.8)

To bound ∆ we are going to use the inequalities α(1 − p)2 + βp2 ≤ α + β and√
αβ ≤ (α + β). Thus,

|∆| ≤ 2L
√
r · αm′(1− p)2 + 2L

√
r · βm′p2 + L

√
rαβ ·m′p(1− p)

≤ L
√
rm′

(
2α + 2β +

√
αβ
)

≤ L
√
rm′ · 3(α + β)(4.9)

= 3L
√
rm′ .

Expressions (4.7) and (4.9) already imply the claim. We note only that we got a
bound on ∆ linear in m′ = |U ′| since L and r are constants.
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Next we proceed with an upper and lower bound on
∑U ′

u,u′∈J〈ψu, ψu′〉. To derive

an upper bound for this quantity we use (4.4) to relate
∑U ′

u,u′∈J〈ψu, ψu′〉 and SU ′
v as

follows:

∑U ′

u,u′∈J〈ψu, ψu′〉 =
∑U ′

u,u′∈J〈ξu, ξu′〉 −
∑
v �∈V ′

SU ′
v .

Note that (4.6) implies SU ′
v ≥ −3L

√
r|U ′|. This lower bound and Claim 4.4 imply

∑U ′

u,u′∈J〈ψu, ψu′〉 ≤ 2δp2mV |J |+ 3L
√
r|U ′|(mV − |V ′|) .(4.10)

To estimate
∑U ′

u,u′∈J〈ψu, ψu′〉 from below, we first write

∑U ′

u,u′∈J〈ψu, ψu′〉 =
∑
v∈V ′

∑U ′

u,u′∈J au,vau′,v =
∑
v∈V ′

SU ′
v .(4.11)

Using (4.6) we get a lower bound on the expression in our last equation:

∑U ′

u,u′∈J〈ψu, ψu′〉 =
∑
v∈V ′

SU ′
v

≥
∑
v∈V ′

('
2
|U ′|2[α(1− p)− βp

]2 − 3L
√
r · |U ′|

)
(4.12)

≥ '

2
· |U

′|2
|V ′|

[∑
v∈V ′

(α(1− p)− βp)

]2

− 3L
√
r|U ′| · |V ′| .

We used the Cauchy–Schwarz inequality to get the last line of our bound. Comparing

the lower and upper bounds on
∑U ′

u,u′∈J〈ψu, ψu′〉 (cf. (4.12) and (4.10)), we infer

[∑
v∈V ′

(α(1− p)− βp)
]2
≤ 2|V ′|

'|U ′|2 ·
(
2δp2mV |J |+ 3L

√
r|U ′|mV

)
.(4.13)

Now we are ready to show that H is ε
2 -regular. Fix U ′ ⊆ U , |U ′| ≥ ε

2 |U | = ε
2mU ,

and V ′ ⊆ V , |V ′| ≥ ε
2 |V | = ε

2mV . Recall that d(U, V ) = p = p(H) in our notation.
First we relate the difference of densities to the left-hand side of (4.13) as follows:

|d(U ′, V ′)− d(U, V )|2 =

∣∣∣∣e(U
′, V ′)

|U ′||V ′| − p

∣∣∣∣
2

=
1

|U ′|2|V ′|2
[
e(U ′, V ′)− p|U ′| · |V ′|

]2

=
1

|U ′|2|V ′|2
[∑
v∈V ′

(|H(v) ∩ U ′| − p|U ′|)
]2

=
1

|U ′|2|V ′|2
[∑
v∈V ′

α|U ′| − p|U ′|
]2

=
1

|V ′|2
[∑
v∈V ′

(α(1− p)− βp)
]2

.(4.14)
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Finally, we bound the expression for the difference of densities in (4.14) using
(4.13). We get

∣∣d(U ′, V ′)− d(U, V )
∣∣2 ≤ 2

'|U ′|2|V ′|
(
2δp2mV |J | + 3L

√
r · |U ′|mV

)

≤ 2

'|U ′|2|V ′| × 2δp2mV × rmU

2
+

6L
√
r · |U ′|mV

'|U ′|2|V ′|
≤ 2δp2mU

2mV

|U ′|2|V ′| +
6LmVmU

√
r

r|U ′| · |V ′|
≤ 16δ

ε3
+

24L√
r · ε2

≤ 1

2
·
(ε
2

)2

+
1

2
·
(ε
2

)2

=
(ε
2

)2

.

The last inequality follows because of our choice of δ and r ≥ r0 ≥ rA.

4.2. Proof of Lemma 3.3. For this proof, the reader may find it convenient to
recall the hierarchy of the constants given in (3.12). Recall that we have

p = p(H) = p(G) + O1(5ε
′) ≥ 1

2
ε3.(4.15)

Note that (4.15) is guaranteed to hold for the graph H that we obtain after prepro-
cessing H as described in section 3.1.1 since p(G) ≥ ε3 in this case. As in section 3.1.2
we assume U ∪ V is the vertex set of H and set mU = |U | and mV = |V |.

Suppose that property P(J, δ) fails for H. Thus

∑
{u,u′}∈J

|dH(u, u′)− p2mV | > δp2mV |J | .(4.16)

Let us first observe that∑
{u,u′}∈J

(
dH(u, u′)− p2mV

)2

=
∑

{u,u′}∈J

(
dH(u, u′)2 − 2dH(u, u′)p2mV + p4mV

2
)

(4.17)

=
∑

{u,u′}∈J
dH(u, u′)2 − 2p2mV

∑
{u,u′}∈J

dH(u, u′) + p4mV
2|J | .

However,
∑

{u,u′}∈J
dH(u, u′) =

∑
{u,u′}∈J

|H(u) ∩H(u′)|

=
∑
v∈V

|Jv| =
∑
v∈V

(1 + O1(η))(1 + O1(µ))
2p2|J | .

In the last inequality we used that due to preprocessing (cf. (4.1)), |H(v)| = (1 +
O1(µ))pmU , and hence (a) in Lemma 2.4 gives (note that (1 + O1(µ))p ≥ η)

|Jv| = (1 + O1(η))(1 + O1(µ))
2p2|J | = (1 + O1(3µ))p

2|J | .
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Therefore
∑

{u,u′}∈J
dH(u, u′) = (1 + O1(3µ))p

2mV |J | .(4.18)

From (4.17) and (4.18) we obtain that

∑
{u,u′}∈J

(
dH(u, u′)− p2mV

)2

=
∑

{u,u′}∈J
dH(u, u′)2 − (1 + O1(6µ))p

4mV
2|J |(4.19)

≤
∑

{u,u′}∈J
dH(u, u′)2 −

(
1− δ2

2

)
p4mV

2|J | .

The last inequality holds true due to our choices of δ and µ; cf. (3.7), (3.8). On the
other hand, in view of (4.16), we have by the Cauchy–Schwarz inequality that

∑
{u,u′}∈J

(
dH(u, u′)− p2mV

)2 ≥ 1

|J |
( ∑
{u,u′}∈J

|dH(u, u′)− p2mV |
)2

>
1

|J |
(
δ|J |p2mV

)2
= δ2p4mV

2|J | .(4.20)

Comparing (4.19) and (4.20), we deduce that

∑
{u,u′}∈J

dH(u, u′)2 ≥
(
1 +

δ2

2

)
p4mV

2|J | .(4.21)

We shall now evaluate the sum on the left-hand side of (4.21) in terms of the matrix
M = (m(e, v))e,v defined in section 3.1.

Clearly, if e = {u, u′} ∈ J , then

dH(u, u′) = |H(u) ∩H(u′)| =
∑
v∈V

m(e, v),

and hence

dH(u, u′)2 =
∑
v∈V

∑
v′∈V

m(e, v)m(e, v′) .

Therefore
∑

{u,u′}∈J
dH(u, u′)2 =

∑
v∈V

∑
e∈J

m(e, v)
∑
v′∈V

m(e, v′)(4.22)

=
∑
v∈V

∑
e∈Jv

∑
v′∈V

m(e, v′) =
∑
v∈V

∑
v′∈V

∑
e∈Jv

m(e, v′) .

Comparing (4.21) and (4.22) we infer that

∑
v∈V

∑
v′∈V

∑
e∈Jv

m(e, v′) ≥
(
1 +

δ2

2

)
p4mV

2|J |,
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and hence there is a vertex v0 ∈ V for which we have

∑
v′∈V

∑
e∈Jv0

m(e, v′) ≥
(
1 +

δ2

2

)
p4mV |J | .(4.23)

Following the algorithm, we fix such a vertex v0. We now set

V ′ :=

{
v′ ∈ V :

∑
e∈Jv0

m(e, v′) ≥
(
1 +

δ2

4

)
p4|J |

}
.(4.24)

As in the algorithm, we put U ′ = H(v0). One may prove that both U ′ and V ′ are
large sets. The proof is postponed for the next section.

Claim 4.6. |U ′| ≥ ε1mU and |V ′| ≥ ε1mV .

Recall that we defined ε1 = 1
4

(
ε
2

)16
in (3.11) to satisfy ε′ � ε1 � δ2. Before we

proceed, using the definition of matrix M we observe that for all v′ ∈ V we have∑
e∈Jv0

m(e, v′) = e(J [H(v0) ∩H(v′)]) .(4.25)

Combining (4.25) and the fact that the edges of J are extremely well distributed we
shall now provide a lower bound on dH(v0, v

′), where v0 is the vertex fixed above and
v′ is an arbitrary vertex of V ′.

Claim 4.7. For all v′ ∈ V ′, we have

dH(v0, v
′) ≥

(
1 +

δ2

12

)
p2mU .(4.26)

The proof of Claim 4.7 is given in next section. Since U ′ = H(v0), it follows
immediately from Claim 4.7 that

eH(U ′, V ′) ≥
(
1 +

δ2

12

)
p2mU |V ′|,(4.27)

which implies that

dH(U ′, V ′) =
eH(U ′, V ′)
|U ′||V ′| ≥ (1 + δ2/12)p2mU |V ′|

(1 + µ)pmU |V ′|
≥
(
1 +

δ2

14

)
p > p + ε1 .(4.28)

Since we have already proved that |U ′| ≥ ε1mU and |V ′| ≥ ε1mV (see Claim 4.6),
inequality (4.28) tells us that (U ′, V ′) is a witness to the ε1-irregularity of H.

We shall now prove that (U ′, V ′) is in fact a witness to the ε′-irregularity of G.
We have

|U ′| ≥ ε1mU ≥ ε1(1− 2ε′)m ≥ ε′m(4.29)

and, similarly,

|V ′| ≥ ε1mV ≥ ε1(1− 2ε′)m ≥ ε′m .(4.30)

Because of (3.3) and (4.28), we have

d(U ′, V ′) > p + ε1 ≥ p(G)− 5ε′ + ε1 ≥ p(G) + ε′.(4.31)

In view of (4.29), (4.30) inequality (4.31) implies that (U ′, V ′) is indeed a witness to
the ε′-irregularity of G, as required.



AN OPTIMAL ALGORITHM FOR CHECKING REGULARITY 1233

4.2.1. Proofs of Claims 4.6 and 4.7. Here we give proofs of Claims 4.6
and 4.7.

Proof of Claim 4.6. Since U ′ = H(v0), estimates (4.1) and our definition of ε1

imply |U ′| = (1 + O1(µ))pmU ≥ ε1mU .

Now we will give a lower bound on |V ′|. By the definition of V ′, we have

∑
v′∈V

∑
e∈Jv0

m(e, v′) =
∑
v′ �∈V ′

∑
e∈Jv0

m(e, v′) +
∑
v′∈V ′

∑
e∈Jv0

m(e, v′)

<

(
1 +

δ2

4

)
p4|J |(mV − |V ′|) + |V ′|e(Jv′) .(4.32)

Since |H(v′)| = (1 + O1(µ))pmV (cf. (4.1)), (a) in Lemma 2.4 implies (note (1 +
O1(µ))p ≥ η)

e(Jv′) = e(J [H(v′)]) = (1 + O1(η))(1 + O1(µ))
2p2|J | = (1 + O1(3µ))p

2|J | .

Thus continuing with (4.32) we can write

∑
v′∈V

∑
e∈Jv0

m(e, v′) <
(
1 +

δ2

4

)
p4|J |mV + (1 + O1(3µ))|V ′|p2|J | .(4.33)

Comparing (4.23) and (4.33), we obtain

2|V ′| ≥ (1 + O1(3µ))|V ′| ≥ 1

4
δ2p2mV ,

and this, using the definition of δ and ε1, gives

|V ′| ≥ 1

8
δ2p2mV ≥ 1

128

(ε
2

)10

ε6mV ≥ ε1mV ,

as required.

Proof of Claim 4.7. Suppose to the contrary that (4.26) fails, i.e., dH(v0, v
′) <

(1 + δ2/12)p2mU . We distinguish two cases: If dH(v0, v
′) ≥ ηmU , then using (a) in

Lemma 2.4 for H(v0) ∩H(v′) implies

e(J [H(v0) ∩H(v′)]) < (1 + O1(η))

(
1 +

δ2

12

)2

p4|J | .

If, on the other hand, d(v0, v
′) < ηmU we have (cf. (b) in Lemma 2.4)

e(J [H(v0) ∩H(v′)]) < 2η2|J | .

In either case, we have

e(J [H(v0) ∩H(v′)]) <
(
1 +

δ2

4

)
p4|J | .(4.34)

However, in view of the definition of V ′ (see (4.24), (4.25)), inequality (4.34) cannot
hold. This contradiction shows that (4.26) must indeed hold.
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[24] Y. Kohayakawa and V. Rödl, Szemerédi’s regularity lemma and quasi-randomness, in Recent
Advances in Algorithms and Combinatorics, CMS Books Math./Ouvrages Math. SMC 11,



AN OPTIMAL ALGORITHM FOR CHECKING REGULARITY 1235

Springer, New York, 2003, pp. 289–351.
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Abstract. A theory of resource-bounded dimension is developed using gales, which are nat-
ural generalizations of martingales. When the resource bound ∆ (a parameter of the theory) is
unrestricted, the resulting dimension is precisely the classical Hausdorff dimension (sometimes called
“fractal dimension”). Other choices of the parameter ∆ yield internal dimension theories in E, E2,
ESPACE, and other complexity classes, and in the class of all decidable problems. In general, if
C is such a class, then every set X of languages has a dimension in C, which is a real number
dim(X | C) ∈ [0, 1]. Along with the elements of this theory, two preliminary applications are pre-
sented:

1. For every real number 0 ≤ α ≤ 1
2
, the set FREQ(≤ α), consisting of all languages that

asymptotically contain at most α of all strings, has dimension H(α)—the binary entropy
of α—in E and in E2.

2. For every real number 0 ≤ α ≤ 1, the set SIZE(α 2n

n
), consisting of all languages decidable

by Boolean circuits of at most α 2n

n
gates, has dimension α in ESPACE.
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1. Introduction. Since the development of resource-bounded measure in 1991
[9], the investigation of the internal, measure-theoretic structure of complexity classes
has produced a rapidly growing body of new insights and results. As indicated by
the survey papers [1, 3, 10, 12], this line of inquiry has shed light on a wide variety of
topics in computational complexity. The ongoing fruitfulness of this research is not
surprising because resource-bounded measure is a complexity-theoretic generalization
of classical Lebesgue measure, which was one of the most powerful quantitative tools
of twentieth-century mathematics.

In spite of this power, there are certain inherent limitations to the amount of
quantitative information that resource-bounded measure can provide in computational
complexity. One of these limitations arises from the resource-bounded Kolmogorov
zero-one law, which was proven by Lutz [11] and has recently been strengthened by
Dai [4]. For any class C in which resource-bounded measure is defined, and for any
set X of languages that is—like most sets of interest in computational complexity—
closed under finite variations, the zero-one law says that the measure of X in C must
be 0 or 1 or undefined. A second limitation arises from the simple fact that even a
measure 0 subset of a complexity class may have internal structure that we would like
to elucidate quantitatively. Of course both these limitations were already present in
classical Lebesgue measure theory.

In 1919, Hausdorff [7] augmented classical Lebesgue measure theory with a theory
of dimension. This theory assigns to every subset X of a given metric space a real
number dimH(X), which is now called the Hausdorff dimension of X. In this paper,
we are interested in the case where the metric space is the Cantor space C, consisting
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of all decision problems (i.e., all languages A ⊆ {0, 1}∗). In this case the Hausdorff
dimension of a set X ⊆ C (which is defined precisely in section 3) is a real number
dimH(X) ∈ [0, 1]. The Hausdorff dimension is monotone, with dimH(∅) = 0 and
dimH(C) = 1. Moreover, if dimH(X) < dimH(C), then X is a measure 0 subset
of C. Hausdorff dimension thus overcomes both of the limitations mentioned in the
preceding paragraph.

In this paper we develop resource-bounded dimension, which is a complexity-
theoretic generalization of classical Hausdorff dimension. We carry out this gener-
alization in two steps. We first prove a new characterization of classical Hausdorff
dimension in terms of gales, which are natural generalizations of the martingales that
are the basis of resource-bounded measure. (Our characterization can be regarded
as an analogue of Ville’s martingale characterization of the Lebesgue measure 0 sets
[19].) We then generalize classical dimension by introducing a resource bound ∆ (a
parameter of the theory) and requiring the gales to be ∆-computable. We show that
this induces a well-behaved notion of dimension in the corresponding class R(∆),
which is defined exactly as in resource-bounded measure. We write dim(X | R(∆))
for the dimension of the set X in the class R(∆). If ∆ is unrestricted, then R(∆) = C
and dim(X | R(∆)) = dim(X | C) is precisely dimH(X). However, other choices of
∆ allow R(∆) to be interesting complexity classes, in which case dim(X | R(∆)) is a
quantitative measure of the dimension of X ∩R(∆) as a subset of R(∆).

After presenting the elements of resource-bounded dimension, we present two
preliminary applications of the theory. First, for each real number α ∈ [0, 1], let
FREQ(≤ α) be the set of all languages that asymptotically contain at most α of all
strings. (This set is defined precisely in section 5.) We prove that, for every real
number α ∈ [0, 1

2 ],

dim(FREQ(≤ α) | E) = H(α)

and

dim(FREQ(≤ α) | E2) = H(α) ,

where E = DTIME(2linear), E2 = DTIME(2poly), andH is the binary entropy function
of Shannon information theory.

Our second application concerns Boolean circuit-size complexity in the complexity
class ESPACE = DSPACE(2linear). For each real number α ∈ [0, 1], let SIZE(α 2n

n ) be
the set of all languages that can be decided by Boolean circuits consisting of at most
α 2n

n gates. We prove that for all α ∈ [0, 1],

dim

(
SIZE

(
α
2n

n

) ∣∣∣∣∣ESPACE
)

= α .

These applications are interesting because they show that resource-bounded di-
mension interacts informatively with information theory and Boolean circuit-size com-
plexity. However, they are clearly only the beginning. Classical Hausdorff dimension
is a sophisticated mathematical theory that has emerged as one of the most important
tools for the investigation of fractal sets. (See, for example, [6] for a good introduc-
tion and overview.) Many sets of interest in computational complexity seem to have
“fractal-like” structures. Resource-bounded dimension will be a useful tool for the
study of such sets.



1238 JACK H. LUTZ

2. Preliminaries. A decision problem (a.k.a. language) is a set A ⊆ {0, 1}∗. We
identify each language with its characteristic sequence [[s0 ∈ A]][[s1 ∈ A]][[s2 ∈ A]] · · · ,
where s0, s1, s2, . . . is the standard enumeration of {0, 1}∗ and [[φ]] = if φ then 1 else 0.
We write A[i..j] for the string consisting of the ith through jth bits of (the charac-
teristic sequence of) A. The Cantor space C is the set of all decision problems.

If w ∈ {0, 1}∗ and x ∈ {0, 1}∗ ∪ C, then w  x means that w is a prefix of x,
and w �

�=
x means that w is a proper prefix of x. The cylinder generated by a string

w ∈ {0, 1}∗ is Cw = {A ∈ C | w  A}.
A prefix set is a language A such that no element of A is a prefix of any other

element of A.
If A is a language and n ∈ N, then we write A=n = A ∩ {0, 1}n and A≤n =

A ∩ {0, 1}≤n.
All logarithms in this paper are base 2.
For each i ∈ N we define a class Gi of functions from N into N as follows:

G0 = {f | (∃k)(∀∞n)f(n) ≤ kn},
Gi+1 = 2Gi(log n) = {f | (∃g ∈ Gi)(∀∞n)f(n) ≤ 2g(log n)}.

We also define the functions ĝi ∈ Gi by ĝ0(n) = 2n, ĝi+1(n) = 2ĝi(log n). We regard
the functions in these classes as growth rates. In particular, G0 contains the linearly
bounded growth rates and G1 contains the polynomially bounded growth rates. It is
easy to show that each Gi is closed under composition, that each f ∈ Gi is o(ĝi+1),
and that each ĝi is o(2

n). Thus Gi contains superpolynomial growth rates for all
i > 1, but all growth rates in the Gi-hierarchy are subexponential.

Within the class DEC of all decidable languages, we are interested in the exponen-
tial complexity classes Ei = DTIME(2Gi−1) and EiSPACE = DSPACE(2Gi−1) for i ≥
1. The much-studied classes E = E1 = DTIME(2linear), E2 = DTIME(2polynomial),
and ESPACE = E1SPACE = DSPACE(2linear) are of particular interest.

We use the following classes of functions:

all = {f | f : {0, 1}∗ → {0, 1}∗},
comp = {f ∈ all | f is computable},

pi = {f ∈ all | f is computable in Gi time} (i ≥ 1),

pispace = {f ∈ all | f is computable in Gi space} (i ≥ 1).

(The length of the output is included as part of the space used in computing f .) We
write p for p1 and pspace for p1space. Throughout this paper, ∆ and ∆′ denote one
of the classes all, comp, pi (i ≥ 1), or pispace (i ≥ 1).

A constructor is a function δ : {0, 1}∗ → {0, 1}∗ that satisfies x�
�=δ(x) for all x. The

result of a constructor δ (i.e., the language constructed by δ) is the unique language
R(δ) such that δn(λ)  R(δ) for all n ∈ N. Intuitively, δ constructs R(δ) by starting
with λ and then iteratively generating successively longer prefixes of R(δ). We write
R(∆) for the set of languages R(δ) such that δ is a constructor in ∆. The following
facts are the reason for our interest in the above-defined classes of functions:

R(all) = C.
R(comp) = DEC.
For i ≥ 1, R(pi)=Ei.
For i ≥ 1, R(pispace) = EiSPACE.

If D is a discrete domain, then a function f : D −→ [0,∞) is ∆-computable if

there is a function f̂ : N ×D −→ Q ∩ [0,∞) such that |f̂(r, x) − f(x)| ≤ 2−r for all
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r ∈ N and x ∈ D and f̂ ∈ ∆ (with r coded in unary and the output coded in binary).
We say that f is exactly ∆-computable if f : D −→ Q ∩ [0,∞) and f ∈ ∆.

3. Gales and Hausdorff dimension. In this section we introduce gales and
supergales, which are generalizations of martingales and supermartingales, and use
these to give a new characterization of classical Hausdorff dimension.

Definition 3.1. Let s ∈ [0,∞).
1. An s-supergale is a function d : {0, 1}∗ −→ [0,∞) that satisfies the condition

d(w) ≥ 2−s[d(w0) + d(w1)](3.1)

for all w ∈ {0, 1}∗.
2. An s-gale is an s-supergale that satisfies (3.1) with equality for all w ∈ {0, 1}∗.
3. A supermartingale is a 1-supergale.
4. A martingale is a 1-gale.

Lemma 3.2. Let s ∈ [0,∞). If d is an s-supergale and B ⊆ {0, 1}∗ is a prefix
set, then for all w ∈ {0, 1}∗,

∑
u∈B

2−s|u|d(wu) ≤ d(w).

Proof. We first use induction on n to prove that for all n ∈ N, the lemma holds
for all prefix sets B ⊆ {0, 1}≤n. For n = 0, this is trivial. Assume that it holds for n,
and let A ⊆ {0, 1}≤n+1 be a prefix set. Let

A′ = {u ∈ {0, 1}n | u0 ∈ A or u1 ∈ A},
and let

B = A≤n ∪A′.
Note that B is a prefix set and A≤n ∩A′ = ∅ (because A is a prefix set). Also, for all
w ∈ {0, 1}∗,

∑
u∈A=n+1

2−s|u|d(wu) = 2−s(n+1)
∑

u∈A=n+1

d(wu)

≤ 2−s(n+1)
∑
u∈A′

[d(wu0) + d(wu1)]

≤ 2−s(n+1)
∑
u∈A′

2sd(wu)

=
∑
u∈A′

2−s|u|d(wu).

Since B ⊆ {0, 1}≤n, it follows by the induction hypothesis that for all w ∈ {0, 1}∗,
∑
u∈A

2−s|u|d(wu) =
∑
u∈A≤n

2−s|u|d(wu) +
∑

u∈A=n+1

2−s|u|d(wu)

≤
∑
u∈A≤n

2−s|u|d(wu) +
∑
u∈A′

2−s|u|d(wu)

=
∑
u∈B

2−s|u|d(wu)

≤ d(w).
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This completes the proof that for all n ∈ N, the lemma holds for all prefix sets
B ⊆ {0, 1}≤n.

To complete the proof of the lemma, let B be an arbitrary prefix set. Then for
all w ∈ {0, 1}∗,

∑
u∈B

2−s|u|d(wu) = sup
n∈N

∑
u∈B≤n

2−s|u|d(wu) ≤ d(w).

Corollary 3.3. Let s ∈ [0,∞), 0 < α ∈ R, and w ∈ {0, 1}∗. If d is an
s-supergale such that d(w) > 0 and B ⊆ {0, 1}∗ is a prefix set such that d(wu) ≥
α2(s−1)|u|d(w) for all u ∈ B, then

∑
u∈B

2−|u| ≤ 1

α
.

Proof. Assume the hypothesis. Then by Lemma 3.2,

d(w) ≥
∑
u∈B

2−s|u|d(wu) ≥ αd(w)
∑
u∈B

2−|u|,

whence the corollary follows.
Corollary 3.4. Let d be an s-supergale, where s ∈ [0, 1]. Then for all w ∈

{0, 1}∗, l ∈ N, and 0 < α ∈ R, there are fewer than 2l

α strings u ∈ {0, 1}l for which

max
v
u

2(1−s)|v|d(wv) > αd(w).

In particular, there is at least one string u ∈ {0, 1}l such that d(wv) ≤ 2(s−1)|v|d(w)
for all v  u.

Proof. Let d, s, w, l, and α be as given, and let

A =

{
u ∈ {0, 1}l|max

v
u
2(1−s)|v|d(wv) > αd(w)

}
.

If A = ∅, the corollary is trivially affirmed, so assume that A �= ∅. (Note that this
implies d(w) > 0.) Let B be the set of all v ∈ {0, 1}≤l such that 2(1−s)|v|d(wv) >
αd(w) but 2(1−s)|v′|d(wv′) ≤ αd(w) for all v′ �

�=
v. Then B is a prefix set, and

A = {u ∈ {0, 1}l | (∃v  u)v ∈ B},
so

|A| =
∑
v∈B

2l−|v| = 2l
∑
v∈B

2−|v|.

Let

α′ = min
v∈B

2(1−s)|v| d(wv)
d(w)

,

and note that α < α′ <∞. Then B is a prefix set such that d(wv) ≥ α′2(s−1)|v|d(w)
for all v ∈ B, so Corollary 3.3 tells us that

|A| = 2l
∑
v∈B

2−|v| ≤ 2l

α′
<

2l

α
.
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This proves the main assertion of the corollary. The last sentence of the corollary
follows immediately by taking α = 1.

Corollary 3.5. If d is an s-supergale, where s ∈ [0,∞), then for all w, u ∈
{0, 1}∗,

d(wu) ≤ 2s|u|d(w).

Proof. Let d, s, w, and u be as given, and let l = |u|. Let β > 2s|u| be arbitrary.
It suffices to show that d(wu) ≤ βd(w).

Let α = β2(1−s)l. Then, for all v ∈ {0, 1}l,
d(wv) > βd(w)⇔ d(wv) > α2(s−1)ld(w),

so Corollary 3.4 tells us that there are fewer than 2l

α strings v ∈ {0, 1}l for which

d(wv) > βd(w). Since 2l

α = 2s|u|
β < 1, it follows that d(wu) ≤ βd(w).

Observation 3.6. Let s ∈ [0,∞). For each k ∈ N, let dk be an s-gale, and let
ak ∈ [0,∞).

1. For each n ∈ Z
+,
∑n−1
k=0 akdk is an s-gale.

2. If
∑∞
k=0 akdk(λ) <∞, then

∑∞
k=0 akdk is an s-gale.

Definition 3.7. Let d be an s-supergale, where s ∈ [0,∞).
1. We say that d succeeds on a language A ∈ C if

lim sup
n→∞

d(A[0 . . . n− 1]) =∞.

2. The success set of d is

S∞[d] = {A ∈ C | d succeeds on A}.
We now review the classical definition of Hausdorff dimension. Since we are

primarily interested in the computational complexities of decision problems, we focus
on Hausdorff dimension in the Cantor space C.

For each k ∈ N, we let Ak be the collection of all prefix sets A such that A<k = ∅.
For each X ⊆ C, we then let

Ak(X) =

{
A ∈ Ak

∣∣∣∣∣ X ⊆
⋃
w∈A

Cw

}
.

If A ∈ Ak(X), then we say that the prefix set A covers the set X. For X ∈ C,
s ∈ [0,∞), and k ∈ N, we then define

Hsk(X) = inf
A∈Ak(X)

∑
w∈A

2−s|w|.

Digression. Readers familiar with Hausdorff dimension may prefer to regard it
as arising from a measure or, more commonly, a metric on the underlying space. If
we regard Hausdorff dimension as arising from a measure on C, then the term 2−s|w|

in the above sum is interpreted as µ(Cw)
s, where µ(Cw) = 2−|w| is the Lebesgue

measure of the cylinder Cw. If we instead regard Hausdorff dimension as arising from
a metric on C, then the metric is

d(A,B) = 2−min{n∈N|A[n] �=B[n]}
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(where min ∅ =∞ so d(A,A) = 0), and the term 2−s|w| is interpreted as diam(Cw)
s,

where

diam(X) = sup
A,B∈X

d(A,B)

is the diameter of a set X ⊆ C. Such interpretations may provide context, but our
technical development does not use them.

Definition 3.8. For s ∈ [0,∞) and X ⊆ C, the s-dimensional Hausdorff cylin-
der outer measure of X is

Hs(X) = lim
k→∞

Hsk(X).

Since Hsk(X) is nondecreasing in k, this limit Hs(X) exists, though it may be
infinite. In fact, it is well known that for every set X ⊆ C, there is a real number
s∗ ∈ [0, 1] with the following two properties:

(i) For all 0 ≤ s < s∗, Hs(X) =∞.
(ii) For all s > s∗, Hs(X) = 0.
As the following definition states, this number s∗ is the Hausdorff dimension of

X.
Definition 3.9. The Hausdorff dimension of a set X ⊆ C is

dimH(X) = inf{s ∈ [0,∞) | Hs(X) = 0}.

Notation. For X ⊆ C, let G(X) be the set of all s ∈ [0,∞) such that there is an
s-gale d for which X ⊆ S∞[d].

The following theorem gives a new characterization of classical Hausdorff dimen-
sion.

Theorem 3.10 (gale characterization of Hausdorff dimension). For all X ⊆ C,
dimH(X) = inf G(X).

Proof. It suffices to show that for all s ∈ [0,∞),

Hs(X) = 0⇔ s ∈ G(X).

First, assume that Hs(X) = 0. Then Hs0(X) = 0, which implies that for each r ∈ N,
there is a prefix set Ar ∈ A0(X) such that

∑
w∈Ar 2

−s|w| ≤ 2−r. For each r ∈ N,
then, fix such a prefix set Ar, and define a function dr : {0, 1}∗ −→ [0,∞) as follows.
Let w ∈ {0, 1}∗. If there exists v  w such that v ∈ Ar, then dr(w) = 2(s−1)(|w|−|v|).
Otherwise,

dr(w) =
∑
u

wu∈Ar

2−s|u|.

It is routine to verify that the following conditions hold for all r ∈ N:
(i) dr is an s-gale.
(ii) dr(λ) ≤ 2−r.
(iii) For all w ∈ Ar, dr(w) = 1.

Let d =
∑∞
r=0 2

rd2r. By Observation 3.6, d is an s-gale. To see that X ⊆ S∞[d], let
B ∈ X, and let r ∈ N be arbitrary. Since the prefix set A2r covers X, there exists
w ∈ A2r such that w  B. Then by (iii) above, d(w) ≥ 2rd2r(w) = 2r. Since r ∈ N is
arbitrary, this shows that B ∈ S∞, confirming that X ⊆ S∞[d].
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We have now shown that d is an s-gale such that X ⊆ S∞[d], whence s ∈ G(X).
Conversely, assume that s ∈ G(X). To see that Hs(X) = 0, let k, r,∈ N. It

suffices to show that Hs(X) ≤ 2−r. If X = ∅, this is trivial, so assume that X �= ∅.
Since s ∈ G(X), there is an s-gale d such that X ⊆ S∞[d]. Note that d(λ) > 0

because X �= 0. Let

a = 1 +max{d(w) | w ∈ {0, 1}≤k},
and let

A =

{
w ∈ {0, 1}∗

∣∣∣∣d(w) ≥ 2ra and (∀v)
[
v �
�=
w ⇒ d(v) < 2ra

]}
.

It is clear that A is a prefix set with A<k = ∅, so A ∈ Ak. It is also clear that

X ⊆ S∞[d] ⊆
⋃
w∈A

Cw,

whence A ∈ Ak(X). By Lemma 3.2 and the definition of A, we have

d(λ) ≥
∑
w∈A

2−s|w|d(w) ≥ 2rd(λ)
∑
w∈A

2−s|w|.

Since A ∈ Ak(X) and d(λ) > 0, it follows that

Hsk(X) ≤
∑
w∈A

2−s|w| ≤ 2−r.

It is clear from the proof of Theorem 3.10 that the s-dimensional Hausdorff cylin-
der outer measure Hs(X) can also be characterized in terms of s-gales, but we refrain
from elaborating here.

4. Dimension in complexity classes. Motivated by the gale characterization
of classical Hausdorff dimension, we now use resource-bounded gales to develop dimen-
sion in complexity classes. As with resource-bounded measure [9], our development
contains a parameter ∆—the resource bound—which may be any one of the classes
all, comp, p, pspace, p2, p2space, etc., defined in section 2.

Notation. For X ⊆ C, let G∆(X) be the set of all s ∈ [0,∞) such that there is a
∆-computable s-gale d for which X ⊆ S∞[d].

Definition 4.1. Let X ⊆ C.
1. The ∆-dimension of X is dim∆(X) = inf G∆(X).
2. The dimension of X in R(∆) is dim(X | R(∆)) = dim∆(X ∩R(∆)).

Note that dim∆(X) and dim(X | R(∆)) are defined for every set X ⊆ C. We call
dimcomp(X) and dimp(X) the computable dimension of X and the feasible dimension
of X, respectively.

The following observations are elementary but useful.
Observation 4.2.
1. For all X ⊆ Y ⊆ C,

dim∆(X) ≤ dim∆(Y )

and

dim(X | R(∆)) ≤ dim(Y | R(∆)).
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2. If ∆ and ∆′ are resource bounds such that ∆ ⊆ ∆′, then for all X ⊆ C,
dim∆′(X) ≤ dim∆(X).

3. For all X ⊆ C, 0 ≤ dim(X | R(∆)) ≤ dim∆(X) ≤ 1.
4. For all X ⊆ C, dim(X | C) = dimall(X) = dimH(X).
5. For all X ⊆ C,

dim∆(X) < 1⇒ µ∆(X) = 0

and

dim(X | R(∆)) < 1⇒ µ(X | R(∆)) = 0.

Proof. Observations 1, 2, 4, and 5 follow immediately from the definitions. For
observation 3, it suffices to show that dim∆(C) ≤ 1. For this, fix s > 1 such that 2s

is rational. Then the function

d : {0, 1}∗ → [0,∞)

d(w) = 2(s−1)|w|

is a ∆-computable s-gale such that S∞[d] = C, so s ∈ G∆(C), and thus dim∆(C) ≤ s.
Since this holds for all s > 1 with 2s rational, it follows that dim∆(C) ≤ 1.

The fifth observation above shows that resource-bounded dimension offers a quan-
titative classification of sets that have resource-bounded measure 0. However, it should
be emphasized that this classification is in terms of dimension, which is very differ-
ent from measure. For example, Lemma 4.9 and its corollaries exhibit properties of
dimension that contrast sharply with those of measure.

To proceed further, we need a little bit of technical machinery concerning the
computability of gales and supergales.

Observation 4.3. If d is a ∆-computable s-gale, then the real number 2s is
∆-computable.

Lemma 4.4. If d is a ∆-computable s-supergale and 2s is ∆-computable, then
there is a ∆-computable s-gale d̃ such that S∞[d] ⊆ S∞[d̃]. Moreover, if d is exactly
∆-computable and 2s is rational, then d̃ is exactly ∆-computable.

Proof. Assume the hypothesis. Define

d̃ : {0, 1}∗ −→ [0,∞)

d̃(λ) = d(λ),

d̃(w0) =
1

2
[2sd̃(w) + d(w0)− d(w1)],

d̃(w1) =
1

2
[2sd̃(w)− d(w0) + d(w1)].

Then d̃ is clearly a ∆-computable s-gale, and an easy induction shows that
d̃(w) ≥ d(w) for all w ∈ {0, 1}∗, whence S∞[d] ⊆ S∞[d̃]. Moreover, if d is exactly
∆-computable and 2s is rational, then it is clear that d̃ is exactly ∆-computable.
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Observation 4.5. If d is an s-supergale and s′ ≥ s, then d is an s′-supergale.
Corollary 4.6. Let X ⊆ C and s′ ≥ s ≥ 0. If s ∈ G∆(X) and 2s

′
is ∆-

computable, then s′ ∈ G∆(X).
Proof. This follows immediately from Lemma 4.4 and Observation 4.5.
Note that Corollary 4.6 implies that G∆(X) is a dense subset of the interval

[dim∆(X),∞).
The following consequence of Lemma 4.4 says that supergales can be used to

establish upper bounds on dimension.
Corollary 4.7. Let X ⊆ C and s ∈ [0,∞). If there is a ∆-computable s-

supergale d such that X ⊆ S∞[d], then dim∆(X) ≤ s.
Proof. Assume the hypothesis, and let s′ ≥ s be arbitrary such that 2s is ∆-

computable. By Observation 4.5, d is a ∆-computable s′-supergale with X ⊆ S∞[d].
It follows by Lemma 4.4 that s′ ∈ G∆(X), whence dim∆(X) ≤ s′. Since this holds for
all s′ ≥ s with 2s

′
∆-computable, it follows that dim∆(X) ≤ s.

Lemma 4.8 (exact computation lemma). If d is a ∆-computable s-supergale and
2s is rational, then there is an exactly ∆-computable s-gale d̃ such that S∞[d] ⊆ S∞[d̃].

Proof. Assume the hypothesis. If s = 0, then S∞[d] = ∅ and the conclusion holds
trivially, so assume that s > 0. By Lemma 4.4, it suffices to show that there is an
exactly computable s-supergale d̃ such that S∞[d] ⊆ S∞[d̃].

Since d is ∆-computable, there is an exactly ∆-computable function d̂ : {0, 1}∗ ×
N −→ Q ∩ [0,∞) such that for all w ∈ {0, 1}∗ and r ∈ N, |d̂(w, r)− d(w)| ≤ 2−r. Let

a = 1 +

⌈
log

1

1− 2−s

⌉
,

so that 21−a ≤ 1− 2−s, and define

d̃ : {0, 1}∗ −→ Q ∩ [0,∞)

d̃(w) = d̂(w, |w|+ a) + 2−|w|.

It is clear that d̃ is exactly ∆-computable. Also, for all w ∈ {0, 1}∗,
d̃(w)− 2−s[d̃(w0) + d̃(w1)]

≥ d(w)− 2−(|w|+a) + 2−|w| − 2−s
[
d(w0) + d(w1) + 2

[
2−(|w|+a+1) + 2−(|w|+1)

]]

= d(w)− 2−s[d(w0) + d(w1)] + 2−|w|[1− 2−s − (1 + 2−s)2−a]
≥ 2−|w|[1− 2−s − 21−a]
≥ 0 ,

so d̃ is an s-supergale. Finally, for all w ∈ {0, 1}∗,
d̃(w)− d(w) ≥ 2−|w| − 2−(|w|+a) > 0,

so S∞[d] ⊆ S∞[d̃].
Lemma 4.9. For all X,Y ⊆ C,

dim∆(X ∪ Y ) = max{dim∆(X),dim∆(Y )}
and

dim(X ∪ Y | R(∆)) = max{dim(X | R(∆)),dim(Y | R(∆))}.
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Proof. The second identity follows from the first, so by Observation 4.2 it suffices
to show that

dim∆(X ∪ Y ) ≤ max{dim∆(X),dim∆(Y )}.
For this, choose an arbitrary s > max{dim∆(X),dim∆(Y )} such that 2s is ∆-comput-
able. By Corollary 4.6, s ∈ G∆(X) ∩ G∆(Y ), so there exist ∆-computable s-gales dX
and dY such that X ⊆ S∞[dX ] and Y ⊆ S∞[dY ]. Let d = dX + dY . Then d is clearly
∆-computable , and d is an s-gale by Observation 3.6. It is clear that X ∪Y ⊆ S∞[d],
whence s ∈ G∆(X ∪ Y ). It follows that dim∆(X ∪ Y ) < s. Since s is arbitrary here,
we have shown that dim∆(X ∪ Y ) ≤ max{dim∆(X),dim∆(Y )}.

Lemma 4.9 has the following immediate consequence.
Corollary 4.10. For all X ∈ C and n ∈ N,

dim∆(X) = max
w∈{0,1}n

dim∆(X ∩Cw)

and

dim(X | R(∆)) = max
w∈{0,1}n

dim(X ∩Cw | R(∆)).

A set X ⊆ C is closed under finite variations if for every A ∈ X and every finite
set D ⊆ {0, 1}∗, we have A�D ∈ X, where A�D = (A − D) ∪ (D − A) is the
symmetric difference of A and D. A set X with this property is called a tail set.

Corollary 4.11. If X ⊆ C is a tail set, then for all w ∈ {0, 1}∗,
dim∆(X ∩Cw) = dim∆(X)

and

dim(X ∩Cw | R(∆)) = dim(X | R(∆)).

Lemma 4.9 can be extended to countable unions, provided that these unions are
sufficiently constructive.

Definition 4.12. Let X,X0, X1, X2, . . . ⊆ C.
1. X is a ∆-union of the ∆-dimensioned sets X0, X1, X2, . . . if X =

⋃∞
k=0Xk

and for each s > supk∈N dim∆(Xk) with 2s rational, there is a function d :
N× {0, 1}∗ → [0,∞) with the following properties:
(i) d is ∆-computable.
(ii) For each k ∈ N, if we write dk(w) = d(k,w), then the function dk is an

s-gale.
(iii) For each k ∈ N, Xk ⊆ S∞[dk].

2. X is a ∆-union of the sets X0, X1, X2, . . . dimensioned in R(∆) if X =⋃∞
k=0Xk and X ∩R(∆) is a ∆-union of the ∆-dimensional sets X0 ∩R(∆),

X1 ∩R(∆), X2 ∩R(∆), . . . .
Lemma 4.13. Let X,X0, X1, X2, . . . ⊆ C.
1. If X is a ∆-union of the ∆-dimensioned sets X0, X1, X2, . . . , then

dim∆(X) = sup
k∈N

dim∆(Xk).

2. If X is a ∆-union of the sets X0, X1, X2, . . . dimensioned in R(∆), then

dim(X | R(∆)) = sup
k∈N

dim(Xk | R(∆)).
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Proof. It suffices to prove 1, since 2 follows immediately from 1. Assume the
hypothesis of 1, and let s > supk∈N dim∆(XK) be arbitrary with 2s rational and
s < 2. By Observation 4.2, it suffices to show that dim∆(X) ≤ s.

Since X is a union of the ∆-dimensioned sets X0, X1, X2, . . . , there is a ∆-
computable function d : N × {0, 1}∗ −→ [0,∞) such that each dk is an s-gale with
Xk ⊆ S∞[dk]. Without loss of generality (modifying d if necessary), we can assume
that each dk(λ) ≤ 1.

Let d̃ =
∑∞
k=0 2

−kdk. By Observation 3.6, d̃ is an s-gale. Since d is ∆-computable,

there is a function d̂ : N × N × {0, 1}∗ −→ Q ∩ [0,∞) such that d̂ ∈ ∆ and for all

r, k ∈ N and w ∈ {0, 1}∗, |d̂(r, k, w)− d(k,w)| ≤ 2−r. Define

ˆ̃
d : N× {0, 1}∗ −→ Q ∩ [0,∞)

by

ˆ̃
d(r, w) =

r+2|w|+1∑
k=0

2−kd̂(r + 2, k, w).

Then
ˆ̃
d ∈ ∆ and for all r ∈ N and w ∈ {0, 1}∗,

| ˆ̃d(r, w)− d̃(w)| ≤ |d̃(w)− a|+ |a− ˆ̃
d(w)|,

where a =
∑r+2|w|+1
k=0 2−kdk(w). By Corollary 3.5,

|d̃(w)− a| =
∞∑

k=r+2|w|+2

2−kdk(w)

≤
∞∑

k=r+2|w|+2

2−k2s|w|dk(λ)

≤
∞∑

k=r+2|w|+2

22|w|−k

= 2−(r+1).

Also,

|a− ˆ̃
d(w)| ≤

r+2|w|+1∑
k=0

2−k|d̃(r + 2, k, w)− d(k,w)|

≤
∞∑
k=0

2−(k+r+2)

= 2−(r+1).

It follows that for all r ∈ N and w ∈ {0, 1}∗,

| ˆ̃d(r, w)− d̃| ≤ 2−r ,

whence
ˆ̃
d testifies that d̃ is ∆-computable. It is clear thatX =

⋃∞
k=0Xk ⊆

⋃∞
k=0 S

∞[dk]

⊆ S∞[d̃], so it follows that dim∆(X) ≤ s.
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We now note that finite sets of languages have resource-bounded dimension 0,
provided that the languages themselves do not exceed the resource bound.

Lemma 4.14. If X ⊆ R(∆) is finite, then dim(X | R(∆)) = dim∆(X) = 0.
Proof. By Lemma 4.9, it suffices to prove this for singleton sets X ⊆ R(∆), so

assume that X = {A}, where A ∈ R(∆). Let s > 0 be arbitrarily small with 2s

rational. It suffices to show that dim∆(X) ≤ s. Define

d : {0, 1}∗ −→ [0,∞)

d(w) =

{
2s|w| if w  A,
0 if w � A.

Then d ∈ ∆ (because A ∈ R(∆) and 2s is rational) and it is clear that d is an s-gale
that succeeds on A. Thus dim∆(X) ≤ s.

Lemma 4.14 can be extended to subsets of R(∆) that are “countable within the
resource bound ∆” in the following sense. A set X ⊆ C is ∆-countable if there is a
function δ : N× {0, 1}∗ → {0, 1}∗ with the following properties:

(i) δ ∈ ∆.
(ii) For each k ∈ N, if we write δk(w) = δ(k,w), then the function δk is a con-

structor.
(iii) X = {R(δk) | k ∈ N} .
It is clear that if X is ∆-countable, then X ⊆ R(∆). It was shown in [9] that

every ∆-countable set has ∆-measure 0. We now show that more is true.
Lemma 4.15. If X ⊆ C is ∆-countable, then dim(X | R(∆)) = dim∆(X) = 0.
Proof. Let the function δ : N× {0, 1}∗ −→ {0, 1}∗ testify that X is ∆-countable.

By Lemmas 4.13 and 4.14, it suffices to show that X is a ∆-union of the ∆-dimension
0 singleton sets {R(δ0)}, {R(δ1)}, {R(δ2)}, . . . . For this, let s > 0 with 2s rational,
and define

d : N× {0, 1}∗ −→ [0,∞)

d(k,w) =

{
2s|w| if w  R(δk),
0 if w � R(δk).

Then d clearly has the required properties.
If ∆ = all, then Lemma 4.15 is the well-known fact that every countable set has

Hausdorff dimension 0. For smaller resource bounds ∆, Lemma 4.15 has consequences
of the following sort.

Corollary 4.16. For every k ∈ N,

dim(DTIME(2kn) | E) = 0

and

dim(DTIME(2n
k

) | E2) = 0.

Analogous results hold in ESPACE, REC, etc. As noted above, every countable
class of languages has Hausdorff dimension 0. In contrast, we now show that, even
for countable resource bounds ∆, the ∆-dimension of R(∆) is 1. This result, which is
analogous to the measure conservation theorem of [9], endows the classes R(∆) with
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internal dimensional structure. (In fact, by Observation 4.2, this result follows from
the measure conservation theorem, but we prove it directly here.)

Theorem 4.17. dim(R(∆) | R(∆)) = dim∆(R(∆)) = 1.
Proof. By definition, dim(R(∆) | R(∆)) = dim∆(R(∆)), and by Observation 4.2,

dim∆(R(∆)) ≤ 1, so it suffices to show that dim∆(R(∆)) ≥ 1. For this, fix an
arbitrary s ∈ [0, 1) such that 2s is rational. By Corollary 4.6, it suffices to show that
s �∈ G∆(R(∆)). For this, let d ∈ ∆ be an exact s-gale. By the exact computation
lemma, it suffices to show that R(∆) �⊆ S∞[d]. We do this by defining a constructor
δ ∈ ∆ such that R(δ) �∈ S∞[d].

For each w ∈ {0, 1}∗, let
δ(w) = w[[d(w0) > d(w1)]].

Then δ is a constructor, and it is clear that δ ∈ ∆ (because d ∈ ∆). The definition of
δ ensures that for all w ∈ {0, 1}∗,

d(δ(w)) = min{d(w0), d(w1)}.
It follows by Corollary 3.4 that for all w ∈ {0, 1}∗, d(δ(w)) ≤ 2s−1d(w). By induction,
this implies that for all n ∈ N, d(δn(λ)) ≤ 2(s−1)nd(λ). Since s ∈ [0, 1), we then have

lim
n→∞ d(R(δ)[0 . . . n− 1]) = lim

n→∞ d(δ
n(λ)) = 0,

whence R(δ) �∈ S∞[d].
We now give an example in which we calculate the resource-bounded dimension

of a simple set of languages.
Proposition 4.18. Given l ∈ Z

+ and ∅ �= S ⊆ {0, 1}l, let

X = {A ∈ C | (∀k)A[kl..(k + 1)l − 1] ∈ S}.
Then

dim(X | E) = dimp(X) =
log |S|
l

.

Proof. Since dim(X | E) ≤ dimp(X), it suffices to show that dimp(X) ≤ log |S|
l

and dim(X | E) ≥ log |S|
l .

To see that dimp(X) ≤ log |S|
l , let s > log |S|

l be such that 2s is rational. Define a
function d : {0, 1}∗ −→ [0,∞) inductively as follows. Let d(λ) = 1. If d(w) has been
defined, where |w| is a multiple of l, and if 0 < |u| ≤ l, then let d(wu) = 2s|u|ρ(u)d(w),
where

ρ(u) =
|{v ∈ S | u  v}|

|S| .

It is clear that d is exactly p-computable, and it is routine to verify that d is an s-gale.
The definition of d implies that if |w| is a multiple of l and u ∈ S, then

d(wu) = 2sl
1

|S|d(w) = 2εd(w),

where ε = sl − log |S| > 0 by our choice of s. It follows inductively that if A ∈ X,
then for all k ∈ N,

d(A[0 . . . kl − 1]) = 2εk,
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whence A ∈ S∞[d]. Thus X ⊆ S∞[d]. We have now established that dimp(X) ≤ s.

Since this holds for a dense set of s > log |S|
l , it follows that dimp(X) ≤ log |S|

l .

To see that dim(X | E) ≥ log |S|
l , let 0 ≤ s < log |S|

l be such that 2s is rational,
and let d be an exactly p-computable s-gale. By the exact computation lemma, it
suffices to show that X ∩ E �⊆ S∞[d]. Define a constructor δ as follows. If |w| is a
multiple of l, then δ(w) = wu, where u is the lexicographically first element of S such
that for all v ∈ S, d(wu) ≤ d(wv). If |w| is not a multiple of l, then δ(w) = w0.
Since δ is exactly p-computable, it is clear that δ ∈ p. It is then easy to see that
R(δ) ∈ X ∩R(p) = X ∩ E. We finish the proof by showing that R(δ) �∈ S∞[d].

For any string w, Corollary 3.4 (with α = 2l

|S| ) tells us that there are fewer than

|S| strings u ∈ {0, 1}l for which d(wu) > 2sl

|S|d(w). This implies that for all w such

that |w| is a multiple of l, d(δ(w)) ≤ 2sl

|S|d(w). Thus for all k ∈ N,

d(R(δ)[0 . . . kl − 1]) ≤
(
2sl

|S|
)k

d(λ) = 2−εkd(λ),

where ε = log |S| − sl > 0. It follows by Corollary 3.5 that for all n ∈ N,

d(R(δ)[0 . . . n− 1]) ≤ 2sl−ε�
n
l �d(λ),

whence R(δ) �∈ S∞[d].
We conclude this section by mentioning some relevant earlier work relating mar-

tingales and supermartingales to computable dimension. Schnorr [14, 15] defined a
martingale d to have exponential order on a sequence (equivalently, language) S if

lim sup
n→∞

log d(S[0..n− 1])

n
> 0(4.1)

and proved that no computable martingale can have exponential order on a Church-
stochastic sequence. Terwijn [18] has noted that (4.1) is equivalent to the existence of
an s < 1 for which the s-gale d(s)(w) = 2(s−1)|w|d(w) succeeds on S. Thus Schnorr’s
result says that dimcomp({S}) = 1 for every Church-stochastic sequence S.

Ryabko [13] and Staiger [17] defined the exponent of increase λd(S) of a martingale
d on a sequence S to be the left-hand side of (4.1). (We are using Staiger’s notation
here.) Both papers paid particular attention to the quantity

λ(S) = sup{λd(S)|d is a computable martingale}.(4.2)

By Terwijn’s above-mentioned observation, 1− λ(S) is precisely dimcomp({S}). The
reader is referred to these papers for interesting results relating λ(S)—and hence
computable dimension—to Kolmogorov complexity and Hausdorff dimension.

5. Dimension and frequency in exponential time. In this section we show
that for each 0 ≤ s ≤ 1 there is a natural set X that has dimension s in each of the
exponential time complexity classes E and E2. This set X consists of those languages
that asymptotically contain at most α of all strings, where 0 ≤ α ≤ 1

2 and H(α) = s.
We now define this set more completely.

For each nonempty string w ∈ {0, 1}+, let

freq(w) =
#(1, w)

|w| ,
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where #(1, w) is the number of 1’s in w. For each A ∈ C and n ∈ Z
+, let

freqA(n) = freq(A[0..n− 1]).

That is, freqA(n) is the fraction of the first n strings in {0, 1}∗ that are elements of
A. For α ∈ [0, 1], define the sets

FREQ(α) = {A ∈ C | lim
n→∞ freqA(n) = α},

FREQ(≤ α) = {A ∈ C | lim inf
n→∞ freqA(n) ≤ α}.

The set FREQ(≤ α) is the set X promised in the preceding paragraph.

Our results use the binary entropy function

H : [0, 1] −→ [0, 1]

H(α) = α log
1

α
+ (1− α) log 1

1− α.

(The values H(0) and H(1) are both 0, so that H is continuous on [0, 1].) Our proofs
use the “weighted entropy” function

h : (0, 1)× (0, 1) −→ R

h(x, y) = x log
1

y
+ (1− x) log 1

1− y .

For fixed x, h(x, y) takes its minimum value H(x) at y = x and strictly increases as
y moves away from x.

We first show that H(α) is an upper bound on the p-dimension of FREQ(≤ α).

Lemma 5.1. For all α ∈ [0, 1
2 ], dimp(FREQ(≤ α)) ≤ H(α).

Proof. Let 0 ≤ α ≤ 1
2 . Let s > H(α) be such that 2s is rational, and let

ε = s−H(α)
2 . Fix δ > 0 such that for all x, y ∈ [α−δ, α+δ]∩(0, 1), |h(x, y)−H(α)| < ε,

and let y ∈ [α− δ, α+ δ] ∩ (0, 1
2 ] be a rational number. Define

d : {0, 1}∗ −→ Q ∩ [0,∞)

d(λ) = 1,

d(w0) = (1− y)2sd(w),

d(w1) = y2sd(w).

It is clear that d is an exactly p-computable s-gale.
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To see that FREQ(≤ α) ⊆ S∞[d], let A ∈ FREQ(≤ α). Then there exists an
infinite set J ⊆ N such that for all n ∈ J , freqA(n) ≤ α + δ. It follows that for all
n ∈ J , if we write wn = A[0 . . . n− 1], then

d(wn) = y#(1,wn)(1− y)#(0,wn)
2sn

=
[
yfreqA(n)(1− y)1−freqA(n)

2s
]n

≥
[
yα+δ(1− y)1−(α+δ)

2s
]n

=
[
2s−h(α+δ,y)

]n

≥
[
2s−H(α)−ε

]n
= 2εn .

Thus A ∈ S∞[d].
We have now shown that dimp(FREQ(≤ α)) ≤ s. Since this holds for all s > H(α)

such that 2s is rational, it follows that dimp(FREQ(≤ α)) ≤ H(α).
We next show that H(α) is a lower bound on the dimension of FREQ(α) in R(∆).

In general, this does not hold for arbitrary α ∈ [0, 1], since if R(∆) is countable, there
can be only countably many α for which FREQ(α) ∩ R(∆) �= ∅. However, it does
hold for all ∆-computable real numbers α ∈ [0, 1].

Lemma 5.2. For all ∆-computable α ∈ [0, 1], dim(FREQ(α) | R(∆)) ≥ H(α).
Proof. The inequality holds trivially for α ∈ {0, 1}, so assume that α ∈ (0, 1)

is ∆-computable. Fix s ∈ (0,H(α)) such 2s is rational, and let d be an exactly
∆-computable s-gale. By the exact computation lemma, it suffices to show that
FREQ(α) ∩R(∆) �⊆ S∞[d].

Although the details are a bit involved, the idea of the proof is simple. We want
to define a constructor δ ∈ ∆ such that R(δ) ∈ FREQ(α)− S∞[d]. Given a string w

of length n, δ computes a rational approximation k(n)
m(n) of α and extends w by a string

u of length m(n) containing exactly k(n) 1’s and having the property that d makes

no progress along u. Such a string u exists because s < H( k(n)m(n) ), and it can be found

within the resource bound ∆ because m(n) is logarithmic in n. On the other hand,
m(n)→∞ as n→∞, so R(δ) ∈ FREQ(α), and d makes no progress along R(δ), so
R(δ) �∈ S∞[d]. We now develop this idea.

Since α is ∆-computable, there is a function α̂ : N→ Q ∩ (0, 1) such that α̂ ∈ ∆
and for all r ∈ N, |α̂(r)− α| ≤ 2−r. Fix ε > 0 such that

ε ≤ α, ε ≤ 1− α,(5.1)

and for all x ∈ [0, 1],

|x− α| < ε⇒ |H(x)−H(α)| < H(α)− s
2

.(5.2)

Choose a positive integer c satisfying the conditions

c > 21+ 2
ε ,(5.3)

c > 1 + log
1

ε
,(5.4)

log c

log log c
>

4

H(α)− s .(5.5)
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For each n ∈ N, let

m(n) = �log(n+ c)�,
k(n) = �α̂(m(n) + c)m(n)�.

We first show that k(n)
m(n) is a useful approximation of α. By (5.3),

m(n) ≥ �log c� ≥ 2

ε
(5.6)

for all n ∈ N. In particular, m(n) is always positive. By (5.4) and (5.1),

α̂(m(n) + c) ≥ α− 2−c ≥ α− 2−1+log ε

= α− ε

2
≥ α

2
(5.7)

for all n ∈ N. It follows from (5.6), (5.7), and (5.1) that

k(n) ≥
⌊
2

ε

α

2

⌋
> 0(5.8)

for all n ∈ N. Also by (5.4) and (5.1),

α̂(m(n) + c) ≤ α+ 2−c < α+ 2−1+log ε

≤ α+ 2−1+log(1−α) =
1 + α

2
< 1,

so

k(n) = �α̂(m(n) + c)m(n)� < m(n)(5.9)

for all n ∈ N. By (5.8) and (5.9), we now have

0 <
k(n)

m(n)
< 1(5.10)

for all n ∈ N. In fact,

k(n)

m(n)
=
�α̂(m(n) + c)m(n)�

m(n)
,

so

α̂(m(n) + c)− 1

m(n)
<

k(n)

m(n)
≤ α̂(m(n) + c),

and thus ∣∣∣∣ k(n)m(n)
− α

∣∣∣∣ ≤ 1

m(n)
+ 2−(m(n)+c)(5.11)

for all n ∈ N. It follows by (5.4) and (5.6) that

∣∣∣∣ k(n)m(n)
− α

∣∣∣∣ ≤ ε,
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whence by (5.2),

∣∣∣∣H
(
k(n)

m(n)

)
−H(α)

∣∣∣∣ < H(α)− s2
(5.12)

for all n ∈ N. This is the first sense in which k(n)
m(n) is a useful approximation of α.

For each n ∈ N, define the set

Bn =
{
u ∈ {0, 1}m(n)

∣∣∣#(1, u) = k(n)
}
.

Using (5.10) and the well-known approximation e
(
N
e

)N
< N ! < eN

(
N
e

)N
, valid for

all N ≥ 1, it is easy to see that

|Bn| =
(
m(n)

k(n)

)
>

1

ek(n)(m(n)− k(n))2
m(n)H

(
k(n)
m(n)

)

≥ 4

em(n)2
2
m(n)H

(
k(n)
m(n)

)

> 2
m(n)H

(
k(n)
m(n)

)
−2 logm(n)

for all n ∈ N. It follows by (5.12) that

|Bn| > 2
m(n)

[
H(α)−H(α)−s

2

]
−2 logm(n)

= 2m(n)
H(α)+s

2 −2 logm(n)

for all n ∈ N. Now (5.5) and the monotonicity of log x
log log x tell us that

m(n)
H(α)− s

2
≥ 2 logm(n),

so it follows that

|Bn| > 2
m(n)

[H(α)+s
2 −H(α−s)

2

]
= 2sm(n)(5.13)

for all n ∈ N.
Corollary 3.4 tells us that for each w ∈ {0, 1}∗ there are fewer than 2sm(n) strings

u ∈ {0, 1}m(n) for which max
v
u

d(wv) > d(w). It follows by (5.13) that the function

δ : {0, 1}∗ → {0, 1}∗

δ(w) = wu, where u is the lexicographically
first element of B|w| such that
d(wv) ≤ d(w) for all v  u,

is a well-defined constructor. Also, since d ∈ ∆ and |{0, 1}m(|w|)| ≤ |w| + c, it is
clear that δ ∈ ∆. To conclude the proof, then, it suffices to show that R(δ) ∈
FREQ(α)− S∞[d].

To see that R(δ) ∈ FREQ(α), define a sequence n0, n1, . . . by the recursion

n0 = 0, ni+1 = ni +m(ni),
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and note that R(δ) is of the form

R(δ) = u0u1u2 · · · ,

where |ui| = m(ni) and freq(ui) =
k(ni)
m(ni)

for all i ∈ N. Also, by (5.11) we have

∣∣∣∣ k(n)m(n)
− α

∣∣∣∣ ≤ 2

m(n)

for all n ∈ N. Since m(n)→∞ as n→∞, it follows that

lim
i→∞

freq(ui) = lim
i→∞

k(ni)

m(ni)
= α.

(This is the second sense in which k(n)
m(n) is a useful approximation of α.) Since |ui| is

nondecreasing, this implies that R(δ) ∈ FREQ(α).

The definition of δ implies that d(w) ≤ d(λ) for all w  R(δ), so R(δ) �∈
S∞[d].

From these two lemmas we get the main result of this section.

Theorem 5.3.

1. For all ∆-computable α ∈ [0, 1], dim(FREQ(α) | R(∆)) = H(α).
2. For all α ∈ [0, 1

2 ], dim(FREQ(≤ α)|R(∆)) = H(α).
Proof.

1. This follows immediately from Lemmas 5.1 and 5.2 and Observation 4.2.
2. Let α ∈ [0, 1

2 ]. By Lemma 5.1 and Observation 4.2,

dim(FREQ(≤ α) | R(∆))

= dim∆(FREQ(≤ α) ∩R(∆))

≤ dim∆(FREQ(≤ α))

≤ dimp(FREQ(≤ α))

≤ H(α).

For the reverse inequality, let α′ be an arbitrary rational such that α′ ≤ α.
Then by Lemma 5.2 and Observation 4.2,

dim(FREQ(≤ α) | R(∆))

≥ dim(FREQ(α′) ∩R(∆))

≥ H(α′).

Since this holds for all rational α′ ≤ α and H is continuous, it follows that

dim(FREQ(≤ α) | R(∆)) ≥ H(α).

The case ∆ = all of Theorem 5.3 says simply that the classical Hausdorff di-
mensions of FREQ(α) and FREQ(≤ α) are both H(α). This was proven in 1949 by
Eggleston [5, 2]. The proof here yields a new proof, using gales, of this classical result.
However, it is complexity-theoretic results of the following kind that are of interest in
this paper.
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Corollary 5.4.

1. For all p-computable reals α ∈ [0, 1],

dim(FREQ(α) | E) = dim(FREQ(α) | E2) = H(α).

2. For all α ∈ [0, 1
2 ],

dim(FREQ(≤ α) | E) = dim(FREQ(≤ α) | E2) = H(α).

Since H(0) = 0, H( 1
2 ) = 1, and H is continuous, part 2 of the corollary implies

that for every s ∈ [0, 1] there exists α ∈ [0, 1
2 ] such that

dim(FREQ(≤ α) | E) = dim(FREQ(≤ α) | E2) = s.

6. Dimension and circuit size in exponential space. We now examine the
dimensions of Boolean circuit-size complexity classes in the complexity class ESPACE.

Our Boolean circuit model and terminology are standard. Details may be found
in [9], but our result is not sensitive to minor details of the model. The circuit-size
complexity of a language A ⊆ {0, 1}∗ is the function CSA : N −→ N, where CSA(n) is
the number of gates in the smallest n-input Boolean circuit that decides A ∩ {0, 1}n.
For each function f : N −→ N, we define the circuit-size complexity class

SIZE(f) = {A ∈ C | (∀∞n)CSA(n) ≤ f(n)}.

Shannon [16] showed (essentially) that SIZE(α 2n

n ) has measure 0 in C for all α < 1,

and Lutz [9] showed that SIZE(α 2n

n ) also has measure 0 in ESPACE for all α < 1.
We now use resource-bounded dimension to give a quantitative refinement of these
results.

Assume that all n-input Boolean circuits are enumerated in a canonical order in
which all circuits of size (number of gates) t precede all those of size t + 1 for all
t ∈ Z

+. Call a circuit in this enumeration novel if there is no previous circuit in the
enumeration that decides the same subset of {0, 1}n. For each n ∈ N and t ∈ Z

+, let
N(n, t) be the number of novel n-input Boolean circuits with at most t gates. The
following specific bound on N(n, t) was proven in [9], but as noted there, the idea is
essentially due to Shannon [16].

Lemma 6.1. For all n ∈ N and t > n, N(n, t) ≤ (48et)t.

Lemma 6.2. For every real α ∈ [0, 1], dimpspace(SIZE(α
2n

n )) ≤ α.

Proof. Let α ∈ (0, 1], and let s > α be such that 2s is rational. Define d :
{0, 1}∗ −→ [0,∞) inductively as follows:

(i) Let d(λ) = 1.
(ii) Assume that d(w) has been defined, where |w| = 2n − 1 for some n ∈ N. For

each u with 0 < |u| ≤ 2n, define d(wu) = 2s|u|ρ(u)d(w), where

ρ(u) =
N(n, t, u)

N(n, t)

and N(n, t, u) is the number of novel n-input Boolean circuits with at most
t gates that decide the sets B ⊆ {0, 1}n whose first |u| decisions are the bits
of u. It is easy to check that d is an exactly pspace-computable s-gale. The
definition of d implies that if |w| = 2n − 1 and u is the characteristic string
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of a set B ⊆ {0, 1}n that can be decided by a circuit with at most α 2n

n gates,
then for sufficiently large n,

d(wu) = 2s2
n 1

N(n, α 2n

n )
d(w)

= 2s2
n−α 2n

n [log 48e+logα+n−log n]d(w)

= 2(s−α)2n+α 2n

n [log n−log 48e−logα]d(w)

≥ 2(s−α)2nd(w).

Since s− α > 0, this implies that SIZE(α 2n

n ) ⊆ S∞[d].

Lemma 6.3. If 0 < β < α ≤ 1, then for all sufficiently large n there are at least
2β2

n

different sets B ⊆ {0, 1}n that are decided by Boolean circuits of fewer than α 2n

n
gates.

Proof. Let m = n+ log β. Then there are 22m = 2β2
n

different sets C ⊆ {0, 1}m.
If we let ε = α−β

2α , so that β = α(1− 2ε), then for all sufficiently large n, Lupanov [8]

has shown that each of these sets is decided by a circuit of at most 2m

m (1 + ε) gates.
Now for sufficiently large n,

2m

m
=

β2n

n+ log β

= α
2n

n
(1− 2ε)

(
n

n+ log β

)

< α
2n

n
(1− ε),

so

2m

m
(1 + ε) < α

2n

n
(1− ε2) < α

2n

n
.

Thus, for each C ⊆ {0, 1}m, if we let BC = {w0n−m | w ∈ C}, then BC is decided by
a Boolean circuit of fewer than α 2n

n gates.

Recall that in section 2 we defined constructors and showed that R(pspace) =
ESPACE.

Lemma 6.4. For every real α ∈ [0, 1], dimH(SIZE(α
2n

n )) ≥ α and

dim

(
SIZE

(
α
2n

n

) ∣∣∣∣ESPACE
)
≥ α.

Proof. This is clear if α = 0, so assume that α ∈ (0, 1]. Let 0 < s < α with 2s

rational, and let d be an arbitrary s-gale. Define a constructor δ : {0, 1}∗ → {0, 1}∗
as follows. If |w| is not of the form 2n−1, then δ(w) = w0. If |w| is of the form 2n−1
(i.e., w is the characteristic string of a subset of {0, 1}<n), then δ(w) = wu, where u
is the first string in {0, 1}2n that minimizes maxv
u d(wv), subject to the constraint
that u is the characteristic string of a set B ⊆ {0, 1}n that is decided by a Boolean
circuit with fewer than α 2n

n gates. It is clear that R(δ) ∈ SIZE(α 2n

n ).

Fix β such that s < β < α. By Lemma 6.3, for all sufficiently large n there are at
least 2β2

n

different sets B ⊆ {0, 1}n that are decided by Boolean circuits of fewer than
α 2n

n gates. By Corollary 3.4, for all w such that |w| = 2n − 1, there are fewer than
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2β2
n

strings u ∈ {0, 1}2n such that maxv
u d(wv) > 2|v|(s−β)d(w). Taken together,
these last two sentences imply that for all sufficiently large n and w with |w| = 2n−1,

max
wv
δ(w)

d(wv) ≤ 2|v|(s−β)d(w) ≤ d(w).

It follows from this that R(δ) �∈ S∞[d].
We now have that R(δ) ∈ SIZE(α 2n

n )−S∞[d], whence SIZE(α 2n

n ) �⊆ S∞[d]. Since

d is arbitrary here, this shows that dimH(SIZE(α
2n

n )) ≥ α.
Now let d be as above, and assume further that d is exactly pspace-comput-

able. Then the constructor δ defined above is in pspace, so R(δ) ∈ R(pspace) =
ESPACE, and thus we have SIZE(α 2n

n )∩ESPACE �⊆ S∞[d]. It follows by Lemma 4.8

that dim(SIZE(α 2n

n |ESPACE) ≥ α.
Theorem 6.5. For every real α ∈ [0, 1],

dim

(
SIZE

(
α
2n

n

) ∣∣∣∣ESPACE
)

= dimH

(
SIZE

(
α
2n

n

))
= α.

Proof. This follows immediately from Lemma 6.2, Lemma 6.4, and Observa-
tion 4.2.

We note that for any α < 1, Lutz [9] has shown that the class SIZE(2n

n (1+ α log n
n ))

has measure 0 in ESPACE and in C. By the above results, this class is thus a natural
example of a set that, in both ESPACE and C, has dimension 1 but measure 0.
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REFERENCES

[1] K. Ambos-Spies and E. Mayordomo, Resource-bounded measure and randomness, in Com-
plexity, Logic and Recursion Theory, A. Sorbi, ed., Lecture Notes in Pure and Appl. Math.,
Marcel Dekker, New York, 1997, pp. 1–47.

[2] P. Billingsley, Ergodic Theory and Information, John Wiley, New York, 1965.
[3] H. Buhrman and L. Torenvliet, Complete sets and structure in subrecursive classes, in

Proceedings of Logic Colloquium ’96, Springer-Verlag, Berlin, 1998, pp. 45–78.
[4] J. J. Dai, A stronger Kolmogorov zero-one law for resource-bounded measure, Theoret. Com-

put. Sci., 292 (2003), pp. 723–732.
[5] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J.

Math. Oxford Ser., 20 (1949), pp. 31–36.
[6] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, UK,

1985.
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THE NATURAL WORK-STEALING ALGORITHM IS STABLE∗
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Abstract. In this paper we analyze a very simple dynamic work-stealing algorithm. In the
work-generation model, there are n (work) generators. A generator-allocation function is simply a
function from the n generators to the n processors. We consider a fixed, but arbitrary, distribution
D over generator-allocation functions. During each time step of our process, a generator-allocation
function h is chosen from D, and the generators are allocated to the processors according to h. Each
generator may then generate a unit-time task, which it inserts into the queue of its host processor.
It generates such a task independently with probability λ. After the new tasks are generated, each
processor removes one task from its queue and services it. For many choices of D, the work-generation
model allows the load to become arbitrarily imbalanced, even when λ < 1. For example, D could be
the point distribution containing a single function h which allocates all of the generators to just one
processor. For this choice of D, the chosen processor receives around λn units of work at each step
and services one. The natural work-stealing algorithm that we analyze is widely used in practical
applications and works as follows. During each time step, each empty processor (with no work to do)
sends a request to a randomly selected other processor. Any nonempty processor having received
at least one such request in turn decides (again randomly) in favor of one of the requests. The
number of tasks which are transferred from the nonempty processor to the empty one is determined
by the so-called work-stealing function f . In particular, if a processor that accepts a request has
� tasks stored in its queue, then f(�) tasks are transferred to the currently empty one. A popular
work-stealing function is f(�) = ��/2�, which transfers (roughly) half of the tasks. We analyze the
long-term behavior of the system as a function of λ and f . We show that the system is stable for any
constant generation rate λ < 1 and for a wide class of functions f . Most intuitively sensible functions
are included in this class (for example, every monotonically nondecreasing function f which satisfies
0 ≤ f(�) ≤ �/2 and f(�) = ω(1) as a function of � is included). Furthermore, we give upper bounds
on the average system load (as a function of f and n). Our proof techniques combine Lyapunov
function arguments with domination arguments, which are needed to cope with dependency.
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1. Introduction. Load balancing is the process of distributing load among a set
of processors. There are two main approaches to distributed load balancing, namely,
sender-initiated strategies, in which processors may decide to give away tasks, and
receiver-initiated strategies (which are often referred to as work-stealing), in which
processors may request extra work. In both cases, the decision to transfer tasks is
typically threshold based. That is, it is based on having too many or too few tasks in
one’s own queue.

In recent years, there has been a lot of work devoted to rigorously analyzing
load balancing, most of which concentrates on sender-initiated approaches or related
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allocation processes such as balls-into-bins games. However, it appears that many
practitioners prefer the receiver-initiated approach (work-stealing) because this ap-
proach appears to work better for their applications. The efficiency of work-stealing
probably helps to explain the success of Leiserson et al.’s language Cilk [10], a lan-
guage for multithreaded parallel programming which uses work-stealing in its kernel.
There are numerous examples of practical applications of work-stealing. In [17], Feld-
mann, Mysliwietz, and Monien investigate the behavior of parallel MIN/MAX-tree
evaluation in the context of parallel game (chess) programs employing work-stealing
strategies. In [14], Decker introduces VDS (virtual data space), a load-balancing sys-
tem for irregular applications that makes use of work-stealing and other strategies. In
[23], Mahapatra and Dutt use work-stealing for parallel branch and bound algorithms.

Despite the practical usefulness of work-stealing, there are not many known theo-
retical results about its performance. Most existing theoretical work on load balancing
assumes a rather well-behaved system. For instance, most work on sender-initiated
load balancing uses a work-generation model in which each processor generates at
most a constant number of new tasks per step. In balls-into-bins games, each ball
(task) chooses its bin (processor) uniformly at random (u.a.r.), which also yields a
relatively balanced system.

In this paper we analyze a simple and fully distributed work-stealing algorithm.
Our work-generation model allows for an arbitrary placement of n so-called generators
among the set of n processors. Each generator generates a new task with a certain
probability λ at each time step. In the extreme case, there can be one processor being
host to n generators. In this case the one processor has an expected increase of λn−1
tasks per step, whereas all other processors do not generate tasks at all.

Our load-balancing algorithm follows a very simple and natural work-stealing
approach. At each time step, each empty processor sends a request to one randomly
chosen other processor. Each nonempty processor having received at least one such
request selects one of them randomly. Now each empty processor P whose request is
accepted by a processor Q “steals” f(�) tasks from Q, where � denotes Q’s load.

Our results are concerned mostly with the stability of the system. A system is
said to be unstable if the system load (the sum of the load of all processors) grows
unboundedly with time. We present both negative and positive results, depending on
the work-stealing function f . First we show that if the work-stealing function is ω(1)
as a function of the load (i.e., f(�) = ω(1) as a function of �), then the system is
stable (provided f is monotonically nondecreasing and satisfies 0 ≤ f(�) ≤ �/2). This
result still holds if we put an upper bound on the amount of work that can be “stolen”
by a single request. That is, for an upper bound hz which is independent of � (but
depends on n) and will be defined in Lemma 2, the work-stealing function defined by
f ′(�) = min(f(�), f(hz)) is also stable. The value hz depends upon the function f ,
but it need not be very large. For the function f(�) = ��/2�, the value hz is bounded
from above by a polynomial in n. See section 3 for details. Our stability results are
complemented by a straightforward lower bound: The system is unstable if f(�) is
too small, for example, if f(�) < λn − 1. Finally, we provide upper bounds on the
system load in a stationary system (again, depending on f).

1.1. New results. Before we state our results, we introduce our model and the
work-stealing algorithm.

The model. We start with a collection of n synchronized processors, connected
by some network topology. During each time step, every processor may send a request
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(requesting extra work) to at most one other processor, and any processor receiving
more than one such request accepts at most one of them.

In our model, we have n generators. A generator-allocation function is a function
from the n generators to the n processors. We consider a fixed, but arbitrary, distri-
bution D over generator-allocation functions. During each time step of our process,
a generator-allocation function h is chosen from D, and the generators are allocated
to the processors according to h. Each generator may then generate a unit-time task
which it inserts into the queue of its host processor. It generates such a task indepen-
dently with probability λ ∈ [0, 1]. After the new tasks are generated, each processor
removes one task from its queue and services it. We assume constant service time for
all tasks.

In the absence of a load-balancing mechanism, many choices of D allow the load
to become arbitrarily imbalanced, even when λ < 1.

The algorithm. The work-stealing algorithm is very simple and natural. During
each time step, each empty processor (with no work to do) sends a request to one other
processor, which is chosen independently and u.a.r. Each nonempty processor that
received at least one request selects one of these independently and u.a.r. Then each
empty processor whose request was accepted “steals” tasks from the other processor.

The number of tasks which are transferred from the nonempty processor to the
empty one is determined by the so-called work-stealing function f . In particular, if a
processor that accepts a request has � tasks stored in its queue, then f(�) tasks are
transferred to the currently empty one. A popular work-stealing function is f(�) =
��/2�, which transfers (roughly) half of the tasks.

The results. Recall that a system is said to be stable if the system load (the
sum of the load of all processors) does not grow unboundedly with time. Obviously,
stability for large arrival rates is one of the most desirable features of load-balancing
algorithms.

In Theorem 10 we show that, given a suitable work-stealing function, our algo-
rithm yields a stable system for any constant arrival rate λ < 1 and any distribution
of the generators. Most intuitively sensible work-stealing functions are suitable (for
example, every monotonically nondecreasing function f(�) which is ω(1) as a func-
tion of � and satisfies 0 ≤ f(�) ≤ �/2 is suitable). The rough requirement (for f to
be suitable) is that for some finite value Φf (which may depend upon n) and some
z = O(log n) and T = Θ(logn), we may apply f to Φf z times and the resulting value
is still at least 2T . (That is, fz(Φf ) ≥ 2T .) Our stability result still holds if we put
an appropriate upper bound on the amount of work that can be stolen by a single
request. Details are given in section 3.

In Theorem 12 we provide upper bounds on the expected system load as well as
corresponding tail bounds. The upper bounds are described in terms of Φf and n.
For many natural work-stealing functions f , Φf is at most a polynomial in n, so the
system-load bounds are polynomial in n. For example, Φf is at most a polynomial
in n for the natural work-stealing function f(�) = ��/2�.

Finally, in Theorem 22, we classify some work-stealing functions that do not result
in a stable system. For example, the system is unstable if f(�) < λn− 1.

The proofs. Since the proofs are technical, we briefly introduce the underlying
idea. We model our system by a discrete-time, countable Markov chain in which states
are tuples giving the number of tasks currently allocated to each processor. The stan-
dard method for determining whether such a Markov chain is ergodic (i.e., whether it
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has a stationary distribution) is to find an appropriate Lyapunov function [11, 16, 25]
(a potential function with an appropriate drift). Foster’s theorem (see Theorem 2.2.3
of [16]) shows that the chain is ergodic if and only if there is a positive Lyapunov
function which is expected to decrease by a positive amount from every state except
some finite subset of the state space. For many computer science applications, it
is apparently prohibitively difficult to find such a one-step Lyapunov function, even
when one is known to exist. Thus, multiple-step analysis is used [21, 18, 3]. We use
the multiple-step extension of Foster’s theorem due to Fayolle, Malyshev, and Men-
shikov (see Lemma 7). The technical difficulty of our proof arises because of the lack
of independence as the system evolves over multiple steps. To derive our results, we
study the behavior of a different and simpler Markov chain. The new Markov chain
does not dominate the original chain forever, but we show that it does dominate the
original chain for a sufficiently long period of time, and this enables us to prove that
the original chain is ergodic. The proof of ergodicity, together with a martingale
bound of [8], gives us our bound on the stationary behavior of the chain.

1.2. Known results. Most known theoretical results on load balancing are for
unconditional algorithms (which perform load balancing every few steps, regardless
of the system state) or for sender-initiated approaches. First, there has been a lot of
work on static problems, in which the number of jobs to be serviced is fixed and may
even be known in advance. For these results, see [4, 34, 13, 2, 5].

In our paper, we work on dynamic load balancing, in which tasks are generated
over time. We will now describe previous work on this problem. In [1], Adler, Beren-
brink, and Schröder consider a process in which m jobs arrive in each round to n
servers and each server is allowed to remove one job per round. They introduce a
simple algorithm in which each job chooses between 2 random servers. They show
that, provided m ≤ n/6e, no job is likely to wait more than O(log log n) rounds. In
[12] the authors analyze several dynamic balls-into-bins games with deletion.

In [26], Mitzenmacher presents a new differential-equations approach for analyz-
ing both static and dynamic load-balancing strategies. He demonstrates the approach
by providing an analysis of the supermarket model: jobs (customers) arrive as a Pois-
son stream of rate λn, λ < 1, at a collection of n servers. Each customer chooses
d servers independently and u.a.r. and waits for service at the one with the shortest
queue. The service time of the customers is exponentially distributed with mean 1.
Mitzenmacher achieves results on the expected time that a customer spends in the
system. Furthermore, he shows that for any time interval of fixed length, the maxi-
mum system load is likely to be at most log log n/ log d+O(1). In [35] Vvedenskaya,
Dobrushin, and Karpelevich independently present similar results. For related results,
see [27, 30, 28].

In [33], Rudolph, Slivkin-Allalouf, and Upfal present a simple distributed load-
balancing strategy. They consider a work-generation model in which, at every time
step, the load change of any processor due to local generation and service is bounded
by some constant. The balancing strategy works as follows. Each processor stores its
tasks in a local queue. Whenever a processor accesses its local queue, the processor
performs a balancing operation with a probability inversely proportional to the size
of its queue. The balancing operation examines the queue size of a randomly chosen
processor and then equalizes their load. They show that the expected load of any
processor at any point of time is within a constant factor of the average load.

In [22], Lüling and Monien use a similar work-generation model. A processor
initiates a load-balancing action if its load has changed by a constant factor since
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its last balancing action. They show that the expected load difference between any
two processors is bounded by a constant factor. They also bound the corresponding
variance.

In [6, 7] the authors introduce and investigate the performance of certain ran-
domized load-balancing algorithms under stochastic and adversarial work-generation
models. They consider two different work-generation models. In the first model, in
each step, each processor generates a task with some probability p < 1, and then each
nonempty processor services a task with probability p(1 + ε) for ε > 0. In the second
model, each processor is allowed to change its load in each step, provided that the load
is only increased or decreased by at most a fixed constant amount. With high prob-
ability, the algorithms balance the system load up to additive terms of O(log log n)
and O((log log n)2), respectively. In particular, in the first model, the maximum load
of any processor can be upper bounded by one of these terms (depending on the al-
gorithm), whereas in the second model, the maximum load of any processor can be
upper bounded by the average load plus O(log log n). The algorithms and analysis of
[6, 7] are fundamentally different from the one considered here. In particular, their al-
gorithms are sender-initiated, i.e., overloaded processors seek to distribute their load.
Moreover, their algorithms are considerably more complicated than ours.

There is relatively little existing theoretical work on receiver-initiated approaches.
The interesting thing is that this approach seems to be highly efficient in practice
(much more than, say, “give-away-if-overloaded”), but there are no (or hardly any)
rigorous theoretical results.

In [29], Mitzenmacher applies his differential-equations approach in order to ana-
lyze several randomized work-stealing algorithms in a dynamic setting. In contrast to
our work, he assumes that every processor has a Poisson generating process with rate
λ < 1. Hence, in contrast to our generation model, the load is generated in a more-or-
less balanced fashion and the system is stable even without any work-stealing. Each
task has an exponentially distributed service time with mean 1. He models a number
of work-stealing algorithms with differential equations and compares the equations
with each other in order to predict which strategies will be most successful. For each
set of equations, he shows that the queue-lengths decrease more quickly than for a set
of equations which models the process with no work-stealing.

In [9], Blumofe and Leiserson analyze a scheduling strategy for strict multithreaded
computations. A multithreaded computation consists of a set of threads, each of which
is a sequential ordering of unit-time tasks. During a computation, a thread can spawn
other threads, which are stored in a local queue. They present a work-stealing algo-
rithm in which every idle processor tries to steal a thread from a randomly chosen
other processor. The analysis shows that the expected time to execute such a multi-
threaded computation on P processors is O(T1/P + T∞), where T1 denotes the min-
imum sequential execution time of the multithreaded computation, and T∞ denotes
the minimum execution time with an infinite number of processors. Furthermore,
they estimate the probability that the execution time is increased by an additional
factor. In [15], Fatourou and Spirakis develop an algorithm for k-strict multithreaded
computations. In this case, all data dependencies of a thread are directed to ancestors
in at most k higher levels.

2. The work-stealing process. Suppose that we have n processors and n gen-
erators, which create work for the processors. Each processor keeps a queue of jobs
which need to be done. The evolution of the system can be described by a Markov
chain X. The state Xt after step t is a tuple (Xt(1), . . . , Xt(n)) in which Xt(i) rep-
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resents the length of the ith processor’s queue after step t. Initially, all of the queues
are empty, so the start state is (0, . . . , 0).

Let N = {1, . . . , n}. Let P = {h | N → N} be the set of all generator-allocation
functions. When generators are allocated according a particular function h ∈ P, h(i) is
designated as the host of the ith generator. The Markov chainX has three parameters.
D is an arbitrary distribution over P. A new generator-allocation function is selected
from D during each step of the chain. The parameter λ governs the rate at which
jobs are generated—each generator creates a job during each step independently with
probability λ and adds the job to the queue of its current host. Finally, the function f
is the work-stealing function. In section 3, we will state the properties that f must
satisfy for our analysis. Figure 1 describes the transition from state Xt to state Xt+1.

1. Choose the generator-allocation function ht from D.
2. Each generator generates a new job independently with probability λ.

It adds the job to the queue of its current host. In particular, the ith
processor updates the size of its queue from Xt(i) to X ′t(i), where X ′t(i) is
defined to be Xt(i) plus the sum of |h−1

t (i)| independent Bernoulli random
variables with mean λ.

3. Each processor with an empty queue chooses a request destination u.a.r.
from N . Formally, rt(i) is defined to be 0 if X ′t(i) > 0. Otherwise, rt(i) is
chosen u.a.r. from N .

4. Each processor which receives a request chooses a recipient and allocates
some of its load to give away to the recipient. Formally, we start by setting
j+
t (i) = j−t (i) = 0 for all i ∈ N . Then every k ∈ N for which r−1

t (k) is
nonempty chooses � u.a.r. from r−1

t (k) and sets j+
t (�) = j−t (k) = f(X ′t(k)).

5. The work is shared and then each queue processes one job. Formally, for
all i, Xt+1(i) is set to max(0, X ′t(i) + j+

t (i)− j−t (i)− 1).

Fig. 1. The Markov chain X. The transition from Xt to Xt+1.

3. Work-stealing functions. In this section, we state the properties that the
work-stealing function, f , must satisfy for our analysis.

Definition 1. We assume that for a positive constant δ, the arrival rate λ is at
most 1− δ. Let c be a constant which is sufficiently large with respect to δ−1 (see the
proof of Lemma 14) and let α = 4e(c+1). Let z = α lg n�. Let ν = n−2+n−α and let
T =  2c

1−λ/(1−ν) lg n�. Note that T is positive as long as ν < δ, and we will consider

values of n for which this is true. Let g be the function given by g(�) = f(�− T ). We
will use the function g in our analysis of the work-stealing process. Suppose that a
processor has � units of work in its queue. If no units of work are generated or stolen
during T steps, it will then have �−T units. Finally, it may give away f(�−T ) = g(�)
units to another processor which requests work. Let Φf be the smallest integer such
that, for all j ∈ {0, . . . , z}, gj(Φf/n) ≥ 2T , where gj(y) denotes the j-fold application
of function g to argument y. That is, g0(y) = 1, g1(y) = g(y), g2(y) = g(g(y)), and
so on. If no such integer Φf exists, say Φf =∞. Informally, Φf is a quantity that is
so large that if we start with Φf units of work and focus on the (at least Φf/n) units
of work in some particular queue and allow this work to be stolen up to z times, the
quantity of work remaining at every processor involved is at least 2T . This idea will
be made more precise later.
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We require the work-stealing function f to satisfy the following properties.

Property 1. 0 ≤ f(�) ≤ �/2.

Property 2. f(�) is monotonically nondecreasing in �.

Property 3. Φf is finite.

Properties 1 and 2 are natural and easy to understand. We conclude this section
by showing that many natural work-stealing functions which satisfy Properties 1 and 2
also satisfy Property 3. We start with a general lemma and then conclude with
particular examples.

Lemma 2. Suppose that the work-stealing function f satisfies Properties 1 and 2.
Let h0 = 2T . Suppose that there are positive integers h1, . . . , hz satisfying f(hi−T ) ≥
hi−1. Then Φf ≤ nhz.

Proof. We wish to show that for all j ∈ {0, . . . , z}, gj(hz) ≥ 2T . Since f satisfies
Property 1, the condition f(hi − T ) ≥ hi−1 implies that hi−1 ≤ hi. Therefore, for
any j ∈ {0, . . . , z}, hz−j ≥ h0 ≥ 2T . Thus, it suffices to prove gj(hz) ≥ hz−j , which
we will do by induction on j with base case j = 0. For the inductive step, note that

gj+1(hz) = f(gj(hz)− T ) ≥ f(hz−j − T ) ≥ hz−(j+1),

where the first inequality uses the monotonicity of f (Property 2) and the inductive
hypothesis.

Corollary 3. Suppose that the work-stealing function f satisfies Properties 1
and 2. Suppose that f(�) = ω(1) as a function of �. Then f satisfies Property 3.

Proof. Since f(�) = ω(1), the function gets arbitrarily big and the values h1, . . . , hz
in Lemma 2 exist.

Corollary 3 demonstrates that having f(�) = ω(1) is sufficient in the sense that
this, together with Properties 1 and 2, implies Property 3. Having f(�) = ω(1) is not
necessary though, as the following observation shows.

Observation 4. Suppose that the work-stealing function f satisfies Properties 1
and 2. Let h0 = 2T . Suppose (as in Lemma 2) that there are positive integers
h1, . . . , hz satisfying f(hi − T ) ≥ hi−1. Let f

′ be the work-stealing function given by
f ′(�) = min(f(�), f(hz)). Then f ′ satisfies Properties 1–3 and has Φf ′ ≤ nhz.

We end the section by giving an upper bound for Φf when f is a member of a
popular class of work-stealing functions.

Lemma 5. Let f(�) = ��/r� for some r ≥ 2. This function satisfies Properties
1–3 and satisfies

Φf ≤ n(2T + 2r)(2r)
z
.

Proof. We use Lemma 2. Let hi = (2T + 2r)(2r)
i
for i ∈ {1, . . . , z}. Then for

i ∈ {1, . . . , z},

f(hi − T ) = f((2T + 2r)(2r)
i − T )

≥ (2T + 2r)(2r)
i

r
− T

r
− 1

=
(2T + 2r)(2r)

i

2r
+

(2T + 2r)(2r)
i

2r
− 2T

2r
− 2r

2r

≥ (2T + 2r)(2r)
i−1

≥ hi−1.
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Remark 6. The value Φf corresponding to the function f in Lemma 5 is bounded
from above by a polynomial in n. To see this, note that the multiplier in the definition
of T is

1

1− λ
1−ν
≤ 1

1− 1−δ
1−ν

=
1− ν

δ − ν
≤ 1

δ − ν
≤ 2

δ
,

where the last inequality assumes ν ≤ δ/2, which is true if n is sufficiently large with
respect to the constant δ−1.

4. Upper bounds. In this section we prove that the system is stable for every
work-stealing function satisfying Properties 1–3 in section 3. Our analysis does not de-
pend upon the particular distribution D which governs the allocation of generators—
the analysis works for an arbitrary distribution.

As already outlined in section 1, the basic idea is the following. The Markov chain
X models our system. Since this chain is difficult to analyze directly, we introduce a
second chain Z and investigate properties of Z instead. Then, using a coupling, we
relate the results to chain X itself.

To put it very informally and nonrigorously, the core idea is to show that during
an interval of length T = O(log n) not too many requests are sent. Since in our model
not sending a request means servicing a task, we can show that in this case the system
load decreases. Obviously, the crux is bounding the number of requests during the
interval. Informally, this is done by assuming (for contradiction) that there are many
requests during the interval, say at least R. Since the system load is initially high,
there is at least one processor, processor P , which initially has a high load. This
implies that after around R′ < R requests, we can view most of the requests that
have been accepted in a tree with P at the root, and the leaves being processors that
either directly or indirectly received a portion of P ’s initial load. By showing that
(i) there are many leaves, and (ii) the tree does not grow very deep, we can conclude
that after R′ requests, there are many processors having a large load (at least T ), and
none of them will send a request during the next T steps. Hence, we can contradict
the assumption that R requests get sent during the interval. Of course, this kind of
proof-by-contradiction is invalid if we want to avoid conditioning the random variables
during the T steps, so we have to do things more carefully.

4.1. Background. We start with some brief definitions regarding Markov chains.
For more details, see [19]. The Markov chains that we consider are time-homogeneous
(transition probabilities do not change over time) and irreducible (every state is reach-
able from every other) and aperiodic (the gcd of the lengths of valid paths from state i
to itself is 1). An irreducible aperiodic Markov chain (Υt) is said to be recurrent if,
with probability 1, it returns to its start state. That is, it is recurrent if

Pr(Υt = Υ0 for some t ≥ 1) = 1.

Otherwise, it is said to be transient. It is said to be positive recurrent or ergodic if
the expected time that it takes to return to the start state is finite. In particular, let

Tret = min{t ≥ 1 | Υt = Υ0}.
The chain is said to be positive recurrent if E[Tret] < ∞. A positive recurrent chain
has a unique stationary distribution π. When we analyze the Markov chain X we will
use the following generalization of Foster’s theorem, due to Fayolle, Malyshev, and
Menshikov (Theorem 2.2.4 of [16]).



1268 P. BERENBRINK, T. FRIEDETZKY, AND L. A. GOLDBERG

Lemma 7 (Foster; Fayolle, Malyshev, Menshikov [16]). A time-homogeneous ir-
reducible aperiodic Markov chain ζ with a countable state space Ω is positive recurrent
if and only if there exists a positive function Φ(x), x ∈ Ω, a number ξ > 0, a positive
integer-valued function β(x), x ∈ Ω, and a finite set C ′ ⊆ Ω such that the following
inequalities hold:

E[Φ(ζt+β(ζt))− Φ(ζt) | ζt = x] ≤ −ξβ(x), x �∈ C ′,(1)

E[Φ(ζt+β(ζt)) | ζt = x)] <∞, x ∈ C ′.(2)

We also use the following Chernov–Hoeffding inequalities. The first of these is a
special case of Theorem 4.2 of [31] and the second is taken from Theorem 5.7 of [24].

Lemma 8 (Chernov). Let Z1, . . . , Zs be independent Bernoulli trials with Pr(Zi =

1) = p. Let Ẑ =
∑s
i=1 Zi. Then for any ρ in (0, 1], Pr(Ẑ < (1−ρ)sp) ≤ exp(−spρ2/2)).

Lemma 9 (Hoeffding). Let Z1, . . . , Zs be independent random variables with

ai ≤ Zi ≤ bi for suitable constants ai, bi and all 1 ≤ i ≤ s. Also let Ẑ =
∑s
i=1 Zi.

Then for any t > 0,

Pr
(|Ẑ − E(Ẑ)| ≥ t

) ≤ exp
(
−2t2

/ s∑
i=1

(bi − ai)
2
)
.

4.2. Results. Our Markov chain X is time-homogeneous, irreducible, and ape-
riodic. Its state space is countable. Therefore, it satisfies the initial conditions of
Lemma 7. We will prove the following theorem.

Theorem 10. Let δ be a positive constant and λ an arrival rate which is at
most 1 − δ. Let f be a work-stealing function satisfying Properties 1–3 in section 3.
Then for every n which is sufficiently large with respect to δ−1, the Markov chain X
is positive recurrent.

Theorem 10 guarantees that the Markov chain X has a stationary distribution π.
The next theorem is concerned with the value of the total system load in the stationary
distribution. Recall from Definition 1 that ν = n−2 + n−α. Our next theorem uses
the following additional definitions.

Definition 11. Let ε be (1 − λ/(1 − ν))/4. Let Φ(Xt) be the system load after
step t. That is, Φ(Xt) =

∑n
i=1 Xt(i).

Theorem 12. Let δ be a positive constant and λ an arrival rate which is at most
1− δ. Let f be a work-stealing function satisfying Properties 1–3 in section 3. Then
for every n which is sufficiently large with respect to δ−1,

Eπ[Φ(Xt)] ≤ Φf + 2nT/ε+ nT,

and for any nonnegative integer m,

Prπ[Φ(Xt) > Φf + 2nTm+ nT ] ≤ exp(− ln(1 + ε)(m+ 1)).

4.3. A simpler Markov chain. Let C be the set of states x with Φ(x) < Φf .
In this section we define a simpler Markov chain Z that will be used in order to
analyze the Markov chain X with a start state x �∈ C.

The state space of Z is more complicated than the state space of X, but in some
sense the information contained in a state of Z is less precise than the information
contained in a state of X. In particular, a state Zt consists of a tuple

(Lt(1), . . . , Lt(n), Yt(1), . . . , Yt(n)).
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The variable Lt(i) gives a crude indication of the load at processor i after step t. In
any initial state that we will consider, exactly one processor (which we will call Jx)
will have L0(Jx) large. All other processors will have L0(i) = 0. Informally, these
variables will have the following role for a processor i. Let t be the first time step
during which processor i steals some of the work that originally sat at processor Jx.
For t′ ≤ t, the variable Yt′(i) denotes the load of processor i and Lt′(i) = 0. For
t′ > t, the variable Lt′(i) is positive and Yt′(i) = 0. The exact value of Lt′(i) gives an
indication of how many times the work that processor i acquired at step t has been
split (and, therefore, of how long it will last).

We will be observing the evolution of the Markov chain X starting at a state X0 =
x with Φ(x) ≥ Φf . This condition guarantees that for some i ∈ N , X0(i) ≥ Φf/n.
Let Jx be the smallest such i. In the following, we will be paying special attention to
a load which originates at processor Jx. Thus, in the Markov chain Z, the state Z0

which corresponds to X0 is defined as follows. L0(Jx) = 2z and Y0(Jx) = 0. For all
i �= Jx, L0(i) = 0 and Y0(i) = X0(i). For convenience, we will say that a processor i
is “heavily loaded” in state Zt if and only if Lt(i) > 0. Thus, Jx is the only processor
which is deemed to be “heavily loaded” in Z0. Note that the state Z0 is strictly a
function of x. We will refer to this state as Z(x). The transition from Zt to Zt+1 is
described in Figure 2. It may look surprising at first that the “heavy load” parameter
Lt(k) is halved every time a heavily loaded processor transfers load. This halving
allows us to study the dissemination of load from Jx without considering the many
dependent events.

Let R′t be the set of requests made during the transition from Zt to Zt+1. (This
transition is referred to as “step t+ 1.”) That is, R′t = |{i | r′t(i) > 0}|. Let τ ′ be the
smallest integer such that R′0 + · · · + R′τ ′−1 ≥ cn lg n. Let Ψ be the smallest integer
such that, for some i, LΨ(i) = 1. Intuitively, LΨ(i) = 1 means that i has received
load (directly or indirectly) from Jx (so it is “heavily loaded”), but this load has been

1. Choose the generator-allocation function ht from D.
2. If Lt(i) > 0, then Y ′t (i) is defined to be 0 (just like Yt(i)). Otherwise, Y ′t (i)

is defined to be Yt(i) plus the sum of |h−1
t (i)| Bernoulli random variables

with mean λ.
3. r′t(i) is defined to be 0 except when Lt(i) = 0 and Y ′t (i) = 0. In this case,

r′t(i) is chosen u.a.r. from N .
4. Start by setting

j+
t (i) = j−t (i) = l−t (i) = l+t (i) = 0

for each i ∈ N . Then every k ∈ N for which r′t
−1

(k) is nonempty chooses �

u.a.r. from r′t
−1

(k) and sets l+t (�) = l−t (k) = Lt(k)/2 and j+
t (�) = j−t (k) =

f(Y ′t (k)).
5. For all i ∈ N , Lt+1(i) is set to Lt(i) + l+t (i)− l−t (i). If Lt+1(i) > 0, then

Yt+1(i) = 0. Otherwise, Yt+1(i) is set to

max(0, Y ′t (i) + j+
t (i)− j−t (i)− 1).

Fig. 2. The transition from Zt to Zt+1.
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split many times (it has been split z times, in fact). The following lemma shows that,
with high probability, there are no such i and Ψ if at most cn log n requests are sent.

Lemma 13. Suppose x �∈ C. Run Markov chain Z starting at Z0 = Z(x). Then

Pr(Ψ ≤ τ ′) ≤ n−α.

Proof. Since at most n requests are sent in a single step, the total number of
requests sent during steps 1, . . . , τ ′ is at most (c+ 1)n lg n.

Recall the construction of Z(x) from the beginning of section 4.3. In particular,
there is one “heavily loaded” processor, Jx, with L0(Jx) = 2z. Every other processor i
has L0(i) = 0.

Imagine that the value L0(Jx) = 2z corresponds to a collection of 2z tokens which
initially sit at processor Jx. The value Lt(k) gives the number of tokens which sit
at processor k following step t. This is always a power of 2. If Lt(k) > 1, then the
instruction l+t (�) = l−t (k) = Lt(k)/2 in step 3 of the transition from Zt to Zt+1 splits
the collection of tokens sitting at processor k and transfers half of these tokens to
processor �. The event Ψ ≤ τ ′ occurs if and only if some token has its group split z
times during steps 1, . . . , τ ′.

What is the probability that a given token has its group split z times? This is at
most (

(c+ 1)n lg n

z

)
n−z ≤

(
e(c+ 1) lgn

z

)z
.

The probability that there exists a token which has its group split z times is thus
at most

(
2e(c+ 1) lgn

z

)z
≤
(
2e(c+ 1)

α

)α lgn

= n−α.

The next lemma shows that, with high probability, the number of requests sent
during the observed T time steps is less than cn log n. This means that we have very
little idle time during this period, which in turn implies the decrease of the system
load (as we will see later).

Lemma 14. Suppose x �∈ C. Run Markov chain Z starting at Z(x).

Pr(τ ′ ≤ T ) ≤ n−2.

Proof. Recall that R′t is the number of requests during the transition from Zt
to Zt+1. In particular, R′t = |{i | Lt(i) = 0 ∧ Y ′t (i) = 0}|. R′t is a random variable
which depends only upon the state Zt and upon the host-distribution function ht.
In particular, every processor i with Lt(i) = 0 and Yt(i) = 0 contributes 1 to R′t
independently with probability (1− λ)

|h−1
t (i)|

and contributes 0 to R′t otherwise.
To make the conditioning clear, we will let R′(s, h) be the random variable whose

distribution is the same as that of R′t, conditioned on Zt = s and ht = h.
By Lemma 9,

Pr

(
|R′(s, h)− E(R′(s, h))| ≥ cn lg n

8T

)
≤ exp

(
−2
(
cn lg n

8T

)2

/n

)
.

Let σ denote exp(−2( cn lgn
8T )

2
/n). Note that σ is exponentially small in n. (This

follows from the definition of T .)
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Say that (s, h) is “dangerous” if

E(R′(s, h)) ≥ (cn lg n)/(4T ).

Note that if (Zt, ht) is not dangerous, then, with probability at least 1−σ, the number
of requests during the transition from Zt to Zt+1 is at most

(cn lg n)/(4T ) + (cn lg n)/(8T ) ≤ (cn lg n)/(2T ).

Now suppose that (s, h) is dangerous and let k be any processor. Then

Pr(r′t
−1

(k) = ∅ | Zt = s ∧ ht = h) ≤ σ +

(
1− 1

n

) cn lgn
8T

≤ σ +

(
1− 1

n

) δn
18

≤ 1− γ

for a small positive constant γ which depends upon δ (but not upon c or n). Let Mt

denote the number of heavily loaded processors during step t, i.e.,

Mt = |{i | Lt(i) > 0}|.
Let ξt denote the number of heavily loaded processors during step t that don’t

get requested, i.e.,

ξt = |{k | Lt(k) > 0 ∧ r′t
−1

(k) = ∅}|.
If (s, h) is dangerous, then

E[ξt | Zt = s ∧ ht = h] ≤ (1− γ)Mt.

Thus by Markov’s inequality,

Pr
(
ξt ≥ (1− γ/2)Mt | Zt = s ∧ ht = h

) ≤ 1− γ

2− γ
.

If ξt < (1 − γ/2)Mt, then at least (γ/2)Mt of the Mt heavily loaded processors
give away work, so Mt+1 ≥ (1 + γ/2)Mt. We say that the step following on from a
dangerous state is “useful” if this occurs. We have just seen that for every dangerous
state (s, h), the probability that the next step is useful is at least γ

2−γ .
Thus, if we have D dangerous states during some time interval, the number

of useful steps following them dominates (from above) the sum of D independent
Bernoulli random variables with probability p = γ

2−γ . Applying Lemma 8 with D =

(2/p) log1+γ/2(n) and ρ = 1/2, we find that the probability that this sum is less than
log1+γ/2(n) is at most exp(− log1+γ/2(n)/4). This means that if we have D dangerous
states, then the probability that there are at least log1+γ/2(n) useful steps following
them is at least 1− exp(− log1+γ/2(n)/4).

Now, if there are actually at least log1+γ/2(n) useful steps during steps 1–t,
Mt+1 = n, so there can be no further dangerous states. We conclude that with
probability at least 1 − exp(− log1+γ/2(n)/4) there are at most D dangerous steps
ever.

If we make c sufficiently large with respect to γ, then D < c lg n/2.
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Now we have that, except for probability exp(− log1+γ/2(n)/4), the dangerous
steps contribute fewer than cn lg n/2 requests (ever). Furthermore, except for proba-
bility at most σT , the nondangerous steps contribute at most cn lg n/2 requests during
the first T steps. Thus, the probability that τ ′ ≤ T is at most

exp(− log1+γ/2(n)/4) + σT ≤ n−2.

Lemmas 13 and 14 imply the following.
Corollary 15. Suppose x �∈ C. Run Markov chain Z starting at Z(x).

Pr(T < τ ′ < Ψ) ≥ 1− n−α − n−2.

Lemma 16. Suppose x �∈ C. Run Markov chain Z starting at Z(x). For any
t ≤ Ψ and any i ∈ N , either Lt(i) = 0 or, for some j ∈ {0, . . . , z}, Lt(i) = 2j.

Proof. The lemma is proved by induction on t with the base case t = 0. Consider
the assignment

Lt+1(i) = (Lt(i)− l−t (i)) + l+t (i)

in the transition from Zt to Zt+1 in Figure 1. If the second term in the expression,
l+t (i), is greater than zero, then it is equal to Lt(k)/2 for some k with r′t(i) = k, so
Lt(i) = 0. The first term in the expression, Lt(i) − l−t (i), is either Lt(i) or Lt(i)/2.
Thus, either Lt+1(i) is Lt(i) or it is Lt(k)/2 for some k. Using the terminology from
the proof of Lemma 13, Lt+1(i) = 2z−m means that the tokens that sit at processor i
after step t+ 1 have had their group split m times. Since t ≤ Ψ, m ≤ z.

4.4. Proof of Theorem 10. Our first task is to relate the Markov chain X to
the simpler Markov chain Z. Recall the definitions of τ ′, R′t, and Ψ from section 4.3.
Let Rt be the set of requests made during the transition from Xt to Xt+1. That is,
Rt = |{i | rt(i) > 0}|. Let τ be the smallest integer such that R0+· · ·+Rτ−1 ≥ cn lg n.

Lemma 17. If x �∈ C, then

Pr(τ ≤ T | X0 = x) ≤ ν.

Proof. A (Markovian) coupling1 of the Markov chains X and Z is a stochastic
process (Xt, Zt) such that (Xt), considered marginally, is a faithful copy of X, and
(Zt), considered marginally, is a faithful copy of Z. We will describe a coupling
starting from state (x, Z(x)). That is, in our coupling, X0 = x and Z0 = Z(x). The
coupling will have the property that for all t ≤ min(T, τ ′,Ψ) and all i,

r′t(i) = rt(i).(3)

From (3), we can conclude that whenever the Z chain satisfies T < τ ′ < Ψ, the
coupled X chain satisfies T < τ . Thus,

Pr(T < τ | X0 = x) ≥ Pr(T < τ ′ < Ψ | Z0 = Z(x)),

so the lemma follows from Corollary 15.
To give the details of the coupling, we will use the notation in Figures 1 and 2.

Recall from Definition 1 that g is the function given by g(y) = f(y − T ), where f is

1The word “coupling” is normally used in reference to combining two copies of the same Markov
chain, so we are using the word in a slightly nonstandard way.
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the work-stealing function which is guaranteed to satisfy gj(Φf/n) ≥ 2T for a finite
Φf and for all j ∈ {0, . . . , z}.

Our coupling will satisfy the following invariants for any i ∈ N and any t ≤
min(T, τ ′,Ψ):

(1) r′t(i) = rt(i),
(2) Lt(i) = 0 implies Xt(i) = Yt(i), and
(3) Lt(i) = 2j implies Xt(i) ≥ gz−j(Φf/n)− t.

As we observed above, our objective is to describe a coupling that satisfies invari-
ant (1). The other invariants will help us to show that our constructed coupling is
indeed a coupling in the sense that the marginal distributions are correct. The pur-
pose of the third invariant is to ensure that, in the chain X, a node will not become
empty soon if the corresponding node in chain Z is heavily loaded.

The coupling is as follows. We start with X0 = x and Z0 = Z(x). Recall the
construction of Z(x) from section 4.3. In particular, L0(Jx) = 2z and Y0(Jx) = 0. For
every other i, L0(i) = 0 and Y0(i) = x(i). Invariants (2) and (3) are satisfied for t = 0
since X0(Jx) ≥ Φf/n.

Now the transition from (Xt, Zt) to (Xt+1, Zt+1) is given as follows. In part 1
of the transition, the same generator-allocation function ht is chosen for both chains.
The X ′t(i) variables are defined in part 2 of the transition from Xt to Xt+1. In part 2
of the coupled transition from Zt to Zt+1, we set Y ′t (i) = 0 if Lt(i) > 0. Otherwise, we
set Y ′t (i) = X ′t(i). Note that, since invariant (2) held after step t, the Y ′t (i) variables
are set according to the correct marginal distribution. The rt(i) variables are defined
in part 3 of the transition from Xt to Xt+1. In part 3 of the coupled transition from
Zt to Zt+1, we set r′t(i) = rt(i). To show that the marginal distribution is correct, we
observe that if Lt(i) = 0, then we defined Y ′t (i) to be X ′t(i). Thus, the r′t(i) variables
are assigned correctly. On the other hand, if Lt(i) > 0, then, by Lemma 16, Lt(i) = 2j

for some j ∈ {0, . . . , z} so by invariant (3), Xt(i) ≥ gz−j(Φf/n) − t ≥ 2T − t > 0.
Thus, X ′t(i) > 0, and r′t(i) is defined correctly. In part 4 of the transition from Xt

to Xt+1, we do the following. For every k ∈ N for which r−1
t (k) is nonempty, we

choose � u.a.r. from r−1
t (k). Since r′t

−1
(k) = rt

−1(k), we can make the same choice
for k in part 4 of the transition from Zt to Zt+1.

We need to prove that the coupling maintains invariants (1), (2), and (3). Invari-
ant (1) (the one that we actually want) is by construction. Invariant (2) is not too dif-
ficult. Lemma 16 shows that all of the variables Lt(i) are nonnegative. Furthermore,
the analysis in the proof of Lemma 16 reveals that Lt+1(i) = 0 implies Lt(i) = 0. (To
see this, recall that Lt+1(i) = (Lt(i)− l−t (i))+ l+t (i). The second of these terms is non-
negative, and the first is either Lt(i) or Lt(i)/2.) Thus, whenever we have Lt+1(i) = 0
we have Yt(i) = Xt(i), and in the coupling we get Y ′t (i) = X ′t(i). In part 5 of the tran-
sition from Xt to Xt+1 we set Xt+1(i) = max(0, X ′t(i)+j+

t (i)−j−t (i)−1), and in part 5
of the transition from Zt to Zt+1, we set Yt+1(i) = max(0, Y ′t (i) + j+

t (i)− j−t (i)− 1).
Thus we need only argue that the j+

t (i) and j−t (i) variables get the same values in
both copies. The j−t (i) variable is the same since Y ′t (i) = X ′t(i). The j+

t (i) variables
are positive only if processor i made a request, namely, rt(i) = r′t(i) = k, for some k.
Since Lt+1(i) = 0, we know Lt(k) = 0. Hence, Y ′t (k) = X ′t(k), and the j+

t (i) values
are indeed the same.

Finally, we need to prove that the coupling maintains invariant (3). Suppose that
Lt+1(i) = 2j . We wish to show that Xt+1(i) ≥ gz−j(Φf/n)− (t+ 1). First, suppose
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Lt(i) = 0. In this case, Lt+1(i) = Lt(k)/2, where rt(i) = k. Then

Xt+1(i) ≥ f(Xt(k))− 1

≥ f(gz−j−1(Φf/n)− t)− 1

≥ f(gz−j−1(Φf/n)− T )− 1

= gz−j(Φf/n)− 1

≥ gz−j(Φf/n)− (t+ 1),

where the first inequality follows from the transition in Figure 1 and the second
inequality follows from the facts that invariant (3) held after step t and that f is
monotonically nondecreasing (Property 2 in section 3). The third inequality also
follows from the fact that f is monotonically nondecreasing.

Second, suppose Lt(i) = 2j . In this case r−1
t (i) is empty, so

Xt+1(i) ≥ Xt(i)− 1 ≥ gz−j(Φf/n)− t− 1.

Finally, suppose Lt(i) = 2j+1. (To see that these are the only cases, namely, that
Lt(i) ∈ {0, 2j , 2j+1}, see the proof of Lemma 16.) In this case r−1

t is nonempty, so

Xt+1(i) ≥ Xt(i)− f(Xt(i))− 1.

Since f satisfies f(�) ≤ �/2 (Property 1 in section 3), we have

Xt+1(i) ≥ f(Xt(i))− 1,

which is the same as the first case.

The next lemma shows that the load has an appropriate drift when τ > T .

Lemma 18. If x �∈ C, then

E[Φ(XT ) | (X0 = x) ∧ (τ > T )] ≤ Φ(x)− 2εnT.

Proof. Let At be the number of new jobs that arrive in the system during the
transition from Xt to Xt+1. Namely,

At =
∑
i∈N

(X ′t(i)−Xt(i)).

Let Y = A0 + · · ·+AT−1. Splitting E[Y | X0 = x] into two conditional expectations,
conditioned on whether or not τ > T , we find

E[Y | (X0 = x) ∧ (τ > T )]

=
E[Y | X0 = x]− Pr(τ ≤ T | X0 = x)E[Y | (X0 = x) ∧ (τ ≤ T )]

Pr(τ > T | X0 = x)
.

By Lemma 17, the denominator is at least 1 − ν. The numerator is at most E[Y |
X0 = x], which is λnT , since during each of the T steps each of the n generators
generates a new job independently with probability λ. Thus,

E[Y | (X0 = x) ∧ (τ > T )] ≤ λnT

1− ν
.
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If τ > T , then the number of jobs serviced during steps 1–T is at least nT−cn lg n.
(If a processor does not make a request, then it certainly services a job.) Thus, the
quantity

E[Φ(XT ) | (X0 = x) ∧ (τ > T )]

is at most the initial load, Φ(x), plus the expected number of arrivals, which we have
seen above is at most λnT

1−ν , minus the expected number of services, which is at least
nT − cn lg n. Putting all of this together, we get

E[Φ(XT ) | (X0 = x) ∧ (τ > T )] ≤ Φ(x)−
(
1− λ

1− ν

)
nT + cn lg n

≤ Φ(x)− 1− λ
1−ν
2

nT

= Φ(x)− 2εnT,

where the second inequality uses the definition of T in Definition 1 and the equality
uses the definition of ε in Definition 11.

Lemma 19. Suppose that n is sufficiently large with respect to δ−1. If x �∈ C,
then

E[Φ(XT ) | X0 = x] ≤ Φ(x)− εnT.

Proof.

E[Φ(XT ) | X0 = x] = Pr(τ > T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ > T ]

+ Pr(τ ≤ T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ ≤ T ].

By Lemma 18, this is at most

Pr(τ > T | X0 = x)(Φ(x)−2εnT )+Pr(τ ≤ T | X0 = x)E[Φ(XT ) | (X0 = x)∧ τ ≤ T ].

Since at most n messages arrive per step, this is at most

Pr(τ > T | X0 = x)(Φ(x)− 2εnT ) + Pr(τ ≤ T | X0 = x)(Φ(x) + nT ).

This can be rearranged as

Φ(x)− (1− Pr(τ ≤ T | X0 = x))(2εnT ) + Pr(τ ≤ T | X0 = x)(nT )

= Φ(x)− 2εnT + Pr(τ ≤ T | X0 = x)(2εnT + nT ).

By Lemma 17, this is at most

Φ(x)− 2εnT + ν(2εnT + nT ) = Φ(x)− εnT − (εnT − ν2εnT − νnT ).

The lemma follows from the fact that

ν ≤ ε

2ε+ 1
,(4)

which is true, provided that n is sufficiently large with respect to δ−1. To establish
(4), refer to Definitions 1 and 11. If n is sufficiently large, then ν ≤ δ/2, so

4ε = 1− λ

1− ν
≥ 1− 1− δ

1− ν
=

δ − ν

1− ν
≥ δ

2
.

Also,

ν ≤ δ/8

2(δ/8) + 1
≤ ε

2ε+ 1
.

Combining Lemmas 19 and 7, we get a proof of Theorem 10.
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4.5. Proof of Theorem 12. The proof of Theorem 12 uses the following theo-
rem, which is Theorem 1 of [8].

Lemma 20 (Bertsimas, Gamarnik, and Tsitsiklis [8]). Consider a time-homogen-
eous Markov chain ζ with a countable state space Ω and stationary distribution π′. If
there is a positive function Φ(x), x ∈ Ω, a number ξ > 0, and a number β ≥ 0 such
that

E[Φ(ζt+1)− Φ(ζt) | ζt = x] ≤ −ξ, Φ(x) > β,(5)

and

|Φ(ζt+1)− Φ(ζt)| ≤ νmax,(6)

and, for any x,

Pr[Φ(ζt+1) > Φ(ζt) | ζt = x] ≤ pmax(7)

and

Eπ′ [Φ(ζt)] <∞,(8)

then for any nonnegative integer m,

Prπ′ [Φ(ζt) > β + 2νmaxm] ≤
(

pmaxνmax

pmaxνmax + ξ

)m+1

and

Eπ′ [Φ(ζt)] ≤ β +
2pmax(νmax)

2

ξ
.

Let Wi = Φ(XiT ) for i ∈ {0, 1, 2, . . . }. Lemma 19 shows that the process
W0,W1, . . . behaves like a supermartingale above Φf . That is, it satisfies (5) with
ξ = εnT and β = Φf . In itself, this does not imply that E[Wt] is bounded (see
Pemantle and Rosenthal’s paper [32] for counterexamples). However, we also have

|Wt+1 −Wt| ≤ nT(9)

for any t. That is, (6) is satisfied with νmax = nT . This implies (for example, by
Theorem 1 of [32] or by Theorem 2.3 of [20]) that Eπ[Wt] is finite (so (8) is satisfied).
Lemma 20 can now be applied with pmax = 1 to get

Eπ[Wt] ≤ Φf + 2nT/ε,(10)

and for any nonnegative integer m,

Prπ[Wt > Φf + 2nTm] ≤
(

nT

nT + εnT

)(m+1)

.(11)

The theorem now follows from the observation that for 0 ≤ j < T ,

Φ(XiT+j) ≤ Φ(XiT ) + nj.
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5. Lower bounds. In this section we give the straightforward lower bound,
which shows that the system is not stable for unsuitable work-stealing functions. Of
course we have to put some restrictions on D in order to obtain instability. For
example, if D is the point distribution containing a single function h which allocates
one generator to each processor, then the system will be stable even without any
work-stealing.

The proof of our lower bound uses the following lemma, which is Theorem 2.2.7
of [16].

Lemma 21 (Fayolle, Malyshev, and Menshikov [16]). An irreducible aperiodic
time-homogeneous Markov chain ζ with countable state space Ω is transient if there
is a positive function Φ with domain Ω and there are positive constants C, d, and ξ
such that

1. there is a state x with Φ(x) > C, and a state x with Φ(x) ≤ C,
2. E[Φ(ζ1)− Φ(ζ0) | ζ0 = x] ≥ ξ for all x with Φ(x) > C, and
3. if |Φ(x) − Φ(y)| > d, then the probability of moving from x to y in a single

move is 0.

If we use k = 1 in the statement of the following theorem, we find that the system
is unstable if f(�) < λn− 1.

Theorem 22. Let δ be a positive constant and λ an arrival rate which is at
most 1 − δ. Suppose that D contains a single generator-allocation function h which
distributes the n generators equally among some set of k processors. Suppose that for
all �, f(�) ≤ j(n). Then the Markov chain X is transient if

k · (j(n) + 1) < λn.

Proof. This theorem can be proven easily using Lemma 21. Recall that the start
state X0 is (0, . . . , 0) (all queues are initially empty). First, we bound the amount of
work that can be done during any given step. When a processor steals work, it only
gets enough work for at most j(n) rounds. Since each processor gives work to only
one other processor per round, and there are at most k processors with generators,
at most j(n)k processors without generators have work to do during any given step.
Thus, at most (j(n) + 1)k tasks can be done during any step. The expected load
increase of the system during a step is λn. Using Lemma 21 with Φ as the system
load, it is easy to see that the system is transient if k(j(n) + 1) < λn.

6. Conclusions. We have analyzed a very simple work-stealing algorithm, which
is successfully being used in practical applications. In this paper we have analyzed
its performance for a wide range of parameters. We have shown that it is stable for
any constant generation rate λ < 1 and a wide class of work-stealing functions f . On
the other hand, we have shown that for every λ > 0 there is a class of unsuitable
work-stealing functions, for which it is not stable. Finally, we have derived upper
bounds on the system load when the system is stable.

It would be interesting to know whether there is a nice characterization of the
class of functions that lead to stability. It would also be interesting to know how far
our upper bounds on system load are from the truth. We suspect that the system
load is actually much smaller than our upper bounds indicate, but it would be useful
to have rigorous experimental results.
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SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 5, pp. 1280–1316

Abstract. It is known that the discrete Fourier transform (DFT) used in digital signal pro-
cessing can be characterized in the framework of the representation theory of algebras, namely, as
the decomposition matrix for the regular module C[Zn] = C[x]/(xn − 1). This characterization
provides deep insight into the DFT and can be used to derive and understand the structure of its
fast algorithms. In this paper we present an algebraic characterization of the important class of
discrete cosine and sine transforms as decomposition matrices of certain regular modules associated
with four series of Chebyshev polynomials. Then we derive most of their known algorithms by pure
algebraic means. We identify the mathematical principle behind each algorithm and give insight into
its structure. Our results show that the connection between algebra and digital signal processing is
stronger than previously understood.

Key words. discrete cosine transform (DCT), discrete sine transform (DST), discrete trigono-
metric transform (DTT), discrete Fourier transform (DFT), FFT, polynomial transform, fast algo-
rithm, Chebyshev polynomial, algebra representation, group representation, symmetry

AMS subject classifications. Primary, 42C05, 42C10, 33C80, 33C90, 65T50, 65T99;
Secondary, 15A23, 62-07

DOI. 10.1137/S009753970139272X

1. Introduction. Many algorithms in digital signal processing are based on the
use of linear discrete signal transforms. Mathematically, such a transform is a matrix-
vector multiplication a �→ M · a, where a ∈ F

n is the sampled signal, and M ∈ F
n×n

is the transform over some base field F. We will consider only F = C. Crucial for the
applicability of a signal transform M is the existence of fast algorithms that allow its
computation within O(n log n) operations (or better), compared with O(n2) arising
from a direct matrix-vector multiplication. The problem of finding these algorithms
for different transforms has been a major research topic leading to a vast number of
publications in signal processing and mathematics.

In this paper we present an algebraic approach to the class of the 16 trigonometric
transforms in the framework of algebra representation theory. Then we use algebraic
methods to derive most of their known fast algorithms. Our results give insight into
the structure and the existence of these algorithms and extend the relationship be-
tween signal processing and algebra that is currently restricted mainly to the discrete
Fourier transform (DFT).

1.1. Transforms and algorithms. Probably the most famous example of a
signal transform is the DFT, which is used in harmonic analysis to decompose a
signal into its frequency components. Important algorithms for the DFT include the
“fast Fourier transform” (FFT) found by Cooley and Tukey [11] (originally due to
Gauß; see [23]), Rader’s algorithm for prime size [39], Winograd’s algorithms [54], and
several others. An overview on DFT algorithms can be found, for example, in [49].

Another important class of transforms consists of the eight different types of dis-
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crete cosine and sine transforms (DCTs and DSTs, respectively), also called discrete
trigonometric transforms (DTTs). Their applications include image and video com-
pression [40]. Important algorithms for the trigonometric transforms were developed
by Chen, Smith, and Fralick [7], Wang [52], Yip and Rao [56, 57], Vetterli and Nuss-
baumer [50], Lee [28], Feig [20], Chan and Ho [6], Steidl and Tasche [46], and Feig
and Winograd [21].

Each of these algorithms has been derived through insightful manipulation of
the transform matrix entries. The algorithms are highly structured, a property that
can be used to write them as sparse factorizations of the transform matrix in a very
concise way using mathematical operators. As examples, the Cooley–Tukey FFT can
be written as

DFTmn = (DFTm⊗ Im) ·D · (Im⊗DFTn) · P,(1.1)

and an example of an algorithm for the DCT-2 is

DCT-22n = Q · (DCT-2n ⊕DCT-4n) ·B.(1.2)

The notation will be explained in section 2; the matrices D,P,Q,B are all sparse.
Both algorithms are of a recursive nature.

1.2. The algebraic characterization of the DFT. It is well known that a
DFT (of size n) can be introduced in strict algebraic terms as the decomposition
matrix for the group algebra C[Zn] of a cyclic group Zn with n elements,

DFTn : C[Zn]→ C⊕ · · · ⊕ C,(1.3)

or, equivalently, as the decomposition matrix for the algebra C[x]/(xn − 1),

DFTn : C[x]/(xn − 1)→ C[x]/(x− ω0
n)⊕ · · · ⊕ C[x]/(x− ωn−1

n ),(1.4)

with respect to appropriate bases in each case. These decompositions are instantia-
tions of the Wedderburn theorem for the semisimple algebra C[Zn] ∼= C[x]/(xn − 1).
Equations (1.3) and (1.4) show that the DFT is indeed an algebraic object and thus
provides a deep understanding of its use in signal processing. Furthermore, (1.3) and
(1.4) can be used to easily derive and explain the structure of fast DFT algorithms
by algebraic constructions rather than by manipulation of the DFT entries. As an
example, (1.1) arises from a stepwise decomposition of C[Zn], as has been shown by
Auslander, Feig, and Winograd [2] and Beth [3].

Given the algebraic characterization of the DFT, we naturally obtain the following
question: Is it possible to generalize (1.3) or (1.4) to capture a larger class of signal
transforms in an algebraic framework? And, in the affirmative case: How do we use
the algebraic characterization to derive and explain their fast algorithms?

1.3. Beyond the DFT. Depending on the interpretation of the DFT in (1.3)
and (1.4), there have been two threads of generalization.

First, (1.3) has been generalized to arbitrary finite groups G 	= Zn, leading to
the area of “Fourier analysis on groups” that provides a rich class of transforms and
the theory to derive their fast algorithms. Examples of important results in this field
include the work of Beth [4], Clausen [9], Diaconis and Rockmore [13], and Rockmore
[43]; a nice overview on this area can be found in [10] and in the survey articles
[29] and [44]. However, with few exceptions, the Fourier transforms on groups do
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not correspond to the transforms actually used in signal processing. This problem
initiated a further generalization by Minkwitz [32, 31] to include C[G]-modules that
afford an arbitrary permutation representation. A matrix that decomposes such a
module was said to have “symmetry.” Minkwitz discovered that the DCT (type 3)
possesses such a symmetry and derived, by pure algebraic means, a fast algorithm.
That approach was further generalized by Egner and Püschel to include monomial
representations: A decomposition theory [37, 36] and tools to analyze a matrix for
symmetry and automatically derive a factorization [19, 15, 17] were developed. In [16]
these tools were successfully applied to several signal transforms. Among the DTTs,
the DCT and DST of type 3 and 4 exhibited symmetry and could be decomposed by
these techniques.

Second, the generalization of (1.4) to arbitrary polynomials p(x) 	= xn − 1 and
arbitrary bases of C[x]/p(x) leads to the class of “polynomial transforms.” If p is
arbitrary and (1, x, . . . , xn−1) is chosen as a basis, one obtains a Vandermonde ma-
trix, which is known to have a sparse factorization (see e.g., [5]). Driscoll, Healy, and
Rockmore [14] developed a fast algorithm for the case of arbitrary (separable) poly-
nomials p and bases consisting of orthogonal polynomial sequences. Independently,
Potts, Steidl, and Tasche provided a numerically stable version of this algorithm [35].
In their paper the DCT of type 1 is recognized as a polynomial transform. Steidl
and Tasche [46] also recognized the DCT of type 3 as a polynomial transform and
used this property to derive a fast algorithm. In a different context, the DCTs and
DSTs of types 1–4 have been related to polynomial transforms, in some cases after
appropriate normalization [26].

Taken together, we encounter the following situation with respect to the DTTs:
1. There are 16 types of DTTs and a large number of publications on their fast

algorithms.
2. In signal processing the DTTs are characterized as eigenmatrices of certain

linear time-invariant processes with given boundary conditions [33, 47].
3. Four DTTs have been shown to exhibit group symmetries, and, in each case,

an algorithm has been derived by algebraic means.
4. Two DTTs have been shown to be polynomial transforms. (Note that this

property is not equivalent to point 3.) In one case this has been used to derive a fast
algorithm. Further, six DTTs have been recognized as polynomial transforms after
suitable normalization.
This sets the framework for the results presented in this paper.

1.4. The algebraic characterization of the DTTs. In this paper we present
the algebraic characterization of the DTTs. This shows that, like the DFT, the DTTs
are algebraic objects. Then we use the algebraic framework to derive, and explain,
most of the fast DTT algorithms known in the literature. The results extend our
previous preliminary work [38].

In particular we present the following:
1. A complete algebraic characterization of all 16 DTTs as scaled polynomial

transforms (a generalization of polynomial transforms to be defined) arising from
polynomial algebras A = C[x]/p(x) and A-modules of the form f · A, where f is
a scaling function. The construction of these modules follows the defining signal
processing properties of the DTTs as eigenmatrices of certain linear time-invariant
processes with given boundary conditions. Thus, our construction relates the domain
of signal processing to the domain of algebra representation theory. As polynomials,
four series of Chebyshev polynomials will naturally come into play.
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2. A comprehensive overview of existing fast algorithms and their derivation by
pure algebraic means, i.e., by manipulating modules and algebras rather than matrix
entries. The algorithms are divided into classes depending on the mathematical princi-
ple that accounts for their existence. Examples, based on a direct manipulation of the
A-module M and polynomial p(x) associated with a DTT, include: (a) translation
of a DTT into another DTT by a sparse base change in M ; (b) recursive decom-
position based on a factorization of p; and (c) recursive decomposition based on a
decomposition of p. We continue our investigation by deriving a striking property of
the DTTs. The characterization of the DTTs as scaled polynomial transforms, i.e.,
in a framework of polynomial algebras and their representations, leads naturally to
group symmetry properties, i.e., properties in the framework of groups and their rep-
resentations. We will identify two ways in which group symmetries come into play (a)
by extending the A-module M to a suitable C[G]-module, where G is a finite group,
and (b) through certain subgroups of the automorphism group of A. These symmetry
properties lead to algorithms that are structurally different from the ones obtained
by direct derivation (see above). All techniques used for the derivation of fast DTT
algorithms are potentially more generally applicable.

Taken together, our results provide a comprehensive framework that puts previous
results on the DTTs into a common context, thus tying together their signal processing
properties, their algebraic properties, and the structure of their fast algorithms.

1.5. Organization. The paper is divided into two parts. Part I (sections 2–6)
provides the mathematical framework and establishes the algebraic interpretation of
the DTTs. Part II (sections 7–10) uses different algebraic methods to derive and
explain most of the known fast algorithms for the DTTs.

Part I. In section 2 we briefly describe the notation and mathematical concepts
we use. Polynomial transforms and scaled polynomial transforms are introduced in
section 3, together with their module-theoretic interpretations. In section 4 we present
a generalization of Chebyshev polynomials, with particular attention to four special
series and their properties. The 16 types of DTTs are introduced in section 5, together
with their defining signal processing properties. In section 6 we construct for each
DTT, using its signal processing properties, an associated module, which reveals that
the DTTs are scaled polynomial transforms.

Part II. In section 7 we present general methods for obtaining fast algorithms for
polynomial transforms and discuss results known from the literature. In section 8 we
use the algebraic properties of the DTTs to derive and understand several known fast
algorithms for the DTTs. Other classes of algorithms for the DTTs are explained in
section 9 and are based on group representation symmetries. In section 10 we will
briefly discuss algorithms that are not covered by the previous methods.

2. Notation and terminology. We will use the following notation and math-
ematical background.

Matrices. An (n × n)-matrix with entry ak,� at row k and column � is written
as [ak,�]. In most cases we provide the index range of k, � as subscript. We denote

by A⊕ B =
[
A
B

]
the direct sum of A and B. If A = [ak,�], then A⊗ B = [ak,� ·B]

denotes the tensor or Kronecker product of A and B. The conjugation is written as
AB = B−1 · A · B. A monomial matrix has exactly one nonzero entry in every row
and column. If σ is a permutation (usually written in cycle notation), we will denote
a corresponding (n × n)-matrix as [σ, n], which has ones at positions (i, σ(i)). The
special case σ : i �→ ki mod n − 1, i = 0, . . . , n − 2, and n − 1 �→ n − 1, for k | n, is
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called “stride permutation,” and we write [σ, n] = Lnk . A diagonal matrix is written
as diag(L), where L is the list of diagonal elements. A monomial matrix is denoted
by [σ, L] = [σ, |L|] · diag(L).

Polynomials. Polynomials are denoted by lowercase letters, p(x), q(x), etc. We
will often drop the argument for convenience. A polynomial is called separable if its
zeros are pairwise distinct; i.e., if deg(p) = n, then

p(x) =

n−1∏
k=0

(x− αk), αi 	= αj , for i 	= j.

Algorithms. If B is an (n×n)-matrix, we mean by “a fast algorithm for B” a fast
algorithm for computing the matrix vector product x �→ B · x. Algorithms are given
by factorizations, B = B1 · · ·Bk, where all Bi are sparse. If we refer to the arithmetic
cost of an algorithm or the arithmetic complexity of matrices B, we mean the number
of additions and multiplications different from 1,−1 (cf. [5]).

Algebras and modules. We assume that the reader is familiar with the basic theory
of algebras and modules. Examples of introductory books on this topic are [12, 25]. All
algebras in this paper are C-algebras. In particular, we will consider the polynomial
algebra C[x] and factor algebras C[x]/p(x), where p is a separable polynomial, and
group algebras C[G], where G is a finite group. Each of the algebras A = C[x]/p(x)
or A = C[G] is of finite dimension and semisimple; i.e., every finite-dimensional (left
or right) A-module can be decomposed into a direct sum of irreducible submodules,

M ∼= M1 ⊕ · · · ⊕Mk,

which is called the Wedderburn decomposition of M . If bases in M and Mi, i =
1, . . . , k, are chosen, then this isomorphism can be expressed by a matrix, which we
will refer to as a Wedderburn matrix. The module M is usually a left module unless
otherwise stated. If M has dimension n as C vector space, and a basis is chosen, then
M affords a matrix representation of A, i.e., a homomorphism

φ : A→ C
n×n.

The Wedderburn decomposition of M is equivalent to a decomposition of φ into a
direct sum of irreducible representations. In the special case where M ∼= A (as A-
modules), M is called the regular A-module, and a corresponding representation is
also called regular.

The annihilator of M in A is defined as

annA(M) = {a ∈ A | a ·m = 0, for all m ∈M};

it is a two-sided ideal in A. If M is an A-module, then M is also an A/ annA(M)-
module.

3. Polynomial algebras, modules, and transforms. In this section we in-
troduce polynomial transforms and their algebraic interpretation as decomposition
matrices of polynomial algebras. Then we extend the definition to the more general
class of “scaled” polynomial transforms. This extension will enable us to capture all
trigonometric transforms in an algebraic framework.
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3.1. Polynomial transforms. Let

p(x) =

n−1∏
k=0

(x− αk)

be a separable polynomial. Then the algebra A = C[x]/p(x) is semisimple, and the
Wedderburn decomposition of (the regular module) M = A is given by the Chinese
remainder theorem (CRT) as

C[x]/p(x) ∼=
n−1⊕
k=0

C[x]/(x− αk).(3.1)

We want to represent the isomorphism in (3.1) by a matrix.
Definition 3.1 (polynomial transform). Let b = (p0, . . . , pn−1) be a basis of

polynomials in C[x]/p(x), p separable, and α = (α0, . . . , αn−1) the vector of zeros of
p, and assume that the one-dimensional algebras C[x]/(x − αk) have the base vector
1 = x0, respectively. With these choices, the isomorphism (3.1) is given by the (n×n)-
matrix

Pb,α = [p�(αk)]k,�=0,...,n−1 ,(3.2)

where k is the row index. The Wedderburn matrix Pb,α is called the polynomial
transform w.r.t. the polynomials b and the sample points α. (Note that the order of
base polynomials and sample points matters.)

The polynomial transform Pb,α can also be characterized via the representation
φ afforded by the module A = M with basis b. This is the subject of the following
lemma.

Lemma 3.2. We use previous notation. Let p(x) =
∏n−1
k=0(x − αk) be sepa-

rable, A = C[x]/p(x), and M = A be the (regular) left module with basis b =
(p0, p1, . . . , pn−1) and polynomial transform Pb,a. Let φ be the corresponding rep-
resentation of A. Then

(i) P−1
b,α decomposes φ into a direct sum of irreducible representations. More

precisely,

Pb,α · φ(q(x)) · P−1
b,α = diag(q(α0), . . . , q(αn−1)) for q(x) ∈ A.

All such decomposition matrices are given by P−1
b,α · D, where D is diagonal and in-

vertible.
(ii) PTb,α decomposes φT into a direct sum of irreducible representations. More

precisely,

(PTb,α)−1 · φT (q(x)) · PTb,α = diag(q(α0), . . . , q(αn−1)) for q(x) ∈ A.

All such decomposition matrices are given by PTb,α · D, where D is diagonal and in-
vertible.

Proof. The matrix Pb,α expresses the basis b of M = A in the basis of the decom-

posed module M ′ =
⊕n−1

k=0 C[x]/(x− αk). Thus, the representation ρ afforded by M ′

is given by ρ = φP
−1
b,α . Since all the C[x]/(x−αk) are submodules (of dimension 1) of

M , ρ is diagonal. The projection of q(x) ∈ A onto C[x]/(x − αk) is just the evalua-
tion q(αk). Since for q(x) = x all eigenvalues of φ(x) are distinct, all decomposition
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matrices are given by P−1
b,α ·D, D diagonal (and invertible). This shows (i). Part (ii)

follows from (i) by transposition.
Remark. The representation φT arises from the right regular module A.
Example 3.3 (Vandermonde matrix). Let A = M = C[x]/p(x), with separable p

as above. We consider the special case b = (x0, x1, . . . , xn−1). Then the polynomial
transform

Pb,α =
[
α�k
]
k,�=0,...,n−1

is precisely the transpose of a Vandermonde matrix [5].
Next, we construct the regular representation φ of A with respect to the basis

b. Since A is cyclic (generated by the polynomial x), it is sufficient to determine the
image of x ∈ A under φ. Let p(x) =

∑n
i=0 ηi · xi. Then

x · xi = xi+1, i = 0, . . . , n− 2, and

x · xn−1 = xn ≡
n−1∑
i=0

−ηi · xi mod p(x).

Thus we obtain

φ(x) =




0 −η0

1 0 −η1

. . .
. . .

...
1 0 −ηn−2

1 −ηn−1



,

which is the transpose of the companion matrix of p. Using Lemma 3.2,

φ(x)P
−1
b,α = (φ(x)T )P

T
b,α = diag(α0, . . . , αn−1).

Example 3.4 (discrete Fourier transform). We expand upon Example 3.3 by
requiring also that p(x) = xn − 1, which implies that αk = e2πik/n, k = 0, . . . , n− 1.
In this case the transposed Vandermonde matrix coincides with the DFT of size n,

DFTn =
[
e2πik�/n

]
k,�=0,...,n−1

.

This identifies the DFT as a polynomial transform. The corresponding representation
φ maps x to the cyclic shift,

φ(x) =




0 1
1 0 0

. . .
. . .

...
1 0


 ,

and, by Lemma 3.2 and since DFTn is symmetric,

(φ(x)T )DFT(n) = diagn−1
k=0(e

2πik/n).
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3.2. Scaled polynomial transforms. In section 3.1 we introduced polynomial
transforms as Wedderburn matrices of regular A-modules M , where A = M = C[x].
To capture all DTTs in an algebraic framework, we must generalize slightly the notion
of polynomial transforms. In short, we will consider scaled polynomial transforms.
These arise when the polynomials p� in (3.2) are replaced by f · p�, where f is a
complex-valued function. Every scaled polynomial transform is associated with a
regular module M ∼= A, where M can be 	= A. We start with the following definition.

Definition 3.5 (scaled polynomial transforms). Let C[x]/p(x), b, and α be as
in Definition 3.1. Further, let f be a complex-valued function satisfying f(αk) 	= 0,
k = 0, . . . , n−1. We define the scaled polynomial transform w.r.t. the scaling function
f , basis b, and sample points α as

Pf ·b,α = [(f · p�)(αk)]k,�=0,...,n−1 .(3.3)

We can associate a regular module to a scaled polynomial transform Pf ·b,α in the
following way. The vector space f · C[x] = {f · q | q ∈ C[x]} naturally becomes a
C[x]-module by defining

r · (f · q) = f · rq for r ∈ C[x].

Let p be a separable polynomial with zeros α = (α0, . . . , αn−1), and A = C[x]/p.
Then C[x] · (f · p) is a C[x]-submodule of f · C[x], and we can construct the factor
module M = f ·C[x]/(C[x] · (f · p)) = f ·C[x]/(f · p). We will briefly write M = f ·A.
Its annC[x](M) = C[x] · p, and thus M is an A-module, and if b = (p0, . . . , pn−1) is a
basis of A, then f · b = (f · p0, . . . , f · pn−1) is a basis of M .

We summarize the properties of the module M = f ·A and the scaled polynomial
transform Pf ·b,α in the following lemma.

Lemma 3.6. Let A = C[x]/p(x), b = (p0, . . . , pn−1) be a basis of A, and p be
a separable polynomial with zeros α = (α0, . . . , αn−1). Assume that f is defined as
above, and that f(αk) 	= 0, k = 0, . . . , n − 1. Further, let M = f · A with basis f · b
as defined above. Then the following hold:

(i) M is a regular A-module.
(ii) The (regular) representation φ of A afforded by M and f · b is equal to the

(regular) representation of A afforded by A and b.
(iii) Pf ·b,α = diag(f(α0), . . . , f(αn−1)) · Pb,α.
(iv) The representation φ is diagonalized by P−1

f ·b,α, and the representation φT is

diagonalized by PTf ·b,α.
Proof. (i) follows, since f 	≡ 0, pi �→ f ·pi, i = 0, . . . , n−1, defines an isomorphism

A→ f ·A. (ii) is obvious. (iii) follows straight from the definitions in (3.2) and (3.3).
(iv) follows from (iii) and Lemma 3.2.

Remark. The scaled polynomial transform Pf ·b,α is not the Wedderburn matrix
of the module f ·A with basis f · b. The mapping f ·pk �→ pk, k = 0, . . . , n−1, defines
an A module isomorphism between f ·A and A. The corresponding matrix (w.r.t. the
bases f ·b and b) is the identity. Hence f ·A and A have the same Wedderburn matrix
Pb,α.

4. Chebyshev polynomials. In this section we introduce a general class of
Chebyshev polynomials and their properties that we will use throughout this paper.
We start with the classical cases.
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Table 4.1
Tn and Un for −2 ≤ n ≤ 3.

n −2 −1 0 1 2 3

Tn 2x2 − 1 x 1 x 2x2 − 1 4x3 − 3x

Un −1 0 1 2x 4x2 − 1 8x3 − 4x

4.1. The classical cases. The classical Chebyshev polynomials (of the first
kind) Tn are given by the three-term recurrence

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.(4.1)

Tn is a polynomial of degree n and can be written in a closed form as

Tn(x) = cosnθ, cos θ = x for x ∈ (−1, 1).(4.2)

The recurrence formula in (4.1) is symmetric and can also be run in the other direction
to obtain Chebyshev polynomials with negative n. Doing this, we obtain the symme-
try property T−n = Tn, as can also be seen from (4.2). The sequence {Tn | n ≥ 0} is
orthogonal on the interval (−1, 1) w.r.t. the weight function w(x) = (1−x2)−1/2, i.e.,

∫ 1

−1

Tn(x)Tm(x)w(x)dx = 0 for n 	= m.

From the closed form (4.2) for Tn, we also readily read off its zeros as

cos
(k + 1/2)π

n
, k = 0, . . . , n− 1.

Using recurrence (4.1) with changed initial conditions yields the Chebyshev poly-
nomials Un of the second kind:

U0(x) = 1, U1(x) = 2x, Un(x) = 2xUn−1(x)− Un−2(x), n ≥ 2.

The closed form of Un is given by

Un(x) =
sin(n + 1)θ

sin θ
, cos θ = x for x ∈ (−1, 1),

and we get U−1 = 0 and the symmetry U−n−2 = −Un. For −2 ≤ n ≤ 3 the
polynomials Tn, Un are shown in Table 4.1.

A thorough introduction to Chebyshev polynomials and orthogonal polynomials
in general can be found in the books of Chihara [8], Szegö [48], and Rivlin [42].

4.2. Generalized Chebyshev polynomials. Now we consider the set C of all
polynomial sequences {Pn | n ∈ Z} that satisfy the three-term recurrence

Pn(x) = 2xPn−1(x)− Pn−2(x).(4.3)

We will refer to each such sequence as Chebyshev polynomials.
Lemma 4.1. Let {Pn | n ∈ Z} be a sequence of Chebyshev polynomials (we drop

the argument x for simplicity). Then the following hold:
(i) Pn = P1 · Un−1 − P0 · Un−2.
(ii) Tk · Pn = (Pn+k + Pn−k)/2.
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Table 4.2
Four series of Chebyshev polynomials. The range for the zeros is k = 0, . . . , n− 1.

n = 0, 1 Closed form Symmetry Zeros Weight w(x)

Tn 1, x cos(nθ) T−n=Tn cos
(k+ 1

2
)π

n

1

(1− x2)1/2

Un 1, 2x
sin(n+ 1)θ

sin θ
U−n=−Un−2 cos

(k+1)π
n+1

(1− x2)1/2

Vn 1, 2x− 1
cos(n+ 1

2
)θ

cos 1
2
θ

V−n=Vn−1 cos
(k+ 1

2
)π

n+ 1
2

(1 + x)1/2

(1− x)1/2

Wn 1, 2x+ 1
sin(n+ 1

2
)θ

sin 1
2
θ

W−n=−Wn−1 cos
(k+1)π

n+ 1
2

(1− x)1/2

(1 + x)1/2

Proof. Clearly, a sequence Pn is uniquely determined by its initial conditions
P0 and P1. If P0, P1 give rise to the sequence Pn, and if Q is any polynomial, then
Q·P0, Q·P1 give rise to the sequence Q·Pn. If, further, P ′0, P

′
1 give rise to the sequence

P ′n, then P0 + P ′0, P1 + P ′1 give rise to Pn + P ′n.
(i) First we consider the initial polynomials 0, 1 and 1, 0 and obtain (cf. Table 4.1)

P0 = 1, P1 = 0 : Pn = −Un−2,
P0 = 0, P1 = 1 : Pn = Un−1.

With the previous remark, this shows (i).
(ii) Induction on k. For k = 0 it is trivial; for k = 1 this is the defining recurrence

(4.3) for Pn. Further, we have

Tk+1 · Pn = (2xTk − Tk−1) · Pn
= 2x · (Pn+k + Pn−k)/2− (Pn+k−1 + Pn−k+1)/2

= (Pn+k+1 + Pn−k−1)/2,

where we used the induction hypothesis in the second step, and (4.3) in the last
step.

Remarks. (1) Both assertions in Lemma 4.1 remain valid when the polynomials Pn
and hence P0, P1 are allowed to be arbitrary complex-valued functions. (2) Lemma 4.1
shows that C is a free C[x]-module of rank 2.

We are particularly interested in four polynomial sequences, Tn, Un, Vn, Wn, in C
arising from different initial conditions. The sequences Tn and Un are the Chebyshev
polynomials of the first and second kind, as introduced above. All four sequences can
be written in a closed form, have simple symmetry properties, and are orthogonal on
(−1, 1) w.r.t. some weight function w(x). The zeros in all cases can be obtained from
the closed form. These properties are summarized in Table 4.2. The results on Vn
and Wn can be found in [8, pp. 37, 39].

Later we will need the following arithmetic properties of the Chebyshev polyno-
mials.

Lemma 4.2. The following hold for all m,n ∈ Z:
(i) Tmn = Tn(Tm) = Tm(Tn).
(ii) Umn−1 = Um−1(Tn)Un−1.
(iii) U2m = Vm ·Wm.
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Table 4.3
Identities among the four series of Chebyshev polynomials; Pn has to be replaced by Tn, Un,

Vn, Wn to obtain rows 1, 2, 3, 4, respectively.

Pn − Pn−2 Pn Pn − Pn−1 Pn + Pn−1
Tn 2(x2 − 1)Un−2 Tn (x− 1)Wn−1 (x+ 1)Vn−1
Un 2Tn Un Vn Wn

Vn 2(x− 1)Wn−1 Vn 2(x− 1)Un−1 2Tn

Wn 2(x+ 1)Vn−1 Wn 2Tn 2(x+ 1)Un−1

(iv) Wn(x) = (−1)nVn(−x).
(v) Tn(1) = 1.
Proof. The proof follows from the closed form of the polynomials (Table 4.2) and

trigonometric identities.
We conclude this section by stating an interesting property of the four types of

Chebyshev polynomials introduced. Let Pn be any of Tn, Un, Vn, Wn. Then, using
well-known trigonometric identities, Pn − Pn−2, Pn − Pn−1, Pn + Pn+1 can again be
expressed using these polynomials. In particular, this allows us to determine their
zeros using Table 4.2. The complete set of identities is given in Table 4.3. The second
column is trivial and is introduced to make the table comply with later investigations.
As an example, row 2, column 1 shows that Un − Un−2 = 2Tn.

Remarks. (1) In a few places in the literature, e.g., in [30], the four series of
Chebyshev polynomials occur together. (2) If we use the closed forms of Tn, Un
to extend their definitions to rational n ∈ Q, we can write Vn = Tn+1/2/T1/2 and
Wn = Un−1/2/U−1/2. (3) For a complete overview on the factorization of Tn and Un
over Q, see [41].

5. The 16 types of DTTs. The first discrete cosine transform was introduced
by Ahmed, Natarajan, and Rao [1]. The complete set of all eight types of DCTs and
DSTs, respectively, was first presented by Wang and Hunt [53]. We will sometimes
refer to them together as DTTs. Each of the transforms is given by an (n×n)-matrix
M , n ≥ 0, which multiplies to a signal vector a from the left, a �→M ·a. As examples,
we will use the symbol DCT-2 to refer to a DCT of type 2, and DST-7n to refer to
a DST of type 7 and size n. If an arbitrary trigonometric transform is addressed, we
will write DTT or DTTn. In this notation, the first DCT introduced was of type 2.

Table 5.1
Eight types of DCTs and DSTs, given for size n. The entry at row k and column � is given for

k, � = 0, . . . , n− 1.

DCTs DSTs

type 1 cos k� π
n−1 sin(k + 1)(�+ 1) π

n+1

type 2 cos k(�+ 1
2
)π
n

sin(k + 1)(�+ 1
2
)π
n

type 3 cos(k + 1
2
)�π
n

sin(k + 1
2
)(�+ 1)π

n

type 4 cos(k + 1
2
)(�+ 1

2
)π
n

sin(k + 1
2
)(�+ 1

2
)π
n

type 5 cos k� π
n− 1

2

sin(k + 1)(�+ 1) π
n+ 1

2

type 6 cos k(�+ 1
2
) π
n− 1

2

sin(k + 1)(�+ 1
2
) π
n+ 1

2

type 7 cos(k + 1
2
)� π
n− 1

2

sin(k + 1
2
)(�+ 1) π

n+ 1
2

type 8 cos(k + 1
2
)(�+ 1

2
) π
n+ 1

2

sin(k + 1
2
)(�+ 1

2
) π
n− 1

2

Table 5.1 gives the definitions of all 16 types of DCTs and DSTs by stating the
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respective entry at position (k, �), where k is the row index, for k, � = 0, . . . , n−1. As
can be seen, all entries are pure cosines or sines of the form cos rπ or sin rπ, where r is
some rational number. Thus, all entries are elements in a suitable cyclotomic field over
Q. The definitions given in Table 5.1 are the unscaled versions of the DCTs and DSTs,
which will be considered in this paper. The scaled versions of the DCTs and DSTs are
orthonormal and arise from the unscaled versions by multiplying in some cases the
first and/or last row and/or column by 1/

√
2, which makes the matrix orthogonal. In

addition, the entire matrix is multiplied by a factor to achieve orthonormality. As an
example, the orthonormal version of the DCT-2 has entries

√
2

n
· ck · cos k

(
� +

1

2

)
π

n
, k, � = 0, . . . , n− 1,

where ck =
√

1/2 for k = 0 and ck = 1 elsewhere. For the convenience of the reader,
the scaled, orthonormal versions of the DCTs and DSTs are given in Table A.1 in
the appendix. Note that the set of all DTTs is closed under matrix transposition.
From Table 5.1 it is easily seen that the DCT and the DST of types 1, 4, 5, and 8 are
symmetric, and that types 2 and 3 and types 6 and 7 are converted into each other,
respectively, by transposition.

All 16 DCTs and DSTs arise as eigenmatrices of certain tridiagonal matrices
[47, 45] of size (n× n), which can be chosen of the form

B(β1, β2, β3, β4) =
1

2
·




β1 β2

1 0 1
1 0 1
· · ·

1 0 1
β3 β4



.(5.1)

The internal structure of B(β1, β2, β3, β4) corresponds to the equation

ak =
1

2
(ak−1 + ak+1), 1 ≤ k ≤ n− 2.(5.2)

The entries β1, β2 are determined by a choice of left boundary conditions (b.c.) that
determine how a−1 is chosen in (5.2) for k = 0. The four left b.c. considered are
a−1 = a1, a−1 = 0, a−1 = a0, a−1 = −a0. For example, the choice a−1 = a1 leads
to β1 = 0, β2 = 2. Similarly, the entries β3, β4 are determined by right b.c. arising
from the choice of an in (5.2) for k = n− 1. The right b.c. are the mirrored versions
of the left b.c.: an = an−2, an = 0, an = an−1, an = −an−1. The complete set of
values β1, β2, β3, β4 for all 16 possible combinations of b.c. is given in Table 5.2. If
b.c., and thus values β1, β2, β3, β4, are chosen, and if a = (a0, . . . , an−1)

T , then (5.2),
k = 0, . . . , n− 1, can be written as

a = B(β1, β2, β3, β4) · a.
Remarks. (1) The matrices B(·) in (5.1) correspond to linear time-invariant pro-

cesses with b.c. [33, 47]. (2) The b.c. a−1 = 0 and a−1 = −a0 are the discrete versions
of Dirichlet b.c.; a−1 = a1 and a−1 = a0 are the discrete versions of Neumann b.c.
Analogously for the right b.c. [33, 47].

The 16 DTTs correspond to these different choices of b.c. as shown in Table 5.3
(see [47]). The relationship is as follows. If numbers β1, β2, β3, β4 (and hence left and
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Table 5.2
The values β1, β2, β3, β4 from (5.1) for the four respective choices of left b.c. and right b.c.

Left b.c. β1 β2

a−1 = a1 0 2

a−1 = 0 0 1

a−1 = a0 1 1

a−1 = −a0 −1 1

Right b.c. β3 β4

an = an−2 2 0

an = 0 1 0

an = an−1 1 1

an = −an−1 1 −1

Table 5.3
The left and right boundary conditions associated with the DCTs and DSTs.

an = an−2 an = 0 an = an−1 an = −an−1
a−1 = a1 DCT-1 DCT-3 DCT-5 DCT-7

a−1 = 0 DST-3 DST-1 DST-7 DST-5

a−1 = a0 DCT-6 DCT-8 DCT-2 DCT-4

a−1 = −a0 DST-8 DST-6 DST-4 DST-2

right b.c.) are chosen from row k and row �, respectively, of Table 5.2 (k, � = 1, . . . , 4),
then the corresponding matrix B(β1, β2, β3, β4) is diagonalized by the transpose of the
DTT of size n given in row k and column � of Table 5.3.

Example 5.1. As an example, we choose left b.c. a−1 = a0 and right b.c. an =
an−1 and obtain β1 = β2 = β3 = β4 = 1. The (n× n)-matrix

B(1, 1, 1, 1) =
1

2
·




1 1
1 0 1
· · ·

1 0 1
1 1


(5.3)

is diagonalized by DCT-2Tn = DCT-3n; i.e., B(1, 1, 1, 1)DCT-3n is diagonal.
Remarks. (1) The DTTs of types 5–8 are also called “odd” DTTs of types 1–

4, respectively. (2) Reference [47] considers the matrices 2 I−2B(·) rather than the
matrices B(·), which leads to equivalent diagonalization properties. Also the definition
of the DTTs is transposed to our definition. We chose the original [53] and commonly
used definition.

6. The algebraic characterization of the DTTs. In this section we will show
that all 16 DTTs are scaled polynomial transforms (see section 5) by constructing the
corresponding modules and bases. To connect, for a given DTT, its diagonaliza-
tion property, i.e., the associated matrix B(β1, β2, β3, β4) (cf. section 5), with the
algebra/module framework, we will construct a module with basis b that affords a
representation φ such that

φT (x) = B(β1, β2, β3, β4).

In other words, the operation of x (via multiplication) on b is reflected by the matrix
B(β1, β2, β3, β4). Lemma 3.6(iv) will establish the correspondence between the DTT
and the module constructed this way.

The construction of the module and its base is a three-step procedure. Assume a
DTT and an associated matrix B(·) are given.
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1. Internal structure (section 6.1). Determine a sequence of polynomials that
yields the internal structure of B(·), i.e., the . . . , 1

2 , 0,
1
2 , . . . in each column. This will

bring into play generalized Chebyshev polynomials in a natural way.
2. Left boundary conditions (section 6.2). Fix the left b.c. This corresponds

to fixing the initial conditions for the Chebyshev polynomials, i.e., the choice of a
particular sequence of Chebyshev polynomials.

3. Right boundary conditions (section 6.3). Fix the right b.c. This corresponds
to choosing the appropriate polynomial p for the module (and the algebra) C[x]/p.

6.1. Internal structure. First we will consider n-dimensional modules that
carry the structure given in (5.2). Rewriting (4.3) in a slightly different form as

x · Pk =
1

2
(Pk−1 + Pk+1)(6.1)

shows that this is afforded by any regular module A = C[x]/p, deg(p) = n, if we choose
the basis b = (P0, . . . , Pn−1), where the Pk are generalized Chebyshev polynomials.
In other words, the image of x under the representation φ afforded by A with basis b
will have an internal structure similar to the matrices given in (5.1).

6.2. Left boundary conditions. The four left b.c. associated with the DTTs
are (see Table 5.3)

a−1 = a1, a−1 = 0, a−1 = a0, a−1 = −a0.(6.2)

They apply in the boundary case k = 0 in (5.2). An equivalent behavior is obtained in
(6.1) if we choose the four special sequences of Chebyshev polynomials Tk, Uk, Vk,Wk

introduced in Table 4.2. The symmetry properties of these polynomials (cf. Table 4.2)
correspond to the left b.c. in (6.2),

T−1 = T1, U−1 = 0, V−1 = V0, W−1 = −W0,

respectively. As an example, every regular module C[x]/p with basis (T0, . . . , Tn−1)
carries the left b.c. a−1 = a1.

6.3. Right boundary conditions. The four right b.c. associated with the
DTTs mirror the left b.c. (see Table 5.3):

an = an−2, an = 0, an = an−1, an = −an−1.(6.3)

The right b.c. are determined by the choice of p in C[x]/p. As an example, to introduce
the right b.c. an = an−2, we choose p = Pn − Pn−2, where P ∈ {T,U, V,W}. Thus
the choices of p corresponding to (6.3) are

Pn − Pn−2, Pn, Pn − Pn−1, Pn + Pn−1,(6.4)

respectively. To determine the zeros of p in these cases, and hence the decomposition of
A and its associated decomposing polynomial transform, we need to consult Table 4.3,
which covers all cases in (6.4) for P ∈ {T,U, V,W, }.

6.4. Summary. Before we state the interpretation of the DTTs as scaled poly-
nomial transforms, it is perhaps instructive to consider an example.

Example 6.1 (DST-3). We choose the left b.c. a−1 = 0, which leads to the choice
of the basis b = (U0, . . . , Un−1). As right b.c. we choose an = an−2, which leads to
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p = Un − Un−2 = 2Tn using Table 4.3. The decomposition of the regular module
A = C[x]/Tn (the 2 can be dropped) is determined by the zeros of Tn, which are
α = (cos 1

2π/n, . . . , cos(n− 1
2 )π/n) (cf. Table 4.2), i.e.,

A = C[x]/(Un − Un−2) = C[x]/Tn =

n−1⊕
k=0

C[x]/
(
x− cos

(
k + 1

2

)
π/n

)
.

The decomposing polynomial transform is given by

Pb,α = [U�(cos(k + 1/2)π/n)]k,�=0,...,n−1

=

[
sin(� + 1)(k + 1/2)π/n

sin(k + 1/2)π/n

]
k,�=0,...,n−1

= diagn−1
k=0

(
1

sin(k + 1/2)π/n

)
·DST-3n,

which shows that DST-3n is the scaled polynomial transform

DST-3n = Pf ·b,α, f = sin θ,

associated with the module f ·A with basis f · b.
Next we construct the representation φ afforded by A with basis b. By con-

struction, we have x · U0 = 1
2U1, x · U� = 1

2 (U�−1 + U�+1) for � = 1, . . . , n − 2, and
x · Un−1 = Un−2 (in A). We get

φ(x) =
1

2
·




0 1
1 0 1
· · ·

1 0 2
1 0


 .

Lemma 3.6 shows that φ(x)T is diagonalized by DST-3Tn = DST-2n, namely,

φT (x)DST-2n = diag
(
cos 1

2π/n, . . . , cos
(
n− 1

2

)
π/n

)
.

Using the notation from section 5, φ(x)T = B(0, 1, 2, 0), which corresponds to the
DST-3 (see Tables 5.2 and 5.3), as desired.

Remarks. (1) It is intriguing that the left and right b.c. seem to be handled differ-
ently (initial conditions versus factor polynomial). In section 8.1 we will see that this
construction can be reversed. (2) Note that the boundary conditions corresponding to
the left module constructed affect the first and last column of the left representation
φ(x). Lemma 3.2 shows that the right representation φT is decomposed by the trans-
pose of the corresponding DTT, which complies with the fact that the b.c. affect the
first and last rows in the matrices B(·) (cf. section 5). (3) The polynomial defining
the right b.c. in Example 6.1 can be written in two ways, Un − Un−2 = 2Tn (cf. Ta-
ble 4.3). The left form determines the b.c.; the right form provides the decomposition
of C[x]/Tn, which corresponds to the zeros of Tn.

The complete correspondence between DTTs and modules is given in Theorem 6.2
below. To provide a convenient overview, and because we will repeatedly use it in the
following, we have combined Tables 4.3 and 5.3 and the respective scaling functions
into Table 6.1.
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Table 6.1
Overview of the DTTs and associated modules. The left b.c. and right b.c. are in the first column

(value of a−1) and row, respectively. A given DTTn is associated with the module f ·C[x]/Qn, where
Qn is given below the DTT and the scaling function f in the second column. The basis of C[x]/Qn
is given in the third column.

an − an−2 an an − an−1 an + an−1
DCT-1 DCT-3 DCT-5 DCT-7

a1 1 T�
2(x2 − 1)Un−2 Tn (x− 1)Wn−1 (x+ 1)Vn−1

DST-3 DST-1 DST-7 DST-5
0 sin θ U�

2Tn Un Vn Wn

DCT-6 DCT-8 DCT-2 DCT-4
a0 cos 1

2
θ V�

2(x− 1)Wn−1 Vn 2(x− 1)Un−1 2Tn

DST-8 DST-6 DST-4 DST-2−a0 sin 1
2
θ W�

2(x+ 1)Vn−1 Wn 2Tn 2(x+ 1)Un−1

Theorem 6.2. Define the four scaling functions f1 = 1, f2 = sin θ, f3 = cos 1
2θ,

and f4 = sin 1
2θ, with cos θ = x. Choose a combination of left and right boundary

conditions with index i, j from Table 6.1, i, j = 1, . . . , 4, and let DTTn be the corre-
sponding discrete trigonometric transform. Denote the polynomial below the DTT in
Table 6.1 by Qn and its zeros by α = (α0, . . . , αn−1). Choose a basis of A = C[x]/Qn

as b = (P0, . . . , Pn−1), where P = T,U, V,W for i = 1, 2, 3, 4, respectively. Then
(i) DTTn is the scaled polynomial transform

DTTn = Pfi·b,α
associated with the module fi ·A and basis fi · b.

(ii) If φ is the representation afforded by A with b, then φ(x)T is the matrix B(·)
in (5.1) given by the left and right b.c. chosen.

(iii) The matrix φ(x)T is diagonalized by DTTTn , namely,

(DTTTn )−1 · φ(x)T ·DTTTn = diag(α0, . . . , αn−1),

which implies that DTTTn is a decomposition matrix for the (right) regular represen-
tation φT of A.

Proof. The proof follows by computations completely analogous to Example 6.1
for all 16 cases.

Remarks. (1) Theorem 6.2 shows that a DTT is a polynomial transform (i.e., not
scaled) iff it appears in the first row of Table 6.1. For the DCT-1 and the DCT-3 this
has been recognized in [35] and [46], respectively. (2) The sparse matrices B(·) occur
as images of T1 = x under the (right) representation φT of the respective module.
Using Lemma 4.1(ii), one can compute the images φT (Tk), k = 0, . . . , n − 1, which
all turn out to be sparse. This makes (T0, . . . , Tn−1) a natural choice of basis in the
algebra (not the module) A in all 16 cases. The image φT (a) (or φ(a)) of a generic
element a =

∑
akTk ∈ A has a structure that is usually referred to as Toeplitz +

Hankel.
With the algebraic characterization of the DTTs given in Theorem 6.2, we are

now in the position to derive and explain many of their fast algorithms known from
the literature. This is the subject of the remaining sections.

7. Fast algorithms for polynomial transforms. Fast algorithms for the
matrix-vector multiplication with polynomial transforms, z �→ Pb,α · z or, equiva-
lently, sparse factorizations of Pb,α, have been the subject of several papers. In [46]
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the DCT-3 and the real and imaginary parts of the DFT are recognized as polynomial
transforms, which is used for their factorization. In [14] and in [35] an O(n log2 n)
algorithm is derived for the case in which b is an arbitrary sequence of orthogonal
polynomials and α a list of arbitrary (distinct) evaluation points. Using this result in
combination with Theorem 6.2 shows that the complexity of computing a DTTn is
O(n log2 n). The fast DTT algorithms known from the literature, however, and the
following discussion show that the complexity is indeed O(n log n).

In this section we will present two general techniques that can be used to factor
a polynomial transform Pb,α associated with the regular module C[x]/p. They apply
in the cases

1. p(x) = q(x) · r(x) (p factors),
2. p(x) = q(r(x)) (p decomposes).

An important question is to know when the resulting matrix factors are sparse, yield-
ing a fast algorithm. We note that it is also possible to factor Pb,α if

3. p(x) = q(x)⊗ r(x) (p is a tensor product),
but we omit this case since it does not apply to the DTTs. Because of Lemma 3.6,
the problems of finding fast algorithms for Pb,α and Pf ·b,α are equivalent.

Throughout this section, p is a separable polynomial with zero vector α.

7.1. Direct sum. One straightforward way of obtaining a fast polynomial trans-
form is by splitting the polynomial p recursively, using the fact that, if p = q · r,

C[x]/p ∼= C[x]/q ⊕ C[x]/r.(7.1)

This reduces the problem of computing one polynomial transform to the computation
of two smaller polynomial transforms.

Lemma 7.1. Let p = q · r, and assume that p, q, r have the zero vectors α, β, γ,
respectively. Further, let b, c, d be bases of C[x]/p, C[x]/q, C[x]/r, respectively. Then

Pb,α = P · (Pc,β ⊕ Pd,γ) ·B,

where B is the base change matrix b → (c, d) (concatenation) corresponding to (7.1)
and P is a permutation matrix mapping (β, γ) �→ α.

Proof. The proof follows from the definitions of B and P .
Clearly, the decomposition in Lemma 7.1 is useful for a fast algorithm only if B

is sparse or has a fast algorithm itself. As an example, the fast algorithm for the
Vandermonde matrix relies on the fact that in this case B has a Toeplitz structure,
which permits its computation with O(n log n) arithmetic operations [14, 34].

7.2. Decomposition. A more interesting factorization of a polynomial trans-
form can be derived if p decomposes into two polynomials, p(x) = q(r(x)). We will
need the following lemma.

Lemma 7.2. Let p be separable and of degree n with zeros α0, . . . , αn−1. Assume
p(x) = q(r(x)) with q of degree k and r of degree �. Then for each zero β of q there
are precisely � zeros αm of p such that r(αm) = β.

Proof. Let αm be a zero of p. Then 0 = p(αm) = q(r(αm)). Thus r maps
the n = k� zeros of p to the k zeros of q. If β is one of the k zeros of q, then the
equation r(αm) = β has maximal deg(r) = � solutions αm; thus it has precisely � solu-
tions.

As in Lemma 7.2, let the degrees of p, q, r be n, k, �, respectively, n = k�. We
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choose bases c = (q0, . . . , qk−1) of C[x]/q and d = (r0, . . . , r�−1) of C[x]/r. Then

b′ = (r0 · q0(r), . . . , r0 · qk−1(r),
r1 · q0(r), . . . , r1 · qk−1(r),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r�−1 · q0(r), . . . , r�−1 · qk−1(r))

is a basis of C[x]/p. Using the shorter notation pj,i,m = (rj · qi(r))(αm), the corre-
sponding polynomial transform is given by

Pb′,α =




p0,0,0 . . . p0,k−1,0 . . . p�−1,0,0 . . . p�−1,k−1,0

p0,0,1 . . . p0,k−1,1 . . . p�−1,0,1 . . . p�−1,k−1,1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p0,0,n−1 . . . p0,k−1,n−1 . . . p�−1,0,n−1 . . . p�−1,k−1,n−1


 .

Because of Lemma 7.2, for each i, the n numbers qi(r(αm)), m = 0, . . . , n − 1, will
divide into k groups of � equals. We permute α into α′ with a permutation P such
that r(αi+jk) = βi, i = 0, . . . , k − 1, j = 0, . . . , �− 1, i.e.,

Pb′,α′ = P · Pb′,α.
Now Pb′,α′ reveals the following block structure:

Pb′,α′ = [Dh,j · Pc,β ]h,j=0,...,�−1 , with

Dh,j = diag(rj(α
′
hk), rj(α

′
hk+1), . . . , rj(α

′
hk+k−1)).

Thus we can write Pb′,α′ as
Pb′,α′ = [Dh,j ]h,j=0,...,�−1 · (I�⊗Pc,β).

Since Dh,j is diagonal, h, j = 0, . . . , �−1, the matrix [Dh,j ] consists of k (�× �) blocks
at stride k. Thus,

[Dh,j ]
Ln�

is a direct sum of (�× �)-matrices, which turn out to again be polynomial transforms.
Using (Ln� )

−1 = Lnk , we get the following theorem.
Theorem 7.3. We use the previous notation. Then

Pb,α = P ·
(
k−1⊕
i=0

Pd,αi
)Lnk

· (I�⊗Pc,β) ·B,

where B is the matrix giving the base change b→ b′, P is a permutation matrix, and

αi = (α′0·k+i, α
′
1·k+i, . . . , α

′
(�−1)·k+i).

As in Lemma 7.1, the value of this factorization for deriving a fast algorithm for
Pb,α depends on the base change matrix B.

Theorem 7.3 can be interpreted as a generalization of the Cooley–Tukey FFT as
we will see in the next example.

Example 7.4 (FFT, size 4). We consider the case p(x) = x4 − 1 = (x2)2 − 1, i.e.,
q(x) = x2−1, and r(x) = x2. As bases we choose b = (1, x, x2, x3) and c = d = (1, x).
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The zeros of p are α = (1, i,−1,−i), and the zeros of q are β = (1,−1). This is
the situation of Example 3.4, Pb,α = DFT4, Pc,β = DFT2. Since r(1) = r(−1) and
r(i) = r(−i), it is α′ = α. Further, b′ = (1, x2, x, x3), and thus B = [(2, 3), 4] = L4

2. It
remains to compute Pd,α0

,Pd,α1
:

Pd,α0
=

[
1 1
1 −1

]
= DFT2, Pd,α1

=

[
1 i
1 −i

]
= DFT2 ·diag(1, i).

As a result we get the FFT of size 4,

DFT4 = (DFT2⊗ I2) · diag(1, 1, 1, i) · (I1⊗DFT2) · L4
2 .

Remark. It is worth giving an algebraic interpretation of Theorem 7.3 using the
notation above. Since p(x) = q(r(x)), A′ = C[r(x)]/p(x) = C[y]/q(y) (y = r(x)) is a
subalgebra of A = C[x]/p(x). We have

A ∼= r0 ·A′ ⊕ · · · ⊕ r�−1 ·A′

as vector spaces; i.e., d = (r0, . . . , r�−1) is a transversal of A′ in A. In a similar way
as was done for C[G]-modules (G a group) [12, p. 73], we can construct the induced
module

A⊗A′ A′ = (r0 ⊗A′)⊕ · · · ⊕ (r�−1 ⊗A′),

which has the basis b′. The modules A and A ⊗′A A′ are isomorphic with the base
change given by the matrix B. Thus, Theorem 7.3 (for polynomial algebras) is the
equivalent of Theorem 3.33 (for group algebras of solvable groups) in [37]. They
coincide for the case C[Zn] ∼= C[x]/(xn − 1) (Zn = cyclic group of order n), where
they yield the Cooley–Tukey FFT (cf. Example 7.4).

8. Fast DTTs via decomposition of polynomial transforms. In this sec-
tion we derive and explain several different recursive algorithms for the DTTs directly
from their algebraic interpretation. In contrast to the derivations given in the liter-
ature, we do not manipulate matrix entries; rather, we obtain the algorithm directly
from the underlying modules. This makes the derivation simpler and more trans-
parent, and provides a mathematically satisfying insight into the structure of the
algorithm.

The algorithms presented in this section can be loosely grouped into the following
categories:

1. Translation (section 8.1). A DTT is translated into another DTT using sparse
matrices. Two different methods are identified.

2. Direct sum (section 8.2). A DTT is decomposed into the direct sum of smaller
DTTs using sparse matrices. These algorithms are due to Lemma 7.1.

3. Reduction (section 8.3). A DTT is decomposed into smaller DTTs of the
same type using sparse matrices. These algorithms are due to Theorem 7.3.

It is important to note that we can always derive, from any given fast algorithm,
new fast algorithms by straightforward operations like symbolic transposition or in-
version, since these are compatible with ⊗ and ⊕. As an example, a factorization
like

DCT-2n = P · (DCT-2n/2 ⊕DCT-4n/2) ·B



DISCRETE COSINE AND SINE TRANSFORMS 1299

can be transposed to yield

DCT-3n = BT · (DCT-3n/2 ⊕DCT-4n/2) · PT ,

since DCT-2T = DCT-3, and DCT-4 is symmetric. Moreover, it is always possible
to locally manipulate these formula expressions. As an example, let Q and R be
permutations. Then

Q · (In⊗DFT2) ·R = (QP−1) · (In⊗DFT2) · (PR)

for any permutation P permuting (2 × 2)-blocks (n! such P ). We will consider al-
gorithms that can be transformed into each other using manipulations of this kind
as “algebraically equivalent.” The comparisons between the algorithms we derive
here and the algorithms from the literature have to be understood “modulo” this
equivalence, though, in many cases, the comparison will be exact.

8.1. Translation between DTTs. In this section we will discuss and derive
sparse relationships between the different types of DTTs. We say that DTTn and
DTT′n are in sparse relationship if DTTn can be derived from DTT′n using O(n)
operations. An example of a sparse relationship is the equation

DTTn = Bn ·DTT′n ·Cn,
where Bn, Cn are sparse matrices (O(n) entries). These relationships are important
for fast algorithms. If a fast algorithm for DTTn is given, and DTTn and DTT′n are
in sparse relationship, then we obtain a fast algorithm for DTT′n, and vice versa.

Examining Table 6.1, we observe that transform pairs at transposed positions
(i, j) and (j, i), i, j = 1, . . . , 4, have the same associated algebra (i.e., the same poly-
nomial Qn). As an example, DCT-5 and DCT-6 both arise from C[x]/(x − 1)Wn−1

with different bases. This leads to the concept of duality introduced in the next
definition.

Definition 8.1 (duality). We call a pair DTTn, DTT′n dual to each other if the
left b.c. of DTTn correspond to the right b.c. of DTT′n and vice versa. Equivalently,
DTTn and DTT′n appear in transposed positions (i, j) and (j, i) in Table 6.1. If i = j,
we call DTTn = DTT′n self-dual.

We show how this duality can be used to derive a sparse relationship between the
transforms.

In section 6 we derived a module for a given pair of b.c. by fixing (1) a base
sequence of Chebyshev polynomials Pn depending on the left b.c. and (2), depending
on the right b.c., a polynomial p in C[x]/p. Since the recursion formula (4.3) for
Chebyshev polynomials is symmetric, this can be done in a reverse way. We illustrate
this with the pair DCT-3 and DST-3. The DST-3 has the left b.c. a−1 = 0 that
fixes the base sequence U�, and it has the right b.c. an = an−2 that is fixed by
p = Un − Un−2 = 0. Alternatively, we can realize the same b.c. by the sequence T�,
� = −n + 1, . . . , 0. Now the right b.c. are given by a−1 = a1, i.e., T1 = T−1, which
corresponds to Un − Un−2 = 0. The left b.c. are fixed by p = T−n = Tn = 0. The
correspondence between the forward U� and the backward T� is as follows:

0 = U−1 U0, . . . , Un−1 Un = Un−2,
0 = T−n T−(n−1), . . . , T0 T−1 = T1,

where the vertical lines indicate the boundaries. In other words, using T−� = T�, the
two bases (U0, . . . , Un−1) and (Tn−1, . . . , T0) afford identical representations of A =
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C[x]/Tn. Thus, the corresponding polynomial transforms must be scaled versions of
each other. And indeed, if αk denotes the zeros of Tn, we get, using basic trigonometric
identities,

Tn−1−�(αk) = cos(n− 1− �)
(
k + 1

2

)
π/n

= (−1)k · sin (� + 1)
(
k + 1

2

)
π/n,

and thus, using the definition of DST-3 and DCT-3 (Table 5.1),

diagn−1
k=0((−1)k) ·DST-3n = DCT-3n · Jn,(8.1)

where Jn denotes the opposite identity, i.e., the permutation matrix exchanging i↔
n− i, i = 0, . . . , n− 1. Similar computations for all pairs of dual transforms yield the
following result.

Theorem 8.2 (translation by duality). Let DTTn and DTT′n be a pair of dual
transforms. Then

diagn−1
k=0((−1)k) ·DTTn = DTT′n · Jn .

In particular, dual DTTs have the same arithmetic complexity.
A second class of sparse relationships can be obtained in certain cases by appro-

priate base changes and will be explained in the following. Going back to Table 6.1,
we see that the 16 DTTs are partitioned into four groups of four transforms each
depending on the polynomial Qn, which is essentially equal to one of the Chebyshev
polynomials Tn, Un, Vn,Wn. For example, on the main diagonal in Table 6.1 are all
DTTs in the “U -group,” which are exactly the self-dual transforms. Each of the other
groups consists of two pairs of dual DTTs, respectively. For every two DTTs within
the same group the corresponding algebra C[x]/Qn is basically equal. The difference
is in the basis chosen in the module. Thus, it is possible to derive a sparse relationship
by performing an appropriate base change. We will illustrate this in the following two
examples.

Example 8.3 (DCT-3 and DST-3). We consider again the pair DCT-3n and
DST-3n. Using Table 6.1, we see that both transforms correspond to the same algebra,
but with different bases,

DCT-3n ↔ C[x]/Tn, b = (T0, . . . , Tn−1),
DST-3n ↔ C[x]/Tn, b′ = (U0, . . . , Un−1),

and that DCT-3n = [T�(αk)] and DST-3n = D · [U�(αk)], where αk are the zeros of
Tn and D = diagn−1

k=0(sin(k+ 1
2 )π/n) arises from the scaling function. To compute the

base change matrix B for b→ b′, we use that T� = 1
2 (U�−U�−2) (by the 2nd row, 1st

column in Table 4.3) and get

B =
1

2
·




2 0 −1
1 0 −1

· · ·
1 0 −1

1 0
1



.

Thus, [T�(αk)] = [U�(αk)] ·B, and hence

D ·DCT-3n = DST-3n ·B.
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Note that this relationship is different from the one arising from the duality of DCT-3n
and DST-3n (Theorem 8.2).

Example 8.4 (DCT-1 and DST-2). We will translate a DCT-1n+1 into a DST-2n.
Using Table 6.1 again, we get as associated algebras and bases

DCT-1n+1 ↔ C[x]/(x2 − 1)Un−1, b = (T0, . . . , Tn),

DST-2n ↔ C[x]/(x + 1)Un−1, b′ = (W0, . . . ,Wn−1).

Note that we have to choose size n + 1 and n, respectively, to obtain comparable
algebras. We have DCT-1n+1 = [T�(αk)] and DST-2n = D · [W�(αk)], where αk =
cos kπ/n, k = 0, . . . , n, are the zeros of (x2 − 1)Un−1 (2nd row in Table 4.2). For
the DST-2n, α0 = 1 is skipped. The scaling matrix is D = diagn−1

k=0(sin(k + 1)π/2n)
(Table 6.2). We compute the base change matrix B for

C[x]/(x2 − 1)Un−1
∼= C[x]/(x− 1)⊕ C[x]/(x + 1)Un−1.

The bases are b, (1), b′, respectively. Using T� = 1
2 (W� −W�−1) (4th row, 3rd column

in Table 4.3) and Tn = 1
2 (Wn −Wn−1) ≡ −Wn−1 mod (x + 1)Un−1 (because, again

from Table 4.3, (x + 1)Un−1 = 1
2 (Wn + Wn−1)), we get

B =
1

2
·




2 2 2 · · 2
2 −1

1 −1
· ·
· −1

1 −2



.

The 1’s in the first row are due to T�(1) = 1 (Lemma 4.2). We get [T�(αk)] =
(I1⊕[W�(αk)]) ·B and hence

(I1⊕D) ·DCT-1n+1 = (I1⊕DST-2n) ·B.

We obtain the following theorem.
Theorem 8.5 (translation by base change). All DTTs of types 1–4 are in sparse

relationship. All DTTs of types 5–8 are in sparse relationship.
Proof. Similar computations as in Examples 8.3 and 8.4 show that all DTTs of

types 1 and 2 (the “U -group”) are in sparse relationship, and that all DTTs of types 3
and 4 (the “T -group”) are in sparse relationship. By transposition, we obtain sparse
relationship for DTTs of types 2 and 4 and thus for all DTTs of types 1–4, which is
the first assertion. The other statement is proved analogously.

Of particular importance is the translation between a DCT-4 and DCT-2, which,
together with Theorem 8.6, yields a fast algorithm for the DCT-2 (see [28]).

Remarks. (1) Aside from Definition 8.1 there is another, more obvious, form of
duality among the DTTs: DTT and DTT′ are dual if DTTT = DTT′. Currently,
we have no algebraic explanation for this duality. (2) Note that “sparse relationship”
does not define an equivalence relation. Every two matrices (of the same size) can be
converted into each other using a (long enough) sequence of sparse matrices.

8.2. Direct sum: Fast algorithms via polynomial factorization. In this
section we will derive recursive algorithms for all DTTs in the U -group, i.e., the DCT
and DST of types 1 and 2. The algorithms are based on the rational factorization of
the polynomials Un given in Lemma 4.2(ii)–(iii).
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As an example we will consider a DCT-2n, where n = 2m. Consulting Table 6.1,
we get as corresponding algebra C[x]/(x − 1)Un−1 with basis b = (V0, . . . , Vn−1).
Lemma 4.2(ii) gives the factorization U2m−1 = 2 · Um−1 · Tm, which leads to the
isomorphism

C[x]/(x− 1)U2m−1
∼= C[x]/(x− 1)Um−1 ⊕ C[x]/Tm.(8.2)

For the summands we choose bases b, b′, b′, respectively, b′ = (V0, . . . , Vm−1). The
zeros of (x − 1)Un−1 are cos kπ/n, k = 0, . . . , n − 1. Thus, the first summand in
(8.2) collects the zeros with even k, and the second summand the zeros with odd k
(cf. Table 4.2). Now the decomposition of DCT-2n follows Lemma 7.1. To compute
the base change matrix B in (8.2) we need

Vm+k ≡ Vm−k−1 mod (x− 1)Um−1 and

Vm+k ≡ −Vm−k−1 mod Tm,

which can be shown by induction using (x−1)Um−1 = Vm−Vm−1, Tm = Vm+Vm+1,
and (4.3). We get

B =




1 1
· ·

1 1
1 −1
· ·

1 −1




=

[
Im Jm
Im − Jm

]
= (DFT2⊗ Im)(Im⊕ Jm).

The summands in (8.2) are decomposed recursively using a DCT-2m and DCT-4m,
respectively. The resulting one-dimensional summands are permuted in canonical
order using the stride permutation Lnm (see section 2). Since DCT-2 and DCT-4 have
the same scaling function, we get

DCT-22m = L2m
m ·(DCT-2m ⊕DCT-4m) ·B.

Besides DCT-2, similar derivations can be performed on the three remaining trans-
forms in the U -group, DCT-1, DST-1, and DST-2, using U2m−1 = 2Um−1Tm and
using U2m = VmWm. The complete set of identities can be stated using two types of
block matrices and two types of permutation matrices. The block matrices give the
base change

B2m =

[
Im Jm
Im − Jm

]
, B2m+1 =


 Im 0 Jm

0 1 0
Im 0 − Jm


 ,

and the permutation matrices give the reordering of the irreducible modules

P2m = L2m
m ,

P2m+1 : i→ (m + 1)i mod 2m + 1, i = 0, . . . , 2m.

Theorem 8.6. The following recursive algorithms for DTTs are based on the
rational factorization U2m−1 = 2 · Um−1 · Tm. We also indicate where they first
appeared in the literature (to our best knowledge).

(i) DCT-12m+1 = P2m+1 · (DCT-1m+1 ⊕DCT-3m) ·B2m+1 [27].
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(ii) DST-12m−1 = P2m−1 · (DST-3m ⊕DST-1m−1) ·B2m−1 [55].
(iii) DCT-22m = P2m · (DCT-2m ⊕DCT-4m) ·B2m [7].
(iv) DST-22m = P2m · (DST-4m ⊕DST-2m) ·B2m [52].
Theorem 8.6 is complemented by the decompositions in the following theorem.

We did not find these in the literature.
Theorem 8.7. The following recursive algorithms for DTTs are based on the

rational factorization U2m = VmWm.
(i) DCT-12m = P2m · (DCT-5m ⊕DCT-7m) ·B2m.
(ii) DST-12m = P2m · (DST-7m ⊕DST-5m) ·B2m.
(iii) DCT-22m+1 = P2m+1 · (DCT-6m+1 ⊕DCT-8m) ·B2m+1.
(iv) DST-22m+1 = P2m+1 · (DST-8m+1 ⊕DST-6m) ·B2m+1.
Remarks. (1) Transposition of the decompositions in Theorems 8.6 and 8.7 yields

algorithms for the DTTs of type 3. (2) Theorem 8.6 reveals why the DCT-1 and the
DST-1 are usually considered at sizes 2k + 1 and 2k − 1, respectively. The available
algorithms are more efficient since there are no simple sparse factorizations of the
DTTs of types 5–8. (3) Combining Theorems 8.5 and 8.6 gives a complete set of
algorithms for the DTTs of types 1–4, of 2-power size. (For type 1 the size differs by
1; see remark (2).) (4) It is possible to derive algorithms for the more general case
n = k�, using the factorization in Lemma 4.2(ii).

8.3. Reduction: Fast algorithms via polynomial decomposition. In this
section we derive algorithms based on the decomposition of the polynomial Tn in
Lemma 4.2(i). This decomposition property allows the decomposition of all DTTs in
the T -group, i.e, DCT and DST of types 3 and 4, using Theorem 7.3.

As an example we will consider a DCT-3n, where n = 2m. Using Table 6.1, we get
the corresponding algebra C[x]/Tn with basis b = (T0, . . . , Tn−1). We use the decom-
position T2m = Tm(T2) (Lemma 4.2). Following Theorem 7.3 and its proof, we choose
bases c = (T0, . . . , Tm−1) and d = (T0, T1) of C[x]/Tm and C[x]/T2, respectively. We
get the new basis

b′ = (T0, T2, . . . , T2m−2, T1, (T1 + T3)/2, . . . , (T2m−3 + T2m−1)/2).

Thus, the base change b′ → b is given by

B =




1 0
0 0 1 1

2
0 1 0 0
0 0 0 1

2
1
2

...
...

1
2

1 0
0 1

2




,

and the base change b → b′ by B−1. The zeros of Tn are αk = cos(k + 1
2 )π/n,

αk = −αn−1−k, and T2(αk) = T2(αn−1−k). Thus, the permutation P in Theorem 7.3
is P = (Im⊕ Jm). Further,

Pd,αi =

[
T0(αi) T1(αi)

T0(αn−1−i) T1(αn−1−i)

]
=

[
1 αi
1 −αi

]
= DFT2 ·diag(1, αi)

for i = 0, . . . ,m. This can be used to derive (
⊕m−1

i=0 Pd,αi)L
2m
m = (DFT2⊗ Im) ·
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(Im⊕diagm−1
i=0 (αi)), and we get

DCT-32m = P · (DFT2⊗ Im) · (Im⊕diagm−1
i=0 (αi)) · (I2⊗DCT-3m) ·B−1.

Further simplification can be achieved by writing B = C · (Im⊕ 1
2 Im) and observing

that Im⊕2 Im commutes with I2⊗DCT-3m. For simplicity we set D = diagm−1
i=0 (αi)

and get

DCT-32m = P · (DFT2⊗ Im) · (Im⊕2D) · (I2⊗DCT-3m) · C−1.(8.3)

Equation (8.3) is also a good example for studying the effect of transposition and
inversion on deriving new algorithms from known ones. Transposition of (8.3) is
straightforward and yields

DCT-22m = C−T · (I2⊗DCT-2m) · (Im⊕2D) · (DFT2⊗ Im) · P.(8.4)

For the inversion of (8.3) we need DCT-3−1
n = 2

n · diag(1
2 , 1, . . . , 1) · DCT-2n. After

simplifications we get

DCT-22m = C1 · (I2⊗DCT-2m) · (Im⊕(2D)−1) · (DFT2⊗ Im) · P,(8.5)

where C1 arises from C by setting the entry 2 at position (2,m + 1) to 1. C1 incurs
only additions. Transposing (8.5) (or, equivalently, inverting (8.4)) yields again an
algorithm for DCT-3,

DCT-32m = P · (DFT2⊗ Im) · (Im⊕(2D)−1) · (I2⊗DCT-3m) · CT
1 .(8.6)

Equations (8.5) and (8.6) are very similar to (8.4) and (8.3), respectively, with the
difference that inverting the entries in the diagonal (middle factor) saves one multi-
plication by 2 in the base change matrix (C1 vs. C). More crucial, the additions in
C1 and CT

1 can be performed in parallel (i.e., the critical path has length 1), which
does not hold for C−1 and C−T .

Each of the equations (8.3)–(8.6) occurs in the literature. The references are (8.3)
and (8.4) in [24], (8.5) in [57] (transposed definition of DTTs), and (8.6) in [28] and
[56] (transposed definition of DTTs).

Note that (8.4) can also be obtained by first applying Theorem 8.6(iii) and then
translating the resulting DCT-4 using Theorem 8.5.

Similar computations for the other DTTs in the T -group yield the following result.
Theorem 8.8. Let n = 2m. All DTTs in the T -group have a fast recursive

algorithm of the form

DTT2m = P · (DFT2⊗ Im) · (Im⊕D) · (I2⊗DTTm) ·B,

where P is a permutation matrix, D is diagonal, and B is sparse. This factorization
is based on T2m = Tm(T2), and the concrete form of P and B can be obtained using
Theorem 7.3.

For the DST-3 the factorization can also be found in [56]. For DCT-4 and DST-4,
the factorizations do not appear in the literature. They are less efficient with respect
to arithmetic cost.

Remark. It is possible to derive a recursive algorithm based on Tk� = Tn(Tm)
using Theorem 7.3. The problem for larger m is the further decomposition of the
occurring matrices Pd,αi in Theorem 7.3.
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9. Fast DTTs via group symmetries. In this section we will derive fast
DTT algorithms that are based on “group symmetries” in the sense defined below.
In the cases where they occur, these symmetries are a direct consequence of the DTT
properties in Theorem 6.2. We will identify two ways in which group symmetries
might come into play.

1. Extension (section 9.2). By extension to a group algebra of the algebra
A = C[x]/p associated to a DTT.

2. Automorphisms (section 9.3). By subgroups of the automorphism group of
A.
These symmetries lead to algorithms that are substantially different from the ones
derived in section 8.

For the convenience of the reader, we briefly overview group symmetry–based
matrix factorization. In the following we take a “representation” approach, instead
of the equivalent “module-with-basis” point of view.

9.1. Group symmetry–based matrix factorization. Matrix factorization
based on group symmetries has its origin in [31, 32] and was generalized in [15, 36,
37, 19] to the form presented here. In [18] the technique was successfully applied
to several discrete signal transforms, which initiated the research presented in this
paper. Due to space limitations we can give only a brief overview and refer to those
references for further details.

In the following, G is a finite solvable group. All representations of G (or, equiv-
alently, of C[G]) in the following arise from right G-modules. The entire approach is
based on the following definition of symmetry.

Definition 9.1. Let B be an arbitrary complex matrix. A pair (φ1, φ2) of rep-
resentations of G is called a symmetry of B if

φ1(g) ·B = B · φ2(g) for g ∈ G.

G is then called a symmetry group of B.
If B has a symmetry, we can factor B according to Figure 9.1. We choose ma-

trices A1, A2 that decompose φ1, φ2, respectively, into a direct sum of irreducible
representations ρ1 and ρ2. Then we compute the matrix

D = A−1
1 ·B ·A2

so that the diagram commutes. We obtain the factorization

B = A1 ·D ·A−1
2 .

The matrix D is sparse since it is the conjugating matrix for two reduced rep-
resentations ρ1, ρ2 (a consequence of Schur’s lemma [12]). This means that the
factorization of B is useful as a fast algorithm for B if the Ai’s are sparse or can
themselves be written as products of sparse matrices. This is possible in at least the
following two cases: (1) φi is a permuted direct sum of irreducible representations,
i.e., φi = ρPi , where P is a permutation matrix. In this case we say that φi is of
type “irred.” It is Ai = P−1. (2) φi is monomial. (A representation is monomial
if all its images are monomial matrices, i.e., have exactly one nonzero entry in each
row and column.) In this case we say that φi is of type “mon.” The decomposition
matrix Ai can be determined as a product of sparse matrices using the algorithm
in [37]. Briefly sketched, this algorithm translates the monomial representation into
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Fig. 9.1. Factorization of the matrix M with symmetry (φ1, φ2).

Table 9.1
Types of symmetry that can be used for factorizing B (irrs = irreducible representations).

mon-mon symmetry φ1 and φ2 monomial

mon-irred symmetry φ1 monomial, φ2 permuted direct sum of irrs

irred-mon symmetry φ2 monomial, φ1 permuted direct sum of irrs

an induction that is decomposed stepwise along a composition series using certain
recursion formulas similar to Theorem 7.3. We say that φi is of type “mon.”

Depending on the types of the φi, we obtain the three types of symmetry shown
in Table 9.1. We have omitted the type “irred-irred” since it requires that B already
be sparse.

Algorithms for finding symmetry [19] and the algorithm [37] for the stepwise
decomposition of monomial representations have been implemented as part of the
GAP [22] share package AREP [17, 16] for constructive group representation theory.
Thus, AREP can find these factorizations automatically and can be used as a discovery
tool for sparse matrix factorizations, i.e., fast algorithms.

In the remainder of this section, we will show that mon-irred symmetries as well
as mon-mon symmetries occur among the DTTs and how these symmetries can be
derived. We will also discuss the structure of the resulting algorithms.

9.2. Algorithms by extension to group algebras. In this section we will
show which DTTs possess a mon-irred symmetry that can be used for deriving fast
algorithms. In [18] exactly four DTTs exhibited a mon-irred symmetry with dihedral
symmetry groups in all cases. The transforms were the DCT and DST of types 3
and 4. We will now explain and derive these symmetries. Note that we will deal
with right representations (arising from right modules) to comply with the symmetry
definition 9.1. A right representation is the transpose of a left representation.

We start with the general case of a scaled polynomial transform. As usual, let
b be a basis of A = C[x]/p, and let α be the zero vector of p. Further, let f be a
scaling function. If φ is the right representation afforded by the regular module A (or,
equivalently, f ·A), then, by Lemma 3.6,

φ · PTf ·b,α = PTf ·b,α · ρ,
where ρ is a direct sum of one-dimensional irreducible representations of A. If φ
can be extended to a representation φ of a group algebra C[G] of a finite group G,
then ρ extends to a permuted direct sum of irreducible representations of C[G]. (On
extension, the one-dimensional irreducibles in ρ—not necessarily adjacent ones—may
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fuse to irreducibles of C[G] of larger dimension.) In other words, PTf ·b,α decomposes

φ, up to a permutation. We obtain the following result.
Lemma 9.2. We use previous notation. If the right regular representation φ of

A = C[x]/p can be extended to a representation φ of a group algebra C[G], where G
is finite, then

φ · PTf ·b,α = PTf ·b,α · ρ,
where ρ is a permuted direct sum of irreducible representations of C[G]. If, in par-
ticular, φ is monomial, then PTf ·b,α has a mon-irred symmetry, and Pf ·b,α has an
irred-mon symmetry, both with symmetry group G.

Now we will apply Lemma 9.2 to determine which DTTs possess a mon-irred
symmetry. Consider a fixed DTT with associated regular representation φ. The
representation φ can be extended to a monomial representation iff all images φ(q),
q ∈ A, can be written as a linear combination of monomial matrices. Since A is
cyclic, it is sufficient to consider the images of the generator φ(x), which is given by
the corresponding matrix B(·) in (5.1).

Theorem 9.3. The four transforms DCTn and DSTn of types 3 and 4, n ≥ 0,
are the only DTTs that have a mon-irred symmetry (φ, ρ). Denote by D2k = 〈σ, τ |
σ2 = τ2 = (στ)k = 1〉 the dihedral group with 2k elements. Further, let, for even n,

π1 = (1, 2)(3, 4), . . . , (n− 1, n) and π2 = (2, 3)(4, 5), . . . , (n− 2, n− 1),

and, for odd n,

π1 = (1, 2)(3, 4), . . . , (n− 2, n− 1) and π2 = (2, 3)(4, 5), . . . , (n− 1, n)

(viewed as a permutation on {1, . . . , n}). The symmetry group for DCT-3n and
DST-3n is D2n, for DCT-4n and DST-4n is D4n. The respective monomial repre-
sentation φ is given for even n by

DCT-3n : σ �→ [π1, n], τ �→ [π2, n],
DST-3n : σ �→ [π1, n], τ �→ [π2, (−1, 1, . . . , 1,−1)],
DCT-4n : σ �→ [π1, n], τ �→ [π2, (1, . . . , 1,−1)],
DST-4n : σ �→ [π1, n], τ �→ [π2, (−1, 1 . . . , 1, )],

and for odd n by

DCT-3n : σ �→ [π1, n], τ �→ [π2, n],
DST-3n : σ �→ [π1, (1, . . . , 1,−1)], τ �→ [π2, (−1, 1, . . . , 1)],
DCT-4n : σ �→ [π1, (1, . . . , 1,−1)], τ �→ [π2, n],
DST-4n : σ �→ [π1, n], τ �→ [π2, (−1, 1 . . . , 1, )].

Proof. For all 16 DTTs and their associated representations φ, we have to consider
the matrices φ(x) = B(β1, β2, β3, β4), with βi as given in Table 5.2. Because of its
structure, B(·) can be written as a linear combination of monomial matrices iff it
can be written as the sum of two monomial matrices. Assume β1 = 0. Writing
B(0, . . . ) as the sum of two monomial matrices M1,M2 requires that both M1 and
M2 have an entry 	= 0 at position (1, 2). Since the entry (3, 2) of B(0, . . . ) is also
	= 0, this decomposition is not possible. Analogously, a decomposition is not possible
if β4 = 0. In the remaining four cases the decomposition is possible and yields the
desired results. We will give one case as an example. It is readily verified that

B(1, 1, 1, 1) = [π1, n] + [π2, n].
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The permutations π1, π2 are involutions and hence generate a dihedral group D2m.
The number m is the order of the product π1π2, here n. By Theorem 6.2 and Table 5.2,
B(1, 1, 1, 1) is diagonalized by DCT-3n, which proves the result. The other three cases
can be treated analogously.

Remark. Theorem 9.3 explains the symmetries found in [18].
We want to briefly sketch the decomposition procedure for a DCT-4. For full

details we refer the reader to [18, 19, 37].
Example 9.4 (DCT-4). We consider a DCT-4 of size n = 2k. By Theorem 9.3,

the matrix B = DCT-42k has a mon-irred symmetry (φ, ρ) with dihedral symmetry
group D2k+2 . We follow Figure 9.1. The decomposition algorithm will decompose φ
stepwise along the composition series

D2k+2 ≥ D2k+1 ≥ · · · ≥ D22 ,

using a recursion formula for the induction of representations. Note that the last
representation of D22 is decomposed since it is of dimension 1. This gives rise to a
factorized decomposition matrix A1 of φ. The representation ρ is a permuted direct
sum of irreducible representations and can thus be decomposed by a permutation
matrix A2. The correction matrix D is computed as D = A−1

1 ·B ·A2 to yield

DCT-42k = A1 ·D ·A−1
2 .

As an example, we give a factorization of a DCT-48 as it is automatically found by
AREP,

DCT-48 = [(1, 2, 8)(3, 6, 5), (1,−1, 1, 1, 1,−1, 1, 1)]

· (I2⊗((I2⊕ 1√
2
·DFT2) · [(3, 4), 4] · (DFT2⊗ I2)))

· [(1, 3)(2, 4)(5, 7)(6, 8), 8] · (I4⊕R 15
8 π
⊕R 11

8 π
)

· (DFT2⊗ I4) · [(3, 5, 7)(4, 6, 8), 8]
· 1

2 · (R 31
32π
⊕R 19

32π
⊕R 27

32π
⊕R 23

32π
)

· [(1, 8, 5, 6, 3, 2)(4, 7), 8].

(9.1)

The (factorized) matrix A1 is given in lines 1–4, the matrix D in line 5, and the matrix
A−1

2 in line 6 (the last line).
We observe that the factorization in (9.1) contains rotation matrices

Ra =

[
cos(a) sin(a)
− sin(a) cos(a)

]
,

which do not occur in the algorithms derived in section 8. The general (arbitrary
n = 2k) version of this algorithm can be found in [7] (corrected in [51, 52]). Combining
this algorithm with Theorem 8.6(iii) yields a factorization of DCT-2, and thus, by
transposition, of DCT-3, into rotation matrices [7]. The obtained algorithm coincides
with the one derived from the mon-irred symmetry of the DCT-3.

Note that the algorithms arising from a mon-irred symmetry occur only in an
iterative form in the literature; i.e., the transform matrix is completely factorized (as
in (9.1)) and not into transforms of smaller size. The reason is in the decomposition
procedure (cf. Figure 9.1), since not B, but A1 is decomposed recursively.

Remark. It is striking that, e.g., the algorithm for a DCT-32k arising from its
mon-irred symmetry and the algorithm from Theorem 8.8 have precisely the same
arithmetic cost [7, 28, 56].



DISCRETE COSINE AND SINE TRANSFORMS 1309

9.3. Algorithms from automorphism groups. In section 9.2 we showed how,
in certain cases, a mon-irred symmetry of a DTT can be derived from its interpretation
as a (scaled) polynomial transform. In the following we will show that a—completely
different—type of mon-mon symmetry also occurs among the DTTs. This type of
symmetry, if present, arises from the automorphism group of the associated algebra.
All modules in this section will be right modules.

We introduce the following notation. Let A = C[x]/p. Automorphisms of A will
be denoted by letters g, h. We multiply automorphisms from left to right; i.e., in gh,
g is applied before h. This complies with applying automorphisms from the right;
i.e., if q ∈ A, we write qg for the image of q under g. If φ is a representation of A,
and g an automorphism, then φg : q �→ φ(qg) defines another representation of A.
As suggested by this notation, (φg)h = φgh.

A possible source of a mon-mon symmetry of a polynomial transform Pb,α is
described in the following theorem.

Theorem 9.5. Let A = C[x]/p be a regular module with basis b. The polynomial
p is separable and has zeros α = (α0, . . . , αn−1). Denote by φ the (right regular)
representation afforded by A and b. Assume that A has a group G of automorphisms
with the property that for each g ∈ G there exists a monomial matrix Mg with

φg = φMg
−1

.(9.2)

Then PTb,α has a mon-mon symmetry (χ, ψ) with symmetry group G ∼= 〈Mg | g ∈ G〉.
Then G ∼= G/N , where N ✂ G denotes the normal subgroup defined by

g′ ∈ N ⇔ φ(q) · χ(g′) = χ(g′) · φ(q) for all q ∈ A

⇔ χ(g′) ∈ φ(A).

If D is any invertible diagonal matrix, then (D · Pb,α)T = PTb,α · D has the same

mon-mon symmetry as PTb,α.
Proof. First we note that the set S = {Mg | g ∈ G} is not a group, since for

every g there are (if any) many possible choices for Mg, e.g., all a ·Mg, where a ∈ C.
Conversely, every Mg ∈ S uniquely defines an automorphism of A, since φg = φh,
and φ faithful, implies g = h. Now we reverse the situation by defining a mapping
γ : S → G, Mg �→ g. Let G = 〈S〉 (the group generated by S). Then γ can be
extended to a homomorphism γ : G→ G, since, for M,M ′ ∈ S and using (9.2),

φγ(MM ′) = φ(MM ′)−1

= (φM
′−1

)M
−1

= (φγ(M
′))M

−1

= (φM
−1

)γ(M
′) = φγ(M)γ(M ′).

By definition, γ is surjective, and the kernel of γ is given by N = {M | φ = φM},
and thus G ∼= G/N . Since M ∈ N implies that M commutes with each φ(q), q ∈ A,
M ∈ φ(A). Viewing G as a monomial representation χ of itself shows all assertions
on G.

It remains to show that PTb,α has a mon-mon symmetry (χ, ψ). To this end

we choose an arbitrary monomial matrix M = χ(M) in G. The representation φ is
decomposed by PTb,α into a direct sum of irreducible representations ρ (cf. Lemma 3.2).

Thus, φγ(M) is also decomposed by PTb,α into a direct sum of irreducible representations
ρ′. Following Figure 9.2, there is a unique matrix M ′ such that

M · PTb,α = PTb,α ·M ′.
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Fig. 9.2. Constructing a mon-mon symmetry for PTb,α.

Since M ′ conjugates ρ′ onto ρ, it is monomial. Setting ψ(M) = M ′ defines a monomial
representation of G and shows that PTb,α has the mon-mon symmetry (χ, ψ).

If D is any invertible diagonal matrix, then ρD = ρ and ρ′D = ρ′, since all
irreducible summands of ρ, ρ′ are of dimension 1. Thus, we can replace PTb,α by

PTb,α · D in Figure 9.2, obtaining the same mon-mon symmetry. This completes the
proof.

Remarks. (1) PTb,α has the mon-mon symmetry (χ, ψ) iff Pb,α has the mon-mon

symmetry (ψT , χT ). (2) The last assertion in Theorem 9.5 shows that we can apply
it to scaled polynomial transforms and thus to the DTTs.

In the remainder of this section, we will use Theorem 9.5 to derive the mon-
mon symmetries for the DTTs whose transposes are in the T -group, i.e., those with
associated algebra C[x]/Tn (cf. Table 6.1) for the special case where n = 2m is a
2-power. A complete investigation of all DTTs and sizes would exceed the space
available.

First we need a suitable group G of automorphisms of A = C[x]/Tn.
Lemma 9.6. Let n = 2m and A = C[x]/Tn. Each mapping

gk : T1 �→ Tk and g−k : T1 �→ −Tk, 1 ≤ k ≤ n, k odd,

defines an automorphism of the algebra A. The set Gn of all such g±k is a cyclic
group of order n.

Proof. Before we start the proof we investigate the sequence Tk, k ≥ 0, in A. The
following two equations allow the reduction of each Tk modulo Tn:

0 ≡ TnTn−k = 1
2 (T2n−k + Tk) ⇒ Tk ≡ −T2n−k,

0 ≡ TnTn+k = 1
2 (T2n+k + Tk) ⇒ Tk ≡ −T2n+k.

(9.3)

The latter equation also shows that Tk ≡ Tk+4n, i.e., the sequence Tk, k ≥ 1, has
period 4n (in A). Using (9.3), we can compute the reduced Tk, k = 0, . . . , 4n− 1, as

T0, . . . , Tn−1 | 0 −Tn−1, . . . ,−T1 | −T0, . . . ,−Tn−1 | 0 Tn−1, . . . , T1 |,(9.4)

where the vertical lines indicate the reflection points at multiples of n.
Now we start the proof of Lemma 9.6. Let n = 2m. We will repeatedly use that

Tn is an even function and that Tk, k odd, is an odd function. Also note that g±k
maps T� = T�(T1) �→ T�(±Tk).

(1) g±k is a homomorphism, since Tn(±Tk) = Tn(Tk) = Tk(Tn) ≡ 0 (Lemma 4.2,
(i)); i.e., the defining equation Tn = 0 in A is preserved. (2) g±k is invertible; Gn is
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a group. Let gk be given, k odd. We choose an � with k� ≡ 1 mod 4n. The mapping
T1 �→ T� inverts gk, since Tk� ≡ T1 (see beginning of this proof). Similarly, T1 �→ −T�
inverts g−k. Using (9.3), we can reduce T� ≡ T�′ or ≡ −T�′ for a suitable odd �′ < n.
This shows that Gn is closed under inversion. Also g±kg±� : T1 �→ ±T�(±Tk) = ∓Tk�,
which can be reduced analogously. Thus, Gn is a group. (3) Gn is cyclic. For n = 2,
g−1 has order 2. For n = 4, g3 has order 4 (T3(T3) = T9 ≡ −T1). For n > 4,
we show that g5 has order n. Observing (9.4), we get that ge5 is the identity iff
5e ≡ ±1 mod 4n. Since 5e is never ≡ −1 and 5 has order n mod 4n (n = 2m), we get
the desired assumption.

Now we will use the group Gn of automorphisms (Lemma 9.6) and Theorem 9.5
to derive mon-mon symmetries for all DTTs whose inverses are in the T -group.

Theorem 9.7. Let n = 2m ≥ 4 and Gn be as defined in Lemma 9.6. The
transforms DCT-2n,DST-2n,DCT-4n,DST-4n have a mon-mon symmetry (χ, ψ) with
nonzero matrix entries ±1 arising from the group of automorphisms Gn of C[x]/Tn
(cf. Theorem 9.5). Denote by Zn = 〈σ | σn = 1〉 the cyclic group of order n. The
symmetry group for DCT-2n,DST-2n is Zn; for DCT-4n,DST-4n it is Z2n. The
respective monomial representation χ is given by

DCT-2n : σ �→ (Ti �→ Tki mod Tn)
−1,

DST-2n : σ �→ (Ui �→ Uk−1+ki mod Tn)
−1,

DCT-4n : σ �→ (Vi �→ V(k−1)/2+ki mod Tn)
−1,

DST-4n : σ �→ (Wi �→W(k−1)/2+ki mod Tn)
−1,

(9.5)

where i = 0, . . . , n− 1, and k = 3 for n = 4, and k = 5 for n ≥ 8.
Proof. Let gk ∈ Gn, i.e., T

gk
1 = Tk. We consider the first case DCT-2n = DCT-3Tn

with associated algebra A = C[x]/Tn and b = (T0, . . . , Tn−1), i.e., DCT-2n decomposes
the right regular representation of A (Theorem 6.2). Following Theorem 9.5, we have
to find a monomial base change matrix Mgk : b → b′ such that T1 operates on
b as T gk1 = Tk on b′. This is afforded by b′ = (Tk·0, Tk·1, . . . , Tk·n−1), since, using
Lemma 4.1(ii),

T1 on b Tk on b′
T1 · T0 = T1 T1 · Tk·0 = Tk·1
T1 · Ti = (Ti−1 + Ti+1)/2 T1 · Tki = (Tk(i−1) + Tk(i+1))/2

T1 · Tn−1 = Tn−1/2 T1 · Tk(n−1) = Tk(n−1)/2

where i = 2, . . . , n−2 and in the last line we used Tn ≡ 0, and thus Tkn = Tk(Tn) ≡ 0,
since Tk is an odd function. The base change b→ b′ is given by the matrix Mk : Ti �→
Tki, i = 0, . . . , n− 1, and thus

φgk = φMk .

(Note that we consider right representations, where φ is conjugated into φM
−1

by
a base change with matrix M .) As in the proof of Lemma 9.6, we see that Mk is
monomial, since every Tki can be reduced to a suitable ±T� mod Tn, 0 ≤ � ≤ n − 1.
Theorem 9.5 establishes a mon-mon symmetry for (χ, ψ). It remains to show that
the symmetry group is cyclic of order n. To this end we need the sequence of T�,
� ≥ 0, reduced mod Tn, given in the first row of Table 9.2. We see that Me

k = In
iff Tkei ≡ Ti mod Tn (i = 0, . . . , n − 1) iff ke ≡ ±1 mod 4n. As in the proof of
Lemma 9.6, this shows that the maximum order e = n is obtained for k = 3 if n = 4,
and k = 5 if n ≥ 8.
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Table 9.2
For P ∈ {T, U, V,W} the sequence of polynomials P0, . . . , P4n−1 (i.e., one period) reduced mod

Tn. The vertical lines indicate multiples of n.

DCT-3 : T0 . . . Tn−1|0 −Tn−1 . . . −T1|−T0 . . . −Tn−1|0 Tn−1 . . . T1|
DST-3 : U0 . . . Un−1|Un−2 . . . U0 0|−U0 . . . −Un−1|−Un−2 . . . −U0 0|
DCT-4 : V0 . . . Vn−1|−Vn−1 . . . −V0|−V0 . . . −Vn−1|Vn−1 . . . V0|
DST-4 : W0 . . . Wn−1|Wn−1 . . . W0|−W0 . . . −Wn−1|−Wn−1 . . . −W0|

The proof of the other three cases is analogous. The base b is replaced by b =
(P0, . . . , Pn−1), where P = U, V,W , respectively.

The respective base change b→ b′ given by the matrix Mk corresponding to the
automorphism gk is given in lines 2–4 of (9.5) (without the inversion). The operation
of Tk on b′ can again be established using Lemma 4.1(ii). To determine the order of Mk

we need, in each case, the sequence of P� reduced mod Tn given in Table 9.2. (Each
of these sequences has period 4n.) Surprisingly, it turns out that for the DCT-4 and
DST-4, the symmetry group is a factor of 2 larger than Gn. We consider the example
DCT-4n. Denote by Vae,i the image of Vi under Me

k , i = 0, . . . , n − 1. We get the
recurrence and its solution

a0,i = i, ae,i = (k − 1)/2 + k · ae−1,i ⇒ ae,i = (ke − 1)/2 + ike.

Using the third row of Table 9.2, we get

V(ke−1)/2+ike ≡ Vi mod Tn (i = 0, . . . , n− 1)

⇔ (ke − 1)/2 + ike ≡ i or − i− 1 mod 4n (i = 0, . . . , n− 1)

⇔ ke(2i + 1) ≡ ±(2i + 1) mod 8n (i = 0, . . . , n− 1)

⇔ ke ≡ ±1 mod 8n,

which shows that the maximum order e = 2n is obtained for k = 3 if n = 4, and k = 5
if n ≥ 8.

We conclude this section with a small example.
Example 9.8 (DCT-4, size 4). Using Theorem 9.7, the DCT-44 has a mon-

mon symmetry (χ, ψ) with a cyclic symmetry group Z8 = 〈σ〉. The image χ(σ) is
determined by the inverse of Vi �→ V1+3i mod T4, i = 0, . . . , 3. Using Table 9.2, we
get V4 ≡ −V3, V7 ≡ −V0, V10 ≡ −V2, and thus

χ(σ) =




0 0 −1 0
1 0 0 0
0 0 0 −1
0 −1 0 0


 , ψ(σ) =




0 −1 0 0
0 0 0 −1
1 0 0 0
0 0 −1 0


 .

The matrix ψ(σ) was computed using AREP. Both matrices have order 8.
The mon-mon symmetry of the DCT-44 given in Example 9.8 has been used in

[21] to derive a fast algorithm (the symmetry is stated in a different way) and, using
Theorem 8.6(iii), a fast algorithm for the DCT-28. The derivation essentially follows
Figure 9.1, but the two monomial representations φ1, φ2 are decomposed over Q. This
concentrates all nonrational operations in the correction matrix D.

Remark. Using AREP, we have verified (up to a certain size) that all 16 types of
DTTs possess mon-mon symmetries for every size n.
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10. Other fast algorithms. The algebraic methods presented in sections 8 and
9 explain most of the algorithms from the literature. There is one class of algorithms,
however, that cannot be explained by the methods presented so far. We will briefly
discuss these algorithms to make this paper a comprehensive overview on DTT algo-
rithms.

In short, it is possible to compute DTTs by embedding the transform matrix into
a larger transform that can be computed efficiently. As an example, we consider the
first algorithm proposed for the DCT-2n = [cos k(� + 1

2 )π/n] (see [1]). If we define
the DFT by

DFTn = [e2πikl/n]k,�=0,...,n−1,

we can readily derive

re(diag2n−1
k=0 (eπik/2n) ·DFT2n) =

[
cos k

(
� +

1

2

)
π/n

]
k,�=0,...,2n−1

,

where re(M) denotes the real part of the matrix M . This shows that a DCT-2n can
be computed by padding an input vector x of length n with n zeros, followed by
multiplying with a scaled DFT of size 2n. The first n entries contain the result.

Similar constructions allow the computation of each DTT via a DFT of appro-
priate length. This shows that the arithmetic complexity of each DTTn is O(n log n),
independent of the size n. In particular, this includes the DTTs of types 5–8, for
which no other algorithms exist in the literature.

Embeddings into other transforms are also possible. For example, Theorem 8.7
allows us to embed a DTT of type 5–8 into a DTT of type 1 or 2.

11. Summary. We have given a complete characterization of all 16 types of
DTTs as scaled polynomial transforms corresponding to appropriate A-modules M
with basis b, where A = C[x]/p(x), M = f · A with a scaling function f , and b
is a sequence of Chebyshev polynomials (Theorem 6.2). Every DTT is uniquely
determined by this algebraic property.

We then used the algebraic characterization to derive by algebraic means most
of the fast DTT algorithms known in the literature, and identified the mathematical
principles behind each algorithm. In particular we derived the following:

1. Algorithms by direct manipulation/decomposition ofM (section 8): (a) Trans-
lation between DTTs by duality (Theorem 8.2), (b) translation between DTTs by base
change (Theorem 8.5), (c) decomposition by polynomial factorization (Theorems 8.6
and 8.7), (d) decomposition by polynomial decomposition (Theorem 8.8).

2. Algorithms by group symmetries (section 9): (a) Decomposition by mon-irred
symmetry (Theorem 9.3), (b) decomposition by mon-mon symmetry (Theorem 9.5).

3. Algorithms by embedding (section 10).
Our results show clearly that the connection between digital signal processing

and the representation theory of algebras goes beyond the DFT. The question that
remains is to what extent this connection can be extended to include other transforms
and their fast algorithms and how this connection can be exploited for applications
in signal processing. We want to conclude by posing this question: To what extent is
signal processing algebraic?

Appendix. Orthonormal DCTs and DSTs. Table A.1 gives the orthonormal
versions of the 16 DTTs.
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Table A.1
Definition of the orthonormal versions of the DCTs and DSTs; ak,l is the entry at row k and

column l of the respective unscaled DTT as given in Table 5.1. All matrices have size (n× n), with
row index k = 0, . . . , n − 1 and column index � = 0, . . . , n− 1. The row/column scaling factors are
given by ci = 1/

√
2 for i = 0 and = 1 else; di = 1/

√
2 for i = n− 1 and = 1 else.

DCTs DSTs

type 1

√
2

n−1 · ckc�dkd� · ak,l
√

2
n+1
· ak,l

type 2
√

2
n
· ck · ak,l

√
2
n
· ck · ak,l

type 3
√

2
n
· c� · ak,l

√
2
n
· c� · ak,l

type 4
√

2
n
· ak,l

√
2
n
· ak,l

type 5

√
2

n−1/2 · ckc� · ak,l
√

2
n+1/2

· ak,l
type 6

√
2

n−1/2 · ckd� · ak,l
√

2
n+1/2

· ak,l
type 7

√
2

n−1/2 · dkc� · ak,l
√

2
n+1/2

· ak,l
type 8

√
2

n+1/2
· ak,l

√
2

n−1/2 · dkd� · ak,l
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[18] S. Egner and M. Püschel, Automatic generation of fast discrete signal transforms, IEEE
Trans. Signal Process., 49 (2001), pp. 1992–2002.



DISCRETE COSINE AND SINE TRANSFORMS 1315
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Abstract. The minimum latency problem, also known as the traveling repairman problem, is
a variant of the traveling salesman problem in which the starting node of the tour is given and the
goal is to minimize the sum of the arrival times at the other nodes. We present a quasi-polynomial
time approximation scheme (QPTAS) for this problem when the instance is a weighted tree, when
the nodes lie in R

d for some fixed d, and for planar graphs. We also present a polynomial time
constant factor approximation algorithm for the general metric case. The currently best polynomial
time approximation algorithm for general metrics, due to Goemans and Kleinberg, computes a 3.59-
approximation.
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1. Introduction. Theminimum latency problem, also known as the deliveryman
or traveling repairman problem (Afrati et al. [1], Minieka [16], Lucena [15], Bianco,
Mingossi, and Ricciardelli [9]), is a variant of the traveling salesman problem (TSP) in
which the starting node of the tour is given and the goal is to minimize the sum of the
arrival times or latencies at the other nodes. (The latency of a node is the distance
covered before reaching that node.) This natural combinatorial problem arises in
many day-to-day situations, whenever a server (e.g., a repairman or a disk head) has
to accommodate a set of requests (each represented by a point) so as to minimize
their total (or average) waiting time. The tour that achieves this goal will henceforth
be called the minimum latency tour (MLT).

More formally, the problem is defined as follows.

MINIMUM LATENCY TOUR

Input: A set of n points (one of them designated as the starting point p1), and a
symmetric distance matrix [dij ].

Output: A tour p1 → p2 → · · · → pn that visits all points and minimizes the total
latency

n∑
i=2

i−1∑
j=1

dpj ,pj+1
.(1.1)
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By rearrangement, the objective function (1.1) can be rewritten as a weighted sum:

n−1∑
i=1

(n− i)dpi,pi+1 .(1.2)

Here we study the restriction of the problem to distance matrices that define a
metric; i.e., the distances satisfy the triangle inequalities. From the objective function
formulation (1.2) it becomes apparent that the MLT problem is a weighted variation of

the TSP (where the objective function to be minimized by the tour is
∑n−1
i=1 dpi,pi+1).

However, it has a reputation for being much harder than the TSP.
For example, the MLT does not possess the locality property of the TSP for local

changes in the structure of a metric space. Even a very small local change of a tour
can affect the arrival time of all the points visited by the tour afterwards, and it may
change the value of (1.2) by too much. On the other hand, local changes affect the
length of the tour only locally. This lack of locality is conceivably prohibitive for the
design of “divide and conquer” algorithms. This is not the case, for example, for
the Euclidean TSP, where recent “divide and conquer” algorithms by Arora [4] (and,
independently, Mitchell [17]) solve the problem almost optimally.

It is easy to prove (Blum et al. [10]) that calculating the MLT is at least as hard
as calculating the TSP: Given an instance of the TSP, create an instance for the MLT
by adding m new points (for a large m) at infinity (i.e., far enough away from the
points of the TSP instance). Then the MLT on the augmented set of points will
have to follow the TSP tour on the original points before visiting the new ones. This
reduction proves the NP-hardness of the MLT for all the metric spaces where TSP is
NP-hard. But even for metrics where the TSP is solvable trivially, the computation
of the MLT may be hard. Such is the case for tree metrics (the points are vertices
of a tree with nonnegative edge lengths, and the distance between two points is the
length of the unique tree path that connects them). MLT was recently proven to be
NP-hard even for tree metrics [19].

Afrati et al. [1] give a simple dynamic programming algorithm that solves the
problem when the points are on a line in polynomial time. Minieka [16] and Blum
et al. [10] prove that in the case of unweighted trees (trees whose edges have unit
length), any depth-first walk on the tree is an optimal MLT. Minieka [16] gives also
an exponential time algorithm that solves the problem exactly for any weighted tree.
For general metric spaces, Bianco, Mingossi, and Ricciardelli [9] and Lucena [15] give
exponential time algorithms that find a MLT.

The general metric case of the latency problem is MAX-SNP-hard (this follows
from the reduction that proves the MAX-SNP-hardness of TSP with distances either
1 or 2 by Papadimitriou and Yannakakis [18]), and therefore the results of Arora
et al. [8] imply that unless P = NP, a polynomial time approximation scheme (PTAS)
does not exist. Blum et al. [10] gave a 144-approximation algorithm for the metric
case and an 8-approximation for weighted trees. Goemans and Kleinberg [12] then
gave a 21.55-approximation in the metric case. The Goemans–Kleinberg algorithm
requires as a subroutine a good approximation algorithm for the k-TSP problem
(“given n nodes and a number k, find the shortest salesman tour containing k nodes”).
Their algorithm achieves a 3.59-approximation ratio for the tree case and a 3.59 ×
(appr. ratio for k-MST ) approximation ratio for general metric spaces. Currently, the
best approximation ratio for the general metric k-MST is 2+ ε for any constant ε > 0
due to Arora and Karakostas [7] and 1 + ε for any ε > 0 for constant-dimensional
Euclidean spaces due to Arora [4] (for planar instances, see also Mitchell [17]). These
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can be used to improve the approximation ratio achieved by the Goemans–Kleinberg
algorithm in these cases, achieving a 7.18-approximation in the metric case and a
3.59-approximation in the Euclidean case. Subsequently to the first appearance of
our work, Archer and Williamson [3] gave a faster approximation algorithm for the
MLT (although their approximation factor is somewhat worse than the Goemans–
Kleinberg one), and Fakcharoenphol, Harrelson, and Rao [11] present approximation
algorithms for the generalization of the traveling repairman with k repairmen.

We present a new and very simple technique that leads to approximation schemes
for minimum latency for all weighted trees and constant-dimensional Euclidean spaces.
To compute a (1+ε)-approximation for the problem on n nodes, the algorithm requires

nO(log2 n/ε) time on weighted trees and nO(log n/ε) time in R
2. We also present an

11.656-approximation in the metric case. Though this approximation ratio is worse
than that of the algorithm by Goemans and Kleinberg [12], our algorithm seems to
be simpler.

Previous papers have taken the approach of computing solutions to a sequence
of k-TSP instances, for k = 1, 2, . . . , n, and concatenating some of these tours to get
the final tour. The main intuition in these algorithms may be described as follows:
Visit the nodes closest to the start node as soon as possible. The main idea in our
algorithm is easier to state. The algorithm finds the tour as a union of O(log n/ε)
tours, containing n1, n2, . . . nodes. The important difference is that the choice of
n1, n2, . . . , does not depend on the instance; it depends only on n, ε. (Thus, as noted
in section 3, our algorithm can be viewed as an approximation-preserving reduction
to a version of vehicle routing.) In fact, in our algorithm for the general metric case,
the first salesman tour contains more than n/2 nodes. This seems to go against the
received intuition of “visit the nodes closest to the start node first.” Conceivably, our
technique could be combined with that intuition to get better algorithms, but we do
not currently know how.

1.1. MLT and the randomized search ratio. Koutsoupias, Papadimitriou,
and Yannakakis [14] consider a graph exploration problem in which an explorer is
presented with a weighted graph on n nodes. One of the nodes contains a treasure,
which the explorer will recognize only when he sees it. The goal is to design a walk
on the graph such that the explorer arrives at the treasure as quickly as possible. The
search ratio of the graph is the worst-case ratio of the arrival time and the distance
of the treasure to the start node. The randomized search ratio is defined similarly,
except the walk may be randomized, and so we need the expected arrival time at the
treasure.

More formally, the two problems are defined as follows.

SEARCH RATIO

Input: A graph G with distances on edges, and a root vertex r.
Output:

σ(G, r) = min
π

max
v∈G

dπ(r, v)

d(r, v)
,

where d(r, v) denotes the distance from r to v and dπ(r, v) denotes the
distance from r to v in the walk π.

RANDOMIZED SEARCH RATIO

Input: A graph G with distances on edges, and a root vertex r.
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Output:

ρ(G, r) = min
∆

max
v∈G

E∆[dπ(r, v)]

d(r, v)
,

where ∆ ranges over distributions of walks and E∆[dπ(r, v)] denotes the
expected distance from r to v in the walk π, when π is drawn randomly
according to distribution ∆.

As shown in Koutsoupias, Papadimitriou, and Yannakakis [14], computing the search
ratio and the randomized search ratio of a graph G with respect to a root node r
is NP-complete and MAX-SNP-hard. They also show that the minimum latency
problem is the polyhedral separation problem of the dual of the randomized search
ratio problem. Indeed, the randomized search ratio can be expressed as the solution
of the following (n+ 1)× n! linear program:

min ρ s.t.∑
walk π

xπdπ(r, v) ≤ ρ · d(r, v) ∀v ∈ V,

∑
walk π

xπ = 1,

xπ ≥ 0.

Its dual is

min
∑
v

d(r, v)yv − z s.t.

∑
v

dπ(r, v)yv − z ≥ 0 ∀ walk π,

yv ≥ 0.

To solve the dual by using the ellipsoid algorithm using the general framework of
Grötschel, Lovász, and Schrijver [13], we should be able to check whether a given point
(�y, z) ∈ R

n+1 lies in a feasible solution or not. In case it is not feasible, we need a
violated inequality; i.e., we should be able to decide whether minπ

∑
v dπ(r, v)yv ≤ z.

Koutsoupias, Papadimitriou, and Yannakakis [14] observe that this decision problem
is polynomially equivalent to the MLT problem, under some very mild restrictions
that do not affect approximability.

Using the general framework for convex optimization in Grötschel, Lovász, and
Schrijver [13], É. Tardos has observed that if the minimum latency problem has a
PTAS for a certain class of metrics, then the randomized search ratio problem has an
approximation scheme for that same class of metrics (Koutsoupias, Papadimitriou,
and Yannakakis [14]). Thus our algorithm implies the existence of a quasi-polynomial
time approximation scheme (QPTAS) for the randomized search ratio for trees and
Euclidean spaces. We do not know of a previous use of the framework in Grötschel,
Lovász, and Schrijver [13] to design an approximation scheme.

2. The main idea: Local structure does not matter. It is well known that
minimizing the total tour length may give a tour of very high latency. In this section
we show that the strategy of minimizing tour lengths works, as long as it is done in a
local fashion. Namely, to find a (1 + ε)-approximate MLT, it suffices to find the tour
as a union of O(log n/ε) segments, where the number of nodes in successive segments
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decreases geometrically. Within each segment the order of visits to the nodes does
not matter, as long as the total length is close to minimum. Of course, we have not
specified thus far how to partition nodes into the segments in the correct way. In the
Euclidean and tree-metric cases, we can do this with a simple dynamic programming.
In the metric case, we recourse to a greedy strategy that introduces another source of
suboptimality.

We note that the idea of finding a low latency tour as a union of salesman
tours/paths is present in all earlier papers. However, those earlier strategies decided
in an adaptive fashion which salesman tours to combine. In contrast, our algorithm
can decide at the very start how many nodes must be present in each salesman path.
We prove that we can break an MLT tour into segments so that local changes within
a segment does not affect the total latency by much, and then replace each segment
by an optimum salesman path, so that the new tour is still near optimal.

Let T be an optimal tour with total latency OPT . Let ε > 0 be any parameter.
Break this tour into k = O(log n/ε) segments so that in segment i we visit ni nodes,
where

ni = (1 + ε)k−1−i for i = 1, . . . , k − 1,

nk = 1/ε.

Depending on n and ε, some ni may not be integers. This means that some nodes will
be “broken” in two fractions, belonging to two segments. Since for our calculations up
to section 4.6 the start node of a segment is the finish node of the previous segment,
it does not matter what fraction of this node belongs to each segment. Let the length
of the ith segment be Ti. If we let n>i denote the total number of nodes visited in
segments numbered i + 1 and later, then a simple calculation shows that (and this
was the reason for our choice of ni’s)

n>i =
∑
j>i

nj =
ni
ε

for every i = 1, . . . , k − 1.(2.1)

Now imagine doing the following in each segment except the last one: replace that
segment by the minimum-cost traveling salesman path on the same subset of nodes
while maintaining the starting and ending points. We claim that the new latency is
at most (1 + ε)OPT . First, note that

∑m−1
j=1 Tj is a lower bound on the latency of

any node in the mth segment. Adding over all segments, we get the following lower
bound on OPT :

OPT ≥
k−1∑
i=1

n>i · Ti .(2.2)

Consider the effect of replacing the ith segment with the shortest salesman path on
that subset of nodes. The length of the segment cannot increase, and thus neither
can the latency of nodes in later segments. The latency of nodes within the segment
can only rise by niTi. Thus the new latency is at most the lower bound in (2.2) plus

k−1∑
i=1

ni · Ti.(2.3)

Now condition (2.1) implies that the new latency is at most (1 + ε)OPT , as claimed,
and the proof of the main idea is complete.
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Theorem 2.1. Let OPT be the total latency of the MLT. There exists a tour
that is a concatenation of O( logn

ε ) optimal salesman paths and whose total latency is
at most (1 + ε)OPT.

The importance of this structure theorem for the design of approximation schemes
is apparent for cases where the TSP is efficiently solvable (e.g., weighted trees). All
one has to do is to decide which node goes into which segment and then calculate the
optimal salesman path for each segment. Even if, instead of the optimum salesman
path in each segment, we use a (1 + γ)-approximate salesman path, then the latency
of the tour of Theorem 2.1 is (1 + γ · ε + γ + ε)OPT . This is the case, for example,
for Euclidean spaces of fixed dimension, where there are approximation schemes for
the TSP (cf. Arora [4]). For these cases the difficulty lies in the placement of nodes
into the appropriate segments. This has the flavor of a vehicle routing problem, and
this will become more precise in the following section.

3. Reduction from minimum latency to weighted vehicle routing. The
purpose of this section is to note that our technique described above implies a quasi-
polynomial time approximation-preserving reduction from minimum latency to a ver-
sion of weighted vehicle routing with per-mile costs. We do not know of a prior result
along these lines.
WEIGHTED VEHICLE ROUTING WITH PER-MILE COSTS
Input: A set of n clients, who have to be visited by a fleet of m vehicles. Vehicle i

has a designated depot si at which to start and another depot ti at which to
finish. It also has a capacity (which is the number of clients it can visit) ci
and a per-mile cost di.

Output: Assign clients to vehicles so as to respect the capacity constraints and
minimize the total cost, which is the sum of distances covered by the
vehicles, weighted by the per-mile cost

m∑
i=1

diTi,

where Ti is the distance traveled by vehicle i.
Suppose we are given an oracle for this version of vehicle routing. We can use this
oracle to solve the MLT problem. Given a set of n nodes, the reduction proceeds as
follows, where k, ni, n>i have the same meaning as in section 2: “Let p0 denote the
starting node of the MLT. For every sequence of k nodes p1, p2, . . . , pk, use the vehicle
routing oracle to construct a solution to the instance in which there are k vehicles,
and the capacity of the ith vehicle is ni, its per-mile cost is n>i, and its start and
end depots are pi and pi+1 respectively. At the end, output the lowest cost solution
found (over the choice of all sequences of k points).”

Clearly, if the vehicle routing oracle computes a ρ-approximation in polynomial
time, our reduction will lead to a ρ(1+ε)-approximate solution for MLT in nO(log n/ε)

time. This follows from Theorem 2.1, since it suffices to go over all possible sequences
p1, p2, . . . , pk, and this increases the running time by a factor of at most O(nk) =

nO( logn
ε ).

4. Approximation algorithms for the MLT. The essence of Theorem 2.1
is that there is a near optimal latency tour of a potentially simpler structure, since
it is the collection of just a few optimal salesman paths. We take advantage of this
simpler structure in order to compute a near optimal tour for the cases of trees,
Euclidean (and other norm) spaces, and planar graphs. The algorithms for these
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cases are quasi-polynomial time approximation schemes. We also give a constant
factor polynomial time approximation algorithm for the general metric case as an
immediate result of Theorem 2.1. Although its approximation factor is somewhat
worse than the approximation factor achieved by Goemans and Kleinberg [12], it
seems simpler.

4.1. The tree case. The optimum salesman tour on a tree may in general need
to visit a node an unbounded number of times. For example, in a star graph it must
visit the center node n−1 times. However, the tour never needs to visit an edge more
than twice, as is easily checked. Thus an optimum tour has very simple structure and
can be found by depth-first search.

A MLT, on the other hand, could have a very complicated structure. Consider,
for example, a complete binary tree in which all edges have zero weight except those
attached to leaves. The MLT will first visit all the internal nodes in some arbitrary
order, and then all the leaf nodes in sorted order by weight, thus crossing the root
node potentially n/2 times.

However, our technique from section 2 allows us to view a near-optimum latency
tour as a union of O(log n/ε) salesman paths. By observing that within each salesman
path an edge is only visited twice, we can then ensure that each edge is visited only
O(log n/ε) times overall. This idea underlies the proof of our structure theorem below
and the approximation scheme for trees.

4.1.1. The structure theorem for trees. In this subsection we prove that
there is a tour on a weighted tree whose latency is near optimal but crosses each node
of the tree only a few times.

Definition 1. An α : β-partition of a tree T with n nodes is the recursive
partition of T into two subtrees with a common root so that for each subtree

α n ≤ (size of subtree) ≤ β n.

The partition is recursive, and each separator can be thought as belonging to both
subtrees it separates. At the bottom level of the recursion there are pairs of nodes
connected by an edge.

It is easy to show that one can always find a 1
3 : 2

3 -partition of a tree.
Lemma 4.1. In any tree we can always find a node with the following property:

Let m ≥ 2 denote its degree and f1, . . . , fm denote the sizes of the subtrees attached
to the node. There exists a subset S ⊆ {1, . . . ,m} such that⌊

n

3

⌋
≤
∑
i∈S

fi ≤
⌈
2n

3

⌉
.

Proof. Start by picking a node of the tree. If there is a subtree with more than
 2n3 � nodes pick the root of this subtree and continue. If there is a subtree with
number of nodes between �n3 � and  2n3 �, then the current node satisfies the lemma
requirements. If all subtrees have less than �n3 � nodes (obviously, m ≥ 3 in this case)
it is easy to see that the lemma holds for the current node.

We designate the node guaranteed to exist by Lemma 4.1 as a separator node and
the |S| components as the left of the tree and the other m − |S| as the right of the
tree. (The node itself is copied twice and appears in both sides.) Then we recur on
the two sides. This gives a recursive partition of the tree. We say that a tour crosses
the separator node if it goes from the left side to the right. Notice that a node may
be visited many times before it is crossed.
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It is obvious that since a minimum salesman tour is obtained by depth-first search,
it needs to cross each separator node only twice. The combination of this fact with
our main idea gives the following.

Theorem 4.2 (structure theorem for weighted trees). The following is true for
every integer n > 0 and every ε > 0: For every weighted tree on n nodes with a
node–separator-based partition as defined above, a tour exists with latency at most
(1 + ε)OPT that crosses each separator node only O(log n/ε) times.

Proof. Let T be the optimum tour. Divide it into O(log n/ε) segments as in
section 2 and replace each segment by the optimum salesman path. Now use the fact
that a minimum salesman path does not cross a separator node going from the left
side to the right (or vice versa) of the partition at that node more than twice.

4.1.2. The algorithm for trees. A simple dynamic programming approach
that relies on the structure theorem, Theorem 4.2 can be used to compute a (1 + ε)-
approximate latency tour for general weighted trees.

Algorithm 1.
1. Identify a recursive 1

3 : 2
3 -partition of the tree.

2. Identify the node-separator at the top level of the partition.
3. “Guess” the number of times the tour crosses this node, and for each crossing,

the length of the tour portion after the crossing and the number of nodes on
that portion.

4. Keep track of the “guess” and recur on each side of the node-separator; i.e.,
compute a collection of paths that visits all the nodes on each side of the
separator, is consistent with the “guess” in terms of lengths and number of
nodes visited, and achieves minimum latency among all such paths.

5. Store the cost (latency) of the combined (at the separator) subtour in the
“guess” entry of the dynamic programming table and return.

By “guessing” in step 3 we refer to the exhaustive enumeration of all possible
values for length and number of nodes for each crossing of the separator. Since the
subtours on the two sides of the separator are the optimum subtours that are consis-
tent with our “guess,” their combination will be the optimum one that is consistent
with this “guess.” In the end of the enumeration, the algorithm will have created
a collection of candidate solutions (one for each set of values for our “guesses”). Its
output will be the tour with the minimum total latency. One of these tours calculated
by the algorithm must be the near optimal tour guaranteed by the structure theorem,
Theorem 4.2, since the algorithm is bound to encounter the specific set of “guesses”
defined by it due to exhaustive enumeration. Hence the tour it produces is at least
as good as this tour, and the algorithm is indeed an approximation scheme. The only
thing remaining to prove is that it is a quasi-polynomial approximation scheme.

The running time of the algorithm is obviously dominated by the number of
possible “guesses.” The number of crossings through a node is at most O(log n/ε)
(Theorem 4.2), and the number of nodes visited between two crossings cannot be
greater than n. But notice that the length of the tour between two crossings can
be exponential in the size of the input. This is the case when an edge has weight
exponential in the size of the input. Then the number of guesses is also exponential,
and the algorithm runs in exponential time, instead of quasi-polynomial. In order
to get around this problem, we round the given instance by running the following
rounding procedure:

1. Let L be the length of the longest path in the tree and δ > 0 any constant
smaller than ε. Merge (by contracting edges) all pairs of nodes with internode
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distance at most δL/n2.
2. Round each edge weight to its closest multiple of δL/n2.
3. Divide each edge weights by δL/n2.

After solving the problem on the rounded instance, we reinstate the merged edges to
output the tour computed on the original instance.

Lemma 4.3. Let OPT be the optimal latency in the given instance, and L, δ are
as in the above procedure. Then the MLT on the rounded instance and OPT differ by
at most δ OPT . Moreover, the maximum internode distance in the rounded instance
is at most O(n2/δ) = O(n2/ε).

Proof. The second part of the lemma is obvious. Also, it is easy to see that the
latency of each node in the original MLT has not changed by more than O(δL/n),
for a total change of O(δL) = δOPT . Notice that when we reinstate the merged
edges, the latency increase cannot be more that δOPT . This means that we need to
compute an (1+ε−δ)-approximation tour on the rounded instance instead of a (1+ε)-
approximation. But we certainly can do that since δ is an arbitrary constant.

Thus if we run Algorithm 1 on the new rounded instance, the running time is
quasi-polynomial.

Theorem 4.4. Algorithm 1 runs in time nO(log2 n/ε) and computes a tour whose
latency is at most (1 + ε) OPT .

Proof. If δ is the constant in the rounding procedure, then we apply Theorem 4.2
so that the approximation factor for the rounded instance is 1 + ε − δ. Because of
Lemma 4.3 the approximation factor for the tour we compute in the original instance
will be (1 + ε).

For each separator considered by the algorithm, we guess the number of crossings
and for each crossing the length and the number of vertices visited. So the total

number of guesses for each crossing is O(n
2

ε · n) = O(n
3

ε ) (because of Lemma 4.3),

for a total of O( logn
ε · (n3

ε )
O(log n/ε)) = nO(log n/ε) guesses for a node. If T (n) is the

running time of Algorithm 1 when run on a rounded instance of n nodes, then

T (n) = nO(log n/ε) · 2T
(
2n

3

)
,

for an overall running time of nO(log2 n/ε).

Notice that the look-up table stores costs instead of subtours, so at the end the
algorithm has computed the cost of a near-optimal tour and not the tour itself. But
it is easy to reconstruct this tour from the look-up table and the decision made at
each step of the dynamic programming.

4.2. The Euclidean plane. In section 2, we reduced the minimum latency
problem to the problem of finding a covering of the n nodes using O(log n/ε) salesman
paths. We use a simple modification of Arora’s ideas [4] for the Euclidean TSP to
show that this set of O(log n/ε) salesman paths together have a very simple structure.
Thus they can be computed by dynamic programming in quasi-polynomial time in
a way similar to the tree case. We will start by describing the algorithm for the
Euclidean plane. The generalization to spaces of higher dimension will follow. Our
exposition follows the exposition in Arora [4].

4.2.1. The partition. Arora [4] describes a very simple geometric partition
which we use here to break the given instance into smaller instances. In what follows
we assume that all coordinates of the given points are integral. Later we will show
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a

b

Fig. 4.1. A dissection (a), the corresponding quadtree (b), and its shift by (a, b) (c).

how to “perturb” the instance so that this assumption is fulfilled without increasing
the cost of our solution by too much.

Suppose that the given instance is bounded by a square, and let L be the size
of the smallest axis-aligned bounding square. Then the dissection of the bounding
square is its recursive partition into smaller squares in the obvious way: break the
bounding square into 4 equal squares; then break each smaller square into 4 equal
squares and so on until the smallest squares have side size ≤ 1 (and thus cannot
contain more than 1 point). This partition defines a tree: the root is the bounding
square, and the nodes of the tree at each level are the squares created at the same level
of the dissection. Each square has 4 children. Obviously, the tree has O(L2) nodes,
and its depth is O(logL). If we stop partitioning a square as soon as it contains at
most 1 node, then this truncated version of the dissection tree is called a quadtree.
Examples of a dissection and a quadtree are shown in Figure 4.1.

The partition we are going to use is a randomized version of the quadtree. Imagine
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that we pick randomly two integers a, b in [0, L) and then shift the dissection defined
above along the x- and y-axis by a and b, respectively. At the same time we “wrap-
around” this shifted dissection as in Figure 4.1(c). Thus every horizontal line with
initial y-coordinate y1 will now have a new y-coordinate (y1 + b) mod L, and every
vertical line with initial x-coordinate x1 will now have a new x-coordinate (x1 + a)
mod L. We call this dissection a randomly shifted dissection, and the corresponding
quadtree (i.e., the quadtree resulting by cutting of the partitioning at squares that
contain at most 1 point) is called a randomly shifted quadtree. The random (a, b)-shift
is crucial for the algorithm, but since we still treat each “wrapped-around” square as
a single region the reader can think of the quadtree as the unshifted one in much of
what follows.

The geometric partition we just defined resembles in many ways the recursive
partition in the tree case. But while a tour on a tree could cross partition boundaries
only through a tree node, the boundaries of the quadtree partition are lines that can
be crossed at any of an infinite number of points. In what follows we will prove that
there is a near optimal tour that crosses not only the boundary of each square in
the quadtree only a few times but also that these crossings happen at a small set of
prespecified points called portals. Each square has 4 portals on its corners and m
other equally spaced portals on each side, where m is a power of 2. A portal of a
square is a portal in every descendent of the square in the quadtree.

Definition 2. Let m, k be positive integers. An (m, k)-light tour is one that
crosses each quadtree boundary at most k times and always at one of its m portals.

In what follows we prove the existence of an (m, k)-light tour (for appropriate
values of m, k) that has near-optimal latency. Then we will describe a dynamic
programming algorithm that can compute such a tour in quasi-polynomial time.

4.2.2. The structure theorem for the Euclidean plane. In section 4.2.1 we
assumed that the given points have integral coordinates. We will also demand that
all internode distances are integers between 8 and O(n2). Such an instance is called
well-rounded. Obviously, the given instance need not be well-rounded, but by adding
a rounding step similar to the one used in the tree case the algorithm can transform
the given instance into a well-rounded one without increasing the MLT by too much.
We prove the following structure theorem for the Euclidean plane.

Theorem 4.5 (structure theorem for Euclidean plane). There exist constants
e, f such that the following is true for every integer n > 0 and every ε > 0: For every
well-rounded Euclidean instance with n nodes, a randomly shifted dissection has with
probability at least 1/2 an associated tour that is (e log n/ε, f log n/ε)-light and whose
latency is at most (1 + ε)OPT , where OPT denotes the latency of the MLT.

Proof. The main ideas are the same as in Arora’s proof [4] after we break up the
MLT into O(log n/ε) salesman paths. The crucial observation is that Arora’s proof
relies on an expectation calculation that can be extended to the MLT case due to the
linearity of expectation.

Let T be the optimum tour. By applying our main idea, we can break it up
into k = O(log n/δ) segments, where the ith segment has ni nodes. We replace each
segment by the optimum salesman path for that segment to get a new tour of total
latency within a factor (1+δ) of the optimum. We use the following structure theorem
by Arora [4] (Theorem 2 in [4]).

Theorem 4.6 (Arora [4]). Let c > 0 be any constant. Let the minimum nonzero
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internode distance in a TSP instance be 8, and let L be the size of its bounding box.1

Let shifts 0 ≤ a, b ≤ L be picked randomly. Then with probability at least 1/2, there is
a salesman path of cost at most (1 + 1/c)TSP that is (m, r)-light with respect to the
dissection with shift (a, b), where m = O(c logL), r = O(c), and TSP is the length of
the optimal salesman path.

We apply Theorem 4.6 simultaneously to our k = O(log n/δ) salesman paths
T1, T2, . . . , Tk. The new tour crosses the boundary of each quadtree square at most
O(ck) times (since a salesman path never needs to cross a square boundary more than
r = O(c) times).

In order to prove Theorem 4.6, Arora [4] proves that the expected increase of a
salesman path length after it is modified to become (m, r)-light is bounded as follows:

Ea,b[increase of salesman path length] ≤ g

r
TSP,(4.1)

where g is a constant.
For the effect of the modified tour on the latency, note that we are interested

in a weighted sum of salesman path lengths, where the weight assigned to the ith
salesman path is ni + n>i (these are the vertices whose latency is affected by the
change in length of Ti). Inequality (4.1) implies that the expected latency increase
due to the length increase of path Ti is

Ea,b[total latency increase due to Ti] ≤ g

r
(ni + n>i)TSPi

(2.1)

≤ g(1 + δ)

r
n>iTSPi,

(4.2)

where TSPi is the length of the optimum (i.e., shortest) Ti. By linearity of expecta-
tion, the total expected latency increase is

Ea,b[total latency increase due to T1, . . . , Tk] ≤ g(1 + δ)

r

k∑
i=1

n>iTSPi

≤ g(1 + δ)

r
OPT

because of lower bound (2.2) in section 2.
By picking δ = O(ε) and c = O(1/ε) the total latency increase is no more than

ε ·OPT , and the new tour satisfies the theorem requirements.
Thus in this section we proved that there is a tour with latency within a factor

1 + ε of the optimal that crosses each square boundary in the quadtree only O( logn
ε )

times and always through a portal. In the next section we show how to use dynamic
programming in order to compute this tour.

4.2.3. The algorithm for the plane. In this section we describe our QPTAS
for the Euclidean plane.

Until now we assumed that the given instance is well-rounded. Namely, it satisfies
two conditions: (i) all nodes have integral coordinates, and (ii) all internode distances
are between 1 and O(n2/ε). This assumption is easily met if the first step of the
algorithm is a rounding procedure very similar to the rounding procedure used in
the tree case:

1In our case L = O(n2) due to the instance rounding.
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1. Let L be the length of the side of the bounding box. Place a grid of granularity
g = Θ(δL/n2), where δ is a constant (0 < δ < ε).

2. Move each point to its nearest gridpoint.
3. Divide all edge weights by g.

By an analysis similar to that in the proof of Lemma 4.3 we get the following.

Lemma 4.7. The procedure above transforms a given instance of optimal latency
OPT into a well-rounded instance of optimal latency increased by at most δ OPT.

The well-rounded instance has one more property that we will use in the analysis
of the algorithm. Namely, the set of possible lengths for parts of the tour is discrete
with at most nO(1) elements and can be generated quite easily in polynomial time.
Hence when we refer to “guesses” for subtour lengths we will refer to values from this
polynomially large set.

The algorithm takes a well-rounded instance as its input.

Algorithm 2.

1. Build a randomly shifted quadtree for the given instance. Since L = O(n)
the quadtree depth is O(log n) and the number of its nodes is O(n log n) since
it has only n leaves.

Do the following in a “bottom-up” fashion starting from the leaves of the
quadtree:

2. Identify a node (i.e., square) at the current level of the quadtree.
3. “Guess” how many times the tour enters the square, and for each of these

times the portals it crosses to enter and leave the square, what is the length
of the tour portion after each crossing, and how many points are on that tour
portion.

4. Search the dynamic programming look-up table for subtours consistent with
the “guesses.”

5. Combine the subtours found to create a new bigger subtour. If the new sub-
tour is consistent with the fact that we are looking for a (O(log n/ε), O(log n/ε))-
light tour, store this new subtour in the look-up table and go to step 2.

Again, by “guessing” we refer to exhaustive enumeration of all possible values
of the guessed quantities. This enumeration will produce possibly more than one
candidate tour. We pick the tour with the minimum total latency as our solution,
and this will be the output of Algorithm 2.

At a first glance the algorithm seems to miss a key ingredient for the calculation
of a tour from its subtours: the order in which the portals are visited in each square.
In fact this piece of information is implicit, since the guessed number of nodes visited
after each portal crossing also tells us the order in which they occur in the tour (the
first portal visited is the one with the longest subsequent tour length guessed, the
second is the one with the second longest subsequent tour length, and so on). Now it
is easy to see that at every step of the algorithm we have the information necessary to
reconstruct a bigger subtour from the subtours already calculated. As in the tree case,
the exhaustive enumeration guarantees that one of the tours constructed is the tour
of the structure theorem, Theorem 4.5, so Algorithm 2 is indeed an approximation
scheme.

It remains to prove that Algorithm 2 is a QPTAS.

Theorem 4.8. Algorithm 2 runs in time nO( logn
ε ) and computes a tour whose

latency is at most (1 + ε) OPT .

Proof. If δ is the constant in the rounding procedure, then we apply Theorem 4.5



1330 SANJEEV ARORA AND GEORGE KARAKOSTAS

so that the approximation factor for the rounded instance is 1 + ε − δ. Because of
Lemma 4.7 the approximation factor for the tour we compute in the original instance
will be (1 + ε).

The running time of the algorithm is dominated by the size of the dynamic pro-
gramming look-up table. We prove the time bound by induction on the depth of the
quadtree. The first level (leaves) contains squares with at most one point in them. The
tour we are computing is (c log n/ε, f log n/ε)-light (with c, f being the constants in
Theorem 4.5), so a leaf square is entered and left by the tour O(log n/ε) times through
a pair of portals. This involves enumerating all choices for (a) a multiset of O(log n/ε)
portals on the four sides of the square and (b) the order in which the portals in (a) are
crossed by the (m, r)-light tour, where m = O(log n/ε) and r = O(log n/ε). It is easy
to see that the number of choices in (a) is at mostmO(r) = O(log n/ε)O(log n/ε) and the
number of choices in (b) is rO(r) = O(log n/ε)O(log n/ε), for a total of 2O(log n log log n/ε)

choices. In addition we need to “guess” the length of the tour portion after each
crossing (O(nO(1)/ε) possibilities since all distances between points form a set of
polynomially many values) and how many points are on that tour portion (n pos-
sibilities) for each one of the O(log n/ε) possible crossings of the tour through the
square boundaries. Notice that since we guessed the number of nodes visited after
each portal crossing, we know exactly the tour portion that contains the point in the
current square. The total number of guesses is thus no more than

# portal arrangements× (length×# points)
# crossings

= O
(
2

logn log logn
ε

)
×
(
O

(
nO(1)

ε

)
× n

)O( logn
ε )

= nO( logn
ε ).

The analysis is the same for the inductive step. Assume that we have calculated
all possible subtours for all squares in depth > i. Let S be a square at depth i and
S1, S2, S3, S4 be its four children in the quadtree. We guess the same numbers as

before for each Sj , j = 1, . . . , 4 (nO( logn
ε ) choices), and we look them up in the look-

up table constructed thus far. If the choices we find there are consistent with our
current guess, we store this guess in the look-up table and continue. Otherwise the
algorithm will reject it and will go on to the next possible guess. So the total extra

amount of work for each square in the quadtree is nO( logn
ε ), and the total running

time of the algorithm is O(n log n) × nO( logn
ε ) = nO( logn

ε ) (recall that the quadtree
contains only O(n log n) nodes).

Derandomization: The algorithm described is a randomized one. But it can be
easily derandomized: random shifts a and b take discrete values between 1 and L.
By trying all possible O(n2) values for the pair (a, b) and running the algorithm for
each one, we are bound to try one of the “good” values (i.e., one that will give the
tour guaranteed by Theorem 4.5). This procedure will increase the running time by
a factor O(n2).

4.3. Euclidean spaces of higher dimension. Since the results in Arora [4]
generalize to Euclidean spaces of any constant dimension d in a straightforward man-
ner, the plane algorithm for the MLT generalizes to higher dimensions as well. We
will give just the changes needed in order for the proofs in the plane case to apply
here.
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The grid we place in the d-dimensional cube of side length L that surrounds the
instance to transform it into a well-rounded one has granularity Θ(εL/(n2

√
d)). Then

all internode distances are bound by O(
√
dn2/ε).

Instead of randomly shifted quadtrees we use an obvious extension, the 2d-ary
trees. Instead of squares, we are dealing with d-dimensional cubes, so their boundaries
are (d−1)-dimensional cubes. Them portals placed on these cubes form an orthogonal

lattice with granularity W/m
1
d−1 , where W is the side length of the cube we place the

portals on. The structure theorem now states the following.
Theorem 4.9 (structure theorem for Euclidean space of dimension d). There

exist constants e, f such that the following is true for every integer n > 0 and every
ε > 0. For every well-rounded instance in Euclidean space of dimension d with n
nodes, a randomly shifted dissection has with probability at least 1/2 an associated
tour that is (e · (O(

√
d log n/ε))d, f · (O(

√
d/ε))d log n)-light and whose latency is at

most (1 + ε)OPT, where OPT denotes the latency of the MLT.

The dynamic programming algorithm will run in timeO(( logn
ε )(

√
d/ε)O(d)

)nO( logn
ε ).

4.4. Extension to other norms. Like Arora’s algorithm for the Euclidean
TSP, our algorithm for the MLT generalizes to any Minkowski norm in R

d. Any sym-
metric body C that is symmetric around the origin can be used to define a Minkowski

norm: the length of x ∈ R
d is defined to be ‖x‖

2

‖y‖2 , where y is the intersection of the

surface of C with the line connecting x to the origin. This definition generalizes the
lp norm for p ≥ 1 (in the case of lp norm C is the lp-unit ball centered at the origin).

Distances in any Minkowski norm are within a constant factor of the distances
under the l2 norm. Hence the algorithm described for the Euclidean case works for
any Minkowski norm as well (with the necessary adjustments of the constants in the
structure theorem, Theorem 4.9 and the running time calculations).

4.5. Planar graphs. Our techniques apply also to the MLT problem on weighted
planar graphs (planar graphs with nonnegative edge lengths). The distance between
two nodes is defined as the length of the shortest path in the graph that connects
them.

Arora et al. [5] have extended the ideas from Arora [4] to devise a PTAS for the
TSP on planar graphs. The first step in their algorithm is the extraction of a spanner
of the input graph. Informally, a spanner is the subgraph of the input graph that
approximates within a factor 1+ε the distances in the original graph but with a total
edge length that is much smaller (just O(1/ε) times the cost of the minimum spanning
tree in the input graph). They use a construction by Althofer et al. [2] that runs in
polynomial time.

Let G be the input graph and G′ its spanner. In order to apply dynamic program-
ming we need the notion of a separator (like the 1

3 : 2
3 -partition in the tree case or

the quadtree in the Euclidean case) and a hierarchical decomposition of the instance.
The separator in this case is a Jordan curve that cuts a “hole” in the graph, thus
separating it into an exterior (i.e., the hole) and an exterior. By defining the weight
of a planar graph in an appropriate way, Arora et al. [5] show that in polynomial
time they can compute such a curve with two essential properties: (a) the interior
and exterior weights are a constant fraction of the total weight, and (b) the interior is
connected to the exterior only via a set of k = O(log n/ε2) vertices. They show that
there is a salesman path whose length is at most (1+ε)OPT and crosses the boundary
of each region at most O(log n/ε2) times. Hence a QPTAS similar to the Euclidean
one works for planar graphs, too. The role of the square boundaries is played by the
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Jordan curves, and the role of portals is played by the k connecting vertices. Our
“guesses” are exactly the same as in the Euclidean case.

Theorem 4.10. The algorithm for weighted planar graphs runs in time nO( logn

ε2
)

and computes a tour whose latency is at most (1 + ε) OPT .
Proof. The proof is analogous to the proof of Theorem 4.8. Notice that the

approximation scheme for the planar TSP is not randomized; therefore the proof of
Theorem 4.8 is applied without the expectations.

4.6. General metrics. In this section we will use our main idea to derive an
algorithm for the MLT for general metrics. The only requirement for the distances
between points in the given instance is to satisfy the triangle inequalities. For this
general case we give a simple polynomial time 11.656-approximation algorithm that
uses an approximation algorithm for the k-minimum spanning tree (k-MST) as a
subroutine. The k-MST problem is defined as the problem of finding the minimum
cost tree that spans exactly k vertices of a given weighted graph.

Our algorithm has the same flavor as the approximation algorithms in Blum
et al. [10] and Goemans and Kleinberg [12]. We note that Goemans and Kleinberg [12]
give an improved 7.18-approximation algorithm, which is more complicated.

The general approach is motivated by the observation in section 2, and we use the
numbers n1, n2, . . . , nk defined there, where k = O(log n/ε). We will choose ε =

√
2.

Our algorithm for general metrics is quite different to the algorithms for the tree or
the Euclidean space, and in this case we have to take into account the fact that due
to n and our choice for ε some nodes may be “broken” in two, with each fraction
being in a different segment. Let Ri be the fraction of the first node of segment i
that belongs to segment i (that means that the rest 1−Ri belongs to segment i− 1).

Note that since segment i − 1 may end in a whole node (i.e.,
∑i−1
l=1 nl is an integer),

Ri may also take the value 0. Rk+1 is always 0.
The algorithm is as follows. Let P be the starting node. For i = 1, . . . , k, find,

using the algorithm for k-MST, a tour Li that starts at P and visits ni + Ri+1 − Ri
nodes that are not visited by L1, . . . , Li−1. This number of nodes is integer and is
equal to the number of nodes in segment i, minus the fraction of the start node for
segment i that belongs to i (this fraction was visited by Li−1), plus the fraction Ri+1

of the last node of i that does not belong to i but is visited nevertheless by Li. Of the
two possible directions of each tour, pick the one that minimizes the latency. Output
the concatenation of these tours (using shortcuts to avoid multiple visits to already
visited points). Assume for simplicity that we know the last segment in the tour,
which contains [1/

√
2] = 1 vertex and 1 edge.

Theorem 4.11. The algorithm just described runs in polynomial time and
achieves an approximation factor of 11.656.

Proof. We analyze this algorithm as follows. Let T be the optimum tour. Denote
by Ti the length of the ith segment of T (which contains ni nodes). Then, as in (2.2),
a lower bound on OPT , the latency of the optimum tour, is

OPT ≥
k∑

i=1

n>i · Ti ,(4.3)

where n>i = ni+1 +ni+2 + · · ·+nk is the number of nodes appearing in the last k− i
segments.

Let di be the length of the tour Li computed by our algorithm. We claim the
following.
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Claim 1.

di ≤ (2 + δ)× 2(T1 + · · ·+ Ti) for i = 1, 2, . . . , k − 1.(4.4)

Proof of Claim 1. The reason for the “(2 + δ)” is that it is the approximation
ratio of the k-MST algorithm. From now on we will treat this factor as equal to 2
(by making δ very small, e.g., δ = 10−6). The rest of the expression is explained as
follows. Consider the closed tour starting from P , including the first i segments of T ,
and returning to P . Its length is at most 2(T1 +T2 + · · ·+Ti), and it includes at least
(n1 +n2 + · · ·+ni+Ri+1) nodes (this is an integer number). At least ni+Ri+1−Ri
of these nodes are not in T1, . . . , Ti−1 (since these first i − 1 segments contain in
total only n1 + n2 + · · · + ni−1 + Ri nodes). Thus 2(T1 + T2 + · · · + Ti) is an upper
bound on the length of shortest tour that starts and finishes at P and includes at
least ni + Ri+1 − Ri nodes not on T1, . . . , Ti−1. This finishes the justification for
Claim 1.

Now notice that the latency of the ni +Ri+1 −Ri new nodes visited during tour
Li is upper bounded by 1

2 (ni +Ri+1 −Ri)di + (ni +Ri+1 −Ri)
∑i−1
l=1 dl. The second

term is an upper bound for the total latency incurred due to the i− 1 segments of T
preceding the ith segment. The first term is an upper bound for the latency due to
the ith segment itself, since the latency in the forward direction plus the latency in
the backward direction is equal to (ni +Ri+1 −Ri)di, and we traverse tour Li in the
direction that minimizes the latency of the ni +Ri+1 −Ri new points visited. So the
total latency of our solution—ignoring the last segment—is upper bounded by

A =

k−1∑
i=1

[
(ni +Ri+1 −Ri)

(
1

2
di +

i−1∑
l=1

dl

)]

=
1

2

k−1∑
i=1

(ni +Ri+1 −Ri)di +

k−1∑
i=1

i−1∑
l=1

(ni +Ri+1 −Ri)dl

=
1

2

k−1∑
i=1

(ni +Ri+1 −Ri)di +

k−1∑
i=1

di(n>i −Ri+1)

=
1

2

k−1∑
i=1

nidi +

k−1∑
i=1

n>idi − 1

2

k−1∑
i=1

(Ri +Ri+1)di

≤ 1

2

k−1∑
i=1

nidi +

k−1∑
i=1

n>idi.

From section 2, ni = (1 + ε)ni+1 and n>i =
ni
ε , so

A ≤ 1 + ε

2

k−1∑
i=1

ni+1di +
1 + ε

ε

k−1∑
i=1

ni+1di

=
(1 + ε)(2 + ε)

2ε

k−1∑
i=1

ni+1di.

Observing that n>i =
∑k
j=i+1 nj and ignoring the last segment (which was com-
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puted optimally) we also have

k−1∑
l=1

nl+1dl
(4.4)

≤ 4

k−1∑
l=1

nl+1

l∑
i=1

Ti

= 4

k−1∑
l=1

n>lTl

≤ 4×OPT,

and thus

A ≤ 2
(1 + ε)(2 + ε)

ε
OPT.

The factor (1+ε)(2+ε)
ε is minimized for ε =

√
2, and its value is 3+2

√
2 = 5.828. Thus

A ≤ 11.565 OPT .

5. Extending the MLT problem. Our main idea is general enough to apply
to a broader category of objective functions. In this section we study the following
weighted version of MLT.

WEIGHTED MINIMUM LATENCY TOUR (WMLT)

Input: A set of n points (one of them designated as the starting point p1), a
symmetric distance matrix [dij ], and an integral weight wi ≥ 0 for each node
i = 1, 2, . . . , n.

Output: A tour p1 → p2 → · · · → pn that visits all points and minimizes the total
weighted latency

n∑
i=2


wpi

i−1∑
j=1

dpj ,pj+1


 .(5.1)

Obviously, this is an extension to the MLT problem: the contribution of each node
to the objective function is the length of the tour from the start to the first visit at
the node, weighted by the weight of the node wi. When wi = 1, for all i we get the
MLT problem as defined in section 1. Notice that again we can express the objective
function in a form similar to formula (1.2), namely,

n−1∑
i=1


 n∑
j=i+1

wpj


 dpi,pi+1 .(5.2)

We study instances where d defines a metric (i.e., distances satisfy the triangle
inequalities). When a weight wi is 0, point i can be moved to the end of a tour
without increase to the value of the objective function, and it is enough to solve the
problem for the subset of points with nonzero weights. Hence from now on the wi’s
will be integers greater than 0.

Let T = p1 → p2 → · · · → pn be an optimal tour with total weighted latency
OPT . Let W =

∑n
i=1 wpi be the total point weight and ε > 0 any parameter. We

will assume that the following is true for this instance of WMLT.
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Assumption 1. T can be broken into k segments so that in segment i it visits ni
points with total weight Wi given by the following expressions:

W1 =
ε W

1 + ε
,

Wi =
Wi−1

1 + ε
, i = 2, 3, . . . , k.

(5.3)

Obviously, k = O( logW
ε ). Let the length of the ith segment be Ti. If we let W>i

denote the total weight of nodes visited in segments numbered i + 1 and later, then
a simple calculation shows that (and this was the reason for our choice of Wi’s)

W>i =
∑
j>i

Wj =
Wi

ε
for every i = 1, . . . , k − 1.(5.4)

As in the case of the MLT, we are going to show that if one replaces each segment
by the minimum-cost traveling salesman path on the same subset of nodes, while
maintaining the starting and ending points, the new total weighted latency is at most
(1+ ε)OPT . The lower bound on the OPT is similar to the lower bound in the MLT
case:

OPT ≥
m−1∑
j=1

W>j · Tj .(5.5)

By replacing each segment Ti with the optimum salesman path T ′i we increase the
weighted latency of points within the segment by at most WiT

′
i . Hence the total

weighted latency of the new tour T ′ can be upper bounded as follows:

cost(T ′) ≤
k∑
i=1

WiT
′
i +

k∑
i=1

W>iT
′
i

≤ ε ·
k∑
i=1

W>iTi +

k∑
i=1

W>iTi

(5.5)

≤ (1 + ε) OPT .

Thus we have shown that under Assumption 1, the analogue of Theorem 2.1 can be
proven.

Theorem 5.1. Let OPT be the total latency of the WMLT under Assumption 1.
There exists a tour that is a concatenation of O( logW

ε ) optimal salesman paths and
whose total weighted latency is at most (1 + ε)OPT .

Even if, instead of the optimum salesman path in each segment, we use a (1+γ)-
approximate salesman path, then the latency of the tour of Theorem 5.1 is (1 + γ ·
ε+ γ + ε)OPT .

The approximation-preserving reduction from the MLT to the weighted vehicle
routing with per-mile costs in section 3 works also for the WMLT. If the vehicle
routing oracle computes a ρ-approximation in polynomial time, our reduction will
lead to a ρ(1 + ε)-approximate solution for WMLT in nO(logW/ε) time. This follows
from Theorem 5.1, since it suffices to go over all possible sequences p1, p2, . . . , pk
for k = O(logW/ε), and this increases the running time by a factor of at most

O(nk) = nO( logW
ε ).
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5.1. Approximation algorithms for the WMLT. First we point out the
differences between our rounding procedures for the MLT and the rounding for the
WMLT. In this case it suffices to assume w.l.o.g. that the minimum nonzero internode
distance is 1 and maximum internode distance is O(n ·W/ε), where W =

∑n
i=1 wi

and ε > 0 is any parameter. The reason is that if L denotes the diameter of the
space, then L is a lower bound on the weighted minimum latency. Again we merge
all pairs of nodes with internode distance at most εL

n·W . This affects the latency of
the optimum tour by at most εL ≤ εOPT . Furthermore, the ratio of the maximum
internode distance and the minimum nonzero internode distance is O(nW/ε). Since ε
is constant, we will often think of the maximum internode distance as O(nW ). Note
that in the weighted case the internode distance (and therefore the running time of
our algorithms) depend directly on W . If W is, for example, exponential in the size
of the input, our algorithms will run in exponential time. We give the running times
of algorithms described for the MLT when they are applied in the case of WMLT.
Their correctness is ensured by Assumption 1 and the extension of our main idea.

Theorem 5.2. Algorithm 1 runs in time (nW )O(log n logW/ε) and computes a
tour whose weighted latency is at most (1 + ε) OPT .

The proof is identical to Theorem 4.4 and uses Theorem 5.1.
Theorem 5.3. The algorithm for the MLT in Euclidean spaces of constant di-

mension d runs in time O(( logW
ε )(

√
d/ε)O(d)

)(nW )O( logW
ε ) and computes a tour whose

weighted latency is at most (1 + ε) OPT.
For the proof, see section 4.3 and adapt structure theorem, Theorem 4.9 to work

with Theorem 5.1. This result extends also to any Minkowski norm (cf. section 4.4).

Theorem 5.4. The algorithm for weighted planar graphs runs in time (nW )
logW
ε

and computes a tour whose weighted latency is at most (1 + ε) OPT .
The proof is identical to Theorem 4.10 in section 4.5.
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Abstract. Reachability and distance queries in graphs are fundamental to numerous applica-
tions, ranging from geographic navigation systems to Internet routing. Some of these applications
involve huge graphs and yet require fast query answering. We propose a new data structure for
representing all distances in a graph. The data structure is distributed in the sense that it may
be viewed as assigning labels to the vertices, such that a query involving vertices u and v may be
answered using only the labels of u and v.

Our labels are based on 2-hop covers of the shortest paths, or of all paths, in a graph. For shortest
paths, such a cover is a collection S of shortest paths such that, for every two vertices u and v, there
is a shortest path from u to v that is a concatenation of two paths from S. We describe an efficient
algorithm for finding an almost optimal 2-hop cover of a given collection of paths. Our approach is
general and can be applied to directed or undirected graphs, exact or approximate shortest paths,
or to reachability queries.

We study the proposed data structure using a combination of theoretical and experimental means.
We implemented our algorithm and checked the size of the resulting data structure on several real-life
networks from different application areas. Our experiments show that the total size of the labels is
typically not much larger than the network itself, and is usually considerably smaller than an explicit
representation of the transitive closure of the network.

Key words. shortest-path queries, reachability queries, distance labels, 2-hop labels
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1. Introduction. We consider the problem of efficiently answering distance or
reachability queries in directed or undirected graphs. We focus on scenarios in which
the graph/network is given to us explicitly and we are able to do some preprocessing
of it. The generated data structure should be fairly compact and should accelerate
query answering by as much as possible. Often, the computational resources available
for processing queries are weaker than those available during the preprocessing stage.
This is the case, for example, in geographic navigation systems, where the prepro-
cessing may be done on a large computer, while queries are answered using a much
weaker processor installed in a car.

There are two naive solutions to the problem. The first is to precompute answers
to all possible queries, e.g., by solving the all-pairs shortest-paths (APSP) problem
or by computing the transitive closure of the network. Each query could then be
answered in constant time. This, however, is not a viable option, especially for sparse
networks, as the data structure produced for an n-vertex graph would be of size Ω(n2).
The second solution approach is to do no preprocessing at all and answer each query,
e.g., using a single-source shortest-path (SSSP) computation. The space requirements
here are minimal, but answering a query on an m-edge graph may take Ω(m) time.

We present here a new processing scheme, and a corresponding query-answering
algorithm, for answering reachability and distance queries. Our preprocessing scheme
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generates a data structure of reasonable size, i.e., not much larger than the origi-
nal network, and typically much smaller than, say, an explicit representation of the
transitive closure of the network. Given the precomputed data structure, our query-
answering algorithm can answer distance and reachability queries quickly, much faster
than is possible without preprocessing.

The data structure generated by our preprocessing algorithm is distributed. We
assign to each vertex of the network a distance or reachability label such that we can
later calculate the distance (or reachability relation) between two vertices using only
the labels of these two vertices. Distance labels were considered by, among others,
Peleg [10], Gavoille et al. [4], and Thorup and Zwick [12]. All these papers, how-
ever, consider only undirected graphs, and only worst-case results. We are interested
mainly in directed graphs, and in the performance of the proposed labeling scheme
on networks that occur in practice.

Our labels are based on the concept of 2-hop covers. Let G = (V,E) be a (directed
or undirected) graph. For every u, v ∈ V , let Puv be a collection of paths from u to v
in G. (For example, Puv may be the set of all shortest paths from u to v.) We define
a hop to be a pair (h, u), where h is a path in G and u ∈ V , the handle of the hop, is
one of the endpoints of h. We say that a collection of hops H is a 2-hop cover of the
collection P = ∪uv Puv if, for every u, v ∈ V , if Puv �= ∅, then there is a path p ∈ Puv

and two hops (h1, u) ∈ H and (h2, v) ∈ H such that p is the concatenation h1h2. We
show how to obtain a 2-hop labeling from such a cover by mapping each hop to an
item in the label of its handle node.

The nature of each such item and the interpretation of the labels depend on
the specific variant of the problem that we want to solve. Consider, for exam-
ple, undirected distance queries. Each set of paths Puv contains all shortest paths
between u and v. The item in the label L(u) of u that corresponds to a hop
(h = (u = v0, . . . , vk), u) is (w(h), vk), where w(h) is the weight of the path h. The
distance between two nodes u and v can then be obtained from their labels by taking
the minimum, over all nodes that appear in both L(u) and L(v), of the sum of the
two weights.

The total size of the labels is thus |H|. (We count here the number of hops in
the cover, not their combined length.) Each distance/reachability query can then be
answered in time that is linear in the size of the corresponding labels—therefore, on
average, in O(|H|/n) time.

We show that finding a 2-hop cover (and thus, a 2-hop labeling) of minimum size
is an NP-hard problem. We present, however, an efficient and practical algorithm,
which we implemented, for obtaining almost-optimal 2-hop covers. The size of the
2-hop cover returned by this algorithm is larger than the minimum possible 2-hop
cover by at most a logarithmic factor. In practice, we expect the performance ratio
of this algorithm to be much better.

Our algorithm produces an almost optimal 2-hop labeling of any input graph.
Some graphs may have shorter labelings that are not 2-hop labelings. But, for many
interesting families of graphs such as planar graphs, the optimal 2-hop labelings are
almost as short as the optimal labeling. Thus, without being specifically designed
for any such graph family, our algorithm produces almost optimal labelings. It is
also expected, as verified by our experiments, to work well on graphs that are, say,
“mostly” planar, or “mostly” tree-like, as many practical problem are.

We conjecture that any n-vertex, m-edge directed graph has a 2-hop cover, and
thus a 2-hop labeling, of total size Õ(nm1/2). We show there exist graphs for which
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any distance or reachability labeling is of size Ω(nm1/2).

A useful property of our approach is that by properly selecting the underlying set
of paths, labels can be produced for different variants of the shortest paths problem:
reachability or distances, directed or undirected, exact or approximate distances, and
for the complete or partial set of vertex-pairs. Even though exact directed distance
labeling for all pairs of vertices is the most general variant in the sense that all other
variants can be reduced to it, the distinction is important, as a less-constrained variant
often enjoys a more compact labeling. One such example is the family of directed
planar graphs: Reachability or (1 + ε)-approximate shortest paths have worst-case
2-hop labels of size O(n log2 n) (using some slight modification of a construction by
Thorup [11]), whereas for exact-distances there is a known Ω(n4/3) lower bound for
any labeling scheme [4]. It is also not too hard to construct specific graphs which
admit more compact labeling for less-constrained variants. Thus, 2-hop labels should
always be produced for the least-constrained appropriate variant.

We have made an experimental study of our proposed labeling scheme. We used
several real-world networks and obtained promising results, showing that the size
of the labels produced is typically significantly smaller than what would have been
required for explicit representation.

2. Reachability and distance queries. Let G = (V,E) be a weighted graph
(which may be directed or undirected) with n = |V | and m = |E|. If (u, v) ∈ E
is an edge, we let w(u, v) be the weight (or cost, or length) attached to that edge.
In networks used in applications, the weights attached to the edges are nonnegative.
Our approach, however, works also when there are edges of negative weight. We let
δ(u, v) be the distance from u to v in the graph, i.e., the smallest weight of a path
from u to v, if one exists, in the graph, or ∞ otherwise. (We assume that there are
no negative weight cycles in the graph, and so all distances are well defined.)

We would like to preprocess the graph G and obtain a compact representation of
it such that, given a pair of vertices u, v ∈ E, we could quickly answer the following
queries:

reach(u, v): Is there a path from u to v in the graph?

dist(u, v): What is the distance from u to v in the graph? Sometimes, we would
be satisfied with (1 + ε)-approximate distances.

first-edge(u, v): Which edge emanating from u is a first edge on a (shortest)
path from u to v?

path(u, v): Find a (shortest) path from u to v in the graph.

Reachability queries are of course special cases of (directed) distance queries, as
there is a path from u to v if and only if the distance from u to v is finite. If we
are interested only in reachability properties, we may assume that the weight of all
the edges of the graph is 0. Path queries could be answered using repeated first-edge
queries. In some cases, it would be possible to accelerate the processing of repeated
first-edge queries so that if a shortest path from u to v contains, say, � edges, then
the processing time of the � first-edge queries producing it would require substantially
less time than � times the time required by a typical first-edge query.

3. 2-hop labels. A possible scheme for achieving the objective set forth above
is the following: During the preprocessing stage, we attach to each vertex u of the
graph a relatively short label L(u) such that, for any two vertices u and v, the two
labels L(u) and L(v) would contain enough information to answer the required queries.
More formally we use the following.
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Definition 3.1 (distance labelings). A distance labeling of a weighted, di-
rected or undirected, graph G = (V,E) is a pair (L,F ), where L : V → {0, 1}∗
and F : {0, 1}∗ × {0, 1}∗ → (R ∪ {∞}) × (E ∪ {φ}), such that for every u, v ∈ V ,
if F (L(u), L(v)) = (d, e), then d = δ(u, v), the distance from u to v in the graph. If
d =∞, then e = φ. Otherwise, e is the first edge on a (shortest) path from u to v in
the graph. The total bit-size of the labeling is

∑
v∈V |L(v)|, where |L(v)| is the length

of L(v). The maximum label size is naturally maxv∈V |L(v)|. We say that a labeling
scheme has linear complexity if F (L(v), L(u)) can be computed in O(|L(u)|+ |L(v)|)
time.

Reachability labelings are defined similarly, and (1 + ε)-approximate distance la-
belings are defined by requiring δ(u, v) ≤ d ≤ (1+ε)δ(u, v). We focus on reachability/
distance labels of the following form.

Definition 3.2 (2-hop distance labeling). Let G = (V,E) be a weighted directed
graph. A 2-hop distance labeling of G assigns to each vertex v ∈ V a label L(v) =
(Lin(v), Lout(v)) such that Lin(v) is a collection of pairs (x, δ(x, v)), where x ∈ V ,
and similarly, Lout(v) is a collection of pairs (x, δ(v, x)), where x ∈ V . With a slight
abuse of notation, we also consider Lin(v) and Lout(v) to be subsets of V , and for
any two vertices u, v ∈ V we require that

δ(u, v) = min
x∈Lout(u)∩Lin(v)

δ(u, x) + δ(x, v).

The size of the labeling is defined to be
∑

v∈V |Lin(v)|+ |Lout(v)|.
For approximate distances we relax the requirement to minx∈Lout(u)∩Lin(v) δ(u, x)

+ δ(x, v) ≤ (1 + ε)δ(u, v).
For undirected graphs we can simplify the definition: For every vertex v, there

is only one collection L(v) of pairs (x, δ(x, v)), such that for every u, v ∈ V we have
δ(u, v) = minx∈L(u)∩L(v) δ(u, x)+δ(x, v). The size of the labeling is then

∑
v∈V |L(v)|.

A slightly more general class of distance labelings is the following.
Definition 3.3 (Steiner 2-hop distance labeling). A Steiner 2-hop distance la-

beling is a labeling in which Lin(v) and Lout(v) consist of pairs of the form (x, d(x, v))
and (x, d(v, x)), respectively, where x ∈ X, d(x, v), d(v, x) ∈ R, and X is some arbi-
trary finite set. We require that

δ(u, v) = min
x∈Lout(u)∩Lin(v)

d(u, x) + d(x, v).

(A similar definition can be stated for undirected graphs and for approximate dis-
tances.)

Note that any 2-hop distance labeling is a Steiner 2-hop labeling, with X = V
and d(x, v) = δ(x, v).

We also use the following definition of 2-hop reachability labels.
Definition 3.4 (2-hop reachability labeling). Let G = (V,E) be a directed

graph. A 2-hop reachability labeling of G assigns to each vertex v ∈ V a label L(v) =
(Lin(v), Lout(v)), such that Lin(v), Lout(v) ⊆ V and there is a path from every x ∈
Lin(v) to v and from v to every x ∈ Lout(v). Furthermore, for any two vertices
u, v ∈ V , we should have

u ❀ v iff Lout(u) ∩ Lin(v) �= φ.

The size of the labeling is defined to be
∑

v∈V |Lin(v)|+ |Lout(v)|.
A 2-hop Steiner reachability labeling is defined similarly, but we allow Lin(v) and

Lout(v) to contain vertices from an arbitrary finite set X.
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Fig. 1. Solid edges are the edges of the graph. Dashed lines are hops that are not edges of the
graph.

Remarks. (1) In Definition 3.1, we measure the label size in bits. On the other
hand, in Definitions 3.2 and 3.4 we measure the size of 2-hop labels by the total
number of hops they contain. (2) Our 2-hop labelings, as defined, do not support
first-edge queries. However, it is easy to add first-edge information to the hops so
that they will support such queries.

Given the labels L(u) = (Lin(u), Lout(u)) and L(v) = (Lin(v), Lout(v)), we can
easily compute δ(u, v), the distance from u to v in O(|Lout(u)|+ |Lin(v)|) time. (We
keep Lout(u) and Lin(v) in sorted order and merge them to find their intersection.)
We can in fact do it also in O(min{|Lout(u)|, |Lin(v)|}) time, if we keep hash tables for
the sets Lout(u) and Lin(v). As an example for 2-hop reachability labeling, consider
the graph in Figure 1 and the 2-hop labeling shown in the table next to it. We assume
there that each vertex v is contained, by default, in Lin(v) and Lout(v).

4. 2-hop covers. Closely related to 2-hop labelings is the notion of a 2-hop
cover of a collection of paths in a graph.

Definition 4.1 (2-hop cover). Let G = (V,E) be a graph. For every u, v ∈ V ,
let Puv be a collection of paths from u to v (for undirected graphs we have Puv ≡ Pvu).
Let P = {Puv}. We define a hop to be a pair (h, u), where h is a path in G and u ∈ V
is one of the endpoints of h. We refer to u as the handle of the hop. A collection of
hops H is said to be a 2-hop cover of P if for every u, v ∈ V such that Puv �= φ there
is a path p ∈ Puv, and two hops (h1, u) ∈ H and (h2, v) ∈ H, such that p = h1h2,
i.e., p is the concatenation of h1 and h2. The size of the cover is |H|, the number of
hops in H.

Intuitively, a path p can be covered by two hops if p is a concatenation of the two
hop paths and the handles of the hops are the endpoints of p. We obtain 2-hop labels
from 2-hop covers by mapping a hop with handle v to an item in the label of the node v.
Thus, the size of this labeling is equal to the size of the 2-hop cover. Specifically, we
can obtain reachability labels from a 2-hop cover H of the set of all paths in G by
setting Lin(v) = {x | ((x ❀ v), v) ∈ H} and Lout(v) = {x | ((v ❀ x), v) ∈ H}. The
converse also holds: From reachability labels of G we can obtain a 2-hop cover of the
same size by adding to H a hop consisting of an arbitrary path v ❀ x and endpoint v
if x ∈ Lout(v) and a hop consisting of an arbitrary path x ❀ v and endpoint v if
x ∈ Lin(v). Similarly we can obtain 2-hop distance labels from a 2-hop cover of
the set of all shortest paths in G, and vice versa. We could also obtain approximate
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distance labels from a 2-hop cover of the set of all approximate shortest paths and
vice versa. Thus we obtain that the size of an optimal 2-hop cover for the set of all
paths, the set of all shortest paths, and the set of all approximate shortest paths is
equal to the minimum size of a 2-hop reachability labeling, 2-hop distance labeling,
and 2-hop approximate distance labelings, respectively.

The common property of the set of all paths, the set of all shortest paths, and
the set of all approximate shortest paths, which makes their 2-hop covers correspond
to 2-hop labelings, is the following.

Definition 4.2 (hop invariance). A set of paths P = {Puv} in a graph G =
(V,E) is said to be hop invariant if there exists a collection Q of paths such that

• for any two vertices vi and vj, there is at most one path qij ∈ Q such that
vi ❀qij vj;

• whenever vi ❀p1 vj ❀p2 vk is a path of P , then qij and qjk exist and
qijqjk ∈ P .

Lemma 4.1. A set P consisting of all shortest paths between a particular set
of vertex-pairs (in directed or undirected graphs) is 2-hop invariant. In particular,
the set of all shortest paths is hop invariant. A similar statement holds for (1 + ε)-
approximate shortest paths and for the set of all directed paths.

Proof. In all these cases, it is sufficient to place in Q an arbitrary shortest path
connecting each pair of nodes.

Theorem 4.1. Finding a minimum 2-hop cover of a collection P of shortest
paths in a directed graph is an NP-hard problem.

Proof. We reduce 3-SAT to the decision version of the minimum 2-hop cover
problem of shortest paths in directed graphs. Let S be an instance of 3-SAT with
variables x1, x2, x3, . . . , xn and clauses C1, C2, . . . , Cm. We build an instance for the
2-hop cover problem as follows. The graph G consists of a pivot vertex p together with
a collection of variable gadgets and clause gadgets. The variable gadget corresponding
to a variable x consists of

1. six vertices ax
1 , ax

2 , bx, bx, ex
1 , and ex

2 ,
2. eight arcs (ax

1 , b
x), (ax

1 , b
x), (ax

2 , b
x), (ax

2 , b
x), (bx, ex

1), (bx, ex
1), (bx, ex

2), and
(bx, ex

2).

We connect the pivot p to the variable gadget by adding the arcs (p, bx) and (p, bx).

Let C be a clause C = (X,Y, Z), where X, Y , and Z are literals of the variables
x, y, and z, respectively. For each such clause C we add a vertex c and the arcs
(bX , c), (bY , c), and (bZ , c) (i.e., if X = x, we add the arc (bx, c), and if X = x, we
add the arc (bx, c), and similarly for y and z).

For every variable x we define Pax
i
ex
j
, i, j ∈ {1, 2}, to be the set of directed paths

from ax
i to ex

j . We also define Ppex
j

to consist of the directed paths from p to ex
j ,

j ∈ {1, 2}. We call the sets Pax
i
ex
j

and Ppex
j

the variable paths that correspond to

variable x. For a clause C = (X,Y, Z) we define PbXc, PbY c, and PbZc to be the set
containing the directed path of a single edge from bX to c, from bY to c, and from bZ

to c, respectively. We also define Ppc to consist of the three directed paths from p to
c. We define every Puv not mentioned above to be empty.

We claim that the 3-SAT instance S is satisfiable if and only if the 2-hop cover
instance has a solution of size at most 5n + 3m.

The proof of this claim is as follows. Assume S is satisfiable, and let f be a
satisfying assignment. We define a 2-hop cover H as follows. For every variable x if
f(x) = 1, we add the hops ((ax

1 , b
x), ax

1), ((ax
2 , b

x), ax
2), ((p, bx), p), ((bx, ex

1), ex
1), and

((bx, ex
2), ex

2) to H. Otherwise we add the hops ((ax
1 , b

x), ax
1), ((ax

2 , b
x), ax

2), ((p, bx), p),
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((bx, ex
1), ex

1), and ((bx, ex
2), ex

2) to H. For each clause C = (X,Y, Z) we add the hops
((bX , c), c), ((bY , c), c), and ((bZ , c), c) to H. It is straightforward to check that if f
is satisfying, then H is indeed a cover. The size of H is 5n + 3m.

For the other direction, let H be a 2-hop cover of size 5n+ 3m. To cover the sets
Pbxc and Pbxc for all variables x and clauses C, the cover H must include 3m distinct
hops of the form (bX , c) for every clause C and literal X ∈ C. To cover the variable
paths corresponding to x we need at least five hops, consisting of arcs incident with
vertices from the variable gadget corresponding to x, and p.

Since H is a 2-hop cover of size 5n + 3m, we cover the variable paths of each
variable with exactly five hops. It is easy to check that the only way to cover the
variable paths with five hops is either to include the hops ((ax

1 , b
x), ax

1), ((ax
2 , b

x), ax
2),

((p, bx), p), ((bx, ex
1), ex

1), and ((bx, ex
2), ex

2) in H or to include the hops ((ax
1 , b

x), ax
1),

((ax
2 , b

x), ax
2), ((p, bx), p), ((bx, ex

1), ex
1), and ((bx, ex

2), ex
2) in H. We define a satisfying

assignment to S by setting f(x) = 1 if and only if the former set of hops is in H.
Since H also covers the sets Ppc for all clauses C, it follows that S must be a satisfying
truth assignment.

We can, however, efficiently find an almost optimal 2-hop cover if the collection
of paths P is hop invariant.

Theorem 4.2. Let G = (V,E) be a graph with |V | = n, and let P be a hop
invariant set of paths in G. Then there is an efficient algorithm for finding a 2-hop
cover of P whose size is larger than the smallest such cover by at most an O(log n)
factor.

Before proving the theorem, we introduce some notation. As before, let Puv, for
u, v ∈ V , be the paths of P that start at u and end at v. Let Buv ⊆ V be the set of
vertices that appear on paths from Puv. (Note that u, v ∈ Buv if Puv �= φ.) A moment
of reflection shows that the size of the minimum 2-hop cover of P depends only on
the sets Buv, for u, v ∈ V . We also need to define the densest subgraph problem and
state some results that are known for it.

Definition 4.3 (densest subgraph). The densest subgraph problem is defined
as follows: Given an undirected graph G = (V,E), find a subset S ⊆ V for which the
average degree in the subgraph induced by S is maximized, i.e., a set that maximizes
the ratio |E(S)|/|S|, where E(S) is the set of edges connecting two vertices of S.

The densest subgraph problem can be solved exactly in polynomial time using
flow techniques. One such algorithm is given by Lawler [8, Chapter 4]. The best
time bound currently available for the problem is O(mn log(n2/m)), due to Gallo,
Grigoriadis, and Tarjan [3]. It is obtained by reducing the densest subgraph problem
to a parametric min-cut problem and then solving it using a parametric max-flow
algorithm whose running time is the same as the running time of the nonparametric
max-flow algorithm of Goldberg and Tarjan [5].

Of more practical interest is a much simpler linear time 2-approximation algorithm
for the densest subgraph problem, which is a slight modification of an algorithm
mentioned by Kortsarz and Peleg [7]. This algorithm iteratively removes a vertex
of minimum degree from the graph. This generates a sequence of n subgraphs of
the original graph. The algorithm returns the densest of these subgraphs. It is not
difficult to check that this algorithm can be implemented to run in linear time, and
that it is a 2-approximation algorithm for the densest subgraph problem; i.e., the
average degree in the subgraph returned is at least half of the average degree in the
densest possible subgraph.

We can now present a proof of Theorem 4.2.
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Proof of Theorem 4.2. We cast the problem of finding a minimum 2-hop cover
of P as a minimum set cover problem. We then apply the greedy algorithm and
find a cover that is larger than the optimal cover by at most a logarithmic factor
(Chvátal [1], Johnson [6], Lovász [9]). One difficulty that arises is that the resulting
set cover instance is huge. We show, however, that it is possible to apply the greedy
algorithm to this set cover instance without generating it explicitly.

We first recall the flow of the greedy algorithm of the set cover problem. The
instance of the set cover problem is a ground set T , and a set S of subsets of T . For
each S ∈ S, there is an associated weight w(S). The goal is to find a subset U ⊆ S
such that ∪S∈U S = T and

∑
S∈U w(Si) is minimized. The greedy algorithm for the

problem is the following. We maintain the set of uncovered elements T ′, which is
initialized to T ′ = T . In each iteration of the algorithm, we add to U a set S, which

maximizes the ratio |S∩T ′|
w(S) . We iterate until T ′ = φ.

The set cover instance corresponding to the 2-hop cover instance is constructed
as follows. The ground set of elements to be covered is T = {(u, v) | Puv �= φ}. For
each vertex w ∈ V and two subsets Cin, Cout ⊆ V , we have a set

S(Cin, w, Cout) = { (u, v) ∈ T | u ∈ Cin , v ∈ Cout , w ∈ Buv }.

The weight attached to this set is |Cin|+ |Cout|. The vertex w is called the center of
the set S(Cin, w, Cout). The goal is to find a collection of such sets of minimum total
weight that cover T . (Note that the collection of sets is exponential in size.)

The proof that this set cover instance is equivalent to the 2-hop cover prob-
lem is as follows: If H is a 2-hop directed cover of minimum size, we let Cin(w) =
{u|((u,w), u) ∈ H} and Cout(w) = {u|((w, u), u) ∈ H}. We can then cover the set T
using the sets S(Cin(w), w, Cout(w)) for w ∈ V .

Conversely, we first claim that we may assume w.l.o.g. that the minimum cover
contains at most one set with a given center. If a cover contains two sets with the same
center, i.e., S(C ′in, w, C ′out) and S(C ′′in, w, C ′′out), then these two sets can be replaced,
without increasing the size of the cover, by the set S(C ′in ∪ C ′′in, w, C ′out ∪ C ′′out).

Thus, let S(Cin(w), w, Cout(w)) be the set corresponding to w ∈ V . We can now
define a corresponding 2-hop cover in the following way: ((u,w), u) ∈ H if and only
if u ∈ Cin(w), and ((w, u), u) ∈ H if and only if u ∈ Cout(w).

To see that this is indeed a 2-hop cover, consider a pair (u, v) such that Puv �= ∅.
From the construction of the set cover instance, there exists w ∈ Buv such that
u ∈ Cin(w) and v ∈ Cout(w), and thus the hops ((u,w), u) and ((w, v), v) are in H.

We next have to show that we can efficiently apply the greedy algorithm to this
exponential size set cover instance. Let T ′ be the part of T that is still uncovered.
Initially T ′ ← T . In each step of the greedy algorithm we are supposed to find a set S

with the best ratio |S∩T ′|
w(S) . In the directed case we are looking for a set S(Cin, w, Cout)

for which the ratio

|S(Cin, w, Cout) ∩ T ′|
|Cin|+ |Cout|

is maximized.
To do that we find, for every w ∈ V , the set S(w) which maximizes the above ratio

over all the sets S(Cin, w, Cout), in which w is their center. We construct an auxiliary
undirected bipartite graph Gw = (Vw, Ew), which we call the center graph of w, in the
following way. The vertex set Vw contains two vertices vin and vout for each vertex v
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of the original graph G. We have the undirected edge (uout, vin) ∈ Ew if and only if
(u, v) ∈ T ′ and w ∈ Buv. Many of the vertices in Gw may be isolated and can therefore
be removed from the graph. It is straightforward to prove that the problem of finding
the sets Cin and Cout that maximize the ratio |S(Cin, w, Cout) ∩ T ′|/(|Cin|+ |Cout|)
is exactly the problem of finding the densest subgraph of Gw.

We solve this problem, computing S(w) for each center w ∈ V , and finally choose
the vertex w for which S(w) has the best ratio. We then add the corresponding
set S(w) to the cover, update T ′, and repeat until T ′ is empty. It is shown by John-
son [6], Lovász [9], and Chvátal [1] that the greedy heuristic achieves a performance
ratio of Ht for the set cover problem, where t is the number of elements to be covered
and Ht is the Harmonic number. For our problem, the number of elements is equal
to the number of vertex-pairs such that there is at least one path in P between them.
Thus, we obtain an approximation ratio of

H|{ij|Pij 	=∅}| ≤ Hn2 < 2 log n + O(1).

This construction is slightly different for undirected paths. The set T to be covered
is a set of (unordered) vertex-pairs {u, v} such that Buv �= ∅. For each vertex w ∈ V
and a subset C ⊆ V , we have a set S(C,w) = {{u, v} | u ∈ C, v ∈ C, w ∈ Buv}. The
proof that this set cover problem is equivalent to our original 2-hop cover problem is
essentially as for the directed case: Let S(C(w), w) be the set corresponding to w;
then ((u,w), w) ∈ H if and only if u ∈ C(w). To solve the set cover instance, we

are interested in S(C,w), which maximizes |S(C,w)∩T ′|
|C| . We again first solve this

maximization problem separately for each w. Here the auxiliary graph Gw = (V,Ew)
contains a single copy of each vertex of V and generally is not bipartite. We have
the edge (u, v) ∈ Ew if and only if (u, v) ∈ T ′ and w ∈ Buv. Similarly, the problem
of finding the set S(w) = (C,w) that maximizes the ratio |S(C,w) ∩ T ′|/|C| is then
exactly the problem of finding the densest subgraph of Gw.

Our approximation algorithm has ingredients similar to those of an approximation
algorithm given by Kortsarz and Peleg [7] for the 2-spanner problem.

4.1. A simple example.

end−point

hop

Fig. 2. A 2-hop cover of a path. Hops are dashed lines or original edges. The diamonds
indicate which endpoint is the handle of the hop.

To better visualize the working of our algorithm, we demonstrate its operation
for the special case where the input is a graph that consists of single directed path
(see Figure 2). We name the nodes on the path by consecutive integers (1, 2, 3, . . . , n).
Consider the center graph Gj of vertex j. For every i, k such that i < j and k > j
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there is an edge from iout to kin in Gj that corresponds to the path from i to k going
through j. The subgraph induced by the x = j−1 hops of the form l ❀ j (l < j) and
the y = n− j hops of the form j ❀ l (l > j) has density xy

x+y . Since x+y = n−1, the

density is maximized when x = y = (n− 1)/2. Thus, the first densest subgraph that
our algorithm will pick would be the whole center graph that corresponds to the node
j = �n/2�. Following this choice, all shortest paths traversing the center are covered,
and we are left with two independent subproblems: the paths induced by the first
half of the original path (up to and excluding the middle node) and the paths induced
by the second half of the original path. By the same argument, the algorithm will
continue and pick the center graph of the middle node in each of the subproblems. It
is easy to see that the total number of hops selected by the algorithm is O(n log n).

Note that if we consider the corresponding 2-hop labels, then the maximum label
of a node (number of hops in which the node constitutes the marked endpoint) is
O(log n). Observe that even though the algorithm tends to select large center graphs,
the corresponding labels are stored only at the “outer” nodes. Thus, it tends to
perform well also according to the maximum label metric.

The algorithm works similarly on trees, iteratively selecting as a center the “cen-
ter of gravity” of the subtree and thus generating labeling of size O(n log n) with a
maximum label of size O(log n).

4.2. Specific graph families. We have seen that our algorithm generates 2-hop
labeling of size O(n log n) for all trees (for any variant of the problem). This matches
a lower bound of Ω(n log2 n) on the bit-size of any tree labeling, due to Gavoille
et al. [4].

Some other graph families are known to have compact 2-hop labeling: Graphs
with separator-decomposition of size O(nµ) have 2-hop labels of size O(n1+µ log n)
(e.g., see [2]). It is possible that the optimal 2-hop labeling for small-separator graphs
is o(n1+µ log n). (This would be the case if our Conjecture 5.1 is true.)

For planar graphs, Thorup [11] shows that O(n log n) size reachability and ap-
proximate distance labels are possible. It follows from his construction that there
are corresponding 2-hop labels of size O(n log2 n). We are not aware of a matching
lower bound for 2-hop reachability labelings; thus, it is possible that there are optimal
2-hop reachability labelings of size O(n log n) for planar graphs. Thorup’s result is
particularly intriguing since there is an Ω(n4/3) lower bound on exact distance labels
for planar graphs.

Another particular family of interest consists of graphs with bounded degree d
where for each pair of vertices there is at least one path between them of length at
most D = logd n + o(logd n) edges. For example, a random d-regular graph will have
this property with high probability. For such graphs we can obtain 2-hop labelings of
size O(n1.5+ε) by picking the hops ((v, u), v) and ((v, u), u) for every two nodes v, u
such that there is a path of at most �D/2� edges from v to u. Observe that the total
number of hops is O(ndD/2) = O(n3/2+ε).

5. Lower bounds on reachability and distance labelings. In this section
we prove lower bounds on the size of reachability labels and 2-hop reachability labels
in directed graphs. The bounds we prove also hold for distance labelings in directed
and undirected graphs, and it is straightforward to extend the proofs for these cases.
We begin with the following simple lemma that gives a lower bound on the size in
bits of any reachability labeling (not necessarily a 2-hop reachability labeling).
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Lemma 5.1. Any reachability labeling scheme must assign some n-vertex m-edge
graph reachability labels of total size Ω(m log(n2/m)) bits.

Proof. Consider the set of all directed m-edge graphs on the set of vertices
V = {1, 2, . . . , n} in which all edges are directed from V1 = {1, 2, . . . , n/2} to V2 =

{n/2 + 1, n/2 + 2, . . . , n}. (Assume that n is even.) There are
(
(n/2)2

m

)
such graphs,

and each of them has a distinct transitive closure. Hence, no two of these graphs may
be assigned reachability labels that are identical for every vertex. It follows that most

of these graphs must be assigned reachability labels of total size Ω(log
(
(n/2)2

m

)
) =

Ω(m log(n2/m)).

Note that each graph from the family of graphs considered in the proof of Lemma
5.1 may be assigned 2-hop reachability labels of total size O(m log n) bits. We simply
let Lout(v) = {u ∈ V2 | (v, u) ∈ E} for every v ∈ V1, Lin(v) = {v} for every v ∈ V2,
and all other sets be empty. Thus, 2-hop reachability labels are almost optimal for
this family of graphs. The corollary below summarizes this discussion and shows that
2-hop labels are almost optimal in the following sense.

Corollary 5.1. Let g(n,L) be the collection of n-node graphs with 2-hop labels
(distance or reachability) of size L (L log n bits). Then any general labeling scheme
assigns labels of maximum size Ω(L log(n2/m)) bits on g(n,L).

Proof. Consider the family of graphs considered in the proof of Lemma 5.1, with
n nodes and L = m edges. These graphs have 2-hop labels of size L. The corollary
follows from the proof of the lemma.

We next use Lemma 5.1 to obtain a stronger lower bound on the total size of
reachability labels.

Theorem 5.1. Any reachability labeling scheme must assign to some graphs with
n vertices and m edges reachability labels of total size Ω(nm1/2) bits.

Proof. Consider graphs of the following form. Start with a bipartite graph on
vertex sets V1 and V2, where |V1| = |V2| = m1/2, with m/2 directed edges going from
V1 to V2. Next, make each vertex of V1 the center of a star with n/m1/2 leaves. All
these leaves are disjoint, and the edges from these leaves are directed towards the
vertices of V1. Similarly, make each vertex of V2 the center of a star with n/m1/2

leaves. Edges this time are directed away from the vertices of V2. The total number
of vertices in this graph is 2m1/2 · n/m1/2 + 2m1/2 = 2(n + m1/2) = Θ(n), and the
number of edges is 2m1/2 ·n/m1/2+m/2 = m/2+2n = Θ(m). (Note that n ≤ m ≤ n2

and therefore m1/2 ≤ n.)

Let Ui, for 1 ≤ i ≤ n/m1/2, be the set composed of the ith leaf of every star.
For every i, the reachability relation restricted to Ui is isomorphic to the reachability
relation on the set V1 ∪ V2. It follows from Lemma 5.1 that, for at least one such
graph, we need reachability labels of total size at least Ω(m) bits. Thus, the total size
of the labels attached to all the vertices must be at least Ω(n/m1/2 ·m) = Ω(nm1/2)
bits.

Our next lemma will allow us to obtain a slightly better lower bound than the
one in Theorem 5.1 on the size of 2-hop reachability labelings. The lemma establishes
a lower bound on the size of the optimal 2-hop cover for a set of paths. To specify
this lemma we need the following definitions. Given a set P of paths and v, w ∈ V ,
we define hv(w) to be the number of vertices reachable from v via a path in P going
through w. We also define hv(w) to be the number of vertices from which you can
reach v through a path in P going through w. Formally, hv(w) = |{u | w ∈ Bvu}|
and hv(w) = |{u | w ∈ Buv}|. The quantity hv(w) (and similarly hv(w)) can be
thought of as a bound on the effectiveness of selecting the hop ((w, v), v) to our 2-hop
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cover; hv(w) bounds the maximum number of pairs such that this particular hop can
participate in their cover. Similarly, we can bound the maximum effectiveness of the
covering of a particular pair by considering the maximum, over all 2-hop combinations
that can cover it, of the maximum number of pairs that the less effective of these two
hops can participate in covering. Formally, for each pair of nodes (a, b) we define the
efficiency of covering Pab as follows:

eff(a, b) = max
p∈Pab

max
v∈p

min{ha(v), hb(v)}.

Lemma 5.2. For any 2-hop cover,

|H| ≥
∑

(a,b)|Pab 	=∅
1/eff(a, b).

Proof. Any pair (a, b) is eventually covered by two hops. One of these hops
participates in at most eff(a, b) paths. Thus, if the cost of each hop is partitioned
among the pairs it covers, (a, b)’s share is at least 1/eff(a, b). Thus, the total number
of hops is at least

∑
ab 1/eff(a, b).

We can obtain a slightly stronger lower bound for 2-hop reachability labels than
the bound in Theorem 5.1 for general labelings. In Theorem 5.1 the lower bound of
Ω(nm1/2) is on the size of the labels in bits, whereas in the following theorem the
lower bound is on the total number of hops in the 2-hop labels.

Theorem 5.2. There exist n-vertex m-edge graphs for which any 2-hop reacha-
bility labeling scheme must have a total size of Ω(nm1/2).

Proof. The graphs we consider are a subset of those used in the proof of Theo-
rem 5.1. We start with a complete bipartite graph with |V1| = |V2| = m1/2. As before,
we make each vertex of V1 and V2 the center of a star with n/m1/2 leaves. The proof
follows using Lemma 5.2.

Last, we show that some graphs with large 2-hop reachability labels have much
shorter Steiner labels.

Corollary 5.2. There exists a family of graphs with Steiner reachability labels
of size O(n), where the best proper 2-hop reachability labels are of size Ω(nm1/2).

Proof. The graphs in the proof of Theorem 5.2 can be viewed as 4-layer graphs,
with v reachable from u if and only if the layer of u is lower than the layer of v. We
use the set X = {x1,2, x1,3, x1,4, x2,3, x2,4, x3,4}; the identifier xi,j is placed in Lout(v)
for all v in layer i, and in Lin(v) for all v in layer j.

A similar, slightly more involved construction can be used to generate O(n)-size
Steiner labels for the undirected uniform-weighted version of this construction as
follows.

Corollary 5.3. There exists a family of undirected graphs with Steiner distance
labels of size O(n) where the best proper 2-hop distance labels are of size Ω(nm1/2).

We conjecture that the bound given in Theorem 5.2 is best possible.
Conjecture 5.1. Let G = (V,E) be a directed graph with |V | = n and |E| = m,

and let P be the set of all shortest paths in G. Then there is a 2-hop cover of P of
size O(nm1/2).

6. The pairs-cover problem. The algorithm in the proof of Theorem 4.2 ap-
plies to the following more general problem.

Problem 6.1 (pairs-cover). Input: P1, . . . , Pk, where each Pi is a set of pairs
or triples of integers.
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Output: A set H of pairs of integers of minimum size such that, for every i =
1, . . . , k, one of the following holds:

• there exists a triple (c, a, b) ∈ Pi such that (c, a) ∈ H and (c, b) ∈ H, or
• there exists a pair (c, a) ∈ Pi such that (c, a) ∈ H.

The problem of computing a 2-hop cover for a hop invariant set of paths P can
be mapped to the following pairs-cover instance: Let V = {v0, . . . , vn−1} be the set
of nodes of G. Each nonempty Pvivj is mapped to a different P# in the pairs-cover
instance.

For each vc that is an interior node on some path in Pvivj we append the following
pairs/triples to the corresponding P# (mapping is slightly different for undirected or
directed graphs):

• For directed paths, we include the triple (c, n + i, j) and the pairs (i, j) and
(j, n + i) in P#;
• For undirected paths, we include the triple (c, i, j) and the pairs (i, j) and

(j, i) in P#.
We interpret the output H of the pairs-cover instance as follows: If (c, i) ∈ H

(i < n), then the hop ((vc, vi), vi) is placed in the cover. (Recall that since P is hop
invariant, hops can be specified by their endpoints.) For undirected instances hops
contain undirected paths. For directed instances hops contain directed paths. We can
also have a pair (c, i) ∈ H with (i ≥ n), in which case we rewrite it as (c, n + a) ∈ H
(where i = n + a). In this case we place the hop ((va, vc), va) in the cover.

We now discuss another natural set of problems which this framework covers. We
first consider a variant of the 2-hop cover problem where hops do not have handles.
Thus, every hop is simply a path, and Puv is covered if there are P ∈ Puv and two
paths h1, h2 ∈ H such that P = h1h2. Observe that any solution with handles can
be converted to a solution without handles by omitting the handles. Conversely, a
solution without handles can be converted to a solution with handles by introducing
two hops, with both endpoints as handles for every original hop. Thus, the optimal
solution to the variant with handles is at most twice that of the variant without
handles. Our greedy algorithm can hence be applied to the version without handles,
albeit with a loss of another factor of 2 in the approximation ratio. Curiously, it seems
that there is no natural modification of the greedy algorithm that obtains the same
approximation ratio for the variant without handles.

The variant with handles better fits the labeling application, as there is 1-1 cor-
respondence between 2-hop covers with handles and 2-hop labelings, but variants
without handles can have applications.

One such conceivable application is the following problem.
Problem 6.2 (minimum 2-hop representation). Let P be an arbitrary collection

of strings. A minimum 2-hop representation of P is a set of substrings H such that
every string s ∈ P is a concatenation s = h1h2 of two strings h1, h2 ∈ H.

7. Implementation. Our implementation computes the cover in two phases.
The first phase is different for different applications (i.e., reachability, approximate
or exact, directed or undirected distances) and produces an instance of the pairs-
cover problem. The second phase is an approximation algorithm for the pairs-cover
problem.

The second phase then constructs a data structure of center-graphs: With each
number that appears as the first coordinate in some triple we associate a center. For
each center c we construct an (undirected) center-graph. There is a node i in the
center-graph of c if and only if there is a pair (c, i) or a triple of the form (c, •, i) or
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ag bg

bd

cd
cebe

Directed Shortest Paths Center-graph of node "g"

ad

cg

gd ge gf

af
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bf
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e f

g

cb

d

Pad = {(a, d-in), (d, a-out), (g, a-out, d-in)}
Pag = {(a, g-in), (g, a-out)}
Pcf = {(c, f -in), (f, c-out)}
Pgd = {(g, d-in), (d, g-out)}

Some entries of the pairs-cover instance

Fig. 3. This is an example for the construction of a pairs-cover instance and center-graphs
for an instance of the directed shortest-paths problem on a graph. The graph has seven nodes
labeled {a, b, c, d, e, f, g}. The finite distances in these graphs consist of seven ordered pairs with
distance 1 and eight ordered pairs of distance 2. The corresponding pairs-cover instance has a set of
pairs/triples for each of these fifteen ordered pairs of nodes with a finite distance. The table shows
some of the entries; other entries are symmetric. Specifically, the entries for Pxy for all shortest
paths of length 2 (ad, ae, af, bd, be, bf, cd, ce) are symmetric to Pad; Pbg and Pcg are symmetric to
Pag; and Pge and Pgf are symmetric to Pgd. The right-hand figure shows the center-graph for
the center g. There are six nodes in this center-graph, which correspond to shortest-paths for the
ordered pairs {ag, bg, cg, gd, ge, gf}. These hops are denoted by a-out, b-out, c-out, d-in, e-in, and
f-in in the pairs-cover instance. The edges of the center-graph are ordered pairs for which the
two hops constitute a shortest path; equivalently, xy labels an edge if the triple (g, x-out, y-in) (or
(g, y-in, x-out), which is the same) appears in the pairs-cover instance. Self-loops correspond to
paths that consist of a single hop. The densest subgraph of this particular center-graph is obtained
by selecting all nodes; this subgraph thus covers fourteen of the shortest paths using six hops. Note
that Pcf (the path from c to f) is not covered by this center-graph, since there is no shortest-path
that traverses the node g. This path can be covered via a single hop (a single node with self-loop) in
the center-graph of c or the center-graph of f . For this instance, the minimum 2-hop cover consists
of seven hops.

(c, i, •) in the input. For each triple (c, i, j) there is an edge (i, j) in the center-graph
of c. For each pair (c, i) there is a self-loop on the node i in the center-graph c.1

Figure 3 provides an example of the construction of a center-graph.

The algorithm proceeds in iterations, where the basic operation in each such
iteration is subgraph selection: We choose a center-graph and select a subset of the
remaining nodes and the corresponding incident remaining edges. The selected nodes
are removed. The selected subgraph is in fact an (approximate) densest subgraph
in this center-graph. Our implementation of approximate densest subgraph (ADS)
is linear in the size (number of edges and nodes) of the center-graph: Nodes are

1We remark that center-graphs are bipartite when the original network is directed, but this is
generally not true with undirected networks.
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maintained sorted by remaining degree (initially using bucket-sort), and each edge is
looked at once.

Each input set P# is “responsible” for many edges that lie in different center-
graphs. (Each such edge corresponds to a triple or pair in P#.) In our data structure
all these edges are linked (via a doubly linked list). Once one of these edges is selected,
the set P# is considered covered, and all these linked edges are removed from their
respective center-graphs. Thus, subgraph selection in one center-graph may result in
removed edges at other center-graphs.

The main loop guides the selection of the center-graph from which a subgraph
selection is made. Centers are maintained in a heap. The key of a center c is the
ratio of edges to nodes in the most recently computed ADS of the center-graph Gc.
The heap is initialized through an ADS computation in each center-graph. The main
loop repeats the following until all paths are covered (all center-graphs’ edges are
removed):

• A center c of maximum key is removed from the heap.
• If edges got removed from the center-graph Gc since the last ADS computa-

tion was performed, then the ADS is recomputed, and c is placed in the heap
with a new key.
• Otherwise, if the center-graph was untouched, the ADS is selected. If unse-

lected edges remain in Gc, then a new ADS is computed, and c is inserted
into the heap with a new key.

For this implementation to work correctly, it is important that a center of (ap-
proximately) minimum key is selected at each step. To see this, notice that the key
of a center-graph (ratio of edges to nodes in the densest subgraph) can only decrease
if edges are removed from the graph.

We implemented a variant of the greedy set cover algorithm slightly different
from the one outlined in the proof of Theorem 4.2: After the algorithm selects several
subsets which correspond to the same center—S(C1, w), S(C2, w), . . . , S(Ck, w)—the
ratio attached to a remaining subset S(C,w) is updated to

|S(C,w) ∩ T ′|/
∣∣∣∣∣C \

k⋃
i=1

Ci

∣∣∣∣∣
(instead of |S(C,w) ∩ T ′|/|C|), where T ′ is the set of uncovered edges in the center-
graph Gw. This is achieved by removing from the center-graph nodes that are already
selected. (Note that edges are removed only if both endpoints are selected.)

Observe that the numerator of this ratio can decrease as subsets are selected in
other centers. The denominator can also decrease but only as a result of a subset’s
being selected from the same center. Even though the ratio associated with a partic-
ular subset may increase, it is easy to see that it can never exceed that of the most
recently selected densest subgraph from the same center (if it did, then this subset
combined with the recent densest subgraph would yield a denser subgraph, hence a
contradiction). Thus, the maximum ratio of the densest subgraph of a center is non-
increasing. As a new densest subgraph is computed when a center is placed back in
the heap, a center with maximum ratio is still found by our heap implementation.

On our data sets, this variant performed better than the variant where the denom-
inator of the ratio of a subset remains |C|. We show that the worst-case approximation
ratio is the same as for the other variant, as follows.

Lemma 7.1. This variant achieves a worst-case approximation ratio of O(log n).
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Proof. For every set S = (CS , w), let LS be the elements of CS that were already
chosen in previous rounds of the algorithm. Let S1, . . . , Sk be the sets used by our
algorithm, in that order. Consider an element v that was covered for the first time

by a set S. We let wv = |CS\LS |
|S∩T ′| . Notice that

k∑
i=1

w(Si) =

k∑
i=1

|CSi | ≥
k∑

i=1

|CSi \ LSi | =
∑
v∈T

wv.

Therefore, it is sufficient to show that when v is the jth element covered, then wv ≤
OPT
|T |−j , where OPT is the value of the optimal solution. Before v was covered, |T ′| ≥
|T | − j. Let O1, . . . , Ok′ be the sets of an optimal cover, in which each two sets have

different centers. Clearly,
∑k′

i=1 |COi | = OPT . Furthermore,
∑k′

i=1 |Oi ∩ T ′| ≥ |T ′| ≥
|T | − j. Therefore, there is at least one set Oi such that

|Oi ∩ T ′|
|COi \ LOi |

≥ |Oi ∩ T ′|
|COi |

≥ |T | − j

OPT
.

By definition of the greedy algorithm, the set S which covers v will also satisfy that
|S∩T ′|
|CS\LS | ≥

|T |−j
OPT , and thus wv ≤ OPT

|T |−j , and the claim follows.

8. Experiments. We used different synthetic and real networks to evaluate our
labeling algorithm. Our selection of data sets was guided by two important applica-
tions of our labeling scheme, namely, routing and geographic navigation systems. For
geographic navigation, distance queries can tell a user the time or distance to reach a
desired destination. First-edge queries can be used to generate turn-by-turn driving
directions.

Routing tables for packets traveling in a communication network constitute an-
other application of distance labels. The model is that each packet carries its destina-
tion label, and the current router obtains the next-hop and, if desired, the “distance,”
by considering the label at the current router and the destination label. This is some-
what similar to the way Internet routing is performed now: Each packet carries its
destination IP-address. The router looks up the IP-address (longest prefix match) in
its local routing table in order to obtain the next-hop. Routing tables, however, are
growing in size. IP networks typically have small diameter. For inter-AS graphs,2

the core of the graph has high expansion, whereas intra-AS networks could be almost
planar.

ISP-net is the network of a large-backbone ISP (internet service provider). The
nodes and (directed) edges of the network correspond to routers and links. This
particular ISP uses OSPF (open shortest path first) routing, and the edge-weights are
the OSPF weights of the links.

BGP is the set of (directed) paths advertised by BGP (border gateway protocol)
routers.3 The nodes of the network are all ASs in the Internet reachable from the
core. The paths are all advertised paths.4 We considered only paths of three or more

2AS stands for an autonomous system, which is an independent subnetwork of the global network.
3This data set was given to us by Andre Broido from CAIDA (University of California, San

Diego).
4In this case the paths are not necessarily shortest paths and also do not necessarily possess

the hop invariance property. (Due to business and other considerations, actual BGP routes do not
necessary correspond to shortest paths.) We applied only the second phase of the implementation,
looking for a 2-hop representation of every path in P .
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Table 1
Parameters and performance for different networks.

Network # nodes # edges # paths (pairs) Label size Compression

ISP-net 229 880 38466 2969 13.0
BGP 9236 – 164037 22454 7.3
Roads 548 686 128491 6567 19.6
Grid-10 100 180 2744 843 3.3
Grid-20 400 760 42852 5759 7.44
Grid-30 900 1740 212819 18667 11.40

Table 2
Total label size and the maximum size of the label of a particular node for different networks.

Network # nodes Label size Average label Maximum label Maximum in/out list

ISP-net 229 2969 13 29 15
BGP 9236 22454 2.4 145 140
Roads 548 6567 12 28 –
Grid-10 100 843 8.43 15 14
Grid-20 400 5759 14.4 30 30
Grid-30 900 18667 20.7 60 58

hops, as shorter paths can be reconstructed by maintaining edge information at each
node.

Roads is the road map of Alpine County, CA (USA), obtained from the TIGER
census data [13]. This graph is undirected, with weights corresponding to actual
distances.

Grid-k is a synthetic network. The underlying network is a k× k grid. Edges are
directed in a Manhattan fashion, with even and odd row-edges directed in opposite
directions and, similarly, even and odd column-edges directed in opposite directions.
The edge weights were selected uniformly at random from [1, 100].

Table 1 lists for each network the number of nodes, number of edges, number of
pairs of nodes such that there is a path from one to the other, and the total size of
labels (number of hops). The compression ratio is the ratio of the number of pairs to
the total size of the labels. The compression ratio varies with different graph sizes and
structures and was between 3 and 19.6. Generally, we expect better ratios for larger
graphs. In particular, our analysis shows that for the planar k-grid graphs the total
size of the labels is O(k3), whereas explicit representation is Θ(k4); thus the ratio is
at least Ω(k).

So far we have considered the total size of the labels. Another parameter of
interest is the maximum label size of a particular node. This parameter is particularly
important for distributed applications. It is also relevant since the actual computation
of the distance from the labels is linear in the size of the labels. For directed graphs
we also consider the maximum size of the in-list or out-list of a node. The average
and maximum label sizes for the different networks are listed in Table 2. Although
geared to minimizing the total label size, our algorithm seems to perform well also
with respect to the maximum-label metric.

Another interesting question regards the dependence of the label size on the num-
ber of covered paths. Our algorithm can be set to stop after any given fraction of
the paths is covered (and, actually, it provides the same performance guarantees even
in this case). The dependence seemed Zipf-like and similar across networks (e.g.,
20%–25% of the hops suffices to cover half the paths).
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9. Concluding remarks. We have introduced simple and natural distance and
reachability labeling schemes for directed and undirected graphs. Our labelings are
derived from 2-hop covers of sets of paths in graphs. We give an efficient algorithm
for constructing a 2-hop cover whose size is larger than the smallest 2-hop cover by
a factor of at most O(log n). We conjecture that there exists a 2-hop cover of size
Õ(nm1/2) of the set of shortest paths in any weighted directed graph with n vertices
and m edges. Proving, or disproving, this conjecture is perhaps the most interesting
problem left open. We have also demonstrated the effectiveness of our schemes by
an experimental analysis using synthetic and real networks from applications such as
geographic navigation and Internet routing.
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1. Introduction. Matrix product is among the most extensively studied com-
putational problems. Surprising upper bounds of O(m2+α) (where α < 1 and m×m
is the size of each matrix) were obtained by Strassen in [Str] and improved in many
other works. The best current upper bound (obtained by Coppersmith and Winograd)
achieves α ≈ 0.376 [CW] (see [Gat] for a survey). The best lower bounds, however,
are linear lower bounds of between 2.5 ·m2 and 3 ·m2 (depending on the field) for the
number of products needed [Bsh, Bla, Shp].

In particular, the following seminal problem is still open: Can matrix product
be computed by circuits of size O(m2), that is, circuits of size linear in the number
of inputs? Superlinear lower bounds for matrix product are known only for bounded
depth circuits [RS]. Note, however, that Strassen’s method, as well as many other
methods for matrix product, use circuits of larger depth.

The standard computational model for matrix product is by arithmetic circuits
over some field F . The inputs for the circuit are the entries of the two matrices, and
the allowed gates are product and addition over F . Products with field elements are
also allowed. In this work, we take F to be the field of real numbers (all of our results
hold for the complex numbers as well), and we restrict our arithmetic circuit in the
following way: The circuit cannot use products with field elements of absolute value
larger than 1. We call such a circuit a bounded coefficients arithmetic circuit.

We prove that any such circuit for matrix product is of size Ω(m2 logm).
More generally, if we require that the circuit does not use products with field

elements of absolute value larger than c = c(m) (for any function c(m) ≥ 1), we
obtain that any such circuit for matrix product is of size Ω(m2 log2cm). This follows
from the case c = c(m) = 1 by a simple reduction (just by replacing each product with
a field element of absolute value smaller than or equal to c by up to log2 c additions
and one product with a field element of absolute value smaller than or equal to 1).
Hence, in the rest of the paper, we concentrate on the case c = 1.
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Besides our main result, we also prove size-depth tradeoffs for bounded coefficients
arithmetic circuits for matrix product. We show that any such circuit of depth d is
of size Ω(m2+1/O(d)). Note that for general arithmetic circuits only much weaker
size-depth tradeoffs are known [RS].

Since a preliminary version of our paper has appeared, Burgisser and Lotz used
our methods (together with some new methods) to obtain a similar lower bound of
Ω(n log n) for any bounded coefficients arithmetic circuit for the product of two poly-
nomials of degree n (as well as for the division of two polynomials with reminder) [BL].

1.1. Previous work. Bounded coefficients arithmetic circuits were suggested
and motivated as a natural model for arithmetic computations by Morgenstern [Mor]
and by Chazelle [Cha]. Morgenstern and Chazelle observed that many algorithms
for arithmetic problems (e.g., the fast Fourier transform algorithm) do not use field
elements at all (or use only small field elements). Morgenstern and Chazelle were
mainly interested in the case of linear functions and proved lower bounds of Ω(n log n)
for several such functions (e.g., for the Fourier transform). Note that for general
arithmetic circuits no superlinear lower bound is known for any linear function (or
any constant degree polynomial).

Several works proved size-depth tradeoffs of Ω(n1+1/O(d)) for bounded coefficients
arithmetic circuits [NW, Lok, Pud]. As in [Mor, Cha], the focus of these works was
linear functions. As far as we know, no previous result was obtained for the complexity
of matrix product (or similar functions) in the bounded coefficients model.

1.2. Organization of the paper. The paper is organized as follows. In sec-
tion 2, we give some basic definitions. In section 3, we give lower bounds for linear
functions. These lower bounds are then used in section 4 to prove our lower bound for
matrix product. The proof of the main lemma is deferred to section 5. In section 6,
we prove our size-depth tradeoff for matrix product.

2. Preliminaries. As mentioned above, we consider arithmetic circuits over the
field of real numbers. All of our results hold for the complex numbers as well.

An arithmetic circuit is a directed acyclic graph as follows: Nodes of in-degree
0 are called inputs and are labelled with input variables. Nodes of out-degree 0 are
called outputs. Each edge is labelled with a field element (we think of this element
as multiplying the outcome of the edge). Each node other than an input is labelled
with either + or × (in the first case the node is a plus gate and in the second case a
product gate).

The computation is done in the following way. An input just computes the value
of the variable that labels it. For every noninput node v, if v1, . . . , vk are the nodes
that fan into v, then we multiply the result of each vi with the field element that labels
the edge that connects it to v. If v is a plus gate we sum all the results; otherwise, v
is a product gate, and we multiply all the results. Obviously, each node in the circuit
computes a polynomial in the input variables.

The size of a circuit C is defined to be the number of edges in it and is denoted
by Size(C). The depth of a circuit C is defined to be the length of the longest directed
path between an input and an output in C and is denoted by Depth(C).

We say that an arithmetic circuit (over the real numbers) is a bounded coefficients
arithmetic circuit if all field elements labelling the edges of the circuit are of absolute
value smaller than or equal to 1.

We say that an arithmetic circuit is linear if all gates in it are plus gates (i.e.,
the circuit contains no product gates). Obviously, the outputs of a linear circuit



1358 RAN RAZ

are linear functions in the input variables. Let L1, . . . , Lk be k linear functions (in
the variables z1, . . . , zn). It is well known (and easy to prove) that (over any field
with characteristic 0) any arithmetic circuit for L1, . . . , Lk can be translated into
a linear circuit for L1, . . . , Lk, with only a constant-factor increase in the size and
depth of the circuit. In the same way, any bounded coefficients arithmetic circuit for
L1, . . . , Lk can be translated into a bounded coefficients linear circuit for L1, . . . , Lk,
with only a constant-factor increase in the size and depth of the circuit. We can hence
assume w.l.o.g. that linear forms L1, . . . , Lk are computed by linear circuits. Given
an n× n matrix H, we say that a linear circuit computes H if it computes the linear
functions that correspond to the rows of H; that is, the circuit computes the functions∑n
j=1 Hi,j · zj , where z1, . . . , zn are the input variables for the circuit.

In this paper, we prove lower bounds on the size of circuits for the product of two
m ×m matrices. The input for such a circuit is of size 2m2, and it consists of two
m×m matrices X,Y . The output is the matrix X ·Y . That is, there are m2 outputs,
and the (i, j)th output is

∑m
k=1 Xi,k · Yk,j . Each output is a bilinear form in X and

Y .

Since the product of two matrices is a bilinear form, it is natural to consider
bilinear arithmetic circuits for it. We say that an arithmetic circuit is bilinear if each
product gate in it computes the product of two linear functions, one in the variables
{Xi,j} and the other in the variables {Yi,j}. Thus, a bilinear circuit has the following
structure. First, there are many plus gates, computing linear forms in X and linear
forms in Y . Then there is one level of product gates that compute bilinear forms.
Finally, there are many plus gates that eventually compute the outputs.

Obviously, the outputs of a bilinear circuit are bilinear functions in the input
variables of X and Y . Let f1, . . . , fk be k bilinear functions (in the variables of X and
Y ). It is well known (and easy to prove) that (over any field with characteristic 0) any
arithmetic circuit for f1, . . . , fk can be translated into a bilinear circuit for f1, . . . , fk,
with only a constant-factor increase in the size and depth of the circuit. In the same
way, any bounded coefficients arithmetic circuit for f1, . . . , fk can be translated into a
bounded coefficients bilinear circuit for f1, . . . , fk, with only a constant-factor increase
in the size and depth of the circuit. We can hence assume w.l.o.g. that bilinear forms
f1, . . . , fk are computed by bilinear circuits.

3. Lower bounds for linear functions. In this section, we prove lower bounds
for the size of bounded coefficients linear circuits. In all that follows, we assume
w.l.o.g.1 that all gates in the circuit are of fan-in 2.

Lower bounds for the size of bounded coefficients linear circuits were first proved
by Morgenstern [Mor]. Morgenstern observed that for any matrix H, the size of any
bounded coefficients linear circuit for H is bounded from below by log2 |Det[H]|. For
our purpose, we will need the following simple generalization of this result (Lemma 3.1).

Let L1, . . . , Lk be k linear functions in the variables z1, . . . , zn. We think of each
Li as a vector in the vector space Rn. For every 1 ≤ r ≤ n, denote by Volr[L1, . . . , Lk]
the maximal volume spanned by r vectors from {L1, . . . , Lk} and n− r arbitrary unit
vectors (i.e., vectors with L2-norm equal to 1). That is,

Volr[L1, . . . ,Lk] = MAXi1,...,ir,er+1,...,en |Det[Li1 , . . . , Lir , er+1, . . . , en]|,
where er+1, . . . , en are arbitrary unit vectors in Rn. Equivalently,
Volr[L1, . . . ,Lk] = MAXi1,...,ir (Det[AAT ])1/2,

1Recall that the size of a circuit is defined as the number of edges in it and not the number of
nodes.
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where A is the n × r matrix [Li1 , . . . , Lir ], and AT is the transpose
of A.

In the same way, for a matrix H of size n× n, we define for every 1 ≤ r ≤ n,
Volr[H] = Volr[L1, . . . , Ln],
where L1, . . . , Ln are the linear forms corresponding to the rows of
H.

Lemma 3.1. Let C be a bounded coefficients linear circuit for L1, . . . , Lk. Then,
for every 1 ≤ r ≤ n,

Size(C) ≥ log2(Volr[L1, . . . , Lk]).

Proof. Let s = Size(C). Note that since C is a directed acyclic graph, it induces
a partial order on its nodes (a node v is larger than a node u if there exists a directed
path from u to v). Let f1, . . . , fs be the linear functions corresponding to all nodes in
C and such that the order of f1, . . . , fs agrees with the partial order induced by the
circuit C and f1 = z1, . . . , fn = zn (where z1, . . . , zn are the input variables for the
circuit).

Since the order of f1, . . . , fs agrees with the order of the circuit, for every i > n
there exist i1, i2 < i and c1, c2 of absolute value ≤ 1 such that fi = c1 · fi1 + c2 · fi2 .
Hence, by the linear property of the determinant, it is easy to verify that

Volr[f1, . . . , fi] ≤ 2 ·Volr[f1, . . . , fi−1],

and, since Volr[f1, . . . , fn] = 1, we have

Volr[f1, . . . , fs] ≤ 2s−n < 2s.

Since {f1, . . . , fs} include the functions L1, . . . , Lk, we have

Volr[L1, . . . , Lk] ≤ Volr[f1, . . . , fs] < 2s.

For a linear function L in n variables and for a vector space V ⊂ Rn, denote by
Dist[L,V] the L2-distance between L and V (as before, we think of L as a vector in
Rn). For r linear functions, L1, . . . , Lr, denote by Span[L1, . . . ,Lr] the vector space
in Rn spanned by L1, . . . , Lr. Let L1, . . . , Lk be k linear functions in n variables. For
every 1 ≤ r ≤ n, denote

Rigr[L1, . . . ,Lk] = MINV MAXi(Dist[Li, V ]),
where V ⊂ Rn is a vector space of dimension r.

In the same way, for a matrix H of size n× n, we define for every 1 ≤ r ≤ n,
Rigr[H] = Rigr[L1, . . . , Ln],
where L1, . . . , Ln are the linear forms corresponding to the rows of
H.

A notion similar (but not identical) to Rigr[H] was defined in [Lok] and was used
there to prove size-depth tradeoffs for bounded coefficients arithmetic circuits. Here,
we connect Rigr[L1, . . . , Lk] to Volr[L1, . . . , Lk], and hence to the size of the smallest
bounded coefficients arithmetic circuit for L1, . . . , Lk.

Lemma 3.2. For every k linear functions L1, . . . , Lk, and every 1 ≤ r ≤ n,

log2(Volr[L1, . . . , Lk]) ≥ r · log2(Rigr[L1, . . . , Lk]).

Proof. Assume w.l.o.g. that r < k (otherwise, Rigr[L1, . . . , Lk] = 0). Assume
w.l.o.g. that the order of L1, . . . , Lk is as follows: L1 is a function L ∈ {L1, . . . , Lk}
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such that Vol1[L] is maximal. L2 is a function L ∈ {L2, . . . , Lk} such that Vol2[L1, L]
is maximal, and so on (i.e., for every 1 ≤ i ≤ k, we have that Li is a function
L ∈ {Li, . . . , Lk} such that Voli[L1, . . . , Li−1, L] is maximal).

Denote υ1 = Vol1[L1], and for every 1 < i ≤ k denote υi = Voli[L1, . . . , Li]/Voli−1[L1,
. . . , Li−1]. Then, by our assumption on the order of L1, . . . , Lk, it is easy to verify
that

υ1 ≥ υ2 ≥ · · · ≥ υk.

Therefore,

Volr[L1, . . . , Lr] =

r∏
i=1

υi ≥ (υr+1)r.

On the other hand (again by our assumption on the order of L1, . . . , Lk),

υr+1 = MAXi(Dist[Li, V ]),

where V = Span[L1, . . . , Lr], and hence

Rigr[L1, . . . , Lk] ≤ υr+1.

Thus,

Volr[L1, . . . , Lk] ≥ Volr[L1, . . . , Lr] ≥ (υr+1)r ≥ (Rigr[L1, . . . , Lk])r.

Given a matrix H of size m×m, we can use Lemmas 3.1 and 3.2 to prove lower
bounds for bounded coefficients arithmetic circuits for H. For our purpose, we will
also need to prove lower bounds for bounded coefficients arithmetic circuits for the
tensor product I ⊗ H (where I is the identity matrix of size m × m). Recall that
I ⊗H is a matrix of size m2 ×m2 that consists of m×m blocks of size m×m each
such that the m blocks on the diagonal contain copies of the matrix H and all other
blocks contain the zero matrix (of size m×m). We will use the following proposition.

Proposition 3.3. Let H be an arbitrary matrix of size m×m, and let I be the
identity matrix of size m×m. Then, for every 1 ≤ r ≤ m,

log2(Volr·m[I ⊗H]) ≥ m · log2(Volr[H]).

Proof. By the properties of the determinant, for every matrix A (of size m×m),

Det[I ⊗A] = (Det[A])m.

Hence, by the definition of Vol,

Volr·m[I ⊗H] ≥ (Volr[H])m.

Corollary 3.4. Let H be an arbitrary matrix of size m ×m, and let I be the
identity matrix of size m×m. Let C be a bounded coefficients linear circuit for I⊗H.
Then, for every 1 ≤ r ≤ m,

Size(C) ≥ r ·m · log2(Rigr[H]).

Proof. By Lemma 3.1, Proposition 3.3, and Lemma 3.2,

Size(C) ≥ log2(Volr·m[I ⊗H]) ≥ m · log2(Volr[H]) ≥ m · r · log2(Rigr[H]).
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4. Lower bounds for matrix product. In this section, we prove a lower bound
for the size of bounded coefficients arithmetic circuits for matrix product. Our bound
is based on the lower bounds given in the previous section and on Lemma 4.1. The
proof of Lemma 4.1 is given in the next section. In the following lemma, we assume
for simplicity that m/10 is integer.

Lemma 4.1 (main lemma). Let L1, . . . , Lk be k linear functions (over R) in the
m2 variables y1,1, . . . , ym,m (we think of y1,1, . . . , ym,m as the entries of a matrix of
size m ×m). Denote r = m/10, and assume (for simplicity) that m is large enough
(i.e., m > m0 for some global constant m0). Then there exists a matrix Y of size
m×m (over R), such that

1. for every 1 ≤ i ≤ k,

|Li(Y1,1, . . . , Ym,m)| ≤ Rigr·m[L1, . . . , Lk] · (2 ln k + 10)
1/2

;

2.

Rigr[Y ] ≥
√

m/9.

We will now state and prove our main result.
Theorem 4.2. Let C be a bounded coefficients arithmetic circuit (over the real

or complex numbers) for the product of two matrices of size m×m. Then

Size(C) = Ω(m2 logm).

Proof. First note that w.l.o.g. we can assume that the circuit is over the real
numbers. This is true because any circuit over the complex numbers can be translated
into a circuit over the real numbers (and vice versa) with a constant-factor increase
in its size. As before, we assume w.l.o.g. that all gates in the circuit are of fan-in 2.
Recall also that we can assume w.l.o.g. that the circuit is bilinear. We assume w.l.o.g.
that m is large enough (and, in particular, m > m0, where m0 is the global constant
from Lemma 4.1), and we assume for simplicity that m/10 is integer. Define

r = m/10.

Assume, for a contradiction to the statement of the theorem, that

Size(C) < 0.001 ·m2 log2 m.

Denote by v1, . . . , vk the product gates of the circuit C. Since the circuit is
bilinear, each product gate vi computes the product of two linear functions, one in
the variables {xi,j} (of the first matrix) and the other in the variables {yi,j} (of the
second matrix). Denote the first linear function by Ri and the second linear function
by Li. Thus, vi computes the product of Ri(x1,1, . . . , xm,m) and Li(y1,1, . . . , ym,m).

Consider the linear functions L1, . . . , Lk. These functions are computed by a lin-
ear circuit of size smaller than 0.001 ·m2 log2 m (in the input variables y1,1, . . . , ym,m).
Hence, by Lemmas 3.1 and 3.2,

r ·m · log2(Rigr·m[L1, . . . , Lk]) < 0.001 ·m2 log2 m.

That is,

Rigr·m[L1, . . . , Lk] < m1/100.

Hence, by Lemma 4.1, there exists a matrix Y of size m×m (over R) such that



1362 RAN RAZ

1. for every 1 ≤ i ≤ k,

|Li(Y1,1, . . . , Ym,m)| ≤ m1/100 · (2 ln k + 10)
1/2

< m1/99

(for large enough m);
2.

Rigr[Y ] ≥
√

m/9.

We fix the input variables y1,1, . . . , ym,m to be the entries Y1,1, . . . , Ym,m. Denote
the obtained circuit by C ′. Since we fixed y1,1, . . . , ym,m, each product gate vi in C
turned into a product with the field element Li(Y ). The circuit C ′ is hence a linear
arithmetic circuit, and it is not hard to see that it computes the matrix I ⊗ Y in the
input variables x1,1, . . . , xm,m.

The circuit C ′ is not a bounded coefficients arithmetic circuit, because the abso-
lute value of each field element Li(Y ) is not bounded by 1. We would like to convert
C ′ into a bounded coefficients arithmetic circuit C ′′. This could be done by replacing
the product with each field element Li(Y ) by up to log2 |Li(Y )| additions plus one
product with a field element of absolute value ≤ 1. Note, however, that k may be
almost as large as the size of C ′, and hence this method may increase the size of C ′ by
more than a constant factor. Instead, we will convert C ′ into C ′′ by the following two
steps: First, replace the product with each field element Li(Y ) by a product with the
field element Li(Y )/m1/99 (which is of absolute value ≤ 1) and multiply each output
of the circuit by the field element m1/99. (Since the original circuit C was bilinear, it
is not hard to see that this step does not change the outputs of the circuit, and the
circuit still computes I⊗Y .) Then replace each product (of an output) with the field
element m1/99 by up to log2(m1/99) additions plus one product with a field element
of absolute value ≤ 1. Since the number of outputs is m2, this increases the size of
the circuit by at most (1/99) ·m2 log2 m.

Thus, the obtained circuit C ′′ is a bounded coefficients arithmetic circuit that
computes the matrix I ⊗ Y and such that

Size(C ′′) < (1/90) ·m2 log2 m.

However, by Corollary 3.4,

Size(C ′′) ≥ r ·m · log2(Rigr[Y ]) ≥ (1/20) ·m2 log2(m/9),

which is a contradiction (for large enough m).

5. Proof of the main lemma. In this section, we give a proof of Lemma 4.1.
We think of each linear function L in the variables y1,1, . . . , ym,m also as a vector

in Rm×m, and we think of each vector in Rm×m also as a linear function in the
variables y1,1, . . . , ym,m. Assignments to the variables y1,1, . . . , ym,m are matrices Z
of size m×m. We think of each such matrix also as a vector in Rm×m, and we think
of each vector in Rm×m also as a matrix of size m ×m. Given a linear function L
in the variables y1,1, . . . , ym,m and an assignment Z to y1,1, . . . , ym,m, the value L(Z)
is the value of the function L on the assignment Z. The norm that we use in Rm×m

is the L2-norm. This norm is used to measure distances between vectors and lengths
of vectors in Rm×m. Hence, it is also used to measure distances between matrices
and norms of matrices, and distances between linear functions and norms of linear
functions. We denote the L2-norm of a linear function L by ‖L‖, and we denote the
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L2-norm of a matrix Z by ‖Z‖ (this is known as the Frobenius norm of the matrix
Z).

Denote

R = Rigr·m[L1, . . . , Lk].

By the definition of Rig, there exists a vector space V ⊂ Rm×m of dimension r ·m
such that for every 1 ≤ i ≤ k,

Dist[Li, V ] ≤ R.

Denote by V ⊥ ⊂ Rm×m the vector space orthogonal to V . Note that V ⊥ is a vector
space of dimension (m− r) ·m. For every 1 ≤ i ≤ k, we can write Li as

Li = L′′i + L′i,

where L′′i ∈ V and L′i ∈ V ⊥. Since ‖L′i‖ = Dist[Li, V ], we have for every 1 ≤ i ≤ k,

‖L′i‖ ≤ R.

Recall that we can think of V and V ⊥ also as subspaces of matrices Z of size
m×m. Obviously, V ⊥ is the vector space of all matrices Z ∈ Rm×m such that every
L ∈ V satisfies L(Z) = 0. In the same way, V is the vector space of all matrices
Z ∈ Rm×m such that every L ∈ V ⊥ satisfies L(Z) = 0.

Our construction for the matrix Y will be probabilistic. We will define a random
matrix Y that will satisfy the requirements of the lemma with high probability. The
definition of Y will be in two stages. First, define the matrix W in the following way.
Each entry Wi,j is defined to be an independently chosen Gaussian random variable
with expectation 0 and variance 1 (i.e., Wi,j is chosen independently according to
the distribution N(0, 1)). Thus, the entries of the matrix W form a multinormal
distribution. We can write the matrix W as

W = W ′′ + W ′,

where W ′′ ∈ V and W ′ ∈ V ⊥. We define

Y = W ′

(i.e., Y is the projection of W on V ⊥). We will show that with high probability Y
satisfies the requirements of the lemma.

Claim 5.1. With high probability (say, with probability of at least 0.98), for every
1 ≤ i ≤ k,

|Li(Y )| ≤ R · (2 ln k + 10)
1/2

.

Proof. Note that L′′i (Y ) = L′′i (W ′) = 0 and that L′i(W
′′) = 0. Hence, for every

1 ≤ i ≤ k,

Li(Y ) = L′i(Y ) = L′i(W ).

Each L′i(W ) is a weighted sum of independently chosen Gaussian random variables
with expectation 0 and variance 1, and hence L′i(W ) is a Gaussian random variable
with expectation 0 and variance ‖L′i‖2.
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Since ‖L′i‖ ≤ R, the probability of the event |L′i(W )| > R · (2 ln k + 10)
1/2

can
be bounded by 2/(e5 · k) (see, for example, [ASE, Appendix A]). Hence, by the union
bound, with probability of at least 0.98, for every 1 ≤ i ≤ k,

|Li(Y )| = |L′i(W )| ≤ R · (2 ln k + 10)
1/2

.

Thus, with high probability, the matrix Y satisfies the first requirement of the
lemma. To prove the second requirement, we will need the following claim.

Claim 5.2. Assume that m is large enough (i.e., m > m0 for some global constant
m0). With high probability (say, with probability of at least 0.97), for any matrix D
of size m×m and rank r,

‖Y −D‖ ≥ m/3.

Proof. For the proof of the claim, we will use the spectral method developed by
Lokam in [Lok]. Lokam proves a similar lemma for the Hadamard matrix (and for a
generalized Hadamard matrix). We will use a similar method, plus some additional
facts and observations, to prove our claim for the matrix Y .

Let A be a matrix of size m×m (of real or complex numbers). The ith singular
value, σi(A), is defined by

σi(A) =
√

λi(AA∗),

where A∗ is the conjugate transpose of A, and λi(AA∗) is the ith largest eigenvalue
of AA∗ (for 1 ≤ i ≤ m).

It is well known that for every matrix A (of size m × m), there exist unitary
matrices U, V (of size m × m) such that U∗AV is a diagonal matrix with values
σ1(A), . . . , σm(A) on the diagonal (see, e.g., [GV, sec. 2.3]).

For the proof of the claim we will need the following six facts. The facts are true
for any constant ε > 0. The global constant m0 (from the statement of the claim)
depends on the actual ε chosen (i.e., we assume that m > m0(ε)).

1. With high probability (say, with probability of at least 0.99),

‖W‖ ≥ (1− ε) ·m.

Proof. Note that ‖W‖2 is the sum of the squares of m2 standard Gaussian
random variables. Hence, ‖W‖2 is a random variable with expectation m2 and
variance 2m2, and (by the central limit theorem) with very high probability
its value is very close to its expectation. In particular, for large enough m,
the probability for ‖W‖ < (1− ε) ·m is smaller than 0.01 (this follows, e.g.,
by Chernoff bounds; see, e.g., [ASE, Appendix A]).

2. With high probability (say, with probability of at least 0.99),

‖W ′′‖ ≤ (1 + ε) · √r ·m.

Proof. Recall that the entries of W form a multinormal distribution. Since
a multinormal distribution does not change under unitary transformations
and since W ′′ is the projection of W on V , we can present ‖W ′′‖2 as the
sum of the squares of r · m standard Gaussian random variables. Hence,
‖W ′′‖2 is a random variable with expectation rm and variance 2rm, and
(by the central limit theorem) with very high probability its value is very
close to its expectation. In particular, for large enough m, the probability for
‖W ′′‖ > (1 + ε) · √r ·m is smaller than 0.01 (this follows, e.g., by Chernoff
bounds; see, e.g., [ASE, Appendix A]).
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3. With high probability (say, with probability of at least 0.99),

σ1(W ) < (2 + ε) · √m.

Proof. The proof was given in [Gem] (see also [Sil]).
4. For any matrix D of size m×m and rank r,

σr+1(D), . . . , σm(D) = 0.

Proof. As mentioned above, there exist unitary matrices U, V (of size m×m)
such that U∗DV is a diagonal matrix with values σ1(D), . . . , σm(D) on the
diagonal. Since unitary transformations do not change the rank of a matrix,
we conclude that σr+1(D), . . . , σm(D) = 0.

5. For any matrix A of size m×m,

‖A‖2 = σ2
1(A) + · · ·+ σ2

m(A).

Proof. As mentioned above, there exist unitary matrices U, V (of size m×m)
such that U∗AV is a diagonal matrix with values σ1(A), . . . , σm(A) on the
diagonal. Since unitary transformations do not change the norm of a matrix,
we conclude that ‖A‖2 = σ2

1(A) + · · ·+ σ2
m(A).

6. For any two matrices A,B of size m×m,

m∑
i=1

[σi(A)− σi(B)]2 ≤ ‖A−B‖2.

Proof. This inequality is know as the Hoffman–Wielandt inequality [HW].
For a proof of this version of the inequality, see [GV, sec. 8.3].

We are now ready to complete the proof of the claim. Assume that the above six
facts are all true for ε = 0.01 (for large enough m, this happens with probability of at
least 0.97). Let D be any matrix of size m×m and rank r. By facts 6 and 4,

‖W −D‖2 ≥
m∑
i=1

[σi(W )− σi(D)]2 ≥
m∑

i=r+1

[σi(W )]2.

By fact 5, fact 3, and fact 1 (and since ε = 0.01 and r = m/10),

m∑
i=r+1

[σi(W )]2 = ‖W‖2−
r∑
i=1

[σi(W )]2 ≥ ‖W‖2−4.0401·r ·m ≥ 0.98·m2−0.40401·m2.

Hence,

‖W −D‖2 ≥ (0.75 ·m)2,

and, by the triangle inequality and fact 2,

‖Y −D‖ ≥ ‖W −D‖ − ‖W − Y ‖ ≥ 0.75 ·m− 0.32 ·m > m/3.

Let us now finish the proof of Lemma 4.1. Note that if Rigr[Y ] <
√

m/9, then
(by the definition of Rig) there exists a matrix D of rank r such that all rows of
Y −D are of L2-norm <

√
m/9, and hence ‖Y −D‖2 < m ·m/9 (in contradiction to

Claim 5.2).
Thus, by Claim 5.1 we know that with high probability Y satisfies the first re-

quirement of the lemma, and by Claim 5.2 we know that with high probability Y
satisfies the second requirement of the lemma. Altogether, with probability of at
least 0.95, the matrix Y satisfies both requirements.
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6. Size-depth tradeoffs. The following lemma is implicit in [Lok].
Lemma 6.1. Let C be a bounded coefficients linear circuit of size s and depth d

for the linear functions L1, . . . , Lk (in n variables). Then, for every 1 ≤ r ≤ n,

Rigr[L1, . . . , Lk] ≤
(s
r

)2d

.

Proof. Let v1, . . . , vl be all nodes in C of in-degree larger than s/r. Obviously,
l ≤ r. Denote by f1, . . . , fl the l linear functions outputted at the nodes v1, . . . , vl.
Denote by C ′ the circuit C after removing from it the l nodes v1, . . . , vl and all edges
connected to them. Then each Li can be written as Li = L′′i +L′i, where L′′i is a linear
combination of the functions f1, . . . , fl, and L′i is the ith output of the circuit C ′.

Since the maximal in-degree in C ′ is at most s/r and since C ′ is of depth d,
the L1-norm of each L′i is bounded by (s/r)d, and hence its L2-norm is bounded by
(s/r)2d. Hence, if we denote V = Span[f1, . . . , fl], then for every 1 ≤ i ≤ k we have
Dist[Li, V ] ≤ (s/r)2d. Thus, Rigr[L1, . . . , Lk] ≤ Rigl[L1, . . . , Lk] ≤ (s/r)2d.

For our size-depth tradeoff for matrix product, we will also need the following
version of Lemma 4.1. Note that for the proof of Theorem 4.2 we could have used
Lemma 6.2 rather than Lemma 4.1. We preferred to use Lemma 4.1 because it makes
the proof of Theorem 4.2 more intuitive.

Lemma 6.2. Let L1, . . . , Lk be k linear functions (over R) in the m2 variables
y1,1, . . . , ym,m (we think of y1,1, . . . , ym,m as the entries of a matrix of size m ×m).
Denote r = m/10, and assume (for simplicity) that m is large enough (i.e., m > m0

for some global constant m0). Then there exists a matrix Y of size m ×m (over R)
such that

1. for every 1 ≤ i ≤ k,

|Li(Y1,1, . . . , Ym,m)| ≤ Rigr·m[L1, . . . , Lk] · (2 ln k + 10)
1/2

;

2.

Rigr·m[I ⊗ Y ] ≥
√

m/9.

Proof. The proof is similar to the proof of Lemma 4.1.
We define R,W,W ′′, and Y as in the proof of Lemma 4.1. Thus, by Claim 5.1,

with high probability the matrix Y satisfies the first requirement of the lemma. To
prove the second requirement, we will need the following version of Claim 5.2.

Claim 6.1. Assume that m is large enough (i.e., m > m0 for some global constant
m0). With high probability (say, with probability of at least 0.97), for any matrix D
of size m2 ×m2 and rank r ·m,

‖(I ⊗ Y )−D‖ ≥ m1.5/3.

Proof. The proof is similar to the proof of Claim 5.2. The first three facts (out
of the six given in the proof of Claim 5.2) are replaced by the following three facts.
As before, the facts are true for any constant ε > 0. The global constant m0 (from
the statement of the claim) depends on the actual ε chosen (i.e., we assume that
m > m0(ε)).

1. With high probability (say, with probability of at least 0.99),

‖I ⊗W‖ ≥ (1− ε) ·m1.5.

Proof. The proof is obvious, since ‖I ⊗W‖ = m0.5 · ‖W‖.
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2. With high probability (say, with probability of at least 0.99),

‖I ⊗W ′′‖ ≤ (1 + ε) · r0.5 ·m.

Proof. The proof is obvious, since ‖I ⊗W ′′‖ = m0.5 · ‖W ′′‖.
3. With high probability (say, with probability of at least 0.99),

σ1(I ⊗W ) < (2 + ε) ·m0.5.

Proof. The proof is obvious, since σ1(I ⊗W ) = σ1(W ).
The proof of the claim is now completed as before. Assume that the above six

facts are all true for ε = 0.01 (for large enough m, this happens with probability of at
least 0.97). Let D be any matrix of size m2 ×m2 and rank r ·m. By facts 6 and 4,

‖(I ⊗W )−D‖2 ≥
m2∑
i=1

[σi(I ⊗W )− σi(D)]2 ≥
m2∑

i=r·m+1

[σi(I ⊗W )]2.

By fact 5, fact 3, and fact 1 (and since ε = 0.01 and r = m/10),

m2∑
i=r·m+1

[σi(I ⊗W )]2 = ‖I ⊗W‖2 −
r·m∑
i=1

[σi(I ⊗W )]2 ≥ 0.98 ·m3 − 0.40401 ·m3.

Hence,

‖(I ⊗W )−D‖2 ≥ (0.75 ·m1.5)2,

and, by the triangle inequality and fact 2,

‖(I ⊗ Y )−D‖ ≥ ‖(I ⊗W )−D‖ − ‖(I ⊗W )− (I ⊗ Y )‖ > m1.5/3.

Let us now finish the proof of Lemma 6.2. Note that if Rigr·m[I ⊗ Y ] <
√

m/9,
then (by the definition of Rig) there exists a matrix D of rank r ·m such that all rows
of (I ⊗ Y )−D are of L2-norm <

√
m/9, and hence ‖(I ⊗ Y )−D‖2 < m2 ·m/9 (in

contradiction to Claim 6.1).
Thus, by Claim 5.1 we know that with high probability Y satisfies the first re-

quirement of the lemma, and by Claim 6.1 we know that with high probability Y
satisfies the second requirement of the lemma. Altogether, with probability of at
least 0.95, the matrix Y satisfies both requirements.

We will now state and prove our size-depth tradeoff for matrix product. We did
not attempt here to optimize the constant ε.

Theorem 6.3. Let C be a bounded coefficients arithmetic circuit of depth d (over
the real or complex numbers) for the product of two matrices of size m ×m. Then,
for some global constant ε > 0 (say, ε = 1/20),

Size(C) = Ω(m2+ε/d).

Proof. The proof follows along the lines of the proof of Theorem 4.2. As before,
w.l.o.g. we assume that the circuit is over the reals and that the circuit is bilinear.
We assume w.l.o.g. that m is large enough (and, in particular, m > m0, where m0

is the global constant from Lemma 6.2), and we assume for simplicity that m/10 is
integer. Define

r = m/10.
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Assume, for a contradiction to the statement of the lemma, that

Size(C) < 0.001 ·m2+ε/d.

As before, denote by v1, . . . , vk the product gates of the circuit C. Since the circuit
is bilinear, each product gate vi computes the product of two linear functions, one in
the variables {xi,j} (of the first matrix) and the other in the variables {yi,j} (of the
second matrix). Denote the first linear function by Ri and the second linear function
by Li. Thus, vi computes the product of Ri(x1,1, . . . , xm,m) and Li(y1,1, . . . , ym,m).

Consider the linear functions L1, . . . , Lk. These functions are computed by a
linear circuit of depth at most d and size at most 0.001 ·m2+ε/d (in the input variables
y1,1, . . . , ym,m). Hence, by Lemma 6.1,

Rigr·m[L1, . . . , Lk] < (0.01)2d ·m2ε.

Hence, by Lemma 6.2, there exists a matrix Y of size m×m (over R), such that
1. for every 1 ≤ i ≤ k,

|Li(Y1,1, . . . , Ym,m)| ≤ (0.01)2d ·m2ε · (2 ln k + 10)
1/2

< (0.01)2d ·m2ε · lnm

(for large enough m);
2.

Rigr·m[I ⊗ Y ] ≥
√

m/9.

Denote

c = (0.01)2d ·m2ε · lnm.

We fix the input variables y1,1, . . . , ym,m to be the entries Y1,1, . . . , Ym,m. Denote
the obtained circuit by C ′. Since we fixed y1,1, . . . , ym,m, each product gate vi in C
turned into a product with the field element Li(Y ). The circuit C ′ is hence a linear
arithmetic circuit for the matrix I ⊗ Y in the input variables x1,1, . . . , xm,m.

As before, the circuit C ′ is not a bounded coefficients arithmetic circuit. We
will convert C ′ into a bounded coefficients arithmetic circuit C ′′ by the following two
steps: First, replace the product with each field element Li(Y ) by a product with
the field element Li(Y )/c (which is of absolute value ≤ 1) and multiply each output
of the circuit by the field element c. Then replace each product (of an output) with
the field element c by 2d consecutive additions of fan-in c1/2d each (plus one product
with a field element of absolute value ≤ 1). Since the number of outputs is m2, this
increases the size of the circuit by at most m2 · 2d · c1/2d, and hence the size of C ′′ is
at most 0.01 ·m2+ε/d · lnm (for large enough m).

Thus, the obtained circuit C ′′ is a bounded coefficients arithmetic circuit of depth
3d that computes the matrix I ⊗ Y and such that

Size(C ′′) < 0.01 ·m2+ε/d · lnm.

However, since C ′′ is of depth 3d, by Lemma 6.1,

Size(C ′′) ≥ r ·m · (Rigr·m[I ⊗ Y ])1/6d ≥ 0.01 ·m2+1/12d,

which is a contradiction (for large enough m and, say, ε = 1/20).
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MINIMIZING TOTAL COMPLETION TIME ON PARALLEL
MACHINES WITH DEADLINE CONSTRAINTS∗
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Abstract. Consider n independent jobs and m identical machines in parallel. Job j has a
processing time pj and a deadline d̄j . It must complete its processing before or at its deadline.
All jobs are available for processing at time t = 0 and preemptions are allowed. A set of jobs is
said to be feasible if there exists a schedule that meets all the deadlines; such a schedule is called a
feasible schedule. Given a feasible set of jobs, our goal is to find a schedule that minimizes the total
completion time

∑
Cj . In the classical α | β | γ scheduling notation this problem is referred to as

P | prmt, d̄j |
∑

Cj . Lawler (Recent Results in the Theory of Machine Scheduling, in Mathematical
Programming: The State of the Art, A. Bachem, M. Grötschel, and B. Korte, eds., Springer, Berlin,
1982, pp. 202–234) raised the question of whether or not the problem is NP-hard. In this paper we
present a polynomial-time algorithm for every m ≥ 2, and we show that the more general problem
with m unrelated machines, i.e., R | prmt, d̄j |

∑
Cj , is strongly NP-hard.

Key words. parallel and identical machines, unrelated machines, total completion time, dead-
line constraints, preemptive scheduling, maximum lateness, polynomial-time algorithm
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1. Introduction. Consider m identical machines in parallel and n jobs. Job j
has a processing time pj and a deadline d̄j . Job j must complete its processing before
or at its deadline d̄j . All jobs are available for processing at t = 0 and preemptions
are allowed. A set of jobs is said to be feasible if there exists a schedule that meets all
its deadlines; such a schedule is called a feasible schedule. Given a feasible set of jobs,
our objective is to find a schedule that minimizes the total completion time

∑
Cj .

In the 3-field notation α | β | γ introduced by Graham et al. (1979), this problem is
referred to as P | prmt, d̄j |

∑
Cj .

The special case with m machines and n jobs without deadlines, i.e., dj = ∞
for all j, can be solved via the well-known shortest processing time first (SPT) rule.
This rule will always generate a schedule with minimum

∑
Cj (see Pinedo (2002)).

The SPT rule selects, whenever a machine has been freed, among the remaining jobs
the job with the smallest processing time. Since McNaughton (1959) showed that
preemptions cannot reduce

∑
Cj , the SPT rule solves P | prmt | ∑Cj as well as

P ||∑Cj .
For the special case with a single machine and n jobs with deadlines, Smith (1956)

provided an O(n log n) algorithm that works as follows. Schedule the jobs backwards,
starting at time t =

∑
pj . From among all the jobs that can finish their processing

at time t (i.e., jobs with d̄j ≥ t) select the one with the longest processing time. This
leaves a set of n− 1 jobs to which the same rule can be applied. Preemptions cannot
reduce

∑
Cj when there is a single machine and all jobs are released at the same

time. So Smith’s rule solves 1 | prmt, d̄j |
∑

Cj as well as 1 | d̄j |
∑

Cj .
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If each job j has, instead of a deadline, a release date rj (before which it cannot
start its processing), then minimizing

∑
Cj is NP-hard in the nonpreemptive case

but solvable in polynomial time in the preemptive case. Lenstra (1977) showed that
1 | rj |

∑
Cj is NP-hard, and Baker (1974) presented an O(n log n) algorithm for

1 | prmt, rj |
∑

Cj . Baker’s rule schedules, at each point in time, the job with the
smallest remaining processing time from among all the available jobs.

Lawler (1982) posed the single machine problem with release dates and deadlines,
i.e., 1 | prmt, rj , d̄j |

∑
Cj , and raised the question of whether it can be solved in

polynomial time. This question has been answered in the negative by Du and Leung
(1993), who showed that the problem is NP-hard. Thus, as far as polynomial-time
algorithms are concerned, we cannot both have release dates and deadlines in the
problem. Hence, we are forced to consider problems either with release dates or
deadlines but not both.

Du and Leung (1993) also generalized Baker’s rule and Smith’s rule to solve a
much broader class of problem instances, namely, those that contain no ordered triple
of jobs (i, j, k) with

ri, rk < rj < d̄i < d̄j , d̄k

and pj < pi, pk; such a triple is called an obstruction. The generalized Baker’s algo-
rithm, the generalized Smith’s algorithm, and an algorithm that recognizes problem
instances with no obstruction can all be implemented in O(n2) time. Note that prob-
lem instances that contain no obstruction include those for which (1) intervals [rj , d̄j ],
j = 1, 2, . . . , n, are nested; (2) release dates and deadlines are oppositely ordered; (3)
processing times and deadlines are similarly ordered; (4) processing times and release
dates are similarly ordered; (5) processing times are identical.

Lawler (1982) also raised the question of whether P | prmt, rj |
∑

Cj and
P | prmt, d̄j |

∑
Cj can be solved in polynomial time. Du, Leung, and Young (1990)

showed that the first one of these two problems is NP-hard, even for two identical and
parallel machines. In this paper we show that the second of these two problems, i.e.,
P | prmt, d̄j |

∑
Cj , can be solved in polynomial time for every m ≥ 2. (As noted

before, the single machine case had already been settled by Smith (1956).)
Polynomial-time algorithms that check whether a set of jobs is feasible do exist,

even when the jobs have release dates and deadlines. Horn (1974) showed that the
problem of determining feasibility can be reduced to a network flow problem. Faster
algorithms exist if the jobs have identical release dates or identical deadlines (see Sahni
(1979)), or the special case when the intervals [rj , d̄j ], j = 1, 2, . . . , n, are nested (see
Hong and Leung (1989)).

Gonzalez (1978) and McCormick and Pinedo (1995) described a polynomial-time
algorithm for a feasible set of jobs that all have a common deadline. As we will see
later, the scheduling problem becomes more complex when the jobs have different
deadlines.

In the next section we present a polynomial-time algorithm for P | prmt, d̄j |∑
Cj . In the following section we show that the more general problem with unrelated

machines, i.e., R | prmt, d̄j |
∑

Cj , is strongly NP-hard. In the last section we present
extensions and our conclusions.

2. The algorithm. In this section we assume that we are given a feasible set of
jobs. All schedules are assumed to be feasible unless stated otherwise. Let

D1 < D2 < · · · < Dz
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denote the distinct deadlines of the n jobs, and let D0 = 0. Every schedule S induces a
deadline dj(S) for each job j, where dj(S) is defined as the smallest Dk with Cj ≤ Dk

in S. If the context is clear, we drop the S and simply denote the induced deadline
by dj . Note that the induced deadline dj of job j may be smaller than its original
deadline d̄j . However, every feasible schedule has the property that dj ≤ d̄j for each
job j.

We motivate our algorithm by asking two key questions. Suppose a “birdie”
were to tell us the induced deadline of each job in an optimal schedule. Having only
this information, can we construct an optimal schedule? Second, how do we get the
information that the “birdie” has? It is clear that the answers to these two questions
immediately yield an optimal algorithm for our problem.

We proceed with answering the first question. The next lemma shows that if a
short job has an induced deadline that is no later than that of a long job, then the
short job is completed no later (and possibly earlier) than the long job. Lemma 1 can
be shown via a standard interchange argument that is omitted here.

Lemma 1. Suppose we have two jobs j and k such that pj ≤ pk. If there is
a schedule S such that dj(S) ≤ dk(S), then there is another schedule S′ with total
completion time

∑
Cj not larger than that of S, and job j completes no later (and

possibly earlier) than job k in S′.
Lemma 1 yields a completion sequence in an optimal schedule. That is, jobs

with induced deadlines equal to D1 finish first in ascending order of their processing
times, followed by jobs with induced deadlines equal to D2 in ascending order of their
processing times, and so on. Since the jobs complete in this order, they should also
be scheduled in the same order. Thus, we consider a list scheduling algorithm with
the list L of jobs ordered according to the given completion sequence. Whenever a
machine becomes free for assignment, the next job in L will be scheduled in such a
way that it completes as early as possible, with the provision that the remaining jobs
in L can meet their induced deadlines. We refer to this procedure as the Scheduling
Algorithm SA. The input into SA is the ordering L in which the algorithm will try
to complete the n jobs. The output of SA is a complete schedule with the starting
times, preemptions and completion times of all n jobs. However, the sequence in
which the jobs complete their processing in the schedule generated by SA may not
be identical to the target ordering L. (As we shall see later, the completion sequence
will be identical to L if L is an optimal ordering.) The SA algorithm consists of eight
steps.

Step 1 (initialization). Reindex the jobs so that job 1 is supposed to finish first,
job 2 second, and so on. So L = (1, 2, . . . , n). Let j = 1.

Step 2 (computation of machine availabilities). Suppose we have scheduled the
first j − 1 jobs and we consider job j. Let fi, i = 1, . . . ,m, denote the time machine
Mi becomes available (is freed) after the first j−1 jobs have been completed. Reindex
the machines so that

f1 ≤ f2 ≤ · · · ≤ fm.

Clearly, if job j were to complete as early as possible, it should be scheduled on
machine M1 beginning at time f1. However, this may lead to an infeasible schedule.
Thus, we need to determine the minimum amount of time that we need to delay job
j’s starting time in order to have a feasible schedule. The following steps contain a
procedure for determining the exact starting time and completion time of job j.

Step 3 (selection of the m− 1 jobs with least slack). For each job k that follows
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job j in L, let LSTk denote its latest possible starting time. Clearly,

LSTk = dk − pk,

i.e., its induced deadline minus its processing time. Job k can meet its induced
deadline if and only if it starts at or before LSTk. Let jobs k1, k2, . . . , km−1 be the
m− 1 jobs with the earliest LSTk among all the jobs that follow job j in L, i.e., the
m− 1 jobs with the least slack. (If there are ties, then select the job with the earliest
induced deadline.) Reindex these jobs so that they are in ascending order of their
latest-starting-times (LSTs); i.e.,

LSTk1 ≤ LSTk2 ≤ · · · ≤ LSTkm−1 .

Step 4 (computation of deficits and idle times). Assign job ki to machine Mi+1,
i = 1, . . . ,m − 1. If fi+1 ≤ LSTki for each 1 ≤ i ≤ m − 1, then this is feasible. In
general, however, it may happen that fi+1 > LSTki for some index i and fi+1 ≤ LSTki
for some other index i. If fi+1 < LSTki , then machine Mi+1 is said to have an idle
time and

σi+1 = LSTki − fi+1

denotes the length of this idle time. If fi+1 > LSTki , then machine Mi+1 is said to
have a deficit and

δi+1 = fi+1 − LSTki

denotes the size of this deficit. To meet the induced deadline of job ki, we need to
schedule an amount δi+1 of job ki by the time fi+1 on machines with an index lower
than i+ 1. (Note that machines with index higher than i+ 1 have no idle times prior
to fi+1 since the machines are indexed in ascending order of their finishing times.)

For each deficit machine Mi+1, we associate with job ki a deficit δ̂i and a deadline d̂i,
where δ̂i = δi+1 and d̂i = fi+1. This signifies that an amount of δ̂i of job ki needs to
be processed by the time d̂i on some other machines.

Step 5 (redistribution of deficits). We now describe a procedure to redistribute
the deficits of some jobs to machines with idle times. Let jobs ki1 , ki2 , . . . , kix be all
the jobs with deficits and machines Mj1 ,Mj2 , . . . ,Mjy be all the machines with idle
times. We assume that i1 < i2 < · · · < ix and j1 < j2 · · · < jy. Going from job kix to
job ki1 , we repeat the following steps. Consider job kia . Look for the largest indexed
machine Mjb that is still lower in index than the machine to which job kia is assigned
originally; i.e., jb < ia + 1. We schedule as much as possible of job kia on machine

Mjb . If σjb ≥ δ̂ia , then all of the deficits of job kia can be scheduled on machine

Mjb . In this case we decrement σjb by δ̂ia , delete job kia from the list, and repeat

the steps with the next job. On the other hand, if σjb < δ̂ia , then only a portion of
the deficit of job kia can be scheduled on machine Mjb , and the rest will have to be

redistributed to other machine(s). In this case we decrement both δ̂ia and d̂ia by σjb ,
delete machine Mjb from the list, and repeat the step with job kia on the next lower
indexed machine (i.e., machine Mjb−1

).
When the above procedure halts, either the list of jobs is exhausted or the list

of machines is exhausted. If the list of jobs is exhausted, then we have successfully
redistributed the deficits of all the jobs to other machines.

Step 6 (scheduling of job j and remaining deficits on machine 1). If the list of jobs
is exhausted, then schedule job j on machine M1, beginning at time f1. Otherwise, if
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the list of machines is exhausted and there are still some jobs with deficits, schedule the
deficits of the remaining jobs on machine M1, along with job j. Let jobs ki1 , ki2 , . . . , kiz
be the remaining jobs on the list, with their corresponding deficits and deadlines. Job
j has a processing time pj and an induced deadline dj . We schedule these z + 1
“pieces” by the earliest deadline rule; i.e., the pieces are scheduled in ascending order
of their deadlines. (If the list L corresponds to an optimal completion sequence, there
would be no deadline violations in scheduling these z + 1 pieces. However, if L does
not correspond to an optimal completion sequence, then there may be some deadline
violations.) If the earliest deadline schedule does not generate any deadline violations,
then we will attempt to improve the completion time of job j. This is done by moving
job j ahead of the pieces that were scheduled before it by the earliest deadline rule,
provided that it does not generate any deadline violations.

Step 7 (update schedule and other data for next iteration). When job j is settled
in the earliest possible position in the above procedure, the pieces that are scheduled
before job j will be fixed in their positions, along with job j. We reduce the processing
times of the corresponding jobs by the amounts fixed on machine M1. The pieces that
are scheduled after job j on machine M1 will not be scheduled yet; neither will the
jobs scheduled on machines M2,M3, . . . ,Mm. In other words, the only pieces that are
scheduled in this step consist of job j in its entirety as well as all the pieces scheduled
before job j; nothing else is scheduled in this step. Since the processing times of some
jobs have been reduced, the remaining jobs need be reordered so that jobs with smaller
remaining processing times precede jobs with larger remaining processing times in the
event that they have identical induced deadlines.

Step 8 (stopping criterion). If j < n − 1, increase j by 1 and go back to Step
2. If j = n − 1, schedule the remaining part of the last job in such a way that it is
completed as early as possible and STOP (the schedule is complete).

This completes the description of the algorithm. The following example illustrates
the algorithm.

Example 1. Consider three machines and 9 jobs.

Jobs 1 2 3 4 5 6 7 8 9
pj 4 5 7 8 10 12 13 14 15
dj ∞ ∞ ∞ 10 12 12 25 27 30
LSTj ∞ ∞ ∞ 2 2 0 12 13 15

Apply algorithm SA so as to complete the jobs in the order 1, 4, 5, 6, 7, 8, 9, 2, 3.
The first iteration of SA starts with f1 = f2 = f3 = 0. Furthermore,

LSTk1 = LST6 = 0,

LSTk2 = LST4 = 2.

So job 1 can be scheduled in the interval [0, 4] on machine 1.
The second iteration of SA considers job 4. Now f1 = f2 = 0 and f3 = 4. The

two jobs with the earliest LST are jobs 5 and 6, and

LST6 = 0,

LST5 = 2.
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So job 5 is put on machine 3 but can be processed only during the interval [4, 12]
since f3 = 4. So there is a deficit of 2. Job 6 is assigned to machine 2 and occupies
the interval [0, 12]. So δ = 2, and the processing of job 4 on machine 1 has to be
postponed 2 time units. So the result of this iteration is that job 5 is processed on
machine 1 during interval [0, 2] and job 4 during interval [2, 10]. Before going to the
next iteration of SA the processing time of job 5 has to be adjusted from 10 time
units to 8 time units.

The third iteration of SA considers job 5. Now f1 = 0, f2 = 4, and f3 = 10. The
two jobs with the earliest LST are jobs 6 and 7:

LST6 = 0,

LST7 = 12.

Job 7 can go on machine 3, and there is an idle time. Job 6 can go on machine 2, and
there is a deficit of 4. Job 6 therefore has to be processed on machine 1 during the
interval [0, 4] and δ = 4. So job 5 can be processed on machine 1 during the interval
[4, 12], and this assignment is feasible. So the result of this iteration is that job 6 is
processed during the interval [0, 4] and job 5 during the interval [4, 12]. Before moving
to the fourth iteration the processing time of job 6 has to be adjusted from 12 to 8.

Continuing in this fashion SA can schedule all jobs so that they are completed in
the order 1, 4, 5, 6, 7, 8, 9, 2, 3.

The next theorem is instrumental in proving that SA yields an optimal schedule.
Theorem 1. Given the order of completions in an optimal schedule, there exists

an optimal schedule (i.e., a schedule with minimum
∑

Cj) in which each job is com-
pleted as early as possible, provided that all the jobs that follow can meet their induced
deadlines.

Proof. Let L = (1, 2, . . . , n) denote the completion sequence in an optimal sched-
ule. Let S denote the schedule in which each job is completed as early as possible
(provided that all the jobs following it can meet their induced deadlines), and let S′

be another schedule that does not complete each job as early as possible. Let j be the
smallest index such that job j completes earlier in S than in S′. Let job j complete
at time t in S′. Since job j does not finish as early as possible, there must be a
noncritical job k (i.e., job k completes before its original deadline), k > j, such that
job k is processed in the interval [t̄ − δ, t̄), t̄ < t, while job j is not processed in the
same interval. Let job k complete at time t′ in S′.

Consider the following triple interchange (see Figure 1). Move the piece of job j
in the interval [t − δ, t) to the interval [t̄ − δ, t̄) where job k was. Move the piece of
job k in the interval [t̄− δ, t̄) to the interval [t′, t′ + δ), possibly moving out one job l
processed in that interval. Finally, move job l to the interval [t−δ, t) where job j was.
It is clear that the interchange is always feasible if t′+ δ ≤ d̄k. After the interchange,
job j’s completion time goes down by δ, whereas job k’s completion time goes up by
δ, and job l’s completion time cannot go up (and may go down). Thus, the total
completion time of the new schedule is less than or equal to that of the old schedule.
We can repeat the same argument until job j is completed as early as possible.

Theorem 2. Given the completion sequence in an optimal schedule, the algorithm
SA always constructs an optimal schedule.

Proof. The scheduling algorithm above schedules each job to complete as early
as possible. By Theorem 1, it produces the minimum

∑
Cj . It remains to be shown

that SA produces a feasible schedule, given that the completion sequence is feasible.
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Fig. 1. Triple interchange.

SA schedules job j in sequence, j = 1, 2, . . . , n. The proof is by induction on j. The
base case j = 1 is obvious. Assume that it is true for j < i; we will show that it is
true for j = i.

Recall that SA tries to schedule job i on machine M1, beginning at time f1. To
check if the remaining jobs can complete by their induced deadlines, the algorithm
considers the m− 1 jobs with the earliest LSTs, k1, k2, . . . , km−1, where

LSTk1 ≤ LSTk2 ≤ · · · ≤ LSTkm−1 .

Job kj is assigned to machine Mj+1, 1 ≤ j ≤ m− 1, up against its induced deadline.
If there is any overlap of job kj with a job that is already scheduled on machine Mj+1,
it redistributes the overlapped portion to a machine with a lower index. After the
redistribution process, let machine Ml be the lowest indexed machine that has idle
time; i.e., machines M2,M3, . . . ,Ml−1 have no idle time; see Figure 2. (If none of
these machines have idle time, we define l to be m+ 1.) Refer to jobs k1, k2, . . . , kl−2

as the critical jobs (i.e., the jobs scheduled on machines M2,M3, . . . ,Ml−1) and to
jobs kl−1, kl, . . . , km−1 as the noncritical jobs. By the induction hypothesis, the m−1
jobs as well as job i can be scheduled in a feasible manner.

We want to show that the remaining jobs (other than the m − 1 jobs) can also
be feasibly scheduled after job i is scheduled. We consider two cases, depending on
whether or not l = m + 1. If l = m + 1, then all m − 1 jobs are critical. Since job i
must complete before any of the remaining jobs, the remaining jobs can be feasibly
scheduled by the induction hypothesis. Thus, we may assume that l < m + 1. In
this case, job i will start at or before fl, since the δ amount from the critical jobs
(scheduled on machine M1) cannot extend beyond fl (or else the critical jobs are not
feasibly scheduled). On the other hand, the LST of any of the remaining jobs must
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Fig. 2. Illustrating feasibility.

be greater than fl. Thus, all of the remaining jobs as well as the noncritical jobs
can be feasibly scheduled if there are enough machine capacities. But this last point
is guaranteed since the completion sequence is obtained from an optimal schedule
(which is a feasible schedule).

We now focus on the second question, “How do we get the information the ‘birdie’
has?” The basic idea is to use the SPT rule, ignoring the deadline constraints. Afterall,
if the SPT schedule does not have any deadline violations, then the schedule is already
optimal. In general, however, the SPT schedule may have some deadline violations.
We need some mechanism to avoid deadline violations while maintaining as much
of an SPT-type structure as possible. In what follows we describe the algorithm
that generates the optimal ordering, and we refer to this algorithm as the Ordering
Algorithm OA. (This ordering algorithm uses the SA algorithm as a subroutine.) OA
consists of an initialization step and a main step. The input of this algorithm is the
list of jobs L which orders the jobs in increasing order of their processing times and,
when there are ties, in increasing order of their original deadlines. The output of the
algorithm is a list L̄ that specifies the order in which the jobs are completed in an
optimal schedule.

Step 1 (initialization). Reindex the jobs in ascending order of their processing
times and in ascending order of their original deadlines for identical processing times.
Let L = (1, 2, . . . , n) be the list of jobs in ascending order of their indexes. For each
job j, initialize its induced deadline as its original deadline d̄j . (This is a slight abuse
of notation since induced deadlines are defined with respect to a schedule. As we shall
see later, the induced deadlines are updated to correspond to the induced deadlines
in an optimal schedule.) Set k = 1 and L̄ = L.

Step 2 (main). In what follows we reorder the jobs in L̄ to form an ordering of the
completion sequence of an optimal schedule. We consider each job in turn, starting
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with the first job in L̄. Suppose we have fixed the position of the first k − 1 jobs and
we are considering the kth job. Let L̄ = (i1, i2, . . . , in), and let R(ik+1, ik+2, . . . , in)
denote the list obtained by reordering the last n − k jobs in L̄ in ascending order of
their induced deadlines and in ascending order of their processing times for identical
induced deadlines. We now construct a schedule S by applying SA to the list

L̂ = (i1, i2, . . . , ik) || R(ik+1, ik+2, . . . , in).

The outcome of the application of SA may fall into one of three cases.
Case (i). S is a feasible schedule, and job ik is completed no later than any one

of the jobs in (ik+1, ik+2, . . . , in). In this case job ik is fixed in position k, and its
induced deadline is updated and made equal to its deadline induced by S. L̄ will be
the same as before (i.e., L̄ = (i1, i2, . . . , in)), and the above process will be repeated
with k increased by 1.

Case (ii). S is feasible, but job ik is completed later than some of the jobs in
(ik+1, ik+2, . . . , in). In this case we move all the jobs that are completed earlier than
job ik ahead of job ik. Again, these jobs (that were moved ahead) will be rearranged
in ascending order of their processing times and in ascending order of their induced
deadlines for identical processing times. Let L′ be the list of these jobs, and let

L′′ = (ik+1, ik+2, . . . , in)− L′.

We set L̄ to be

L̄ = (i1, i2, . . . , ik−1) || L′ || (ik) || L′′.
The above process will be repeated with the new L̄ but the same k. (In other words,
k is not increased by 1.)

Case (iii). S is infeasible, and job ij is the first job that encounters infeasibility
when it is scheduled by SA. Recall that SA detects infeasibility when it tries to
schedule job ij on machine 1 along with “pieces” of some other jobs. Let ix be the job
with the earliest induced deadline among all these jobs. In this case we move all the
jobs in (ik+1, ik+2, . . . , in) with induced deadlines less than or equal to that of job ix
ahead of job ik. These jobs (that were moved ahead) will be rearranged in ascending
order of their processing times and in ascending order of their induced deadlines for
identical processing times. Let L′ be the list of these jobs, and let

L′′ = (ik+1, ik+2, . . . , in)− L′.

Set

L̄ = (i1, i2, . . . , ik−1) || L′ || (ik) || L′′.
The above process will be repeated with the new L̄ but the same k (in other words,
k is not increased by 1).

Step 3 (stopping criterion). If k = n, then STOP; otherwise go back to Step 2.
When the ordering algorithm stops, L̄ specifies the completion sequence of an

optimal schedule. The following example illustrates the algorithm.
Example 2. Consider the same three machines and 9 jobs of Example 1.

Jobs 1 2 3 4 5 6 7 8 9
pj 4 5 7 8 10 12 13 14 15
dj ∞ ∞ ∞ 10 12 12 25 27 30
LSTj ∞ ∞ ∞ 2 2 0 12 13 15
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First iteration of OA (k = 1). The input is

L̄ = 1, 2, 3, 4, 5, 6, 7, 8, 9.

The ordering algorithm calls the algorithm SA to apply it to the list

L̂ = 1, 4, 5, 6, 7, 8, 9, 2, 3.

This input into SA is exactly the instance considered in Example 1, and in Example 1
it is shown how a schedule can be generated according to L̂. This completes the first
iteration of the ordering algorithm (Case (i)), and job 1 is put in the first position.
The induced deadline of job 1 is d1(L̂) = 10, and k is increased by 1.

Second iteration of OA (k = 2). The input is the same L̄ as in the first iteration
since this has not been changed in the first iteration. An attempt has to be made to
schedule job 2 (the second shortest job) by applying the SA algorithm on

L̂ = 1, 2, 4, 5, 6, 7, 8, 9, 3.

The fitting of job 1 (with f1 = f2 = f3 = 0) is similar to the fitting of job 1 in the
application of SA in the first iteration of the ordering algorithm. SA proceeds with
the fitting of job 2, given that f1 = f2 = 0 and f3 = 4. The two jobs with the smallest
LST are jobs 4 and 6:

LST6 = 0,

LST4 = 2.

Machine 3 has a deficit of 2 with job 4, and machine 2 has a deficit of 0 with job 6.
So δ = 2. So job 4 has to be processed during the interval [0, 2] on machine 1, and
job 2 has to be processed during the interval [2, 7] on machine 1. Before continuing
with the third iteration of the SA algorithm the processing time of job 4 is modified
from 8 to 6.

The third iteration of SA tries to fit in job 4 with f1 = 0, f2 = 4, and f3 = 7.
The two jobs with the smallest LST are jobs 5 and 6:

LST6 = 0,

LST5 = 2.

Machine 3 has a deficit of 5 when fitting in job 5, and the deadline of the deficit
“piece” of job 5 is 7. Machine 2 has a deficit of 4 when fitting in job 6, and the
deadline of the deficit “piece” of job 6 is 4. These two deficits have to be scheduled
on machine 1 together with job 4 (which has a processing time of 6 and a deadline of
10). This is infeasible. So the application of SA results in Case (iii) of the ordering
algorithm and the first job that encounters infeasibility is job 4. Among the three
jobs that we tried to schedule on machine 1 (namely jobs 4, 5, and 6), job 4 has the
earliest deadline. So this implies that only job 4 is moved before job 2, and the new
list is

L̄ = 1, 4, 2, 3, 5, 6, 7, 8, 9.
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So we go back to Step 2 of OA with k = 2.

The remaining iterations of this example have been relegated to the appendix.

The following theorem shows that the algorithm OA does generate an optimal
completion ordering.

Theorem 3. The algorithm OA yields an optimal completion ordering L̄.

Proof. Let L′ = (1′, 2′, . . . , n′) be an optimal ordering and S′ be an optimal
schedule with completion sequence 1′, 2′, . . . , n′. By Theorem 2, we may assume that
S′ is constructed by SA using the list L′. Let L̄ = (1, 2, . . . , n) be the ordering
obtained by the above algorithm. Let k be the smallest index such that k′ �= k; i.e.,
i′ = i for each 1 ≤ i < k but k′ �= k. We differentiate among three cases, depending
upon the processing times of jobs k′ and k.

Case I. pk′ < pk. Since pk′ < pk, job k′ appears before job k in the initial ordering
of L̄, but it appears after job k in the final ordering of L̄. This means that job k′ was
considered in the job ordering process before job k but was overtaken by job k. In
the OA algorithm, a job will be overtaken by other jobs only if (i) it fails to produce
a feasible schedule or (ii) it fails to complete before all of the remaining jobs. In the
first case, S′ (with job completion sequence identical to L′) is not a feasible schedule.
In the second case, it can be shown that S′ is not optimal.

Case II. pk′ = pk. If the original deadline of job k′ is greater than or equal to
that of job k, i.e., d̄k′ ≥ d̄k, then we can swap k′ with k in L′, and the new ordering
will produce a feasible schedule with total completion time equal to that of S′. Thus,
we may assume that d̄k′ < d̄k. In this case job k′ appears before job k in the initial
ordering of L̄, but it appears after job k in the final ordering. Again, this means that
job k′ was overtaken by job k in the job ordering process. But this is impossible since
if it is feasible to complete job k before job k′, it must also be feasible to complete
job k′ before job k. (Recall that pk′ = pk and d̄k′ < d̄k.)

Case III. pk′ > pk. If d̄k′ ≥ d̄k, then we can swap k′ with k in L′, and the new
ordering will produce a feasible schedule with total completion time less than that of
S′. Thus, we may assume that d̄k′ < d̄k. If job k completes by d̄k′ in S′, then we can
swap k′ with k in L′, and the new ordering will produce a feasible schedule with total
completion time less than that of S′. Thus, we may assume that job k completes later
than d̄k′ (but at or before d̄k) in S′. Let d̄k′ = Dx and the induced deadline of job k
in S′ be Dy. By our assumption, Dx < Dy.

Observe that our scheduling algorithm schedules the noncritical jobs nonpreemp-
tively, while the critical jobs (the jobs that were pushed against the deadline and
involved in the computation of LST) may be preempted. Consider the jobs that fol-
low job k′ in L′ up until job k. We assert that there is a noncritical job j with its
original deadline d̄j > Dy−1 and job j starts before Dy−1 in S′. This is because L̄
(with job k in the kth position) indicates that it is possible to complete job k along
with all the jobs whose original deadlines are less than or equal to Dy−1 by Dy−1.
Since job k does not complete by Dy−1 in S′, there must be another job in its place.
We consider two cases, depending upon the processing times of jobs j and k.

If pj < pk, then job j was considered in the job ordering process before job k, but
it was overtaken by job k. But this is impossible since S′ indicates that it is feasible
to complete job j before job k.

If pj ≥ pk, then we can swap j with k in L′, and the new ordering will produce a
feasible schedule with total completion time less than or equal to that of S′. We can
repeat the above argument until job k completes by d̄k′ , at which time we can swap
job k′ with job k.
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Theorems 2 and 3 yield our main result.
Theorem 4. P | prmt, d̄j |

∑
Cj can be solved in polynomial time for each

m ≥ 2.
The running time of our algorithm is O(mn3 log mn). Step 1 (initialization)

of algorithm OA takes O(n log n) time. Step 2 (main) of OA takes at most O(n2)
iterations, since in the worst case the algorithm may completely reverse the initial
ordering. Each iteration involves rearranging the last n−k jobs in ascending order of
their induced deadlines, calling SA with the list L̂, and modifying L̄ if the outcome of
the application of SA falls into Cases (ii) or (iii). In what follows we show that each
of these steps can be implemented in O(mn log mn) time.

The most efficient way to rearrange the last n − k jobs in ascending order of
their induced deadlines is to maintain a balanced tree of the remaining jobs (i.e.,
the last n − k jobs) in ascending order of their induced deadlines (and in case of
ties in ascending order of their processing times). This tree can initially be built in
O(n log n) time. When we need the required ordered list, we simply walk over the
tree in linear time. As k increases, we need to delete some jobs from the balanced
tree. But this can all be done in the required time bound O(mn log mn).

The algorithm SA can be implemented in O(mn log mn) time. There are n
jobs to schedule, and each job can be scheduled in O(m log m + m log n) time. The
machines can be sorted in ascending order of their finishing times in O(m log m) time.
The m − 1 jobs with the earliest LSTs can be determined in O(m log n) time if we
maintain a balanced tree of jobs in ascending order of their LST. The redistribution
of deficits of some jobs to other machines takes O(m) time, and the scheduling of the
deficits on machine 1 takes the same amount of time.

Modifying L̄ can also be implemented to run in the required time bound. Iden-
tifying the jobs in L′ can be done in linear time. Sorting them in ascending order of
their processing times (and in case of ties in ascending order of their induced dead-
lines) takes O(n log n) time. Deleting the jobs in L′ from the list (ik+1, ik+2, . . . , in)
takes linear time if L̄ is maintained as a doubly linked list. Thus, the new L̄ can be
obtained in O(n log n) time.

3. Complexity results. In this section we show that generalizing P | prmt, d̄j |∑
Cj to a parallel machine environment with machines that are unrelated results in

a problem that is strongly NP-hard. (Recall that in a parallel machine environment
that is unrelated the processing time of job j on machine i is pij ; i.e., the processing
time of job j depends on the machine on which it is processed.)

Our proof that shows the NP-hardness of R | prmt, d̄j |
∑

Cj also shows the
NP-hardness of the nonpreemptive R | d̄j |

∑
Cj problem. It shows that, even when

all the jobs have a single common deadline, the problem is NP-hard. In what follows
we first present the proof for the nonpreemptive environment and then explain why
it also applies to the preemptive environment.

We shall reduce the strongly NP-complete 3-DIMENSIONAL MATCHING (3DM)
problem to the decision version of R | d̄j |

∑
Cj . The 3DM problem can be stated as

follows (see Garey and Johnson (1979)): Given three disjoint sets A = {a1, a2, . . . , aq},
B = {b1, b2, . . . , bq}, and C = {c1, c2, . . . , cq} and a set M = {m1,m2, . . . ,ml} with
each mk, 1 ≤ k ≤ l, being a triple with the first component drawn from A, the second
from B, and the third from C, is there a subset M ′ of M such that every element in
A, B, and C occurs in exactly one of the triples in M ′?

Given an instance of the 3DM problem, we construct an instance of the decision
version of R | d̄j |

∑
Cj as follows. Let there be l machines, where machine i
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corresponds to the triple mi. For each aj in A, construct a job Aj with processing
times pij = 1 if aj is in mi; otherwise, pij = 2. Similarly, for each bj (resp., cj) in B
(resp., C), construct a job Bj (resp., Cj) with processing times pij = 1 if bj (resp., cj)
is in mi; otherwise, pij = 2. In addition, create l − q dummy jobs D1, D2, . . . , Dl−q.
The processing times of each of the dummy jobs are 6, independent of the machine
on which they are processed. The deadlines of all the jobs (A, B, C, and D jobs) are
6. Finally, let ω = 6l be the threshold of

∑
Cj .

We first show that there is a feasible, nonpreemptive schedule for this set of jobs,
regardless of whether the instance of 3DM has a matching. Schedule the A, B, and
C jobs on q machines, three jobs per machine. The completion time of every job is
no larger than 6. Schedule the dummy jobs on the remaining machines, one job per
machine. The completion time of each dummy job is 6. Thus, every job meets its
deadline.

The next lemma shows that the given instance of 3DM has a solution if and only
if the constructed instance of R | d̄j |

∑
Cj has a solution.

Lemma 2. There is a matching if and only if there is a schedule with
∑

Cj ≤ ω.
Proof. Suppose there is a matching. Let mi1,mi2, . . . ,miq be the triples that

constitute the matching. We schedule the jobs as follows. Let mik, 1 ≤ k ≤ q,
contain ax, by, and cz. Assign jobs Ax, By, and Cz to machine ik. The completion
times of these three jobs are 1, 2, and 3, respectively. Assign the dummy jobs Dj to
an unassigned machine, one job per machine. The completion time of each dummy
job is 6. This schedule has a total completion time

∑
Cj = 6(l − q) + q + 2q + 3q = ω.

Conversely, suppose there is a feasible schedule S with
∑

Cj ≤ ω. We will show
that there is a matching. Since the dummy jobs have deadlines 6 and their processing
times are 6 on any machine, they must be assigned one job per machine. The total
completion time of all the dummy jobs is 6(l − q). A machine with a dummy job
assigned can no longer be used for assignment, since all jobs have deadlines less than
or equal to 6. Let machines i1, i2, . . . , iq be the machines still available. The A, B,
and C jobs must be assigned to these machines. Since S has

∑
Cj ≤ ω, the total

completion time of all of the A, B, and C jobs is less than or equal to 6q. But this
can be attained only if all of these jobs have processing time 1 unit on the machine
to which it is assigned, which means that there is a matching.

The same reduction works also for R | prmt, d̄j |
∑

Cj since preemption cannot
reduce the

∑
Cj in the constructed instance.

The following theorem follows immediately from the previous lemma.
Theorem 5. R | prmt, d̄j |

∑
Cj and R | d̄j |

∑
Cj are both strongly NP-hard.

4. Extensions and conclusions. In this paper we presented a polynomial-time
algorithm for P | prmt, d̄j |

∑
Cj , and we showed that the more general R | prmt, d̄j |∑

Cj problem is strongly NP-hard. Note that our algorithm also solves the single
machine case (which had been solved by Smith (1956)); i.e., 1 | d̄j |

∑
Cj . Recently,

we learned that Sitters (2001) had independently shown that the R | prmt | ∑Cj
problem is strongly NP-hard. While Sitters’s result implies the strong NP-hardness
of R | prmt, d̄j |

∑
Cj , its proof is significantly more complex than ours.

The polynomial-time algorithm presented in this paper can be used to solve other
scheduling problems as well. Suppose that, instead of a deadline, each job j has a due
date dj , and the objective is to minimize the maximum lateness, where the lateness
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of a job is defined to be the difference between its completion time and its due date.
(In the 3-field notation, this problem is denoted by P | prmt | Lmax.) This problem
can be solved as follows. Parametrize on the maximum lateness. Assume Lmax = z,
and create for all jobs the deadlines dj + z. We then check if there is a feasible
schedule with this set of deadlines. The optimal value for the maximum lateness can
be obtained by conducting a binary search of z in a range between a lower and an
upper bound. Once the minimal value of z has been obtained, say z∗, we can use the
algorithm described in this paper to find a schedule that minimizes

∑
Cj . In this way

we can solve the problem of minimizing
∑

Cj subject to the constraint that Lmax is
minimum. Of course, the algorithm will also work for any Lmax greater than or equal
to z∗.

Appendix. This appendix contains the remaining iterations of Example 2.
Third iteration of OA (k = 2). The algorithm SA has to be applied now on

L̂ = 1, 4, 5, 6, 7, 8, 9, 2, 3.

Jobs 1 and 4 are inserted in the same way as they are inserted in Example 1. After
having put jobs 1 and 4 in, the partial schedule has job 1 processed during the interval
[0, 4], job 5 during the interval [0, 2], and job 4 during the interval [2, 10]. So f1 = 0,
f2 = 4, and f3 = 10. In the third iteration of this application of the scheduling
algorithm job 5 is considered. The two jobs with the smallest LST are jobs 6 and 7
with

LST6 = 0,

LST7 = 12.

Job 7 can be assigned to machine 3 with an idle time of two time units. Job 6 can be
assigned to machine 2 with a deficit of four time units. So δ = 4, and it is possible
to put job 5 (with processing time 10 − 2 = 8 and deadline 12) on machine 1 when
δ = 4. So after this iteration of the scheduling algorithm job 6 is processed during the
interval [0, 4] (and has a remaining processing time of 8), and job 5 is processed during
the interval [4, 12]. The machines are available at f1 = 4, f2 = 10, and f3 = 12.

In the next iteration the scheduling algorithm tries to put in job 6 (with a pro-
cessing time of 8). The two jobs with the smallest LST are jobs 7 and 8:

LST7 = 12,

LST8 = 13.

Putting in job 8 on machine 3 has an idle time of 1, and putting in job 7 on machine
2 has an idle time of 2. So δ = 0. Putting in job 6 on machine 1 is feasible. So job 6 is
processed during the interval [4, 12]. The machines are available at f1 = 10, f2 = 12,
and f3 = 12.

In the next iteration the scheduling algorithm tries to put in job 7 (with a pro-
cessing time of 13). The two jobs with the smallest LST are jobs 8 and 9:

LST8 = 13,

LST9 = 15.
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Both jobs 8 and 9 can be scheduled on machines 2 and 3 with idle times. Job 7 can
be scheduled on machine 1. The scheduling algorithm can complete the schedule in a
feasible manner.

The result of the application of the scheduling algorithm is that job 4 is completed
at 10, and job 4 is completed before any one of the jobs following it (i.e., Case (i) of
algorithm OA). The counter k is increased by 1, and the list L̄ remains the same; i.e.,

L̄ = 1, 4, 2, 3, 5, 6, 7, 8, 9.

Fourth iteration of OA (k = 3). The scheduling algorithm has to be applied to
the list

L̂ = 1, 4, 2, 5, 6, 7, 8, 9, 3.

Job 1 can be scheduled as usual. Job 4 has to be considered with f1 = f2 = 0 and
f3 = 4. Jobs 5 and 6 have the smallest LST:

LST6 = 0,

LST5 = 2.

Two time units of job 5 have to be processed on machine 1 during interval [0, 2]. Job
4 can be processed on machine 1 during interval [2, 10]. The remaining processing
time of job 5 is 8 and f1 = 0, f2 = 4, and f3 = 10. Job 2 is considered next. Jobs 5
and 6 again have the smallest LST:

LST6 = 0,

LST5 = 4.

Putting jobs 5 and 6 on machines 2 and 3 result in a total deficit of 6 + 4 = 10.
However, these deficits can be scheduled feasibly on machine 1. Job 6 can be processed
on machine 1 during the interval [0, 4] and job 5 during the interval [4, 10], implying
that job 2 can start at 10 and is completed at 15. The result of this application of
the scheduling algorithm is that the schedule is feasible but that job ik is completed
after some of the jobs in set (ik+1, . . . , in), namely jobs 5 and 6. So jobs 5 and 6 have
to be moved before job 2 (Case (ii) of OA). So

L̄ = 1, 4, 5, 6, 2, 3, 7, 8, 9.

Fifth iteration of OA (k = 3). The scheduling algorithm has to be applied to the
list

L̂ = 1, 4, 5, 6, 7, 8, 9, 2, 3.

But this is the same list as in the first iteration of the ordering algorithm. So the
schedule is feasible, and job 5 is completed no later than any of the jobs following it
(Case (i) of OA). So job 5 is fixed in the third position, its induced deadline remains
the same, L̄ remains the same, and k is increased by 1.

Sixth iteration of OA (k = 4). The scheduling algorithm has to be applied to the
list

L̂ = 1, 4, 5, 6, 7, 8, 9, 2, 3.
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Fig. 3. Partial schedule.

This L̂ is the same as in the previous iteration, and job 6 is again completed no
later than any of the jobs following it and is fixed in the fourth position. Its induced
deadline remains the same. L̄ remains the same and k is increased by 1.

Seventh iteration of OA (k = 5). The scheduling algorithm has to be applied to
the list

L̂ = 1, 4, 5, 6, 2, 7, 8, 9, 3.

The scheduling algorithm generates a feasible schedule with job 2 completed before
any one of the jobs following it (see Figure 3). The new induced deadline of job 2 is
d2(L̂) = 25. L̄ remains the same and k is increased by 1.

Eighth iteration of OA (k = 6). The scheduling algorithm has to be applied to
the list

L̂ = 1, 4, 5, 6, 2, 3, 7, 8, 9.

The ready times of the three machines, when trying to schedule job 3, are f1 = 12,
f2 = 12, and f3 = 15. When trying to put in job 3 the jobs with the smallest LST



1386 JOSEPH Y.-T. LEUNG AND MICHAEL PINEDO

are jobs 7 and 8:

LST7 = 12,

LST8 = 13.

Putting jobs 7 and 8 on machines 2 and 3 result in a deficit of 2 because of job 8.
So job 8 has to be scheduled on machine 1 during the interval [12, 14], and job 3 can
then be processed during the interval [14, 21]. So before going to the next step of the
scheduling algorithm the processing time of job 8 is updated and becomes 12, and its
LST is updated and becomes 15. The next step of the scheduling algorithm tries to
put in job 7, while f1 = 12, f2 = 15, and f3 = 21. The two jobs with the smallest
LST are jobs 8 and 9:

LST8 = 15,

LST9 = 15.

It turns out that job 7 cannot be feasibly scheduled. So the eighth iteration of the
ordering algorithm ends up in Case (iii). Between the two jobs that we tried to
schedule on machine 1 (namely jobs 7 and 9), job 7 has the earliest induced deadline.
So job 7 has to be put before job i6 = 3, i.e.,

L̄ = 1, 4, 5, 6, 2, 7, 3, 8, 9.

The k remains the same.
Ninth iteration of OA (k = 6). The scheduling algorithm has to be applied to the

list

L̂ = 1, 4, 5, 6, 2, 7, 8, 9, 3.

Applying the scheduling algorithm on this order results in a feasible schedule; i.e.,
it leads to Case (i) in algorithm OA. This implies that L̄ remains the same. The
induced deadline of job 7 has to be updated, but the update does not result in a
different deadline. The counter k is increased by 1.

Tenth iteration of OA (k = 7). The scheduling algorithm has to be applied to
the list

L̂ = 1, 4, 5, 6, 2, 7, 3, 8, 9.

The scheduling algorithm has to try to put in job 3. The times the machines become
available after completing the processing of the first six jobs are f1 = 12, f2 = 15,
and f3 = 25. There are two jobs listed after job 3 and

LST8 = 13,

LST9 = 15.

Both machines have a deficit. Machine 2 has a deficit of 2, and machine 3 has a deficit
of 10. However, both these deficits can be scheduled feasibly on machine 1, and job 3
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Fig. 4. Optimal schedule.

can be scheduled (feasibly) thereafter. This iteration of OA ends up in Case (ii). We
have to change L̄, and it now becomes

L̄ = 1, 4, 5, 6, 2, 7, 8, 9, 3.

The counter k remains the same.
The algorithm needs another two iterations: one for k = 7 and one for k = 8. In

the eleventh iteration (k = 7) job 8 is feasibly scheduled, and in the twelfth iteration
(k = 8) job 9 is feasibly scheduled. The optimal schedule is then obtained by putting
in job 3 on the machine that is first available (see Figure 4).
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Abstract. We deal with a criterion for deterministic context-free languages that was originally
formulated by Li and Vitányi [SIAM J. Comput., 24 (1995), pp. 398–410]. Their result—called the
KC-DCF lemma—relates Kolmogorov complexity to pushdown automata and works on a superset
of examples compared to traditional iteration and pumping lemmas. Sadly, their KC-DCF lemma
has a flaw. In this paper, we give a counterexample to the original KC-DCF lemma and also provide
a corrected version.
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First we settle some notation and give a quick introduction to Kolmogorov com-
plexity as far as it is needed for our result (for more details and applications of Kol-
mogorov complexity, see [LiVi97]). Let Σ be an alphabet with at least two distinct
symbols 0 and 1. For a word x = x1 · · ·xn ∈ Σ∗ we define

x$ := 1|bin(n)|0bin(n)x

as the self-delimiting code for x, where bin(n) is the binary representation of the
number n. In what follows, let U be a universal machine which expects some input of
the form p$q, p, q ∈ Σ∗ and then simulates the program p on input q. Now we define
the following for x, q ∈ Σ∗:

C(x|q) := min{|p| : U(p$q) = x, p ∈ Σ∗}
is the conditional Kolmogorov complexity of x with the additional information q, and

C(x) := min{|p| : U(p$) = x, p ∈ Σ∗}
is the Kolmogorov complexity of x (without additional information).

The following immediate consequences are stated without proof.
Proposition 1.
(i) C(x|q) ≤ C(x) ≤ |x|+O(1).
(ii) For any totally recursive function f : Σ∗ → Σ∗, we have

C(f(x)|q) ≤ C(x|q) +O(1).

(iii) C(x) ≤ C(q) + C(x|q) +O(min(log |x|, log |q|)).
For any natural number n = 0, 1, 2, . . . , we denote by n the nth word of Σ∗ in

lexicographic order. Further, we set lg(n) := |n|. Informally, the following proposition
states that any sufficiently large number m can be enclosed by the length of a number
r and by r’s much smaller Kolmogorov complexity.
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Proposition 2. For sufficiently large m, there always exists an r ∈ N with
lg(r) > m and C(r) < lg(lg(m)).

Proof. We choose t = lg(lg(m)) and r = f(f(f(t))), where f : N → N maps a
number n to the (unique) number n′ such that n′ is the word 1n+1. By applying
Proposition 1(ii), we get

C(r) ≤ C(t) +O(1) ≤ lg(t) +O(1) < t = lg(lg(m))

for sufficiently largem. On the other hand, ifm is large enough, we have f(lg(m)) > m
and lg(f(m)) > m. It follows that lg(r) > m.

We say that a word x ∈ Σ∗ is compressible iff C(x) < |x|; otherwise, it is incom-
pressible. Similarly, a number n ∈ N is compressible if the nth word in lexicographic
enumeration n is compressible. For n ∈ N there are only 2n− 1 many words of length
shorter than n. Therefore we have the following result.

Theorem 3 (incompressibility theorem). For each n ∈ N there exists at least
one incompressible word of length n. Hence, there exist infinitely many incompressible
words.

1. The KC-DCF lemma. For a language L ⊆ Σ∗ and a word x ∈ Σ∗, we
denote by x−1L := {v ∈ Σ : vx ∈ L} the set of words v that extend x to a word
in L. A context-free language L ⊆ Σ∗ is deterministic context-free if there exists a
deterministic pushdown automaton (dpda) that recognizes L. Sometimes an itera-
tion or pumping lemma can be applied in order to prove that a given context-free
language is not deterministic context-free. However, those lemmas are difficult to
handle. In [LiVi95] the authors use the incompressibility argument in order to give
a more intuitive, necessary criterion for deterministic context-free languages. Since
the formulation of their KC-DCF lemma is considerably complicated, they also derive
a weaker corollary which is easier to apply. Sadly, the formulation and the proof of
the KC-DCF lemma contain some mistakes that also affect the corollary and hence
invalidate them both. Before we give an alternative formulation for both the lemma
and its corollary, we will discuss the original formulation of the corollary. By giving
a counterexample, we disprove the original corollary and—consequently—the original
KC-DCF lemma.

Let x, y ∈ Σ∗ and c be any constant, and let ω be a recursive sequence over
Σ∗. The idea is to repeat y in the input of a dpda that recognizes L, while limiting
the amount of information that the dpda keeps on its stack. Eventually, too much
information is lost in order to properly unwind the stack. Li and Vitányi’s corollary
of the KC-DCF lemma states the following: There exists a constant c′ such that, for
u, v, w ∈ Σ∗, where u is a suffix of the left-infinite word · · · yyx and v is a prefix of ω,
the following three conditions imply C(w) ≤ c′:

(1) C(v|puv′) ≤ c for all prefixes v′ of v and programs puv′ that list (uv
′)−1L in

lexicographic order;
(2) C(w|puv) ≤ c for all programs puv that list (uv)−1L in lexicographic order;
(3) C(v) ≥ 2 · lg(lg(|u|)).
Remark. In [LiVi95], condition (1) is restricted to only the prefix v′ = ε as the

empty word, omitting all other prefixes of v. However, then the corollary is not a
direct consequence of the original KC-DCF lemma anymore, since it will not suffice
in order to reconstruct all required configurations of the dpda in the corresponding
condition of the lemma. However, this is not the essential mistake in [LiVi95] (which
we point out later in our proof of the KC-DCF lemma). Condition (1) above yields
a statement which is logically implied by the KC-DCF lemma and its corollary. The
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following counterexample disproves this statement and therefore the original KC-DCF
lemma and its corollary.

We show now that there exist deterministic context-free languages L and u, v, w ∈
Σ∗ satisfying (1), (2), (3), but C(w) ≥ c′ for any constant c′.

Example 1. Set u = 02n, v = 1n, w = 0n, and L = {0n1m0k : n = m + k}.
Now, for all prefixes v′ of v, v is the first half of the lexicographically first word in
(uv′)−1L which is all 1, while w is the lexicographically first word in (uv)−1L which
is all 0. Thus (1) and (2) are satisfied. Now let c′ > 0 be any constant, and choose
an incompressible n with C(w) > c′. If n is sufficiently large, we get C(v) > log |u|
and therefore (3). However, L is obviously deterministic context-free.

From now on we assume that L ⊆ Σ∗ is an arbitrary nontrivial deterministic
context-free language, and that A is a dpda that recognizes L. Without loss of
generality (see [Ha78]), we assume that A always reads its entire input. Also, whenever
we don’t explicitly mention the initial configuration, we assume that the dpda A starts
on the input with its initial state and with an empty stack.

The following proposition is already implicitly used in [LiVi95].

Proposition 4. Given any x, y ∈ Σ∗, there exists a constant c0 ∈ N such that the
following proposition holds. Let r be some arbitrary positive integer, and let u ∈ Σ∗

be any suffix of the (left-infinite) word · · · yyx such that, after processing u, the dpda’s
stack size is c0 + k for some k ≥ 0. Then there exists another suffix u′ of · · · yyx with
length |u′| = r+ s for some s ≤ c0 such that, after the inputs u and u′ are processed,
the state of A is the same for each, and the segment of the k topmost stack symbols
is also the same in each case.

The proof is rather technical but straightforward and is therefore omitted here.
Also, the proof is already sketched in [LiVi95].

We will now proceed directly with a corrected version of the KC-DCF lemma.
For v, v1, v2 ∈ Σ∗, we call v1, v2 a splitting of v iff v1v2 = v.

Proposition 5 (KC-DCF lemma, corrected). Let x, y ∈ Σ∗ and c be a constant.
Then there exists a constant c′ with the following property: Let u, v, w ∈ Σ∗, where u
is a suffix of the left-infinite word · · · yyx. Then the following three conditions imply
C(w) ≤ c′:

(i) C(v′′|k$q) ≤ c for all splittings v′v′′ = v. Here, k, q is any pair of stack and
state such that, starting with k, q on input v′′, the behavior of A is essentially
the same as when starting from the configuration after processing uv′ and
then continuing with v′′.

(ii) C(w|k$q) ≤ c, where k and q are stack and state after processing uv.
(iii) C(v) ≥ 2 · lg(lg(|u|)).
In (i), “essentially the same behavior” of the dpda A on input v′′ means that, by

observing only the dpda’s state, its current position in v′′, and its operations on the
topmost stack symbol—while ignoring the rest of the stack(!)—the observed sequences
are the same each time, whether the dpda started with k, q as stack and state or with
the stack and state reached after processing uv′.

Proof of the KC-DCF lemma. Let c0 be the constant from Proposition 4. We
distinguish two cases for the pairs (u, v). In the proof in [LiVi95], infinitely many pairs
of (u, v) have been missed due to an improper formulation of the defining conditions
for the two different cases. This is also the reason why our conditions in the KC-DCF
lemma are different.

Case 1. Assume that for all but finitely many pairs (u, v) which satisfy (i) and
(iii) the size of the stack shrinks below c0 during processing of the v-part of input uv.
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Then there exists a constant m such that, for each pair (u, v), the stack has size less
than m in at least one step i during processing of v. Let v′ be the the part of v which
has already been read in step i, and let K(i) be the configuration (i.e., the complete
stack, state, and input position) in step i. Since the stack size is bounded, K(i) can
be described with a finite number of symbols.

Now let v′′ be the unique word with v′v′′ = v. Having K(i), v′′ can be recon-
structed with only finitely many additional symbols by using condition (i). The same
holds true for the complete stack and the state after processing uv: In order to re-
construct them, we just start with the configuration K(i) but take the previously
reconstructed v′′ as input. It follows that any word w which satisfies (ii) can be con-
structed with only c additional symbols. Because K(i)’s stack size is bounded by c0,
it follows that C(w) ≤ c′ for some other constant c′ = c0 +O(1).

Case 2. Now we show that Case 1 always holds. We assume that for infinitely
many pairs (u, v) which satisfy (i) and (iii) the stack size will always be larger than
c0 during processing of the v part of the input.

Because of (i), for each u there exist only finitely many appropriate v. From the
assumption that there are infinitely many such pairs (u, v) it follows then that we
can choose u to be arbitrarily long and still find a v such that the stack size remains
larger than c0 while processing v on input uv. Using Proposition 2, we choose |u|
large enough such that there exists a number r ∈ N with lg(r) > |u| and

C(r) < lg(lg(|u|)).
Using Proposition 4, we can find s ≤ c0 such that, after processing the suffix u′ of
· · · yyx with length |u′| = r + s, the dpda A will be in the same state as it has after
processing u. In addition, the segment of the stack above position c0 after processing u
will also be the topmost segment after processing u′. Because the stack doesn’t shrink
below c0, the observable behavior during processing v on input uv is the same as on
input u′v. Hence, (i) implies that v can be reconstructed with finitely many additional
symbols when only u′ is known. Because s is bounded, we have C(u′) ≤ C(r)+O(1).
For sufficiently large u we get

C(u′) < lg(lg(|u|)).
Putting it all together, we get

C(v) ≤ C(u′) +O(1)

≤ lg(lg(|u|)) +O(1).

This contradicts condition (iii).
Since the KC-DCF lemma itself is difficult to apply, we also give the corresponding

corrected formulation of its corollary (see [LiVi95]). We say that a program p decides
L1 for L2 iff on input u ∈ L2 the program p terminates and decides u ∈ L1 correctly.

Corollary 6. Let L ⊆ Σ∗ be a deterministic context-free language, x, y ∈ Σ∗,
and let c be a constant. Then there exists a constant c′ with the following property: If
u, v, w ∈ Σ∗, where u is the suffix of · · · yyx, then the following three conditions imply
C(w) ≤ c′:

(i) C(v′′|puv′) ≤ c for all splittings v′v′′ = v and for all programs puv′ that decide
(uv′)−1L for prefix{v′′};

(ii) C(w|puv) ≤ c for all programs puv that list (uv)−1L in lexicographic order;
(iii) C(v) ≥ 2 · lg(lg(|u|)).
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Proof. Let A be a dpda that recognizes L. If L = ∅ or L = Σ∗, nothing has to be
shown. Otherwise the KC-DCF lemma (Proposition 5) holds, and we can show that
under the given premises, (i) and (ii) from the corollary imply (i) and (ii) from the
KC-DCF lemma.

Assume that, under the given premises, u, v satisfy (i) from the corollary. Let
v′v′′ = v, and let k, q be the required additional information from Proposition 5(i).
Now, if by using only finitely many additional symbols we can construct a program
puv′ that decides (uv′)−1L for prefix{v′′}, then the bound in condition (i) from the
corollary induces the bound in Proposition 5(i). This construction of puv′ can be
obtained by observing the dpda A on input v′′ when starting with state q and stack k.

With a similar argument, (ii) from above implies Proposition 5(ii).
Though the original KC-DCF lemma and its corollary have been weakened in

order to make them correct, they still can be applied for several nondeterministic
context-free languages without much additional effort. We next give two examples
taken from [LiVi95].

Example 2. The set of palindromes L = {x ∈ Σ∗ : x = x−1} is not deterministic
context-free.

Proof. Set y = 0, x = 1, u = 0n1, and v = 0n. For an incompressible n we have

C(v) +O(1) = C(n) ≥ lg(n) = lg(|u| − 1),

implying Corollary 6(iii) for sufficiently large n. Let v′v′′ = v; then v′′ is the lexi-
cographically first word in (uv′)−1L. Since all v are all 0, (i) is also satisfied. The
lexicographically first word in (uv)−1L starting with 1 is 10n; hence w = 10n satisfies
(ii). On the other hand,

C(w) +O(1) = C(n) ≥ lg(n),

and hence L cannot be deterministic context-free.
Example 3. L = {xy ∈ {0, 1}∗ : |x| = |y|, y contains at least one 1} is not

deterministic context-free.
Proof. Set y = 0, x = 1, u = 0n1, with |u| even, and v = 0n+1. For incompressible

n we have

C(v) +O(1) = C(n) ≥ lg(n) = lg(|u| − 1),

thus implying Corollary 6(iii) for sufficiently large n. Let v′v′′ = v. We need only
one bit to code the information, whether |v′| is even or odd. If |v′| is even (odd),
then v′′ is the shortest word of even (odd) length that is all 0 and does not belong to
(uv′)−1L. This shows that (i) is also satisfied. The lexicographically first word which
does not belong to (uv)−1L and which starts with 1 is 102n+3. Thus with w = 102n+3,
condition (ii) is satisfied, too. On the other hand, we have

C(w) +O(1) = C(n) ≥ lg(n),

and hence L cannot be deterministic context-free.
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Abstract. We consider the problem of finding a long, simple path in an undirected graph.
We present a polynomial-time algorithm that finds a path of length Ω

(
(logL/ log logL)2

)
, where L

denotes the length of the longest simple path in the graph. This establishes the performance ratio
O

(
n(log logn/ logn)2

)
for the longest path problem, where n denotes the number of vertices in the

graph.
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1. Introduction. Given an unweighted, undirected graph G = (V,E) with n =
|V |, the longest path problem is to find the longest sequence of distinct vertices v1 · · · vk
such that vivi+1 ∈ E.

This is a classical optimization problem; the Hamiltonian path problem is a special
case of it and appears in Karp’s original list of NP-complete problems [8]. While today
the approximability of most of these problems is well understood, the longest path
problem has remained elusive, and notoriously so [5]: In spite of a considerable body
of research the gap between upper and lower bounds is very wide.

Previous work. The first approximation algorithms for longest path are due to
Monien [9] and Bodlaender [3], both finding a path of length Ω(logL/ log logL) in a
graph with longest path length L.

A natural and harder variant of the problem is to find a path of length logn if
it exists. Papadimitriou and Yannakakis [10] conjectured that this could be done in
polynomial time, which was confirmed by Alon, Yuster, and Zwick [1], introducing
the important method of color-coding. If the longest path has length O(log n), then
their algorithm finds it (or, rather, it finds a longest path); else it finds a path of
length Ω(logn). Especially, the algorithm finds an Ω(logL)-path and thus has the
performance ratio O

(
n/ log n

)
, which is the best ratio for the longest path problem

known prior to the present paper.
Motivated by the weakness of these bounds for general graphs the problem has

received additional study for restricted classes of graphs. In Hamiltonian graphs the
algorithm of Vishwanathan [11] finds a path of length O

(
(log n/ log log n)2

)
. In sparse

Hamiltonian graphs, Feder, Motwani, and Subi [5] find even longer paths. Moreover,
they prove the following remarkable result: If a graph with vertices of degree at most
3 has a cycle of length r, then one can find in polynomial time a cycle of length at
least rc, where c = 1

2 log3 2.
The hardness results for this problem are mainly due to Karger, Motwani, and

Ramkumar [7]: The longest path problem does not belong to APX unless P = NP,

and it cannot be approximated within 2log
1−ε n unless NP ⊆ DTIME(2O(log1/ε n)

)
for
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any ε > 0. More recently, it was shown that for directed graphs, the problem admits
stronger lower bounds [2].

This paper. We present a polynomial-time algorithm that finds a path of length
Ω
(
(logL/ log logL)2

)
in a graph with longest path length L. Since L < n = |V |, this

corresponds to a performance ratio of order

O

(
n(log log n)2

log2 n

)
.(1.1)

The main idea of our algorithm is a new graph decomposition which forms the basis of
a recursive procedure. We find a cycle C of length logn/ log log n, using the algorithm
from [3], remove C, and continue recursively in the resulting connected components.
This decomposes the graph into a number of disjoint cycles of sufficient length which
can be assembled into a long path.

The performance ratio (1.1) was obtained earlier by Vishwanathan [11] but only
for Hamiltonian graphs.

For bounded degree graphs, we can improve the ratio to O
(
n log log n/ log2 n

)
.

For 3-connected graphs, we establish the performance ratio (1.1) for the longest cycle
problem, a variant of the problem that also requires v1vk ∈ E.

2. Paths and cycles. In what follows, we consider a connected graph G =
(V,E) with n = |V | vertices and e = |E| edges. We write G[W ] for the graph induced
by the vertex set W .

The length of a path and a cycle is its number of edges. The length of a cycle C is
denoted l(C). A k-cycle is a cycle of length k, and a k+-cycle is a cycle of length k or
larger. A k-path and k+-path are defined similarly. For vertices x and y, an xy-path
is a (simple) path from x to y. If P is a path containing u and v, we write P [u, v] for
the subpath from u to v. We let LG(v) denote the length of the longest path from a
vertex v in the graph G. The path length of G is maxv∈V LG(v).

We need the following result: Theorem 5.3(i) of [3].
Theorem 1 (Bodlaender). Given a graph, two of its vertices s, t, and an integer

k, one can find a k+-path from s to t (if it exists) in time O
(
(2k)!22kn+ e

)
.

Corollary 1. Given a graph, one of its vertices s, and an integer k, one can
find a k+-cycle through s (if it exists) in time O

(
((2k)!22kn+ e)n

)
.

Proof. For all neighbors t of s, apply the theorem on the graph with the edge st
removed.

We also need the following easy lemma.
Lemma 1. If a connected graph contains a path of length r, then every vertex is

an endpoint of a path of length at least 1
2r.

Proof. Given vertices u, v ∈ V , let d(u, v) denote the length of the shortest path
between u and v.

Let P = p0 · · · pr be a path, and let v be a vertex. Find i minimizing d(pi, v).
By minimality there is a path Q from v to pi that contains no other vertices from P .
Now either QP [pi, pr] or QP [pi, p0] has length at least

1
2r.

2.1. Decomposition into cycles. The next lemma is central to our construc-
tion and describes the graph decomposition that underlies our recursive algorithm. It
formalizes the following observation: Assume that a vertex v originates a long path
P and v lies on a cycle C. Then the removal of C decomposes G into connected
components, one of which must contain a large part of P .
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Fig. 1. Statement 1 of Lemma 2. The path P = vp1 · · · pr continues in the component W . We
assume that v does not lie on a large cycle. This means that an arbitrary path Q from v’s neighbor
u must intersect P “early”; i.e., QP [pi, pr] is long.

Pretending for a moment that our algorithm knew which component this is, we
could continue the decomposition in it, recursively removing cycles until P is ex-
hausted. In the end, we would have produced a long string of connected cycles.
Especially, this string contains a path (using at least half the vertices of each cycle)
that will be longer than the length of each individual cycle. The gist of this is that if
we can find long cycles in graphs (like with Bodlaender’s algorithm), then with our
decomposition we can find even longer paths.

The lemma needs to distinguish between two cases, depending on whether or not
v lies on a large cycle.

Lemma 2. Assume that a connected graph G contains a simple path P of length
LG(v) > 1 originating in vertex v. Then there exists a connected component G[W ] of
G[V − v] such that the following holds:

1. If G[W + v] contains no k+-cycle through v, then every neighbor u ∈W of v
is the endpoint of a path of length

LG[W ](u) ≥ LG(v)− k.

2. If C is a cycle in G[W +v] through v of length l(C) < LG[W+v](v), then there
exists a connected component H of G[W − C] that contains a neighbor u of
C−v in G[W +v]. Moreover, every such neighbor u is the endpoint of a path
in H of length

LH(u) ≥ LG(v)
2l(C)

− 1.

Proof. Let r = LG(v) and P = p0 · · · pr, where p0 = v. Note that P [p1, pr] lies
entirely in one of the components G[W ] of G[V − v].

First consider statement 1; see Figure 1. Let u ∈ W be a neighbor of v. Since
G[W ] is connected, there exists a path Q from u to some vertex of P . Consider such a
path. The first vertex pi of P encountered on Q must have i < k, since otherwise the
three paths vu, Q[u, pi], and P [p0, pi] form a k

+-cycle. Thus the path Q[u, pi]P [pi, pr]
has length at least r − k + 1 > r − k.

We proceed to statement 2; see Figure 2. Consider any cycle C in G[W + v]
through v. We will show that depending on how often P intersects C, there exists a
long subpath in one of the components of G[W − C]. The length of this subpath is
inversely proportional to the number of intersections, which could be no more than
the length of C.

Case 1. First assume that P ∩ C = v so that one component H of G[W − C]
contains all of P except v. Let N be the set of neighbors of C − v in H. First note
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Fig. 2. Statement 2 of Lemma 2. Here we assume that v does lie on a large cycle C. In Case 1
(left) the path P = vp1 · · · pr does not intersect C after it leaves v. Thus P [p1, pr] lies entirely in a
component H of W − C. Any neighbor u ∈ N of C in this component must be the head of a long
path using at least half of P [p1, pr]. In Case 2 (right) the path P intersects C in several places.
Consider the largest section of P that lies entirely in a component H of W − C, here shown as a
“loop” starting after pij and ending before pij+1 . Any neighbor u ∈ N of C in this component must
be the head of a long path using at least half of the “loop.”

that N is nonempty, since G[W ] is connected. Furthermore, the path length of H is
at least r − 1, so Lemma 1 gives LH(u) ≥ (r − 1)/2 for every u ∈ N .

Case 2. Assume instead that |P ∩ C| = s > 1. Enumerate the vertices on P
from 0 to r and let i1, . . . , is denote the indices of vertices in P ∩ C, in particular
i1 = 0. Let is+1 = r. An averaging argument shows that there exists j such that
ij+1 − ij ≥ r/s. Consequently, there exists a connected component H of G[W − C]
containing a simple path of length r/s− 2. At least one of the ijth or ij+1th vertices
of P must belong to C−v, so the set of neighbors N of C−v in H must be nonempty.
As before, Lemma 1 ensures LH(u) ≥ r/2s− 1 for every u ∈ N , which establishes the
bound after noting that s ≤ l(C).

3. Result and algorithm. The construction in this section and its analysis
establishes the following theorem, accounting for the worst-case performance ratio
of (1.1) as claimed in the introduction.

Theorem 2. If a graph contains a simple path of length L, then we can find a
simple path of length

Ω

(( logL

log logL

)2
)

in polynomial time.
We first give a brief overview of the algorithm; the next two sections will provide

the details.
Assume for simplicity that the input graph is connected; if not, then we can

iterate the algorithm over each connected component of the input graph and return
the longest path found.

Pick any vertex v. Lemma 1 ensures that v is the head of a path of length at
least r > L/2. In the next sections we will pretend that we know the value

k =

⌈
2 log r

log log r

⌉
;

but this is not a restriction since we can (in polynomial time) run the algorithm for
every value of k = 6, . . . , 
2 log n/ log log n� and return the longest path found.
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Given v and k we will construct a tree Tk(G, v) as detailed in section 3.1; this tree
will describe a recursive decomposition of the input graph G into paths and cycles.
Finally, we find a long (weighted) path in Tk(G, v). This path will describe a path in
G which will have the desired length as shown in section 3.2.

In summary, assuming a connected input graph, the algorithm proceeds as follows:
1. Pick any vertex v ∈ G.
2. For every k = 6, . . . , 
2 log n/ log log n� perform the following two steps and
return the longest path found:

3. Construct the tree Tk(G, v) as detailed in section 3.1.
4. Find a longest weighted path in Tk(G, v) and return the path in G described
by it, as detailed in section 3.2.

Steps 3 and 4 take polynomial time (see below), so the entire algorithm takes
polynomial time.

3.1. Construction of the cycle decomposition tree. Given a vertex v in G,
our algorithm constructs a node-weighted tree Tk = Tk(G, v), rooted at v, called the
cycle decomposition tree. Every node of Tk is either a singleton or a cycle node: A
singleton node corresponds to a single vertex u ∈ G and is denoted 〈u〉, while a cycle
node corresponds to a cycle C with a specified vertex u ∈ C and is denoted 〈C, u〉.
Every singleton node has unit weight, and every cycle node 〈C, u〉 has weight 1

2 l(C).
The tree Tk(G, v) is constructed as follows. Initially, Tk contains a singleton node

〈v〉, and a call is made to the following procedure with arguments G and v:
1. [Iterate over components:] For every maximal connected component G[W ] of
G[V − v], execute step 2.

2. [Find cycle:] Search for a k+-cycle through v in G[W + v] using Theorem 1.
If such a cycle C is found, then execute step 3; otherwise, execute step 5.

3. [Insert cycle node:] Insert the cycle node 〈C, v〉 and the tree edge 〈v〉〈C, v〉.
For every connected component H of G[W − C] execute step 4.

4. [Recurse:] Choose an arbitrary neighbor u ∈ H of C − v, and insert the
singleton node 〈u〉 and the tree edge 〈u〉〈C, v〉. Then, recursively execute
step 1 to compute Tk(H,u).

5. [Insert singleton node and recurse:] Pick an arbitrary neighbor u ∈ G[W + v]
of v, insert the node 〈u〉 and the tree edge 〈v〉〈u〉, and recursively execute
step 1 to compute Tk

(
G[W ], u

)
.

Note that each recursive step constructs a tree that is connected to other trees by
a single edge, so Tk is indeed a tree. Also note that the ancestor of every cycle node
must be a singleton node. The root of Tk is 〈v〉.

To see that the running time of this procedure is polynomial, first note that step 2
is polynomial because of the corollary to Theorem 1. The number of recursive steps
is linear, since every step inserts a node into Tk, which is clearly of linear size after
the procedure.

3.2. Paths in the cycle decomposition tree. Our algorithm proceeds by
finding a path of greatest weight in Tk. This can be done in linear time by depth first
search. The path found in Tk represents a path inG if we interpret paths through cycle
nodes as follows. Consider a path in Tk through a cycle node 〈C, u〉. Both neighbors
are singleton nodes, so we consider the subpath 〈u〉〈C, u〉〈v〉. By construction, v is
connected to some vertex w ∈ C with w �= u. One of the two paths from u to w in C
must have length at least half the length of C; call it P . We will interpret the path
〈u〉〈C, u〉〈v〉 in Tk as a path uPv in G. If a path ends in a cycle node 〈C, u〉, we may
associate it with a path of length l(C)−1 by moving along C from u in any of its two
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directions. Thus a path of weight m in Tk from the root to a leaf identifies a path of
length at least m in G.

We need to show that Tk for some small k has a path of sufficient length.
1

Lemma 3. If G contains a path of length r ≥ 28 starting in v, then Tk = Tk(G, v)
for

k =

⌈
2 log r

log log r

⌉

contains a weighted path of length at least 1
8k

2 − 1
4k − 1.

Proof. We follow the construction of Tk in section 3.1.
We need some additional notation. For a node x = 〈w〉 or x = 〈C,w〉 in Tk

we let L(x) denote the length of the longest path from w in the component G[X]
corresponding to the subtree rooted at x. More precisely, for every successor y of x
(including y = x), the set X contains the corresponding vertices w′ (if y = 〈w′〉 is a
singleton node) or C ′ (if y = 〈w′, C ′〉 is a cycle node).

Furthermore, let S(n) denote the singleton node children of a node n, and let
C(n) denote its cycle node children. Consider any singleton node 〈v〉.

Lemma 2 asserts that

L(v) ≤ max
{
max
w∈S〈v〉

L(w) + k, max
〈C,v〉∈C〈v〉
w∈S〈C,v〉

(
2L(w) + 2

)
l(C)

}
.(3.1)

Define n(v) = w if 〈w〉 maximizes the right-hand side of the inequality (3.1), and
consider a path Q = 〈x0〉 · · · 〈xt〉 from 〈v〉 = 〈x0〉 described by these heavy nodes.
To be precise, we have either n(xi) = xi+1 or n(xi) = xi+2; in the latter case, the
predecessor of 〈xi+2〉 is a cycle node.

We will argue that the gaps in the sequence

L(x0) ≥ L(x1) ≥ · · · ≥ L(xt)

cannot be too large due to the inequality above. This, combined with the fact that
L(xt) must be small (otherwise, we are done), implies that Q contains a lot of cycle
nodes or even more singleton nodes.

Let s denote the number of cycle nodes on Q. Since every cycle node has weight
at least 1

2k the total weight of Q is at least
1
2sk + (t− s) = s( 12k − 1) + t.

Consider a singleton node that is followed by a cycle node. There are s such
nodes; we will call them cycle parents. Assume 〈xj〉 is the first cycle parent node.
Thus, according to the first part of Lemma 2, its predecessors 〈x0〉, . . . , 〈xj〉 satisfy
the relation L(xi+1) ≥ L(xi)− k, so

L(xj) ≥ r − jk ≥ r − 1
8k

3 ≥ 7
8r,

since j ≤ t ≤ 1
8k

2 (otherwise, we are finished) and r ≥ k3.
From the second part of Lemma 2 we have

L(xj+2) ≥ 7r

16l(C)
− 1 ≥ r

k2
,

1All logarithms are to the base 2, and the constants involved have been chosen aiming for sim-
plicity of the proof rather than optimality.
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where we have used l(C) ≤ 1
4k

2 (otherwise, we are finished) and r ≥ 4
3k

2.
This analysis may be repeated for the subsequent cycle parents as long as their

remaining length after each cycle node passage is at least k3. Note that Q must pass
through as many as s′ ≥ 
 14k − 1� cycle nodes before

r

k2s′ < k
3,

at which point the remaining path may be shorter than k3. Thus we either have
visited s ≥ s′ cycle nodes, amounting to a weighted path Q of length at least

s( 12k + 1) ≥ 1
8k

2 − 1
4k − 1

(remembering that any two consecutive cycle nodes must have a singleton node in
between), or there are at most s < s′ cycle nodes on Q. In that case there is a tail
of singleton nodes starting with some L(x) ≥ k3. Since L(xj) ≤ L(xj+1) + k for the
nodes on the tail, the length of the tail (and thus the weight of Q) is at least k2.

It remains to check that the path found by our algorithm satisfies the stated
approximation bound: For the right k, the preceding lemma guarantees a weighted
path in Tk(G, v), and hence a path in G, of length

k2

8
− k
4
− 1 = Ω

(( log r

log log r

)2
)
= Ω

(( logL

log logL

)2
)

because r ≥ 1
2L by Lemma 1. This finishes the proof of Theorem 2.

4. Extensions.

4.1. Bounded degree graphs. As in [11], the class of graphs with their maxi-
mum degree bounded by a constant admits a relative log logn-improvement over the
performance ratio shown in this paper. All paths of length logn can be enumerated
in polynomial time for these graphs. Consequently, we can replace the algorithm from
Theorem 1 by an algorithm that efficiently finds cycles of logarithmic length or larger
through any given vertex if they exist.

Proposition 1. If a constant degree graph contains a simple path of length L,
then we can find a simple path of length

Ω

(
log2 L

log logL

)

in polynomial time.
This gives the performance ratio O

(
n log log n/ log2 n

)
for the longest path prob-

lem in constant degree graphs.

4.2. 3-connected graphs. Bondy and Locke [4] have shown that every 3-
connected graph with path length L must contain a cycle of length at least 2L/5.
Moreover, their construction is easily seen to be algorithmic and efficient. This im-
plies the following result on the longest cycle problem.

Proposition 2. If a 3-connected graph contains a simple cycle of length L, then
we can find a simple cycle of length

Ω

(( logL

log logL

)2
)
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in polynomial time.
This gives the performance ratio O

(
n(log log n/ log n)2

)
for the longest cycle prob-

lem in 3-connected graphs. Note that for 3-connected cubic graphs, [5] shows a con-
siderably better bound.

Acknowledgments. We thank Andrzej Lingas for bringing [11] to our attention
and Gerth Stølting Brodal for commenting on a previous version of this paper.

Note added in proof. Recently, Gabow and Nie [6] have improved the bound
in Corollary 1 to O(e) + 2O(k)n log n. As a consequence, the bounds in Theorem 2
and Proposition 2 are improved to Ω(log2 L/ log logL), and the performance ratio for
longest path becomes O

(|V | log log |V |/ log2 |V |).
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1. Introduction. Metrical task systems (MTSs), introduced by Borodin, Linial,
and Saks [11], can be described as follows: A server in some internal state receives
tasks that have a service cost associated with each of the internal states. The server
may switch states, paying a cost given by a metric space defined on the state space,
and then pays the service cost associated with the new state.

MTSs have been the subject of a great deal of study. A large part of the research
into online algorithms can be viewed as a study of some particular MTS. In modelling
some of these problems as MTSs, the set of permissible tasks is constrained to fit the
particulars of the problem. In this paper we consider the original definition of MTSs,
where the set of tasks can be arbitrary.

A deterministic algorithm for any n-state MTS with a competitive ratio of 2n−1
is given in [11], along with a matching lower bound for any metric space.

The randomized competitive ratio of the MTS problem is not as well understood.
For the uniform metric space, where all distances are equal, the randomized competi-
tive ratio is known to within a constant factor and is Θ(logn) [11, 16]. In fact, it has
been conjectured that the randomized competitive ratio for MTS is Θ(logn) in any
n-point metric space. Previously, the best upper bound on the competitive ratio for
arbitrary n-point metric space was O(log5 n log log n) due to Bartal et al. [3] and Bar-
tal [2]. The best lower bound for arbitrary n-point metric space is Ω(log n/ log log n)
due to Bartal, Bollobás, and Mendel [4] and Bartal et al. [5], improving the previous
lower bounds of Karloff, Rabani, and Ravid [18] and Blum et al. [10].

As observed in [18, 10, 1], the randomized competitive ratio of the MTS is con-
ceptually easier to analyze on “decomposable spaces”: spaces that have a partition
to subspaces with a small diameter compared to that of the entire space. Bartal [1]
introduced a class of decomposable spaces called hierarchically well-separated trees
(HSTs). Informally, a k-HST is a metric space having a partition into subspaces such
that (i) the distances between the subspaces are all equal; (ii) the diameter of each
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subspace is at most 1/k times the diameter of the whole space; and (iii) each subspace
is recursively a k-HST.

Following [1, 3], we obtain an improved algorithm for HSTs. In order to re-
duce the MTS problem on arbitrary metric space to an MTS problem on a HST
we use probabilistic embedding of metric spaces into HSTs [1]. It is shown in [2]
that any n-point metric space has probabilistic embedding in k-HSTs with distortion
O(k log n log log n). Thus, an MTS problem on an arbitrary n-point metric space can
be reduced to an MTS problem on a k-HST with overhead of O(k log n log log n) [1].

Our algorithm for HSTs follows the general framework given in [10] and explicitly
formulated in [20, 3], where the recursive structure of the HST is modelled by defining
an unfair metrical task system (UMTS) problem [20, 3] on a uniform metric space.
In a UMTS problem, associated with every point vi of the metric space is a cost
ratio ri. We charge the online algorithm a cost of rici for dealing with the task
(c1, . . . , ci, . . . , cn) in state vi, which multiplies the online costs for processing tasks
in that point. Offline costs remain as before. The cost ratio ri roughly corresponds to
the competitive ratio of the online algorithm in a subspace of the HST. For UMTSs
on uniform metric spaces, tight upper bounds are known only for two point spaces
[10, 20, 3] and for n-point spaces with equal cost ratios [3]. A tight lower bound is
known for any number of points and any cost ratios [4].

In this paper we introduce a general notation and technique for combining algo-
rithms for UMTSs on hierarchically decomposable metric spaces. This technique is
an improvement on the previous methods [10, 20, 3]. Using this technique, we obtain
randomized algorithms for UMTSs on the uniform metric space that are better than
the algorithm of [3]. Using the algorithm for UMTSs on uniform metric space and
the new method for combining algorithms, we obtain O(log n log log n)-competitive al-
gorithms for MTS on HST spaces, which implies an O((log n log log n)2)-competitive
randomized algorithm for MTSs on any metric space.

We also study the weighted caching problem. Weighted caching is the paging
problem where there are different costs to fetch different pages. Deterministically, a
competitive ratio of k is achievable [12, 23], with a matching lower bound following
from the k-server bound [19]. No randomized algorithm is known to have a compet-
itive ratio better than the deterministic competitive ratio for general metric spaces.
However, in some special cases progress has been made. Irani [15] has shown an
O(log k)-competitive algorithm when page fetch costs are one of two possible values.
Blum, Furst, and Tomkins [9] have given an O(log2 k)-competitive algorithm for ar-
bitrary page costs when the total number of pages is k + 1; they also present a lower
bound of Ω(log k) for any page costs. As the weighted caching problem on k+1 pages
with cache size k is a special case of MTS on star-like metric spaces, we are able to
obtain an O(log k)-competitive algorithm for this case, improving [9]. This is tight
up to a constant factor.

Outline of the paper. In section 2 the MTS problem is formally defined, along with
several technical conditions that later allow us to combine algorithms for subspaces
together. In section 3 we deal with the main technical contribution of our paper.
We introduce a novel technique to combine algorithms for subspace into an algorithm
for the entire space. Section 4 is devoted to introducing algorithms for UMTSs on
uniform spaces. In section 5 we give the applications mentioned above by combining
the algorithms of section 4.

2. Preliminaries. UMTSs [20, 3] are a generalization of MTSs [11]. A UMTS
U = (M ; (ru)u∈M ; s) consists of a metric space M with a distance metric dM , a
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sequence of cost ratios ru ∈ R
+ for u ∈M , and a distance ratio s ∈ R

+.

Given a UMTS U , the associated online problem is defined as follows. An online
algorithm A occupies some state u ∈ M . When a task arrives the algorithm may
change state to v. A task is a tuple (cx)x∈M of nonnegative real numbers, and the
cost for algorithm A associated with servicing the task is s ·dM (u, v)+ rvcv. The cost
for A associated with servicing a sequence of tasks σ is the sum of costs for servicing
the individual tasks of the sequence consecutively. We denote this sum by costA(σ).
An online algorithm makes its decisions based only upon tasks seen so far.

An offline player is defined that services the same sequence of tasks over U . The
cost of an offline player, if it were to do exactly as above, would be dM (u, v) + cv.
Thus, the concept of unfairness, the costs for doing the same thing, are different.

Given a sequence of tasks σ we define the work function [13] at v, wσ,U (v), to be
the minimal cost, for any offline player, to start at the initial state in U , deal with
all tasks in σ, and end up in state v. We omit the use of the subscript U if it is
clear from the context. Note that for all u, v ∈ M , wσ(u) − wσ(v) ≤ dM (u, v). If
wσ(u) = wσ(v) + dM (u, v), u is said to be supported by v. We say that u ∈ M is
supported if there exists some v ∈M such that u is supported by v.

We define costOPT(σ) to be minv wσ(v). This is simply the minimal cost, for
any offline player, to start at the initial state and process σ. As the differences
between the work function values on different states is bounded by a constant (the
diameter of the metric space) independent of the task sequence, it is possible to use
a convex combination of the work function values instead of the minimal one. We
say that α = (α(u))u∈M is a weight vector when {α(u)|u ∈ M} are nonnegative
real numbers satisfying

∑
u∈M α(u) = 1. We define the α-optimal-cost of a sequence

of tasks σ to be costα-OPT(σ) = 〈α,wσ〉 =
∑

u∈M α(u)wσ(u). As observed above,
costα-OPT(σ) ≤ costOPT(σ) + diam(M), where diam(M) = maxu,v∈M dM (u, v) is the
diameter of M .

A randomized online algorithm A for a UMTS is a probability distribution over
deterministic online algorithms. The expected cost of a randomized algorithm A on
a sequence σ is denoted by E[costA(σ)].

Definition 2.1 (see [22, 17, 7]). A randomized online algorithm A is called r-
competitive against an oblivious adversary if there exists some c such that for all task
sequences σ, E[costA(σ)] ≤ r costOPT(σ) + c.

Observation 1. We can limit the discussion on the competitive ratio of UMTSs
to distance ratios equal to one since a UMTS U = (M ; (ru)u∈M ; s) has a competitive
ratio of r if and only if U ′ = (M ; (s−1ru)u∈M ; 1) has a competitive ratio of rs−1.
Moreover, an rs−1 competitive algorithm for U ′ is an r-competitive algorithm for U ,
since in both U ′ and U the offline costs are the same, but the online costs in U are
multiplied by a factor of s compared to the costs in U ′. When s = 1, we drop it from
the notation.

Given a randomized online algorithm A for a UMTS U with state space M and
a sequence of tasks σ, we define pσ,A to be the vector of probabilities (pσ,A(u))u∈M ,
where pσ,A(u) is the probability that A is in state u after serving the request sequence
σ. We drop the subscript A if the algorithm is clear from the context.

Let x ◦ y denote the concatenation of sequences x and y. Let U be a UMTS
over the metric space M with distance ratio s. Given two successive probability
distributions on the states of U , pσ and pσ◦e, where e is the next task, we define the
set of transfer matrices from pσ to pσ◦e, denoted T (pσ, pσ◦e), as the set of all matrices
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T = (tuv)u,v∈M with nonnegative real entries, where

∑
v∈M

tuv = pσ(u), u ∈M ;
∑
u∈M

tuv = pσ◦e(v), v ∈M.

We define the unweighted moving cost from pσ to pσ◦e:

mcostM (pσ, pσ◦e) = min
(tuv)∈

T (pσ,pσ◦e)

∑
u,v

tuv dM (u, v),

the moving cost is defined as mcostU (pσ, pσ◦e) = s ·mcostM (pσ, pσ◦e), and the local
cost on a task e = (cu)u∈M is defined as

∑
u∈M pσ◦e(u)curu. Due to linearity of

expectation, E[costA(σ ◦e)]−E[costA(σ)] is equal to the sum of the moving cost from
pσ to pσ◦e and the local cost on e. Hence we can view A as a deterministic algorithm
that maintains the probability mass on the states whose cost on task e given after
sequence σ is

costA(σ ◦ e)− costA(σ) = mcostU (pσ, pσ◦e) +
∑
u∈M

pσ◦e(u)curu.(2.1)

In what follows we will use the terminology of changing probabilities, with the under-
standing that we are referring to a deterministic algorithm charged according to (2.1).

We next develop some technical conditions that make it easier to combine algo-
rithms for UMTSs. Elementary tasks are tasks with only one nonzero entry; we use
the notation (v, δ), δ ≥ 0, for an elementary task of cost δ at state v. Tasks (v, 0) can
simply be ignored by the algorithm.

Definition 2.2 (see [3]). A reasonable algorithm is an online algorithm that
never assigns a positive probability to a supported state.

Definition 2.3 (see [3]). A reasonable task sequence for algorithm A is a se-
quence of tasks that obeys the following:

1. All tasks are elementary.
2. For all σ, the next task (v, δ) must obey that for all δ′, if δ > δ′ ≥ 0, then
pσ◦(v,δ′)(v) > 0.

It follows that a reasonable task sequence for A never includes tasks (v, δ), δ > 0,
if the current probability of A on v is zero.

The following lemma is from [3]. For the sake of completeness, we include a sketch
of a proof here.

Lemma 2.4. Given a randomized online algorithm A0 that obtains a competitive
ratio of r when the task sequences are limited to being reasonable task sequences for
A0, then, for all ε > 0, there also exists a randomized algorithm A3 that obtains a
competitive ratio of r + ε on all possible sequences.

Proof (sketch). The proof proceeds in three stages. In the first stage, we convert
an algorithm A0 for reasonable task sequences to a lazy algorithm A1 (an algorithm
that does not move the server when receiving a task with zero cost) for reasonable
task sequences. In the second stage, we convert an algorithm A1 to an algorithm
A2 for elementary task sequences, and then, in the third stage, we convert A2 to an
algorithm A3 for general task sequences.

The first stage is well known.
The second stage. Given an elementary task sequence, every elementary task

e = (v, x) is converted to a task (v, y) such that y = sup{z|z < x and the probability
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induced by A1 on v is greater than 0}. The resulting task sequence is reasonable and
is fed to A1. A2 imitates the movements of A1.

The third stage. Let σ be an arbitrary task sequence. First, we convert σ into
an elementary task sequence σ̂; each task τ = (δ1, . . . , δn) in σ is converted to a
sequence of tasks σ̂τ as follows: Let ε′ > 0 be a small constant to be determined
later, and assume for simplicity that δi ≥ δi+1. Then σ̂τ = ς1 ◦ ς2 ◦ · · · ◦ ςN , where
N = �δ1/ε′ and ςj = (v1, ε

′) ◦ (v2, ε′) ◦ · · · ◦ (vkj , ε′), where kj = max{i|δi ≥ j · ε′}.
Note that the optimal offline cost on σ̂ is at most the optimal offline cost on σ, since
any servicing for σ when applied to σ̂ would have a cost no bigger than the original
cost. Consider an r-competitive online algorithm A2 for elementary tasks operating
on σ̂, and construct an online algorithm A3 for σ. A3 maintains the invariant that the
state of A3 after processing some task τ is the same state as A2 after processing the
sequence σ̂τ . Consider the behavior of A2 on σ̂τ . It begins in some state vi0 , passes
through some set S of states, and ends up in some state vi2 . Consider the original
task τ = (δ1, . . . , δn). Let vi1 be the state in S with the lowest cost in τ . Algorithm
A3 begins in state vi0 , immediately moves to vi1 , serves τ in vi1 , and then moves to
vi2 .

Informally, on each task A2 pays either a local cost of ε′ or a moving cost of at
least ε′, and therefore these costs are larger than the local cost of A3. A3 also has
a moving cost of at most the moving cost of A2. By a careful combination of these
two we conclude that the cost of A3 on σ is at most (1 + ε) times the cost of A2 on
σ̂.

Hereafter, we assume only reasonable task sequences. This is without loss of
generality due to Lemma 2.4.

Observation 2. When a reasonable algorithm A is applied to a reasonable task
sequence σ = τ1τ2 · · · τm, any elementary task τ = (v, δ) causes the work function
at v, w(v), to increase by δ. This follows because v would not have been supported
following any alternative request (v, δ′), δ′ < δ. See [3, Lemma 1] for a rigorous
treatment. This also implies that for any state v, wσ(v) =

∑m
j=1 τj(v).

Definition 2.5. An online algorithm A is said to be sensible and r-competitive
on the UMTS U = (M ; (ru)u∈M ; s) if it obeys the following:

1. A is reasonable.
2. A is a stable algorithm [13], i.e., the probabilities that A assigns to the dif-

ferent states are purely a function of the work function.
3. Associated with A are a weight vector αA and a potential function ΦA such

that
• ΦA : R

b �→ R
+ is purely a function of the work function, bounded,

nonnegative, and continuous.
• For all task sequences σ and all tasks e,

costA(σ ◦ e)− costA(σ) + ΦA(wσ◦e)− ΦA(wσ) ≤ r · 〈αA, wσ◦e − wσ〉.
(2.2)

Observation 3. An online algorithm that is sensible and r-competitive (against
reasonable task sequences) according to Definition 2.5 is also r-competitive according
to Definition 2.1. This is so since summing up the two sides in inequality (2.2)
over the individual tasks in the task sequence, we get a telescopic sum such that
costA(σ)+ΦA(wσ)−ΦA(wε) ≤ r ·〈αA, wσ−wε〉, where wε is the initial work function.
We conclude that costA(σ) ≤ r · costOPT(σ) + r∆(M) + supw Φ(w).

When combining sensible algorithms we would like the resulting algorithm to
also be sensible. The problematic invariant to maintain is reasonableness. In order
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to maintain reasonableness there is a need for a stronger concept, which we call
constrained algorithms.

Definition 2.6. A sensible r-competitive algorithm A for the UMTS U =
(M ; (ru)u∈M ; s) with associated potential function Φ is called (β, η)-constrained, 0 ≤
β ≤ 1, 0 ≤ η, if the following hold:

1. For all u, v ∈ M , if w(u) − w(v) ≥ β dM (u, v), then the probability that A
assigns to u is zero (pw,A(u) = 0).

2. ‖Φ‖∞ ≤ η diam(M)r, where ‖Φ‖∞ = supw Φ(w).

Observation 4.

1. For a (β, η)-constrained algorithm competing against a reasonable task se-
quence, for all u, v ∈M, |w(u)− w(v)| ≤ β dM (u, v). The argument here is
similar to the one given in Observation 2.

2. A sensible r-competitive algorithm for a metric space of diameter ∆ is by
definition (1, |ΦA|/(r∆))-constrained.

3. A (β, η)-constrained algorithm is trivially (β′, η′)-constrained for all β ≤ β′ ≤
1 and η ≤ η′.

3. A combining theorem for UMTSs. Consider a metric space M hav-
ing a partition to subspaces M1, . . . ,Mb, with “large” distances between subspaces
compared to the diameters of the subspaces. A MTS on M induces MTSs on Mi,
i ∈ {1, . . . , b}. Assume that for every i, we have an r̂i-competitive algorithm Ai for
the induced MTS on Mi. Our goal is to combine the Ai algorithms so as to ob-
tain an algorithm for the original MTS defined on M . To do so we make use of a
“combining algorithm” Â. Â has the role of determining which of the Mi subspaces
contains the server. Since the “local cost” of Â on subspace Mi is r̂i times the opti-
mal cost on subspace Mi, it is natural that Â should be an algorithm for the UMTS
Û = (M̂ ; (r̂1, . . . , r̂b)), where M̂ = {z1, . . . , zb} is a space with points corresponding
to the subspaces and distances that are roughly the distances between the correspond-
ing subspaces. Tasks for M are translated to tasks for the Mi induced MTSs simply
by restriction. It remains to define how one translates tasks for M to tasks for Û .

Previous papers [10, 20, 3] use the cost of the optimal algorithm for the task in
the subspace Mi as the cost for zi in the task for Û . This way the local cost for Â is
r̂i times the cost for the optimum; however, this is true only in the amortized sense.
In order to bound the fluctuation around the amortized cost, those papers have to
assume that the diameters of the subspace are very small compared to the distances
between Mi subspaces. We take a different approach: the cost for a point zi ∈ Û is
(an upper bound for) the cost of Ai on the corresponding task, divided by r̂i. In this
way the amortization problem disappears, and we are able to combine subspaces with
a relatively large diameter. A formal description of the construction is given below.

Theorem 3.1. Let U be a UMTS U = (M ; (ru)u∈M ; s), where M is a metric
space on n points. Consider a partition of the points of M , P = (M1,M2, . . . ,Mb).
Uj = (Mj ; (ru)u∈Mj ; s) is the UMTS induced by U on the subspace Mj. Let M̂ be
a metric space defined over the set of points {z1, z2, . . . , zb} with a distance metric
dM̂ (zi, zj) ≥ max{dM (u, v) : u ∈Mi, v ∈Mj}. Assume that

• for all j, there is a (βj , ηj)-constrained r̂j-competitive algorithm Aj for the
UMTS Uj;

• there is a (β̂, η̂)-constrained r-competitive algorithm Â for the UMTS Û =
(M̂ ; (r̂1, . . . , r̂b); s).
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Define

β = max

{
max
i
βi, max

i �=j

β̂ dM̂ (zi, zj) + βj diam(Mj) + βi diam(Mi) + ηi diam(Mi)

minp∈Mi,q∈Mj dM (p, q)

}(3.1)

and

η = η̂
diam(M̂)

diam(M)
+ max

i
ηi
diam(Mi)

diam(M)
.(3.2)

If β ≤ 1, then there exists a (β, η)-constrained and r-competitive algorithm, A,
for the UMTS U .

In our applications of Theorem 3.1, the metric spaceM has a“nice” partition P =
(M1, . . . ,Mb), parameterized with k ≥ 1: dM (u, v) = diam(M) for all i �= j u ∈ Mi,
v ∈Mj ; and diam(Mi) ≤ diam(M)/k. In this case the statement of Theorem 3.1 can
be simplified as follows.

Corollary 3.2. Under the assumptions of Theorem 3.1, and assuming the
partition is “nice” (with parameter k), in the above sense, define

β = max

{
max
i
βi, β̂ +

maxi �=j(βi + βj + ηi)

k

}
(3.3)

and

η = η̂ +
maxi ηi
k

.(3.4)

If β ≤ 1, then there exists a (β, η)-constrained and r-competitive algorithm, A, for the
UMTS U .

In section 3.1 we define the combined algorithm A declared in Theorem 3.1.
Section 3.2 contains the proof of Theorem 3.1. We end the discussion on the combining
technique with section 3.3, in which we show how to obtain constrained algorithms
needed in the assumptions of Theorem 3.1.

3.1. The construction of the combined algorithm. Denote by Φj and αj
the associated potential function and weight vector of algorithm Aj , respectively.

Similarly, denote by Φ̂ and α̂ the associated potential function and weight vector of
algorithm Â, respectively.

Given a sequence of elementary tasks σ = (v1, δ1)◦(v2, δ2)◦· · ·◦(v|σ|, δ|σ|), vi ∈M ,
we define the sequences

σ|M�
= (u�1, δ

�
1) ◦ (u�2, δ�2) ◦ · · · ◦ (u�|σ|, δ�|σ|), where

• u�j = vj and δ�j = δj if vj ∈M�,

• u�j is an arbitrary point in M� and δ
�
j = 0 if vj /∈M�.

Informally, σ|M�
is the restriction of σ to subspace M�.

For u ∈M , define s(u) = i if and only if u ∈Mi. We define the sequence

χ(σ) = (zs(v1), δ̂1) ◦ (zs(v2), δ̂2) ◦ · · · ◦ (zs(v|σ|), δ̂|σ|)

inductively. Let e = (v, δ), s(v) = /, then χ(σ ◦ e) = χ(σ) ◦ (z�, δ̂), where

δ̂ =
(〈α�, w(σ◦e)|M� ,U�〉 − Φ�(w(σ◦e)|M� ,U�)/r̂�

)− (〈α�, wσ|M� ,U�〉 − Φ�(wσ|M� ,U�)/r̂�
)
.

(3.5)
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Note that δ̂ is an upper bound on the cost of A� for the task (v, δ), divided by
r̂�. This fact follows from (2.2) since A� is sensible, and σ|M�

is a reasonable task

sequence for A� (see Lemma 3.3). It also implies that δ̂ ≥ 0, which is a necessary

requirement for (z�, δ̂) to be a well-defined task.
Algorithm A. The algorithm works as follows:
1. It simulates algorithm A� on the task sequence σ|M�

for 1 ≤ / ≤ b.
2. It also simulates algorithm Â on the task sequence χ(σ).
3. The probability assigned to a point v ∈M� is the product of the probability

assigned by A� to v and the probability assigned by Â to z� (i.e., pσ,A(v) =
pσ|M� ,A�(v) · pχ(σ),Â(z�)).

We remark that the simulations above can be performed in an online fashion.

3.2. Proof of Theorem 3.1. To simplify notation we use the following short-
hand notation. Given a task sequence σ and a task e, with respect to σ, we define

w = wσ,U ; we = wσ◦e,U ;
wk = wσ|Mk ,Uk , 1 ≤ k ≤ b; we

k = w(σ◦e)|Mk ,Uk , 1 ≤ k ≤ b;
ŵ = wχ(σ),Û ; ŵe = wχ(σ◦e),Û .

Define p, pk, and p̂ to be the probability distributions on the states of U , Uk,
and Û as induced by algorithms A, Ak, and Â on the sequences σ, σ|Mk

, and χ(σ),
1 ≤ k ≤ b, respectively. Likewise, we define pe, pek, and p̂

e, where the sequences are
σ ◦ e, σ ◦ e|Mk

, and χ(σ ◦ e).
Lemma 3.3. If the task sequence σ given to algorithm A on U is reasonable,

then the simulated task sequences σ|Mi
for algorithms Ai on Ui and the simulated task

sequence χ(σ) for algorithm Â on Û are also reasonable.
Proof. We first prove that σ′|M�

is reasonable for A� by induction on |σ′|. Say
σ′ = σ◦e, e = (v, δ), and v ∈M�. Since σ

′ is reasonable for A, if the task e would have
been replaced with the task e′ = (v, δ′), for δ′ ∈ [0, δ), then by the reasonableness of
σ′, pe

′
(v) > 0. Since pe

′
(v) = pe

′
� (v)p̂

e′(z�) it follows that pe
′
� (v) > 0. This implies

σ′|M�
is reasonable for A�.

We next prove that χ(σ′) is a reasonable task sequence for Â, by induction on

|σ′|. Let σ′ = σ ◦ e, e = (v, δ), v ∈ M�. Denote by ê = (z�, δ̂) the last task in
χ(σ). Consider a hypothetical task (v, x) in U for 0 ≤ x ≤ δ. Denote by (z�, f(x)) the
corresponding task for Û , where f(x) is determined according to (3.5). f is continuous

(since Φ� is continuous), f(0) = 0, and f(δ) = δ̂. Therefore for any 0 ≤ δ̂′ < δ̂ there
exists 0 ≤ δ′ < δ such that f(δ′) = δ̂′, and since 0 < p(v,δ

′) = p
(v,δ′)
� (v) · p̂(v,δ′)(z�)

we conclude that 0 < p̂(v,δ
′)(z�) (the probability induced by Â on z� after the task

(z�, δ̂
′)). This implies that χ(σ) is a reasonable task sequence for Â.
Lemma 3.4. For all σ and for all /, ŵ(z�) = 〈α�, w�〉 − Φ�(w�)/r̂�.
Proof. It follows from Lemma 3.3 that the task sequence χ(σ) for Â is reasonable.

As Â is sensible it follows from Observation 2 that ŵ(z�) is exactly the sum of costs in
χ(σ) for z�. By the definition of χ(σ) (see (3.5)) it follows that this sum is 〈α�, w�〉 −
Φ�(w�)/r̂�.

Lemma 3.5. Assume that w(u) = w�(u) for all 1 ≤ / ≤ b, u ∈ M�. Then any
state u ∈ U for which there exists a state v such that w(u) − w(v) ≥ β dM (u, v) has
p(u) = 0.

Proof. Consider states u and v as above, i.e., w(u)−w(v) ≥ β dM (u, v). We now
consider two cases:
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1. u, v ∈ Mi. We want to show that wi(u) − wi(v) ≥ βi dMi
(u, v), as Ai is

(βi, ηi)-constrained; this implies that pi(u) = 0, which implies that p(u) = 0.
From the conditions above we get

wi(u)− wi(v) = w(u)− w(v) ≥ β dM (u, v) ≥ βi dMi
(u, v).

2. u ∈ Mi, v ∈ Mj , i �= j. Our goal now will be to show that ŵ(zi) − ŵ(zj) ≥
β̂ dM̂ (zi, zj), as this implies that p̂(zi) = 0, which implies that p(u) = 0.
A lower bound on ŵ(zi) is

ŵ(zi) = 〈αi, wi〉 − ‖Φi‖∞/ri(3.6)

≥ wi(u)− βi diam(Mi)− ‖Φi‖∞/ri(3.7)

= w(u)− βi diam(Mi)− ηi diam(Mi).(3.8)

To justify (3.6) one uses the definitions and Lemma 3.4. Inequality (3.7)
follows because a convex combination of values is at least one of these values
minus the maximal difference. The maximal difference between work function
values is bounded by βi times the distance; see Observation 4. Equation (3.8)
follows from our assumption that the work functions are equal and from the
definition of ηi.
Similarly, to obtain an upper bound on ŵ(zj), we derive

ŵ(zj) = 〈αj , wj〉 − ‖Φj‖∞/rj ≤ w(v) + βj diam(Mj).(3.9)

It follows from (3.8) and (3.9) that

ŵ(zi)− ŵ(zj) ≥ (w(u)−w(v))− βi diam(Mi)− βj diam(Mj)− ηi diamMi

≥ βdM (u, v)− βi diam(Mi)− βj diam(Mj)− ηi diamMi ≥ β̂ dM̂ (zi, zj).

The last inequality follows from (3.1).
Lemma 3.6. For any reasonable task sequence σ, subspace M�, and v ∈ M� it

holds that w�(v) = w(v).
Proof. Assume the contrary. Let σ′ be the shortest reasonable task sequence

for which there exists v ∈ M� satisfying wσ′|M� (v) �= wσ′(v). It is easy to observe

that σ′ = σ ◦ e, where e = (v, δ). As the sequence (σ ◦ e)|M�
is a reasonable task

sequence (Lemma 3.3) and A� is reasonable, it follows that w
e
� (v) = w�(v) + δ. Since

w�(v) = w(v) and w
e(v) ≤ w(v) + δ we deduce that we

� (v) > w
e(v).

Let ex = (v, x); define δ′ = sup{x : wex(v) = wex
� (v)}. Obviously, 0 ≤ δ′ ≤ δ.

Define e′ = (v, δ′). By continuity of the work function, we′(v) = we′
� (v), and thus

δ′ < δ. The conditions above imply that an elementary task in v after we′ will
not change the work function, which means that v is supported in we′ . Hence, the
assumptions of Lemma 3.5 are satisfied (here we use the assumption that β ≤ 1). By
Lemma 3.5, pe

′
(v) = 0, and since the sequence σ is reasonable for A, it follows that

δ ≤ δ′, a contradiction.
Proposition 3.7. For all σ and all tasks e = (v, δ),

costA(σ ◦ e)− costA(σ) ≤ costÂ(χ(σ ◦ e))− costÂ(χ(σ)).

Proof. Let us denote the subspace containing v byM�. We split the cost of A into
two main components: the moving cost mcostU (p, p

e) and the local cost rvp
e(v)δ =

rvp̂
e(z�)p�(vi)δ (see (2.1)).
We give an upper bound on the moving cost of A by considering a possibly

suboptimal algorithm that works as follows:



1412 AMOS FIAT AND MANOR MENDEL

1. Move probabilities between the different Mj subspaces; i.e., change the prob-
ability p(u) = p̂(zj)pj(u) for u ∈ Mj to an intermediate stage p̂e(zj)pj(v).
The moving cost for A to produce this intermediate probability is bounded
by mcostÛ (p̂, p̂

e), as the distances in M̂ are an upper bound on the real dis-
tances for A (dM̂ (zi, zj) ≥ dM (u, v) for u ∈ Mi, v ∈ Mj). We call this cost
the interspace cost for A.

2. Move probabilities within theMj subspaces; i.e., move from the intermediate
probability p̂e(zj)pj(u), u ∈ Mj , to the probability pe(u) = p̂e(zj)p

e
j(u). As

all algorithms Aj , j �= /, get a task of zero cost, pej = pj , j �= /. The moving
cost for A to produce pe(u), u ∈M�, from the intermediate stage, is no more
than p̂e(z�) ·mcostU�(p�, p

e
�). We call this cost the intraspace cost for A.

Taking the local cost for A and the intraspace cost for A,

rup̂
e(z�)p�(u)δ + p̂

e(z�) ·mcostU�(p�, p
e
�)

= p̂e(z�) (costA�(σ ◦ e)− costA�(σ))(3.10)

≤ p̂e(z�)r̂�
(
(〈α�, we

� 〉 − Φ�(w
e
� )/r̂�)− (〈α�, w�〉 − Φ�(w�)/r̂�)

)
.(3.11)

To obtain (3.10) we use the definition of online cost (see (2.1)). To obtain (3.11)
we use the fact that A� is r̂�-competitive and sensible (see (2.2)).

Let ê be the last task in χ(σ ◦ e). Formula (3.11) is simply the local cost for
algorithm Â on task ê. Thus, we have bounded the cost for algorithm A on task e to
be no more than the cost for algorithm Â on task ê.

Proof of Theorem 3.1. We associate a weight vector α and a bounded potential
function Φ with algorithm A, where

α(v) = α̂(z�)α�(v) for v ∈M� ; Φ(w) = Φ̂(ŵ) + r
∑
i

α̂(zi)Φi(wi)/r̂i.

We remark that from Lemma 3.4 and Lemma 3.6 it follows that ŵ and wi are deter-
mined by w, so Φ(w) is well defined.

We derive the following upper bound on the cost of A:

costA(σ ◦ e)− costA(σ)

≤ costÂ(χ(σ ◦ e))− costÂ(χ(σ))(3.12)

≤ r
(∑

i

α̂(zi)ŵ
e(zi)−

∑
i

α̂(zi)ŵ(zi)
)
−
(
Φ̂(ŵe)− Φ̂(ŵ)

)
(3.13)

= r

(∑
i

∑
v∈Mi

α̂(zi)αi(v)w
e
i (v)−

∑
i

∑
v∈Mi

α̂(zi)αi(v)wi(v)

)

−
((

Φ̂(ŵe) + r
∑
i

α̂(zi)Φi(w
e
i )/r̂i

)
−
(
Φ̂(ŵ) + r

∑
i

α̂(zi)Φi(wi)/r̂i

))
(3.14)

= r(〈α,we〉 − 〈α,w〉)− (Φ(we)− Φ(w)).(3.15)

Inequality (3.12) follows from Proposition 3.7. Inequality (3.13) is implied as Â is
a sensible r-competitive algorithm. We obtain (3.14) by substituting ŵe(zi) and ŵ(zi)
according to Lemma 3.4 and rearranging the summands. Equation (3.15) follows from
the definition of α and Φ above, and using Lemma 3.6.

We now prove that A is (β, η)-constrained. It follows from Lemma 3.5 and
Lemma 3.6 that the condition on β is satisfied (see Definition 2.6). It remains to
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show the condition on η:

‖Φ‖∞ ≤ ‖Φ̂‖∞ + r
∑
i

α̂(zi)‖Φi‖∞/r̂i(3.16)

≤ η̂r · diam(M̂) + r
∑
i

α̂(zi)ηir̂i · diam(Mi)/r̂i(3.17)

≤ r · diam(M)
(
η̂ diam(M̂)

diam(M) +max
i
{ηi diam(Mi)

diam(M) }
)

= r · diam(M)η.

Inequality (3.16) follows by the definition of Φ; (3.17) follows because Â is (β̂, η̂)-
constrained and Ai is (βi, ηi)-constrained, 1 ≤ i ≤ b.

We have therefore shown that A is a (β, η)-constrained and r-competitive algo-
rithm.

3.3. Constrained algorithms. Theorem 3.1 assumes the existence of con-
strained algorithms. In this section we show how to obtain such algorithms. The
proof is motivated by similar ideas from [20, 3].

Definition 3.8. Fix a metric space M on b states and cost ratios r1, . . . , rb.
Assume that for all s > 0 there is a (β, η)-constrained f(s)-competitive algorithm As

for the UMTS Us = (M ; r1, . . . , rb; s) against reasonable task sequences. For ρ > 0 we
define the ρ-variant of As (if it exists) to be a (βρ, ηρ)-constrained f(s/ρ)-competitive
algorithm for Us.

Lemma 3.9. Let 0 < β ≤ 1 and 0 < β/ρ ≤ 1. Assume there exists a
(β/ρ, η/ρ)-constrained and r-competitive online algorithm A′ for the UMTS U ′ =
(ρM ; r1, . . . , rb; s/ρ). Then there exists a (β, η)-constrained and r-competitive algo-
rithm A for the UMTS U = (M ; r1, . . . , rb; s).

Proof. Algorithm A on the UMTS U simulates algorithm A′ on the UMTS U ′

by translating every task (v, δ) to task (v′, δ). The probability that A associates with
state v is the same as the probability that algorithm A′ associates with state v′. If
the task sequence for A′ is reasonable, then the simulated task sequence for A′ is also
reasonable simply because the probabilities for v and v′ are identical.

The costs of A or A′ on task (v, δ) or (v′, δ) can be partitioned into moving costs
and local costs. As the probability distributions are identical, the local costs for A
and A′ are the same. The unweighted moving costs for A are 1/ρ the unweighted
moving costs for A′ because all distances are multiplied by 1/ρ. However, the moving
costs for A′ are the unweighted moving costs multiplied by a factor of s/ρ, whereas
the moving costs for A are the unweighted moving costs multiplied by a factor of s.
Thus, the moving costs are also equal.

To show that A is (β, η)-constrained (and hence reasonable) we first need to show
that if the work functions in U and U ′ are equal, then this implies that if u and v are
two states such that w(u) ≥ w(v) + β dM (u, v), then p(u) = 0. This is true because
A′ is (β/ρ, η/ρ)-constrained, and thus w(u′) ≥ w(v′) + (β/ρ) · dρM (u′, v′) implies a
probability of zero on u′ for A′, which implies a probability of zero on u for A. Next,
one needs to show that the work functions are the same; this can be done using an
argument similar to the proof of Lemma 3.6.

As the work functions and costs are the same for the online algorithms A and A′

it follows that we can use the same potential function. To show that |Φ| ≤ η ·diam(M)
we note that |Φ| ≤ (η/ρ) diam(ρM).
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Observation 5. Assume there exists a (β, η)-constrained and r-competitive algo-
rithm A for a UMTS U = (M ; r1, . . . , rb; s). Then, for all ρ > 0, a natural mod-
ification of A, A′, is a (β, η)-constrained, r-competitive algorithm for the UMTS
U ′ = (ρM ; r1, . . . , rb; s).

Lemma 3.10. Under the assumptions of Definition 3.8, for all ρ > 0 such that
βρ ≤ 1, and for all s > 0, the ρ-variant of As exists.

Proof. For all ρ > 0 such that βρ ≤ 1, we have the following:

1. By the assumption, there exists a (β, η)-constrained, f(s/ρ)-competitive al-
gorithm for the UMTS (M ; r1, . . . , rb; s/ρ).

2. It follows from Lemma 3.9 that there exists an online algorithm that is
(ρβ, ρη)-constrained, f(s/ρ)-competitive for the UMTS (ρ−1M ; r1, . . . , rb; s).

3. It now follows from Observation 5 that there exists a (ρβ, ρη)-constrained,
f(s/ρ)-competitive online algorithm for the UMTS (M ; r1, . . . , rb; s). This
means that the ρ variant of As exists.

4. The uniform metric space. Let Udb denote the metric space on b points,
where all pairwise distances are d (a uniform metric space). In this section we develop
algorithms for UMTSs whose underlying metric is uniform. We begin with two special
cases that were previously studied in the literature.

The first algorithm works for the UMTS U = (Udb ; (r1, . . . , rb); s), b ≥ 2, and
r1 = r2 = · · · = rb. However, it can be defined for arbitrary cost ratios. The
algorithm, called OddExponent, was defined and analyzed in [3]. Applying our
terminology to the results of [3], we obtain the following lemma.

Lemma 4.1. OddExponent is (1, 1)-constrained and (maxi ri + 6s ln b)-
competitive.

Proof. Algorithm OddExponent, when servicing a reasonable task sequence,

allocates for configuration v the probability p(v) = 1
b +

1
b

∑
u

(w(u)−w(v)
d

)t
, where t is

chosen to be an odd integer in the range [ln b, ln b+ 2).

In our terminology, Bartal et al. [3] prove that OddExponent is sensible, that
it is (maxi ri +6s ln b)-competitive, and that the associated potential function |Φ1| ≤
(maxi ri/(t+1)+s)d ≤ (1/�ln b�)(maxi ri+6s ln b)d. This implies thatOddExponent
is (1, 1/�ln b�)-constrained.

The second algorithm works for the two point UMTS U = (Ud2 ; r1, r2; s). The
algorithm, called TwoStable, was defined and analyzed in [20] and [3], based on an
implicit description of the algorithm that appeared previously in [10]. Applying our
terminology to the results of [20, 3], we obtain the following lemma.

Lemma 4.2. TwoStable is (1, 4)-constrained and r-competitive, where

r = r1 +
r1 − r2

e(r1−r2)/s − 1
= r2 +

r2 − r1
e(r2−r1)/s − 1

.

Proof. TwoStable works as follows: Let y = w(v1)−w(v2), and z = (r1−r2)/s.
The probability on point v1 is p(v1) =

(
ez−ez( 1

2+ y
2d )
)
/
(
ez−1). TwoStable is shown

to be sensible and r-competitive in [3, 20], and the potential function associated with
TwoStable, Φ2, obeys |Φ2| ≤ (2r2 + s)d.

It remains to show that |Φ2| ≤ 4rd. We use the fact that, in general, if |z| ≤ 1/2,
then 1/2 ≤ z/(ez − 1), and we do a simple case analysis. If max{r1, r2} > 1

2s, then|Φ2| ≤ (2r2+s)d ≤ (2r+2r)d ≤ 4rd. Otherwise, |z| ≤ 1/2, so r = r2+
z

ez−1s ≥ r2+ s
2 .

Hence |Φ2| ≤ 2rd.
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To gain an insight about the competitive ratio of TwoStable, we have the
following proposition.

Proposition 4.3. Let f(s, r1, r2) = r1+(r1−r2)/
(
e(r1−r2)/s−1). Let x1, x2 ∈ R

+

such that r1 ≤ 2s(lnx1 + 1) and r2 ≤ 2s(lnx2 + 1). Then f(s, r1, r2) ≤ 2s(ln(x1 +
x2) + 1).

Proof. First we show that f is a monotonic nondecreasing function of both r1 and
r2. Since the formula is symmetric in r1 and r2 it is enough to check monotonicity
in r1. Let x = (r1 − r2)/s; it suffices to show that g(x) = sx + r2 + sx/(e

x − 1) is
monotonic in x. The derivative satisfies

g′(x) = s · e
x(ex − (1 + x))

(ex − 1)2
≥ 0, since ex ≥ 1 + x.

Therefore we may assume that r1 = 2s(lnx1+1) and r2 = 2s(lnx2+1). Without
loss of generality we can assume that x1 ≥ x2, and let y ≥ 2 be such that x1 =
(x1 + x2)(1− 1/y). By substitution we get r1 − r2 = 2s ln(y − 1) and

f(s, r1, r2) = r1+
r1 − r2

e(r1−r2)/s − 1
= 2s

(
ln(x1+x2)+1+ln(y−1)−ln y+ ln(y − 1)

(y − 1)2 − 1

)

≤ 2s
(
ln(x1 + x2) + 1− 1

y
+

ln(y − 1)

(y − 1)2 − 1

)
.

We now prove that for y ≥ 2, − 1
y + ln(y−1)

(y−1)2−1 ≤ 0. When y approaches 2, the limit of

the expression is zero. For y > 2, we multiply the left side by (y − 1)2 − 1 and get
g(y) = −(y− 2)+ ln(y− 1). Since g(2) = 0 and g′(y) = −1+ 1/(y− 1) < 0 for y > 2,
we are done.

We next describe a new algorithm, called Combined, defined on a UMTS U =
(Udb ; r1, . . . , rb; s). This algorithm is inspired by Strategy 3 [3]. Like Strategy 3, Com-
bined combines OddExponent and TwoStable on subspaces of Udb ; however, it
does so in a more sophisticated way that is impossible using the combining technique
of [3]. Figure 4.1 presents the scheme of the combining process.

Algorithm Combined. As discussed in Observation 1, we may assume that
s = 1. Let xi be the minimal real number such that ri ≤ 100 lnxi ln lnxi and xi ≥
ee

6+1, and let x denote
∑

i xi. For a set S ⊂Md
b let U(S) denote the UMTS induced

by U on S.

Let Udb = {v1, . . . , vb}, where vi has cost ratio ri. We partition the points of Udb
as follows: let Q� = {vi : e�−1 ≤ xi < e�}. Let P = {Q� : |Q�| ≥ lnx} ∪ {{v} :
v ∈ Q� and |Q�| < lnx}, P being a partition of Udb . For S ∈ P let x(S) =

∑
vi∈S xi.

Without loss of generality we assume P = {S1, S2, . . . , Sb′}, where b′ = |P | and
x(Sj) ≥ x(Sj+1), 1 ≤ j ≤ b′ − 1.

We associate with every set Si an algorithm A(Si) on the UMTS U(Si). If
|Si| ≥ lnx we choose A(Si) to be the (1/10)-variant of OddExponent. If |Si| < lnx,
then |Si| = 1, and we choose A(Si) to be the trivial algorithm on one point; this
algorithm has a competitive ratio equal to the cost ratio, and it is (0, 0)-constrained.
Let r(Si) denote the competitive ratio of A(Si) on U(Si).
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Fig. 4.1. Schematic description of Combined.

If b′ = 1 we choose Combined to be A(S1), and we are done. If b′ ≥ 2, let
M̃ = ∪b′i=2Si. We want to construct an algorithm, A(M̃), for U(M̃). If b′ = 2,
we choose A(M̃) to be A(S2). Otherwise, we apply Theorem 3.1 on M̃ with the
partition {S2, . . . , Sb′}. We define M̂ from Theorem 3.1 to be Udb′−1. Likewise, Â

from Theorem 3.1 is the application of the (1/5)-variant of OddExponent on Û =
(Udb′−1; r(S2), . . . , r(Sb′)). Let r(M̃) denote the competitive ratio of Â.

Next, we choose the partition {S1, M̃} of Udb . We combine the two algorithms

A(S1) and A(M̃) using the (1/10)-variant of TwoStable (this is the Â required in
Theorem 3.1) on the UMTS (Ud2 ; r(S1), r(M̃)) (the UMTS Û of Theorem 3.1). We
denote the competitive ratio of Â by r. The resulting combined algorithm, A(M), is
our final algorithm, Combined.

Lemma 4.4. Given that x =
∑

i xi, ri ≤ 100s lnxi ln lnxi, and xi ≥ ee
6+1,

algorithm Combined for the UMTS U = (Udb ; r1, . . . , rb; s) is (1, 1/2)-constrained
and r-competitive, where r ≤ 100s lnx ln lnx.

Proof. As before, without loss of generality, we assume s = 1. First we calculate
the constraints of the algorithm.

From Lemma 4.1 and Lemma 3.10, A(Si) is (1/10, 1/10)-constrained for every
1 ≤ i ≤ b′. We would like to show that A(M̃) is (1/2, 3/10)-constrained. If b′ = 2, then
it is obviously (1/10, 1/10)-constrained. Otherwise, (b′ > 2), the combining algorithm
for M̃ , is the (1/5)-variant of OddExponent, which is (1/5, 1/5)-constrained. Hence,
from (3.3), β ≤ 1/5+1/10+1/10+1/10 = 1/2, and from (3.4), η ≤ 1/5+1/10 = 3/10.
From Corollary 3.2, A(M̃) is r(M̃)-competitive.

The (β, η)-constraints of algorithm Combined are calculated as follows: The
(1/10)-variant of TwoStable is (1/10, 2/10)-constrained; therefore β = 1/10+1/10+
1/2+3/10 = 1 and η = 2/10+3/10 = 1/2. From Corollary 3.2, A(M) is r-competitive.

To summarize, Combined is an (1, 1/2)-constrained and r-competitive algorithm
for the UMTS U .
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It remains to prove the bound on r. First we show that for all 1 ≤ j ≤ b′, r(Sj)
≤ 100s lnx(Sj) ln lnx(Sj). If |Sj | = 1, we are done. Otherwise, |Sj | ≥ lnx, and
Sj = Q� for some /.

r(Sj) ≤ 100 ln e� ln ln e� + 6 · 10 ln |Sj |(4.1)

≤ 100
(
ln e�−1 ln ln e�−1 + ln /+ 1

�−1 ln e
�−1
)
+ 60 ln |Sj |

≤ 100
(
ln e�−1 ln ln e�−1 + ln lnx+ 60

100 ln |Sj |+ 1
)

(4.2)

≤ 100
(
ln e�−1 ln ln e�−1 + 2 ln |Sj |

)
(4.3)

≤ 100 ln(|Sj |e�−1) ln ln(|Sj |e�−1)

≤ 100 lnx(Sj) ln lnx(Sj).(4.4)

Inequality (4.1) is derived as follows. Since Sj = Q�, it follows that ri ≤
100s ln e� ln ln e� for all vi ∈ Sj . By the bound on the competitive ratio of the (1/10)
variant of OddExponent (See Lemma 4.1 and Lemma 3.10) we obtain (4.1). In-
equality (4.2) follows since / ≤ lnx. Inequality (4.3) follows because ln |Sj | ≥ ln lnx,
and ln lnx ≥ 6. The last inequality follows because e�−1 is a lower bound on xi for
vi ∈ Sj , and thus |Sj |e�−1 ≤ x(Sj).

Observe that b′ ≤ ln2 x, as there are at most lnx sets Qi, and each such set
contributes at most lnx sets Si to P . We next derive a bound on r(M̃).

r(M̃) ≤ max
2≤i≤b′

r(Si) + 6 · 5 · ln(b′ − 1)(4.5)

≤ 100 · lnx(S2) ln lnx+ 30 · (2 ln lnx)(4.6)

= 100(lnx(S2) + 0.6) ln lnx.

Inequality (4.5) follows since the algorithm used is a (1/5)-variant of OddExponent.
Inequality (4.6) follows by using the previously derived bound on r(Si) and noting
that x(S2) is maximal amongst x(S2), . . . , x(Sb′) and that x(Si) ≤ x.

From Lemma 3.10 we know that the competitive ratio of the (1/10)-variant of
TwoStable is f(10, r(S1), r(M̃)), where f is the function as given in Proposition 4.3.
We give an upper bound on f(10, r(S1), r(M̃)) using Proposition 4.3. To do this we
need to find values y1 and y2 such that

r(S1) ≤ 100 lnx(S1) ln lnx = 2 · 10(ln y1 + 1),

r(M̃) ≤ 100(lnx(M̃) + 0.6) ln lnx = 2 · 10(ln y2 + 1).

Indeed, the following values satisfy the conditions above: y1 = x(S1)
5 ln ln x/e and

y2 = (e0.6x(M̃))5 ln ln x/e. Using Proposition 4.3 we get a bound on r as follows:

r ≤ 2 · 10(ln(y1 + y2) + 1)(4.7)

≤ 20 ln
(
x(S1)

5 ln ln x + (e0.6x(M̃))5 ln ln x
)

≤ 20 ln
(
x(S1)

5 ln ln x + (25 ln ln x − 1)x(M̃)5 ln ln x
)

(4.8)

≤ 20 ln
(
(x(S1) + x(M̃))5 ln ln x

)
(4.9)

≤ 100 lnx ln lnx.

Inequality (4.7) follows from Proposition 4.3. Inequality (4.8) follows because
ln lnx ≥ 6. Inequality (4.9) follows since, in general, for a ≥ b > 0 and z ≥ 1,
az + (2z − 1)bz ≤ (a + b)z. This is because for a = b it is an equality, and the
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derivative with respect to a of the right-hand side is clearly larger than the derivative
with respect to a of the left-hand side.

Next, we present a better algorithm when all the cost ratios but one are equal.
Lemma 4.5. Given a UMTS U = (Udb ; r1, r2, . . . , rb) with r2 = r3 = · · · = rb,

there exists a (1, 3/5)-constrained and r-competitive online algorithm, WCombined,
where

r = 30
(
ln
(
e
r1
30− 1

3 + (b− 1)e
r2
30− 1

3

)
+ 1

3

)
.

Proof. The proof is a simplified version of the proof of Lemma 4.4, and we just
sketch it here. We define x1, x2 such that

r1 = 30(lnx1 +
1
3 ) = 2 · 5 · (lnx3

1 + 1), r2 = 30(lnx2 +
1
3 ) = 2 · 5 · (lnx3

2 + 1).

Let M̃ = {v2, . . . , vb}. We use a (1/5)-variant of OddExponent on the UMTS
U(M̃). The competitive ratio of this algorithm is at most

r(M̃) ≤ r2 + 30 ln(b− 1) ≤ 30
(
ln((b− 1)x2) +

1
3

)
= 10

(
ln((b− 1)x2)

3 + 1
)
,

and it is (1/5, 1/5)-constrained. We combine it with the trivial algorithm for U({v1})
using a (1/5)-variant of algorithm TwoStable. The resulting algorithm is (1, 3/5)-
constrained, and by Proposition 4.3 we have

r ≤ 10(ln(x3
1+((b−1)x2)

3+1) ≤ 10(ln(x1+(b−1)x2)
3+1) = 30(ln(x1+(b−1)x2)+

1
3 ).

Substituting for xi gives the required bound.

5. Applications.

5.1. An O((logn log logn)2)-competitive algorithm for MTSs. Bartal [1]
defines a class of decomposable spaces called HSTs.1

Definition 5.1. For k ≥ 1, a k-HST is a metric space defined on the leaves of
a rooted tree T . Associated with each vertex u ∈ T is a real-valued label ∆(u) ≥ 0,
and ∆(u) = 0 if and only if u is a leaf of T . The labels obey the rule that for every
vertex v, a child of u, ∆(v) ≤ ∆(u)/k. The distance between two leaves x, y ∈ T is
defined as ∆(lca(x, y)), where lca(x, y) is the least common ancestor of x and y in T .
Clearly, this is a metric.

Bartal [1, 2] shows how to approximate any metric space using an efficiently
constructible probability distribution over a set of k-HSTs . His result allows us to
reduce a MTS problem on an arbitrary metric space to MTS problems on HSTs.
Formally, he proves the following theorem.

Theorem 5.2 (see [2]). Suppose there is an r-competitive algorithm for any
n-point k-HST metric space. Then there exists an O(rk log n log log n)-competitive
randomized algorithm for any n-point metric space.

Thus, it is sufficient to construct an online algorithm for a MTS, where the un-
derlying metric space is a k-HST. Following [3] we use the UMTS model to obtain an
online algorithm for a MTS over a k-HST metric space.

1The definition given here for k-HST differs slightly from the original definition given in [1]. We
choose the definition given here for simplicity of the presentation. For k > 1 the metric spaces given
by these two definitions approximate each other to within a factor of k/(k − 1).
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Algorithm Rhst. We define the algorithmRhst(T ) on the metric spaceM(T ),
where T is a k-HST with k ≥ 5. Algorithm Rhst(T ) is defined inductively on the
size of the underlying HST, T .

When |M(T )| = 1, Rhst(T ) serves all task sequences optimally. It is (0, 0)-
constrained. Otherwise, let the children of the root of T be v1, . . . , vb, and let Ti be
the subtree rooted at vi. Denote d = ∆(T ), and so diam(Ti) ≤ d/k. Every algorithm
Rhst(Ti) is an algorithm for the UMTS Ui = (M(Ti); 1, . . . , 1; 1).

We construct a metric space M̂ = Udb and define cost ratios r1, . . . , rb, where
ri = r(Ti) is the competitive ratio of Rhst(Ti). We now use Theorem 3.1 to combine
algorithms Rhst(Ti). The role of Â is played by the (1/2)-variant of Combined on
the UMTS Û = (M̂ ; r1, . . . , rb; 1). The combined algorithm is a Rhst(T ) on the
UMTS (M(T ); 1, . . . , 1; 1).

We remark that the application of Theorem 3.1 requires that the algorithms will
be constrained. We show that this is true in the following lemma.

Lemma 5.3. The algorithm Rhst(T ) is O(lnn ln lnn), where n = |M(T )|.
Proof. Let n′ = ee

6+1n. We prove by induction on the depth of the tree that
Rhst(T ) is (1, 1)-constrained and 200 lnn′ ln lnn′-competitive.

When |M(T )| = 1, it is obvious. Otherwise, let ni = |M(Ti)|, n′i = ee
6+1ni, and

n′ =
∑

i n
′
i. We assume inductively that each of the Rhst(Ti) algorithms is (1, 1)-

constrained and 200 lnn′i ln lnn
′
i-competitive on M(Ti). The combined algorithm,

Rhst(T ), is (β, η)-constrained. From (3.3), and given that k ≥ 5, we get that

β ≤ max{1, 1
2 + 1

k + 1
k + 1

2k} ≤ max{1, 1} = 1.

From (3.4) we obtain that η ≤ 1
2 + 1

k ≤ 1 for k ≥ 5. This proves that the algorithm
is well defined and (1, 1)-constrained.

We next bound the competitive ratio using Lemma 4.4. Lemma 3.10 implies that
the competitive ratio obtained by the (1/2)-variant of Combined on (M̂ ; r1, . . . , rb)
is the same as the competitive ratio attained by Combined on (M̂ ; r1, . . . , rb; 2). The
values (xi)i computed by Combined are at most (n′i)i, respectively. Hence it follows
from Lemma 4.4 that the competitive ratio of Rhst(T ) is at most 100 ·2 lnx ln lnx ≤
200 lnn′ ln lnn′, since x =

∑
i xi.

Since every HST T can be 5-approximated by a 5-HST T ′ (see [2]), the bound we
have just proved holds for any HST.

Combining Theorem 5.2 with Lemma 5.3, we get the following theorem.
Theorem 5.4. For any MTS over an n-point metric space, the randomized

competitive ratio is O((log n log log n)2).

5.2. K-weighted caching on K+1 points. Weighted caching is a generalized
paging problem, where there is a different cost to fetch different pages. This problem
is equivalent to the K-server problem on a star metric space [23, 9]. A star metric
space is derived from a depth-one tree with distances on the edges, the points of the
metric space are the leaves of the tree, and the distance between a pair of points is
the length of the (2 edge) path between them. This is so, since we can assign any
edge (r, u) in the tree a weight of half the fetch cost of u. Together, an entrance of
a server into a leaf from the star’s middle-point (page in) and leaving the leaf to the
star’s middle-point (page out) have the same cost of fetching the page.
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The K-server problem on a metric space of K + 1 points is a special case of the
MTS problem on the same metric space, and hence any upper bound for the MTS
translates to an upper bound for the corresponding K-server problem.

Given a star metric space M , we 12-approximate it with a 6-HST T . T has the
special structure that for every internal vertex, all children, except perhaps one, are
leaves. It is not hard to see that one can find such a tree T such that for any u, v ∈M ,
dM (u, v) ≤ dT (u, v) ≤ 12 · dM (u, v). Essentially, the vertices furthest away from the
root (up to a factor of 6) in the star are children of the root of T , and the last child
of the root is a recursive construction for the rest of the points.

We now follow the construction of Rhst given in the previous section, on a 6-
HST T , except that we make use of (1/2)-variant of WCombined rather than (1/2)-
variant of Combined. The special structure of T implies that all the children of an
inner vertex, except perhaps one, are leaves and therefore have a trivial 1-competitive
algorithm on their “subspaces.” Hence we can apply WCombined. Using Lemma 4.5
with induction on the depth of the tree, it is easy to bound from above the competitive
ratio on a 6-HST with K + 1 leaves by 60(ln(K + 1) + 1/3).

Combining the above with the lower bound of [9] we obtain the following theorem.
Theorem 5.5. The competitive ratio for the K-weighted caching problem on

K + 1 points is Θ(logK).

5.3. A MTS on equally spaced points on the line. The metric space of
n equally spaced points on the line is considered important because of its simplic-
ity and the practical significance of the k-server on the line (for which this prob-
lem is a special case). The best lower bound currently known on the competi-
tive ratio is Ω(logn/ log log n) [10]. Previously, the best upper bound known was
O(log3 n/ log log n) due to [3].

We are able to slightly improve the upper bound on the competitive ratio from
section 5.1 to O(log2 n). Bartal [1] proves that n equally spaced points on the line
can be O(log n) probabilistically embedded into a set of binary 4-HSTs. We present
an O(log n)-competitive randomized algorithm for binary 4-HST, similar to Rhst
except that we make use of (1/4)-variant of TwoStable instead of (1/2)-variant
of Combined. Similar arguments show that this algorithm is (1, 1)-constrained, and
using Proposition 4.3 we conclude that the algorithm is 8 lnn-competitive. Combining
the probabilistic embedding into binary 4-HST with the algorithm for binary 4-HST
we obtain the following theorem.

Theorem 5.6. The competitive ratio of the MTS problem on metric space of n
equally spaced points on the line is O(log2 n).

6. Concluding remarks. This paper presents algorithms for the MTS problem
and related problems with significantly improved competitive ratios. An obvious
avenue of research is to further improve the upper bound on the competitive ratio for
the MTS problem. A slight improvement to the competitive ratio of the algorithm
for arbitrary n-point metric spaces is reported in [6]. The resulting competitive ratio
there is O(log2 n log log n log log log n), and the improvement is achieved by refining
the reduction from arbitrary metric spaces to HST spaces (i.e., that improvement is
orthogonal to the improvement presented in this paper). However, in order to break
the O(log2 n) bound, it seems that one needs to deviate from the black box usage
of Theorem 5.2. Maybe the easiest special case to start with is the metric space of
equally spaced points on the line.

Another interesting line of research would be an attempt to apply the techniques
of this and previous papers to the randomized k-server problem, or even for a special
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case such as the randomized weighted caching on k pages problem; see also [8, 21].

Acknowledgments. We would like to thank Yair Bartal, Avrim Blum, and
Steve Seiden for helpful discussions.

Note added in proof. Theorem 5.2 has been improved in [14]. Therefore the
bound in Theorem 5.4 is also improved to O(log2 n log log n).
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MATRIX ROUNDING UNDER THE Lp-DISCREPANCY MEASURE
AND ITS APPLICATION TO DIGITAL HALFTONING∗
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Abstract. We study the problem of rounding a real-valued matrix into an integer-valued matrix
to minimize an Lp-discrepancy measure between them. To define the Lp-discrepancy measure, we
introduce a family F of regions (rigid submatrices) of the matrix and consider a hypergraph defined
by the family. The difficulty of the problem depends on the choice of the region family F . We first
investigate the rounding problem by using integer programming problems with convex piecewise-
linear objective functions and give some nontrivial upper bounds for the Lp discrepancy. We propose
“laminar family” for constructing a practical and well-solvable class of F . Indeed, we show that the
problem is solvable in polynomial time if F is the union of two laminar families. Finally, we show
that the matrix rounding using L1 discrepancy for the union of two laminar families is suitable for
developing a high-quality digital-halftoning software.

Key words. approximation algorithm, digital halftoning, discrepancy, linear programming,
matrix rounding, network flow, totally unimodular
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1. Introduction. Rounding is an important operation in numerical computa-
tion and plays key roles in digitization of analog data. Rounding of a real number a
is basically a simple problem: We round it to either �a� or �a�, and we usually choose
the one nearer to a. However, we often encounter a datum consisting of more than
one real number instead of a singleton. If it has n numbers, we have 2n choices for
rounding since each number is rounded into either its floor or ceiling. If the original
data set has some feature, we need to choose a rounding so that the rounded result
inherits as much of the feature as possible. The feature is described by using some
combinatorial structure; we indeed consider a hypergraph H on the set. A typical
input set is a multidimensional array of real numbers, and we consider a hypergraph
whose hyperedges are its subarrays with contiguous indices. In this paper, we focus on
two-dimensional arrays; in other words, we consider rounding problems on matrices.

1.1. Rounding problem and discrepancy measure. Given an M×N matrix
A = (aij)1≤i≤M,1≤j≤N of real numbers, its rounding is a matrix B = (bij)1≤i≤M,1≤j≤N
of integral values such that bij is either �aij� or �aij� for each (i, j). There are 2MN

possible roundings of a given A, and we would like to find an optimal rounding with
respect to a given criterion. This is called the matrix rounding problem. Without loss
of generality, we can assume that each entry of A is in the closed interval [0, 1] and
each entry is rounded to either 0 or 1.
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In order to give a criterion to determine the quality of roundings, we define a
distance in the space of all [0, 1]-valued M ×N matrices. Let n = MN . Let F be a
family of regions (i.e., subsets) of the M×N integer grid GMN . Let A = A(GMN ) be
the space of all [0, 1]-valued matrices with the index set GMN , and let B = B(GMN )
be its subset consisting of all {0, 1}-valued matrices. Let R be a region in F .1 For an
element A ∈ A, let A(R) be the sum of entries of A located in the region R, that is,

A(R) =
∑

(i,j)∈R
aij .

We define a distance DistFp (A, A′) between two elements A and A′ in A for a positive
integer p by

DistFp (A, A′) =

[∑
R∈F
|A(R)−A′(R)|p

]1/p

.

The distance is called the Lp distance with respect to F . The L∞ distance with
respect to F is defined by

DistF∞(A, A′) = lim
p→∞DistFp (A, A′) = max

R∈F
|A(R)−A′(R)|.

Using the notations above, we can formally define the matrix rounding problem.
Lp-optimal matrix rounding problem. P(GMN ,F , p): Given a [0, 1]-matrix A ∈ A,

a family F of subsets of GMN , and a positive integer p, find a {0, 1}-matrix B ∈ B
that minimizes

DistFp (A, B) =

[∑
R∈F
|A(R)−B(R)|p

]1/p

.

Also, we are interested in the following combinatorial problem.
Lp-discrepancy bound. Given a [0, 1]-matrix A ∈ A, a family F of subsets of

GMN , and a positive integer p, investigate upper and lower bounds of

D(GMN ,F , p) = sup
A∈A

min
B∈B

DistFp (A, B).

The pair (GMN ,F) defines a hypergraph on GMN , and D(GMN ,F ,∞) is called
the inhomogeneous discrepancy of the hypergraph [6]. Abusing the notation, we call
D(GMN ,F , p) the (inhomogeneous) Lp discrepancy of the hypergraph and also often
call DistFp (A, B) the Lp-discrepancy measure of (the quality of) the output B with
respect to F .

1.2. Motivation and our application. The most popular example of the fam-
ily F is the set of all rectangular subregions in GMN (i.e., the set of all rigid submatri-
ces), and the corresponding L∞-discrepancy measure is utilized in many application
areas such as Monte Carlo simulation and computational geometry. Unfortunately, if
we consider the family of all rectangular subregions, the discrepancy bound (for the

1Strictly speaking, R can be any subset of GMN . Although we implicitly assume that R forms
some connected portion on the grid GMN , the connectivity assumption is not used throughout the
paper.
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L∞ measure) is known to be Ω(log n) and O(log3 n). See Beck and Sós’s survey [6]
for the theory. It seems hard to find an optimal solution to minimize the discrepancy.
In fact, it is NP-hard [2].

Therefore, we seek a family of regions for which low discrepancy rounding is useful
in an important application and also can be computed in polynomial time. For the
application, L∞ rounding is not always suitable, and Lp discrepancy (with p = 1 or
2) is preferable. For the purpose, we present a geometric structure of a family of
regions reflecting the combinatorial discrepancy bound and computational difficulty
of the matrix rounding problem.

In particular, we focus on the digital-halftoning application of the matrix rounding
problem, where we should consider smaller families of rectangular subregions as F .
More precisely, the input matrix represents a digital (gray) image, where aij represents
the brightness level of the (i, j)-pixel in the M ×N pixel grid. Typically, M and N
are between 256 and 4096, and aij is an integral multiple of 1/256: This means
that we use 256 brightness levels. If we want to send an image using fax or print it
out by a dot (or ink-jet) printer, brightness levels available are limited. Instead, we
replace A by an integral matrix B so that each pixel uses only two brightness levels.
Here, it is important that B looks similar to A; in other words, B should be a good
approximation of A.

For each pixel (i, j), if the average brightness level of B in each of its neighbor-
hoods (regions containing (i, j) in a suitable family of regions) is similar to that of A,
we can expect that B is a good approximation of A. For this purpose, the set of all
rectangles is not suitable (i.e., it is too large), and we may use a more compact family.
Moreover, since human vision detects global features, the L1 or L2 measure should
be better than the L∞ measure to obtain a clear output image. This intuition is
supported by our experimental results; for example, edges of objects are often blurred
in the output based on the L∞-discrepancy measure, while they are sharply displayed
if we use the L1-discrepancy measure.

1.3. Known results on L∞ measure. For the L∞ measure, the following
beautiful combinatorial result is classically known.
Theorem 1.1 (Baranyai [5]). Given a real-valued matrix A = (aij) and a family

F of regions consisting of all rows, all columns, and the whole matrix, there exists an
integer-valued matrix B = (bij) such that |A(R)−B(R)| < 1 holds for every R ∈ F .

Translating the theorem in our terminologies, the L∞ discrepancy of the matrix
rounding problem for the family of regions consisting of all rows, all columns, and the
whole matrix is bounded by 1. Also, the combinatorial structure and algorithmic as-
pects of roundings of (one-dimensional) sequences with respect to the L∞-discrepancy
measure are investigated in recent studies [2, 19].

The incidence matrix C(GMN ,F) = (Cij) of the hypergraph (GMN ,F) is defined
by Cij = 1 if the jth element of GMN belongs to the ith region Ri in F and 0 other-
wise.2 A hypergraph is called unimodular if its incidence matrix is totally unimodular,
where a matrix C is totally unimodular if the determinant of each square submatrix
of C is equal to 0, 1, or −1.

Both the Baranyai problem and the sequence rounding problems correspond to
rounding problems with respect to unimodular hypergraphs. The L∞-discrepancy
problem can be formulated as an integer programming problem, and the unimod-
ularity implies that its relaxation has an integral solution. A classical theorem of

2We implicitly assume a one-dimensional ordering of elements in GMN .
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Ghouila-Houri [10] implies that unimodularity is a necessary and sufficient condition
for the existence of a rounding with a L∞ discrepancy less than 1. Moreover, the
following sharpened result is given by Doerr [7].
Theorem 1.2. If (GMN ,F) is a unimodular hypergraph, there exists a rounding

B = (bij) of A = (aij) satisfying

|A(R)−B(R)| < min

{
1− 1

n + 1
, 1− 1

m

}

for every R ∈ F , where n = MN , m = |F|.
This bound is sharp. Moreover, L∞-optimal rounding can be computed in poly-

nomial time if F is unimodular.

1.4. Our results. We would like to consider the Lp-discrepancy measure instead
of the L∞-discrepancy measure. If the hypergraph is unimodular, an |F|1/p upper
bound for the Lp discrepancy can be derived from Theorem 1.2 trivially. We first
improve the upper bound to 1

2 |F|1/p for p ≤ 3 and show that the bound is tight. We
also consider the family F , consisting of all 2 × 2 rigid submatrices, for which the
matrix rounding problem is known to be NP-hard [2] (accordingly, the family is not
unimodular).

Next, we consider the optimization problem. If the hypergraph is unimodular,
the rounding minimizing the Lp discrepancy can be computed in polynomial time
by translating it to a separable convex programming problem and applying known
general algorithms [11, 12]. However, we want to define a class of region families for
which we can compute the optimal solution more efficiently, as well as a class that is
useful in applications (in particular, the digital-halftoning application). We consider
the union of two laminar families (defined in section 3) and show that the matrix
rounding problem can be formulated into a minimum cost flow problem, and hence
solved in polynomial time. Finally, we implemented the algorithm using LEDA [14].
Some output pictures of the algorithm applying to the digital-halftoning problem are
included.

2. Mathematical programming formulations.

2.1. Formulation as a piecewise-linear separable convex programming
problem. We give a formulation of the Lp-discrepancy problem into an integer con-
vex programming problem where the objective function is a separable convex function,
i.e., a sum of univariate convex functions.

Introducing a new variable yi = B(Ri) =
∑

(j,k)∈Ri bjk for each Ri ∈ F , the

problem P(GMN ,F , p) is described in the following form:

(P1) : minimize

[ ∑
Ri∈F

|yi −A(Ri)|p
]1/p

subject to yi =
∑

(j,k)∈Ri
bjk, i = 1, . . . , m = |F|,

and B ∈ B(GMN ).

When p <∞, the objective function can be replaced with
∑
Ri∈F |yi−ci|p, where ci =

A(Ri) =
∑

(j,k)∈Ri ajk is a constant depending only on input values. Now |yi − ci|p
is a convex function independent of other yj ’s. The constraints yi =

∑
(j,k)∈Ri bjk,



MATRIX ROUNDING WITH APPLICATION TO DIGITAL HALFTONING 1427

i = 1, . . . , m, are represented by (−I, C(GMN ,F))Y = 0 using the incidence matrix
C(GMN ,F) defined in section 1.3, where Y = (y1, . . . , ym, b11, . . . , bMN )T and I is an
identity matrix.

Although the objective function is now a separable convex function, its nonlin-
earity makes it difficult to analyze the properties of the solution. Thus, we apply the
idea of Hochbaum and Shanthikumar [11] to replace |yi − ci|p with a piecewise-linear
convex continuous function fi(yi) which is equal to |yi − ci|p for each integral value
of yi in [0, |Ri|]. This is because we need only integral solutions, and, if each bpj is
integral, yi must be a nonnegative integer less than or equal to |Ri|. Typically for
p = 1, fi(yi) is illustrated in Figure 1.

f i(yi)

 ci ci  ci

Fig. 1. Conversion of the convex objective function |yi − ci| into a piecewise-linear convex
function fi(yi) with integral breakpoints (shown in bold lines).

Thus, we obtain the following problem (P2):

(P2) : minimize
∑
Ri∈F

fi(yi)

subject to yi =
∑

(j,k)∈Ri
bjk, i = 1, . . . , m = |F|,

and B ∈ B(GMN ).

Thus, we can formulate the problem into an integer programming problem where
the objective function is a separable piecewise-linear convex function.

2.2. Relaxation and totally unimodularity. Let (P3) be the continuous re-
laxation obtained from (P2) by replacing the integral condition of bij with the condi-
tion 0 ≤ bij ≤ 1. Note that this is different from the continuous relaxation of (P1),
since the objective function of (P2) is larger than that of (P1) at nonintegral values.

If the matrix is totally unimodular, (P3) has an integral solution by the theorem
below. This is a key to derive discrepancy bounds and also algorithms.

Theorem 2.1 (Hochbaum and Shanthikumar [11]). A nonlinear separable convex
optimization problem min{∑n

i=1 fi(xi) | Ax ≥ b} on linear constraints with a totally
unimodular matrix A can be solved in polynomial time.

This theorem is translated into our terminologies as follows.

Corollary 2.2. The matrix rounding problem P(GMN ,F , p) for p < ∞ is
solved in polynomial time in n = MN if its associated incidence matrix C(GMN ,F)
is totally unimodular.
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3. Geometric families of regions defining unimodular hypergraphs. In
this section we consider interesting classes of families whose associated incidence ma-
trices are totally unimodular. We call such a family a unimodular family, since the
associated hypergraph is unimodular. A family F = {R1, R2, . . . , Rm} is a partition
family (or a partition) of GMN if

⋃m
i=1 Ri = GMN and Ri ∩Rj = ∅ for any Ri �= Rj

in F . A k-partition family is a family of regions on a matrix which is the union of k
different partitions of GMN .

A family F of regions on a grid GMN is a laminar family if one of the following
holds for any pair Ri and Rj in F : (1) Ri ∩ Rj = ∅, (2) Ri ⊂ Rj , or (3) Rj ⊂ Ri.
The family is also called a laminar decomposition of the grid GMN . In general, a
k-laminar family is a family of regions on a matrix which is the union of k different
laminar families.
Proposition 3.1. A 2-laminar family is unimodular.
Direct applications of Proposition 3.1 lead to various unimodular families of re-

gions. The family of regions defined in Baranyai’s theorem is a 2-laminar family. Also,
take any 2-partition family consisting of 2× 2 regions on a matrix. For example, take
all 2×2 regions with their upper left corners located in even points (where the sums of
their row and column indices are even). The set of all those regions defines 2-partition
families Feven and Fodd, where Feven (resp., Fodd) consists of all 2 × 2 squares with
their upper left corners lying at even (resp., odd) rows (see Figure 2). This kind of
family plays an important role in section 5.2 and also in our experiment.

A 3-partition family is not unimodular in general. However, there are some fam-
ilies which are not 2-laminar but unimodular: For example, the set of all rectangular
rigid submatrices of size 2 (i.e., domino tiles) is a 4-partition family, but it is unimod-
ular.

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

F even F odd

Fig. 2. 2-partition family of 2× 2 regions.

4. Algorithms for computing the optimal rounding. The arguments so
far guarantee the polynomial-time solvability of our problem. However, we needed a
more practical algorithm for our experiments that runs fast for large-scale problem
instances. In this section we will show how to solve the matrix rounding problem
for a 2-laminar family based on the minimum-cost flow algorithm. To improve the
readability, we mainly discuss the case for the L1-discrepancy measure.

Our main result is the following.
Theorem 4.1. Given a [0, 1]-matrix A and a 2-laminar family F , an optimal

binary matrix B that minimizes the distance DistF1 (A, B) is computed in O(n2 log2 n)
time, where n is the number of matrix elements.

Proof. We can transform the problem into that of finding a minimum-cost circu-
lation flow in the network defined as follows.
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Let F be a 2-laminar family given as the union of two laminar families F1 =
{R0, R1, . . . , Rm} and F2 = {R′0, R′1, . . . , R′m′} over the grid GMN , where R0 and R′0
are the entire region GMN . The network to be constructed consists of three parts.
The first part is an in-tree T1 derived from F1 whose root is R0; the second one is an
out-tree T2 from F2 whose root is R′0; and the third part connects T1 and T2. The
lattice structure implied by F1 naturally defines an in-tree T1 such that the vertex set
is the set of regions in F1, and there is a directed edge (Ri, Rj) if and only if Ri ⊆ Rj

and there is no other region Rk such that Rj ⊆ Rk ⊆ Ri. Then each region Ri, i ≥ 1,
has a unique outgoing edge, which is denoted by e(Ri). We can similarly define T2

for the laminar family F2, in which the edge direction is reversed in T2; that is, each
node R′i, i ≥ 1, has a unique incoming edge, which is denoted by e(R′i).

In addition, leaves of T1 and T2 are connected by edges corresponding to elements
of GMN . Because of the definition of F1 and F2, each element (k, l) of GMN belongs
to exactly one region in F1 which is a leaf in T1 and to exactly one region in F2 which
is a leaf in T2. If (k, l) belongs to Ri and R′j , then we have a directed edge e(i, j) from
R′j to Ri. Finally, we draw an edge from R0 to R′0.

Now we define the capacity and cost coefficient of each edge. (The lower bound on
the flow of each edge is defined to be 0.) The capacity of an edge e(i, j) is determined
simply as 1 because the value associated with an element of GMN is to be rounded
to 0 or 1.

Determining the cost coefficients of edges e(Ri) and e(R′j) are not straightforward,
although the cost coefficients of e(i, j)s and e(R0, R′0) are defined to be 0s. This is
because each term of the objective function depends on the difference between B(Ri)
and A(Ri) or between B(R′j)−A(R′j); that is, |B(Ri)−A(Ri)| or |B(R′j)−A(R′j)|.

Recall the argument in section 2: To prove the polynomial-time solvability we
have introduced a new variable yk = B(Rk) =

∑
(i,j)∈Rk bij . |B(Rk) − A(Rk)| is

converted into |yk − ck|, where ck = A(Rk) =
∑

(i,j)∈Rk aij is a constant determined

by input values. |yk − ck| is further replaced by the piecewise-linear convex function
fk(yk) which coincides with |yk − ck| at each integral value of yk.

To reflect the new form of the objective function (see Figure 1), we replace each
edge e(Rk) by three parallel edges with different capacities and costs: e1(Rk) has
capacity �ck� and cost c1 = −1. e2(Rk) has capacity �ck� − �ck� and cost c2 =
�ck�+ �ck� − 2ck. For the third edge e3(Rk), its capacity is ∞ and its cost is c3 = 1.
Since c1 ≤ c2 ≤ c3, to minimize the overall cost for these three edges the flow at
e2(Rk) is zero unless the first edge e1(Rk) is full; that is, the flow at e1(Rk) is �ck�.
Similarly, flow at e3(Rk) is positive only if the two edges e1(Rk) and e2(Rk) are both
full.

The cost associated with an edge is determined by multiplying the above coef-
ficient to the flow in the edge. When the total amount of flow in the three edges
is given by yk, the total cost is given by fk(yk) − ck in any case (see, e.g., Ahuja,
Magnanti, and Orlin [1]). Since ck is a constant, the constant term does not affect
the optimality.

Once a network is constructed, we can find an optimal rounding in time
O(|E| logU(|E|+ |V | log |V |)) for a network with node set V and edge set E and the
largest integral capacity U , using the scaling algorithm by Edmonds and Karp [8]. In
our case, |V |, |E|, and U are all O(n), and thus we have O(n2 log2 n), where n is the
number of matrix elements.

Theorem 4.2. Given a [0, 1]-matrix A and a 2-laminar family F , an optimal
binary matrix B that minimizes the distance DistFp (A, B) (p ≥ 2) can be computed
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in O(n2 log3 n) time.
Proof. In this case, fi is a piecewise-linear convex function with O(n) break

points. We apply the convex-cost flow algorithm [18]. We omit details.

5. Upper bounds for the Lp discrepancy.

5.1. Lp discrepancy for a unimodular hypergraph. In this subsection, we
prove the following theorem for the Lp discrepancy of a unimodular family.
Theorem 5.1. If F is unimodular and p ≤ 3, for any A ∈ A we have

min
B∈B

DistFp (A, B) ≤ 1

2
|F|1/p.

Proof. There exists B̂ ∈ B such that |B̂(Ri)− A(Ri)| ≤ 1 holds for any Ri. The
existence of such B̂ is known by Theorem 1.2. However, for completeness, we shall
give the proof. Consider the problem (P2) and its continuous relaxation (P3). It is
then obvious that

bij = aij for every i and j and(5.1)

yk = A(Rk) for every Rk ∈ F

is a feasible solution to (P3). Now we add lower and upper bound constraints for each
variable yk:

�A(Rk)� ≤ yk ≤ �A(Rk)�.

Notice that the addition of these constraints to (P3) maintains total unimodularity
of the constraints. Let (P4) denote the problem (P3) with these constraints. Since
fk(yk) is a linear function in the interval [�A(Rk)�, �A(Rk)�], (P4) is a linear program.

Since (P3) has a feasible solution satisfying all constraints of (P4), (P4) also has a
feasible solution. Since (P4) is a linear program over totally unimodular constraints,
its optimal solution is an integral solution, and the corresponding objective value gives
an upper bound on the optimal objective value of (P2). Thus, the objective value
for (P4) of the above defined feasible solution gives an upper bound on the optimal
objective value of (P2).

Let us now estimate the upper bound on fk(yk) at yk = A(Rk). Let a = A(Rk)−
�A(Rk)�. We then have fk(�A(Rk)�) = ap and fk(�A(Rk)�) = (1− a)p. Therefore,

fk(A(Rk)) = ap(1− a) + (1− a)pa(5.2)

holds. We can see fk(A(Rk)) ≤ (1/2)p holds if p ≤ 3. Thus, the optimal objective
value of (P4) is at most (1/2)p|F|. Since the optimal objective value of (P4) is an
upper bound on that for (P2), (1/2)p|F| gives an upper bound on the optimal objective
value for (P2).

It is easy to give an instance to show that the bound is tight: Consider Baranyai’s
problem on a matrix having 1

2 entries in its diagonal position (other entries are zeros).
For the case p > 3, we have the following.
Theorem 5.2. If F is unimodular and p > 3, for any A ∈ A we have

min
B∈B

DistFp (A, B)

≤ (pp/(p + 1)p+1 + 2p(p− 1)/(p + 1)p+1)1/p|F|1/p.
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Proof. This follows from the fact that ap(1 − a) + (1 − a)pa < pp/(p + 1)p+1 +
2p(p− 1)/(p + 1)p+1 for 0 ≤ a ≤ 1.

The term (pp/(p + 1)p+1 + 2p(p − 1)/(p + 1)p+1)1/p is 0.550 and 0.587 if p = 4
and p = 5, respectively, and it is always less than p/(p + 1).

5.2. Discrepancy bounds for the family of 2 × 2 regions. The method
in the previous subsection does not work for a nonunimodular case. A simple but
interesting family defining a nonunimodular hypergraph is the family of all 2 × 2
regions of A. The known upper bound is merely 5

3 |F|1/p from the corresponding L∞
result [3]. We obtain the following result.
Theorem 5.3. For any A ∈ A(GMN ) and a family F of 2 × 2 regions of the

matrix, we have

min
B∈B

DistF1 (A, B) ≤ 3

4
|F|.

Proof. Let us consider the matrix rounding problem P = P(GMN ,F , 1) for the
family F of all 2 × 2 regions. We define another problem P̂ defined over another
family F̂ of regions consisting of two tiles:

T1 = {(i, j), (i + 1, j)} for (i, j) ∈ GMN ,

T2 = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)} for (i, j) ∈ GMN and i + j = even.

Let B∗ and B̂ denote the optimal binary matrix for P and P̂ , respectively.
We now show ∑

R∈F
|A(R)−B∗(R)| ≤ 3|F|/4.

Let (R1, R2) be a partition of a 2 × 2 region R into two disjoint 2 × 1 regions.
Then for any A and B we have

|A(R)−B(R)|(5.3)

≤ |A(R1)−B(R1)|+ |A(R2)−B(R2)|.
Recall that F consists of all 2 × 2 regions and F̂ consists of constrained 2 × 2

regions and all 2×1 regions. Then F\F̂ consists of 2×2 regions that are not included
in F̂ , F ∩ F̂ consists of 2× 2 regions that are included in F̂ , and F̂\F consists of all
2× 1 regions. Now we have

∑
R∈F
|A(R)−B∗(R)|(5.4)

=
∑

R∈F\F̂
|A(R)−B∗(R)|+

∑
R∈F∩F̂

|A(R)−B∗(R)|

≤
∑

R∈F\F̂
|A(R)− B̂(R)|+

∑
R∈F∩F̂

|A(R)− B̂(R)|

≤
∑

R∈F∩F̂
|A(R)− B̂(R)|+

∑
R∈F̂\F

|A(R)− B̂(R)|

(from (5.3))

=
∑
R∈F̂
|A(R)− B̂(R)|.
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Since F̂ is a 2-laminar family, its associated incidence matrix is totally unimodular. As
in the proof of Theorem 5.1, we consider the linear program Q̂′ which is a continuous
relaxation of P̂ with the additional constraints

�A(Rk)� ≤ yk ≤ �A(Rk)�

for all Rk ∈ F̂ . From the total unimodularity of the incidence matrix, there exists
an optimal solution to Q̂′ such that it is integral. Let B̂′ denote such solution. For a
feasible solution to Q̂′ defined by

bij = aij for every i and j(5.5)

and yk = A(Rk) for every Rk ∈ F̂ ,

its objective value gives an upper bound on the optimal objective value of Q̂′ which
in turn gives an upper bound on the optimal objective value of P̂ . Therefore, we have

∑
Rk∈F̂

|A(Rk)− B̂(Rk)| ≤
∑
Rk∈F̂

|A(Rk)− B̂′(Rk)|(5.6)

≤
∑
Rk∈F̂

fk(A(Rk)).

From Theorem 5.1, the rightmost term of (5.6) is bounded by |F̂ |/2, which is al-
most equal to 3|F|/4 for a sufficiently large n. This completes the proof of the
theorem.

6. Application to digital halftoning. The quality of color printers has been
drastically improved in recent years, mainly based on the development of the fine
control mechanism. On the other hand, there seems to be no great invention on the
software side of the printing technology. What is required is a technique to convert a
continuous-tone image into a binary image consisting of black and white dots so that
the binary image looks very similar to the input image. From a theoretical standpoint,
the problem is how to approximate an input [0, 1]-array by a binary array. Since this
is one of the central techniques in computer vision and computer graphics, a great
number of algorithms have been proposed (see, e.g., [13, 9, 4, 15, 17]). However, there
have been very few studies toward the goal of achieving an optimal binary image under
some reasonable criterion; maybe it is because the problem itself is very practically
oriented. A desired output image is the one which looks similar to the input image
to the human visual system. The most popular distortion criterion that is used in
practice is perhaps frequency weighted mean square error (FWMSE) [16], which is
defined by

W (G, X) =
∑

(i,j)∈GMN

[
K∑

k=−K

K∑
l=−K

v|k||l|ai+k,j+l −
K∑

k=−K

K∑
l=−K

v|k||l|bi+k,j+l

]2

.

Here, V = (v|k||l|), −K ≤ k, l ≤ K, is an impulse response that approximates the
characteristics of the human visual system and K is some small constant, say 3. Our
discrepancy measure which has been discussed in this paper is a hopeful replacement.
Indeed, the L2-discrepancy measure can be regarded as a simplified version of the
FWMSE criterion.
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We have implemented the algorithm using LEDA [14] functions for finding
minimum-cost flow and applied it to several test images to compare its results with
the error diffusion algorithm which is most commonly used in practice. The data we
used for our experiments are standard high precision picture data created by the In-
stitute of Image Electronics Engineers of Japan, which include four standard pictures
called “Bride,” “Harbor,” “Wool,” and “Bottles.” They are color pictures of eight
bits each in RGB. Their original picture size is 4096 × 3072. In our experiments we
scaled them down to 1024× 768 in order to shorten the running time of the program.
Figure 3 shows experimental results for “Wool” to compare our algorithm with error
diffusion. Our algorithm has been implemented using a 2-laminar family defined by
the two tiles (b) and (c) depicted in Figure 4. We have used the L1 measure. By our
experience through experiments, it seems hard to have such a nice-looking output by
the L∞ measure.

Fig. 3. Experimental results. Output images by the error diffusion algorithm (above) and the
algorithm in this paper (below).

7. Concluding remarks. We have considered the matrix rounding problem
based on Lp-discrepancy measure. Although we have shown that the measure is
useful in application to the digital-halftoning application, the current algorithm is too



1434 T. ASANO, N. KATOH, K. OBOKATA, AND T. TOKUYAMA

(a) (b) (c)

Fig. 4. Three different partitions of the image plane (a) by 2× 2 squares, (b) vertically shifted
2× 2 squares, and (3) cross patterns consisting of five pixels.

slow if we want to require speed together with the high-quality requirement. The
problem comes from the quadratic time complexity. It is desired to design a faster
algorithm (even an approximation algorithm). Moreover, it is an interesting question
to investigate what kind of region families give the best criterion for the halftoning
application. Once we know such a region family, it is valuable to design an algorithm
(heuristic algorithm if the problem for solving the optimal solution is intractable) for
the criterion.
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1. Introduction. Let q be a prime power, let Fq be a finite field with q elements,
let f ∈ Fq[x, y] of total degree n, and let C = {(a, b) ∈ F

2
q : f(a, b) = 0} = {f = 0} be

the plane curve defined by f . We consider two problems of finding points on this curve:
probabilistically finding a uniformly distributed random point, and deterministically
computing all its points.

Curves over finite fields play a role in several applications: factoring integers with
elliptic curves, testing primality with elliptic curves (or more general algebraic vari-
eties), algebro-geometric Goppa codes, and fast multiplication over finite fields. For
these applications, special methods for finding points (if needed) are used. This pa-
per presents the first general and systematic approach to the problem, to the authors’
knowledge.

Throughout this paper, we will assume that f is squarefree and denote by σ the
number of absolutely irreducible components of C which are defined over Fq. The
famous theorem of Weil says that the number of points #C on C satisfies

| #C − σq |≤ n2q1/2.(1.1)

The case of an exceptional curve, corresponding to σ = 0, needs special treatment
and is dealt with in section 5. So for now we assume that σ ≥ 1.

In section 2, we provide a polynomial-time solution for the probabilistic variant of
our question: generating a uniform random point on C. The algorithm is elementary
and is based on the idea of rejection sampling. We also use this algorithm to obtain
arbitrarily good probabilistic estimates of #C.

With deterministic methods, the “brute force” approach to computing all points
on C via finding, for each a ∈ Fq, all b ∈ Fq with f(a, b) = 0 takes O (̃n2q3/2) opera-
tions in Fq, using the fastest known deterministic algorithms to factor the univariate

∗Received by the editors January 19, 1999; accepted for publication (in revised form) July 31,
2002; published electronically September 17, 2003. A preliminary version of this paper appeared
in the Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science,
Milwaukee, WI, 1995, pp. 284–292.

http://www.siam.org/journals/sicomp/32-6/35101.html
†Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn, 33095 Pader-

born, Germany (gathen@upb.de). Part of this author’s work was done while he was visiting Mac-
quarie University and ICSI, Berkeley.
‡Department of Computing, Macquarie University, Sydney, NSW 2109, Australia (igor@comp.

mq.edu.au). Part of this author’s work was done while he was visiting Universität Paderborn.
§Computer Science Division, University of California Berkeley, Berkeley, CA 94720-1776 (sinclair@

cs.berkeley.edu). The research of this author was supported in part by NSF grant CCR-9505448 and
by the International Computer Science Institute.

1436



FINDING POINTS ON CURVES OVER FINITE FIELDS 1437

polynomial f(a, y) for all a ∈ Fq (Shoup (1990), section 1.1 of Shparlinski (1999),
von zur Gathen and Shoup (1992)). We present in section 3 a deterministic method
that uses O (̃n5q) operations, i.e., polynomial time per point. The central tool for our
estimates is a bound of Perel’muter (1969) on a certain exponential sum. In order to
use this, we have to study in section 4 some geometric and arithmetic properties of
the fiber square C ×π C. Our approach works only in the case of a prime field Fq, with
q = p prime, and does not work for exceptional curves.

Shoup (1990) has exhibited a deterministic univariate factoring algorithm which
for almost all polynomials runs in polynomial time. Our deterministic result has
two interpretations: the first is that the members of a “small” parametrized family
f(a, y) of univariate polynomials for all a ∈ Fp can be factored deterministically in
(amortized) polynomial time. The second is that all points on a plane algebraic curve
over Fp can be found deterministically in (amortized) polynomial time.

Finally, section 5 presents a discussion of the case of exceptional curves which has
been excluded in the other sections.

A different set of results on our problem (and higher-dimensional varieties) was
obtained by Adleman and Huang (2001), Huang and Wong (1999), Huang and Ierardi
(1998), and Huang and Wong (1998).

2. Generating uniform random points. In order to generate random points
on a plane curve, it is natural to take random points on a coordinate axis and compute
points “above” them. So let π: C → Fq be the projection onto the first coordinate.
For 0 ≤ i ≤ n, let

Ri = {a ∈ Fq: #π−1({a}) = i}

be the set of points with exactly i preimages, and let ri = #Ri. We assume that C
contains no vertical lines so that no x−a with a ∈ Fq divides f . Then Fq =

⋃
0≤i≤nRi

is a partition, and

q =
∑

0≤j≤n
rj , #C =

∑
1≤j≤n

jrj .

Algorithm 2.1 (random point).
Input: f ∈ Fq[x, y] of degree n.
Output: Either a uniform random point (a, b) on C = {f = 0} ⊆ F

2
q , or “failure”.

1. Choose a ∈ Fq uniformly at random.
2. Compute fa = gcd(yq − y, f(a, y)) ∈ Fq[y].
3. Choose a random root b ∈ Fq of fa. [Then (a, b) ∈ C.]
4. Set i = deg fa. [Then a ∈ Ri.]
5. Choose YES with probability i/n, and NO with probability 1− i/n. If YES

was chosen, return (a, b), and otherwise return “failure”.
Theorem 2.2. Suppose that C is a nonexceptional curve without vertical lines.

Then the algorithm returns a uniform random point on C with probability
#C
nq
≥ 1

n

(
1− n2q−1/2

)
,

and “failure” with probability 1−#C/nq. For every P ∈ C, P is returned with probabil-
ity 1/nq. The algorithm can be performed with an expected number of O(n log n log(nq)
· loglog n) operations in Fq.
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Proof. Let P = (a, b) ∈ C with a ∈ Ri. Then

prob{P is returned} =
1

q
· 1

i
· i
n

=
1

nq
.

We denote by M(n) a multiplication time so that the product of two polynomials
in Fq[x] of degree at most n can be computed with O(M(n)) operations in Fq. Then
we can take M(n) = n log n loglog n, and a gcd can be computed with O(M(n) log n)
operations. Using repeated squaring to calculate yq mod f(a, y) with O(M(n) log q)
operations, the cost of step 2 is O(M(n) log(nq)). The polynomial fa is a product
of i = deg fa many linear factors in Fq[x]. If we find a root using the randomized
algorithms of Cantor and Zassenhaus (1981), it will be uniformly randomly distributed
among these i roots. The algorithm splits the polynomial recursively into two factors,
one of which is gcd(y(q−1)/2 − 1, fa(y + b)) for a random b ∈ Fq, and continues with
the smaller factor. (For even q, a different formula is used.) We expect O(log i) splits
to suffice, and each costs O(M(i) log(qi)) operations in Fq.

We think of q as being much larger than n, say, q ≥ c2n4 for some constant c.
Then the success probability of Algorithm 2.1 is at least 1

n (1 − c−1). Of course, we
can increase the success probability by repeated runs of the algorithm.

We can adapt Algorithm 2.1 to obtain an arbitrarily good approximation for #C,
the number of points on C. An (ε, δ)-approximation ρ to #C satisfies

prob {| ρ−#C |≤ ε#C} ≥ 1− δ.
To achieve this, we simply run Algorithm 2.1 k times, count the number t of times
that YES was chosen in step 5, and return the value ρ = tnq/k. Since YES is output
with probability #C/nq, the expected value of ρ is exactly #C, so it is an unbiased
estimator. The unbiased estimator theorem of Karp, Luby, and Madras (1989) tells us
how large k, the number of samples, should be to guarantee an (ε, δ)-approximation.
This value is

k = 4β loge(2/δ)ε
−2�,(2.1)

where β is an upper bound on nq/#C. However, nq/#C ≤ n(1 − n2q−1/2)−1, so β
is not very large. In fact, assuming as before that q � n4, the number of samples
required is only about 4n loge(2/δ)ε

−2.
It is even easier in principle to estimate the individual ri’s. We choose k random

values a ∈ Fq, determine for each the j with a ∈ Rj , count the number t of times
that j = i occurred, and return the value ρi = tq/k. This is obviously an unbiased
estimator of ri, and the number of samples required for an (ε, δ)-approximation is as
in (2.1), where now β = βi is an upper bound on q/ri. With a parameter α, this
implies that, by taking

k = 4αn loge(2/δ)ε
−2�,

we get an (ε, δ)-approximation for any ri satisfying ri ≥ q/α. Since

n
∑

1≤i≤n
ri ≥

∑
1≤i≤n

iri = #C,

the ri’s are on average at least #C/n2 ≥ q(n−2 − q−1/2). Thus “on average” k will
only be about 4n2 loge(2/δ)ε

−2, assuming as before that q � n4. Such a value will
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enable us to estimate the “large” ri’s though not, of course, the small ones. In fact,
when q is large compared to n6n, then the ri separate into two classes: Lemma 2.3 of
von zur Gathen and Shparlinski (1998) implies that either ri ≥ q

i!(n−i)! − 2n2nq1/2 is

reasonably large or ri ≤ 2n2nq1/2 is very small. Of course, the “reasonably large” may
still be very small, and about q/ri samples are required. Thus if we use βi = n!, then
in the first case we obtain an (ε, δ)-approximation scheme for ri, and in the second
we expect to find no a ∈ Ri.

Since

#C
n
≤
∑

1≤i≤n
ri ≤

∑
1≤i≤n

iri = #C,

the ri’s are on average at least #C/n2. To find approximations only to the “large”
ri’s, we might use βi = λn2, with some small number λ.

3. Deterministic construction of all points. In this section, we present a
deterministic algorithm for finding all points on C = {f = 0} over a prime field
Fp. It employs a deterministic polynomial-time algorithm for finding all roots of the
univariate polynomials f(a, y), with a ∈ Fp. This algorithm does not factor f(a, y)
completely for all a, but we show that there are only about

√
p exceptional a, and

for these we use an always successful deterministic algorithm with time about
√
p;

thus the total time is proportional to p, which is about the size of C. Everything is
polynomial in the degree n.

As a first step, we factor f into irreducible factors in Fp[x, y]. The bivariate
factoring algorithms (Lenstra (1985), von zur Gathen (1984), von zur Gathen and
Kaltofen (1985)) can actually be made into deterministic reductions from bivariate
to univariate factorization over finite fields. Thus f can be factored with nO(1)p1/2

operations in Fp. From now on, we assume that f is irreducible.
The projection π : C = {f = 0} → Fp onto the first coordinate is called separable

if and only if hy = ∂h/∂y �= 0 for each irreducible factor h ∈ Fp[x, y] of f . A simple
example of an inseparable projection is given by f = x − yp ∈ Fp[x, y]. The curve
C = {x = yp} is smooth, and all tangents to C are vertical.

Let ϕ: Fp → Fp denote the absolute Frobenius map, with ϕ(a) = ap. For our
algorithms, it is convenient to have π separable, and the next lemma describes a
simple procedure for achieving this by factoring out ϕ. (It actually works over any
finite field of characteristic p.)

Lemma 3.1. Let f ∈ Fp[x, y] be irreducible. We can compute in polynomial time
g ∈ Fp[x, y] and an integer k ≤ logp(degy f) such that

id× ϕk: F 2
p −→ F

2
p

gives a bijection between {f = 0} and {g = 0}, degx g = degx f,degy g ≤ degy f, and
π: {g = 0} → Fp is separable.

Proof. We write f =
∑
i,j fijx

iyj , with each fij ∈ Fp. Then

fy = 0⇐⇒ ∀i, j (fij �= 0⇒ p | j).
If fy = 0 and

h =
∑
i,j
p|j

fijx
iyj/p ∈ Fp[x, y],
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then f(a, b) = h(a, bp) for all (a, b) ∈ F
2
p , and thus id× ϕ: F 2

p → F
2
p gives a bijection

between {f = 0} and {h = 0}. Furthermore, h is irreducible. We repeat this process
until we obtain a polynomial g ∈ Fp[x, y] and k ∈ N with gy �= 0 and id × ϕk a
bijection between {f = 0} and {g = 0}.

Algorithm 3.2 (finding all points).
Input: f ∈ Fp[x, y] of degree n, where p is a prime.
Output: A list of all points (a, b) ∈ F

2
p with f(a, b) = 0.

1. Set h = 288n4log2 p�2.
2. For all a ∈ Fp

3. Compute fa=f(a, y) ∈ Fp[y].
4. Compute f∗a = gcd(yp − y, fa) ∈ Fp[y].
5. For 0 ≤ t < h compute the two factors

ga,t = gcd
(
(y − t)(p−1)/2 − 1, f∗a

)
, g∗a,t = gcd(y − t, f∗a ) ∈ Fp[y]

of f∗a .
6. Compute the common refinement of the partial factorizations from step 5.
7. If step 6 returns only linear factors y − b, then add all these (a, b) to

the list. Otherwise, completely factor f∗a with the deterministic algorithm
of von zur Gathen and Shoup (1992), and add all resulting (a, b) to the
list.

Theorem 3.3. Let p be a prime, f ∈ Fp[x, y] squarefree and nonexceptional, and
π: C = {f = 0} → Fp separable. Then the algorithm correctly computes all points on
C. It uses

O(n5p log n loglog n log(np) log2 p)

or O (̃n5p) operations in Fp.
Proof. For all a, b ∈ Fp, we have

f(a, b) = 0⇐⇒ f∗a (b) = 0⇐⇒ y − b | f∗a .

Since step 7 returns all linear factors of f∗a , the final list correctly contains all points
of C = {f = 0}.

It remains to analyze the running time. The crucial point is to understand when
step 6 succeeds in completely factoring f∗a . Denote by S ⊆ Fp the set of all a for
which this is not the case, and s = #S. Furthermore, Ca = π2(C ∩ ({a}×Fp)) consists
of all b ∈ Fp with (a, b) ∈ C. Thus

S = {a ∈ Fp:∃b, c ∈ Ca b �= c; b, c ≥ h, and ∀t < h (y − b | ga,t ⇐⇒ y − c | ga,t)}.

The refinement cost in step 6, if done along a binary tree, is O(M(n) log n) for
each t, or O(hM(n) log n) in total. For a ∈ S, an application of the algorithm from
von zur Gathen and Shoup (1992) costs O(M(n) p1/2 log(np)) operations in Fp. The
gcds in steps 4 and 5 are computed by repeated squaring for the required power of y
and y − t, reducing after each multiplication modulo fa and f∗a , respectively.

For each a in step 2, we find the following number of operations in Fp:
◦ step 3: O(n2),
◦ step 4: O(M(n) log(np)),
◦ step 5: O(hM(n) log(np)),
◦ step 6: O(hM(n) log n),
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◦ step 7: 0 if a ∈ Fp \ S, and O(M(n) p1/2 log(np)) if a ∈ S.
The total cost is

O
(
p · (n2 + n4M(n) log(np) log2 p) + sM(n)p1/2 log(np)

)
(3.1)

operations, and we now show that s is O(n2(n2 + log p)p1/2). This will imply the
claim about the running time. We let

Q = {u ∈ F
×
p :∃v ∈ F

×
p u = v2} = {u ∈ F

×
p :u(p−1)/2 = 1}

be the set of nonzero squares in Fp and χ the quadratic character on Fp, with

χ(b) =




1 if b ∈ Q,
−1 if b �∈ Q, b �= 0,

0 if b = 0.

For the time being, we work with an arbitrary integer parameter h; only at the
end will we substitute the value from step 1. Set H = {0, . . . , h− 1} ⊆ Fp, where we
identify Fp with {0, . . . , p− 1}. Two distinct elements b, c ∈ Fp are h-separated if and
only if χ(b − t) �= χ(c − t) for some t ∈ H. A set B ⊆ Fp is h-separated if any two
distinct elements of B are. With this notation, we have, for a ∈ Fp,

a ∈ S =⇒ Ca is not h-separated.

The reverse implication is true if the non-h-separated b, c ∈ Ca are both at least h. If
a ∈ S, then, for at least one pair of distinct elements b, c ∈ Ca,

h =
∑

0≤t<h
χ
(
(t− b)(t− c)).

Now we let k ∈ N and

w =
∑
a∈Fp

∑
b,c∈Ca
b �=c

∣∣ ∑
0≤t<h

χ
(
(t− b)(t− c))∣∣2k

=
∑

0≤t1,...,t2k<h

∑
a∈Fp

∑
b,c∈Ca
b �=c

χ
(
(t1 − b)(t1 − c) · · · (t2k − b)(t2k − c)

)
.

Then, by the above, sh2k ≤ w. We consider the set

D0 = {(a, b, c) ∈ F
3
p : f(a, b) = f(a, c) = 0, b �= c} ⊆ F

3
p .

The fiber product D = C ×π C is the closure of D0 in F
3
p ; it has degree at most

n(n− 1) < n2 and is discussed in detail in section 4. Then

w =
∑
t∈H2k

∑
P∈D

χ
(
ψt(P )

)
,

where the inner sum is over all Fp-rational points P = (a, b, c) ∈ D with b �= c, ψt is
the polynomial

ψt = (y − t1) · · · (y − t2k)(z − t1) · · · (z − t2k) ∈ Fp[y, z]
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in indeterminates y and z, and ψt((a, b, c)) is obtained by substituting b and c for y
and z, respectively. Theorem 4.4 says that there are at most (12kn2h1/2)2k values
of t ∈ H2k for which ρ(ψt) is a square in the global ring OA of some irreducible
component A ⊆ F

3 of D, where ρ: F [x, y, z] −→ OA is the restriction map.
For other vectors t ∈ F

2k, we may apply the bound on character sums along a
curve from Perel’muter (1969) that gives

∑
P∈D

χ
(
ψt(P )

) ≤ d · (n2(n2 + 2k)p1/2
)

(3.2)

for some constant d. Perel’muter’s bound holds for each irreducible component of
D; we also use the fact that no such component is vertical (Lemma 3.1 of von zur
Gathen, Karpinski, and Shparlinski (1996)). Since their degrees sum to degD < n2,
(3.2) follows. Therefore,

w ≤ (12kn2h1/2)2kp+ d · n2(n2 + 2k)h2kp1/2,

s ≤ (12kn2h−1/2)2kp+ d · n2(n2 + 2k)p1/2.

Now, using k = log2 p� and h as in step 1 of Algorithm 3.2, we find

(12kn2h−1/2)2k ≤ 2−k ≤ 2− log2 p = p−1.

Hence

s = O
(
n2(n2 + log p)p1/2

)
.

Together with (3.1), this proves the estimate of the total cost.

4. Squares on the fiber product. The goal of this section is to bound the
number of products Ψt which are squares on some irreducible component of D; this
was used in the previous proof.

Let F be an algebraically closed field, let f ∈ F[x, y] be squarefree of degree n ≥ 1,
let C = {f = 0} ⊆ F

2 be the associated plane curve, and let π: C −→ F be the first
projection. We assume that π is separable. Then D = C ×π C ⊆ F

3, the fiber square
over π, can be defined as the closure in F

3 of

D0 = {(a, b, c) ∈ F
3: f(a, b) = f(a, c) = 0, b �= c}.

Furthermore, let g = (f(x, y)− f(x, z))/(y − z) ∈ F [x, y, z].
A smooth point P = (a, b) ∈ C is critical for π if and only if the tangent line TP,C

in F
2 is vertical, as illustrated in Figure 4.1. If f is irreducible, this is equivalent

to fy(a, b) = 0, where fy = ∂f/∂y ∈ F[x, y]; in general, we have to replace f by its
(unique) irreducible factor on whose component P lies. Since π is separable, C has
only finitely many critical points.

Theorem 4.1. Let f ∈ F[x, y] be squarefree, and let π be separable.
(i) D = {f(x, y) = g(x, y, z) = 0}.
(ii) D = D0 ∪ {(a, b, b): (a, b) ∈ C is singular or critical}.
(iii) (a, b, c) ∈ D with b �= c is singular on D if and only if either (a, b) or (a, c) is

singular on C, or both (a, b) and (a, c) are critical on C. All points of D \ D0

are singular on D.
(iv) degD ≤ n(n− 1) < n2.
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Fig. 4.1. P1, P2, P5 are critical for π, and P6 is singular on C. If Pi = (ai, bi), then (ai, bi, bi) ∈
D∩∆ for i = 1, 2, 5, 6. These four points are singular on D. Furthermore, (a1, b1, b2) ∈ S ⊆ D, and
(a3, b3, b4) ∈ D \ S.

Proof. Let

∆ = {(a, b, b) ∈ F
3: a, b ∈ F}, D1 = {f(x, y) = g(x, y, z) = 0}

so that ∆ is the diagonal. Clearly D \ ∆ = D0, and D0 ⊆ D1. By definition, D is
the closure of D0, and thus D ⊆ D1. We prove in the following that (ii) is valid with
D1 instead of D. Thus D1 ∩∆ is finite, and D = D1 follows; this implies (i), (ii), and
(iv).

So let u, v be indeterminates over F [x, y]. Then the Taylor expansion of f around
(u, v) of order 1 is

f(x, y) = f(u, v) + fx(u, v)(x− u) + fy(u, v)(y − v) + h

in F [x, y, u, v], with some h ∈ (x− u, y − v)2. Therefore,

g(x, y, z)

=
1

y − z · (fy(u, v)(y − v)− fy(u, v)(z − w) + h(x, y, u, v)− h(x, z, u, v))

= fy(u, v) +H,

with some H ∈ (x− u, y − v, z − v). Thus, for (a, b) ∈ C,
(a, b, b) ∈ D1 ⇐⇒ fy(a, b) = 0⇐⇒ (a, b) is singular or critical on C.
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For (iii), let (a, b, c) ∈ D with b �= c. The Jacobian of D at (a, b, c) is

J(a, b, c) =




fx(a, b)
fx(a, b)− fx(a, c)

b− c
fy(a, b)

fy(a, b)

b− c
0

−fy(a, c)

b− c



.

After multiplying the second column by c − b and then adding the first column
to the second, we obtain the matrix

A =


 fx(a, b) fx(a, c)

fy(a, b) 0
0 fy(a, c)


 .

Thus

(a, b, c) is singular on D ⇐⇒ rank (J(a, b, c)) ≤ 1

⇐⇒ rank (A) ≤ 1

⇐⇒ (a, b) or (a, c) is singular on C, or both are critical on C.

The condition that π be separable is necessary since otherwise all points on C are
critical. Recall the example C = {x = yp}, where p = char F, from section 3. Then
fy = 0, C is smooth, and all tangent lines to C are vertical. Furthermore, D0 = Ø,
g = (yp− zp)/(y− z) = (y− z)p−1, and C ×π C equals {(a, b, b) ∈ F

3: a = bp}, counted
p − 1 times. On the other hand, when C = {y = g(x)} is the graph of a polynomial
g ∈ Fq[x], then π is separable, and D = Ø.

We define

S = {(a, b, c) ∈ D: (a, b) or (a, c) is singular or critical on C}.

We now let A be an irreducible component of D, and we want to estimate the
number of t such that

ψt =
∏

1≤i≤2k

(ti − y)(ti − z)

is a square in OA. We let ρ: F [x, y, z] −→ OA be the restriction map.
Let t ∈ F

2k, and T = {1, . . . , 2k}. The overall goal of this section is to show in
Theorem 4.4 that only a few ρ(ψt) are squares when t is chosen from a finite subset
H of F

2k. For a simple example of a square, we take the parabola f = x− y2 so that
C = {x = y2}, and D = {x − y2 = y + z = 0} is irreducible. If k = 1 and t2 = −t1,
then

ρ(ψt) = ρ((t1 − y)(t1 − z)(t2 − y)(t2 − z)) = ρ((t1 − y)2(t1 + y)2)(4.1)

is a square on D.
The condition that ρ(ψt) not be a square for (3.2) to hold is not an artifact of

Perel’muter’s proof, but without it (3.2) may actually fail to be true.
In what follows, we define several combinatorial objects on the index set T . We

first collect pairs of equal values of ti in a systematic way. Namely, we take the
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lexicographically first maximal matching on the directed graph with vertex set T ,
and where (i, j) are connected if and only if i < j and ti = tj . Then T1 ⊆ T is defined
as the set of these first coordinates i, and τ1:T1 → T is defined by τ1(i) = j if (i, j)
occurs in that matching. As an example, if t3 = t5 = t8 = t11 = t13 and no other ti
equals these, then T1 = {3, 5}, τ1(3) = 8, and τ1(5) = 11.

Next, we set

T2 = {i ∈ T \ (T1 ∪ τ1(T1)):A ∩ {y = ti} ⊆ S or A ∩ {z = ti} ⊆ S}.

Then the ti for

i ∈ T3 = T \ (T1 ∪ τ1(T1) ∪ T2)

are pairwise distinct, and (T1, τ1(T1), T2, T3) is a partition of T . Next, we let

S0 = T3 × {0}, S1 = T3 × {1}

be two disjoint copies of T3, and we now define a bipartite undirected graph G =
(S0 ∪ S1, E) as follows. For i, j ∈ T3, (i, 0) and (j, 1) are connected in G if and only
if there is some (a, b, c) ∈ A \ S such that b = ti and c = tj .

In the example (4.1) of a parabola, we have T1 = T2 = Ø, and

G = .
(1, 0)

(2, 0)

(1, 1)

(2, 1)�
�
�❅
❅
❅

Lemma 4.2. If t ∈ F
2k is such that ρ(ψt) ∈ OA is a square, then each vertex in

G has degree at least one.
Proof. By symmetry, it is sufficient to show the claim for a vertex (i, 0) ∈ S0.
Since i �∈ T2, we can choose some P = (a, ti, c) ∈ A \ S; then c �= ti. Let

U0 = {j ∈ T : tj = ti}, U1 = {j ∈ T : tj = c},

ρ: F [x, y, z] → OA be the restriction to A, R = OP,A be the local ring at P , which
is a unique factorization domain (see, e.g., Shafarevich (1974), Theorem II.3.2), and
λ = (OA → OP,A) ◦ ρ be the composition of ρ with the localization at P. Then i ∈ U0

and U0, U1 ⊆ T \ T2.
For every j ∈ T \ (U0 ∪ τ1(U0) ∪ {i}), we have tj �= ti, and thus λ(y − tj) is a

unit in R. Similarly, each λ(z − tj) with tj �= c is a unit in R. Since (a, ti) ∈ C is not
critical for π, we have fy(a, ti) �= 0, and therefore λ(y − ti) ∈ R is a local parameter
in R. Similarly, each λ(z − tj) with tj = c is a local parameter in R.

By the above, there is a unit u ∈ R such that

λ(ψt) =
∏
j∈T

λ(y − tj) ·
∏
j∈T

λ(z − tj)

= u ·
∏

j∈U0∪τ1(U0)∪{i}
λ(y − tj) ·

∏
j∈U1

λ(z − tj)

is a square in R. Thus the total number of local parameters in the product is even.
We have #U0 = #τ1(U0) and i �∈ U0 ∪ τ1(U0). It follows that, in the left-hand
product, the number of local parameters is odd, and therefore the same is true for the
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right-hand product. Thus there exists some j ∈ T3 with tj = c; then {(i, 0), (j, 1)} ∈
E.

We now take a maximal “disjoint” matching (V0, V1) in G of the following type.
The sets V0, V1 ⊆ T3 are disjoint, G induces a perfect matching on (V0 ×{0})∪ (V1 ×
{1}), and this matching is maximal. Furthermore, let µ : V0 −→ V1 be the corre-
sponding bijection, with µ(i) = j if and only if {(i, 0), (j, 1)} occurs in the matching.

For every i ∈ V2 = T3 \ (V0∪V1), (i, 0) is connected to some (j, 1) ∈ T3×{1}, and
by the maximality of the matching, we have j ∈ V0 ∪ V1. We take µ:V2 −→ V0 ∪ V1

such that µ(i) = j for some such j and note that (V0, V1, V2) is a partition of T3.
Finally, we indicate how to describe ti for i ∈ V0 succinctly if {(i, 0), (j, 1)} ∈

E and tj is known. For this, we take an arbitrary total order ≺ on F. For each
t ∈ F, C ∩ {y = t} has at most n points, say, (a1, t), . . . , (al, t) with l ≤ n and
a1 ≺ · · · ≺ al. If j = µ(i) and t = tj , then (ar, ti, tj) ∈ D \ S for one of those points,
with 1 ≤ r ≤ l. We choose the smallest such r; then C ∩ {x = ar} consists again of
at most n points. We let v be the position of (ar, ti) in this list, ordered according to
≺, and set τ3(i) = (r, v). Then ti is determined by j = µ(i), tj , and τ3(i).

Similarly, we define τ3:V2 −→ {1, . . . , n}2 so that, for i ∈ V2, ti is determined by
j = µ(i), tj , and τ3(i).

We have thus associated the following data to any t ∈ F
2k with ρ(ψt) a square:

T1, τ1, T2, V0, µ, τ3, and ti for i ∈ T1 ∪ T2 ∪ V1.(4.2)

Lemma 4.3. If ρ(ψt) is a square in OA, then t is determined by the data in
(4.2).

Proof. (T1, τ1(T1), T2, V0, V1, V2) is a partition of T , and ti = tτ2(i) for each i ∈ T1.
Thus it remains to show that each ti with i ∈ V0∪V2 is determined by (4.2). However,
that is precisely what the construction of µ and τ3 achieves.

We are now ready for the main result of this section, an upper bound on the
number of ψt which are squares. The bound is rather coarse but sufficient for our
purposes.

Theorem 4.4. Let F be an algebraically closed field, let f ∈ F[x, y] be squarefree,
let C = {f = 0} with π: C → F be separable, let H ⊆ F be a finite set with h elements,
and let k ∈ N be positive. The number of t ∈ H2k such that ρ(ψt) is a square in OA
for some irreducible component A of C ×π C is at most (12kn2h1/2)2k.

Proof. We first fix a component A of D and show the corresponding bound. By
Lemma 4.3, it is sufficient to give an upper bound on the number of choices for the
data in (4.2).

The six sets T1, τ1(T1), T2, V0, V1, V2 form a partition of T , and there are at most
62k choices for this partition.

Suppose that these sets are chosen, with cardinalities c1, c2, c3, c4, c5, c6, respec-
tively. Then c1 = c2, c3 < n2, and c4 = c5. The number of choices for τ1 is at most
(2k)c1 , for µ at most (2k)c4+c6 , for τ3 at most (n2)c4+c6 , and for all ti’s required in
(Theorem 4.1) at most hc1+c5 · (n2)c3 . Since c1 + c5 ≤ 2k/2 = k, the total comes to

m = 62k · (2k)c1+c4+c6 · (n2)c3+c4+c6 · hc1+c5 .(4.3)

Since degD ≤ n(n− 1) by Theorem 4.1 (i), D has at most n(n− 1) < n2 irreducible
components. So the total number of t considered is at most n2m, and

n2m ≤ 62k · (2k)2k · (n2h1/2)2k.

Here we use that either c1 + c2 + c5 > 0 and then n2 · (n2)c3+c4+c6 ≤ (n2)2k, or
c2 + c3 + c4 + c6 > 0 and then n2(h)c1+c5 ≤ hk.
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5. Exceptional polynomials. In this section, we deal with the somewhat trou-
blesome case excluded so far: exceptional polynomials, for which σ = 0. No analogue
of the deterministic result of Theorem 3.3 is known for them, while the probabilistic
results of section 2 carry over easily.

We first note that it is not surprising that they are difficult to deal with since any
subset of F

2
q is an exceptional curve. If c ∈ Fq is a nonsquare and f = x2 + cy2, then

f is exceptional and

{f = 0} = {(0, 0)},(5.1)

and by translation and finite unions the claim follows. If char Fq ≥ 3, then (5.1) also
holds for f = xq−1 + yq−1. If b ∈ Fq2\Fq with b2 ∈ Fq, then bq−1 = (b2)(q−1)/2 = −1.
Thus f is the product of all x− by with these b, and thus f is exceptional, too.

Now, given an arbitrary f ∈ Fq[x, y] of degree n, there are well-known probabilistic
algorithms with time polynomial in n log q that factor f into its irreducible factors
over Fq (von zur Gathen and Kaltofen (1985)) and test each such factor for absolute
irreducibility (Kaltofen (1985)). For simplicity, assume now that f is irreducible over
Fq and not absolutely irreducible. Then Kaltofen’s algorithm can be used to find a
field extension K of Fq with [K: Fq] ≤ n and a proper factorization of f over K. If g
and h are two distinct factors, then the first coordinate of any common root is a root
of

resy(g, h) ∈ K[x].

Thus it is easy to calculate all common roots of g and h, to check which ones are in
F

2
q , and to determine whether they are indeed roots of f. All roots of f are found in

this way; there are at most n2/4 of them (von zur Gathen, Karpinski, and Shparlinski
(1996)).

Theorem 5.1. Let f ∈ Fq[x, y] have degree n. There is a probabilistic algorithm
using (n log q)O(1) operations in Fq that determines whether f is exceptional and, if
it is, finds all points of {f = 0}.
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Abstract. In this paper we define a class of mechanical systems consisting of rigid objects
(defined by linear or quadratic surface patches) connected by frictional contact linkages between
surfaces. (This class of mechanisms is similar to the analytical engine developed by Babbage in the
1800s, except that we assume frictional surfaces instead of toothed gears.) We prove that a universal
Turing Machine (TM) can be simulated by a (universal) frictional mechanical system in this class
consisting of a constant number of parts. Our universal frictional mechanical system has the property
that it can reach a distinguished final configuration through a sequence of legal movements if and
only if the universal TM accepts the input string encoded by its initial configuration. There are
two implications from this result. First, the robotic mover’s problem is undecidable when there are
frictional linkages. Second, a mechanical computer can be constructed that has the computational
power of any conventional electronic computer and yet has only a constant number of mechanical
parts.

Previous constructions for mechanical computing devices (such as Babbage’s analytical engine)
either provided no general construction for finite state control or the control was provided by elec-
tronic devices (as was common in electromechanical computers such as Mark I subsequent to Turing’s
result). Our result seems to be the first to provide a general proof of the simulation of a universal
TM via a purely mechanical mechanism.

In addition, we discuss the universal frictional mechanical system in the context of an error model
that allows an error up to ε in each mechanical operation. We first show that, for a universal TM M ,
a frictional mechanical system in this ε-error model can be constructed such that, given any space
bound S, the system can simulate the computation of M on any input string ω if M decides ω in
space bound S, provided that ε < 2−cS for some constant c. We also show that, for any universal
TM M and space bound S, there exists a frictional mechanical system in the ε-error model with
ε = Ω(1); it has O(S) parts and can simulate M on any input ω that M decides in space bound S.
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1. Introduction.

1.1. Motivation. There are two contexts where our result may be of interest:
robotic mover’s problems and mechanical computing machines.

1.1.1. Robotic mover’s problems. The objective of robotic mover’s problems
(or motion planning problems) is to plan the motion of a robot between distinguished
configurations under specified physical constraints (e.g., avoiding obstacles) and pos-
sibly also dynamic constraints. There are two categories of problems studied in this
area: decision problems and optimization problems. The goal of a decision prob-
lem is to decide, given the physical and dynamic constraints, whether or not there
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is a sequence of legal movements that will allow the robot to reach the goal config-
uration; the goal of an optimization problem is to find an optimal path (trajectory)
that leads to the goal configuration, according to a predefined cost function on paths
(trajectories).

The first hardness result for a robotic mover’s problem was presented by Reif
[9]. He showed that the generalized mover’s problem of moving n linked polyhedra
through a set of three-dimensional (3D) obstacles is PSPACE-hard. His proof used
a reduction of the computation of any reversible Turing machine (TM) on an input
string to an instance of the mover’s problem. Hopcroft, Joseph, and Whitesides [7]
improved on this result by proving that the mover’s problem for two-dimensional (2D)
linkages is PSPACE-hard. Later, the generalized mover’s problem was proved to be
in PSPACE by Canny [2]. Using a path coding technique, Canny and Reif [3] also
proved that computing the shortest path for a point robot moving amidst polyhedral
obstacles is NP-hard. Asano, Kirkpatrick, and Yap [1] introduced the problem of
computing the d1-optimal motion for a 2D rod (defined by a directed line segment)
amidst polygonal obstacles and showed that this problem is NP-hard.

There are also many hardness results on various extensions of the basic robotic
mover’s problem, such as moving obstacles, multirobots, etc. For example, in [8]
Hopcroft, Schwartz, and Sharir proved that motion planning for multiple independent
rectangular boxes sliding inside a rectangular box is PSPACE-hard. A similar problem
of moving multiple discs inside a polygon in a 2D space, however, could be proved only
to be strongly NP-hard [14]. Reif and Sharir [10] introduced the 3D mover’s problem
in the presence of moving obstacles and showed that this problem is PSPACE-hard
even in a case where the object to be moved is a disc with bounded velocity. By
extending the path coding technique of [3], Reif and Wang [12] proved that the 2D
curvature-constrained shortest-path problem is NP-hard. Later, Reif and Sun [11]
showed that the time-optimum path planning problem for a point robot in a 3D space
composed of polyhedral regions with flows is PSPACE-hard.

Most robotic mover’s problems assume that the obstacles are the only objects in
the robot’s workspace besides the robot itself. One exception is the movable object
problem, which is to ask whether a robot can move certain objects amidst obstacles
in a space to reach a target configuration. That is, there are two types of objects
in the space: obstacles that cannot be moved and penetrated (or even touched) by
the robot, and objects whose placements can be changed by the robot. The goal
of the robot is either to rearrange the movable objects in the space to a desired
configuration or reach a target configuration of itself, or both. The first result on the
movable object problem was given by Wilfong [15], who studied this problem for the
case of a polygonal robot moving in translation amidst polygonal movable objects in
a bounded polygonal space. He proved that if the final configurations of the objects
are not specified as part of the goal of the motion planning problem, this problem is
NP-hard; otherwise, it is PSPACE-hard. He also gave one algorithm for each of the
two cases where only one movable object is present.

In Wilfong’s model, a robot can grasp an object only from a finite number of
positions. This problem is considered to be more difficult when this number is infinite.
Chen and Hwang [4] gave a heuristic algorithm to solve one model of this problem
where the total weight of objects moved by a robot is to be minimized. Dacre-
Wright, Laumond, and Alami [5] extended Wilfong’s work by providing an O(n3 log n)
algorithm for the infinite grasping position case where the final configurations of the
objects are specified as part of the goal.
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1.1.2. Mechanical computing machines. In 1822, Charles Babbage designed
and constructed the difference engine. This machine was specially designed for the
evaluation of polynomials. Later, in 1833, Babbage proposed (but did not fully con-
struct) a new device, the analytical engine, which was conceived to solve general
arithmetic problems. It resembled the modern digital computer in the following ways.

Input device. Just like any modern computer, the analytical engine was designed
to have an input mechanism, such as punch cards.

Memory. The analytical engine was supposed to store the data encoded by me-
chanical positions; e.g., distinct digits were stored via rotational positions of distinct
mechanical dials.

Arithmetic unit. The machine was able to manipulate the data and, in particular,
to execute the arithmetic operations. This was done by a part called the “mill” using
various gearing mechanisms.

Control unit. The machine was also envisioned by Babbage to have a mechanism
that could control the sequence of operations to carry out the computations.

About half a century after Babbage’s death, Dr. Vannevar Bush resumed the work
of building a mechanical computing device. In 1925 he, along with some associates,
made a mechanical calculator powered by an electric motor. His machine was an
analog one, in the sense that arithmetic operations were carried out by mechanical
means and in terms of physical measurements.

In 1939, Howard Aiken, in collaboration with four IBM engineers, built a general
purpose computing machine, the so called automatic sequence controlled calculator,
Mark I. Just like Babbage’s analytical engine, Mark I performed computation by
manipulating mechanical devices. The key difference between Mark I and the previous
mechanical computers such as the analytical engine and Bush’s machine is that, while
the analytical engine and Bush’s computer were purely mechanical, the operations of
mechanical parts of Mark I were controlled electrically.

As electronic devices were not available in the 1800s, Babbage had to exploit a
purely mechanical system to build a computer. Subsequent electromechanical com-
puters could exploit electronics for control, and of course so do the modern computers.
Today, Babbage’s concept of a purely mechanical computer would at first seem to be
out of date, as computers built by much faster electronic technology prevail in ev-
ery corner of the world. However, the emergence of nanotechnology provides new
motivation on studies of mechanical computers.

1.2. Our results.

1.2.1. Frictional mechanical system and frictional mover’s problem. All
the robotic mover’s problems mentioned above assume that there is no friction between
objects, and most of the models allow only collision-free movements so that different
objects cannot even make contact with each other. The only work that addressed
motion planning in the presence of friction is by Sellen [13]. He proved that the
dynamic motion planning problem with forbidden movements (in particular, sliding)
is undecidable by showing that the actions of a TM can be realized by logical and
arithmetic operations, which can be implemented by mechanical means. However,
in his model, the motions of the objects corresponding to the computations of the
TM cannot be generated deterministically. Therefore, this model cannot be used for
constructing a mechanical computer.

We define a frictional mechanical system to be a collection of rigid objects in 3D
space whose surfaces are composed of linear or quadratic surface patches specified by
rational coefficients. All objects are nonpenetrable; i.e., the only allowed intersection
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is via surface contact. Each surface patch of each object is also specified as either
frictional or sliding (nonfrictional). If two objects with frictional surfaces make con-
tact with each other, it is assumed that there is no sliding1 between them. If at least
one of the two contacting surfaces is designated to be a sliding surface, there will be
no friction between them so that they can slide freely. Furthermore, some objects in
the space are specified to move monotonically. In particular, there may be some discs
in the system that can rotate only in one direction (clockwise or counterclockwise).
We say that the objects can be moved legally if all the above constraints are satisfied.

We define the resource bound, denoted by R, to be the number of distinct objects
in the frictional mechanical system. As each object can be specified by a constant
number of surface patches, each of which can be specified by a constant number
of rational coefficients, the total number of binary bits used to encode an object is
bounded by a constant. Hence, the total number of bits in the binary representation
of the frictional mechanical system is O(R).

The frictional mover’s problem is to determine whether these objects in the fric-
tional mechanical system can be moved legally from a specified initial configuration
to a specified final configuration. This problem can be regarded as a generalization
of the movable object problem. Compared to the previous works, our model is in 3D
space, and the surfaces of the objects in the space can be nonlinear. Further, in ad-
dition to moving an object by grasping or pushing (directly or indirectly), a robot in
our model can move objects by using the friction between it and surrounding objects.
More specifically, a power disc in the frictional mechanical system can be deemed
as a rather “dumb” robot; it is restricted to rotate in a specified direction without
translation. And the problem is to ask whether this robot can rearrange the objects
in the system to a target configuration by its rotation.

We prove that the frictional mover’s problem is undecidable by reducing the
acceptance problem for a Turing machine2 (TM), ATM ,3 to the frictional mover’s
problem. Given a universal TM4 M , we construct a frictional mechanical system
to simulate this machine. This frictional mechanical system will have the property
that the objects in this system can be moved from an initial configuration, which
encodes an input string ω of M , to a configuration corresponding to the accepting
state of M if and only if M accepts ω. Therefore, as the acceptance problem for a
TM is undecidable, so is the frictional mover’s problem. This implies that there is no
realistic machine that can solve this problem.

An interesting property of this frictional mechanical system is that if M accepts
ω, there will be a unique simple path (i.e., one that does not repeat the same config-
uration) from the initial configuration to the final configuration.

The proof will actually construct, for any given TM M , a frictional mechanical
system that simulates M . Every movable object in the system is engaged or linked
directly or indirectly with the power disc so that, when the power disc rotates, it will
make those objects move accordingly. For any input string ω of M , this frictional

1Sliding is a move in a direction tangent to the surfaces at the contact point.
2A Turing machine is an abstract machine with a finite state control and a tape that can store an

infinite string of symbols. There is a read-write head on the tape that allows the machine to read or
write the symbol at the current position of the head. The machine can write to the current position
and move the head left or right according to the current state and the current symbol in a specified
way.

3The acceptance problem ATM for a TM is to determine, given the description of a TM M and
its input ω, whether M accepts ω.

4A universal TM M will take the description of any TM M ′ and any input string ω of M ′ as an
input and simulate the behavior of M ′ presented with input ω.
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mechanical system can be set to an initial configuration encoding ω so that, after
the power disc has rotated a sufficient number of cycles, this system will result in
a configuration encoding the accepting state (rejecting state) of M if and only if M
accepts (rejects) ω.

Even though Babbage claimed that the analytical machine could be used to solve
any arithmetic problem, it is doubtful whether this machine is as powerful as a univer-
sal computing machine. The difficulty is that Babbage did not have a general concept
of an abstract computing machine, such as a TM, which was later introduced by Alan
Turing in 1936. To show that a mechanical system has the computational power of an
electronic computer, it is sufficient and necessary to show that this mechanical system
can simulate a universal TM, as proposed by Turing. Although Babbage designed his
analytical machine to have a control unit used to guide the arithmetic operations,
it was not explicitly shown by Babbage how it could simulate a general finite state
control, which is the core of a universal TM. The electromechanical computer, Mark
I, was designed to be capable of fulfilling any computing tasks and thus should be
as powerful as the modern computers. However, it used an electronic device as the
central controller. To our knowledge, our mechanical system, as it will be described
in later sections, is the first mechanical system that can perform general-purpose
computation without using any electronic devices.

Another limitation of Babbage’s analytical engine is its representation of numbers.
The analytical engine was a digital computer. Each digit of a number was represented
by a mechanical device, such as a dial. The accuracy of Babbage’s machine, in
terms of the number of decimal places, was determined by the number of dials used
to represent a number. Therefore, no matter how precisely the machine was built,
it would not improve its accuracy. The only way to improve the accuracy of the
machine’s computation (or increase the number of data bits) is to increase the number
of dials used to represent a number. This will change the structure of the analytical
engine and make it bigger and more complicated. Our frictional mechanical system,
however, is an analog computer, in the sense that a number (in fact, the entire data
of the computation) is represented by the rotational position of a single disc. The
accuracy of our system depends on the accuracy of the measurement and the precision
of the mechanical devices. Therefore, it can be arbitrarily accurate as we reduce the
error in transitional (or rotational) measurement as well as the error in building
mechanical devices.

For our proof of the undecidability of the frictional mover’s problem, we adopt a
simple deterministic model for frictional contacts between objects. Note that there
exists a number of considerably more complex models (for example, see [6]) for fric-
tional contacts between objects where the objects in contact with surfaces may make
nondeterministic motions. However, our simple deterministic model for frictional con-
tacts will suffice for us to adequately model frictional contacts in the simple cases we
employ in our constructions and thus to prove our undecidability result for movement
planning with frictional contacts. Moreover, many of these more complex models for
frictional contacts reduce to our simple deterministic model for frictional contacts in
the simple cases we employ in our constructions.

1.2.2. Frictional mechanical system with error. We prove that a frictional
mechanical system can be constructed to simulate a universal TM. Therefore, this
system can be used for arbitrary finite computation, just like any conventional com-
puter. However, the underlying assumption is that this frictional mechanical system
can be constructed exactly as it is specified. We are also interested in the computa-
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tional power of such a frictional mechanical system in the case where inaccuracy is
allowed in the construction of the mechanical devices in the system.

There are many factors that might induce errors in the computations of a frictional
mechanical system, including the precision of manufacturing the parts. For example,
the circumference of a disc may not exactly be manufactured to be a circle. The
radius of a disc may not be manufactured to be exactly as it is specified. When two
discs are very close but still not in contact with each other theoretically, they may
already have surface contact so that the rotation of one disc will move the other one,
even though they are not supposed to do so.

Since there are a constant number of mechanical devices in our mechanical system,
we can let ε be the upper bound for the errors that occur in a single operation. This
is our ε-error model. We prove that, given a space bound S, our frictional mechanic
system in this ε-model can simulate the universal TM M on any input string ω that
can be decided by M in space bound S, provided that ε = O(2−cS) for some constant
c.

We also prove that, given a universal TM M with space bound S, there exists
an ε = Ω(1) such that a frictional mechanical system in ε-error model can simulate
the computation of M presented with any input ω if M decides ω in space bound S.
This result provides decreased required precision of parts at the expense of increased
number of parts, which increases with S.

1.3. Notation. In the following sections, the universal TM with end-marks is
denoted by quintuple M = (Q,Σ, δ, q0, {qσ−2, qσ−1}) as follows:

1. Q = {q0, q1, . . . , qσ−1} is the set of states.
2. Σ = {0, 1, . . . ,m− 1} is the tape alphabet. Here 0 denotes the blank symbol.

1 and 2 are the left and right end-marks, respectively.
3. δ : Q× Σ→ Q× Σ× {L,R} is the transition function.
4. q0 is the start state.
5. {qσ−2, qσ−1} is the set of halting states. In particular, qσ−2 is the rejecting

state and qσ−1 is the accepting state.
In our following discussion, m and σ are considered as constants.
At any time during the computation, we use the current working space of the TM

to denote the portion of the tape that the read-write head has visited so far. The
current working space is always bounded by a left end-mark and a right end-mark.
We denote the tape status by a string ω1ω2 · · ·ωk1−1ω̌k1ωk1+1 · · ·ωk2 . Here ω1 and
ωk2 are the left and right end-mark, respectively, and ω̌k1 denotes that the read-write
head is at the k1th cell of the tape. The read-write head will never replace the left
end-mark by another symbol nor will it go beyond the left end-mark. Whenever the
read-write head replaces the right end-mark by another symbol, it will pad a right
end-mark to the right of the symbol.

It is easy to see that, for any TM (without end-marks) M ′, there is an equivalent
TM with end-marks as described above. Therefore, all universal TMs mentioned in
the following discussion are assumed to have end-marks.

Since discs, in particular the rotational positions of discs, play a very important
role in our frictional mechanical system, we want to specify several terminologies
which we will be using frequently in the following discussion.

Each disc used in our system has a specified orientation called the initial orien-
tation. Therefore, the rotational position of a disc D can be specified by the angle
the disc has rotated from its initial orientation. For our convenience, we will use
“the angle of D” to denote this angle. Also, we will say that the angle recorded (or
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represented) by the rotational position of disc D is θ. Further, if we say “to increase
(decrease) the angle or rotational position of a disc D by an angle of θ,” we mean to
rotate D counterclockwise (clockwise, respectively) by an angle of θ.

A partial disc is a portion of a disc bounded by two radii and the remaining
portion of the circumference. As we will show later, partial discs are very useful in
our system too.

1.4. Organization of this paper. Section 2 presents several basic mechanical
devices widely used in our frictional mechanical system. After that, we provide the
full description of the frictional mechanical system that simulates a universal TM. In
the last section, the model of the frictional mechanical system with errors is discussed.

2. Basic gadgets. We prove the reduction from ATM to the frictional mover’s
problem by constructing a frictional mechanical system for a universal TM M . This
system is composed of discs, partial discs, cylinders, and other geometric objects.
There is a special disc, the power disc, which is specified to rotate only clockwise. The
rotation of this disc will force other objects in the system to move, due to frictional
linkages between them. This frictional mechanical system can “simulate” M in the
sense that, for any input string ω of M , this system can be set to a corresponding
initial configuration so that a distinguished final configuration can be reached if and
only if M accepts ω. Therefore, if one can decide this instance of the frictional mover’s
problem, he can also decide the corresponding instance of ATM . As it is well known
that ATM is undecidable, so must be the frictional mover’s problem.

Friction is very important in this system, as it not only provides a method of
moving other objects in the system but also preserves the state of the system and
thus the state of the TM the system simulates. It also guarantees the system properly
transfers from one state to another.

Before giving the construction of the frictional mechanical system, we first intro-
duce in this section several “gadgets” that perform the basic functionalities and thus
are used widely in our system.

There are seven kinds of basic gadgets:

Converting device. A converting device is used to convert between rotational
displacement and transitional displacement.

Sequencer. A sequencer is composed of a group of discs and partial discs that share
the same axis and rotate with the same angular speed at any time. These discs (and
partial discs) are engaged with some surrounding discs in the frictional mechanical
system so that, when rotating, they will make the surrounding discs rotate with them
and in turn move other objects in the system. The sequencer is a key component
in the frictional mechanical system, as it provides a mechanism for moving all the
objects in the system in a specified way.

Transitional movement sequence controller. A transitional event sequencer con-
troller allows the sequencer to periodically move an object in the system by a constant
distance and then move it back.

Rotational movement sequence controller. A rotational event sequencer controller
allows the sequencer to periodically rotate a disc by a constant angle.

Resettable rotational disc. A resettable rotational disc has two states: the free
rotation state, when it can be rotated by engaging with another disc, and the reset
state when it will return to a specified initial orientation no matter how much it
is rotated in the free rotation period. Virtually all devices need to use resettable
rotational discs.
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Fig. 1. Converting device.

Nonlinear mapping controller. A nonlinear mapping device is used to implement
a nonlinear mapping between rotations. This is a very crucial component in the
construction of the simulation of a finite state control.

Selection controller. A selection controller helps the sequencer to initiate one
among several event sequences, depending on the rotational (or transitional) position
of an object in the system. This is yet another key component in the construction of
the simulation of a finite state control.

In the following subsections, we will give a detailed description for each of the
basic gadgets.

2.1. Converting device. The most basic device is one that can convert a ro-
tational displacement to a transitional displacement or vice versa. This can be done
by the device described in Figure 1.

As can be seen from the figure, one end A of an arm of length a is attached to a
fixed position on the rim of the disc D. The other end B of this arm is restricted to
move along a line l passing the center of the disc. The rotation of the disc D, θ, and the

distance d between the center of the disc and B satisfy d = r cos θ +
√

a2 − r2 sin2 θ.
Here r is the radius of D.

Therefore, if θ varies between π/4 and 3π/4, then d will vary between
√

a2 − r2/2−
r/
√

2 and
√

a2 − r2/2+r/
√

2. Further, d is a monotone function of θ. Therefore, the
rotational displacement of disc D can be converted to the transitional displacement
of B and vice versa.

2.2. Sequencer. All the objects in the system are moved, directly or indirectly,
by a mechanism called a sequencer, which is composed of a group of discs and partial
discs. These discs and partial discs share the same axis and rotate with the same
angular speed at any time. Each disc or partial disc is engaged with one or more
surrounding discs. Therefore, when the sequencer is rotating, it will make these
surrounding discs rotate. Also, the rotation of these surrounding discs will then move
other objects in the system.

In Figure 2, there are three discs and two partial discs in the sequencer. Each of
the discs of the sequencer will make its surrounding disc rotate with it, possibly at a
different angular speed. Each of the partial discs, however, will move the surrounding
disc for a certain period and then lose contact with it.

Each cycle of the sequencer finishes one step of computation of the universal TM
it simulates. As the rotation of the sequencer determines the starting and finishing
of any movement sequence of any other object linked with it, we may use an interval
[θ1, θ2] to denote the time period during which the sequencer rotates from angle θ1 to
angle θ2 in each cycle rather than using the actual time.
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Fig. 3. Transitional movement sequence controller.

2.3. Transitional movement sequence controller. It will be useful if the
sequencer can move an object to a specified position during time period [θ1, θ2] of
each rotational cycle and move it away from that position otherwise. This can be
done by the controller shown in Figure 3.

There is a circular gap on the surface of the disc which is on the sequencer. The
curve of this gap is defined by r = r(θ) in a polar coordinate with origin at the center
of the disc. A vertical bar is restricted in the circular gap. Also, it is restricted to
move on a line passing the center of the disc. r(θ) has the property that

r(θ) = r0 for θ ∈ [θ1, θ2],
r(θ) > r0 for θ 	∈ [θ1, θ2].

Here r0 is a constant. Therefore, when the controller is rotating in one direction,
the bar will move back and forth along the line. More specifically, in time interval
[θ1, θ2], the vertical bar is at the position of (r0, 0) (in a polar coordinate). At any
other time, it is at some position (r′, 0), where r′ > r0.

For our convenience, in the following discussion, we may say “the sequencer moves
an object to a certain position during a certain time period in each rotational cycle,”
implicitly assuming that we have constructed a transitional movement sequence con-
troller, as described here, that fulfills this task.

Transitional movement sequence controllers will be used frequently in our fric-
tional system. All the rotational discs, except those on the sequencer, need to be
clamped down whenever they are not rotated, directly or indirectly, by the sequencer
so that their orientations will be maintained. This can be done by moving a blocking



1458 JOHN H. REIF AND ZHENG SUN

�
�
�

�
�
�

Blocking Bar

(a) Rotating period

��
��
��
��

Blocking Bar

(b) Clamping period

Fig. 4. Rotational movement sequence controller.

bar (a bar with a frictional surface) to a position where it has surface contact with
the disc in the clamping period of each cycle.

2.4. Rotational movement sequence controller. A rotational movement se-
quence controller is a partial disc in the sequencer used to rotate another disc, called
a target disc, in a specified time interval during each cycle (see Figure 4). With a
transitional movement sequence controller, a blocking bar can be moved to clamp the
target disc when the partial disc loses contact with the target disc. When the partial
disc rotates to such an orientation that its rim contacts the rim of the target disc,
this bar is moved away from the target disc so that this disc can be rotated by the
partial disc.

Therefore, the disc will stay stationary during the clamping period and rotate
with the partial disc otherwise. The length of the rotating period is determined by
the angle of the partial disc. And the total angle the target disc rotates during the
rotating period is determined by the length of the arc of the partial disc as well as
the radius of the target disc. Therefore, by setting these parameters appropriately,
we can let the target disc rotate by a certain angle, say, π in each cycle.

Again, for our convenience, in the following discussion, we will say “the sequencer
rotates a disc by a specified angle during a certain time period,” implicitly assuming
that we have constructed a rotational movement sequence controller, as described in
this subsection, to do it.

2.5. Resettable rotational disc. With a rotational movement sequence con-
troller, the sequencer can rotate a disc by a constant angle during each cycle. Fre-
quently, it is necessary to rotate a target disc by a certain angle θ recorded by a source
disc and then reset it by rotating it by θ in the reverse direction, no matter what θ
is. This kind of disc is called a resettable rotational disc. As shown in Figure 5, two
discs are linked by a two-segment arm. Each of these two discs has a radius of 1.
The distance between the centers of the two discs is d, and the total length of the
two-segment arm is d too.

The upper disc is the target disc. The lower disc connects to a rotational move-
ment sequence controller so that at the time when we want to reset the target disc,
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Fig. 5. Resettable rotational disc.

the lower disc will rotate by an angle of π. Because the length of the two-segment is
exactly the same as the distance between the centers of two discs, the upper disc will
be forced to rotate to such an orientation that the point where the arm is attached is
at the lowest position. When it is time to release the target disc and allow it to be
rotated freely by another disc it engages with, the lower disc rotates by another π so
that it restores its initial orientation.

Therefore, each resettable rotational disc can be regarded as a register. It can
hold a value that is represented by its current angle θ.

Using resettable rotational discs, we can construct a mechanical device that will
increase the angle of a disc by the angle recorded by another disc. Suppose we have
two resettable rotational discs. Disc D1 is set at θ1, and D2 is set at θ2. We want
to increase the angle of D2 by θ1 while having the angle of D1 remain unchanged. A
third disc D3 is needed here, and it is set at its initial orientation. The radii of D1,
D2, and D3 are the same.

First, both D2 and D3 are engaged with D1, and then D1 is reset to its initial
orientation. D2 (and D3) will be rotated counterclockwise by an angle of θ1. This
will set D2 to angle θ1 + θ2 and D3 to angle θ1. Then D2 is disengaged from D1.
The next step is to reset D3 to its initial orientation. As D3 is still engaged with D1,
D1 will be rotated counterclockwise by an angle of θ1. Therefore, the orientations of
D1 and D3 will be set just the same as they were before, while the angle of D2 is
increased by θ1, which is the angle recorded by D1.

Observe that we can amplify or reduce θ1 by a constant factor C before adding it
to D2. This can be done by setting r1 = r3 = Cr2, where r1, r2, and r3 are the radii
of the three discs, respectively.

Here we will digress to address the necessity of using discs with frictional linkages.
If gears instead of discs were used, it might be possible that teeth of the gears could
not match after they resume contact with each other, since the two gears might rotate
by a different angle after they are disengaged.

2.6. A nonlinear mapping device. Engaging a source disc and a target disc
will allow us to perform linear mapping from the angle of rotation of the source disc
to the angle of rotation of the target disc. By “linear mapping” we mean that if the
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Fig. 6. Nonlinear mapping device.

source disc rotates by an angle of θ, the target disc will rotate by an angle of C · θ,
where C is the radius ratio between the two discs. However, sometimes it is necessary
to perform nonlinear (or even nonmonotone) mapping on the rotations of discs. In
particular, a device with the following property is needed.

Property 1. A nonlinear mapping device has two discs, an input disc and
an output disc, each of which can rotate by any angle θ ∈ [0, π/2] from its initial
orientation. Given θ1, θ2, . . . , θn, α1, α2, . . . , αn, 0 ≤ θ1 < θ2 < · · · < θn ≤ π/2,
0 ≤ αi ≤ π/2, if the rotation of the input disc is θi, the rotation of the output disc
should be αi. Further, if α1 < α2 < · · · < αn, the mapping should be monotone. That
is, for any θ, θi < θ < θi+1, if the rotation of the input disc is θ, the rotation of the
output disc, α, should be in the range of (αi, αi+1).

Nonlinear mapping can be implemented by the device described in Figure 6. It
consists of four parts, a central (regular) disc D centered at point O, a horizontal
bar, and two irregular discs D1 and D2 centered at O1 and O2, respectively. In each
operation D1 and D2 will rotate clockwise by an angle of θi for some i, 1 ≤ i ≤ n.
The motion of D1 and D2 will cause D, through the horizontal bar connecting them,
to rotate by an angle of αi from its initial orientation.

The horizontal bar, which lies on line O1O2 between D1 and D2, is restricted to
move horizontally only. Each end of the horizontal bar touches, but is not attached
to, the rim (circumference) of one of the two irregular discs. The bar is connected to
D through a joint A between the bar and a spoke (a radiating bar from the center of
a disc to its circumference) of D. The joint has the property that it can move along



ON FRICTIONAL MECHANICAL SYSTEMS 1461

the spoke but will remain stationary with respect to the bar. Therefore, when D1 and
D2 rotate, they will in turn push the bar back and forth horizontally, which in turn
will move the spoke and thus make D rotate accordingly.

During each operation, D1 and D2 need to “complement” each other in the sense
that they keep constant contact with the horizontal bar. Nor can the two irregular
discs “squeeze” the bar, as we assume that all objects are rigid and cannot be com-
pressed. Therefore, we want to design the shapes of D1 and D2 in such a way that,
when D1 and D2 rotate clockwise with the same angular speed, the distance between
D1 and D2 on line O1O2 is a constant. This implies that r1(θ)+r2(θ+π) is a constant
for any θ ∈ [0, π/2], where, for each j = 1, 2, rj(θ) is the distance between Oj and the
intersection point of the rim of Dj and the ray with angle θ that starts from Oj .

Initially, D is set at the orientation such that the angle between the spoke of
D and the x-axis is π/4, as shown in Figure 6(a). We choose the vertical distance
between O and the horizontal bar to be R/

√
2, where R is the radius of D. Therefore,

the range of the angle between the spoke and the x-axis is [π/4, 3π/4]. Let h1 be the
horizontal distance between O and O1, and let d1 be the length of the part of the
horizontal bar between its left end and the joint A with the spoke. To achieve the
desired property, it is sufficient that the following equality holds:

r1(θi) + d1 − h1

R/
√

2
= tan(π/4− αi) for i = 1, 2, . . . , n.(1)

This can be done by choosing r1(θi) to be h1 − d1 + R tan(π/4 − αi)/
√

2 for all
i, 1 ≤ i ≤ n. Also, the initial orientation of D implies that α = 0 if θ = 0. Therefore,
we have r1(0) = h1 − d1 + R/

√
2. For our convenience, we let θ0 = 0 and α0 = 0.

To ensure that the mapping is monotone in interval [θi, θi+1], for any θ ∈ (θi, θi+1),
we specify

r1(θ) =
(θ − θi) · r1(θi+1) + (θi+1 − θ) · r1(θi)

θi+1 − θi
.(2)

Note that r1(θ) is a linear function of θ inside interval (θi, θi+1). If α1 < α2 < · · · <
αn, the nonlinear mapping will be monotone in interval [0, θn].

In the above we have shown how to decide r1(θ) for any θ ∈ [0, θn]. For any
θ ∈ (θn, 2π), we let

r1(θ) =
(θ − θn) · r1(0) + (2π − θ) · r1(θn)

2π − θn
.

This completes the specification of D1. For D2, we need only to let r2(θ) = |O1O2| −
d− r1(θ − π) so that r1(θ) + r2(θ + π) is a constant for any θ ∈ [0, 2π). Here d is the
length of the horizontal bar.

As shown in Figure 7(a), the boundary of each irregular disc Dj described above is
piecewise smooth, with derivative r′j(θ) defined everywhere except for θ = θ0, θ1, . . . , θn.
At these values, function rj(θ) has a “left derivative” r′j(θ

−) and a “right derivative”
r′j(θ

+), which in most cases are different. The difference between r′j(θ
−) and r′j(θ

+)
would not hinder the proper functioning of the device.

The only concern is that there should not be a “dimple” on the boundary, where
r′j(θ

+) = +∞ for some θ ∈ [0, 2π). In this case, the irregular disc would not be able to
push the horizontal bar away from it, and, even worse, the bar would actually prohibit
the irregular disc from further rotating, as shown in Figure 7(b). This would lead to a
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θ1

θ2

θ4
θ6 θ3

θ8

θ7 θ5

r1(θ1)

(a) The boundary is piecewise
smooth

O1

D1

(b) A dimple that causes crash

Fig. 7. Irregular discs.

complete stop of the computation of the frictional mechanical system. However, since
inside each interval [θi, θi+1] the curve rj(θ) is a linear function of θ (see (2)), r′j(θ

+)
cannot be +∞ as long as each rj(θi) is chosen to be a finite number. Therefore, we
have ruled out this potential difficulty.

Observe that even though the above mapping device can implement only a map-
ping from [0, π/2] to [0, π/2], with a linear mapping device that can amplify or reduce
angle, for any nonlinear mapping, we can construct a device to simulate it.

2.7. Selection controller. Another useful device is the so-called selection con-
troller, which will rotate one of several cylinders, depending on the transitional dis-
placement of a bar from its initial position or, equivalently, the rotational displacement
of a disc from its initial orientation. Therefore, different positions of the bar will incur
different movements of the objects in the space.

Suppose there are n cylinders, called choice cylinders, from which one is chosen to
be rotated, depending on the transitional displacement of a sliding bar. Let l denote
the transitional displacement of the sliding bar. We assume that 0 < l < 1. Further,
if 2i/(2n−1) < l < (2i+1)/(2n−1) for some i, 0 ≤ i ≤ n−1, the selection controller
will select the ith choice cylinder to rotate. This can be implemented by the device
in Figure 8.

To the left there is a long cylinder S engaged with a rotational movement sequence
controller so that S is rotated by an angle of 2π during a certain period of each
cycle and remains static at any other time. To the right there is a pile of n identical
cylinders, D0, D1, . . . , Dn−1. These cylinders share the same axis, but each can rotate
independently. The height of each cylinder is 1/(2n − 1), and the distance between
two contiguous cylinders is also 1/(2n−1). The radii of D0, D1, . . . , Dn−1, and D are
all r. The distance between D’s axis and Dis’s axis is 2r + 2R.

The sliding bar is attached to what we call a selective engager shown in the middle
of Figure 8. The selective engager consists of a disc D′ with radius R and 2n − 2
blocking bars, each of which has length R. n− 1 of these blocking bars are above D′,
and the others are below D′. The vertical distance between any two contiguous bars
is 2/(2n− 1), and so are the distance between D′ and the bar immediately above D′

as well as the distance between D′ and the bar immediately below D′.
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Fig. 8. Selection controller.

In each cycle, initially the selective engager is placed in such a position that D′

is at the same height as the lower face of D1. Also, the selective engager does not
contact either D or any Dis. After the sliding bar moves vertically by a distance of l,
2i/(2n−1) < l < (2i+1)/(2n−1) for some i, the selective engager will move upwards
by a distance of l accordingly so that it will be at the same height as Di.

Then the selective engager is moved horizontally to the position right between
D and Dis. Since the distance between D’s axis and Dis’s axis is 2r + 2R, D′ will
contact both D and Di. Also, any of D0, D1, . . . , Dn−1 other than Di will contact
one of those blocking bars so that they are forbidden from rotating.

After removing the blocking bars originally clamping the n cylinders, only ni can
rotate freely. Therefore, when D is rotated by an angle of 2π, it will rotate D′, which
in turn rotates Di. Since D and Di have the same radius, Di will be rotated by
exactly 2π.

The functionality of this device is just like the switch–case structure in a C pro-
gram. In our remaining section, we will say “If the transitional (rotational) dis-
placement of a bar (disc, respectively) is in the range of (a, b), the sequencer will do
. . .,” implicitly assuming that we have constructed a particular selection controller as
described here to do this task.

3. Simulation of a universal TM. Given the basic gadgets described above,
we are ready to construct a frictional mechanical system that simulates a universal
TM. Our frictional mechanical system consists of two components: a control compo-
nent simulating the finite state control and a tape component simulating the read-write
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tape. All the objects in the system are linked or engaged with a sequencer, which
controls the behavior of those objects. The sequencer is engaged with the power disc
that is constantly rotating clockwise. Therefore, the sequencer will be rotating coun-
terclockwise constantly, and it will drive all the objects in the system in a specified
way as it rotates.

In the control component, there is a disc Dstate whose rotational position repre-
sents the current state of the universal TM. Similarly, in the tape component, there
are three discs Dcurrent, Dleft, and Dright whose rotational positions together repre-
sent the status of the read-write tape. (The status of the tape includes the contents
of the tape as well as the current position of the read-write head.)

The control component will take the current symbol and the current state of
the universal TM, both of which are represented by rotational positions of certain
discs, as input and compute the next state, the next move of the head, and the
symbol replacing the current symbol, all of which are also represented by rotational
positions. The tape component will then modify the rotational positions of Dcurrent,
Dleft, and Dright, depending on the next move and the replacing symbol provided by
the control component.

The first subsection presents the methods used to encode the current state of the
universal TM and the current status of the read-write tape by rotational positions.
The next two subsections describe the construction of the control component and
the tape component, respectively. The last subsection shows how these two compo-
nents work together to simulate a universal TM and, subsequently, how the two main
theorems of this paper are proved.

3.1. Encoding the configuration of the universal TM. The configuration
of a TM includes the current state, the current tape contents, and the current head
location. To be able to simulate a TM, our frictional mechanical system should be
able to record the configuration of the TM by rotational positions of discs in the
system.

The status of the read-write tape of the universal TM can be encoded by the
rotational positions of three discs Dcurrent, Dleft, and Dright. If ω1ω2 · · ·ωk1−1ω̌k1
ωk1+1 · · ·ωk2 is the current tape status, the rotation of Dcurrent, βcurrent, the rotation
of Dleft, βleft, and the rotation of Dright, βright are set as follows:

βcurrent(ω1ω2 · · · ω̌k1 · · ·ωk2) =
2ωk1π

2m + 1
,(3)

βleft(ω1ω2 · · · ω̌k1 · · ·ωk2) = 2π

(
k1−1∑
i=1

ωk1−i
(2m + 1)i

)
,(4)

βright(ω1ω2 · · · ω̌k1 · · ·ωk2) = 2π

(
k2−k1∑
i=1

ωi+k1
(2m + 1)i

)
.(5)

In particular, βleft = 0 if k1 = 1, and βright = 0 if k1 = k2.

Therefore, βcurrent encodes the current symbol, and Dleft (Dright, respectively)
encodes the substring to the left (right, respectively) of the current symbol.

It is easy to see that this encoding function has the following properties: (i)
(2i−1)π/(2m+1) < βcurrent < (2i+1)π/(2m+1) if ωk1 = i; (ii) (2i−1)π/(2m+1) <
βleft < (2i + 1)π/(2m + 1) if ωk1−1 = i; and (iii) (2i − 1)π/(2m + 1) < βright <
(2i + 1)π/(2m + 1) if ωk1+1 = i.
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Therefore, linking a selection controller with each of Dcurrent, Dleft, and Dright

will allow the frictional mechanical system to decide the current symbol of the tape
and the two symbols next to it, which will be used by the control component and the
tape component.

During the simulation of the universal TM, if the current state of the universal
TM is qi, Dstate will be set at a rotational position of λi = iπ/(2σ). Observe that
every rotational position of Dstate that represents a state is between 0 and π/2. Again,
linking a selection controller with Dstate will allow the frictional mechanical system
to decide the current state of the tape.

3.2. Finite state control component. We let δ1 : Q×Σ→ Q, δ2 : Q×Σ→ Σ,
and δ3 : Q × Σ → {L,R} denote the three components of the transition function δ,
respectively. More specifically, if the current state is qj and the current symbol is i,
the next state is δ1(qj , i), the symbol to replace the current symbol is δ2(qj , i), and
the next move of the head is δ3(qj , i).

The control component consists of 3m nonlinear mapping devices. The first m
of these nonlinear mapping devices, M1,0, M1,1, . . ., M1,m−1, are used to implement
δ1, the next state function. For each i, 0 ≤ i ≤ m − 1, M1,i is designed in such a
way that if the input disc of M1,i is rotated by an angle of λj = jπ/(2σ) from its
initial orientation, the output disc will be rotated by an angle of λj′ = j′π/(2σ). Here
δ1(qj , i) = qj′ . In other words, if the input disc is rotated by an angle corresponding
to the current state of the universal TM, the output disc will be rotated by an angle
corresponding to the next state of the TM.

Suppose the current state is qj and the current symbol is i. As the current symbol
can be determined by applying a selection controller to Dcurrent, the sequencer will
be able to choose M1,i from M1,0,M1,1, . . . ,M1,m−1 and rotate the input disc of M1,i

by an angle of λj , which is recorded by Dstate. Then Dstate will be set at the angle
recorded by the output disc of M1,i and the nonlinear mapping device M1,i will be
reset to its initial position.

In the remaining 2m nonlinear mapping devices, M2,0, M2,1, . . ., M2,m−1 are used
to implement δ2; and M3,0, M3,1, . . ., M3,m−1 are used to implement δ3. For each
i, 0 ≤ i ≤ m − 1, M2,i has the property that if the input disc of M2,i is rotated by
an angle of λj = jπ/(2σ) from its initial orientation, the output disc will be rotated
by an angle of 2δ2(qj , i)π/(2m + 1) from its initial orientation. Similarly, for each i,
0 ≤ i ≤ m − 1, M3,i has the property that if the input disc of M3,i is rotated by an
angle of λj , the output disc will be rotated by an angle of π/4 if δ3(qj , i) = L or π/2
if δ3(qj , i) = R.

Therefore, the next move and the replacing symbol will be represented by rota-
tional positions of certain discs. These rotational positions will be used by the tape
component to update the rotational positions of Dcurrent, Dleft, and Dright according
to the transition function δ.

3.3. Read-write tape component. As mentioned above, the control compo-
nent will generate two rotational positions, one representing the next move and the
other representing the replacing symbol. Let ω1ω2 · · · ω̌k1 · · ·ωk2 be the current tape
status and ω′k1 be the replacing symbol.

For our convenience, we use βcurrent,t to denote the angle of Dcurrent at the
beginning of the tth rotational cycle (of the sequencer). βleft,t, βright,t, and βstate,t
are defined likewise. First, suppose the next move of the head is to go rightward.
There are three cases:
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1. k1 = k2; i.e., the head is at the right end-mark:
The status of the tape will be changed to ω1ω2 · · ·ω′k1 ˇωk2+1. Here
ωk2+1 = 2 (indicating the right end-mark) as the head will pad a right
end-mark to the right. Therefore, we have the following recursive
equations:

βcurrent,t+1 = 2
2π

2m + 1
,(6)

βright,t+1 = 0,(7)

βleft,t+1 =
βleft,t
2m + 1

+
2πω′k1
2m + 1

.(8)

2. k1 = 1; i.e., the head is at the left end-mark:
As the universal TM will never overwrite the left end-mark, ω1 will
still be 1 (indicating the left end-mark), and the status of the tape
will be changed to ω1ω̌2ω3 · · ·ωt. Therefore, we have

βcurrent,t+1 =
2πω2

2m + 1
,(9)

βright,t+1 =

(
βright,t − 2πω2

2m + 1

)
· (2m + 1),(10)

βleft,t+1 =
2π

2m + 1
.(11)

3. 1 < k1 < k2:
The status of the tape will be changed to ω1ω2 · · ·ω′k1 ˇωk1+1ωk1+2 · · ·ωk2 .
Thus, correspondingly, the recursive equations are

βcurrent,t+1 =
2πωk1+1

2m + 1
,(12)

βright,t+1 =

(
βright,t − 2πωk1+1

2m + 1

)
· (2m + 1),(13)

βleft,t+1 =
βleft,t
2m + 1

+
2πω′k1
2m + 1

.(14)

Similarly, if the next move is to go leftward, there are two cases (the read-write
head cannot go leftward if it is at the left end-mark):

1. If k1 = k2, i.e., the head is at the right end-mark:

βcurrent,t+1 =
2πωk1−1

2m + 1
,(15)

βright,t+1 =

{
2·2π

2m+1 if ω′k1 = 2,
2πω′k1
2m+1 + 2·2π

(2m+1)2 if ω′k1 	= 2,
(16)

βleft,t+1 =

(
βleft,t − 2πωk1−1

2m + 1

)
(2m + 1).(17)

2. If 1 < k1 < k2:

βcurrent,t+1 =
2πωk1−1

2m + 1
,(18)
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βright,t+1 =
βright,t
2m + 1

+
2πω′k1
2m + 1

,(19)

βleft,t+1 =

(
βleft,t − 2πωk1−1

2m + 1

)
(2m + 1).(20)

With selection controllers, the system can change the rotational positions of
Dcurrent, Dleft, and Dright from βcurrent,t, βleft,t, and βright,t to βcurrent,t+1, βleft,t+1,
and βright,t+1, respectively, according to the recursive equations described above.

3.4. Putting it together. With mechanical components that can simulate the
transition function and the tape of a universal TM, the frictional mechanical system
that simulates the universal TM is almost immediate. The movements of the objects
in this system are controlled by the rotations of the sequencer. In each cycle of
rotation of the sequencer, the frictional mechanical system will finish the simulation
of one step of the universal TM.

At the beginning of each cycle, the symbol at the current head location is decided,
depending on the rotational position of Dcurrent. According to the current symbol
as well as the current state recorded by Dstate, the control component will make a
sequence of moves and then decide (i) the next state, (ii) the symbol replacing the
current symbol, and (iii) the next move of the tape head. The tape component will
then make a sequence of moves to change the rotational positions of Dcurrent, Dleft,
and Dright according to the symbol replacing the current symbol and the next move.
This finishes the simulation of one step of the computation of the universal TM.

Initially, Dstate is set at the orientation encoding the start state of the TM. The
orientations of Dcurrent, Dleft, and Dright also correspond to the initial status of the
read-write tape. The simulation for the computation of the universal TM terminates
when the rotational position of Dstate is found to be corresponding to the accepting
or rejecting state of the universal TM (we call these rotational positions terminating
orientations) at the beginning of a rotational cycle of the sequencer.5

Hence, we have proved the following theorem.

Theorem 3.1. For any universal TM M , a frictional mechanical system can be
constructed which has the property that, for any input string ω of M , the objects to
the system can be set in a corresponding initial configuration so that a specified final
configuration can be reached if and only if M accepts ω.

As M is a universal TM, our frictional mechanical system can be used for general-
purpose computing. Thus it has the computational power of any conventional elec-
tronic computer.

4. A frictional mechanical system with error. As mentioned in the intro-
duction of this paper, our mechanical frictional system can simulate a universal TM
without any error only if the system can be constructed and work exactly as it is
specified. In the presence of errors, it is not possible to record the current configura-
tion of the universal TM by the rotational positions of Dstate, Dcurrent, Dleft, and
Dright exactly as it is. Therefore, the computational power of the frictional mechani-
cal system is restricted, as the errors in the rotational positions of these discs may be
accumulated significant enough to induce an incorrect result in the simulation of the
universal TM.

5Observe that Dstate might be at a terminating orientation momentarily as it rotates around.
However, if at the beginning of a rotational cycle Dstate stays at a terminating orientation, this
means that the universal TM has reached an accepting or rejecting state.



1468 JOHN H. REIF AND ZHENG SUN

We use ε to denote the upper bound for the error in an angle which occurs in a
single mechanical operation. ε is determined by the degree of accuracy in constructing
mechanical devices as well as measuring rotational (and transitional) displacements.

4.1. A constant size frictional mechanical system in ε-error model. We
first discuss a frictional mechanical system in this ε-error model; this system has
exactly the same structure as the system in the exact model, and therefore it has only
a constant number of parts.

Let β′state,t denote the correct angle of Dstate at the beginning of the tth rotational
cycle if the frictional mechanical system has no error. Further, let ∆state,t =| β′state,t−
βstate,t |; i.e., ∆state,t is the error in βstate,t. β′current,t, ∆current,t, β′left,t, ∆left,t,
β′right,t, and ∆right,t are defined accordingly.

In each rotational cycle, it takes a sequence of angle operations to generate each
of βstate,t+1, βcurrent,t+1, βleft,t+1, and βright,t+1 in the frictional mechanical system.
Each operation involves adding an angle to (or deducting an angle from) the rotational
position of a disc, multiplying an angle by a constant factor, or a nonlinear mapping.
It is easy to see that there exist two constants c1 and c2 such that if the error in a
rotational position is ∆, after any single operation, the error is bounded by c1∆+c2ε.
Further, as in each cycle the number of operations performed to get βcurrent,t+1,
βright,t+1, βleft,t+1, and βstate,t+1 is bounded by a constant, we can assume that there
are two constants C1 and C2 such that ∆state,t+1 < C1∆state,t + C2ε, ∆current,t+1 <
C1∆current,t + C2ε, ∆right,t+1 < C1∆right,t + C2ε, and ∆left,t+1 < C1∆left,t + C2ε.

For simplicity, we assume C1, C2 > 2.
There are only m valid values for β′current,t+1 (i.e., 0, 2π/(2m + 1), . . . , 2(m −

1)π/(2m+1)), and the difference between any two valid values is at least 2π/(2m+1).
Therefore, as long as ∆current,t+1 < π/(2(2m + 1)), a selection controller can be
used to determine β′current,t+1 from βcurrent,t+1. This means that βcurrent,t+1 can
be corrected at the beginning of each cycle, given that ε < d1/m for some constant
d1 > 0.

The same analysis applies to βstate,t+1: if ε < d2/σ for some constant d2 > 0,
βstate,t+1 can be corrected at the beginning of each cycle. Therefore, only the errors
in βleft,t and βright,t may be accumulated to the next cycle. As at each step βleft,t
and βright,t are used only to distinguish ωk1−1 and ωk1+1, errors in βleft,t and βright,t
will not cause any incorrectness if they are less than π/(2(2m + 1)).

Observe that if the read-write head reaches the left end-mark, the error in βleft,t
will be discarded. This is because when the head moves rightward from the end-mark,
none of βcurrent,t+1, βright,t+1, and βleft,t+1 will depend on βleft,t, as shown in (9),
(10), and (11). Similarly, if the read-write head reaches the right end-mark, the error
in βright,t will be discarded too. Therefore, if the head of the universal TM visits the
left and right end-marks periodically during the computation, the errors in βleft and
βright will be corrected periodically.

We define another TM M ′. M ′ will simulate the computation of M . The dif-
ference between M ′ and M is that each time after M ′ finishes simulating M by a
constant number K of steps of computation (this constant will be specified later), the
head of M ′ will make a sweep of the tape. By “sweep” we mean that it will first move
leftward until it reaches the left end-mark; then it will move rightward until it reaches
the right end-mark; afterwards, it will move leftward again and return to the location
where it was before the sweep. After it finishes the sweep, M ′ will start simulating
the next K steps of the computation of M . It is easy to see that M ′ has the property
that, at any time, if the current working space is s, the head of M ′ will reach the left
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and right end-marks within at most 2S + 2K steps.
Clearly, M ′ is equivalent to M in the sense that it decides exactly the same

language as M does. Therefore, to simulate M , it suffices to construct a frictional
mechanical system that can simulate M ′. For any input string ω of M ′, if M ′ decides
ω in space S, the errors in βleft and βright will be accumulated through at most
2S + 2K steps before they are discarded.

Thus, if the errors in βleft and βright accumulated in 2S + 2K steps can be
bounded by π/(2(2m + 1)) (otherwise incorrect values of ωk1−1 and ωk1+1 might be
used), it will not induce any incorrect result in simulating the universal TM M ′ (and
thus in simulating M) on input string ω.

Suppose at the tth step the read-write head moves rightward from the left end-
mark. As the accumulated error of βleft is discarded at this moment, ∆left,t is
bounded by a constant, say, C3ε. As ∆left,t+1 < C1∆left,t + C2ε, we have

∆left,t+2S+2K < C2S+2K
1 ∆left, t + C2

C2S+2K
1 − 1

C1 − 1
ε

< C2S+2K
1 C3ε + C2C

2S+2K
1 ε.

To bound ∆left by π/(2(2m + 1)), it suffices to let

ε <
1

2(2m + 1)(C3C
2S+2K
1 + C2C

2S+2K
1 )

< d · 2−c(S+K)

for some constants c and d.
If we let K be 1, M ′ will sweep the tape after each step of simulating M . There-

fore, for any input string ω, it will take at most (2S + 1)T steps for M ′ to decide ω
if M decides ω in time T and space S. Since S ≤ T , the total time used by M ′ is
bounded by (2T + 1)T . Hence, we have the following theorem.

Theorem 4.1. For any universal TM M , a frictional mechanical system with er-
ror can be constructed to simulate M . It has the property that, for any space bound S,
if the single-operation error of the system, ε, is bounded by min{d · 2−cS , d1/m, d2/σ}
for some constants c, d, d1, and d2, then, given any input string ω that M decides
in space bound S, the frictional mechanical system will reach a distinguished final
configuration from an initial configuration encoding ω if and only if M accepts ω.
Further, the frictional mechanical system will take at most (2T + 1)T cycles to finish
the computation if M decides ω in T steps.

If we let K = S, M ′ will simulate M by S steps between two consecutive sweeps.
Thus, it will take at most three times as much time as M takes to finish the computa-
tion. The disadvantage is that now M ′ (and hence our frictional mechanical system)
depends on S. For different values of S, a different frictional mechanical system needs
to be constructed to simulate M .

With some additional reasonable assumption, we can show that a periodic sweep-
ing is not necessary. Given that ε = O(2−cS), if M can decide an input string ω in
space S, our frictional mechanical system will finish simulating M with the correct
result. Due to the length of the proof, we will include it in the appendix.

4.2. A frictional mechanical system in ε-error model with ε = Ω(1).
The analysis of the above system implies that 1/ε will have to increase exponentially
as S increases to maintain the correctness of the frictional mechanical system. If in a
frictional mechanical system O(S) discs instead of three discs are used to encode the
contents of the tape, each representing one cell, this frictional mechanical system in
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ε-error model can simulate the universal TM M with space bound S, where ε = Ω(1).
This is because now each disc has only a constant number of valid rotational positions,
and selection controllers can be used to distinguish the correct value represented by
the disc. This is better than the previous result in the sense that 1/ε does not increase
as S increases. However, the frictional mechanical system is now dependent on S, as it
needs S discs to encode the tape. In other words, this model of frictional mechanical
systems is a digital computer, just like the analytical engine. If we want to increase
the computational power of the frictional mechanical system by using larger space
bound S, we will have to add more discs used to represent the tape.

More specifically, for the kth cell of the tape, four discs are used to represent
the current state of the cell: Dk,symbol represents the symbol in the current cell;
Dk,head indicates whether the read-write head is located at this cell; D′k,head indicates
whether the read-write head was located at this cell at the end of last step; and Dk,next

indicates the next move of the head. Also, for each cell, there is a set of nonlinear
mapping devices which implement the transition function. We call all the parts used
to represent the kth cell the kth cell component and denote it by Ck. In addition,
there is a single disc Dstate which records the current state of the universal TM.

At the beginning of each rotational cycle of the power disc, both Dk,head and
D′k,head are set at π/4 if the head is located at the kth cell or 0 if not. Dk,symbol is
set at 2iπ/(2m + 1) if the symbol in the kth cell is i. And Dstate is set at jπ/(2σ),
indicating that the current state of the TM is qj . Then, if the rotational position of
D′k,head is π/4, the rotational position of Dk,symbol will be changed to 2i′π/(2m + 1),
where i′ = δ2(qj , i). If the rotational position of D′k,head is 0, Dk,symbol will be clamped
so that its rotational position will not be changed. Also, the rotational position of
Dk,next is set at 0 if the next move is to go leftward and π/4 if the next move is to
go rightward.

The only thing remaining is to change each Dk,head accordingly. More specifically,
for each k, if the rotational position of Dk,head is π/4, (i.e., the head is at the kth
cell), Dk−1,head (or Dk+1,head) will be changed to π/4 if Dk,next is set at 0 (or π/4,
respectively) while Dk,head will be reset to 0; if the rotational position of Dk,head is
0, Dk,head, Dk−1,head, and Dk+1,head will be clamped.

The problem is that there will be some conflicts in the movements of different
components. For example, suppose the current head is located at the k1th cell. Then,
the k1th component will try to change Dk1−1,head in case the next move is to go
leftward. However, the (k1−1)th component itself will try to clamp Dk1−1,head as the
rotational position of D′k1−1,head is 0. To resolve this problem, we divide the S head
components into three groups so that Ck belongs to the (k mod 3)th group. First,
the components in group 0 will be activated to change all the Dk,heads according to
the rules described above. Then the components in group 1 will be activated. And
last are the components in group 2. By this, no two components that have conflict
movement will be activated at the same time.

After all components have been activated, for each k, Dk,head will represent
whether the read-write head is located at the kth cell at the beginning of the next step.
Then the rotational position of Dk,head is copied to D′k,head so that each component
is ready for the simulation of the next computation of the universal TM.

It is easy to see that for a frictional mechanical system constructed as above, ε can
be set to a constant regardless of the space bound S, as each disc has only a constant
number of valid orientations and operations; only constant number of operations are
needed to finish one step of simulation.
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5. Reduction from AT M to the frictional mover’s problem. We prove
the undecidability of the frictional mover’s problem by a reduction from the ATM

problem. It suffices to show that every input of the ATM problem, which is the
description of a TM M along with an input string ω of M , can be transformed to an
input of the frictional mover’s problem, which is a frictional mechanical system with
initial and goal configurations such that (i) the transformation can be performed by
a specified procedure that terminates in a finite period of time and (ii) M accepts ω
if and only if the frictional mechanical system can reach the goal configuration from
its initial configuration.

Therefore, it is necessary that all the objects in the resulting frictional mechanical
system and their positions can be described by rational coefficients. For example, for
each disc, its radius as well as the location of its center need to be specified by rational
numbers. Similarly, the length, orientation, and location of a bar need to be specified
by rational numbers.

Recall that a universal frictional mechanical system involves only operations that
add to a value (represented by the rotational position of a certain disc) a rational
number or multiply the value by a rational number. Therefore, we can easily specify
all the discs (including partial discs), bars, and cylinders in the system by rational
coefficients without changing the functionalities of the various devices constructed by
these parts.

The only exception is the irregular discs used in the nonlinear mapping devices.
Each irregular disc has to be specified by some irrational coefficients, as indicated by
(1). Here we prove the following lemma.

Lemma 5.1. The possibly irrational coefficients specifying the irregular discs used
in the nonlinear mapping devices can be replaced by rational numbers without inducing
any error in simulating the universal TM.

Proof. Let D1 be an irregular disc. It can be specified by the following two sets
of parameters: {θ1, θ2, . . ., θn}, {r1(θ0), r1(θ1), . . ., r1(θn)}. (Recall that θ0 = 0.)
The boundary of D1 inside the interval of [θi, θi+1] is described by a linear function
r1(θ) = ((θ− θi) · r1(θi+1) + (θi+1 − θ) · r1(θi))/(θi+1 − θi), whose coefficients are en-
tirely determined by θi, θi+1, r1(θi), and r1(θi+1). Recall that in a universal frictional
mechanical system, nonlinear mapping devices are used to implement the transition
function δ, which takes only rational numbers as input. Therefore, θ1, θ2, . . . , θn are
all rational numbers. However, the exact value of each r1(θi), denoted by r1,i, could be
an irrational number, as the computation involves irrational number

√
2 as well as the

function tan. We replace each r1,i by a rational number r′1,i such that |r′1,i− r1,i| < ε′

for some small ε′ > 0.

The nonlinear mapping device constructed with these “rationalized” parameters
may cause two types of errors: mechanical errors and logical errors. A mechanical
error occurs when two mechanical parts lose contact with, or crush into, each other
while they are supposed to maintain continuous contact. A logic error occurs when the
error of the resulting angle α causes a false interpretation by the universal frictional
mechanical system.

We first show that mechanical errors can be avoided. We let D2 be the coupling
irregular disc of D1 in the same nonlinear mapping device. We need to show that D2

can also be described by rational numbers while keeping r1(θ) + r2(θ + π) a constant
for all θ ∈ [0, 2π]. For each θi, i = 0, i, 2, . . . , n, the radius of D2 at angle θi + π is
computed by r2(θi + π) = |O1O2| − d − r1(θi). Since now r1(θi) is chosen to be a
rational number r′1,i, and |O1O2| and d are all rational numbers, r2(θi+π) is a rational
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number. Therefore, the boundary of D2 can be decomposed into n+1 subboundaries,
corresponding to angular intervals [π, π + θ1], [π + θ1, π + θ2], . . ., [π + θn−1, π + θn],
[θn − π, π], respectively. In each interval, the boundary can be specified by a linear
function r2(θ) of θ, just like the case for D1. Therefore, D2 can be described by
rational numbers. For any θ ∈ (θi, θi+1),

r1(θ) + r2(θ + π) = (θ−θi)·r1(θi+1)+(θi+1−θ)·r1(θi)
θi+1−θi + (θ−θi)·r2(θi+1+π)+(θi+1−θ)·r2(θi+π)

θi+1−θi
= (θ−θi)(r1(θi+1)+r2(θi+1+π))+(θi+1−θ)(r1(θi)+r2(θi+π))

θi+1−θi
= |O1O2| − d.

This implies that irregular disc D2 as described above still completely “complements”
D1 as defined in subsection 2.6. Therefore, during each operation D1 and D2 maintain
continuous contact with the horizontal bar but do not compress it, thus causing no
mechanical error.

Next we show that any mechanical error can be corrected. With the “rationalized”
nonlinear mapping device, when the input angle is θi, the output angle is not exactly
αi but a value α′i very close to αi. Since nonlinear mapping devices are used to
implement the transition function, each αi is a rational number, as it encodes either
a symbol or a state. Further, there exists a constant ε′′ such that |αi − αj | > ε′′ if
αi 	= αj . Here = c · min{ 1

σ , 1
m}, where c = Ω(1). Therefore, there exists another

constant c′ = Ω(1) such that |αi − α′i| < ε′′
3 for all i if ε′ < c′ ·min{ 1

σ , 1
m} ·R. Hence,

a selection controller is able to find out the correct value of αi from α′i, as α′i is closer
to αi than to any other valid value.

This finishes the proof.
With this lemma, we have the following theorem.
Theorem 5.2. The frictional mover’s problem is undecidable.

6. Conclusion. In this paper we introduced frictional mechanical systems and
proved that a universal frictional mechanical system can simulate the computation of
a universal TM. We also gave some results for the case where there are limited errors
for the mechanical parts in the system. Our work implies that the frictional mover’s
problem is undecidable. It is, however, unclear to us what the implication of our work
is to building nanocomputers at the macromolecule level when the nanotechnology
further matures.

Appendix A. Error bound for βright and βleft under additional assump-
tion.

We have proved that by forcing the read-write head to visit the left and right
end-marks periodically, the errors in βleft and βright can be discarded after a certain
number of steps so that they will not affect the result of simulating the universal TM.
Here, we will show that, with the following assumption, there is no need for periodic
sweeps of the tape.

Assumption 1. For any operation that will multiply an angle by a constant factor
C, if before the operation the error in the angle is ∆, after the operation the error
will become C∆ + kε for some constant k.

Under this assumption, an error in an angle θ will be reduced if the operation is
to reduce θ by a constant factor (i.e., C < 1).

Now we will examine how the error in βright is accumulated in each step us-
ing this assumption. We decompose ∆right,t into two components: ∆1

right,t+1 and

∆2
right,t+1. The first component is due to ∆right,t, and the other component is the
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error which occurs during the angle operations in this cycle. As in one cycle the
number of operations to generate βright is bounded by a constant number, we can
assume ∆2

right,t+1 ≤ C ′1ε for some constant C ′1. ∆1
right,t+1, however, is determined by

∆right,t as well as the angle operation on βright,t to generate βright,t+1.
If the next move is rightward, according to (10) and (13), βright,t is multiplied by

a factor of (2m+1) and then added to another angle to get βright,t+1. Therefore, the
error in βright,t is amplified by a factor of (2m+1), i.e., ∆1

right,t+1 = ∆right,t ·(2m+1).

Similarly, if the next move is leftward, we have ∆1
right,t+1 = ∆right,t/(2m + 1), as in

(16) and (19) βright,t+1 has a component βright,t/(2m + 1).
Therefore, in each cycle, the error in βright which is accumulated in previous

cycles either is amplified by a factor of (2m+ 1) or reduced to 1/(2m+ 1), depending
on the move of the head. Hence we have the following recursive function:

∆right,t+1 ≤ f(t)∆right,t + ∆2
right,t+1.(21)

Here f(t) is defined as follows:

f(t) =

{
2m + 1 if the move of the head in the tth step is rightward,

1
2m+1 if the move of the head in the tth step is leftward.

∆right,1 is the error in βright at the beginning of the computation. This error is
due to the inaccuracy in setting the starting orientation of Dright. We can assume
that ∆right,1 ≤ C ′2ε.

According to the recursive equation, we can compute ∆right,t′+1 for any t′:

∆right,t′

≤ f(t′ − 1)∆right,t′−1 + ∆2
right,t′

≤ f(t′ − 1)(f(t′ − 2)∆right,t′−2 + ∆2
right,t′−1) + ∆2

right,t′
...
...

≤ ∆right,1


t′−1∏
i=1

f(i)


+

t′∑
j=2

∆2
right,j


t′−1∏
i=j

f(i)


 .

For any input string ω of M , we let S denote the working space M needs to use to

decide ω. It is easy to see that, for any t′ and j,
∏t′−1
i=j f(i) ≤ (2m + 1)S as the right

moves could outnumber the left moves at most by S. Therefore, ∆rught,t′ is bounded
by

∆right,1(2m + 1)S +

t′∑
j=2

∆2
right,j(2m + 1)S ≤ C ′2ε(2m + 1)S + 2cSC ′1ε(2m + 1)S ,

as t′ < 2cS for some constant c.
To bound ∆right by 1/(2(2m + 1)) (so that at each cycle correct value of ωk1+1

could be retrieved from βright), we need only

ε ≤ 1

2(2m + 1)
· 1

(ε(2m + 1)S)(C ′2 + 2cSC ′1)
< d′ · 2−c′′S

for some constants c′′ and d′.
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We have thus proved the following theorem.
Theorem A.1. For any universal TM M , a frictional mechanical system with er-

ror can be constructed to simulate M . It has the property that, for any space bound S,
if the single-operation error of the system, ε, is bounded by min(d′ ·2−c′′S , d1/m, d2/σ)
for some constants c′′, d′, d1, and d2, then, given any input string ω that M decides
in space bound S, the frictional mechanical system will reach a distinguished final
configuration from an initial configuration encoding ω if and only if M accepts ω.
Further, the frictional mechanical system will take T cycles to finish the computation
if M decides ω in T steps.
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COMPUTING ELEMENTARY SYMMETRIC POLYNOMIALS WITH
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Abstract. Elementary symmetric polynomials Skn are the building blocks of symmetric poly-
nomials. In this work we prove that for constant k’s, Skn modulo composite numbers m = p1p2
can be computed using only no(1) multiplications if the coefficients of monomials xi1xi2 · · ·xik are
allowed to be 1 either mod p1 or mod p2 but not necessarily both. To the best of our knowledge,
no previous result yielded even a sublinear (i.e., nε, 0 < ε < 1) number of multiplications for similar
tasks. Moreover, our algorithm fits in the model of the most restrictive depth-3 arithmetic cir-
cuits (homogeneous, multilinear, or the graph model). In contrast, by a lower bound of Nisan and
Wigderson [Comput. Complexity, 6 (1997), pp. 217–234], any homogeneous depth-3 circuit needs
size Ω((n/2k)k/2) for computing Skn modulo primes. Moreover, the number of multiplications in our
algorithm remains sublinear while k = O(log logn). Our results generalize for other nonprime-power
composite moduli as well. The proof uses perfect hashing functions and the famous BBR polynomial
of Barrington, Beigel, and Rudich.

Key words. symmetric polynomials, arithmetic circuits, algebraic algorithms, composite mod-
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1. Introduction. Surprising ideas sometimes lead to considerable improvements
in algorithms even for the simplest computational tasks. Let us mention here the
integer-multiplication algorithm of Karatsuba and Ofman [19] and the matrix-multi-
plication algorithm of Strassen [27].

A new field with surprising algorithms is quantum computing. The most famous
and celebrated results are Shor’s algorithm for integer factorization [25] and Grover’s
database-search algorithm [17].

Since realizable quantum computers can handle only very few bits today, there
are no practical applications of these fascinating quantum algorithms.

Computations involving composite, nonprime-power moduli (say, 6), on the other
hand, can actually be performed on any desktop PC; unfortunately, we have little
evidence of the power or applicability of computations modulo composite numbers
(see, e.g., the circuit given by Kahn and Meshulam [18], or the low-degree polynomial
of Barrington, Beigel, and Rudich [3]).

One of the problems here is the interpretation of the output of the computation.
Several functions are known to be hard if computed modulo a prime. If we compute
the same function f with 0-1 values modulo 6, then it will also be computed modulo—
say, 3—since f(x) ≡ 1 (mod 6) =⇒ f(x) ≡ 1 (mod 3) and f(x) ≡ 0 (mod 6) =⇒
f(x) ≡ 0 (mod 3); consequently, computing f this way cannot be easier mod 6 than
mod 3. This difficulty is circumvented in a certain sense by the definition of the weak
representation of Boolean functions by mod 6 polynomials, defined in [28] and [3].
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We will consider here another interpretation of the output, called a-strong rep-
resentation (Definition 2). This definition will be more suitable for computations in
which the output is a polynomial and not just a number.

Our goal is to compute this representation of the elementary symmetric polyno-
mials

Skn =
∑

I⊂{1,2,...,n}
|I|=k

∏
i∈I

xi(0)

modulo nonprime-power composite numbers with a much smaller number of multipli-
cations than is possible over rationals or prime moduli.

Informally, the a-strong representation modulo 6 of the polynomial Skn is a poly-
nomial of the form

∑
I⊂{1,2,...,n}
|I|=k

aI
∏
i∈I

xi,(1)

where either aI ≡ 1 (mod 3) or aI ≡ 1 (mod 2), but not necessarily both.

1.1. Our main result. Our main contribution here is an algorithm, using only
no(1) multiplications, computing—for constant k’s—an a-strong representation of Skn
of the form (1) modulo nonprime-power, composite integers (Theorems 4 and 7 and
Corollaries 5 and 8).

1.1.1. Why do we count only the multiplications? In algebraic algorithms
it is quite usual to count only the multiplications in a computation (for example,
in the algorithm of Karatsuba and Ofman [19], or in the matrix-multiplication al-
gorithms of Strassen [27] or Coppersmith and Winograd [5]). The reason for this is
that the multiplication is considered to be a harder operation than the addition in
most practical applications, and moreover, the multiplication is proven to be harder
in most theoretical models of computation.

For example, computing the PARITY is reduced to computing the multiplication
of two n-bit sequences, and, consequently, two n-bit sequences cannot be multiplied
on a polynomial-size, constant-depth Boolean circuit [7], while it is well known that
two n-bit sequences can be added in such a circuit.

1.2. Previous lower bounds. Most existing lower bounds were proven in the
arithmetic circuit model of depth 3; circuits in this model are often called ΣΠΣ circuits
[22], [26].

ΣΠΣ circuits perform computations of the following form:

r∑
i=1

si∏
j=1

(aij1x1 + aij2x2 + · · ·+ aijnxn + bij).

If all the bij = 0 and all the si’s are the same number, then the circuit is called
a homogeneous circuit; otherwise it is inhomogeneous. The size of the circuit is the
number of gates in it: 1 + r +

∑r
i=1 si.

A special class of homogeneous ΣΠΣ circuits is called in [22] the graph model :
here all si = 2 and all aij	 coefficients are equal to 1, and, moreover, the clauses
of a product cannot contain the same variable twice. Consequently, such a product
corresponds to a complete bipartite graph on the variables as vertices.
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Note. Our algorithms fit into this very restrictive graph model of depth-3 circuits.

Graham and Pollak [8] asked how many edge-disjoint bipartite graphs can cover
the edges of an n-vertex complete graph. They proved that n − 1 bipartite graphs
are sufficient and necessary. Later, Tverberg gave a very nice proof for this statement
[30]. Having relaxed the disjointness property, Babai and Frankl [2] asked what is
the minimum number of bipartite graphs, which covers every edge of an n-vertex
complete graph by an odd multiplicity. Babai and Frankl proved that (n − 1)/2
bipartite graphs are necessary. The optimum upper bound for the odd-cover was
proved by Radhakrishnan, Sen, and Vishwanathan [22]. Radhakrishnan, Sen, and
Vishwanathan also gave matching upper bounds for covers, when the off-diagonal
elements of matrix M are covered by multiplicity 1 modulo a prime.

Nisan and Wigderson [21] showed that any homogeneous ΣΠΣ circuit needs size
Ω((n/2k)k/2) for computing Skn. This result shows that the homogeneous circuits are
much weaker in computing elementary symmetric polynomials than the inhomoge-
neous ones. Nisan and Wigderson also examined bilinear and multilinear circuits in
[21]. Note that the circuits in our constructions for S2

n(x, y) and for Skn(x
1, x2, . . . , xk)

are also multilinear circuits.

We should note that exponential lower bounds were proved recently for simple
functions for ΣΠΣ circuits by Grigoriev and Razborov [10] and by Grigoriev and
Karpinski [9].

Most recently, Raz and Shpilka got nice lower bound results for arithmetic circuits
[24], and Raz [23] proved a Ω(n2 log n) lower bound for matrix-multiplication in the
model where the constants in the arithmetic circuits are bounded, solving a long-
standing open problem.

1.3. Previous upper bounds. By a result of Ben-Or [26], every elementary
symmetric polynomial Skn can be computed over fields by size-O(n2) inhomogeneous
ΣΠΣ circuits, using one-variable polynomial interpolation. Note that our construction
with homogeneous circuits modulo nonprime-power composites beats Ben-Or’s bound
for k’s less than c log log n (for some positive c’s).

In a somewhat related model, Muller and Preparata [20] showed that n-variable
symmetric Boolean functions can be computed by depth-O(log n), size-O(n) Boolean
circuit.

To the best of the author’s knowledge, there are no previous results concerning
the computation of some form of the elementary symmetric polynomials even with a
sublinear (i.e., nε, 0 < ε < 1) number of multiplications, in any depth. Our results give
a subpolynomial (that is, no(1)) number of multiplications even in the most restrictive
depth-3 circuit model.

2. Alternative strong representation of polynomials. Skn can be naturally
computed by

(
n
k

)
product-gates by a homogeneous ΣΠΣ circuit over any ring by the

circuit of (0). One can save a little bit from the cost of this obvious construction (e.g.,
for k = 2n−1 multiplications instead of

(
n
2

)
is enough), but, as we already mentioned,

by the result of Nisan and Wigderson [21], size Ω((n/2k)k/2) is needed to compute
Skn on homogeneous ΣΠΣ circuits.

It is quite plausible to think that if we change the nonzero coefficients of the
monomials of Skn to some other nonzero coefficients, then the computational complex-
ity of this modified polynomial will not be changed much: simply because even in the
modified polynomial we would still need to generate the monomials with the nonzero
coefficients somehow.



1478 VINCE GROLMUSZ

This intuition is verified by the next lemma (proven in the last section) in the
case of finite fields.

Lemma 1. Suppose that a homogeneous ΣΠΣ circuit computes polynomial

g(x) =
∑

I⊂{1,2,...,n}
|I|=k

aI
∏
i∈I

xi

over the q element field Fq with u gates, where aI �= 0 in Fq. Then Skn can be computed
by a homogeneous ΣΠΣ circuit of size O(uq−1).

From this lemma and from the Ω((n/2k)k/2)-lower bound of Nisan and Wigderson
[21] it is obvious that computing g over finite fields needs

Ω((n/2k)
k

2(q−1) )

multiplication gates.
Consequently, we cannot save much by computing g instead of Skn: if computing

Skn needs polynomially many gates in n, then computing g still needs polynomially
many gates in n (for any constant k).

Our main result is, however, that we can save much by computing certain strong
representations of the elementary symmetric polynomials, say, over the modulo 15
integers, Z15. More exactly, such representations can be computed by ΣΠΣ circuits
containing subpolynomially many multiplication gates. (We call a function h(n) sub-
polynomial if for all ε > 0, h(n) = O(nε).)

Several authors (e.g., [28], [3]) defined the weak and strong representations of
Boolean functions for integer moduli. Here we need the definition of a sort of strong
representation of polynomials modulo composite numbers. We call this representation
alternative-strong representation, abbreviated a-strong representation.

Definition 2. Let m be a composite number m = pe11 pe22 · · · pe�	 . Let Zm denote
the ring of modulo m integers. Let f be a polynomial of n variables over Zm:

f(x1, x2, . . . , xn) =
∑

I∈{0,1,2,...,d}n
aIxI ,

where aI ∈ Zm, xI =
∏n
i=1 xνii , where I = {ν1, ν2, . . . , νn} ∈ {0, 1, 2, . . . , d}n. Then

we say that

g(x1, x2, . . . , xn) =
∑

I∈{0,1,2,...,d}n
bIxI

is an a-strong representation of f modulo m if

∀I ∈ {0, 1, 2, . . . , d}n ∃j ∈ {1, 2, . . . ,  }, aI ≡ bI (mod p
ej
j ),

and if for some i, aI �≡ bI (mod peii ), then bI ≡ 0 (mod peii ).
Example. Let m = 6, and let f(x1, x2, x3) = x1x2 + x2x3 + x1x3; then g(x1, x2,

x3) = 3x1x2 + 4x2x3 + x1x3 is an a-strong representation of f modulo 6.
Remarks on the definition of the a-strong representations.
• The requirements of Definition 2 for the coefficients are more restrictive than
the requirements for the coefficients of f in Lemma 1, since the latter requires
that the coefficients should not be zero, while the former prescribes that they
should satisfy some congruencies.
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• Definition 2 is a natural generalization of reducing a polynomial modulo an
integer m. Usually, it can be done by reducing the coefficients modulo m, and
when we compute the value of the polynomial for a given substitution, then
the additions and multiplications should be done modulo m. If m has only
one prime-divisor, then our definition and the usual one coincide. On the
other hand, for example, m = pα1

1 pα2
2 (p1, p2 are primes), and if we consider

a polynomial P where all the coefficients are one (e.g., one of the elementary
symmetric polynomials), then any computation which outputs P modulo m
can also be viewed modulo p1 or p2, and also outputs P modulo p1 or p2.
Consequently, by the usual definition of modulo m polynomials, one cannot
compute any such P faster modulo a composite m than modulo a prime.

• The earlier (strong-, weak-)representations of functions [28], [3] contained
constraints for the value of certain polynomials. Now we are requiring that
the form of the representation satisfy modular constraints. The requirement
on the form of the representation, in general, will not imply that the value
corresponds in some transparent way to the represented polynomial. Let
us consider the elementary symmetric polynomial Skn(x), and suppose that
polynomial f(x) a-strongly represents Skn(x) modulo 15. Then, for any x′ ∈
{0, 1}n which contains exactly k 1’s, f(x′) will be 1 either mod 3 or mod 5;
but, in general, f(x) will not necessarily be even symmetric, and it can be 0
modulo 15 at points other than Skn(x). On the other hand, every coefficient
of the polynomial Skn(x)− f(x) should be zero either mod 3 or mod 5.

• The a-strong representation is not unique; for example, polynomial f(x) is
always an a-strong representation of itself.
• In a sequel to the present work (available as a preprint [16]), we defined a
complement of the a-strong representation of polynomials and showed how
to compute such a representation of the dot-product of two length-n vectors
with no(1) multiplications, or the representation of the product of two n× n
matrices with n2+o(1) multiplications.

Our goal in this work is to show that the elementary symmetric polynomials have
a-strong representations modulo composites which can be computed by much smaller
homogeneous ΣΠΣ arithmetic circuits than the original polynomial.

Unfortunately, we cannot hope for such results for all multivariate polynomials,
as is shown by the next theorem.

Theorem 3. Let

f(x1, x2, . . . , xn, y1, y2, . . . , yn) =

n∑
i=1

xiyi

be the inner product function. Suppose that a ΣΠΣ circuit computes an a-strong
representation of f modulo 6. Then the circuit must have at least Ω(n) multiplication
gates.

Proof. Let g be the a-strong representation of f . Then in g, at least half of the
monomials xiyi have coefficients equal to 1 modulo either 2 or 3. Without restricting
the generality, let us assume that monomials x1y1, x2y2, . . . , x�n/2	y�n/2	 have coeffi-
cients 1 modulo 3. When we compute g modulo 6 we will learn also the inner product
of two vectors modulo 3, each consisting of the first n/2� variables. It is well known
that the communication complexity of computing the inner product mod 3 is Ω(n)
(see, e.g., [11]).

Since arithmetic ΣΠΣ circuits modulo 6 with u multiplication gates of in-degree 2
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can be evaluated by a 2-party communication protocol using only O(u) bits, we get
u = Ω(n).

3. Our constructions. First we construct a-strong representations with a small
number of multiplications for the polynomial

S2
n(x, y) =

∑
i,j∈{1,2,...,n}

i�=j

xiyj ,

and for x = y we will get that 2S2
n(x) = S2

n(x, x). This will imply our result for any
composite, odd, nonprime-power moduli m.

Theorem 4.
(i) Let m = p1p2, where p1 �= p2 are primes. Then there exists an a-strong

representation of S2
n(x, y) modulo m,

∑
i,j∈{1,2,...,n}

i�=j

aijxiyj ,(2)

which can be computed on a homogeneous ΣΠΣ circuit of size

exp

(
O

(√
log n log log n

))
.

Moreover, this representation satisfies that for all i �= j, aij = aji.
(ii) Let the prime decomposition of m = pe11 pe22 · · · perr . Then there exists an

a-strong representation of S2
n(x, y) modulo m of the form (2) which can be

computed on a homogeneous ΣΠΣ circuit of size

exp

(
O

(
r
√
log n(log log n)r−1

))
.

Moreover, this representation satisfies that for all i �= j, aij = aji.
Corollary 5.
(i) Let m = p1p2, where p1 �= p2 are odd primes. Then there exists an a-strong

representation of the second elementary symmetric polynomial S2
n(x) modulo

m which can be computed on a homogeneous ΣΠΣ circuit of size

exp

(
O

(√
log n log log n

))
.

(ii) Let the prime decomposition of the odd m be m = pe11 pe22 · · · perr . Then there
exists an a-strong representation of the second elementary symmetric polyno-
mial S2

n(x) modulo m which can be computed on a homogeneous ΣΠΣ circuit
of size

exp

(
O

(
r
√
log n(log log n)r−1

))
.

Since the ΣΠΣ circuit in our construction correspond to the graph model [22],
we have the following graph-theoretical corollary, showing a cover with much fewer
bipartite graphs than in the linear lower bound of Graham and Pollak.

Corollary 6. For any m = pe11 pe22 · · · perr , there exists an explicitly constructible
bipartite cover of the edges of the complete n-vertex graph such that for all edges e
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there exists an i, 1 ≤ i ≤ r, that the number of the bipartite graphs covering e is
congruent to 1 modulo peii . Moreover, the total number of the bipartite graphs in the
cover is

exp

(
O

(
r
√
log n(log log n)r−1

))
.

3.1. Our results for larger k’s. The following theorem gives our result for
general k. Our goal is to compute an a-strong representation of polynomials Skn(x)
for n ≥ k ≥ 2. Let us first define

Skn(x
(1), x(2), . . . , x(k)) =

∑
i1,i2,...,ik

x
(1)
i1

x
(2)
i2
· · ·x(k)

ik
,

where the summation is done for all k! orders of all k-element subsets I = {i1, i2, . . . , ik}
of {1, 2, . . . , n}, and x(j) = (x

(j)
1 , x

(j)
2 , . . . , x

(j)
n ) for j = 1, 2, . . . , k.

Theorem 7. Let m = pe11 pe22 · · · perr . Then there exists an a-strong representation
of Skn(x

(1), x(2), . . . , x(k)) modulo m,

∑
i1,i2,...,ik

ai1,i2,...,ikx
(1)
i1

x
(2)
i2
· · ·x(k)

ik
,

which can be computed on a homogeneous multilinear ΣΠΣ circuit of size

exp

(
exp(O(k)) r

√
log n log log n

)
.

Moreover, coefficients ai1,i2,...,ik depend only on set a{i1, i2, . . . , ik} and not on the
particular order of indices i1, i2, . . . , ik.

Note that this circuit-size is subpolynomial in n for any constant k and for large
enough n. Moreover, the subpolynomiality holds while k < c log log n for a small
enough c > 0.

For moduli m, relative prime to k!, this implies the following.
Corollary 8. If m is a relative prime to k!, then there exists an a-strong

representation of Skn(x) modulo m which can be computed on a homogeneous ΣΠΣ
circuit of size

exp

(
exp(O(k)) r

√
log n log log n

)
.

3.2. The construction for computing S2
n.

Proof of Theorem 4. We prove the more general case (ii) of the theorem.
Note that S2

n(x, y) contains the sum of the monomials xiyj for all i �= j. Let us
arrange these monomials as follows: Let the xi’s and yj ’s be assigned to the rows and
columns of an n×n matrix M , respectively, and let the position in row i and column
j contain monomial xiyj :

M =




y1 y2 · · · yn

x1 x1y1 x1y2 · · · x1yn
x2 x2y1 x2y2 · · · x2yn
...

...
...

. . .
...

xn xny1 xny2 · · · xnyn


.(3)
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Then any product of the form

(xi1 + xi2 + · · ·+ xiv )(yj1 + yj2 + · · ·+ yjw)(4)

naturally corresponds to a v × w submatrix of matrix M . We call these submatrices
rectangles. Clearly, any a-strong representation modulo m of polynomial S2

n(x, y) can
be obtained from a cover of matrix M by rectangles of the form (4), satisfying the
following properties.

Property (a). The number of rectangles covering any elements of the diagonal is
a multiple of m = pe11 pe22 · · · perr .

Property (b). Any nondiagonal element xiyj of M is covered by dij rectangles,
where

• there exists a k ∈ {1, 2, . . . , r}: dij ≡ 1 (mod pk) and it is either 0 or 1
mod p2;

• for all k ∈ {1, 2, . . . , r}, dij ≡ 0 (mod pk) or dij ≡ 1 (mod pk).
Clearly, a (bilinear) ΣΠΣ circuit computes an a-strong representation of poly-

nomial S2
n(x, y) if and only if the corresponding rectangle cover satisfies Properties

(a) and (b). The construction of such a low-cardinality rectangle cover is implicit in
papers [12] and [13]. We present here a short direct proof which is easily generalizable
for proving the results in the next section for higher dimensional matrices.

Rectangles, covering M , will be denoted

R(I, J) =

(∑
i∈I

xi

)(∑
j∈J

yj

)
.

We now define an initial cover of the nondiagonal elements of M by rectangles.
Let N = log n�, and for 1 ≤ i, j ≤ n, let i = (i1, i2, . . . , ig) and j = (j1, j2, . . . , jg)

denote their N -ary forms (i.e., 0 ≤ it, jt ≤ N − 1 for t = 1, 2, . . . , g, where g =
logN (n+ 1)�).

Then let us define, for t = 1, 2, . . . , g and  = 0, 1, . . . , N − 1,

I	t = {i : it =  }, J	t = {j : jt �=  }.
Now consider the cover given by the following rectangles:

R(I	t , J
	
t ) : t = 1, 2, . . . , g,  = 0, 1, . . . , N − 1.

Now, in this cover, any element xiyj of M will be covered HN (i, j) times, where
HN (i, j) stands for the Hamming distance of the N -ary forms of i and j, that is, at
most g times. Note that the diagonal elements are not covered at all, so Property (a)
is satisfied, while Property (b) is typically not. Moreover, xiyj is covered by the same
number of rectangles as xjyi, that is, HN (i, j) times.

The total number of covering rectangles is h = gN = O((N log n)/ logN).
Now, our goal is to turn this cover into another one, which already satisfies not

only Property (a) but also Property (b). For this transformation we need to apply
a multivariate polynomial f to our rectangle cover in a way very similar to how we
applied polynomials to set-systems in [14] and to codes in [15].

Definition 9. Let R1, R2, . . . , Rh be a rectangle cover of a matrix M = {xiyj},
and let f be an h-variable multilinear polynomial written in the form

f(z1, z2, . . . , zh) =
∑

K⊂{1,2,...,h}
aKzK ,
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where 0 ≤ aK ≤ m− 1 are integers, and zK =
∏
k∈K zk. Then the f-transformation

of the rectangle cover R1R2, . . . , Rh contains
∑
K⊂{1,2,...,h} aK rectangles, each cor-

responding to a monomial of f . zK =
∏
k∈K zk correspond to the (possibly empty)

rectangle of
⋂
k∈K Rk.

Note that another way of interpreting this definition is as follows: the variables
zk correspond to the rectangles of the cover, and if we imagine the rectangles filled
with 1’s, then the product of the variables, i.e., the monomials, corresponds to the
Hadamard product (see, e.g., [14]) of the corresponding all-1 rectangles, resulting in
an all-1 rectangle, which, in turn, is equal to their intersection.

Note also that polynomial f is, in fact, considered over the ring Zm, along with
a fixed (small) representation of its coefficients from the set of nonnegative integers.

Lemma 10. Let uij ∈ {0, 1}h characterize the rectangle cover of the entry xiyj
of matrix M as follows:

Rs covers xiyj ⇐⇒ uijs = 1.

Then entry xiyj is covered by exactly f(uij) rectangles from the f-transformation of
the rectangle cover R1, R2, . . . , Rh.

Proof. In f(z), exactly those monomials zK contribute 1 to the value of f(uij)
whose variables are all 1 in vector uij . This happens exactly when uijk = 1 for all
k ∈ K; that is, xiyj is covered by the intersection of rectangles

⋂
k∈K Rk.

The proof of the following lemma is obvious.

Lemma 11. The intersection of finitely many rectangles is a (possibly empty)
rectangle. Any rectangle, covering a part of matrix M of (3), corresponds to a single
(bilinear) multiplication.

It remains to prove that there exists an f , with a small number of monomials,
and with properties which lead to a cover, satisfying Properties (a) and (b). We will
use the famous BBR polynomial of Barrington, Beigel, and Rudich [3].

Theorem 12 (Barrington, Beigel, and Rudich [3]). Let m = pe11 pe22 · · · perr . For
any integers d,  , 1 ≤ d ≤  , there exists an fd,	 explicitly constructible, symmetric,
 -variable, degree-O(d1/r) multilinear polynomial with coefficients from Zm, such that

(i) for any z ∈ {0, 1}	, which contains at most d 1’s,

fd,	(z) ≡ 0 (mod m) ⇐⇒ z = 0;

(ii) if fd,	(z) �≡ 0 (mod m), then there exists i ∈ {1, 2, . . . , r}: fd,	(z) ≡ 1
(mod peii ), and if fd,	(z) �≡ 1 (mod p

ej
j ), then fd,	(z) ≡ 0 (mod p

ej
j ).

Proof. (i) The proof of part (i) is given in [3] (see also [13]).

(ii) We consider m = pe11 pe22 · · · perr to be a constant. Let us define qi = m/peii ,
and let q−1

i qi ≡ 1 (mod peii ) for i = 1, 2, . . . , r.

Let w denote the (symmetric) polynomial satisfying the requirements of (i).

Suppose first that ek = 1 for k = 1, 2, . . . , r. Then

fd,	 =

r∑
i=1

qiq
−1
i wpi−1

is also symmetric and clearly satisfies the requirements of (ii). Indeed, if w(z) �≡ 0
(mod pi), then fd,	(z) ≡ 1 (mod pi), and if w(z) ≡ 0 (mod pi), then fd,	(z) ≡ 0
(mod pi). Moreover, the degrees of fd,	 and w differ only in a constant multiplier.
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In general, let us first consider the polynomial w which satisfies (i) for modulus
m′ = p1p2 · · · pr. From the results of Toda [29], Yao [31], and Beigel and Tarui [4],
for every k there exist polynomials Pk of degree O(k) satisfying

Pk(x) ≡ 0 (mod xk),
Pk(x+ 1) ≡ 1 (mod xk).

Now, let us define

fd,	 =

r∑
i=1

qiq
−1
i Pei(w

pi−1).

It is easy to verify that (ii) is satisfied for this polynomial, and the degree is still
O(d1/r). Moreover, fd,	 is also symmetric.

Now we can prove Theorem 4; let us consider the more general statement of (ii).
Let  = h = gN , d = g. Then fg,gN has

(
h

O(g1/r)

)
(5)

monomials. Consequently, if we transform our cardinality-h rectangle cover by Defi-
nition 9 with polynomial fg,gN , then the resulting cover satisfies Properties (a) and

(b) and has cardinality (5). This implies an exp(O( r
√
log n(log log n)r−1)) cover. By

Lemma 11, a ΣΠΣ circuit is immediate with exp(O( r
√
log n(log log n)r−1)) multipli-

cation gates. Since the original, cardinality-h rectangle cover covered xiyj and xjyi
with the same number of rectangles, and since fg,gN is a symmetric polynomial, by
Lemma 10 our transformed rectangle cover will also cover xiyj and xjyi with the same
number of rectangles.

4. The construction in general. In this section we prove Theorem 7.
We describe a construction similarly to that of the case k = 2.
Note that in this section, instead of the more correct notation for vectors x with

upper index u: x(u), we will write simply xu.
First, let M ′ = {mi1,i2,...,ik} be a k-dimensional analogue of M of (3), that is, an

k︷ ︸︸ ︷
n× n× n× · · · × n

matrix, where mi1,i2,...,ik = x1
i1
x2
i2
· · ·xkik .

Now we should again construct a cover of M ′, this time with k-dimensional boxes,
corresponding to k-linear products,

R(I1, I2, . . . , Ik) =

k∏
i=1

∑
j∈Ii

xij ,

satisfying that only those entries will be covered which have no two equal (lower)
indices, and the covering multiplicity of these entries should be nonzero modulo m.
Additionally, we also require that the covering multiplicity of entry mi1,i2,...,ik de-
pend only on the set {i1, i2, . . . , ik} and not on the particular order of the indices
i1, i2, . . . , ik.
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First we need to define an initial box cover of those entries of the k-dimensional
matrix M ′ which have no two identical indices.

For our proof it is very important that this initial cover has low multiplicity:
every covered element of M ′ should be covered only by O(log n) k-dimensional boxes
for constant k’s. The construction of such initial cover in the k = 2 case was quite
easy; now we must use a more intricate approach.

Let us consider a family of perfect hash functions (see, e.g., [6] or the work [1] for
an explicit (i.e., derandomized) construction), and let us list their respective values
in the column of a matrix. This way, for integers n, k, b, 2 ≤ k ≤ b = O(k), k ≤ n, we
can obtain a matrix H(n, k, b) = {hij} with u = exp(O(k)) log n rows and n columns,
with entries from the set {0, 1, . . . , b− 1}, such that for any k-element subset J of the
n columns, there exists a row i, 1 ≤ i ≤ u:

hij , j ∈ J

are pairwise different elements of the set {0, 1, . . . , b− 1}.
This matrix H(n, k, b) will be used for the definition of our initial cover as follows:
For any i, 1 ≤ i ≤ u, and for any σ : {1, 2, . . . , k} → {0, 1, . . . , b − 1} injective

function we define the k-dimensional box

R(i, σ) = {mj1,j2,...,jk : hij1 = σ(1), hij2 = σ(2), . . . , hijk = σ(k)}.
There are u possible i’s and kO(k) possible σ’s, so there are kO(k) log n boxes in

this cover. Box R(i, σ) covers only mj1,j2,...,jk ’s with pairwise different indices.
It is important to note that even for a fixed i, the covering multiplicities of the

elements mj1,j2,...,jk and mπ(j1)π(j2)...,π(jk) are the same for any permutations π of the
numbers {j1, j2, . . . , jk}.

Any mj1,j2,...,jk with pairwise different indices is covered by exactly as many
k-dimensional boxes from this cover as the number of rows with pairwise different
elements of the submatrix, containing column j1, column j2, . . . , column jk of matrix
H(n, k, b). This number is at least 1 (from the perfect-hashing property) and at most
u (that is, the number of rows of H(n, k, b)).

Now, exactly as in the proof of the S2
n case, we would like to apply the polynomial

fd,	 of Theorem 12 with d = u,  = kO(k) log n to this box cover.
However, first we need to give the higher-dimension analogues of Definition 9 and

Lemma 10.
Definition 13. Let R1, R2, . . . , Rh be a box cover of a matrix M ′, and let f be

an h-variable multilinear polynomial written in the form

f(z1, z2, . . . , zh) =
∑

K⊂{1,2,...,h}
aKzK ,

where 0 ≤ aK ≤ m−1 are integers, and zK =
∏
k∈K zk. Then the f-transformation of

the box cover R1R2, . . . , Rh contains
∑
K⊂{1,2,...,h} aK boxes, each corresponding to a

monomial of f . zK =
∏
k∈K zk corresponds to the (possibly empty) box of

⋂
k∈K Rk.

Lemma 14. Let ui1,i2,...,ik ∈ {0, 1}h characterize the box cover of the entry
mi1,i2,...,ik of matrix M ′ as follows:

Rs covers mi1,i2,...,ik ⇐⇒ ui1,i2,...,iks = 1.

Then entry mi1,i2,...,ik = x1
i1
x2
i2
· · ·xkik is covered by exactly f(ui1,i2,...,ik) boxes from

the f-transformation of the box cover R1, R2, . . . , Rh.
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Proof. In f(z), exactly those monomials zK contribute 1 to the value of f(ui1,i2,...,ik)
whose variables are all 1 in vector ui1,i2,...,ik . This happens exactly when ui1,i2,...,iks = 1
for all s ∈ K; that is, mi1,i2,...,ik = x1

i1
x2
i2
· · ·xkik is covered by the intersection of boxes⋂

k∈K Rk.
Note that for any symmetric polynomial f and any box cover which has covering

multiplicity on mi1,i2,...,ik , depending only on set {i1, i2, . . . , ik}, the f -transformation
of the cover will also have the same multiplicity on mj1,j2,...,jk and on mπ(j1)π(j2)...,π(jk)

for any permutations π of the numbers {j1, j2, . . . , jk}.
The proof of the following lemma is obvious.
Lemma 15. The intersection of finitely many boxes is a (possibly empty) box.

Any box covering a part of matrix M ′ corresponds to a single (multilinear) product.
The result of applying fd,	 with d = u,  = kO(k) log n to our initial box cover of

cardinality  is a box cover of cardinality

exp(exp(O(k))(logn)1/r log log n),

proving Theorem 7.

4.1. Proof of Lemma 1. Let R1, R2, . . . , Rh be the covering boxes defined by
the homogeneous ΣΠΣ circuit. Let us remark that every degree-k monomial

∏
i∈I xi

with pairwise different indices is covered by aI �= 0 boxes in this cover. In Fq, for any
nonzero element s, sq−1 = 1. Now, let us apply polynomial

f(z1, z2, . . . , zh) = (z1 + z2 + · · ·+ zh)
q−1

to the box cover R1, R2, . . . , Rh according to Definition 13. Then, by Lemma 14,
the covering multiplicity of the degree-k monomials

∏
i∈I xi with pairwise different

indices will be 1 in Fq, while all the others will remain 0. That is, the corresponding
ΣΠΣ circuit computes Skn over Fq.

Acknowledgment. The author is grateful to Gábor Tardos for discussions on
the subject.
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1. Introduction. In recent years external memory data structures have been
developed for a wide range of applications, including spatial, temporal, and object-
oriented databases and geographic information systems. Often the amount of data
manipulated in such applications is too large to fit in main memory, and the data must
reside on disk. In such cases the input/output (I/O) communication between main
memory and disk can become a bottleneck. In this paper we develop an I/O-optimal
and space-optimal external interval tree data structure for answering stabbing queries
among a changing set of intervals. The structure is the central part of an optimal
solution to the dynamic interval management problem.

1.1. Memory model and previous results. We will be working in the stan-
dard model for external memory with one (logical) disk [31, 4]. We assume that each
external memory access (called an I/O operation or just I/O) transmits one page of
B elements. We measure the efficiency of an algorithm in terms of the number of
I/Os it performs and the number of disk blocks it uses.1

The dynamic interval management problem is the problem of maintaining a set
of intervals such that, given a query interval Iq, all intervals intersecting Iq can be
reported efficiently. As discussed in [29, 30, 38], the problem is crucial for indexing
constraints in constraint databases and in temporal databases. The key component
of dynamic interval management is the ability to answer stabbing queries [30]. Given
a set of intervals, a stabbing query with a point q asks for all intervals containing q.
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By representing an interval [x, y] as the point (x, y) in the plane, a stabbing query
reduces to the special case of 2-sided 2-dimensional range searching called a diagonal
corner query. In the diagonal corner query problem a set of points in the plane above
the diagonal line x = y should be stored such that, given a query point (q, q), all
points (x, y) with x ≤ q and y ≥ q can be reported efficiently. The problem of 2-
dimensional range searching has been the subject of much research. While B-trees and
their variants [12, 21] have been an unqualified success in supporting 1-dimensional
external range searching, they are inefficient at handling higher-dimensional problems.
In internal memory many worst-case efficient structures have been proposed for 2-
dimensional and higher-dimensional range search; see [3] for a survey. Unfortunately,
most of these structures are not efficient when mapped to external memory. The
practical need for I/O support has also led to the development of a large number
of external data structures that do not have good theoretical worst-case update and
query I/O bounds but do have good average-case behavior for common problems;
see [24, 35] for surveys. The worst-case performance of these data structures is much
worse than the optimal bounds achievable for dynamic external 1-dimensional range
search using a B-tree.

Prior to the development of the structure presented in this paper, a number of
attempts had been made to solve the external stabbing query problem. Kanellakis et
al. [30] developed the metablock tree for answering diagonal corner queries in optimal
O(logB N + T/B) I/Os using optimal O(N/B) blocks of external memory. Here T
denotes the number of points reported. The structure supports insertions only in
O(logB N + (log2

B N)/B) I/Os amortized. A simpler static structure with the same
bounds was described by Ramaswamy [37]. In internal memory, the priority search
tree of McCreight [32] can be used to answer more general queries than diagonal
corner queries, namely 3-sided range queries, and a number of attempts have been
made at externalizing this structure [16, 28, 39]. The structure by Icking, Klein, and
Ottoman [28] uses optimal space but answers queries in O(log2 N + T/B) I/Os. The
structure by Blankenagel and Güting [16] also uses optimal space but answers queries
in O(logB N+T ) I/Os (see also [14]). In both papers a number of nonoptimal dynamic
versions of the structures are also developed. Ramaswamy and Subramanian [39] de-
veloped a technique called path caching for transforming an efficient internal memory
data structure into an I/O-efficient structure. Using this technique on the priority
search tree results in a structure that can be used to answer 2-sided queries, which are
more general than diagonal corner queries but less general than 3-sided queries. This
structure answers queries in the optimal O(logB N+T/B) I/Os and supports updates
in amortized O(logB N) I/Os but uses nonoptimal O((N/B) log2 log2 B) space. Var-
ious other external data structures for answering 3-sided queries are also developed
in [30] and [39]. Subramanian and Ramaswamy also designed the p-range tree for
answering 3-sided queries [40]. The structure uses linear space, answers queries in
O(logB N + T/B + IL∗(B)) I/Os, and supports updates in O(logB N + (log2

B N)/B)
I/Os amortized. (IL∗(·) denotes the iterated log∗ function, that is, the number of
times log∗ must be applied to get below 2). Finally, following the publication of the
extended abstract version of this paper (and based on the results in this paper), Arge,
Samoladas, and Vitter [8] developed an optimal external priority search tree, imme-
diately implying an optimal stabbing query structure. Several structures have also
been developed for the general 2- and higher-dimensional range searching problem, as
well as for several other related problems. See [5, 6, 41] for surveys.



1490 LARS ARGE AND JEFFREY SCOTT VITTER

Table 1.1
Comparison of our data structure for stabbing queries with other data structures.

Space (blocks) Query I/O bound Update I/O bound

Pri. search tree [28] O(N
B
) O(log2 N + T/B)

XP-tree [16] O(N
B
) O(logB N + T )

[37] O(N
B
) O(logB N + T/B)

Metablock tree [30] O(N
B
) O(logB N + T/B) O(logB N + (logB N)2/B)

amortized (inserts only)

P-range tree [40] O(N
B
) O(logB N + T/B+ O(logB N + (logB N)2/B)

IL∗(B)) amortized

Path caching [39] O(N
B
log2 log2 B) O(logB N + T/B) O(logB N) amortized

Our result [11] ([8]) O(N
B
) O(logB N + T/B) O(logB N)

1.2. Overview of our results. The main contribution of this paper is an opti-
mal external memory data structure for the stabbing query problem. As mentioned,
our data structure gives an optimal solution to the interval management problem, and
thus it settles an open problem highlighted in [30, 39, 40]. The structure uses O(N/B)
disk blocks to maintain a set of N intervals such that insertions and deletions can
be performed in O(logB N) I/Os and such that stabbing queries can be answered in
O(logB N + T/B) I/Os. In Table 1.1 we compare our result with previous solutions.
Unlike previous nonoptimal structures, the update I/O bounds for our data structure
are worst-case, and our structure works without assuming that the internal memory
is capable of holding Ω(B2) elements. Our structure is significantly different from the
recently developed external priority search tree [8] and is probably of greater practical
interest since it uses relatively fewer random I/Os when answering a query. Most disk
systems are optimized for sequential I/O, and, consequently, random I/Os often take
a much longer time than sequential I/Os.

Our solution to the stabbing query problem is an external version of the interval
tree [22, 23]. In section 2, we present the basic structure, where the endpoints of the
intervals stored in the structure belong to a fixed set of N points. In section 3, we then
remove this “fixed endpoint-set assumption.” In internal memory, the assumption is
normally removed using a BB[α]-tree [34] as the base search tree structure [33], and
this leads to amortized update bounds. However, as BB[α]-trees are unsuitable for
implementation in external memory, we develop a new weight-balanced B-tree for use
in external memory. This structure resembles the k-fold tree of Willard [43]. Like
in internal memory, the use of a weight-balanced B-tree as the base tree results in
amortized update bounds. In section 4, we then show how to remove the amortization
from the structure.

Our external interval tree has been used to develop I/O-efficient structures for dy-
namic point location [1, 9].2 It has also been used in several visualization applications
[18, 19, 20]. Our weight-balanced B-tree has also found several other applications. In
internal memory it can, for example, be used to convert amortized bounds to worst-
case bounds. (Fixing B to a constant in our result yields an internal-memory interval
tree with worst-case update bounds.) It can also be used as a (simpler) alternative
to the rather complicated structure developed in [42] in order to add range restric-
tion capabilities to internal-memory dynamic data structures. (It seems possible to

2Even though the external priority search tree [8] solves a more general problem than the external
interval tree, it cannot be used as an alternative to the external interval tree in the point location
structures.
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use the techniques in [42] to remove the amortization from the update bound of the
internal interval tree, but our method is much simpler.) In external memory, it has
been used in the recently developed optimal external priority search tree [8], as well
as in numerous other structures (e.g., [25, 26, 13, 1, 9]).

Finally, in section 5, we discuss how to use the ideas utilized in our exter-
nal interval tree to develop an external segment tree using O((N/B) logB N) space.
This improves upon previously known external segment tree structures, which use
O((N/B) log2 N) disk blocks [15, 39].

2. External memory interval tree with fixed endpoint set. In this section,
we present our external interval tree structure, assuming that the endpoints of the
intervals stored in the structure belong to a fixed set E of size N . We also assume that
the internal memory is capable of holding O(B) blocks. We remove these assumptions
in sections 3 and 4.

2.1. Preliminaries. Our external interval tree makes extensive use of two kinds
of auxiliary structures: the B-tree [12, 21] and the “corner structure” [30]. B-trees, or
more generally (a, b)-trees [27], are search tree structures suitable for external memory.

Lemma 2.1. A set of N elements can be stored in a B-tree structure using
O(N/B) disk blocks such that updates and queries can be performed in O(logB N)
I/Os. The T smallest (largest) elements can be reported in O(T/B + 1) I/Os. Given
N sorted elements a B-tree can be built in O(N/B) I/Os.

A “corner structure” [30] is a data structure that can be used to answer stabbing
queries on O(B2) intervals.

Lemma 2.2. (Kanellakis et al. [30]) A set of K ≤ B2 intervals can be stored in
an external data structure using O(K/B) disk blocks such that a stabbing query can
be answered in O(T/B + 1) I/Os, where T is the number of reported intervals.

As discussed in [30], the corner structure can easily be made dynamic: updates
are inserted into an update block, and the structure is rebuilt using O(B) I/Os once
B updates have been performed. The rebuilding is performed simply by loading the
structure into internal memory, rebuilding it, and writing it back to external memory.

Lemma 2.3. Assuming M ≥ B2, a set of K ≤ B2 intervals can be stored in an
external data structure using O(K/B) disk blocks such that a stabbing query can be
answered in O(T/B+1) I/Os and such that an update can be performed in O(1) I/Os
amortized. The structure can be constructed in O(K/B) I/Os.

In section 4.2 (where it will become clearer why the structure is called a “corner
structure”), we show how the update bound can be made worst-case. In the process
we also remove the assumption on the size of the internal memory.

2.2. The structure. An internal memory interval tree consists of a binary base
tree on the sorted set of endpoints E, with the intervals stored in secondary struc-
tures associated with internal nodes of the tree [22]. An interval Xv consisting of
all endpoints below v is associated with each internal node v in a natural way. The
interval Xr of the root r is thus divided in two by the intervals Xvl and Xvr asso-
ciated with its two children, vl and vr, and an interval is stored in r if it contains
the “boundary” between Xvl and Xvr (if it overlaps both Xvl and Xvr ). Intervals on
the left (right) side of the boundary are stored recursively in the subtree rooted in vl
(vr). Intervals in r are stored in two structures: a search tree sorted according to left
endpoints of the intervals and one sorted according to right endpoints. A stabbing
query with q is answered by reporting the intervals in r containing q and recursively
reporting the relevant intervals in the subtree containing q. If q is contained in Xvl ,
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the intervals in r containing q are found by traversing the intervals in r sorted accord-
ing to left endpoints, from the intervals with smallest left endpoints toward the ones
with largest left endpoints, until an interval not containing q is encountered. None of
the intervals in the sorted order after this interval can contain q. Since O(Tr) time is
used to report Tr intervals in r, a query is answered in O(log2 N + T ) time in total.

In order to externalize the interval tree structure in an efficient way, we need
to increase the fan-out of the base tree to decrease its height to O(logB N). This
creates several problems. The main idea behind our successful externalization of the
structure, as compared with previous attempts [16, 39], is to use a fan-out of

√
B

instead of B (following ideas from [7, 10]).
Structure. The external interval tree on a set of intervals I with endpoints in a

fixed set E of size N is defined as follows. (We assume without loss of generality that
the endpoints of the intervals in I are distinct.) The base tree T is a perfectly balanced
fan-out

√
B tree over the sorted set of endpoints E. Each leaf represents B consecutive

points from E. (If |E| is not (
√
B)iB for some i ≥ 0 we adjust the degree of the root of

T to be smaller than
√
B.) The tree has height O(log√B(N/B))+1 = O(logB N). As

in the internal case, with each internal node v we associate an interval Xv consisting
of all endpoints below v. The interval Xv is divided into

√
B subintervals by the

intervals associated with the children v1, v2, . . . , v√B of v. Refer to Figure 2.1. For
illustrative purposes, we call the subintervals slabs and the left (right) endpoint of a
slab a slab boundary. We define a multislab to be a contiguous range of slabs, such as,
for example, Xv2Xv3Xv4 in Figure 2.1. In a node v we store intervals from I that cross
one or more of the slab boundaries associated with v but none of the slab boundaries
associated with parent(v). In a leaf l we store intervals with both endpoints among
the endpoints in l. The number of intervals stored in a leaf is less than B/2 and can
therefore be stored in one block. We store the set of intervals Iv ⊂ I associated with
v in the following Θ(B) secondary structures associated with v.

• For each of
√
B − 1 slab boundaries bi, 1 < i ≤ √B, we store the following:

– A right slab list Ri containing intervals from Iv with right endpoint
between bi and bi+1. Ri is sorted according to right endpoints.

– A left slab list Li containing intervals from Iv with left endpoint between
bi and bi−1. Li is sorted according to left endpoints.

– O(
√
B) multislab lists—one for each boundary to the right of bi. The

list Mi,j for boundary bj (j > i) contains intervals from Iv with left
endpoint between bi−1 and bi and right endpoint between bj and bj+1.
Mi,j is sorted according to right endpoints.

• If the number of intervals stored in a multislab list Mi,j is less than Θ(B),
we instead store them in an underflow structure U along with intervals as-
sociated with all the other multislab lists with fewer than Θ(B) intervals.
More precisely, only if more than B intervals are associated with a multi-
slab do we store the intervals in the multislab list. Similarly, if fewer than
B/2 intervals are associated with a multislab, we store the intervals in the
underflow structure. If the number of intervals is between B/2 and B, they
can be stored in either the multislab list or in the underflow structure. Since
O((
√
B)2) = O(B) multislabs lists are associated with v, the underflow struc-

ture U always contains fewer than B2 intervals.
We implement all secondary list structures associated with v using B-trees and

the underflow structure using a corner structure (Lemmas 2.1 and 2.3). In each node
v, in O(1) index blocks, we also maintain information about the size and place of each
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v

v1 v2 v3 v4 v5

Xv

Xv2
Xv3

Xv4
Xv5

s

Xv1

b1 b2 b3 b4 b5 b6 bi+1qbi

Fig. 2.1. A node in the base tree. In-
terval s is stored in L2, R4, and either M2,4

or U .

Fig. 2.2. Intervals containing q
are stored in Rbi , Lbi+1

, the multi-
slab lists spanning the slab, and U .

of the O(B) structures associated with v.
With the definitions above, an interval in Iv is stored in two or three structures:

two slab lists Li and Rj and possibly in either a multislab list Mi,j or in the underflow
structure U . For example, we store interval s in Figure 2.1 in the left slab list L2 of b2,
in the right slab list R4 of b4, and in either the multislab list M2,4 corresponding to b2
and b4 or the underflow structure U . Note the similarity between the slab lists and the
two sorted lists of intervals in the nodes of an internal interval tree. As in the internal
case, s is stored in a sorted list for each of its two endpoints. This represents the part
of s to the left of the leftmost boundary contained in s and the part to the right of
the rightmost boundary contained in s. Unlike in the internal case, in the external
case we also need to represent the part of s between the two extreme boundaries. We
do so using one of O(B) multislab lists.

The external interval tree uses linear space: the base tree T itself uses O(|E|/B)
blocks, and each interval is stored in a constant number of linear space secondary
structures (Lemmas 2.1 and 2.3). The number of other blocks used in a node is
O(
√
B): O(1) index blocks and one block for the underflow structure and for each of

the 2
√
B slab lists. Since T has O(|E|/(B√B) ) internal nodes, the structure uses a

total of O(|E|/B) blocks. Note that if we did not store the sparse multislab lists in
the underflow structure, we could have Ω(B) sparsely utilized blocks in each node,
which would result in a superlinear space bound.

Query. In order to answer a stabbing query q, we search down T for the leaf
containing q, reporting all relevant intervals among the intervals Iv stored in each
node v encountered. Assuming q lies between slab boundaries bi and bi+1 in v, we
report the relevant intervals in Iv as follows:

• We load the O(1) index blocks.
• We report intervals in all multislab lists containing intervals crossing bi and

bi+1, that is, multislab lists Ml,k with l ≤ i and k > i.
• We perform a stabbing query with q on the underflow structure U and report

the result.
• We report intervals in Ri from the largest toward the smallest (according to

right endpoint) until we encounter an interval not containing q.
• We report intervals in Li+1 from the smallest toward the largest until we

encounter an interval not containing q.
It is easy to see that our algorithm reports all intervals in Iv containing q: all

relevant intervals are stored either in a multislab list Ml,k with l ≤ i < k, in U , in Ri,
or in Li+1. Refer to Figure 2.2. We correctly report all intervals in Ri containing q,
since if an interval in the right-to-left order of this list does not contain q, then neither
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does any other interval to the left of it. A similar argument holds for the left-to-right
search in Li+1.

The query algorithm uses an optimal O(logB N + T/B) I/Os. In T we visit
O(log√B N) = O(logB N) nodes. In each node v we use only O(1) I/Os that are not
“paid for” by reportings (blocks read that contain Θ(B) output intervals): we use
O(1) I/Os to load the index blocks, O(1) overhead to query U , and O(1) overhead for
Ri and Li+1. Note how U is crucial for obtaining the O(logB N + T/B) bound since
it guarantees that all visited multislab lists contain Θ(B) intervals.

Lemma 2.4. Assuming M ≥ B2, there exists a data structure using O(N/B) disk
blocks to store intervals with unique endpoints in a set E of size N such that stabbing
queries can be answered in O(logB N + T/B) I/Os.

Updates. We insert a new interval s in the external interval tree as follows: we
search down T to find the first node v where s contains one or more slab boundaries.
Then we load the O(1) index blocks of v and insert s into the two relevant slab lists Li
and Rj . If the multislab list Mi,j exists, we also insert s there. Otherwise, the other
intervals (if any) corresponding to Mi,j are stored in the underflow structure U , and
we insert s in this structure. If that brings the number of intervals corresponding to
Mi,j up to B, we delete them all from U and insert them in Mi,j . Finally, we update
and store the index blocks. Similarly, in order to delete an interval s, we search down
T until we find the node storing s. We then delete s from two slab lists Li and Rj .
We also delete s from U or Mi,j ; if s is deleted from Mi,j and the list now contains
B/2 intervals, we delete all intervals in Mi,j and insert them into U . Finally, we again
update and store the index blocks.

To analyze the number of I/Os used to perform an update, first note that for
both insertions and deletions we use O(logB N) I/Os to search down T , and then
in one node we use O(logB N) I/Os to update the secondary list structures. The
manipulation of the underflow structure U uses O(1) I/Os, except in the cases where
Θ(B) intervals are moved between U and a multislab list Mi,j . In the latter case
we use O(B) I/Os, but then there must have been at least B/2 updates involving
intervals in Mi,j and requiring only O(1) I/Os since the last time an O(B) cost was
incurred. Hence the amortized I/O cost is O(1), and we obtain the following.

Theorem 2.5. Assuming M ≥ B2, there exists a data structure using O(N/B)
disk blocks to store intervals with unique endpoints in a set E of size N such that
stabbing queries can be answered in O(logB N + T/B) I/Os in the worst case and
such that updates can be performed in O(logB N) I/Os amortized.

3. General external interval tree. In order to remove the fixed endpoint
assumption from our external interval tree, we need to use a dynamic search tree as
the base tree. In internal memory a BB[α]-tree [34] is often used as the base tree
for structures with secondary structures. In such a tree, a node v with weight w
(i.e., with w elements below it) can be involved in a rebalancing operation only once
for every Ω(w) updates that access (i.e., pass through) v [17, 33]. If the necessary
reorganization of the secondary structures after a rebalance operation on v can be
performed in O(w) time, we then obtain an O(1) amortized bound on performing a
rebalancing operation. Unfortunately, a BB[α]-tree is not suitable for implementation
in external memory; it is binary, and there seems to be no easy way of grouping nodes
together in order to increase the fan-out while at the same time maintaining its other
useful properties. On the other hand, a B-tree, which is the natural choice as dynamic
base structure, does not have the property that a node v of weight w can be involved
in a rebalance operation only for every Ω(w) updates accessing v.
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In section 3.1, we describe a variant of B-trees, called weight-balanced B-trees,
combining the useful properties of B-trees and BB[α]-trees. They are balanced using
normal B-tree operations (split and fusion of nodes) while at the same time having the
weight property of a BB[α]-tree. An important feature of a weight-balanced B-tree is
that the ratio between the largest and smallest weight subtree rooted in children of
a node v is a small constant factor. In a B-tree this ratio can be exponential in the
height of the subtrees. In section 3.2, we use the weight-balanced B-tree to remove
the fixed endpoint assumption from our external interval tree.

3.1. Weight-balanced B-tree. In a normal B-tree [12, 21] all leaves are on the
same level, and each internal node has between a and 2a−1 children for some constant
a. In a weak B-tree, or (a, b)-tree [27], a wider range in the number of children is
allowed. We define the weight-balanced B-tree by imposing constraints on the weight
of subtrees rather than on the number of children. The other B-tree characteristics
remain the same: the leaves are all on the same level (level 0), and rebalancing is
performed by splitting and fusing internal nodes.

Definition 3.1. The weight w(vl) of a leaf vl is defined as the number of elements
stored in it. The weight of an internal node v is defined as w(v) =

∑
v=parent(c) w(c).

Corollary 3.2. The weight w(v) of an internal node v is equal to the number
of elements in leaves below v.

Definition 3.3. T is a weight-balanced B-tree with branching parameter a and
leaf parameter k, a > 4 and k > 0, if the following conditions hold:

• All leaves of T are on the same level and have weight between k and 2k − 1.
• An internal node on level l has weight less than 2alk.
• Except for the root, an internal node on level l has weight larger than 1

2a
lk.

• The root has more than one child.
Lemma 3.4. Except for the root, all nodes in a weight-balanced B-tree with pa-

rameters a and k have between a/4 and 4a children. The root has between 2 and 4a
children.

Proof. The leaves fulfill the internal node weight constraint, since k > 1
2a

0k and
2k − 1 < 2a0k. Thus the minimal number of children an internal node on level l
can have is 1

2a
lk/2al−1k = a/4, and the maximal number of children v can have is

2alk/ 1
2a
l−1k = 4a. The root upper bound follows from the same argument, and the

lower bound is by definition.
Corollary 3.5. The height of an N element weight-balanced B-tree with pa-

rameters a and k is O(loga(N/k)).
To perform an update on a weight-balanced B-tree T , we first search down T for

the relevant leaf. After performing the actual update, we may need to rebalance T
in order to fulfill the constraints in Definition 3.3. For simplicity we consider only
insertions in this section. Deletions can easily be handled using global rebuilding [36]
(as discussed further in the next section). After inserting an element in leaf u of T ,
the nodes on the path from u to the root of T can be out of balance; that is, the
node vl on level l can have weight 2alk. In order to rebalance the tree we split all
such nodes starting with u and working towards the root. If u is a leaf containing 2k
elements we split it into two leaves u and u′, each containing k elements, and insert a
reference to u′ in parent(u). In general, on level l we want to split a node vl of weight
2alk into two nodes v′l and v′′l of weight alk and insert a reference in parent(vl). (If
parent(vl) does not exist, that is, if we are splitting the root, we create a new root with
two children.) However, a perfect split is generally not possible if we want to perform
the split so that v′l gets the first (leftmost) i of v’s children and v′′l gets the rest of the
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children. Nonetheless, since nodes on level l− 1 have weight less than 2al−1k, we can
always find an i such that if we split at the ith child the weights of both v′l and v′′l are
between alk − 2al−1k and alk + 2al−1k. Since a > 4, v′l and v′′l fulfill the constraints
of Definition 3.3; that is, their weights are strictly between 1

2a
lk and 2alk.3 Note that

splitting node v does not change the weight of parent(v). As a result, the structure is
relatively simple to implement. In each node we need only to store its level and the
weight of each of its children, information we can easily maintain during an update.
The previous discussion and Corollary 3.5 combine to prove the following.

Lemma 3.6. The number of rebalancing operations (splits) after an insertion in
a weight-balanced B-tree T with parameters a and k is bounded by O(loga(|T |/k)).

The following lemma will be crucial in our application.
Lemma 3.7. After a split of a node vl on level l into two nodes v′l and v′′l , at

least alk/2 inserts have to be performed below v′l (or v′′l ) before it splits again. After
a new root r in a tree containing N elements is created, at least 3N insertions have
to be performed before r splits again.

Proof. After a split of vl the weight of each of v′l and v′′l is less than alk+2al−1k <
3/2alk. Each such node will split again when its weight reaches 2alk. It follows that
the weight must increase by at least alk/2. When a root r is created on level l it
has weight 2al−1k = N . It will not split before it has weight 2alk > 2 · 4al−1k
= 4N .

One example of how the weight-balanced B-tree can be used as a simpler al-
ternative to existing internal memory data structures is in adding range restriction
capabilities to dynamic data structures [42]. The general technique for adding range
restrictions developed in [42] utilizes a base BB[α]-tree with each interval node v
augmented with a dynamic data structure on the set of elements below v. This struc-
ture needs to be rebuilt when a rebalancing operation is performed on v, and the
use of a BB[α]-tree leads to amortized bounds. In [42] it is shown how worst-case
bounds can be obtained by a relatively complicated redefinition of the BB[α]-tree.
On the other hand, using our weight-balanced B-tree with branching parameter a = 5
and leaf parameter k = 1 as base tree we immediately obtain worst-case bounds: the
large number of updates between splits of a node immediately implies good amortized
bounds, and the bounds can easily be made worst-case by performing the secondary
structure rebuilding lazily. The ideas and techniques used in this construction are
very similar to the ones presented in the succeeding sections of this paper and are
therefore omitted. The use of lazy rebuilding in the BB[α]-tree solution is complicated
because rebalancing is performed using rotations, which means that we cannot simply
continue to query and update the old secondary structure while lazily building new
ones.

As mentioned, the weight-balanced B-tree has been used in the development of
numerous efficient internal as well as external data structures (e.g., [26, 13, 8, 25, 9,
2, 41]). In order to obtain an external tree structure suitable for use in our interval
tree, we choose 4a =

√
B and 2k = B and obtain the following.

Theorem 3.8. There exists an N element search tree data structure using
O(N/B) disk blocks such that a search or an insertion can be performed in O(logB N)
I/Os in the worst case.

Each internal node v at level l in the structure, except for the root, has Θ(
√
B)

children, dividing the w(v) = Θ((
√
B)lB) elements below v into Θ(

√
B) sets. The root

3If a > 8 we can even split the node at child i− 1 or i+1 instead of at child i and still fulfill the
constraints. We will use this property in the next section.
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has O(
√
B) children. Rebalancing after an insertion is performed by splitting nodes.

When a node v is split, at least Θ(w(v)) elements must have been inserted below v
since the last time v was split. In order for a new root to be created, Θ(N) elements
have to be inserted into the data structure.

Proof. Each internal node can be represented using O(1) blocks, and the space
bound follows since each leaf contains Θ(B) elements. A split at v can be performed
in O(1) I/Os: we load the O(1) blocks storing v into internal memory, split v, and
write the O(1) blocks defining the two new nodes back to disk. Finally, we update
the information in the parent using O(1) I/Os. Thus the insertion and search I/O
bounds follow directly from Corollary 3.5 and Lemma 3.6.

The second part of the theorem follows directly from Definition 3.3, Corollary 3.2,
and Lemmas 3.4 and 3.7.

3.2. Using the weight-balanced B-tree to remove the fixed endpoint
assumption. We now show how to remove the fixed endpoint assumption from our
external interval tree using the weight-balanced B-tree as the base tree T . To insert
an interval, we first insert the two new endpoints in the base tree and perform the
necessary rebalancing. Then we insert the interval as described in section 2. Since
rebalancing is performed by splitting nodes, we need to consider how to split a node v
in our interval tree. Figure 3.1 illustrates how the slabs associated with v are affected
when v splits into nodes v′ and v′′: All the slabs on one side of a slab boundary b get
associated with v′; the boundaries on the other side of b get associated with v′′; and b
becomes a new slab boundary in parent(v). As a result, all intervals in the secondary
structures of v that contain b need to be inserted into the secondary structures of
parent(v). The rest of the intervals need to be stored in the secondary structures of v′

and v′′. Furthermore, as a result of the addition of the new boundary b, some of the
intervals in parent(v) containing b also need to be moved to new secondary structures.
Refer to Figure 3.2.
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Fig. 3.1. Splitting a node; v splits along b, which becomes a new boundary in parent(v).

First consider the intervals in the secondary structures of v. Since each interval
is stored in a left slab list and a right slab list, we can collect all intervals containing
b (to be moved to parent(v)) by scanning through all of v’s slab lists. We first
construct a list Lr of the relevant intervals sorted according to right endpoint by
scanning through the right slab lists. We scan through every right slab list (stored
in the leaves of a B-tree) of v in order, starting with the rightmost slab boundary,



1498 LARS ARGE AND JEFFREY SCOTT VITTER

bi

b

bi+1

v

Fig. 3.2. All solid intervals need to move. Intervals in v containing b move to parent(v), and
some intervals move within parent(v).

adding intervals containing b to Lr. This way Lr will automatically be sorted. We
construct a list Ll sorted according to left endpoint by scanning through the left slab
lists in a similar way. Since the secondary structures of v contain O(w(v)) intervals
(they all have an endpoint below v), and since we can scan through each of the
O(
√
B) slab lists in a linear number of I/Os (Lemma 2.1), we construct Lr and Ll

in O(
√
B + w(v)/B) = O(w(v)/B) I/Os. Next we construct the slab lists of v′ and

v′′, simply by removing intervals containing b from each slab list of v. We remove the
relevant intervals from a given slab list by scanning through the leaves of its B-tree,
collecting the intervals for the new list in sorted order, and then constructing a new list
(B-tree). This way we construct all the slab lists in O(w(v)/B) I/Os. We construct
the multislab lists for v′ and v′′ simply by removing all multislabs lists containing b.
Since each removed list contains Ω(B) intervals, we can do so in O(w(v)/B) I/Os.
We construct the underflow structures for v′ and v′′ by first scanning through the
underflow structure for v and collecting the intervals for the two structures, and then
constructing them individually using O(w(v)/B) I/Os (Lemma 2.3). We complete
the construction of v′ and v′′ in O(w(v)/B) I/Os by scanning though the lists of each
of the nodes, collecting the information for the index blocks.

Next consider parent(v). We need to insert the intervals in Ll and Lr into the
secondary structures of parent(v) and move some of the intervals already in these
structures. The intervals we need to consider all have one of their endpoints in Xv.
For simplicity we consider only intervals with left endpoint in Xv; intervals with right
endpoint in Xv are handled similarly. All intervals with left endpoint in Xv that
are stored in parent(v) cross boundary bi+1. Thus we need to consider each of these
intervals in one or two of

√
B + 1 lists, namely, in the left slab list Li+1 of bi+1

and possibly in one of O(
√
B) multislab lists Mi+1,j . When introducing the new

slab boundary b, some of the intervals in Li+1 need to be moved to the new left
slab list of b. In a scan through Li+1 we collect these intervals in sorted order in
O(|Xv|/B) = O(w(v)/B) I/Os. The intervals in Ll also need to be stored in the left
slab list of b, so we merge Ll with the collected list of intervals and construct a B-tree
on the resulting list. We can easily do so in O(w(v)/B) I/Os (Lemma 2.1), and we
can update Li+1 in the same bound. Similarly, some of the intervals in multislab
lists Mi+1,j need to be moved to new multislab lists corresponding to multislabs with
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b as left boundary instead of bi+1. We can easily move the relevant intervals (and
thus construct the new multislab lists) in O(w(v)/B) I/Os using a scan through the
relevant multislab lists, similarly to the way we moved intervals from the left slab list
of bi+1 to the left slab list of b. (Note that intervals in the underflow structure do not
need to be moved.) If any of the new multislab lists contain fewer than B/2 intervals,
we instead insert the intervals into the underflow structure U . We can easily do so
in O(B) = O(w(v)/

√
B) I/Os by rebuilding U . Finally, to complete the split process

we update the index blocks of parent(v).
To summarize, we can split a node v in O(w(v)/

√
B) I/Os, and since O(w(v))

endpoints must have been inserted below v since it was constructed (Theorem 3.8),
the amortized cost of a split is O(1/

√
B) I/Os. Since O(logB N) nodes split during

an insertion, we obtain the following.
Lemma 3.9. Assuming M ≥ B2, there exists a data structure using O(N/B) disk

blocks to store N intervals such that stabbing queries can be answered in O(logB N +
T/B) I/Os in the worst case and such that an interval can be inserted in O(logB N)
I/Os amortized.

As mentioned in section 3.1, deletions can be handled using global rebuilding [36].
To delete an interval s we first delete it from the secondary structures as described
in section 2 without deleting the endpoints of s from the base tree T . Instead we
just mark the two endpoints in the leaves of the base tree as deleted. This does not
increase the number of I/Os needed to perform a later update or query operation, but
it does not decrease it either. After N/2 deletions have been performed we rebuild
the structure in O(N logB N) I/Os, leading to an O(logB N) amortized delete I/O
bound: first we scan through the leaves of the old base tree and construct a sorted
list of the undeleted endpoints. This list is then used to construct the new base tree.
All of this can be done in O(N/B) I/Os. Finally, we insert the O(N) intervals one by
one without rebalancing the base tree, using O(N) ·O(logB N) I/Os.

Theorem 3.10. Assuming M ≥ B2, there exists an external interval tree using
O(N/B) disk blocks to store N intervals such that stabbing queries can be answered
in O(logB N + T/B) I/Os in the worst case and such that updates can be performed
in O(logB N) I/Os amortized.

4. Removing amortization. In this section, we discuss how to make the up-
date bound of Theorem 3.10 worst-case. Amortized bounds appeared in several places
in our structure; in the fixed endpoint version of our structure, amortization was in-
troduced as a result of the amortized O(1) update bound of the underflow structure
(Lemma 2.3), as well as when moving intervals between the underflow and multislab
lists. In the dynamic base tree version, amortization was introduced in the amortized
node split bound (insertions) as well as in the use of global rebuilding (deletions).

In sections 4.1 and 4.2, we show how to remove amortization from the node split
and underflow (corner structure) update bounds, respectively. In section 4.2, we
also show how to remove the M ≥ B2 assumption from the corner structure and
thus from our external interval tree. The remaining amortization can be removed
using standard lazy global rebuilding techniques [36]. We make the global rebuilding
(deletion) bound worst-case as follows: instead of using O(N logB N) I/Os to rebuild
the entire structure when the number of endpoints fall below N/2, we distribute the
rebuilding over the next 1/3 · N/2 updates using O(logB N) I/Os on rebuilding at
each update. We use and update the original structure while constructing the new
structure. When the new structure is completed the 1/3 ·N/2 updates that occurred
after the rebuilding started still need to be performed in the new structure. We
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perform these updates during the next 1/3 · (1/3 · N/2) operations. This process
continues until both structures store the same set of intervals (with at least (1 −
(1/3+ 1/9+ · · ·))N/2 ≥ 1/2 ·N/2 endpoints). Then we dismiss the old structure and
use the new one instead. Since the rebuilding is finished before the structure contains
only N/4 endpoints, we are in the process of constructing at most one new structure
at any given time. The amortization introduced when moving intervals between the
underflow structure and multislab lists can be removed in a similar way: recall that
we moved B intervals using O(B) I/Os when the underflow structure contained B
intervals belonging to the same multislab list Mi,j and when the number of intervals in
a multislab list fell below B/2. We remove this amortization by moving the intervals
over B/4 updates. If the size of a multislab list Mi,j falls to B/2, we move two
intervals from Mi,j to the underflow structure over each of the next B/4 insertions or
deletions involving Mi,j . Insertions themselves are also performed on the underflow
structure, and deletions are performed on the underflow structure or Mi,j . When all
intervals are moved there are between 1

4B and 3
4B intervals belonging to Mi,j stored

in U . Similarly, if the number of intervals in the underflow structure belonging to
Mi,j reaches B, we move the B intervals during the next B/4 updates involving Mi,j .
Even though this way Mi,j can contain o(B) intervals, the optimal space and query
bounds are maintained since Mi,j and U together contain Θ(B) intervals during the
process. This proves our main result.

Theorem 4.1. There exists an external interval tree using O(N/B) disk blocks
to store N intervals such that stabbing queries can be answered in O(logB N + T/B)
I/Os in the worst case and such that updates can be performed in O(logB N) I/Os in
the worst case.

4.1. Splitting nodes lazily. Recall that when a node v splits along a boundary
b the intervals in v containing b need to be moved to parent(v), and some of the
intervals in parent(v) containing b need to move internally in parent(v) (Figure 3.2).
In section 3, we showed how to move the intervals in O(w(v)/

√
B) I/Os, and since

O(w(v)) updates have to be performed below v between splits (Theorem 3.8) we
obtained an O(1/

√
B) amortized split bound. When performing an update in a leaf

l it affects the weight of O(logB N) nodes on the path from the root to l. These
nodes are all accessed in the search for l performed before the actual insertion. In this
section we show how to split a node v (move the relevant intervals) lazily using O(1)
I/Os during the next O(w(v)) updates accessing v while still being able to query the
secondary structures of v efficiently. This way we are done splitting v before a new
split is needed, and we obtain an O(1) worst-case split bound.

Our lazy node splitting algorithm works as follows. When v needs to be split
along a boundary b, in O(1) I/Os we first insert b as a partial slab boundary into
parent(v). The boundary remains partial until we have finished the split. In order
to keep different split processes from interfering with each other, we want to avoid
splitting nodes along partial boundaries. Since v, or rather the nodes it splits into,
cannot split again as long as b is partial, at most every second boundary in parent(v)
can be partial. As discussed in section 3.1 (footnote 3), this means that we can
always split a node along a nonpartial boundary without violating the constraints
on the base weight-balanced B-tree T . Next we move the relevant intervals in two
phases: in an up phase, we first construct the new secondary structures for v′ and
v′′ as before, by removing the intervals in secondary structures of v containing b
and collecting them in two sorted lists Ll and Lr. Below we show how to do so
lazily using O(1) I/Os over O(w(v)/

√
B) updates accessing v so that we can still
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query and update the “old” secondary structures of v. During this phase we can
therefore perform queries as before, simply by ignoring the partial slab boundary b
in parent(v). Next, in the rearrange phase, in O(1) I/Os, we split v into v′ and v′′

by switching to the new structures and splitting the index blocks. We also associate
the lists Ll and Lr with the partial boundary b in parent(v). Then we move the
relevant intervals in parent(v) containing b by constructing new updated versions of
all secondary structures containing intervals with endpoints in Xv. Below we discuss
how to do so lazily over O(w(v)/

√
B) updates accessing v (v′ and v′′) so that the

“old” structures can still be queried and updated. In order to answer queries between
bi and bi+1 in parent(v) correctly during the rearrange phase, we first perform a query
as before while ignoring the partial slab boundary b. To report the relevant intervals
among the intervals we have removed from v and inserted into Ll and Lr, we then
query the relevant one of the two slab lists. Since this adds only O(1) I/Os to the
query procedure in parent(v), the optimal query bound is maintained. At the end of
the rearrange phase, we finish the split of v in O(1) I/Os by switching to the new
structures and marking b as a normal slab boundary.

All that remains is to describe how to perform the up and rearrange phases. Each
of these phases can be performed lazily using O(1) I/Os during each of O(w(v)/

√
B)

updates accessing v. However, our algorithms will assume that only one up or rear-
range phase is in progress on a node v at any given time, which means that when
we want to perform a phase on v we might need to wait until we have finished an-
other phase. In fact, other phases may also be waiting, and we may need to wait
until v has been accessed enough times for us to finish all of them. Luckily, since
an up and rearrange phase requires only O(w(v)/

√
B) accesses to finish, and since

we need only to finish our phase in O(w(v)) accesses, we can afford to wait for
quite a while. Before an up phase can be performed on v we at most have to fin-
ish O(

√
B) rearrange phases (one for each partial slab boundary), each requiring

O((w(v)/
√
B)/
√
B) = O(w(v)/B) accesses, for a total of O(w(v)/

√
B) accesses. Af-

ter finishing the up phase on v we might need to finish O(
√
B) other rearrange phases

and one up phase on parent(v) before performing the rearrange phase. These phases
require at most O(

√
B) · O(w(v)/

√
B) + O((w(v) · √B)/

√
B) = O(w(v)) accesses.

Thus in total we finish the split of v in the allowed O(w(v)) accesses. Note that
the waiting can be implemented simply by associating a single block with v storing
a queue with information about the O(

√
B) phases waiting at v. When we want to

perform a phase on v we simply insert it in the queue, and each time v is accessed
O(1) I/Os are performed on the phase in the front of the queue. When v has been
accessed enough times to finish one phase we start the next phase in the queue. Note
also that while we are waiting to perform a phase on a node v, or even while we are
performing the phase, new partial slab boundaries may be inserted in v, and new slab
lists may be inserted for such boundaries (due to splits of children of v). However, this
does not interfere with the up or rearrange phase, since we do not split along partial
boundaries and since the intervals in the two new slab lists for a partial boundary
contain only the partial boundary.

After having described how to guarantee that we are working on only one up or
rearrange phase in a node v at any given time, we can now describe how to perform
such a phase lazily over O(w(v)/

√
B) accesses. We do so basically using lazy global

rebuilding: during normal updates we maintain a copy of each secondary structure—
called a shadow structure. Maintaining such shadow structures along with the original
structures does not change the asymptotic space, update, or query bounds of the
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interval tree. When we start an up or rearrange phase on v, we first “freeze” the
shadow structures of v; that is, instead of performing updates on them we just store
updates as they arrive. Then we perform the necessary movement of intervals on
the shadow structures as described in section 3. It is easy to realize how we can
perform these movements over the next O(w(v)/

√
B) updates accessing v such that

O(1) I/Os are used at each access. The only slight complication is that we need to
make sure that updates performed in v during the process (that is, updates that were
stored at v and still need to be performed on the shadow structures) are performed
after we have moved the relevant intervals. To do so within the O(w(v)/

√
B) bound,

we actually perform Θ(logB N) instead of only O(1) I/Os on the shadow structure
movement process every time an update is performed in v. This does not change
the overall O(logB N) update I/O bound, since an update (insertion or deletion of
an interval) takes place only in one node of T (or, equivalently, since we are already
using O(logB N) I/Os to perform the update on the original secondary structures of
v). After finishing the interval movement, we then perform the stored updates lazily
using O(1) I/Os each time v is accessed. Since we performed Θ(logB N) I/Os on the
shadow structures each time an update was stored at v, we are guaranteed that we
will finish performing the updates within O(w(v)/

√
B) accesses to v. Finally, after

moving intervals and performing updates, we (lazily) make a copy (shadow) of the new
shadow structures in the same I/O bound. We handle updates performed during this
copying in the same way we handled updates during global rebuilding of the external
interval tree (to remove delete amortization). We finish the phase by discarding the
old secondary structures and instead use the updated shadow structures (along with
their shadow) as the secondary structures.

4.2. Removing amortization from the corner structure. In this section
we sketch the “corner structure” of Kannelakis et al. [30] (Lemma 2.3) and discuss
how its O(1) amortized update bound can be made worst-case. At the same time we
remove the assumption that M ≥ B2.

c0

c1

c2

B points

��
��
��
��

��
c∗
1

c∗
j

c∗
j

ci

Ωi ∆
−1
i

∆
+
i

∆
−2
i

(a) (b) (c)

Fig. 4.1. (a) Vertical regions. (b) The set C∗ (the marked points). The dark lines represent the
boundaries of queries whose corners are points in C∗. One (horizontally blocked) query is shaded.
(c) The sets Ωi, ∆

−1
i , ∆−2i , and ∆+

i . c∗j is the last point that was added to C∗, and ci is being

considered for inclusion in C∗.

The corner structure is designed to store a set S of K ≤ B2 points in the plane
above the x = y line such that diagonal corner queries can be answered in O(1+T/B)
I/Os [30]. As discussed in the introduction, this problem is equivalent to the stabbing
query problem. The structure is defined as follows: First S is divided into 
K/B�
vertical regions containing B points each. Refer to Figure 4.1(a). The points in these
regions are stored in 
K/B� blocks. Let C be the set of points at which the right
boundaries of the 
K/B� regions intersect the y = x line. An iterative procedure is
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used to choose a subset C∗ of these points, and one or more horizontally oriented
blocks are used to explicitly store the answer to each query with a corner c∗ ∈ C∗.
Refer to Figure 4.1(b). First the highest point c∗1 ∈ C is included in C∗. Then each
point in C is considered in turn along the x = y line. Let c∗j be the point of C most
recently added to C∗; initially, this is c∗1. When considering ci ∈ C, the sets Ωi ⊂ S,
∆−1
i ⊂ S, ∆−2

i ⊂ S, and ∆+
i ⊂ S are defined as shown in Figure 4.1(c). The set

S∗j = Ωi ∪∆−1
i is the answer to a query whose corner is c∗j , and Si = Ωi ∪∆+

i is the

answer to a query whose corner is ci. Let ∆−i = ∆−1
i ∪ ∆−2

i . The point ci is then
added to C∗ if and only if

|∆−i |+ |∆+
i | > |Si|.

In [30] it is shown that the total number of blocks used to store the sets S∗i is O(K/B).
The corner structure consists of these blocks, as well as O(1) blocks storing the sets
C and C∗. In [30] it is also shown how a diagonal corner query can be answered in
O(1 + T/B) I/Os using this representation.

The corner structure can easily be constructed in O(K/B) I/Os when M ≥ B2

(since in this case it fits in main memory). As discussed, the structure can therefore
easily be made dynamic with an O(1) amortized update bound using an update block
and global rebuilding [30]. In the following we show how to construct the structure
in O(K/B) I/Os incrementally over O(K/B) updates such that no more than O(1)
blocks are loaded into main memory at any time. This immediately removes the
M ≥ B2 assumption. Using this result and lazy global rebuilding, the O(1) amortized
update bound can then be made worst-case: once B/2 updates have been collected
in the update block, the structure is rebuilt during the next B/2 updates using O(1)
I/Os at each update.

We first discuss how to construct a corner structure on K points in O(K/B) I/Os
using O(1) blocks of main memory. After that we discuss how the construction can be
performed lazily. We assume that the K points are given in two lists sorted according
to x- and y-coordinates, respectively. We can easily store two such lists along with the
corner structure itself using O(K/B) space. At the start of a rebuilding process, we
first merge the O(B) points in the update block into these two lists in O(K/B) I/Os
using O(1) blocks of main memory. Then we construct the corner structure in three
steps: first we compute the vertical blocking, that is, the set C. Then we compute
C∗. Finally, we construct the horizontal blocking corresponding to each of the points
in C∗.

c0

c1

c2

ac1

Fig. 4.2. Definition of aci .

The vertical blocking is simply the list sorted according to x-coordinates. We
can easily make a copy of this list and thus compute the set C in O(K/B) I/Os
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c∗j

ci

∆−2
i

aci+1

Bm

BtΩi

ci+1

∆+
i

∆−1
i

Bb

|∆−1i+1| = |∆−1i |+ |Bt|
|∆−2i+1| = |∆−2i |+ |Bm|+ |Bb|
|Ωi+1| = |Ωi| − |Bt|
|∆+
i+1| = |∆+

i | − |Bm|+ (aci+1 − |Bb|)

Fig. 4.3. Definition of Bt, Bm, and bb and computation of C∗.

using O(1) blocks of memory. Let ci ∈ C be the ith point in the sorted sequence of
points on the x = y line. To aid the computation of C∗ we first compute for each
ci ∈ C a number aci . We define aci to be the number of points with y-coordinates
between the y-coordinates of ci and ci+1. Refer to Figure 4.2. We compute all acis
in O(K/B) I/Os using O(1) blocks of main memory in a single scan of the list of
points sorted by y-coordinates. We then compute C∗ as previously by proceeding
along the x = y line and including ci ∈ C in C∗ if |∆−i | + |∆+

i | > |Si|. Since the
number of points in C is O(K/B), our goal is to decide if ci should be included in
O(1) I/Os. We can do so if we can compute |Ωi+1|, |∆+

i+1|, |∆−1
i+1|, and |∆−2

i+1| in
O(1) I/Os, given |Ωi|, |∆+

i |, |∆−1
i |, |∆−2

i |, c∗j , ci, ci+1, and ai+1. (These values/points
can all be loaded into main memory in O(1) I/Os.) Figure 4.3 illustrates how we can
compute |Ωi+1|, |∆+

i+1|, |∆−1
i+1|, and |∆−2

i+1| once Bt, Bm, and Bb have been computed.
We compute these three sets, containing a total of B points, in O(1) I/Os, simply
by loading the relevant vertical block. Thus overall we can compute C∗ in O(K/B)
I/Os.

To compute and horizontally block the points in the answer S∗j to a query at
each of the points c∗j ∈ S∗, we again proceed along the x = y line considering each
point c∗i ∈ C∗ in turn. Assume we have already blocked S∗j and that we know the
position p of the last (lowest y-coordinate) point in S∗j in the list of points sorted by
y-coordinates. Initially, S∗j is empty, and p is the first point in the list of points sorted
by y-coordinates. To block S∗j+1, we scan through the horizontal blocking of S∗j ,
collecting the points with x-coordinate smaller than the x-coordinate of c∗j+1. This
way we obtain the points in S∗j+1 above the y-coordinate of s∗j horizontally blocked
(sorted by y-coordinates). Then we collect the remaining points in S∗j+1 horizontally
blocked by scanning through the list of points sorted by y-coordinates, starting at p.
Altogether we use O(|S∗j |/B+ |S∗j+1|/B) I/Os to compute the blocking of S∗j+1. Thus
we use O(2

∑
j∈1..|S∗| |S∗j /B|) I/Os to compute the blocking corresponding to all the

points in C∗. This is O(K/B) since the structure uses linear space.
We have shown how to construct the corner structure in O(K/B) I/Os using O(1)

blocks of main memory. We can easily modify the algorithm to work in an incremental
way, that is, to run in O(K/B) steps of O(1) I/Os without using any main memory
between two steps: throughout the algorithm we can represent the current state of
the algorithm by a constant number of pointers and values. We can therefore perform
one step by loading the current state into main memory using O(1) I/Os, performing
the step using O(1) I/Os, and finally using O(1) I/Os to write the new state back to
disk. In total we have proved the following.
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Lemma 4.2. A set of K ≤ B2 intervals can be stored in an external data structure
using O(K/B) disk blocks such that a stabbing query can be answered in O(T/B + 1)
I/Os and such that updates can be performed in O(1) I/Os. The structure can be
constructed in O(K/B) I/Os.

5. External segment tree. In this section we sketch how the ideas used in
the external interval tree can also be used to develop an external segment tree-like
structure with a better space bound than previously known for such structures [15, 39].
Like an interval tree, a segment tree solves the stabbing query problem. Unlike the
interval tree, however, it uses superlinear space. It is often used as base tree structure
in multidimensional structures (refer, e.g., to [10, 3]).

Structure. In internal memory, as in the case of the interval tree, a segment
tree consists of a binary base tree with intervals stored in secondary structures of
internal nodes. Unlike for the interval tree, an interval can be stored in the secondary
structures of up to two nodes on each level of the base tree. More precisely, an interval
s is stored in all nodes v such that s contains the interval associated with at least one
of v’s children but not the interval Xv associated with v. As in the interval tree case,
we externalize the structure by using a weight-balanced B-tree (Theorem 3.8) as the
base tree. As previously, an internal node v defines Θ(

√
B) slabs and Θ(B) multislabs,

and Θ(B) secondary structures are associated with v. An interval s is stored only in
the secondary structures of v if it spans one of v’s slabs but not the whole interval Xv.
Thus, unlike in the external interval tree, where s is stored only in the highest node
for which it contains a slab boundary, s can be stored in O(logB N) nodes—refer to
Figure 5.1(a). As in the interval tree, s is stored in a multislab list corresponding to
the largest multislab it spans, and as before intervals from multislab lists containing
o(B) intervals are stored in an underflow structure. Note how an external segment
tree corresponds to an external interval tree, where parts of an interval not completely
spanning a slab in a node v are stored recursively instead of in a slab list. Multislab
lists are implemented as simple (unordered) lists, and with each interval s we store
pointers to the copies of s in the nearest ancestor and descendent of v storing copies
of s. These pointers are not directly maintained for intervals in underflow structures.
Instead we keep a separate lists of intervals in the underflow structure of each node v,
and pointers are maintained for these intervals. This allows us to rebuild an underflow
structure containing K intervals in O(K/B) I/Os and thus maintain the O(1) update
bound of the underflow structure (Lemma 4.2); maintaining pointers would have
required O(K) I/Os. Finally, we maintain an auxiliary B-tree containing all intervals
in the structure, ordered according to right endpoint, such that given an interval s we
can obtain a pointer to the copy of s stored in the topmost node storing s. This B-tree
uses linear space, and since the secondary structures of a node also use linear space
the external segment tree uses O((N/B) logB N) disk blocks to store N intervals.

Query. We answer a stabbing query q on an external segment tree in O(logB N +
T/B) I/Os, simply by searching down the base tree for q and in each node querying
the underflow structure and reporting all intervals in lists corresponding to multislabs
containing q.

Updates. To insert an interval s into an external segment tree we first insert the
endpoints of s in the base tree and rebalance the tree by splitting nodes. Below we
show how a node v can be split in O(w(v)) I/O such that an endpoint is inserted in
O(logB N) I/Os amortized. Then we perform the actual insertion of s by traversing
two paths in the base tree, inserting s in the relevant multislab lists. As the multislab
lists are unsorted, we can insert s in a list in O(1) I/O while at the same time
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v

v1 v2 v3 v4 v5

Xv

Xv2
Xv3

Xv4
Xv5

s

Xv1

b1 b2 b3 b4 b5 b6

b blb1

s

V

(a) (b)

Fig. 5.1. (a) Node v in the base tree. The interval s is stored in v as well as (recursively) in
v1 and v4. (b) Splitting a segment tree node.

storing the relevant pointers to other copies of s. We handle the cases involving the
underflow structure in O(1) I/Os precisely as in the external interval tree case. In
total we can perform an insertion in O(logB N) I/Os. We delete an interval s from
an external segment tree in O(logB N) I/Os simply by locating s in the auxiliary B-
tree—obtaining a pointer to the topmost of the O(logB N) occurrences of s—deleting
s from the B-tree, and then using the pointers between copies of s to find and remove
all occurrences of s in O(logB N) I/Os; note that even though in a node where s is
stored in the underflow structure we obtain a pointer to the separate list of intervals,
we can still delete s from the underflow structure in O(1) I/Os. As in the interval
tree case, we remove the endpoints of s from the base tree in O(logB N) I/Os using
global rebuilding.

All that remains is to describe how to efficiently split a node v along a slab
boundary b. When v splits into v′ and v′′, all intervals in multislabs containing b
need to be moved. These intervals fall into two categories: intervals that contain the
leftmost or rightmost slab boundaries b1 and bl of v and those that do not. Refer to
Figure 5.1(b). Intervals not containing b1 or bl (but containing b) need to be stored
in multislab lists of both v′ and v′′. Thus to move these intervals we simply need
to make a copy of the relevant lists for both v′ and v′′. We also need to update the
relevant pointers between intervals. We can easily do so in O(w(v)) I/Os. Intervals
that contain b1 or bl (and b) need to be inserted in v′ or v′′, as well as moved within
parent(v). Consider, for example, intervals containing b and bl (e.g., interval s in
Figure 5.1(b). Such intervals need to be inserted in multislab lists for v′, as well as
either inserted into parent(v) or moved within parent(v): if one of these intervals s is
already stored in parent(v) we use the pointer stored with s in v to locate and delete
s in parent(v), and then we insert s in the relevant new multislab list. Since each
interval can be moved in O(1) I/Os, and since all moved intervals have an endpoint
in Xv, we use O(w(v)) I/Os in total to split a node v. Finally, as in the interval
tree case, we can perform the split over O(w(v)) updates accessing v and thus obtain
worst-case bounds.

Theorem 5.1. There exists an external segment tree using O((N/B) logB N) disk
blocks to store N intervals such that stabbing queries can be answered in O(logB N +
T/B) I/Os and such that updates can be performed in O(logB N) I/Os.
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Abstract. We give an O(
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logn) factor approximation algorithm for covering a rectilinear
polygon with holes using axis-parallel rectangles. This is the first polynomial time approximation
algorithm for this problem with an o(logn) approximation factor.
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1. Introduction. We consider the problem of covering rectilinear polygons with
axis-parallel rectangles. Given a rectilinear polygon P with complexity n (complexity
refers to the minimum of the number of vertical edges and the number of horizontal
edges in the polygon), this problem requires determining the minimum number of
axis-parallel rectangles whose union covers P . The polygon P may have holes in it.

Applications. Cheng, Iyengar, and Kashyap [5] showed that this problem has
applications to image compression. They claim that representing an image using a
rectangle covering of its white pixels gives compression superior to that achieved by
quadtrees. It also has applications to printing integrated circuits [9].

Hardness. Much effort has gone into determining the computational complexity
of this problem. In spite of this, the exact complexity of this problem has remained
open for many years and continues to do so. Masek [19] showed that this problem is
NP-complete. Later, Culberson and Reckhow [6] used a clever reduction from 3-SAT
to show that this is the case even when P has no holes. The next natural question is
whether the number of rectangles needed to cover P can be computed approximately.
Berman and Dasgupta [2] showed that this problem is MaxSNP-Hard for polygons
with holes, ruling out the possibility of a polynomial time approximation scheme.

Approximation results. Note that the rectangle covering problem is a special case
of the general set covering problem. Therefore, it admits an approximation algorithm
with a performance guarantee of O(log n), using the greedy scheme due to Johnson
[10] and Lovasz [16]. This was the best approximation factor known for the rectangle
covering problem until now. Further, it is known that the general set covering problem
cannot be approximated any better, modulo constant terms, unless NP = P [17, 18].
However, this proof of hardness assumes certain properties about the set system which
do not hold for the rectangle covering problem. In this paper, we address the issue of
whether the Ω(log n) approximation factor barrier can be broken in polynomial time
for the rectangle covering problem.

There seem to be only a few examples of nontrivial algorithms breaking this
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barrier for specific instances of the set covering problem. Brönnimann and Goodrich
[3] showed that the covering problem for any set system with Vapnik–Chervonenkis
dimension d can be approximated within an O(d log(dc)) factor, where c is the cost of
the optimal covering. For the rectangle covering problem, while d is a constant, c can
be shown to be Ω(

√
n); therefore, the Brönnimann–Goodrich algorithm gives only an

O(log n) approximation factor. Brönnimann and Goodrich [3] also showed that O(c)
sized set covers can be computed for two-dimensional disc covering and a problem
related to three-dimensional polytope separation as these set systems admit ε-nets of
small size. It is not clear whether the rectangle covering problem admits ε-nets of
small size.

Special situations. There are special situations when the above barrier can indeed
be broken. When P is hole-free, Franzblau [7] showed a factor 2 approximation
guarantee. When P has holes, Franzblau also gave an O(n log n) time heuristic which
gives an O(log n) approximation factor. When P is both vertically and horizontally
convex (i.e., the intersection of any vertical or horizontal line and P is just a single
line segment), Chaiken et al. [4] gave a polynomial time algorithm which computed
the minimum number of rectangles required, exactly. This was improved upon by
Franzblau and Kleitman [8], who achieved the same result under the weaker restriction
that P is just vertically convex. Note that both restrictions preclude the presence of
holes.

Other papers which have dealt with this problem are [9, 11, 12, 13, 5].
Our result. We give the first algorithm to break the Ω(logn) barrier even when

P has holes. Our algorithm gives an approximation guarantee of O(
√
log n).

Our algorithm is in fact trivial, and our contribution lies entirely in showing a
lower bound. For simplicity, assume that all holes in P are point holes.1 Then our
algorithm simply puts one rectangle for each strip, i.e., a stretch of points between two
vertically aligned holes (e.g., strip s and its associated rectangle R in Figure 1; this is
defined formally in section 2). This rectangle covers the strip entirely and is made as
thick as possible. It is easy to see that the rectangles for all strips together cover P
(the boundary of P must be treated as being lined by point holes for this). Also note
that the rectangles for two distinct strips could be identical (e.g., strips B and D in
Figure 2). We show that the total number of distinct rectangles #N obtained in the
above process is O(

√
log n ∗ |OPT |)), where OPT is the minimum cover.

The lower bound. The main hurdle in breaking the Ω(logn) barrier is to obtain
a good lower bound for the optimum. One such lower bound is the cardinality of the
largest independent set or antirectangle, i.e., a set of points in P , no two of which can
be covered by the same rectangle. Chvatal (as reported in [4]) originally conjectured
that the size of the minimum covering equals the size of the largest independent
set. While this is indeed true for vertically and horizontally convex P , as shown by
Chaiken et al. [4], it is not true for general P , with or without holes. Szemeredi found
a counterexample with holes, and Chung found one without holes (both reported in
[4]). Erdos (as reported in [4]) asked whether the ratio of the sizes of the minimum
covering and the largest independent sets is bounded. It is easy to show that this
ratio is O(log n). However, to the best of our knowledge, the best lower bound on this
ratio known to date is just 21/17− ε, due to [4].

Instead of using the above independent set bound, we use the clique covering
lower bound. Consider the finite set of all points in P after suitable discretization.

1The case when the holes are arbitrary can effectively be reduced to the case of point holes, as
we will show later in this paper.
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Consider the graph G with these points as vertices and an edge between two points if
and only if they are both covered by some rectangle. It is easy to see that |OPT | is
exactly the size of the smallest clique cover of this graph (i.e., a collection of cliques
that covers all vertices). We shall lower bound the clique cover number by obtaining
an upper bound on the sizes of cliques in OPT .

One problem we face in the process is that the cliques of G could be very different
in size and therefore do not admit a uniform upper bound. However, we show that if
none of the strips are jumpers (we will define this term in section 3.2), then we can
choose Θ(#N) points such that the maximum clique size in the subgraph induced by
them is O(

√
log n), and therefore |OPT | = Ω(#N/√log n), as required. Our proof of

this fact is based on a somewhat detailed exploration of the structure of cliques in G.

There is a correspondence between the points that are chosen in the above induced
subgraph and the set of strips. We choose two points for each strip, one to its left and
one to its right, after partitioning the strips into disjoint sets called families (defined
later); this ensures that the induced subgraph has Θ(#N) points. As mentioned
earlier, if there are no jumpers, we show that the maximum clique size is O(

√
log n)

(this is not strictly true; we show that a further subset of this set of points has this
property). Also, the number of jumpers turns out to be at most (|OPT |√log n),
so we can ignore such strips and argue about the points defined by the rest. The
above description is very incomplete and will be developed formally in the remaining
sections.

A significant point to note is that while we show a lower bound on the clique
covering number of graph G in the absence of jumpers, we are unable to show a good
lower bound on the size of the largest independent set. We can show that the number
of families is a lower bound on the size of the largest independent set; however, the
average family size can be as large as Ω(log n), as we shall show later.

Roadmap. In section 2, we show how to discretize the polygon and then describe
our algorithm for laying rectangles. For simplicity and clarity, we first explain the
arguments in section 3 under some restrictive assumptions. The general case requires
a refinement of these ideas and is handled in section 4. Section 5 describes an example
where the average family size is large. Section 6 mentions the loose threads which
remain in this problem and also describes some related problems.

2. Preliminaries. Consider the grid formed by drawing infinitely long lines
through each vertical and horizontal edge of the polygon (i.e., both the polygon
boundary and the hole boundaries) (see Figure 1). Note that this need not be a
uniform grid; the spacing between adjacent grid lines is not necessarily the same.
Let n denote the vertical complexity of P , i.e., the number of horizontal grid lines.
Without loss of generality, we assume that the vertical complexity is at most as large
as the horizontal complexity.

Viewing the entire plane as partitioned into grid cells, the term hole shall hence-
forth denote any grid cell which is in the exterior of the polygon (i.e., either outside
the outer boundary or within one of the holes). Since any grid cell lies either com-
pletely in the interior of the polygon or completely in the exterior of the polygon (see
Figure 1), the above term is well defined.

Note that any two holes are either perfectly aligned or completely misaligned with
respect to the grid lines. Also note that two holes could lie side by side, touching each
other (e.g., holes A,B in Figure 1). If we treat each grid cell as a point, we get the
case of point holes. However, the rest of the description will be in terms of cells.
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A

B

u

C1

C2

l

R

Fig. 1. The grid: Dark cells and external cells are holes. C1, C2 form a strip s of length 2. R
is the rectangle associated with s, and u and l are its upper and lower holes, respectively.

2.1. Defining strips and laying rectangles. A sequence of consecutive ver-
tically aligned nonhole cells bounded by holes on the top and the bottom constitutes
a strip (see Figure 1). The length of a strip A is the number of cells in it and is
denoted by l(A). The upper hole for a strip is the hole which lies immediately above
the topmost cell for that strip. The lower hole is similarly defined.

For each strip, we define its associated rectangle to be the unique rectangle that
covers this strip and extends as far as possible to the left and to the right. In other
words, the associated rectangle is obtained by sweeping the strip to the left and right
until it is blocked by some holes on both sides (see Figure 1). The algorithm simply
adds the associated rectangle of every strip to the overall cover. Lemma 2.1 shows that
these rectangles indeed cover the given polygon. The rest of the paper proves that
this naive way of covering is at most an O(

√
log n) factor larger than the optimum.

The hole which blocks the associated rectangle of a strip S on the right is called
the right blocking hole of S, with ties broken in favor of the topmost hole. Left blocking
holes are defined similarly.

Lemma 2.1. Each point in the polygon is contained in the associated rectangle of
some strip.

Proof. Each nonhole grid cell, c, belongs to a unique strip. This is because if the
cell c is swept vertically up and down, it would hit a hole in both directions. The
rectangle associated with this strip contains c.

Note that two strips could have identical associated rectangles (e.g., strips B,D in
Figure 2). Consider equivalence classes of strips, where strips with the same associated
rectangle are in one class. All but the rightmost of the strips in an equivalence class
are called unnecessary strips. Clearly, an unnecessary strip can be ignored. It suffices
to account for the rectangles associated with necessary strips.

2.2. Spanning, nestedness, and disjointness. A rectangle associated with
strip A is said to pass through strip B if some but not all of the cells in strip B are
contained in this rectangle (see Figure 2). In this situation, B is said to l-span A if it
is to the left of A and r-span A if it is to the right of A. Note the strict condition in
the above definition; i.e., the length of B must be strictly greater than that of A.
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A BD C

R1

R2
R3

E

F

h

Fig. 2. A family: Strips A,B,C are in one right family and have the common blocking hole h.
D is unnecessary and has the same associated rectangle as B. B r-spans A. Strips E and F are
disjoint.

A

B

C

A′ C′
witnesses of A,B,C
rectangle containing left

are in one left clique
A,B,C

: successors ofA′, B′, C′ A,B,C

B′

Fig. 3. A left clique. B l-spans A, and C l-spans B.

A collection of strips is called right nested if the strips increase in length from left
to right and each strip r-spans all smaller strips. Left nesting is defined analogously.
The strips A, B, and C in Figure 3 are left nested.

Two strips A,B are said to be disjoint if one of the following conditions holds:
(i) the lower hole of A is horizontally aligned with or higher than the upper hole of
B, or (ii) the upper hole of A is horizontally aligned with or below the lower hole of
B (see Figure 2).

2.3. Successors, terminals, and witness cells. We bound the approximation
factor of our algorithm by first identifying a subset of the nonhole cells and then
showing lower bounds on the number of rectangles needed to cover these cells. The
nonhole cells we identify are called witness cells. There are two kinds of witness cells,
left witness cells and right witness cells. To define witness cells, we need the notion
of successor strips.

We will formally define successor strips in section 3.1. Here, we introduce some
properties of successors. The right successor strip for a strip A r-spans A, and the
left successor for a strip A l-spans A. Not each necessary strip has a right successor;
those strips which do not have right successors are called right terminal strips. Left
terminal strips are defined analogously.

Given successors and terminals, witnesses are defined as follows. For each right
terminal strip A, its right witness cell is the cell in A which is horizontally aligned
with its right blocking hole (see Figure 4). For each right nonterminal strip A, its
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right witness for

terminal C

right blocking hole of C

right witness for
A

Successor of A

A

Fig. 4. Right witnesses for nonterminal strip A and terminal strip C.

right witness is the cell in its right successor strip which is horizontally aligned with
A’s upper hole (see Figure 4). The left witness is defined in a similar manner.

Note that right witnesses for right nonterminal strips A are not well defined if the
upper hole of the right successor of A is aligned with the upper hole of A. An analogous
fact holds for left witnesses of left nonterminal strips. This is clearly a problem
because the above process may not define sufficiently many witness cells to obtain a
good enough lower bound on the size of the optimum. We solve this problem by first
identifying a constant fraction of the necessary strips with the following property:
each such strip has a well-defined left witness. The remaining necessary strips are
called discarded strips, and they play no role in the proof.

The precise definition of successor strips and the description of which strips are
discarded appear in subsequent sections. We set up some more preliminaries in this
section.

2.4. Cliques and the optimum cover. The optimum cover, denoted by OPT ,
must cover all the witness cells defined above. Consider a graph G whose vertices
are the various witness cells defined above and whose edges denote that the two
associated cells can be covered together by a single rectangle. Note that each cell is
either completely inside or completely outside any maximal rectangle (one which has
holes touching all four sides). Two witness cells are said to be independent if no single
rectangle covers both of them; i.e., there is no edge between them in G. The following
lemma holds.

Lemma 2.2. All witness cells contained in any rectangle form a clique in G.
Conversely, any clique in G comprises witness cells which can be covered by just one
rectangle.

Proof. The first statement of the lemma follows from the definition of G.
We now show that any clique C in G can be covered by one rectangle. Let a, b, c, d

be the leftmost, topmost, rightmost, and bottommost witness cells in C, respectively.
Note that a, b, c, d need not be all distinct. We claim that the rectangle R having
a, b, c, d on its left, top, right, and bottom edges, respectively, is hole-free (see Figure
5). The claim then follows since a, b, c, d are extreme points.

To show that R is hole-free consider all edges between witness cells a, b, c, d. If
a, b, c, d are all distinct there will be six such edges, and fewer otherwise. There exist
up to six rectangles, each of which covers both witness cells for one of the above edges
(see Figure 5). Clearly, R is contained in the union of these rectangles.

We partition the witness cells into O(|OPT |) cliques, where |OPT | denotes the
number of rectangles used by OPT , in the following manner. For each witness cell,
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a

b

c

d

Fig. 5. The rectangle R formed by a, b, c, d and the six possible rectangles formed by each pair
of witness cells, which together cover R.

assign it to some rectangle covering it in OPT , breaking ties arbitrarily. From Lemma
2.2 above, this corresponds to a partition of witness cells into cliques. We partition
each clique further into two parts, one containing left witness cells and another con-
taining right witness cells; these parts are called the left clique and the right clique,
respectively.

Remark. We say that a strip is in a particular left clique (right clique, respectively)
if its left witness cell (right witness cell, respectively) is in that clique, and, by abuse
of notation, we will sometimes identify a strip with its witness cell.

To bound the approximation factor of our algorithm, we will show a lower bound
on the number of cliques obtained above. This lower bound will exploit several in-
teresting properties of these cliques. However, before we describe these properties,
we need to specify how successors are determined and how strips to be discarded are
identified. We start by describing the above for a simpler special case so as to bring
out the intuition behind our proof.

We again remind the reader that unnecessary strips are being ignored, and any
reference to a strip in the rest of the paper denotes a necessary strip.

3. The lower bound argument: A special case. We make the following
assumptions in this section and illustrate the main ideas of the proof of the lower
bound for this special case. We shall return to the general case in section 4.

Assumption 1. The length of each strip is a power of 2.

Assumption 2. The upper hole of a strip is not horizontally aligned with that
of its left or right successor strip. The notion of a successor strip was introduced in
section 2, and successors will be defined shortly.

Recall the preceding discussion on discarded strips in section 2. Assumption 2
precludes exactly those situations which forced us to introduce the notion of discarded
strips. It follows that there is no need to discard any strips. Thus, all necessary strips
will have associated left and right witnesses. Assumption 1 will make the definition
of successor strips a little easier.

3.1. Defining families and successors. We organize strips into families as
follows. Our proofs crucially exploit the interplay between cliques and families.

We define a right family to be a set of strips with the same right blocking hole
(Figure 2). It is easy to see that strips in a right family are right nested (the strict
increase in strip lengths from left to right is a consequence of the absence of unneces-
sary strips). The right successor of a strip A in a right family is defined as the next
strip A′ to the right in the family. The rightmost strip in the family does not have a
successor and is a right terminal strip. Left families, successors, and terminal strips



1516 V. S. ANIL KUMAR AND H. RAMESH

B

D

A

A′
B′

D′Rectangle R containing

the witness cells of

A,B,D

Fig. 6. A,B,D are in a right clique. A′, B′, D′ are their respective right successors. A is an
exception.

are defined analogously. It follows from Assumption 1 and the nestedness property
that the number of strips in a family is at most logn.

Remark. The notion of successor defined above will have to be changed when we
deal with the general case in section 4 in the following manner. We will define two
types of strips and use the above definition for strips of the first kind; strips of the
second kind will require a different definition, and the successor of such a strip A will
have length < 2l(A). However, it will continue to be the case that the right successor
of A r-spans A, and, similarly, the left successor of A l-spans A for all undiscarded
strips A. Note that Assumption 1 precludes the existence of strips of the second kind
above.

3.2. Properties of cliques. Our proof is based on some structural facts, which
we state in the following lemmas. In section 3.3, we will use these lemmas to obtain
the approximation factor. The proofs of these lemmas appear in section 3.4.

Lemma 3.1. All right (left, respectively) witness cells associated with right (left,
respectively) terminal strips are independent. Therefore, the number of families and
terminal strips is O(|OPT |).

All further references to strips in subsequent lemmas in this section will be to
nonterminal strips.

Lemma 3.2. Strips in a right (left, respectively) clique belong to distinct right
(left, respectively) families.

Lemma 3.3. With the exception of at most one strip, all strips in a right (left,
respectively) clique constitute a right (left, respectively) nested set of strips.

Thus, each clique of OPT has at most two exceptions, one in each direction. The
total number of exception strips is therefore O(|OPT |). These exception strips can
be removed from consideration. Figure 6 shows an example of an exception strip in a
right clique. All further references to cliques in this section will assume that exception
strips are not present.

Lemma 3.4. Strips in any right (left, respectively) clique are in distinct length
categories; i.e., if a particular strip has length in the range [2i, 2i+1), then the next
strip to the right (left, respectively) has length at least 2 2i+1.

2Strips in a clique will actually at least double in length by Assumption 1. However, we prefer
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In addition, for any x > 0, the number of strips in a right (left, respectively)
clique or a right (left, respectively) family whose length is at least 2x times the length
of one of the two previous strips to the left (right, respectively) is O( lognx ).

Lemma 3.5. Let A,B be strips in a particular right (left, respectively) clique,
with l(A) < l(B). Let A′, B′ be the right (left, respectively) successors of A,B, re-
spectively. These four strips must be in the following order from left to right (right to
left, respectively): A,B,B′, A′. In addition, A′ cannot r-span (l-span, respectively) B
and must have its upper hole above that of B.

Definitions. A strip A is called a right jumper if its right successor has length
at least 2∆l(A), where ∆ is a parameter. This parameter will be set to Θ(

√
log n) at

the end. Left jumpers are defined analogously. The vertical separation between two
holes a, b is the vertical distance between their lower boundaries, measured in terms
of the number of grid cells (see Figure 12).

Lemma 3.6. Let A,B be nonjumper strips in some right (left, respectively) clique,
with l(A) < l(B). The following two facts hold.

1. The vertical separation between the upper holes of A and B is at most 2∆l(A).
2. If A is not amongst the smallest γ∆ nonjumper strips in this right clique (left

clique, respectively), the vertical separation between the upper holes of A and

B is at most l(B)
2(γ−1)∆ .

Lemma 3.7. Let A and B be strips belonging to the same right (left, respectively)
clique, with l(A) < l(B). Then A lies completely above the right (left, respectively)
blocking hole of B.

Lemma 3.8. Let C and C ′ be the left and right cliques, respectively, containing
the left and right witness cells, respectively, of strip A. Let B be a strip in C smaller
than A. Let B′ be a strip in C ′ smaller than A. Then B′ cannot l-span B, and B
cannot r-span B′.

3.3. Accounting for strips. The number of terminal strips is O(|OPT |) by
Lemma 3.1. The number of jumper strips is O(|OPT |∗ log n∆ ) by Lemma 3.4. All refer-
ences to strips in the rest of this section are to nonterminal, nonjumper, nonexception
(see Lemma 3.3) strips. All references to cliques assume that terminal, jumper, and
exception strips have been removed; references to clique sizes denote sizes subsequent
to this removal.

We now consider the remaining strips and show that there exists a large subset
W of the witnesses associated with these strips such that the graph induced by W
has only small, i.e., size Θ(∆), cliques. A rough reason why such a subset W exists
is as follows.

By the nestedness property of strips in a clique and by Assumption 1, large
cliques will necessarily have long strips and will therefore require proportionately
large vertical space. In addition, Lemma 3.6 states that if A,B are strips in a large
clique, then the vertical separation between the upper holes of A and B is small. Given
the properties of cliques stated above, we will show that the left cliques containing
A,B and the right cliques containing A,B cannot all satisfy the dual requirements of
large vertical space and small vertical separation, unless one of these cliques is small.
This intuition is formalized below.

Remark. We mention here that the rest of this section uses only Lemmas 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. Assumptions 1 and 2 will not be used directly.
When we drop these assumptions and proceed to the general case, we will apply the

to work with this weaker condition, as it generalizes even when Assumption 1 is dropped.
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description below to a carefully chosen subset of strips for which the above lemmas
will indeed hold.

Definition. The right follower of a strip B is defined to be the unique next
longer strip, if any, in the right clique containing B (uniqueness holds from Lemma
3.3 and since exceptions are ignored). In Figure 6, D is a follower of B. Strip A also
has D as its follower, but A is dropped as it is an exception strip. Left followers are
defined similarly.

Lemma 3.9. Let P,Q be strips in some right clique C, with Q being the right
follower of P (Q need not exist). Then one of the following must hold.

1. P is among the smallest 3∆ strips in C, or P is the largest strip in C.
2. Q is among the smallest 5∆+1 strips in C ′′, where C ′′ denotes the left clique

containing Q.
3. 2∆l(P ) ≤ l(Q).
4. Let C ′ denote the left clique containing P . Let P ′ be the strip in C ′ whose

left follower is P . Either P ′ does not exist or 2∆l(P ′) ≤ l(P ).
5. Let Q1, . . . , Qk, in increasing order of length, be the strips in C ′′ which are

smaller than Q. Then 22∆l(Qk−1) ≤ l(Q).
Analogous statements hold for strips P,Q in a left clique C.

Proof. We suppose that none of the above five conditions holds to get a contra-
diction.

Since condition 1 is not satisfied, Q exists. Since condition 2 is not satisfied,
k ≥ 5∆+1. By Lemma 3.8, none of Q1, . . . , Qk r-span P (see Figure 7(a)). Similarly,
P cannot l-span any of Q1, . . . , Qk. By Lemma 3.3, Q r-spans P , and l-spans each of
Q1, . . . , Qk; therefore, the hatched regions must be hole-free. We consider two cases
now, depending upon whether the upper hole of Qk is above or below that of P .

First, suppose the upper hole of Qk is aligned with or above that of P (see Figure
7(a)). The lower hole of Qk must be above that of P ; otherwise, Qk r-spans P , which
contradicts Lemma 3.8. Therefore, the left blocking hole of Qk will be horizontally
aligned with or above the upper hole of P . By Lemma 3.7, Qk−1 is completely above
this blocking hole and therefore completely above P . Since the fifth condition is not
satisfied, 22∆l(Qk−1) > l(Q). Then the vertical separation between P and Q is at

least l(Qk−1) >
l(Q)
22∆ . Since the first condition is not satisfied, Lemma 3.6 implies

that the vertical separation between P and Q is at most l(Q)22∆ , a contradiction. While
applying Lemma 3.6, recall that jumpers have been excluded from cliques earlier.

Second, suppose the upper hole of Qk is below that of P (see Figure 7(b)). The
bottom hole of Qk must be below that of P ; otherwise, P will l-span Qk, which
contradicts Lemma 3.8. Since Qk l-spans each of Q1, . . . , Qk−1, these must also have
their upper holes below that of P . Since P cannot l-span Q1, . . . , Qk (by Lemma
3.8), their lower holes must also be below that of P . Since condition 4 is violated,
P ′ exists. By Lemma 3.3, P l-spans P ′, and therefore P ′ must be to the right of Q
(see Figure 7(b)). Since P l-spans P ′, Q l-spans each of Q1, . . . , Qk (by Lemma 3.3),
and lower holes of Q1, . . . , Qk are below that of P , it must be the case that each of
Q1, . . . , Qk either l-spans P

′ or is completely below it (Qk l-spans P
′, while Qi lies

below P ′ in Figure 7(b)). We claim that at most 2∆ of Q1, . . . , Qk can l-span P
′.

This is shown in the next paragraph. Then the vertical separation between the upper

holes of Qk−2∆ (which is completely below P ′) and Q is at least l(P ′) > l(P )
2∆ > l(Q)

22∆

(because conditions 3 and 4 are not satisfied). Since k−2∆ > 3∆, Lemma 3.6 applied
to Qk−2∆ and Q implies that the vertical separation between the upper holes of these
two strips is at most l(Q)

22∆ , a contradiction.
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Fig. 7. Two situations for the upper hole of Qk.

It remains to show that at most 2∆ of Q1, . . . , Qk can l-span P
′. We show

that Qk−2∆ cannot l-span P ′. Suppose this is not true. Then Qk−2∆, . . . , Qk all
l-span P ′ and l(Qk−2∆) > l(P ′). By Lemma 3.4, Qk−2∆, . . . , Qk are in distinct
length categories, and therefore l(Q) ≥ 22∆l(Qk−2∆) > 22∆l(P ′) > 2∆l(P ). The last
inequality follows from the violation of condition 4. Then condition 3 is satisfied, a
contradiction.

Corollary 3.10. The number of nonterminal, nonjumper, nonexception strips
is O(|OPT | ∗ ( logn∆ +∆)).

Proof. Each nonterminal, nonjumper, nonexception strip P must be in some right
clique C and in some left clique C ′.

We consider five classes of these strips, depending upon which of the conditions
in Lemma 3.9 is satisfied. The number of strips P which satisfy the first condition is
clearly O(|OPT | ∗∆) because each clique in OPT has O(∆) such strips. The number
of strips P which satisfy the third condition is O(|OPT | ∗ ( logn∆ )) by Lemma 3.4.

Similarly, the number of strips P which satisfy the fourth condition is O(|OPT |∗ logn∆ ).
Next, consider strips P which satisfy either condition 2 or 5. Such a strip P has a
unique right follower Q. Note that any strip is the right follower of at most one strip.
Thus it suffices to bound the number of strips Q which are right followers of strips P
satisfying condition 2 or 5. Using the same argument as for condition 1, the number
of strips Q satisfying condition 2 is O(|OPT | ∗∆). Using an argument similar to that
for condition 4, the number of strips Q satisfying condition 5 is O(|OPT |∗ logn∆ ).

Thus, given Assumptions 1 and 2, by setting ∆ = Θ(
√
log n) we get that the

number of rectangles laid out by our algorithm is within an O(
√
log n) factor of the

optimal.

3.4. Proofs. We give the proofs of Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and
3.8 in that order. For the general case, we will not repeat the proofs of these lemmas.
To convince the reader that these proofs would continue to hold even in the absence
of Assumptions 1 and 2, we describe the proofs so that they are dependent only on
the following facts and on proofs of previous lemmas in the above order, instead of
Assumptions 1 and 2 directly. These facts are consequences of Assumptions 1 and 2
and of the way in which families and successors were defined. Thus, as long as the
general case obeys these facts, and if we derive the generalizations of these lemmas in
the same order, these proofs will continue to hold. However, there is one exception,
namely the first part of Lemma 3.4, where we shall use Assumption 1. This shall
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Fig. 8. Witnesses of terminal strips are independent.

require reproving when we get to the general case. This will be made precise in
section 4.4.

We state Facts 1–6 here.
Fact 1. Strips in a right (left, respectively) family are right (left, respectively)

nested and have the same right (left, respectively) blocking hole. Further, strips in
distinct right (left, respectively) families have distinct right (left, respectively) blocking
holes.

Fact 2. Each family has one terminal strip. Further, strips in a family lie in
distinct length categories (length categories are given by the length ranges [2i, 2i+1),
1 ≤ i ≤ log n− 1).

Note that by Assumption 1, strips in a family satisfy a stronger property; namely,
they at least double in size. However, the weaker property stated above will be all that
is available in the general case.

Fact 3. The right (left, respectively) successor of a strip A is the next strip to
the right (left, respectively) in the right (left, respectively) family containing A.

Fact 4. The right (left, respectively) successor of a strip A r-spans (l-spans,
respectively) A.

Fact 5. The right (left, respectively) witness of a nonterminal strip A, if it exists,
is horizontally aligned with the upper hole of A and lies on the right (left, respectively)
successor of A.

Note that the condition “if it exists” always holds by Assumption 2. However,
this will not be true in the general case, after Assumptions 1, 2 are dropped.

Fact 6. The right (left, respectively) witness of a terminal strip lies on the
terminal strip itself and is horizontally aligned with its right (left, respectively) blocking
hole.

We now give the proofs. At the end of each proof below, we make a careful note
of which of the above facts are used.

Proof of Lemma 3.1. We give the proof for right terminals. The proof for left
terminals is similar.

Suppose for a contradiction that there are two right terminal strips P,Q whose
right witnesses are not independent. P and Q must be in distinct right families, and
their right blocking holes are distinct, by Facts 1 and 2. Recall that the right witness
cells of P and Q are in P and Q, respectively, and are horizontally aligned with their
respective right blocking holes (see Fact 6).

Consider a rectangle containing the two witness cells; such a rectangle exists by
Lemma 2.2 (see Figure 8). Clearly, both P and Q must have their upper holes above
and lower holes below this rectangle. Without loss of generality, assume P is to the
left of Q. Note that the right blocking holes for both P and Q must be in the hatched
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Fig. 9. Two situations for M,N in Lemma 3.3 if N neither r-spans M nor is disjoint from M .

region (i.e., the extension of the above rectangle to the right; the rectangle itself must
be hole-free). Therefore, both blocking holes must be to the right of Q. Then it follows
that whichever one of these holes occurs further to the right of the other cannot be
the right blocking hole for either P or Q. In addition, if the two blocking holes are
vertically aligned, the lower one cannot be the right blocking hole for either P or Q.3

This gives a contradiction.

Remark. Note that the above proof used only Facts 1, 2, and 6 among the six
facts listed above.

Proof of Lemma 3.2. We show that if A and B are two strips in the same right
family, their right witness cells are independent. Similar arguments hold for the right.

Without loss of generality, assume that l(A) < l(B). By Fact 1, B is to the right
of A and r-spans A. By Facts 3 and 5, A defines its right witness cell either on B (if
B is the right successor of A) or to the left of B. Since B defines its right witness cell
on the horizontal line containing the upper hole of B and to the right of the upper
hole of B, it is easy to see that any rectangle containing the right witness cells of A
and B has to contain the upper hole of B. This implies that these two witness cells
are independent and cannot be in a clique.

Remark. Note that the above proof used only Facts 1, 3, and 5 among the six
facts listed above.

Proof of Lemma 3.3. We prove the lemma for a right clique C; similar arguments
hold for left cliques. The following fact will be useful.

Fact. Suppose strips M and N are two strips in C, and M is either to the left
of N or vertically aligned with it. Then either M and N are disjoint or N r-spans
M . This must be true; otherwise, one of the two situations shown in Figure 9 holds,
and then M ’s right witness cell will be independent from the right witness cell of N
(recall Facts 4 and 5).

Suppose the strips in C are not right nested. By the above fact, if each strip in C
r-spans the smallest strip in C, then there are no disjoint strips in C, and the strips
in C must be right nested. So there must exist a strip in C which is disjoint from
the smallest strip A in C; consider the smallest such strip B. Clearly, neither A nor
B can r-span any strip in C. We will show that all other strips D in C must r-span
the lower of A,B. It would then follow from the above fact that the strips in C with
the upper of A,B removed are right nested. We consider the case when B is below
A; the other case is similar.

Consider a strip D in C, other than the strips A,B, and suppose for a contra-
diction that D does not r-span B. Recall from the previous paragraph that neither

3Here, we use the fact that ties for the blocking hole were broken in favor of the upper hole.
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Fig. 10. (a) D r-spans A but not B. (b) A,B,D are disjoint. The order in which the successors
A′, B′, D′ are present is not important.

A nor B r-span any other strips in C. By the above fact, D must be disjoint from
B. Further, D either is disjoint from A or is to the right of A and r-spans A (see
Figure 10(a),(b)). We will show in the next paragraphs that the right blocking holes
of the two upper strips among A,B,D must be identical. But, by Lemma 3.2, A,B,D
must all be in distinct right families, and therefore, by Fact 1, they have distinct right
blocking holes, a contradiction.

To show that the right blocking holes of the two upper strips among A,B,D must
be identical, consider the rectangle R associated with clique C (by Lemma 2.2, such
a rectangle exists). This rectangle has the following properties. The right witness
cells for A,B,D are all in R, and A,B,D are themselves to the left of R. By Fact 5,
the right witness cells of A,B,D are aligned with their respective upper holes and lie
on their respective right successors, A′, B′, D′. By Fact 4, A′, B′, D′ r-span A,B,D,
respectively. Therefore, R must have its upper edge above the upper holes of A,B,D
and its lower edge below all these holes. In addition, A′, B′, D′ must all have their
upper holes above R and bottom holes below R (see Figure 10); these successor strips
must stab vertically through R. Note that the relative placement of A′, B′, D′ is not
important, though Figure 10 shows D′ placed between A′ and B′. Recall again that
A,B are disjoint, D,B are disjoint, and D either r-spans A or is disjoint from A.

It follows from these properties that the right blocking holes of the upper two
strips X,Y amongst strips A,B,D must be in the hatched region, i.e., the right
extension of R. Next, since a strip and its right successor must have the same right
blocking hole by Facts 1 and 3, the leftmost hole in the hatched region must be the
right blocking hole for both X,Y , as required.

Remark. Note that the above proof directly used only Facts 1, 3, 4, and 5 among
the six facts listed above, and Lemma 3.2.

Proof of Lemma 3.4. Strips in a right (or left) clique strictly increase in length
by Lemma 3.3. The first part of the lemma then follows from Assumption 1.

Next, we prove the second part of Lemma 3.4. Right families are right nested by
Fact 1. By Lemma 3.3, right cliques are also right nested. Therefore, in both right
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Fig. 11. (a) B and B′ lie between A and A′. (b) A′ lies to the left of B. (c) A′ r-spans B. (d)
Upper hole of A′ lies below that of B.

families and right cliques, strip lengths increase strictly monotonically to the right.
Since the smallest strip length is 20 and the largest is 2logn, the lemma follows. A
similar argument holds for left families and cliques.

Remark. Note that the above proof directly used Assumption 1, only Fact 1
among the six facts listed above, and Lemma 3.3.

Proof of Lemma 3.5. We prove the lemma for a right clique C. The argument for
left cliques is similar.

From Lemma 3.3, it follows that B r-spans A and hence must lie to the right of A.
If B is to the right of A′, then the right witness cells a and b of A and B, respectively,
are independent (see Figure 11(b); also see Facts 4 and 5). Therefore, B is to the left
of A′ and to the right of A. To show that the right successor of B also lies between
A and A′, we show in the next paragraph that A′ cannot r-span B. Since A′ and B
both r-span A, they cannot be disjoint either. Then it follows that the right blocking
hole of B is vertically aligned with or to the left of A′. Therefore, the right successor
of B is also to the left of A′ (since, by Facts 1 and 3, a strip and its right successor
have the same right blocking hole).

Suppose A′ r-spans B. Then the right blocking hole of B would be the same as
that of A (which is identical to that of A′ by Facts 1 and 3) (see Figure 11(c); the
hatched region must be hole-free); then A and B would be in the same right family
by Fact 1. This contradicts Lemma 3.2.

It remains to show that the upper hole of A′ is above that of B. By Fact 5, B’s
right witness cell lies on the horizontal line containing the upper hole of B. If the
upper hole of A′ is horizontally aligned with or below that of B, the witness cells a
and b of A and B, respectively, would be independent (see Figure 11(d)). Hence, the
upper hole of A′ lies above that of B.
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Fig. 12. Vertical separation in a right clique.

Remark. Note that the above proof directly used only Facts 1, 3, 4, and 5 among
the six facts listed above, and Lemmas 3.2 and 3.3.

Proof of Lemma 3.6. We prove the lemma for a right clique C. An analogous
argument holds for left cliques.

First, consider part 1. Let A′ be the right successor of A. By Fact 4, A′ r-spans
A. By Lemma 3.3, B must r-span A. By Lemma 3.5, the upper hole of A′ is above
that of B. It follows that the vertical separation between the upper holes of B and A
is at most l(A′) and l(A′) ≤ l(A)2∆, because A is not a right jumper. Part 1 follows.

Next, consider part 2. Let D be the smallest nonjumper strip in C, and let D′

be the right successor of D (see Figure 12). D′ exists because D is not a terminal.
We will show in the next paragraph that the vertical separation between the upper
holes of B and A is at most l(D′). Since D is not a right jumper, l(D′) ≤ l(D)2∆.
Further, since there are at least γ∆ strips smaller than A in C, using the increase in

length categories given by Lemma 3.4, we get l(D′) ≤ l(D)2∆ ≤ l(B)
2(γ)∆

2∆ = l(B)
2(γ−1)∆ ,

as required.

It remains to show that the vertical separation between the upper holes of B and
A is at most l(D′). By Lemma 3.3, A and B both r-span D. By Lemma 3.5, A and
B are between D and D′. Since D′ is the right successor of D, D′ must r-span D
(see Fact 4); therefore, the lower hole of D′ is below the upper hole of A. Further,
by Lemma 3.5, the upper hole of D′ is above that of B. It follows that the vertical
separation between the upper holes of B and A is at most l(D′).

Remark. Note that the above proof directly used only Fact 4 among the six facts
listed above, and Lemmas 3.3, 3.4, and 3.5.

Proof of Lemma 3.7. We prove the lemma for a right clique C; the argument for
the left is analogous.

By Lemma 3.3, B r-spans A. Let A′ be the right successor of A and B′ that of
B. By Fact 4, A′ r-spans A. By Lemma 3.5, B and B′ are between A and A′, A′

cannot r-span B, and the upper hole of A′ is above that of B. It follows that the right
blocking hole d of B must be to the left of A′ (see Figure 13) and d can be only in
the two hatched regions in the figure. But if it is in the upper of these two regions,
by Fact 5, the right witness cells for A and B are independent. Therefore, it must be
in the lower hatched region, which is completely below A.

Remark. Note that the above proof directly uses only Facts 4 and 5 among the
six facts listed above, and Lemmas 3.3 and 3.5.
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Fig. 14. Possibilities precluded by Lemma 3.8: (a) B′ l-spans B. (b) B r-spans B′.

Proof of Lemma 3.8. Suppose B′ l-spans B (Figure 14(a)). The hatched region
must be hole-free since A l-spans B and r-spans B′ (see Lemma 3.3). This means
that B has its left blocking hole to the left of B′. Next, B’s left successor is either to
the left of B′ or to the right of A. This is true because any strip between B′ and A
which l-spans B must r-span B′ as well and cannot have its left blocking hole to the
left of B′ (recall from Facts 1 and 3 that B and its left successor must have the same
left blocking hole). Using Facts 4 and 5, it follows that the left witness cell of B is
independent from that of A, a contradiction. Therefore B′ cannot l-span B.

By an argument symmetric (see Figure 14(b)) to the one above, B cannot r-span
B′.

Remark. Note that the above proof directly used only Facts 1, 3, 4, and 5 among
the six facts listed above, and Lemma 3.3.

4. The general case: Removing ill-behaved strips. We now need to handle
the general case. Assumption 2 is not very hard to handle; it is possible to show that a
good fraction of strips define witnesses on at least one of the two sides. Assumption 1
is the most severe: strips of arbitrary lengths could result in large families and cliques
in which the progression of strip lengths described by Lemma 3.4 is absent. This
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Fig. 15. The two kinds of strips considered in Lemma 4.1.

forces us to alter the notion of successor/family defined in this section and partition
strips into classes based on the nature of left and right successors. A detailed analysis
is then needed for each of these classes.

Recall that we have already identified and decided to ignore unnecessary strips.
The aim now is to discard some more ill-behaved strips and then redefine successors
and families for the strips which remain. These remaining strips will constitute a
constant fraction of the number of the rectangles laid out by our algorithm, and each
such strip will have the property that it defines either a left witness cell or a right
witness cell or both. Unlike the previous special case, it will no longer be true that
each strip is part of some family. Each strip will still have a successor, though.

4.1. Discarding strips. Consider two sets of strips. The first set comprises
necessary strips A with the property that Al exists, where Al is the closest necessary
strip to the left, if any, such that the upper holes of Al and A are horizontally aligned
(Figure 15(a)) and Al l-spans A. The second set comprises necessary strips A with
the property that Ar exists, where Ar is the closest necessary strip to the right, if
any, such that the upper hole of Ar and A are horizontally aligned (Figure 15(b)) and
Ar r-spans A. By Lemma 4.1 below, the strips in the smaller of the above two sets
can be ignored. Without loss of generality, assume that the former set is smaller. Let
S ′ denote the set comprising the remaining strips. For all strips A in S ′, Al does not
exist. This property, along with the subsequent definition of successors, will ensure
that left witnesses are always defined for all strips in S ′.

Lemma 4.1. One of the above two sets must have size at most half the number
of necessary strips.

Proof. This follows because if A is in the first set then Al is not in the
second.

Defining categories, doubling strips and nondoubling strips. We classify strips in
S ′ into categories based on length. All strips with length in the range [2i, 2i+1) are
in the ith category, i ≤ log n− 1.

Consider a strip A in S ′. Let B be the closest strip to the right of A in S ′, if
any, which r-spans A and is in the same category as A. If B exists, then A is said
be right nondoubling, and B is said to be the right successor of A. In this case, any
strip in S ′ to the right of A and to the left of B which r-spans A must be in a higher
category than A and therefore has its right blocking hole vertically aligned with or to
the left of B. All other strips A are called right doubling strips. Analogous notions
are defined to the left. As will be shown in Lemma 4.5 shortly, each strip is the right
successor of at most one right nondoubling strip.

Note that we have not yet defined successors for right/left doubling strips. We
will do so after we redefine families later in this section.
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Remark. The strips considered in sections 3 and 3.1 are right and left doubling
because of Assumption 1. As remarked in section 3.1, the notion of successor defined
there is different from that defined above. The successor defined earlier corresponds
to the successor of a right or left doubling strip.

Lemma 4.2. The number of strips in S ′ which are both right nondoubling and
left nondoubling is at most |S ′|/2.

Proof. Consider strip A, which is both right nondoubling and left nondoubling.
Let B be its right successor. Note that no other right nondoubling strip has B as
a right successor (this will be shown formally in Lemma 4.5). We show in the next
paragraph that B cannot be a left nondoubling strip. It follows that for each A which
is both right nondoubling and left nondoubling, there is a unique B which is left
doubling. The lemma follows.

Suppose B is left nondoubling. LetD denote its left successor. Then D is between
A and B and l-spans B. Since B r-spans A, D r-spans A as well. Since A,B,D are
all in the same category, D would be the right successor of A, a contradiction.

Let S denote the subset of S ′ comprising strips which are either left doubling or
right doubling or both. The following lemma shows that S contains at least one-fourth
of all the necessary strips. All further references to strips in the paper will be to the
strips in S. We will account for only these strips; the remaining strips are discarded.

Lemma 4.3. The number of strips in S is at least one-fourth the number of
rectangles laid out to cover the polygon.

Proof. Three kinds of strips have been ignored so far in defining the set S:
1. unnecessary strips;
2. strips A with the property that Al exists, where Al is the closest necessary
strip to the left such that the upper holes of Al and A are horizontally aligned
(Figure 15(a)) and Al l-spans A;

3. strips A, which are both left and right nondoubling.

Unnecessary strips have the same associated rectangle as some necessary strip. By
Lemma 4.1, the number of strips of the second type is at most half the total number
of necessary strips. Finally, by Lemma 4.2, the number of strips of the last type is at
most half of the remainder obtained by removing strips of the first two types.

4.2. Defining families and witnesses. A crucial difference from before is that
right families comprise only right doubling strips, and similarly for left families.

A right family is defined to be a set of right doubling strips in S with the same
right blocking hole. The right successor of a right doubling strip is the next strip A′

to the right in the family. The rightmost strip in a right family has no successor,
and is called a right terminal strip, as before. Left families and successors are defined
similarly. Notice that this is the same definition as in section 3.1, where all strips
were left and right doubling.

We have now defined successors for all strips, whether doubling or not. As before,
the right (left, respectively) witness cell of a nonterminal strip A (whether doubling or
nondoubling) is the cell in its right (left, respectively) successor, horizontally aligned
with the upper hole of A. This witness is not defined if the upper holes of A and its
successor are horizontally aligned. The right (left, respectively) witness cell of a right
(left, respectively) terminal strip A is defined as before; i.e., it is the cell in A which
is horizontally aligned with its right (left, respectively) blocking hole.

The next lemma shows that each strip in S defines a left witness and is a straight-
forward consequence of the definition of S ′.
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Fig. 16. Two possible configurations of strips A,B,C, where B is the right nondoubling suc-
cessor of both A and C.

Lemma 4.4. For all nonterminal strips A ∈ S, the upper hole of A is not
horizontally aligned with the upper hole of its left successor. Therefore, each strip A
defines a left witness cell and possibly a right witness cell.

Lemma 4.5. Any strip is the right (left, respectively) successor of at most two
strips, one right (left, respectively) nondoubling and one right (left, respectively) dou-
bling.

Proof. We prove the “right” case; the “left” case is analogous. First, suppose there
are two right nondoubling strips A,C whose right successor is strip B. Then A,B,C
belong to the same category, and hence l(A) < l(B) < 2l(A) and l(C) < l(B) < 2l(C).
B must r-span both A and C. This can happen only either if A r-spans C (or vice
versa) or A and C are both disjoint (see Figure 16). The former possibility cannot
arise, since in that case the right successor of C would be A (or vice versa), and in
the latter case, l(B) ≥ l(A) + l(C) ≥ 2min{l(A), l(C)}, which implies that B cannot
be in the same category as either A or C, a contradiction.

Next, consider right doubling strips. If the right successor of a right doubling
strip A is strip B, then A and B must belong to the same right family and B is the
first strip to the right of A in its family. So B cannot be the right successor of any
other right doubling strip.

4.3. Classifying strips. Based on the above, we can classify strips in S as
follows. Recall that strips in S are left doubling or right doubling or both.
Class 1 This class contains all strips which are either terminal strips or jumper strips.

This class has two subclasses.
Class 1.1 This class contains all strips which are either right terminals strips or

left terminal strips.
Class 1.2 This class contains all strips which are either right jumper strips or left

jumper strips.
Class 2 This class includes all strips not in Class 1 and which define witness cells in

both directions. This class has three subclasses.
Class 2.1 This class contains strips which are left doubling and right doubling.
Class 2.2 This class contains strips which are left doubling and right nondoubling.
Class 2.3 This class contains strips which are left nondoubling and right doubling.

Class 3 This class includes all strips not in Class 1 and which define only left witness
cells. This class has two subclasses.

Class 3.1 This class contains strips which are left doubling.
Class 3.2 This class contains strips which are left nondoubling.
The aim now is to bound the number of strips in each class byO(|OPT |(∆+ logn

∆ )).
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4.4. Properties of cliques: The general case. This section deals with the
properties of cliques in the general case. We will generalize all the lemmas stated in
section 3.2. We partition the optimal clique cover, OPT , into disjoint cliques in the
same way as described in section 2.4.

Definitions. Define Tr(C, i) to be the set of strips of class i, i being one of 1.1,
1.2, 2.1, 2.2, 2.3, 3.1 or 3.2, whose right witness cells are in clique C of OPT . Tl(C, i)
for left witness cells is defined similarly. As mentioned earlier, we will sometimes
abuse notation and identify a strip with its witness cell.

Before continuing, we reiterate that all right families comprise right doubling
strips only, and, similarly, left families comprise left doubling strips only. Note that
with our new definition of successors and families for strips in S, left versions (right
versions, respectively) of Facts 1–6 of section 3.4 continue to hold for left doubling
(right doubling, respectively) strips. This will allow us to use the proofs in section 3.4
here as well for these strips. In addition, it is clear that Facts 4 and 5 continue to hold
for all cliques (and not just cliques associated with doubling strips). Therefore, the
lemmas in section 3.2 which use only these facts will generalize to both the doubling
and the nondoubling cases directly.

The following lemma is exactly Lemma 3.1 stated for the new definition of ter-
minal strips. The proof is exactly the same as Facts 1, 2, and 6 continue to hold for
doubling strips.

Lemma 4.6. All right (left, respectively) witness cells associated with right (left,
respectively) terminal strips are independent. Therefore, the number of terminal strips
is O(|OPT |).

The following lemma is exactly Lemma 3.2, stated in terms of the classes defined
above. Again, the proof is exactly the same, because Facts 1, 3, and 5 continue to
hold for doubling strips.

Lemma 4.7. All strips in Tr(C, i) (Tl(C, i), respectively) belong to distinct right
families (left families, respectively) for all cliques C in OPT and i being one of 2.1, 2.3
(2.1, 2.2, 3.1, respectively).

The following lemma, a generalization of Lemma 3.3, proves nested structure for
cliques (modulo exceptions).

Lemma 4.8. For any clique C in OPT and any class i, i being one of 2.1, 2.2, 2.3
(2.1, 2.2, 2.3, 3.1, 3.2, respectively), there exists at most one strip (called the excep-
tion) whose removal makes Tr(C, i) (Tl(C, i), respectively) right nested (left nested,
respectively).

Proof. The proof for Tl(C, i), i being one of 2.1, 2.2, 3.1, and for Tr(C, i), i being
one of 2.1, 2.3, is described in Lemma 3.3 (the same proof holds because Facts 1, 3,
4, and 5 and Lemma 4.7 continue to hold for doubling strips).

We shall consider the remaining case for Tr(C, i) here, involving nondoubling
cliques (i.e., i being 2.2). A similar proof will hold for Tl(C, i) with i being one of 2.3,
3.2. We cannot appeal to the proof of Lemma 3.3 directly because Fact 3 does not
hold for nondoubling strips.

However, it is easy to see that the fact stated in the beginning of the proof of
Lemma 3.3 still holds. We will give the rest of the proof, assuming this fact is true.

Suppose the strips in Tr(C, i) are not right nested. By the above fact, if each
strip in Tr(C, i) r-spans the smallest strip in Tr(C, i), then there are no disjoint strips,
and the strips in Tr(C, i) must be right nested. So there must exist a strip in Tr(C, i)
which is disjoint from the smallest strip A in Tr(C, i); consider the smallest such strip
B. Clearly, neither A nor B can r-span any strip in Tr(C, i). We will show that all
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other strips D in Tr(C, i) must r-span the lower of A,B. It would then follow from
the above fact that the strips in Tr(C, i) with the upper of A,B removed are right
nested. We consider the case when B is below A; the other case is identical.

Consider a strip D as above, and suppose it does not r-span B. By the fact
above, it must be disjoint from B; in addition, it either r-spans A or is disjoint
from A as well. Let X,Y denote the upper two strips among A,B,D. So either X
and Y are disjoint (as in Figure 10(b)) or (without loss of generality) l(X) < l(Y )
and Y r-spans X (as in Figure 10(a)). Let X ′, Y ′ be the right successors of X,Y ,
respectively. Since the right witnesses of A,B,D form a clique, rectangle R containing
these witnesses has its lower edge below the lower holes of X,Y and upper edge above
the upper holes of X,Y . This, coupled with the fact that X ′ must stab vertically
through R, implies that l(X ′) > l(Y ), l(X); further, if X,Y are indeed disjoint, then
l(X ′) > l(X)+l(Y ) > 2l(X). But the latter cannot happen as X is right nondoubling,
and therefore X ′ and X are in the same category, which implies that l(X ′) < 2l(X).
Thus, it must be the case that Y and X are not disjoint; i.e., Y r-spans X. Then
l(X) < l(Y ) ≤ l(X ′), and Y must be in the same category as X. Since Y r-spans X,
is in the same category as X, and is to the left of X ′, X ′ cannot be the right successor
of X, a contradiction.

Remark. As we mentioned earlier in section 3.2, we can now ignore exception
strips from all cliques of OPT .

Next, we generalize Lemma 3.4.

Lemma 4.9. Strips in Tl(C, i), i being one of 2.1, 2.2, 2.3, 3.1, 3.2, and in Tr(C, i),
i being one of 2.1, 2.2, 2.3, are in distinct size categories.

Further, consider a right family (left family, respectively) or a set Tr(C, i) of
strips, i being one of 2.1, 2.2, 2.3 (set Tl(C, i) of strips, respectively, i being one of
2.1, 2.2, 2.3, 3.1, 3.2) for some clique C in OPT . For any x, the number of strips
whose length is more than 2x times the length of one of the two previous strips to the
left (right, respectively) is O( lognx ).

Proof. For the first part, we cannot use the proof of the first part of Lemma 3.4,
because that proof was based on Assumption 1, and so we describe it below.

Suppose two strips A,B in Tl(C, i), i being one of 2.1, 2.2, 2.3, 3.1, 3.2, are in
the same size category. Without loss of generality, assume B is to the left of A. By
Lemma 4.8, B l-spans A. By the definition of a left nondoubling strip, A must be
left nondoubling, and its left successor must either lie to the right of B or be B itself.
In either case, A’s left witness cell will be independent from B’s left witness cell, a
contradiction.

A similar proof holds for two strips A,B in Tr(C, i), i being one of 2.1, 2.2, 2.3.

The second part of the lemma follows by using the same argument as in Lemma
3.4, since this uses only Fact 1 for families, and the first part for cliques.

The following lemma generalizes Lemma 3.5.

Lemma 4.10. Let A,B ∈ Tr(C, i) (Tl(C, i), respectively) for some clique C in
OPT and some class i, i being one of 2.1, 2.2, 2.3 (2.1, 2.2, 2.3, 3.1, 3.2, respectively),
with l(A) < l(B). Let A′, B′ be the right successors (left successors, respectively)
of A,B, respectively. These four strips must be in the following order from left to
right (right to left, respectively): A,B,B′, A′. In addition, A′ cannot r-span (l-span,
respectively) B and must have its upper hole above that of B.

Proof. The proof for Tl(C, i), i being one of 2.1, 2.2, 3.1, and for Tr(C, i), i being
one of 2.1, 2.3, is described in Lemma 3.5 (the same proof holds because Facts 1, 3,
4, and 5 continue to hold for doubling strips).
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We need to prove the lemma for the remaining cases only. We prove the lemma
for Tr(C, 2.2); the other cases have analogous proofs.

From Lemma 4.8, it follows that B r-spans A and hence must lie to the right
of A. If B is to the right of A′, then the right witness cells a and b of A and B,
respectively, are independent (see Figure 11(b)). Therefore, B is to the left of A′ and
to the right of A. To show that the right successor of B also lies between A and A′,
we show in the next paragraph that A′ cannot r-span B. Since A′ and B both r-span
A, they cannot be disjoint either. Then it follows that the right blocking hole of B is
vertically aligned with or to the left of A′. Therefore, the right successor of B is also
to the left of A′.

Suppose A′ r-spans B. Since we are considering category 2.2, A′ and A are in
the same category. Since B r-spans A and A′ r-spans B, A,B are also in the same
category, and then B, and not A′, will be the right successor of A.

It remains to show that the upper hole of A′ is above that of B. Recall that B’s
right witness cell lies on the horizontal line containing the upper hole of B. If the
upper hole of A′ is horizontally aligned with or below that of B, the witness cells a
and b of A and B, respectively, would be independent (see Figure 11(d)). Hence, the
upper hole of A′ lies above that of B.

Definitions. As before, we define strip A to be a right jumper if its right
successor has length at least 2∆l(A). Since ∆ will be set to at least 1, all right
jumpers are actually right doubling strips. Left jumpers are defined analogously.

The following lemma generalizes Lemma 3.6.

Lemma 4.11. Consider strips A,B ∈ Tr(C, i) (Tl(C, i), respectively) for some
clique C in OPT and i being one of 2.1, 2.2, 2.3 (2.1, 2.2, 2.3, 3.1, 3.2, respectively).
Suppose l(A) < l(B). The following two facts hold.

1. The vertical separation between the upper holes of A and B is at most 2∆l(A).
2. If A is not amongst the smallest γ∆ nonjumper strips in Tr(C, i) (Tl(C, i),

respectively), the vertical separation between the upper holes of A and B is at

most l(B)
2(γ−1)∆ .

Proof. The proof is identical to that of Lemma 3.6 (the appropriate generalizations
of the lemmas used there have to be invoked) because that proof uses only Fact
4 and Lemmas 4.8, 4.9, and 4.10, which hold for both doubling and nondoubling
strips.

We generalize Lemma 3.7 next.

Lemma 4.12. Let A,B ∈ Tr(C, i) (Tl(C, i), respectively) for some clique C in
OPT and i being one of 2.1, 2.2, 2.3 (one of 2.1, 2.2, 2.3, 3.1, 3.2, respectively). Fur-
ther, suppose l(A) < l(B). Then A lies completely above the right (left, respectively)
blocking hole of B.

Proof. The proof is the same as that of Lemma 3.7 (again, the appropriate
generalizations of the lemmas used there have to be invoked), as that proof uses only
Facts 4 and 5 and Lemmas 4.8 and 4.10, which continue to hold for both doubling
and nondoubling strips.

Finally, we need the following lemma, which generalizes Lemma 3.8.

Lemma 4.13. Let C and C ′ be the cliques in OPT containing the right and left
witness cells, respectively, of a strip A. Let B be a strip in Tr(C, i) smaller than A.
Let B′ be strip in Tl(C

′, i) smaller than A. If i is one of 2.1 or 2.2, then B′ cannot
l-span B. If i is one of 2.1 or 2.3, then B cannot r-span B′.

Proof. The proof for i = 2.1, 2.2 is identical to that of Lemma 3.8 as Facts 1, 3,
4, and 5 used in that proof continue to hold in the left direction for i = 2.1, 2.2 (these
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involve left doubling strips). Note that the whole of the proof for Lemma 3.8 is not
being invoked; rather, only the first half is being invoked. To invoke the second half
(namely, B cannot r-span B′) as well, we will need the above facts to hold in the right
direction. This is indeed true for Class 2.1, which is right doubling as well but not for
Class 2.2. Invoking this second half for Class 2.1, we get the last part of the lemma
for this class. The proof for i = 2.3 is analogous.

4.5. Accounting for strips. The strips in each class are accounted for sepa-
rately. The number of strips in Class 1.1 is O(|OPT |) by Lemma 4.6. The number of
strips in Class 1.2 is O(|OPT | logn∆ ) by Lemmas 4.6 and 4.9.

Class 2.1 contains strips that are doubling in both directions, like the strips in
the special case considered in previous sections. The number of strips in Class 2.1 can
be shown to be O(|OPT |(∆ + logn

∆ )) by a proof identical to those of Lemma 3.9 and
Corollary 3.10; however, invocations of lemmas in section 3.2 need to be modified to
point to their respective counterparts in section 4.4 (see the remark in section 3.3).

The reason why the proof of Lemma 3.9 does not extend to other classes as well
is that Lemma 3.9 uses Lemma 3.8 in both directions, i.e., to claim that B′ cannot
r-span B and B cannot l-span B′; this can be done only for Class 2.1. Therefore, the
remaining classes need separate proofs, which are given below.

4.5.1. Classes 2.2 and 2.3.

Lemma 4.14. Consider a strip P ∈ Tr(C, 2.2) and its right follower Q ∈
Tr(C, 2.2) (Q need not be defined). Then one of the following must hold.

1. P is either the largest strip or among the smallest ∆+2 strips in Tr(C, 2.2).
2. Q is among the smallest 4∆ + 1 strips in Tl(C

′, 2.2), where C ′ denotes the
clique in OPT containing the left witness cell of Q.

3. Let P ′ be the strip in Tr(C, 2.2) which is to the left of P and shorter than P
such that the number of strips longer than P ′ and shorter than P in Tr(C, 2.2)
is 3. Then either P ′ does not exist or 23∆l(P ′) ≤ l(Q).

4. Let Q′ denote the strip in Tl(C
′, 2.2) whose left follower is Q. Then 2∆l(Q′) ≤

l(Q).

Proof. We suppose that none of the four conditions hold and derive a contradic-
tion.

Since condition 1 does not hold, Q exists. The proof then proceeds using the
following claims, which are proved in sebsequent paragraphs. We claim that any
strip in Tr(C, 2.2) with length less than l(Q

′)/2 must lie completely above Q′. Since
condition 3 is violated, P ′ must exist. We then show that P ′ has length less than
l(Q′)/2 and therefore lies above Q′. Since Q r-spans P ′ by Lemma 4.8, the vertical
separation between the upper holes of Q and Q′ is at least l(P ′). By the violation of
condition 2 and Lemma 4.11 applied to Q′ and Q, the vertical separation between the
upper holes of Q and Q′ is at most l(Q)

23∆ . It follows that l(P
′) ≤ l(Q)

23∆ . This satisfies
condition 3, a contradiction.

First, we show that any strip R in Tr(C, 2.2) with length less than l(Q
′)/2 must

lie completely above Q′. Clearly, R lies to the left of Q. Its right successor S is to the
right of Q, by Lemma 4.10. Further, S has size less than l(Q′) (since l(R) < l(Q′)/2
and Class 2.2 is right nondoubling). In addition, by Lemma 4.10, the upper hole of
S is above that of Q. It follows that the lower hole of S must also be above that of
Q′; otherwise, l(S) ≥ l(Q′), a contradiction. Suppose that R is not completely above
Q′. We will get a contradiction as follows. Since R is not completely above Q′ and S
r-spans R, S is not completely above Q′ either. Then one of the two situations shown
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(a)

S

(b)

R R Q

S

Q

Q′ Q′

Fig. 17. (a) S is to the left of Q′, and Q does not l-span Q′. (b) S is to the right of Q′, and
S does not r-span R since it is not above Q′.

in Figure 17 must hold, depending upon whether S is to the left or right of Q′. In
the first case, Q cannot l-span Q′, and in the second case S cannot r-span R, both
contradictions. Therefore, R is completely above Q′.

Second, we show that P ′ has length less than l(Q′)/2. To do this, we will show
that l(P ) ≤ 2l(Q′). Then, since there are three strips between P and P ′ in Tr(C, 2.2),
l(P ′) < l(P )/4 ≤ l(Q′)/2. That l(P ) ≤ 2l(Q′) is shown as follows. We show in the
next paragraph that P must have its upper hole aligned with or below that of Q and
its lower hole aligned with or above that of Q′. Thus l(P ) is at most the vertical
separation between the upper hole of Q and the lower hole of Q′. Since condition
2 is violated, Lemma 4.11 applied to Q′ and Q implies that the vertical separation

between their upper holes is at most l(Q)
23∆ . Thus the vertical distance between the

upper hole of Q and the lower hole of Q′ is at most l(Q′) + l(Q)
23∆ < l(Q

′)(1 + 1
22∆ ), by

the violation of condition 4. Thus l(P ) ≤ l(Q′)(1 + 1
22∆ ) ≤ 2l(Q′), as required.

It remains to show that P must have its upper hole aligned with or below that of
Q and its lower hole aligned with or above that of Q′. By Lemma 4.8, Q r-spans P ,
and therefore the upper hole of P is aligned with or below that of Q. By the violation
of condition 1 and by Lemma 4.8, which states that all strips in Tr(C, 2.2) are in

distinct categories, there exists a strip R in Tr(C, 2.2) such that l(R) <
l(P )
2∆+1 <

l(Q)
2∆+1 .

Then, by the violation of condition 4, l(R) < l(Q′)/2. From the earlier part of this
proof, it follows that R lies completely above Q′. Clearly, R is to the left of P . By
Lemma 4.8, P r-spans R, and therefore the upper hole of P is above that of Q′.
Further, by Lemma 4.13, P cannot l-span Q′. Therefore, the lower hole of P must be
aligned with or above that of Q′.

Corollary 4.15. The number of strips in Class 2.2 is O(|OPT | ∗ ( logn∆ +∆)).

Proof. We consider four subclasses, depending upon which of the conditions in
Lemma 4.14 is satisfied. The number of strips P which satisfy the first condition is
clearly O(|OPT | ∗∆) because each clique in OPT has O(∆) such strips. The number
of strips P which satisfy the third condition is O(|OPT | ∗ logn∆ ), using arguments
similar to those used for conditions 4 and 5 of Lemma 3.9 in the proof of Corollary
3.10. Next, consider strips P such that either condition 2 or 4 holds. Such a strip P
has a unique right follower Q in Tr(C, 2.2). Note that any strip in Tr(C, 2.2) is the
right follower of at most one strip. Thus it suffices to bound the number of strips
Q which are right followers of strips P satisfying condition 2 or 4. Using arguments
similar to those in Corollary 3.10, the number of such strips Q satisfying condition
2 can be shown to be O(|OPT | ∗ ∆), and the number of such strips Q satisfying
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(a) (b)

P P

Q

Ri Ri

Hole free
region

Q
R′i

Fig. 18. The two scenarios in Lemma 4.17: (a) j = 2.3, 3.2. (b) j = 2.1, 2.2, 3.1.

condition 4 can be shown to be O(|OPT | ∗ logn∆ ).

A similar argument as above works for Class 2.3.

Corollary 4.16. The number of strips in Class 2.3 is O(|OPT | ∗ ( logn∆ +∆)).

4.5.2. Classes 3.1 and 3.2.

Lemma 4.17. Consider a strip P in Tl(C, 3.1) or Tl(C, 3.2). Let Q be the right
successor of P . Let j be the class containing strip Q and C ′ be the clique containing
the left witness cell of Q. Then either j = 1.1 or j = 1.2, or Q is among the smallest
2∆ + 2 strips in Tl(C

′, j).
Proof. Since P belongs to Class 3.1 or Class 3.2 and not to Class 1.1, it has a well-

defined right successor Q. Further, since P does not define a right witness cell, the
upper holes of P and Q are horizontally aligned (see Figure 18). In addition, if P is
right nondoubling, then l(Q) < 2l(P ), and if P is right doubling, then l(Q) ≤ l(P )2∆,
as P is not a right jumper (i.e., it is not in Class 1.2). Note that if P is in Class
3.2, then it must be right doubling, as all strips in S are either left doubling or right
doubling or both (recall the definition of S from section 4). We consider various cases
depending upon the nature of Q.

Suppose j �= 1.1 and j �= 1.2. Then Q is not a left terminal strip. Let Tl(C
′, j)

have k strips smaller than Q. Let these be R1, . . . , Rk, in increasing order of length.
We need to show that k ≤ 2∆ + 1.

By Lemmas 4.8 and 4.9, the Ris and Q together form a left nested set of strips
and therefore belong to distinct categories. Note that since j �= 1.1, Q and each of
the Ris have left successors. Let R

′
i denote the left successor of Ri. There are two

cases now, depending upon whether j is one of 2.3, 3.2 or one of 2.1, 2.2, 3.1.

First, suppose j is one of 2.3, 3.2. Then Q and the Ris are all left nondoubling
(see Figure 18(a)). Then R′i is in the same category as Ri. Since all Ris and Q are
left nested and in distinct size categories, l(R′1) < l(R

′
2) < · · · < l(R′k) < l(Q), and

2k−1l(R′1) < l(Q). All R
′
is must be between P and Q. For R′i cannot be to the right

of Q by Lemma 4.10. And, if R′i is to the left of P , then the left witness cells of Q and
Ri are independent because Q’s left witness cell is on the horizontal line joining the
upper holes of P and Q. From Lemma 4.10, the upper hole of each R′i is above the
upper holes of both Q and P . Each R′i must r-span P because R

′
i must l-span Ri and

the hatched region is hole-free (because Q r-spans P ). Thus l(P ) < l(R′1). Therefore
l(Q) > 2k−1l(R′1) > 2

k−1l(P ). So if k ≥ ∆+ 1, l(Q) > l(P )2∆, a contradiction (see
the first paragraph of this proof; note that ∆ ≥ 1). It follows that k ≤ ∆ in this case.
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Second, suppose j is one of 2.1, 2.2, 3.1. Q and the Ris are all left doubling (see
Figure 18(b)). Note that the hatched regions in the figure must be hole-free, as Q
must r-span P and l-span Ri. Then the lower hole of each Ri must be below that of P ;
otherwise, the left witness cell for Ri will be on or to the left of P and independent from
the left witness cell for Q, a contradiction. Therefore, the vertical distance between
the upper hole of P (or of Q) and the lower hole of R1 is at least l(P ). Since the Ris
and Q belong to distinct categories, 2∆l(P ) ≥ l(Q) > 2k−1l(R1) (the first inequality
follows from the first paragraph of this proof). It follows that the vertical separation
t between the upper holes of R1 and Q is at least l(P )− l(R1) > (2k−1−∆ − 1)l(R1).
For k ≥ 2∆ + 2, t > (2.2∆ − 1)l(R1) > 2∆l(R1). This contradicts Lemma 4.11 (the
first part, applied to R1 and Q). Thus k ≤ 2∆ + 1 in this case, as required.

Corollary 4.18. The number of strips in Classes 3.1 and 3.2 is O(|OPT | ∗
( logn∆ +∆)).

Proof. Each strip in these two classes has a right successor, which in turn has a
left witness by Lemma 4.4. Further, by Lemma 4.5, any strip is the right successor
of at most two strips. By Lemma 4.17, either (a) the right successor of a strip in
these two classes is in Class 1.1 or 1.2, or (b) the right successor of a strip in these
two classes is in some class j �= 1.1, 1.2 and is amongst the smallest 2∆ + 2 strips
in Tl(C

′, j) for some clique C ′ in OPT . Strips in Classes 3.1 and 3.2 for which the
right successor satisfies the latter property are clearly O(|OPT | ∗∆) in number. And
strips for which the right successor satisfies the former property are O(|OPT | logn∆ ) in
number by Lemmas 4.6 and 4.9.

4.5.3. Summing up.
Theorem 4.19. The number of rectangles needed to cover the given polygon is

Ω(#N/
√
log n), where #N is the number of necessary strips and therefore the number

of rectangles used by our algorithm.
Proof. From Corollaries 3.10, 4.15, 4.16, and 4.18, it follows that |S|= O(|OPT | ∗

max{ logn∆ ,∆}). By Lemma 4.3, |S| is at least a quarter of the number of rectangles
used by our algorithm, which is equal to the number of necessary strips. The theorem
follows by setting ∆ =

√
log n.

5. Counterexample. If the average family size was O(1) for all polygons, then
our claim that there always exist #F independent points will give a constant factor
approximation algorithm. Unfortunately, this is not the case. Here we give an example
of a polygon in which the average family size is θ( logn

log log n ).
This example can also be slightly modified in a way such that all right witness

points can be covered by O(#N log log n
logn ) cliques and the average right clique size is

Θ( logn
log log n ), but the average family size (both left and right) remains Θ(

log n
log log n ).

However, in this example, covering the left witness points requires Ω(#N) cliques,
and the maximum clique size is O(1) for these points. This example was the key to
our lower bound. We do not know whether there are examples where the average
clique size is superconstant for both the left witness points and the right witness
points. In this sense, our bound of

√
log n does not seem like an unnatural meeting

point.
Let l be a parameter, which we will ultimately set to log n. We give an example

where the average left family size, average right family size, and average right clique
size are all Θ(logl n).

Our polygon will have two kinds of holes, nonblocking and blocking. There will
be Θ(n) blocking holes and Θ(n logl n) nonblocking holes; so most holes will be non-
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Fig. 19. Arrangement of columns of sparsity i and i+ 1.

blocking. First, we will describe the arrangement of nonblocking holes and then that
of blocking holes. All subsequent references to strips will be to those formed by
nonblocking holes.

Nonblocking holes are arranged in columns. Each column has a certain sparsity.
A column with sparsity i will have n

li +1 holes in it, where 0 ≤ i ≤ logl n; these holes
will be put in rows 0, li, 2li, . . .. So the least sparse column will have n + 1 holes in
rows 0, 1, 2, 3, . . . , n, and the most sparse will have 2 holes in rows 0, n. There will be
li−1(l + 1) columns of sparsity i, i ≥ 1. Therefore, the total number of nonblocking
holes will be Θ(n logl n). The arrangement of these columns can be described by the
following sequential procedure.

The leftmost and rightmost columns will have sparsity 0. Between these two
columns, put l + 1 columns of sparsity 1; these l + 1 columns together constitute a
pack. Then, between each pair of consecutive columns of sparsity 1, put a pack of
l+1 columns of sparsity 2, and so on, as shown in Figure 19. Note here that a pack
of sparsity i+1 columns is put only between pairs of consecutive columns of sparsity
i which belong to the same pack; these sparsity i columns will not have any columns
of sparsity less than i between them.

Blocking holes will always be placed as follows. First, we form right families
comprising strips formed by nonblocking holes in columns which are not the last in
their respective packs. Note that most (all but Θ(n)) nonblocking holes lie in such
columns. Consider a column C with sparsity i which is not the rightmost column in
its pack. There are n

li strips in such a column. These strips are organized into groups
of l strips each, the strips in each group being vertically consecutive. Consider one
such strip which is the jth strip in its group. We define a right successor s′ for s,
where s′ is the unique strip in the column C ′ defined below which r-spans s; C ′ is the
jth leftmost column amongst the pack of l+1 sparsity i+1 columns nested between
C and the next sparsity i column to the right of C. The size of each right family
defined by the above right successors is clearly large, i.e., Θ(logl n).

We will now arrange blocking holes so that all strips in each right family defined
above will indeed have a common right blocking hole. For each right family defined
above, put a blocking hole immediately to the right of the rightmost strip in such a
way that it blocks all strips in this family. The number of blocking holes put is clearly
Θ(n).

Thus, what we have achieved above is an arrangement of Θ(n logl n) holes where
all but O(n) strips lie in right families of size Θ(logl n). We remark here that all but
O(n) strips lie in left families of size Θ(logl n) as well in this arrangement. The picture
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Fig. 20. A basic block.

of a “basic block” shown in Figure 20 will be helpful in seeing that this is true.
A basic block comprises the following holes.
1. holes bounding a group of strips on a column C of sparsity i, where C is not
the rightmost column in its pack. Let h, h′ be the topmost and bottommost
such holes (see Figure 20);

2. all blocking holes whose vertical position is between h and h′ and whose
horizontal position is between C and the next column in the pack containing
C;

3. all nonblocking holes which are located vertically between h and h′ and are
on columns of sparsity i + 1 between C and the next column in the pack
containing C.

5.1. Getting large right cliques. We need to make a modification to the above
construction to get large right clique sizes while leaving left and right family sizes as
before.

The modification is that columns containing nonblocking holes need to be shifted
downwards by varying amounts while maintaining most (but not all) of the right and
left families as such. This shifting is described by the following sequential procedure.

The shifting procedure is carried out in rounds. In the ith round, only columns
of sparsity i or more will be shifted. Assume that the procedure has already been
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executed for i rounds. At this point, for any column C of sparsity i, all columns
of sparsity i + 1 or more which appear between C and the next column in its pack
will not have experienced any shift relative to C. For each strip s in a column C of
sparsity i which is not the rightmost in its pack, let map(s) denote that strip which
has the same right blocking hole as s and lies on a column of sparsity i+ 1 between
C and the next sparsity i column in C’s pack. It can be verified from the shifting
procedure below thatmap(s) is always well defined and that a basic block (such as the
one shown in Figure 21) has blocking holes for strips in C forming a group distributed
diagonally (this basic block requires forming groups of l consecutive strips on column
C, leaving the first l − 1 strips out of this grouping; this is to account for the shifts
made to C so far). So each basic block formed by groups on C looks like the one in
Figure 21, except that holes in this basic block on sparsity i+ 1 columns between C
and the next sparsity i column D in C’s pack are all aligned with h, the top hole of
this group. The i+ 1st round proceeds as follows.

For each column C of sparsity i which is not the rightmost column in its pack,
consider any group of strips on C. Let h be the topmost hole in this group. Each
strip s in this group is considered in turn. Let P denote the pack of sparsity i + 1
strips nested between C and the next sparsity i strip to the right. The column C ′′

immediately preceding the column C ′ containing map(s) in P is shifted down so that
the hole which was horizontally aligned with h is now aligned with the upper hole of
s (see Figure 21). In addition, all columns nested between C ′′ and C ′ will also be
shifted down so that no relative shift is introduced between C ′′ and these columns in
this round. For future reference, we denote the strip on C ′′ which now r-spans s by
cmap(s) and the strip on C ′ which now r-spans s by newmap(s). Note that cmap(s)
is defined unless s is the first strip in its group. Figure 21 shows a basic block after
this modification.

The above shifting procedure modifies right families, because right successors of
strips could have changed. For each strip s in C, the right successor changes from
map(s) to newmap(s). Families defined by this new definition of right successor are
also large, essentially because a right successor can be defined for every strip other
than those which are on the last columns in their packs. Thus, all but O(n) of the
strips will continue to be in right families of size Θ(logl n).

Also, the average right clique size is Θ(logl n). To see this, note that the right
witness points of s, cmap(s), cmap(cmap(s)), . . . form a right clique and that cmap(s)
is defined for all those s which are not the first strips in their respective groups or
in the last columns in their respective packs. Since there are only O(n) strips s
which are either the first strips in their respective groups or in the last columns in
their respective packs, the total number of right cliques is Θ(n) and the average right
clique size is Θ(logl n).

It now remains to show that left families continue to be large after the above
modification. Consider a column C of sparsity i and the next column D to its right
in its pack. As is clear from Figure 21, left successors can be defined in the pack P
for each of the strips in D, except those strips which are either the first or last in
their respective groups. Defining left successors recursively in this way ensures that
the average left family size is also Θ(logl n).

5.2. Large left and right cliques? In the above example, it can be seen with
some effort that all left cliques have size O(1). We do not know whether this example
can be modified so that the average left and right cliques sizes are both large.
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Fig. 21. Two basic blocks obtained after the i+ 1st round of shifting. White holes are blocking
holes. One large clique has been highlighted. The crosses are right witness points.

6. Conclusions. A number of loose ends remain for this problem. The main
question, of course, is whether the approximation factor can be brought down to
O(1). Another question is whether there exists a polygon whose clique cover and
independent set numbers are small-o of the number of necessary strips.

Related problems. We briefly mention some related problems and the current state
of knowledge on these problems.

Non–axis-parallel rectangles. One variant of the above rectangle covering problem
is when the covering rectangles need not be axis-parallel.

Our techniques do not seem to extend to this case. However, they do extend
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(a) (b)

Fig. 22. Covering with non–axis-parallel rectangles.

even when all the covering rectangles must be inclined at the same angle or at one
of a constant number of angles. But there are examples where rectangles inclined
at an arbitrary number of angles are involved in the optimal cover. And, in this
case, the issue seems to be different and related to the problem of covering a given
set of points using a minimum number of straight lines. We do not know the exact
nature of this relationship though. No o(log n) approximation factor is known for this
problem either (see [1]). We describe an example below where the optimum cover
has size O(n) when non–axis-parallel rectangles are allowed, whereas it is Ω(n

√
n) if

only axis-parallel rectangles are allowed. This gives support for the intuition that the
size of the minimum cover should be much smaller if non–axis-parallel rectangles are
allowed.

Partition the n× n grid into a2 tiles of size n2/a2 each (as in Figure 22(a)). One
such tile is shown in Figure 22(b). Each tile has dimensions n/a×n/a. The structure
of the tiles results in a partition of the grid into triangles along the boundary and
rhombuses inside. Each rhombus has n/a holes on each of its sides. First, consider
the case when only axis-parallel rectangles are allowed. Each rhombus needs n/a
axis-parallel rectangles for covering. Similarly, each triangle needs n/a rectangles to
be covered. The total number of triangles is 4a, and the total number of rhombuses
is Θ(a2). Therefore, the optimum has size Θ(a2n/a+4an/a). Next, consider the case
when arbitrarily oriented rectangles are allowed. Now each rhombus can be covered
by just one rectangle. Therefore the cover size is Θ(an/a+ 4an/a). For a =

√
n, the

cover sizes are Θ(n
√
n) and Θ(n), respectively.

Nonrectilinear polygons. When the polygon itself is not rectilinear but has only
obtuse angles, suitably discretizing the problem so as to apply the greedy set covering
algorithm [10] is itself nontrivial. Levcopoulos and Gudmundsson [14] showed that
this can indeed be done. So this problem too has an O(log n) factor approximation
algorithm, and no better bound is known.

Rectilinear polygons and fat rectangles. When the covering objects are squares or
rectangles with bounded aspect ratio, then Levcopoulos and Gudmundsson [15] give
a constant factor approximation algorithm.
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Abstract. A binary sequence A = A(0)A(1) . . . is called infinitely often (i.o.) Turing-autore-
ducible if A is reducible to itself via an oracle Turing machine that never queries its oracle at the
current input, outputs either A(x) or a don’t-know symbol on any given input x, and outputs A(x)
for infinitely many x. If in addition the oracle Turing machine terminates on all inputs and oracles,
A is called i.o. truth-table-autoreducible.

We obtain the somewhat counterintuitive result that every Martin-Löf random sequence, in fact
even every rec-random or p-random sequence, is i.o. truth-table-autoreducible. Furthermore, we
investigate the question of how dense the set of guessed bits can be when i.o. autoreducing a random
sequence. We show that rec-random sequences are never i.o. truth-table-autoreducible such that the
set of guessed bits has positive constant density in the limit and that a similar assertion holds for
Martin-Löf random sequences and i.o. Turing autoreducibility. On the other hand, we show that
for any rational-valued computable function r that goes nonascendingly to zero, any rec-random
sequence is i.o. truth-table-autoreducible such that on any prefix of length m at least a fraction
of r(m) of the m bits in the prefix are guessed.

We include a self-contained account of the hat problem, a puzzle that has received some attention
outside of theoretical computer science. The hat problem asks for guessing bits of a finite sequence,
thus illustrating the notion of i.o. autoreducibility in a finite setting. The solution to the hat problem
is then used as a module in the proofs of the positive results on i.o. autoreducibility.

Key words. random sequences, autoreducibility, infinitely often autoreducibility, density of
guessed bits, hat problem, Martin-Löf random sequences, rec-random sequences, p-random sequences,
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AMS subject classifications. 03D15, 03D30, 68P30, 68Q30, 91A60

DOI. 10.1137/S0097539702415317

1. Introduction. In probability theory one fundamental idea is the concept
of independence. A collection of random variables X1, X2, . . . is independent if the
information obtained from observing the outcome of the variables Xj where j �= i
leaves the distribution of Xi unaffected, in that the a posteriori distribution of Xi

equals its a priori distribution. Moreover, viewed from a computational standpoint
this idea can be translated as saying that an algorithm whose goal on input i is to guess
or estimate the outcome of Xi should not benefit from querying about the outcome of
the Xj where j �= i. For example, consider the chance experiment where the bits of an
infinite binary sequence R(0)R(1)R(2) . . . are obtained by successive tosses of a fair
coin. If we want to come up with a procedure that on input i computes the bit R(i)
while having access only to the remaining bits of R but not to R(i), the a posteriori
probability of guessing R(i) given knowledge of R(j) for all j �= i equals the a priori
probability of guessing R(i); thus the chance of success when guessing R(i) cannot
be better than 1/2, and the probability that all bits of R are guessed correctly by
the given rule is 0. In particular, it seems natural to regard the information obtained
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from observing R(j) with j �= i as unhelpful for guessing R(i). However, somewhat
counterintuitively, we demonstrate in this paper that there are algorithms that with
probability 1 are, infinitely often and without error, capable of guessing the outcome
of R(i) by querying an oracle about the outcomes of R(j), i �= j.

For the moment, say an effective procedure with limited access to R as described
above autoreduces R in case the procedure computes R(i) for all i, and the procedure
infinitely often (i.o.) autoreduces R in case the procedure computes R(i) for infinitely
many i, while for all other inputs the procedure eventually signals ignorance about
the correct value. Then it appears that for any effective procedure it is impossible
to autoreduce or even to i.o. autoreduce R because at first glance it would seem
certain that in the limit, half of the membership guesses must be wrong. Indeed, by
Corollary 6.5 below, for almost all sequences R (i.e., with probability 1) the sequenceR
cannot be autoreduced. However, and this comes as a slight surprise, almost all
sequences R can be i.o. autoreduced according to Theorem 5.1.

But how can it be that almost all sequences can be i.o. autoreduced when the bits
of these sequences, hence in particular all the bits guessed, are chosen independently
of all the other bits? Recall that by the strong law of large numbers, with probability 1
the frequency (R(0)+· · ·+R(n−1))/n of 1’s in R converges to 1/2. Furthermore, given
a sequence of subsets of the natural numbers where the kth set has cardinality k, the
Borel–Cantelli lemma tells us that with probability 1, at most finitely many of these
sets have an empty intersection with R [38]. This shows that independent random
events considered collectively may possess certain properties with probability 1. Thus
we may assume that certain properties are present in almost all sequences, and for
appropriate properties this can be exploited in order to compute certain bits of a
sequence. In summary, the crux of the following investigation rests on determining
degrees to which properties that are present in almost all sequences may be used to
occasionally compute the outcome of a random variable by observing the outcomes
of other random variables where the random variables are mutually independent.

Being almost convinced that random sequences might indeed be i.o. autoreducible,
we might still wonder how we can overcome the obstacle that when guessing R(i)
for given places i, necessarily we err half the time. The key observation is that a
procedure that i.o. autoreduces R can decide on its own whether to make a guess on a
certain input i. Then, by assuming an appropriate property that is present in almost
all sequences, for all such sequences an effective procedure may compute infinitely
many bits, despite its querying limitations. Observe in this connection that for the
autoreductions to be constructed in the sequel, for almost all sequences the places
that are guessed form a set that is not computable. Furthermore, the set of guessed
bits cannot have constant positive density in the set of all words.

In what follows, we use the known concept of autoreducibility by oracle Turing
machines for capturing the idea of using a sequence A as oracle in order to compute A,
yet not being able to query A about the bit to be computed. The concept of i.o. auto-
reducibility, where just infinitely many bits of A have to be computed, is modeled by
means of oracle Turing machines that, in addition to 0 and 1, may also output a special
don’t-know symbol. Moreover, we will consider restricted concepts of autoreducibility
and i.o. autoreducibility that correspond to various reducibilities considered in recur-
sion theory and complexity theory. For example, we introduce i.o. tt-autoreducibility,
which is defined similarly to the usual truth-table reducibility from recursion theory.

Furthermore, we do not just show that almost all sequences can be i.o. autore-
duced by effective reductions of truth-table type, but, and this is more, the latter as-
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sertion holds for all Martin-Löf random, rec-random, and even p-random sequences.
The positive results on general i.o. autoreducibility are complemented by negative
results on i.o. autoreducibility, where, for example, a positive constant fraction of all
bits has to be guessed correctly. These negative results exhibit interesting interac-
tions between the type of random sequence considered and the type of autoreduction
employed, intuitively speaking.

The aim and scope of this paper can then be summarized as follows. We try to
contribute to the investigation of the question of which types of random sequences are
i.o. autoreducible, at which density, and with respect to which types of reducibilities.

We conclude this section with an outline of the paper and an overview on its
technical contributions. In section 2 we state a puzzle, the hat problem, also known as
colored hat problem or prisoners’ problem. By means of the hat problem we illustrate
how techniques from coding theory can be applied when trying to autoreduce random
sequences. More precisely, we review perfect one-error-correcting codes and show that
these codes can be used to derive optimal solutions for certain instances of the hat
problem. In subsequent sections, the solutions are then used as basic modules when
constructing autoreductions. The hat problem was introduced by Ebert [19] in order
to illustrate the problem of autoreducing random sequences and has recently become
well known outside of theoretical computer science [14, 35, 37]. In an attempt to
provide a reference for the hat problem that is also accessible to readers that are
not interested in applications to autoreducibility, we have tried to make section 2
self-contained.

In section 3 we review effective random sequences and related issues in effec-
tive measure theory, and in section 4 we give formal definitions for the concepts of
autoreducibility that are subsequently used.

In section 5, we consider i.o. autoreducibility of random sequences. We prove that
every rec-random sequence is i.o. truth-table-autoreducible and, what is more, in fact
any p-random sequence is i.o. truth-table-autoreducible via an oracle Turing machine
that runs in polynomial time. As mentioned above, this result seems somewhat sur-
prising and even paradoxical in that the machine that witnesses the autoreducibility
has the task of infinitely often guessing a bit of a random sequence and guessing cor-
rectly each time despite a high chance of error for each guess. We then show that
these results require Turing machines where the number of queries made for a single
input is unbounded. This is accomplished by proving that no rec-random sequence
is i.o. bounded truth-table-autoreducible, i.e., i.o. autoreducible by an oracle Turing
machine that is restricted to some fixed number of queries, and an analogous result
is shown in a setting of polynomial time bounds.

In section 6, we introduce the notion of autoreducibility with density r(m) as a
gauge of how often an oracle machine can guess the bits of a random sequence or, in
other words, how dense the set of guessed bits can be with respect to the entire set
of bits. A sequence is i.o. autoreducible with density r(m) if it is i.o. autoreducible
such that for all m, at least a fraction of r(m) of the first m bits of the sequence is
guessed. In Theorem 6.3 it is shown that rec-random sequences are never i.o. truth-
table-autoreducible with positive constant density (i.e., with density r(m) = εm for
some ε > 0) and that a similar assertion holds with respect to Martin-Löf random
sequences and i.o. Turing autoreducibility. On the other hand, Theorem 6.6 asserts
that for any computable function r that goes nonascendingly to 0, any rec-random
sequence is i.o. truth-table-autoreducible with density r(m). So we obtain essentially
matching bounds on the density of guessed bits for i.o. truth-table autoreductions of
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rec-random sequences.

Related work. The current article is an extended joint version of conference
articles by Ebert and Vollmer [21] and Ebert and Merkle [20]. The hat problem
was originally introduced in the literature by Ebert [19] in order to illustrate the
problem of autoreducing random sequences. The hat problem has led to work in
coding theory [26] since there are instances of the problem for which the optimal
solution (code) is not known. Moreover, the hat problem has become well known
outside of theoretical computer science [14, 35, 37]. Independently and considerably
earlier, towards the end of the 1980s, Aspnes et al. [9] considered voting problems that
have a flavor similar to the hat problem. Moreover, Rudich [36] points out that the
hat problem is essentially the same as a variant of the voting problems called “voting
with abstention,” and he reports unpublished earlier work on the latter. The concept
of i.o. autoreducibility has been investigated by Beigel, Fortnow, and Stephan [10],
who construct a sequence in exponential time that is not i.o. truth-table-autoreducible
in polynomial time.

Notation. We use standard notation, which is elaborated further in the refer-
ences [6, 11, 12, 29].

We consider words over the binary alphabet {0, 1}, which are ordered by the usual
length-lexicographical ordering; the (i + 1)st word in this ordering is denoted by si;
hence, for example, s0 is the empty word λ. Occasionally, we identify words with
natural numbers via the mapping i �→ si.

If not explicitly stated differently, a sequence is an infinite binary sequence, and a
class is a set of sequences. A subset A of the natural numbers N is identified with its
characteristic sequence A(0)A(1) . . . , where A(x) is 1 if x ∈ A and A(x) is 0 otherwise;
notation defined for such subsets is extended to the corresponding sequences; e.g., an
oracle Turing machine may reduce one sequence to another. The term class refers to
a set of sequences.

An assignment is a (total) function from some subset of the natural numbers
to {0, 1}. An assignment is finite if and only if its domain is finite. An assignment
with domain {0, . . . , n − 1} is identified in the natural way with a word of length n.
For an assignment σ with domain {z0 < · · · < zn−1}, the word associated with σ is
the (unique) word w of length n that satisfies w(i) = σ(zi) for i = 0, . . . , n− 1.

The restriction of an assignment σ to a set I is denoted by σ|I. In particular, for
any sequence X, the assignment X|I has domain I and agrees there with X. For a
sequence X and an assignment σ, we write 〈X,σ〉 for the sequence that agrees with σ
for all arguments in the domain of σ and agrees with X otherwise.

The class of all sequences is referred to as Cantor space and is denoted by {0, 1}∞.
The class of all sequences that have a word x as a common prefix is called the cylinder
generated by x and is denoted by x{0, 1}∞. For a set W , let W{0, 1}∞ be the union
of all the cylinders x{0, 1}∞ where the word x is in W .

We write Prob[.] for probability measures and E[.] for expected values. Unless
stated otherwise, all probabilities refer to the uniform measure (or Lebesgue measure)
on Cantor space, which is the probability distribution obtained by choosing the in-
dividual bits of a sequence by independent tosses of a fair coin. Usually we write
Prob[A satisfies . . . ] instead of Prob[{A ∈ {0, 1}∞ : A satisfies . . . }] in case it is
understood from the context that the measure is with respect to A.

Logarithms are to base 2. The function 〈., .〉 from N×N to N is the usual effective
and effectively invertible pairing function [42].
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2. The hat problem and error-correcting codes. This section features the
hat problem, which asks for guessing a single bit of a randomly chosen finite sequence
from the remaining bits, a problem that resembles the task of i.o. autoreducing random
infinite sequences. Subsequently, in constructions that solve the latter task, the hat
problem and its solution are used as a basic module. The hat problem is formulated
as a puzzle, and as such has received some attention in the public [14, 35, 37].

The hat problem.

In the hat problem for a team of n players, a binary sequence of n bits
is chosen by independent tosses of a fair coin. Player i is assigned
the ith bit (or, equivalently, is assigned one of two possible hat colors
according to this bit).
Afterwards, each player may cast a guess on its own bit (or may
abstain from guessing) under the following conditions. The players
know the bits of all other players but not their own bit. Once the
game begins, the players are neither allowed to communicate nor do
they know whether the other players have already guessed. However,
the players can meet for a strategy session before the game begins.
The team wins if and only if there is at least one correct and no
incorrect guess.

At first sight, since each player may observe only events that are independent of his
own hat color, one might expect that the team should have no more than a 50% chance
of winning. However, since they converse before the game, we demonstrate how
collaboration can increase their chances.

Example 2.1. Consider the hat problem with n = 3 players, and suppose the
team agrees on the following guessing strategy. Upon the start of the game, each player
observes the hats of his two teammates. If both hats have the same color, then the
player guesses his hat is colored differently. However, if the hats have different colors,
then he passes.

To compute the chances for a win under this strategy, we distinguish two cases.
The first case occurs when all three hats have the same color, i.e., for two out of the
8 equiprobable assignments. In this case, each player will incorrectly guess. The second
case is exactly two of the three hats are colored the same. Here exactly one player will
venture a guess; this guess is correct, and the team wins. Hence the probability of
winning using the above strategy is 1− 2/8 = 3/4.

Next we want to extend the solution to the hat problem with three players given
in Example 2.1 to other team sizes. For a given team size n, identify assignments
of colors with words of length n in the natural way; i.e., the players are numbered
from 1 to n, and the jth bit of the word represents player j’s hat color. The word
that represents the actual assignment of colors is called the true word. With the true
word understood, there are exactly two words of length n that agree with player j’s
view: the true word and the word that differs from the true word exactly at the jth
position. Call these two words the consistent words of player j.

Specifying a strategy amounts to determining for any player and for any possible
pair of consistent words for this player whether the player should cast a vote and, if
yes, in favor of which of the two consistent words. This means that a strategy can be
pictured as a directed graph G in the following way. The nodes of the graph are just
the possible assignments, i.e., the words in {0, 1}n. The graph contains an edge from
u to v if and only if these two nodes may occur as the consistent nodes of some player,
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and in this situation the player votes in favor of v. Formally, we have G = (V,E)
where

V = {0, 1}n, E ⊆ {(u, v) | u and v differ exactly in one position },
and for any pair u and v of nodes in V , at most one of the edges (u, v) and (v, u) is
in E.

Consider any strategy and its associated graph, and assume that the strategy is
applied in a situation where the true word is u. The team wins if according to the
given strategy some player casts a vote in favor of u but no player guesses in favor of
a word different from u. In terms of the associated graph, this means that the team
wins on the assignment u if and only if

some edge is pointing to u and no edge is pointing away from u.(2.1)

From this characterization of winning assignments we obtain an equivalent formulation
of the hat problem as a network problem, which is stated in Remark 2.2. Afterwards,
we construct solutions to this network problem and translate them back to the hat
problem. The point in considering the network problem is that the way its solutions
work is more easily understood than for the hat problem.

Remark 2.2. The hat problem can be reformulated as a problem on communi-
cation networks with a hypercube topology, where the nodes of the network correspond
to the possible assignments of hat colors to the players.

In order to obtain an equivalent version of the hat problem with n players, we
consider a network of 2n processors or nodes. The nodes are connected according to
a hypercube topology [25]. That is, each node is labelled by a unique word of length n,
and between any two distinct nodes there is a link if and only if their labels differ in
exactly one bit. The links are capable of transmitting information in either direction
but only in one direction at a time. The task is to give a pattern of communication
such that there is a maximum number of nodes u such that

some node is sending to u and u is not sending to any node.(2.2)

A pattern of communication specifies for each link either the status idle or an orien-
tation, i.e., one of the two possible directions of sending.

Any pattern of communication translates naturally into a strategy for the hat
problem with n players and vice versa. Furthermore, under this translation the fraction
of nodes that satisfy (2.2) coincides with the success probability of the strategy. For
a proof of the two latter assertions it suffices to observe that the representation of a
strategy as directed graph is essentially identical to a pattern of communication and
to compare the conditions (2.1) and (2.2).

Example 2.3. The solution of the hat problem with n = 3 players from Exam-
ple 2.1 translates as follows into a solution of the network problem. The network has
a hypercube topology with 23 nodes, and the pattern of communication specifies that

exactly the nodes 000 and 111 are sending, and each of them sends
to all its neighbors in the hypercube.

This way every processor u with a label different from 000 and 111 is receiving but
does not send and thus satisfies (2.2).

In order to extend the solution to the network problem given in Example 2.3
to larger networks, we review some notation and facts from coding theory. The
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(Hamming) distance d(u, v) between two words u and v of identical length is the
number of positions at which u and v differ. Furthermore, the unit ball with center u
is the set of all words that have the same length as u and differ from u at most at one
position, i.e., the set

{v : d(u, v) ≤ 1} .
The surface of a unit ball is just the ball with its center removed.

In the network problem, the set of neighbors of a node w coincides with the surface
of the unit ball centered at w. Accordingly, the solution to the network problem from
Example 2.3 can be reformulated as follows.

Exactly the nodes 000 and 111 are sending, and each of them sends
to all nodes on the surface of the unit ball centered at this node.

The easy idea underlying this solution works also for networks where the parameter n
is larger than 3. Just select a subset C of all words of length n, and let each node
(labelled by a word) in C send to all nodes that are on the surface of the unit ball
centered at this node but are not in C themselves. If, for example, we choose the set C
such that the unit balls around the words in C are disjoint, then exactly the nodes on
the surfaces of these unit balls satisfy (2.2); i.e., these are the nodes that receive but
do not send. The fraction of such nodes becomes maximum among all corresponding
choices of C in case the unit balls around the words in C partition the set of all words
of the given length. Such partitions are studied in coding theory under the name of
perfect one-error-correcting codes.

Definition 2.4. Any subset of {0, 1}n is called a code with (codeword) length n.
A code C with length n is called perfect one-error-correcting if the unit balls around
the codewords in C form a partition of {0, 1}n (i.e., if for any word w of length n
there is exactly one word c ∈ C such that d(w, c) ≤ 1).

For any perfect one-error-correcting code of length n, the number of all words 2n

must be divisible by the unit ball volume n+1; hence n+1 must be a power of 2. It
is well known that this necessary condition on the codeword length is also sufficient
[22, 45].

Fact 2.5. Let n be of the form 2k − 1 where k > 0 is a natural number. Then
there is a perfect one-error-correcting code Cn of codeword length n. Furthermore,
the codes Cn can be chosen such that their union

⋃
{n:n=2k−1} Cn is decidable in

polynomial time. For example, such codes are given by the well-known family of
binary Hamming codes [45].

Proof. We identify words and binary vectors in the obvious way; hence the words
of any given length form a vector space under addition modulo 2 and over the field
with two elements. Let M be the k×n binary matrix where for i = 1, . . . , n, column i
of M is the binary representation of the number i. The matrix M defines a linear
mapping w �→ Mw from words of length n to words of length k. Let Cn denote the
kernel space of this mapping, i.e., the set of all words that are mapped to 0k. Then
Cn is a perfect one-error-correcting code of length n.

For a proof, first observe that trivially every word in the kernel has length n.
Second, any word w of length n is contained in a unit ball centered at a word in Cn.
In case Mw is zero, this is obvious. Otherwise, Mw appears as a column of M , say, as
column j, hence flipping the jth bit of w results in a word in Cn. Third, the unit balls
centered at the words in Cn are mutually disjoint. Fix any two distinct words u and v
in Cn. Then M maps both u and v to 0k, and, by linearity of matrix multiplication,
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the same holds for u−v. On the other hand, M(u−v) is just the sum over all column
vectors j of M such that u and v differ at the jth position. Now the sum over one or
over two distinct column vectors of M cannot be equal to 0k; hence d(u, v) ≥ 3, and,
in particular, the unit balls centered at u and v must be disjoint. (The third item is
a special form of a well-known result in coding theory that the minimum distance of
a code which is the kernel space of some matrix M is equal to d, where d is the least
number for which there are d linearly dependent column vectors of M . In our case it
is easy to check that M has three linearly dependent vectors, but not two. Thus Cn
has a minimum distance of 3.)

Finally, the problem of deciding if a word belongs to
⋃
{n:n=2k−1} Cn can be solved

in polynomial time, as essentially it involves only multiplying the input with a matrix
that has moderate size and is easy to compute.

Remark 2.6 summarizes the application of error-correcting codes to the hat prob-
lem and the related network problem.

Remark 2.6. Let n be of the form 2k − 1 for some natural number k > 0, and
consider the hat problem and the network problem with parameter n. Fix a perfect
one-error-correcting code of code word length n, and call the words in this code, as
well as the nodes labelled by these words, designated.

A solution to the network problem is given by the following pattern of communi-
cation. By Remark 2.2, under this pattern of communication exactly the nodes that
are not designated satisfy (2.2).

Every designated node sends to all its neighbors in the hypercube; the
other nodes do not send.
(That is, every designated node w sends to all nodes on the surface
of the unit ball centered at w.)

A solution to the hat problem with n players is given by the strategy where each
player behaves according to the following rule. By Remark 2.2, under this strategy the
team wins exactly for the assignments that are not designated.

In case one of the consistent words is a designated word, venture
a guess according to the assumption that the true word is the other
consistent word; otherwise, pass.
(That is, in case the consistent words are a designated word w and
a word on the surface of the ball centered at w, guess in favor of the
consistent word on the surface, i.e., the one different from w.)

The fraction of designated words is 1/(n + 1) because the balls centered at the des-
ignated words partition {0, 1}n, and each such ball consists of one designated and
n other words. Hence if this strategy is applied in the hat problem with n players, the
team wins with probability 1− 1/(n+ 1).

Example 2.7. Consider the hat problem with n = 7 players. For the strategy
described in Remark 2.6, the codewords comprise a fraction of 1/8 of the 128 words
in {0, 1}7; hence there are 16 codewords and 112 error words, and the team wins with
probability 112/128 = 0.875.

In the network problem with parameter n, a node can send at most to n other
nodes; hence, among all nodes that send or receive, at least a fraction of 1/(n + 1)
nodes must send. The pattern of communication described in Remark 2.6 achieves
this bound and thus is an optimum solution to the network problem; hence by the dis-
cussion in Remark 2.2 also the corresponding strategy for the hat problem is optimum.
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Remark 2.8 contains an alternate, somewhat more formal proof for the optimality of
this strategy, which features the idea that for any strategy the expected number of
correct and incorrect guesses is the same.

Remark 2.8. Let n be of the form n = 2k−1. For the hat problem with n players,
the probability of success of 1− 1/(n+1) that is achieved by the strategy described in
Remark 2.6 is optimum.

For a proof, fix any strategy. Recall that the colors of the hats are assigned accord-
ing to independent tosses of a fair coin; hence, whenever the strategy tells a player to
guess, the probability of a correct guess is exactly 1/2. As a consequence, the expected
number of correct and incorrect guesses per player is the same, and, by linearity of
expectation, the same holds for the entire team; i.e., if we define the random variables
gc and gi as equal to the number of correct and incorrect guesses, respectively, for
the entire team, their expected values E[gc] and E[gi] coincide. Furthermore, if the
strategy considered has probability of success of p, then we have

p ≤ E[gc] = E[gi] ≤ (1− p)n.(2.3)

In (2.3), the equation holds by the preceding discussion, the left-hand inequality follows
because for each assignment that leads to a win there must be at least one correct guess,
and the right-hand inequality holds because for any winning assignment there is no
wrong guess, while for any other assignments there are at most n wrong guesses. So
we have p ≤ (1− p)n, and by rearranging we obtain p ≤ 1− 1/(n+ 1).

Lenstra and Seroussi [26] discuss applications of coding theory to the hat problem.
They investigate good strategies for numbers of players that are not of the form 2k−1
and for more general versions of the hat problem with more than two colors. For the
hat problem with two colors, they show that strategies are equivalent to covering
codes. Their observation is reviewed in Remark 2.9, where we give an equivalent
formulation in terms of communication patterns for the network problem.

Remark 2.9. A code of length n is called a covering code (more precisely, a
1-covering code) if any word of length n differs at most at one position from some
word in the code. For example, perfect one-error-correcting codes are covering codes;
however, in general the unit balls centered at the words in a covering code are not
mutually disjoint.

Given a pattern of communication for the network problem with parameter n, let
C be the set of all nodes that do not satisfy (2.2); i.e., C contains the nodes that
are sending or are neither sending nor receiving, and the complement of C contains
the nodes that receive but do not send. Then C is a covering code because the nodes
not in C are receiving; hence each such node must be at distance at most 1 from a
sending node, which then must be a node in C. Conversely, given any covering code
of length n, there is a pattern of communication where every node in C sends to all
its neighbors that are not in C themselves. With this pattern, exactly the nodes that
are not in C satisfy (2.2).

3. Random sequences. This section gives a brief introduction to the theory of
effective measure. We focus on effective random sequences and related concepts that
are used in the following. For more comprehensive accounts of effective measure we
refer the reader to the references [5, 6, 29].

Imagine a casino that offers roulette, and consider the sequence of outcomes
red and black that occur in the course of the game. We would certainly not call
this sequence random if there were a method to determine any next bit before the
corresponding drawing has actually taken place. But also if we just knew a strategy
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that guarantees winning an unbounded amount of money when starting with finite
initial capital, this would indicate that the sequence is nonrandom. So we might
be tempted to call a sequence nonrandom if there is such a strategy. The problem
with this definition is that for any sequence there is a strategy that wins against this
sequence, e.g., the one that works by always predicting correctly the next bit of the
sequence. However, the latter is not a problem for real casinos because for them a
sequence is “random enough” if it does not permit a winning strategy that a gambler
can actually play. In general, this suggests defining randomness relative to a certain
class of admissible betting strategies instead of striving for an absolute concept. In
what follows, the admissible betting strategies are just the ones that are computable
in a specific model of computation. A sequence is called random with respect to
such a model of computation if none of the admissible betting strategies leads to an
unbounded gain when playing against this sequence.

In order to formalize the ideas of the preceding paragraph, consider the following
gamble. Imagine a player that successively places bets on the individual bits of an
unknown sequence A. The betting proceeds in rounds i = 1, 2, . . . . During round i,
the player receives as input the length i−1 prefix of A and then, first, decides whether
to bet on the ith bit being 0 or 1 and, second, determines the stake that shall be bet.
The stake might be any fraction between 0 and 1 of the capital accumulated so far;
i.e., in particular, the player is not allowed to incur debts. Formally, a player can be
identified with a betting strategy

b : {0, 1}∗ → [−1, 1]
where on input w the absolute value of b(w) is the fraction of the current capital that
shall be at stake, and the bet is placed on the next bit being 0 or 1 depending on
whether b(w) is negative or nonnegative.

The player starts with positive, finite capital. At the end of each round, in case
of a correct guess, the capital is increased by that round’s stake and, otherwise, is
decreased by the same amount. So given a betting strategy b, we can inductively
compute the corresponding payoff function db by applying the equations

db(w0) = db(w)− b(w) · db(w), db(w1) = db(w) + b(w) · db(w).
Intuitively speaking, the payoff db(w) is the capital the player accumulates until the
end of round |w| by betting on a sequence that has the word w as a prefix. The payoff
function db satisfies the fairness condition

db(w) =
db(w0) + db(w1)

2
.(3.1)

We call a function d from words to nonnegative reals a martingale if and only if
d(λ) > 0 and d satisfies the fairness condition (3.1), with db replaced by d, for all
words w. By the discussion above, for a betting strategy b the function db is always
a martingale, and, conversely, it can be shown that every martingale has the form db
for some betting strategy b. Hence betting strategies and martingales are essentially
equivalent. Accordingly, we extend occasionally notation defined for betting strategies
to martingales and vice versa.

Definition 3.1. A betting strategy b succeeds on a sequence A if the correspond-
ing martingale db is unbounded on the prefixes of A, i.e., if

lim sup
n∈N

db(A|{0, . . . , n}) = ∞.
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In what follows, we will consider computable betting strategies. Any computable
betting strategy b is confined to rational values, and there is a Turing machine that
on input w outputs some appropriate finite representation of b(w).

Computable betting strategies are not only of interest in connection with the
definition of random sequences but are also the basis of the theory of effective measure.
A betting strategy is said to succeed on or to cover a class if and only if it succeeds on
every sequence in the class. Ville demonstrated that a class has uniform measure 0 if
and only if the class can be covered by some, not necessarily effective, betting strategy
[6, 47]. This result justifies the following notation. A class has measure 0 with respect
to a given class of betting strategies if and only if it is covered by some betting strategy
in the class. By appropriately restricting the class of admissible betting strategies, one
obtains restricted concepts of measure 0 classes, which are useful when investigating
classes occurring in recursion theory or complexity theory. Most of these classes are
countable and hence have uniform measure 0; i.e., from the point of view of uniform
measure all these classes have the same size. However, given a specific class C, we
might try to restrict the class of admissible betting strategies such that the resulting
concept of measure 0 class is interesting in the sense that we can still cover relevant
subclasses of C but not the class C itself. In the context of recursion theory, this led
to the consideration of computable betting strategies [5, 39, 40, 43, 48]. In connection
with complexity classes one imposes additional resource bounds [6, 28, 29, 31]; e.g.,
in the case of the class E of sequences that can be computed in deterministic linear
exponential time, i.e., in time 2O(n), Lutz proposed using betting strategies that are
computable in polynomial time.

Remark 3.2. The resources needed to compute a betting strategy are measured
with respect to the length of the input w; for example, a betting strategy b is computable
in polynomial time if b(w) can be computed in time |w|c for some constant c.

A prefix w of a sequence A encodes A(s0) through A(s|w|−1), and accordingly on
input w, a betting strategy determines a bet on whether x = s|w| is in the unknown
sequence or not. Observe that the length of x is approximately log |w|; thus, for
example, a time bound |w|c translates to a time bound of the form 2O(|x|).

After this short digression to effective measure theory we return to the endeavor
of defining concepts of random sequences via restricted classes of betting strategies.

Definition 3.3. A sequence is rec-random if no computable betting strategy
succeeds on it. A sequence is p-random if no betting strategy that is computable in
polynomial time succeeds on this sequence.

Besides p-random and rec-random sequences, we will consider Martin-Löf ran-
dom sequences [30]. Let W0,W1, . . . be the standard enumeration of the computably
enumerable sets [42].

Definition 3.4. A class N is called a Martin-Löf null class if and only if there
exists a computable function g : N→ N such that for all i

N ⊆Wg(i){0, 1}∞ and Prob[Wg(i){0, 1}∞] < 1

2i
.

For such a function g, the sequence Wg(0),Wg(1), . . . is called a Martin-Löf null cover
for N . A sequence is Martin-Löf random if it is not contained in any Martin-Löf null
class.

Martin-Löf random sequences have been characterized in terms of martingales by
Schnorr [40]. A sequence is Martin-Löf random if and only if it cannot be covered
by a subcomputable martingale. A martingale d is subcomputable if and only if there
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is a computable function d̃ in two arguments such that for all words w, the sequence
d̃(w, 0), d̃(w, 1), . . . is nondecreasing and converges to d(w).

Remark 3.5. For any sequence X we have

X Martin-Löf random ⇒ X rec-random ⇒ X p-random,(3.2)

and both implications are strict.
The first implication in (3.2) is immediate by the characterization of Martin-

Löf random sequences in terms of subcomputable martingales and the observation
that for a computable betting strategy the corresponding martingale is computable,
too. Likewise, the second implication follows from the definitions of rec-random and
p-random sequences in terms of computable and polynomial-time computable betting
strategies. Furthermore, the second implication is strict because one can construct a
computable p-random sequence by diagonalizing against an appropriate weighted sum
of all betting strategies that are computable in polynomial time. The strictness of
the first implication was implicitly shown by Schnorr [40]. For a proof, it suffices to
recall that the prefixes of a Martin-Löf random sequence cannot be compressed by more
than a constant [27, Theorem 3.6.1] while a corresponding statement for rec-random
sequences is false [27, 33].

By definition, a class N has uniform measure 0 if the condition in Definition 3.4
is satisfied for some arbitrary sequence of sets V0, V1, . . . in place of Wg(0),Wg(1), . . . .
Thus the concept of a Martin-Löf null class is indeed an effective variant of the classical
concept of a class that has uniform measure 0. In particular, any Martin-Löf null class
has uniform measure 0. By σ-additivity and since there are only countably many
computable functions, the union of all Martin-Löf null classes has uniform measure 0.
Accordingly, the class of Martin-Löf random sequences, and hence by Remark 3.5 also
the classes of rec-random and of p-random sequences, have uniform measure 1. We
note in passing that it can be shown that the union of all Martin-Löf null classes is
again a Martin-Löf null class [17, section 6.2].

We conclude this section by describing a standard technique for the construction
of betting strategies.

Remark 3.6. Let I be a finite set, and let Θ be a subset of all partial charac-
teristic functions with domain I. Then there is a betting strategy that, by betting on
places in I, increases its capital by a factor of 2|I|/|Θ| for all sequences B where the
restriction of B to I is in Θ.

The betting strategy is best described in terms of the corresponding martingale.
The martingale takes the capital available when betting on the least element of I and
distributes it evenly among the elements of Θ, and then computes values upwards
according to the fairness condition for martingales.

4. Autoreducibility. For the moment, call a sequence X autoreducible if there
is an effective procedure that on input x computes X(x) while having access to the
values X(y) for y �= x. Intuitively speaking, for an autoreducible sequence the infor-
mation on X(x) is not only stored at x but can also be effectively recovered from the
remainder of the sequence. For example, any computable sequence is autoreducible,
and for an arbitrary sequence Y , the sequence Y (0)Y (0)Y (1)Y (1) . . . is autoreduc-
ible. In a recursion theoretic setting, the concept of autoreducibility was introduced
by Trakhtenbrot [44]. Further investigations showed, among other results, that au-
toreducibility is tightly connected to the concepts of mitoticity and introreducibility
[8, 18, 23, 24]. The concept of autoreducibility was transferred to complexity theory
by Ambos-Spies [2], and subsequently resource-bounded versions of autoreducibility
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have been studied by several authors [10, 15, 16, 46]. Self-reducibility is a special
form of autoreducibility where only queries less than the current input may be asked
[11, 41]; it can be shown that certain forms of self-reducibility characterize certain
types of generic sets [3, 4, 13].

Now consider the question of whether a random sequence can be autoreducible.
By definition, the bits of an autoreducible sequence depend on each other in an ef-
fective way. This suggests that by exploiting the dependencies, we might come up
with an effective betting strategy that succeeds on this sequence. Indeed Martin-Löf
random sequences are never autoreducible, and, similarly, rec-random sequences are
not autoreducible by reductions that are confined to nonadaptive queries; see Corol-
lary 6.5 below.

Pushing the issue further, we might ask whether for a random sequence R it
is at least possible to recover some of the values R(x) from the values R(y) with
y �= x. Trivially, this is possible for finitely many places x, so let us consider the
case of infinitely many x. For the moment, call a sequence X i.o. autoreducible if
there is an effective procedure that for infinitely many inputs x computes X(x) while
having access to the values X(y) for y �= x, whereas for all other inputs the procedure
eventually signals that it cannot compute the correct value. For example, any sequence
that, if viewed as a set, has an infinite computable subset is i.o. autoreducible; hence,
in particular, any sequence that corresponds to an infinite computably enumerable set
is i.o. autoreducible. Observe that by a standard diagonalization argument of finite
extension type, one can easily construct a sequence that is computable in the halting
problem and is not i.o. autoreducible.

For an i.o. autoreducible sequence R there are infinitely many places x where the
value of R(x) depends in an effective way on the remainder of the sequence R. On
first sight, the situation looks rather similar to the case of an autoreducible sequence,
and indeed it is tempting to assume that random sequences cannot be i.o. autore-
ducible. So the following result is somewhat surprising. Every p-random sequence is
i.o. autoreducible by a reduction procedure that runs in polynomial time. This and
related results are demonstrated in section 5. In the remainder of this section, we
give formal definitions for various concepts of autoreducibility.

Recall the concept of an oracle Turing machine [11], which is a Turing machine
that during its computation has access to a sequence X, the oracle. In case an
oracle Turing machine M eventually terminates on input x and with oracle X, let
M(X,x) denote the computed value and, otherwise, i.e., if M does not terminate, say
that M(X,x) is undefined. But rather than use standard oracle machines M whose
defined outputs M(X,x) belong to {0, 1}, we also allow the machines to output a
special “don’t-know-symbol” ⊥, which has the intended meaning of signaling that the
correct value is not known.

Definition 4.1. Let M be an oracle Turing machine (with output in {0, 1,⊥}),
and let A, B, and E be sequences. Then M reduces A to B on E if and only if

(i) M(B, x) = A(x) for all x, where M(B, x) �= ⊥, and
(ii) M(B, x) �= ⊥ for all x ∈ E.

If an oracle Turing machineM reduces a sequence A to a sequence B on an infinite
set, we say that M infinitely often reduces or, for short, i.o. reduces A to B. If M
reduces A to B on the set of all words, we say that M reduces A to B. Obviously, the
latter notion coincides with the usual concept of reduction by a {0, 1}-valued oracle
Turing machine, where it is required that M(B, x) agrees with A(x) for all x.
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Definition 4.2. Let M be an oracle Turing machine, let A be a sequence, and
let E be a set. The set of query words occurring during the computation of M on
input x and with oracle A is denoted by Q(M,A, x).

The sequence A is autoreduced on set E by M if M reduces the sequence A to
itself on E and x /∈ Q(M,A, x) for all x. The sequence A is i.o. autoreduced by M
if A is autoreduced by M on an infinite set. The sequence A is autoreduced by M if
A is autoreduced by M on the set of all words.

Next we define concepts of autoreducibility that correspond to the standard effec-
tive reducibilities considered in recursion theory [42] and to the standard reducibilities
computable in polynomial time considered in complexity theory [11]. More precisely,
for

r ∈ {T, tt,btt,btt(k),p-T,p-tt,p-btt,p-btt(k)},

we define the concepts of r-autoreducibility on a set E, of i.o. r-autoreducibility, and
of r-autoreducibility.

For a start, we consider Turing- or, for short, T-autoreducibility. A sequence is T-
autoreducible on E if it can be autoreduced on E by some oracle Turing machine M .
A sequence is i.o. T-autoreducible if it is T-autoreducible on an infinite set, and a
sequence is T-autoreducible if it is T-autoreducible on the set of all words.

The definitions for the remaining cases are basically the same; however, the oracle
Turing machine M that performs the autoreduction has to, in addition, satisfy certain
requirements. In particular, in the followingM must always be total; i.e., on all inputs
and for all oracles, M must eventually finish its computation. In the case of truth-table
autoreducibility (tt), M has to ask its queries nonadaptively; i.e., M computes a list
of queries that are asked simultaneously, and, after receiving the answers, M is not
allowed to access the oracle again. In the case of bounded truth-table autoreducibility
(btt), the queries have to be asked nonadaptively, while the number of queries that
might be asked on a single input is bounded by a constant. Even more restrictive, in
the case of btt( k)-autoreducibility the number of nonadaptive queries is bounded by
the fixed constant k. The concepts of polynomial time-bounded autoreducibility like
p-T- or p-tt-autoreducibility are defined accordingly where it is required in addition
that M runs in polynomial time.

We conclude this section with some technical remarks on the representation of
oracle Turing machines. By definition, tt-autoreductions are performed by total oracle
Turing machines that query the oracle nonadaptively. Such an oracle Turing machine
can be conveniently represented by a pair of computable functions g and h where g(x)
gives the set of words queried on input x and h(x) specifies how the answers to the
queries in the set g(x) are evaluated; i.e., h(x) tabulates a {0, 1,⊥}-valued function
over |g(x)| variables. In this situation we refer to h(x) as a truth-table. Likewise,
oracle Turing machines that witness a p-btt-autoreduction can be represented by pairs
of functions g and h that are computable in polynomial time (whereas in general this is
not possible for p-tt-autoreductions because the size of the corresponding truth-tables
may be exponential in the input length).

Remark 4.3. Alternative to the {0, 1,⊥}-valued oracle Turing machine model,
one could use the standard model, in that rather than output “don’t-know,” the Turing
machine would simply query the oracle about the value of x and output that value. This
formulation was originally used by Ebert [19]; a similar model is used by Arslanov [8],
with different notation and in the special case of a weak truth-table reduction that
infinitely often queries the oracle only at places strictly less than the current input.
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We emphasize that the results of this paper hold for both the {0, 1,⊥}-valued and
the standard model; the main motivation for adopting the former is that it complies
better with the usual classification of reducibilities according to whether they query
the oracle adaptively or nonadaptively; i.e., the definitions of the various concepts of
i.o. autoreducibility of truth-table type preserve the idea of accessing the oracle only
once.

5. Autoreductions of random sequences. Next we apply the solution of the
hat problem as discussed in section 2 to the construction of i.o. autoreductions of
rec-random sequences.

Theorem 5.1. Every rec-random sequence is i.o. tt-autoreducible.

Proof. Fix any rec-random sequence R. Partition the natural numbers into con-
secutive intervals I1, I2, . . . where Ik has size lk = 2k − 1. Write R in the form

R = w1w2 . . . where for all k, |wk| = lk ;

i.e., wk is the word associated with the restriction of R to Ik. Furthermore, for every
k > 0 fix a perfect one-error-correcting code Ck of codeword length lk such that
given x, we can decide in polynomial time whether x is in one of the codes Ck.

In a nutshell, the proof of Theorem 5.1 works as follows. The code words in Ck
comprise such a small fraction of all words of length lk that in case infinitely many
words wk were in Ck there would be a computable betting strategy that succeeds
on R. But R is assumed to be rec-random; hence wk is not in Ck for almost all k.
Then in order to construct an oracle Turing machine that witnesses that R is i.o. tt-
autoreducible, we handle the intervals Ik individually and when working on Ik, we
simulate the solution of the hat problem with lk players. This way we can compute
R(x) for a single place x in Ik whenever wk is not in Ck. But the latter is the case
for almost all k; thus we are able to autoreduce R as required. Details follow.

Claim 1. For almost all k, wk is not in Ck.

Proof. Consider the following betting strategy. For every k > 0, a portion
ak = 1/2k of the initial capital 1 is exclusively used for bets on words in the in-
terval Ik. On each interval Ik, the betting strategy follows the strategy described in
Remark 3.6, where Ck plays the role of Θ; i.e., the capital ak is bet on the event that
(the word associated with) the restriction of the unknown sequence to Ik is in Ck.
By construction, just a fraction of ak = 1/(lk + 1) of all words of length lk belongs
to Ck; hence the capital ak increases to 1 for all k such that the restriction of the
unknown sequence to Ik is in Ck. As a consequence, the betting strategy succeeds on
any sequence such that for infinitely many k, the restriction of the sequence to the
interval Ik is an element of Ck. But no computable betting strategy can succeed on
the rec-random sequence R; hence Claim 1 follows.

Observe that the proof of Claim 1 depends on the choice of the lk only insofar as
it is required that the sum over the ak, where ak = 1/(lk + 1), converges.

Next we define an oracle Turing machine M that witnesses that R is i.o. tt-
autoreducible. By Claim 1, fix k0 such that wk is not in Ck for all k > k0. On inputs
in the intervals I1 through Ik0 , M simply outputs ⊥. On any input x in an interval Ik
with k > k0, M queries the oracle nonadaptively on all words in Ik that are different
from x. Thereby M determines two words, u′ and u′′, and knows that wk is equal to
one of the words

v0 = u′0u′′ and v1 = u′1u′′ ,
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where the uncertainty is with respect to the value of R(x). Then M outputs i in case
v1−i ∈ Ck and vi /∈ Ck, and, otherwise, i.e., if neither v0 nor v1 is in Ck, M outputs ⊥.

By construction, M is computable, queries its oracle nonadaptively, and never
queries its oracle at the input. On intervals Ik with k ≤ k0, M always outputs ⊥.
On any interval Ik with k > k0, M simulates the strategy for the hat problem with
lk players from Remark 2.6 where Ck is the set of designated words. For any such
interval, wk is not in Ck by choice of k0; hence the discussion in section 2 shows that
M computes the correct value R(x) at the single input x in the interval at which wk
differs from the closest code word in Ck, while M outputs ⊥ for all other inputs in
the interval. In summary, M i.o. tt-autoreduces R.

Subsequently, the statement of Theorem 5.1 will be strengthened in various ways.
As an immediate improvement, we note that the proof of Theorem 5.1 can be adjusted
in order to obtain the following stronger but also more technical version of the theorem.
Given a computable function t, we call a sequence t(m)-random if no betting strategy
that is computable in time O(t(m)) succeeds on this sequence, where m denotes the
length of the prefix of the unknown set that a betting strategy receives as input.

Theorem 5.2. Let q : N → N be an unbounded and nondecreasing computable
function. Every m2-random sequence is i.o. tt-autoreducible by an oracle Turing ma-
chine M that on inputs of length n runs in time O(n) and asks at most q(n) queries.

Proof. The proof of Theorem 5.2 is rather similar to the proof of Theorem 5.1.
We just indicate the necessary adjustments. Recall that the i.o. tt-autoreductions, as
well as the betting strategy in the proof of Theorem 5.1 are built up from modules
that work essentially independently on the intervals Ij . The key trick in the proof
of Theorem 5.2 is to shift the intervals such that the length of the words contained
in them are considerably larger than the length of the corresponding interval. More
precisely, the interval Ik contains the first lk words of length nk, where the sequence
n0, n1, . . . is chosen such that we have for all k,

(i) 2nk < nk+1 , (ii) 2lk < nk , (iii) lk < q(nk).

In addition, we assume that there is a Turing machine that on input 1n uses at most
n steps to decide whether n appears in the sequence n0, n1, . . . and if so to compute
the index k with n = nk. Such a sequence can be obtained by standard methods as
described in the chapter on uniform diagonalization and gap languages in Balcázar,
Dı́az, and Gabarró [11]. For example, we can first define a sufficiently fast growing
time-constructible function r : N → N and then let ni be the value of the i-fold
iteration of r applied to 0.

Similar to Claim 1 in the proof of Theorem 5.1, we can argue that for any m-
random sequence R and for almost all k, the restriction wk of R to the interval Ik is
not in the code Ck. Otherwise, there would be a betting strategy similar to the one
used in the proof of the mentioned claim that wins on R; i.e., on any interval Ik the
strategy bets a fraction of 1/2k of its initial capital on the event that wk is in Cn. By
choice of the nk, this strategy can be chosen to run in time m2. Recall in connection
with this time bound that the individual bets are specified as a fraction of the current
capital; hence placing the bets related to interval Ik requires computing the outcomes
of the bets on the previous intervals.

The sequence R is then i.o. tt-autoreducible by a reduction that simulates the
solution to the hat problem on every interval Ik where wk is not in Ck. On an input
of length n, this reduction runs in time n and asks at most q(n) queries because of
(ii) and (iii), respectively.
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For a proof of the following corollary it suffices to observe that p-random se-
quences are in particular m2-random, while every m2-random sequence in turn is
i.o. tt-autoreducible in polynomial time according to Theorem 5.2.

Corollary 5.3. Every p-random sequence is i.o. p-tt-autoreducible.
The next theorem shows that neither Theorems 5.1 and 5.2 nor Corollary 5.3

extends to i.o. btt-autoreducibility; i.e., the proofs of these results require oracle
Turing machines that ask an unbounded number of queries.

Theorem 5.4.
(a) No rec-random sequence is i.o. btt-autoreducible.
(b) No p-random sequence is i.o. p-btt-autoreducible.
Proof. (a) Fix any sequence A that is i.o. btt-autoreducible. It suffices to show

that A is not rec-random, i.e., that there is a computable betting strategy b that
succeeds on A.

Among all oracle Turing machines M = (g, h) that i.o. btt-autoreduce A, we will
consider only the ones that are normalized in the sense that the set of queries g(x) is
empty whenever the truth-table h(x) is constant (i.e., whenever h(x) evaluates to the
same value for all assignments on g(x)). Furthermore, among all normalized oracle
Turing machines that i.o. btt-autoreduce A, let M = (g, h) be one such that its norm

l = sup
x∈{0,1}∗

|g(x)|

is minimum. In case l = 0, M is independent of the oracle, and we can compute A(x)
for the infinitely many places x where the reduction does not yield ⊥; hence A is not
rec-random, and we are done. So assume l > 0.

For any word x, there is a word r(x) > x such that g(r(x)) has size l and contains
only words strictly larger than x. Assuming otherwise, by hard-wiring A(z) into M
for all z ≤ x and for all z that are contained in one of the sets g(y) with y ≤ x, we
would obtain an oracle Turing machine that again btt-autoreduces A and has norm
strictly smaller than M , thus contradicting the choice of M . Let x1 be the least
word x such that g(x) has size l and for s > 1, let

xs+1 = r(max Js) where Js = {xs} ∪ g(xs) .

By choice of r, this inductive definition yields an infinite sequence x1, x2, . . . such that
the function s �→ xs is computable, the sets Js all have size l + 1, and any element
of Js is less than any element in Js+1.

Consider an arbitrary index s. Then h(xs) is not constant because g(xs) has size
l > 0 and M is normalized. Thus there is an assignment on g(xs) such that h(xs)
evaluates to a value different from ⊥. Let α be the least such assignment, and let
is be the value obtained by applying the truth-table h(xs) to α. Extend α to an
assignment αs on the set Js where αs(xs) = 1 − is. Observe that Js and αs can be
computed from s.

We construct now a computable betting strategy b that succeeds on A. The
construction is based on the observation that for all s, the restriction of A to Js
differs from αs. Otherwise, M(A, xs) = is would differ from A(js) = 1 − is and
M would not autoreduce A.

The betting strategy b can be viewed as working in stages s = 1, 2, . . . . The bets
of stage s are all on places in Js and use the capital accumulated until the beginning
of stage s for betting against the event that the restriction of the unknown sequence
to Js is equal to αs. Formally, the bets at stage s are performed according to the
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strategy described in Remark 3.6 where Θ = Θs contains all assignments on Js that
differ from αs. The size of Js is l + 1; hence there are 2l+1 assignments to Js, and
Θs contains a fraction of

δ =
2l+1 − 1

2l+1

of all assignments on Js. As a consequence, if the unknown sequence is indeed A,
then the capital increases by the constant factor 1/δ > 1 during each stage s; hence
b succeeds on A.

(b) Fix any sequence A that is i.o. p-btt-autoreducible. Again it suffices to show
that A is not p-random, i.e., that there is a betting strategy b that is computable
in polynomial time and succeeds on A. The ideas underlying the construction of b
are similar to the ones used in the proof of assertion (a). The remaining differences
relate to the fact that b now has to be computable in polynomial time and hence
cannot perform an essentially unbounded search for places where the reduction does
not yield ⊥.

Fix an oracle Turing machine M = (g, h) that p-btt-autoreduces A. For the scope
of this proof, given a word w, we write xw for s|w|; i.e., if w is viewed as prefix of
a sequence X, then xw is the first word y such that X(y) is not encoded into w.
Furthermore, we write mw and nw for the length of w and of xw. For any word w,
let Mw be defined by

Mw(X,x) = M(〈X,w〉, x);
i.e., in order to obtain Mw, the word w is hard-wired into M by overwriting the
length mw prefix of the oracle by w. For all words w, let

J(w) = {xw} ∪ {z : z ∈ g(xw) and xw < z}.
For the scope of this proof, call a word w promising if Mw(X,xw) �= ⊥ for some
sequence X. For any promising word w, among all such sequences X let X(w) be the
one such that the restriction of X to J(w)\{xw} is minimum, and let γw be the corre-
sponding restriction. Let i(w) = Mw(X(w), xw), and extend γw to an assignment αw
on J(w) by letting αw(xw) = 1 − i(w). Similar to the proof of the first assertion we
can argue that for any promising prefix w of A, the restriction of A to J(w) differs
from αw because otherwise M did not i.o. btt-autoreduce A.

We construct now a betting strategy b that is computable in polynomial time and
succeeds on A. Define a partition I0, I1, . . . of the set of all words by

Is := {x : d(s) ≤ |x| < d(s+ 1)} where d(0) = 1, d(s+ 1) = 2d(s).

There are infinitely many promising prefixes of A because in particular any prefix w
of A where M(A, xw) �= ⊥ is promising. In what follows we assume that there are
infinitely many promising prefixes w of A such that xw is contained in one of the
even intervals I0, I2, . . . , and we omit the virtually identical considerations for the
symmetrical case where there are infinitely many promising prefixes w where xw is
contained in an odd interval.

The betting strategy b works similarly to the one used in the proof of assertion (a),
and we leave the details of its construction and verification to the reader. By definition
of the intervals Ii, we can pick an index s0 such that for all s > s0 and for all w with
xw in I2s, the set J(w) is contained in the double interval I2s∪ I2s+1. During stage s,
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the betting strategy b bets on words in this double interval as follows. If s ≤ s0 or if
there is no promising prefix v of the current input w such that xv is in I2s, abstain
from betting. Otherwise, let vs be the shortest promising prefix of w such that xv is
in I2s, and bet against the event that the restriction of the unknown sequence to J(vs)
is equal to αvs . In case the unknown sequence is indeed A, there are infinitely many
stages where the otherwise case applies, and, during each such stage, the capital
increases at least by some constant positive factor.

The proof of Theorem 5.4 actually shows that any i.o. p-btt-autoreducible se-
quence can be covered by an m2-martingale. By standard techniques [6], one can
construct an m3-martingale that covers all sequences that are covered by an m2-
martingale; hence the class of i.o. p-btt-autoreducible sequences has measure 0 with
respect to betting strategies that are computable in polynomial time.

Remark 5.5. Theorem 5.4 extends by essentially the same proof to truth-table
reducibilities that may ask an arbitrary number of queries that are strictly less than the
current input with respect to length-lexicographical ordering plus a constant number of
strictly larger queries.

6. A sharp bound on the density of guessed bits. From Theorem 5.1
we know that every random sequence is i.o. autoreducible. An interesting problem
involves finding lower and upper bounds to the frequency at which computable au-
toreductions may yield bits of a random sequence.

Definition 6.1. For all m > 0, the density ρ(E,m) of a set E up to m is defined
by

ρ(E,m) =
|E ∩ {s0 . . . sm−1}|

m
.(6.1)

An oracle Turing machine M i.o. T-autoreduces a sequence X with density r(m) if
M i.o. T-autoreduces X on a set E such that ρ(E,m) ≥ r(m) for all m > 0 (i.e., the
density of the set of words x such that M guesses X(x) is always at least r(m)).

A sequence A is called i.o. T-autoreducible with density r(m) if there is some
oracle Turing machine that i.o. T-autoreduces A with density r(m). Concepts like
i.o. tt-autoreducible with density r(m) are defined in the same manner.

Thus, autoreducibility with density r(m) measures the density of the guessed
bits of an autoreduced sequence A in the sense that the ratio of guessed bits to bits
considered is at least r(m). It should be noted that the concept of density is sort of
inverse to the previous concept of rate [19], where an autoreduction has rate r(m) if
the mth place guessed is not larger than sr(m).

We now study the question of what is the highest density a reducibility may
achieve with random sequences of a certain type. A lower bound on the achievable
density is easily obtained from the proof of Theorem 5.1, by noting that the autoreduc-
tions employed there obtain densities that depend on the length of the codewords in
the employed error-correcting codes. In Example 6.2, we state corresponding bounds
that are obtained by choosing the lengths of the codewords according to specific con-
verging sums. Afterwards, in Theorem 6.6, we improve on this bound by elaborating
the proof of Theorem 5.1.

Example 6.2. Fix any rec-random sequence R. Let j1, j2, . . . be any nondecreas-
ing computable sequence such that

∞∑
k=0

1

lk
< ∞ where lk = 2jk − 1 > 0.
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Then also the sum over the 1
lk+1 converges; hence as in the proof of Theorem 5.1

we can find perfect one-error-correcting codes Ck of codeword length lk such that the
sequence R can be written as w1w2 . . . where each word wk has length lk and almost
all wk are not in Ck. Moreover, by hard-wiring finitely many bits of R plus applying
the solution of the hat problem to the words wk, we obtain an autoreduction of R
which guesses exactly one bit of each of the words wk. In this situation, let E be the
set of the bits that are guessed correctly, and let ρ(E,m) be the density of E defined
in (6.1).

We aim at deriving upper and lower bounds for ρ(E,m). If we let i(m) be the
maximum index i such that ai = l1 + · · ·+ li ≤ m, then by construction for all m we
have

i(m)

m
≤ ρ(E,m) ≤ i(m) + 1

m
;(6.2)

i.e., in order to bound ρ(E,m) it suffices to bound i(m).
If, as in the proof of Theorem 6.6, we let lk = 2k − 1, then accordingly ai is

equal to 2i+1 − i − 2, and i(m) and ρ(E,m) are approximately logm and logm/m,
respectively. In order to improve on this density, we might try to use values for lk
that grow slower. If we fix δ > 1, the sum

∑
1/(k logδ k) converges; hence we might

choose lk as the least number of the form 2j−1 that is greater than or equal to k logδ k.
Some easy calculations, which are left to the reader, show that for almost all i, we
have i2 ≤ ai ≤ i2.001; thus, by ai(m) ≤ m ≤ ai(m)+1,

i(m)2 ≤ m ≤ (i(m) + 1)2.001 ≤ i(m)2.002 ; hence m
1

2.002 ≤ i(m) ≤ m
1
2 .

By (6.2), for almost all m the density ρ(E,m) is between m
1

2.002 /m and m
1
2 /m; i.e.,

the achieved density is approximately equal to 1/
√
m.

In what follows, we prove something much stronger than the result from Exam-
ple 6.2, namely, that for any computable function r that goes nonascendingly to 0, any
rec-random sequence is i.o. truth-table-autoreducible with density r(m). This result
is consummately complemented by our next theorem, which shows that rec-random
sequences are never i.o. truth-table-autoreducible with positive constant density (i.e.,
with density r(m) = εm for some ε > 0) and that a similar assertion holds with
respect to Martin-Löf random sequences and i.o. Turing autoreducibility.

Theorem 6.3.
(a) No rec-random sequence is i.o. tt-autoreducible with positive constant density.
(b) No Martin-Löf random sequence is i.o. T-autoreducible with positive constant

density.
Proof. Assertions (a) and (b) are proved by showing that if a sequence is i.o. auto-

reducible with constant density, then the sequence cannot be random. In both cases,
the argument relies on Claims 1 and 2 below.

Fix an oracle Turing machine M and a rational ε0 > 0. We want to show that
if M i.o. autoreduces a sequence with density ε0m, then this sequence cannot be
random; i.e., an appropriate betting strategy succeeds on this sequence. Recall that
the cylinder generated by a word w is the class w{0, 1}∞ of all sequences that extend
w. We argue that for any w, the fraction of sequences in this cylinder that are
i.o. autoreduced by M with density ε0 is bounded by a constant δ < 1, which does
not depend on w. Let ε = ε0/2, and for any m > 0 let

i(m) =
⌈m
ε

⌉
, I(m) = {sm, . . . , sm+i(m)−1};(6.3)
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that is, assuming |w| = m, the interval I(m) contains the first i(m) words that are
not in the domain of w. For any sequence X and any finite set I, let

correct(X, I) = |{x ∈ I : M(X,x) = X(x)}|,
incorrect(X, I) = |{x ∈ I : M(X,x) = 1−X(x)}|.

That is, for all inputs x in I such that M(X,x) is defined and differs from ⊥, we
count for how many of these inputs the guess M(X,x) is correct and for how many
it is incorrect. In the remainder of this proof and with M and ε understood from the
context, we say a sequence X is consistent with a word w of length m if

(i) X is an extension of w,
(ii) for all x in I(m), the value M(X,x) is defined and is computed without

querying the oracle at place x,
(iii) incorrect(X, I(m)) = 0,
(iv) correct(X, I(m)) ≥ ε|I(m)|.
Claim 1. If M i.o. T-autoreduces a sequence with density ε0, then this sequence

is consistent with any prefix of itself.
Proof. Fix any sequence A that satisfies the assumption of the claim, and consider

any prefix w of A. Then the conditions (i), (ii), and (iii) are satisfied by definition (re-
call that M(A, x) is always defined in case M i.o. T-autoreduces A). If condition (iv)
was false, then contrary to our assumption on A the oracle Turing machine M with
oracle A would guess in the interval I(m) and among the m smaller words in total
strictly less than

m+ ε|I(m)| ≤ 2 ε|I(m)| = ε0|I(m)|(6.4)

bits, where the relations in (6.4) hold by (6.3) and by choice of ε.
For any word w, let the sequence Xw be an extension of w that is obtained by

the chance experiment where the bits of Xw that are not already determined by w
are obtained by independent tosses of a fair coin. Let δ = 1/(1+ ε), and observe that
δ < 1 due to ε > 0.

Claim 2. For any word w, the probability that Xw is consistent with w is at
most δ.

Proof. Fix any word w of length m. The key observation in the proof of Claim 2
is the following. If we examine for all inputs x in I(m) such that the value M(Xw, x)
is in {0, 1} at all, whether this value is a correct guess in the sense that it agrees
with Xw(x), then the expected number of correct and incorrect guesses is the same;
i.e.,

E[correct(Xw, I(m))] = E[incorrect(Xw, I(m))] .(6.5)

For a proof, first consider a single input x in I(m). The assignment to Xw at x and at
the places different from x are stochastically independent; hence by (ii) the same holds
for Xw(x) and M(Xw, x). Furthermore, since Xw(x) is chosen uniformly from {0, 1},
it follows that the probability for a correct and for an incorrect answer at x are both
exactly half of the probability that M(Xw, x) is in {0, 1}. Hence also the expected
number of correct and incorrect answers at x coincide, and (6.5) follows by linearity
of expectation. Now we distinguish two cases.

Case I: E[correct(Xw, I(m))] ≤ δε|I(m)|.
The random variable correct(Xw, I(m)) is nonnegative; hence the case assumption

implies that the probability that correct(Xw, I(m)) is at least ε|I(m)| is at most δ.
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So also the probability that Xw is consistent with w is at most δ by condition (iv) in
the definition of consistency.

Case II: E[correct(Xw, I(m))] > δε|I(m)|.
By (6.5), we also have E[incorrect(Xw, I(m))] > δε|I(m)|. The latter implies that

the probability that incorrect(Xw, I(m)) is strictly larger than 0 is at least δε because
by definition, the random variable incorrect(Xw, I(m)) is bounded by |I(m)|. Due to
condition (iii), the probability that Xw is consistent is then at most

1− δε = 1− ε

1 + ε
=

1

1 + ε
= δ .(6.6)

The assertion of Claim 2 holds in both cases; hence the claim follows.
Proof of (a). We can assume that M is in fact a tt-reduction, say, M = (g, h).

Fix any sequence A such that M i.o. tt-autoreduces A with density r(m) = ε0m.
It suffices to show that A is not rec-random, and this is done by constructing a
computable betting strategy that succeeds on A.

The set of all words is partitioned into consecutive intervals J0, J1, . . . , where
the cardinality of Ji is denoted by li (i.e., J0 contains the first l0 words, J1 the next
l1 words, and so on). The Ji are defined via specifying the li inductively. For all i,
let mi = l0 + l1 + · · ·+ li. Let l0 = 1, and for all i choose li+1 so large that the union
of the intervals J0 through Ji+1 contains I(mi) as well as the query sets g(x) for
all x in I(mi). This way, for any word w of length mi, the consistency with w of any
sequence X that extends w depends only on the restriction of X to the interval Ji+1.
Call an assignment on Ji+1 consistent with such a word w if the assignment is the
restriction of a sequence that is consistent with w. By Claims 1 and 2, for any given
word w of length mi the following assertions hold with respect to the assignments
on Ji+1.

• If w is a prefix of A, then the assignment obtained by restricting A to Ji+1

is consistent with w.
• The assignments that are consistent with w comprise a fraction of at most δ
of all assignments.

Now consider the betting strategy that for each interval Ji+1 uses the capital accumu-
lated up to the first element of the interval in order to bet according to Remark 3.6
against all assignments on this interval that are not consistent with the already seen
length mi prefix of the unknown sequence. By the preceding discussion, in case the
unknown sequence is indeed A, then on each interval b increases its capital at least
by the constant factor 1/δ > 1; i.e., in this case b succeeds on A. Furthermore,
the betting strategy b is computable since consistency of assignments can be decided
effectively.

Proof of (b). For a given word w, let Ew be the class of all sequences that are
consistent with w. For a word w of length m ≥ 1, call a word u a consistent extension
of w if for some sequence U ,

• w is a prefix of u and u is a prefix of U , while U is consistent with w;
• the domain of u contains I(m), and all queries that are made while computing

M(U, x) for any x in I(m);
• for all x in I(m), the computation of M(U, x) terminates in at most |u| steps.

Let E(w) be the set of minimum consistent extensions of w (i.e., E(w) contains any
word if the word itself but none of its prefixes is a consistent extension of w). Then
for any nonempty word w,

(i) Ew is the disjoint union of the cylinders generated by words in E(w),



1564 TODD EBERT, WOLFGANG MERKLE, AND HERIBERT VOLLMER

(ii) Ew comprises at most a fraction of δ of the cylinder generated by w,
(iii) E(w) is computably enumerable in w.

Assertions (ii) and (iii) hold, respectively, due to Claim 2 and because for given
w and u, it can be effectively checked whether u is a consistent extension of w.
Concerning assertion (i), first observe that for any sequence in Ew all prefixes of
sufficient length are consistent extensions of w. On the other hand, for any consistent
extension u of w, the cylinder generated by u is a subclass of Ew because any sequence
that extends u is consistent with w. Furthermore, by the minimality condition in the
definition of E(w), the words in E(w) are mutually incomparable; hence the cylinders
generated by these words are mutually disjoint.

Let C be the class of all sequences that are i.o. T-autoreduced by M with den-
sity ε0. We conclude the proof of assertion (b) by constructing a Martin-Löf null cover
for C. Let V0 = {0, 1}, and for all i ≥ 0, let

Vi+1 =
⋃
w∈Vi

E(w) .

Then the sets Vi are uniformly computably enumerable; i.e., Vi = Wh(i) for some
computable function h. Using (i) and the fact that any sequence in this class is
consistent with all of its prefixes, an induction argument shows that for all i the
class C is contained in the union of the cylinders generated by the words in Wh(i).
Furthermore, another induction argument, which uses (ii) in the induction step, shows
that the union of the cylinders generated by Wh(i) has measure of at most δi. So if
we fix a constant c such that δc is at most 1/2, then Wh(ci) has measure at most 1/2i.
In summary, Wh(c0),Wh(c1), . . . is a Martin-Löf null cover for C.

The concept of density can be relativized to an infinite subset Z of all words; i.e.,
we might say an oracle Turing machine M i.o. T-autoreduces a given sequence with
density r(m) relative to Z if the fraction of guessed bits among the first m words in Z
is always at least r(m). By a straightforward adaptation of the proof of Theorem 6.3,
it is possible to demonstrate Corollary 6.4, from which Corollary 6.5 can be obtained
as a special case.

Corollary 6.4.
(a) No rec-random sequence is i.o. tt-autoreducible with positive constant density

relative to an infinite computable set.
(b) No Martin-Löf random sequence is i.o. T-autoreducible with positive constant

density relative to an infinite computable set.
Corollary 6.5.
(a) No rec-random sequence is i.o. tt-autoreducible on a computable set.
(b) No Martin-Löf random sequence is i.o. T-autoreducible on a computable set.
Trakhtenbrot [44] observed that no Kolmogorov–Loveland stochastic sequence

[27, 32] is T-autoreducible, and his argument easily extends to i.o. T-autoreducibility
on a computable set; from the latter, assertion (b) in Corollary 6.5 is immediate,
because the Martin-Löf random sequences form a proper subclass of the Kolmogorov–
Loveland stochastic sequences.

The “negative” assertions in Theorem 6.3 and Corollaries 6.4 and 6.5 are comple-
mented by the two following “positive” assertions due to Merkle and Mihailović [34].
There are rec-random sequences that are weak truth-table-autoreducible. There are
Martin-Löf random sequences that are self-reducible with respect to the reducibil-
ity being computably enumerable in, where self-reducible means autoreducible while
asking only queries that are less than the current input with respect to length-
lexicographical ordering.
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Apparently, the arguments used in this section do not carry over to show that
p-random sequences cannot be p-T- or p-tt-autoreducible; in fact, the latter assertion
relates to major open problems in complexity theory. These relations are implicit
in the work of Buhrman et al. [16], from which, among others, the two following
implications are immediate. First, if there are p-random sequences that are p-tt-
autoreducible, then the complexity classesMA and EXP are the same. Second, if no
p-random sequence is p-tt-autoreducible, then the complexity classes BPP and EXP
differ. The first implication is immediate by the result of Buhrman et al. thatMA �=
EXP implies that the p-tt-autoreducible sequences have measure 0 with respect to
polynomial-time computable betting strategies. For a proof of the second implication
assume that BPP = EXP. By a result of Allender and Strauss [1], any p-random
sequence is p-tt-complete for BPP. But EXP contains p-random sequences; hence
by our assumption some p-random sequence is p-tt-complete for EXP. The assertion
now follows by the result of Buhrman et al. that BPP = EXP implies that all
p-tt-complete sequences for EXP are p-tt-autoreducible.

Recall the negative result on constant bounds in Theorem 6.3; i.e., a rec-random
sequence cannot be i.o. tt-autoreduced with constant positive density. This result is
essentially matched by Theorem 6.6, which states that for any computable, rational-
valued function r that goes nonascendingly to 0, every rec-random sequence is i.o. tt-
autoreducible with density r(m).

Theorem 6.6. Let g : N→ N be any computable function that is unbounded and
nondecreasing. Then every rec-random sequence is i.o. tt-autoreducible with density
r(m) = 1/g(m).

Proof. Fix any rec-random sequence R. It suffices to show that R is i.o. tt-
autoreducible with density r(m) by some oracle Turing machine M . For every k > 0,
let

lk = 2k − 1 .

For further use, fix perfect one-error-correcting codes Ck of codeword length lk such
that given x, we can decide effectively whether x is in one of the codes Ck. The
function g is computable and unbounded; thus we can define a computable sequence
of numbers t0 < t1 < · · · , where g(tk) ≥ lk+1, and hence

r(tk) ≤ 1

lk+1
.

For every k > 0, partition the set of all words into consecutive intervals J1
k , J

2
k , . . . of

length lk; i.e., J
1
k contains the first lk words, J2

k contains the next lk words, and so
on. Let ck be minimum such that the (tk+1)th word stk is in Jckk , and let

Hk = J2
k ∪ · · · ∪ Jckk .

We construct M from oracle Turing machines M1,M2, . . . , which we refer to as
modules. Intuitively, module k is meant to ensure density 1/lk in the interval between
s0 and stk . Before defining the modules, we describe their properties and how they
are combined to form M .

Module k never queries any place outside the set J1
k ∪Hk and outputs ⊥ on all

inputs that are not in Hk. Furthermore, on oracle R, module k never makes a wrong
guess and guesses exactly one bit in each of the intervals J2

k through Jckk . In addition,
we will ensure that the Mk are uniformly effective in the sense that there is an oracle
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Turing machineM0 such that the valuesMk(x,X) andM0(〈x, k〉, X) are always either
both undefined or both defined and identical.

Then M is obtained by running the modules in parallel as follows. For input x,
if x is equal to s0 or s1, then M just outputs R(x). Otherwise, M determines the
finitely many k such that x ∈ Hk and simulates the corresponding modules with
input x and the current oracle. If any of these modules outputs a value different
from ⊥, then M outputs the value output by the least such module; otherwise, M
outputs ⊥. Assuming the properties of the modules stated so far, we can already
prove that M works as required.

Claim 1. The oracle Turing machine M i.o. tt-autoreduces the sequence R with
density r(m).

Proof. From the module assumptions, it is immediate that M is computable and
that M queries its oracle nonadaptively and never queries the oracle at the current
input. Moreover, on oracle R, all guesses of the modules and hence all guesses of M
are correct.

Let E be the set of all inputs x such that M(R, x) differs from ⊥. Fix k and
assume that m is in J1

k through Jckk . Then we have

ρ(E,m) ≥ 1/lk .(6.7)

This follows because M guesses the first two bits, while module k and hence M guess
at least one bit in every interval except the first one, where the intervals have length lk.
So if m is in interval Jjk , up to m there are at most jlk words and at least j guesses;
hence the density up to m is at least 1/lk, and (6.7) holds.

In order to prove ρ(E,m) ≥ r(m), fix any m and choose k such that tk−1 ≤ m <
tk. Then we have

ρ(E,m) ≥ 1

lk
≥ r(tk−1) ≥ r(m) ,(6.8)

where the inequalities follow because m is in J1
k through Jckk , and hence (6.7) applies,

by choice of tk−1, and since r is nonascending.
In order to construct modules that have the required properties, let wjk be the

restriction of R to Jjk ; i.e.,

R = w1
kw

2
k . . . , where |wjk| = lk, and let wk = w1

k ⊕ · · · ⊕ wckk ,

where ⊕ is bit-wise exclusive-or. The idea underlying the construction of the modules
is as follows. The code words in Ck comprise such a small fraction of all words
of length lk that in case infinitely many words wk were in Ck, there would be a
computable betting strategy that succeeds on R. But R is assumed to be rec-random;
hence wk is not in Ck for almost all k. So in order to guess bits of wk and then
also of w1

k through wckk , we can apply the solution to the hat problem described in
Remark 2.6.

Claim 2. For almost all k, wk is not in Ck.
Proof. Suppose we bet on the bits of an unknown sequence X. Similar to the

definition of wk, let v
j
k be the restriction of X to the interval Jjk , and let vk be equal

to v1
k ⊕ · · · ⊕ vckk . Recall that Ck contains a fraction of ak = 1/2k of all words of

length lk, and observe that the mapping

ok : u �→ v1
k ⊕ · · · ⊕ vck−1

k ⊕ u
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is a bijection of {0, 1}lk . Thus ok maps just a fraction of ak of all length lk words
to Ck. When betting on the places in Jckk , we have already seen v1

k through vck−1
k .

Under the assumption that vk is in Ck, we can exclude all but a fraction of 1/ak of
the possible assignments on Jckk , and hence, by betting in favor of these assignments
according to Remark 3.6, we can increase our capital by a factor of 1/ak in case the
assumption is true.

Now consider the following betting strategy. For every k, a portion of ak of the
initial capital 1 is exclusively used for bets on the the interval Jckk . On each such
interval, the bets are in favor of the ak-fraction of assignments that ok maps to Ck.
Then the capital ak increases to 1 for all k such that vk is in Ck, and consequently the
betting strategy succeeds on any sequence such that the latter occurs for infinitely
many k. But no computable betting strategy can succeed on the rec-random se-
quence R; hence Claim 2 follows. We leave it to the reader to show that this strategy
is indeed computable. Observe in this connection that each word is contained in at
most finitely many intervals of the form Jckk , and consequently at most finitely many
of the strategies related to these intervals might act in parallel.

It remains to construct the modules. By Claim 2, fix k0 such that wk is not in Ck
for all k > k0. First assume k ≤ k0. Consider the least elements of the intervals
J2
k through Jckk and for all these x, hard-wire R(x) into module k. On all these x,

module k outputs R(x), while the module outputs ⊥ on all other inputs.
Next assume k > k0. On inputs that are not in Hk, module k simply outputs ⊥.

Now consider an input x in Hk, and suppose that

x is element i0 of interval Jj0k , 0 ≤ i0 < lk, 2 ≤ j0 ≤ ck .

For the given oracle X, define vk and the vjk as in the proof of Claim 2; i.e.,

vjk is the restriction of X to Jjk , and vk is the bit-wise exclusive-or of the vjk. Then
on input x, module k queries its oracle at the remaining words in J1

k ∪Hk; i.e., the
module obtains all bits of the words

vjk = vjk(0) v
j
k(1) . . . v

j
k(lk − 1) , j = 1, . . . , ck ,

except for the bit X(x) = vj0k (i0). In order to guess this bit, the module tries to guess

the bit vk(i0). From the latter and from the already known bits vjk(i0) for j �= j0, the

bit vj0k (i0) can then be computed easily since vk(i0) is the exclusive-or of the vjk(i0).
In order to guess vk(i0), module k mimics the solution of the hat problem with

lk players that is given in Remark 2.6. More precisely, the module computes the
remaining bits of vk from the vjk(i) and obtains two consistent words u0 and u1. In
case for some r the word ur is in Ck, the module guesses u1−r(i0), while the module
abstains from guessing otherwise. By assumption on k, on oracle R the word vk is
not in Ck; hence the discussion in Remark 2.6 shows that module k never guesses
incorrectly and guesses exactly one bit in each of the intervals J2

k through Jckk (in
fact, for some i, in each interval bit i is guessed).
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[30] P. Martin-Löf, The definition of random sequences, Information and Control, 9 (1966),
pp. 602–619.

[31] E. Mayordomo, Contributions to the Study of Resource-Bounded Measure, Doctoral disserta-
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Abstract. Sampling is an important primitive in probabilistic and quantum algorithms. In
the spirit of communication complexity, given a function f : X × Y → {0, 1} and a probability
distribution D over X × Y , we define the sampling complexity of (f,D) as the minimum number of
bits that Alice and Bob must communicate for Alice to pick x ∈ X and Bob to pick y ∈ Y as well as
a value z such that the resulting distribution of (x, y, z) is close to the distribution (D, f(D)).

In this paper we initiate the study of sampling complexity, in both the classical and quantum
models. We give several variants of a definition. We completely characterize some of these variants
and give upper and lower bounds on others. In particular, this allows us to establish an exponential
gap between quantum and classical sampling complexity for the set-disjointness function.

Key words. communication complexity, quantum communication complexity, quantum infor-
mation theory, set-disjointness, the log-rank conjecture in communication complexity
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1. Introduction. A central question in quantum information theory is the
amount of information that can be encoded into n qubits. There are different ways
to formulate this question and, surprisingly, they yield completely different answers.
The most natural variant of this question is the maximal amount of mutual informa-
tion that can exist between a classical random variable X and a classical probability
distribution Y that is obtained from a short quantum encoding of X. More than two
decades ago Holevo [10] proved that the mutual information can be at most the num-
ber of qubits communicated. That is, although 2n−1 complex numbers are necessary
to specify the state of n quantum bits, only n bits of information can be retrieved
from a superposition on n quantum bits, and communicating qubits is not more useful
than just communicating classical bits.

However, there is something in quantum bits that is more powerful than classical
ones. The first demonstration of that was by Bennett and Wiesner [5] who showed that
if the two parties share predefined entangled qubits (that are absolutely independent
of the message), then Alice can communicate 2n classical bits to Bob using only n
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communication qubits.
Another example was supplied by Ambainis et al. [3] and by Nayak [14], where

Alice’s task was to encode m classical bits into n qubits (m > n) such that Bob
could choose to read any one of the m encoded bits of his choice (thereby possibly
destroying the information about the remaining m−1 bits). On the positive side they
showed a scheme beating Holevo’s bound, but on the negative side they showed that
n can be no smaller than Ω(m).

A rich hunting ground for relevant examples is the communication complexity
model [21, 20]. Buhrman, Cleve, and Wigderson [6] considered the disjointness func-
tion, where Alice and Bob get two subsets x, y of [1, . . . , n], and DISJ(x, y) = 1 iff x
and y are disjoint. It is well known that any classical probabilistic protocol must ex-
change a linear number of communication bits. On the other hand, they showed that
the task can be carried out with only O(

√
n log(n)) quantum bits. The result is based

on Grover’s quantum search algorithm [9]. This provided the first asymptotic sepa-
ration in power between classical and quantum communication. Recently, Razborov
[17] showed an Ω(

√
n) lower bound on the quantum communication complexity of the

problem, and Aaronson and Ambainis [1] showed that Razborov’s bound is tight up
to constant factors.

Buhrman, Cleve, and Wigderson [6] also gave another communication task based
on the Deutsch–Jozsa problem [8], where the number of classical bits required to
compute a function with zero error is exponentially larger than the corresponding
number of quantum bits. However, there is a probabilistic protocol with a small error
probability where the number of bits exchanged is as small as the number exchanged
by the quantum protocol. Raz [19] showed such an exponential gap for a partial
function even in the presence of errors. However, the result applies only for partial
functions when the two players are given a promise that their inputs come from a
small (in fact, tiny) set of possible inputs.

In this paper we give the first example of a communication task for a total func-
tion which can be carried out by transferring exponentially fewer quantum bits than
classical bits even when error is allowed. We consider the problem DISJk that is the
disjointness problem on cardinality k subsets x, y ⊆ [n]. However, we do not con-
sider the number of communication bits required to compute the function, but rather
the number of communication bits required to sample the function. The task is the
following: Alice has a cardinality k subset S ⊆ {1, . . . , n}, and Bob must pick a uni-
formly random cardinality k subset T ⊆ {1, . . . , n} disjoint from S. We consider the
case k = Θ(

√
n), and give a quantum protocol in which Alice sends O(log n · log 1/ε)

quantum bits to Bob, enabling him to sample from a distribution which is ε close (in
total variation distance) to the desired uniform distribution on subsets disjoint from
S. We also show that any purely classical protocol for this task must involve the
exchange of Ω(

√
n) bits between Alice and Bob.

We observe that applying Holevo’s bound to the quantum protocol yields the
following corollary: Alice and Bob can sample (with a small error) two disjoint subsets
of cardinality

√
n such that the number of bits of information that Bob has about

Alice’s subset (or that Alice has about Bob’s subset) is bounded by the number of
qubits transmitted, which is O(log(n) · log(1/ε)). It is an open question whether this
secrecy can be amplified so that Alice and Bob have arbitrarily small amounts of
information about each other’s subsets.

More generally, given a function f : X × Y → {0, 1}, we consider three commu-
nication complexity measures, which we now informally discuss (and formally define
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in section 2):
• The usual communication complexity of f , where Alice gets input x, Bob gets

input y, and we measure the number of communication bits/qubits needed
to compute f(x, y). We denote the classical probabilistic communication
complexity by Rε(f), where ε is the error probability, and this probability
is over the random coins of Alice and Bob. The communication complexity
when no error is allowed is denoted by D(f). The quantum communication
complexity is denoted by Qε(f).
• The communication complexity of generating the superposition of the func-

tion. Here, there is no input to the two parties, and we measure the number of
qubits needed to generate the superposition

∑
x,y(−1)f(x,y)|x, y〉, where Alice

holds the X register and Bob the Y register. We call this the complexity of

generating the function, and denote it by
•
Qε (f).

• The communication complexity of sampling values of f . Here, Alice and Bob
are again given no input, and they want to sample (x, y, z = f(x, y)), where
Alice holds x and Bob holds y. We call this the complexity of sampling the

function, and denote it by
◦
Rε (f) in the classical case and

◦
Qε (f) in the

quantum case.
For formal definitions, see section 2. As expected, sampling is easier than generat-

ing, which in turn is easier than solving the problem on a given instance,
◦
Qε (f) ≤

•
Qε (f) ≤ Qε(f). For the precise statements we prove, see Lemmas 5.1 and 5.2.

We show a tight characterization of
•
Qε (f), the complexity of generating a func-

tion. Given f , we define the matrix Mf , Mf [x, y] = (−1)f(x,y). We show that
•
Qε (f)

relates to the best low-rank approximation of Mf , namely,

•
Qε (f) ≈ min

A:||A−Mf ||22≤ε
log(rank(A)).

We believe that this characterization is important by itself. From that we deduce that

•
Qε (DISJk) = O(log n · log 1/ε).

We also show, using a combinatorial lemma of Babai, Frankl, and Simon [4], that
for some constant ε > 0

◦
Rε (DISJk) = Ω(

√
n),

establishing an exponential gap between classical and quantum sampling. Also, as
we can efficiently quantum sample (generate) the DISJk function, we can also effi-
ciently quantum sample (generate) the DISJ function. Razborov’s lower bound [17]
then shows an exponential gap between quantum sampling (generating) and normal
quantum communication complexity.

We conclude with a remark concerning the log-rank conjecture in communication
complexity. The conjecture asks whether always D(f) ≤ Poly(log(rank(Mf ))). Raz
and Spieker [18] were the first to show a superlinear gap, and the biggest gap known
today, due to Nisan and Wigderson [15], exhibits an f with D(f) ≥ log(rank(Mf ))1.6...

(see [16, section 2.5]). It is quite possible, for example, that D(f) ≤ log(rank(Mf ))2.

The above characterization shows that when ε = 0,
•
Q0 (f) = Θ(log(rank(Mf ))). In
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fact, we show that this holds not only for quantum generating f , but also for quantum

sampling f , and
◦
Q0 (f) = Θ(log(rank(Mf ))). For the precise statement, see Theorem

8.1. This is the first example of a communication task for which the famous log-rank
conjecture holds.

Furthermore, we show that zero error classical computing is almost as easy as

sampling, or more precisely that
√

D(f) ≤ ◦R0 (f) ≤ D(f). We thus see that the

log-rank conjecture is equivalent to the conjecture that
◦
R0 (f) ≤ Poly(

◦
Q0 (f)), and

can be cast as asking about the relative power of quantum and classical sampling in
the no error case.

2. Sampling. The two-party communication complexity model, as introduced
by Yao [21], consists of two players that have private inputs and wish to compute a
known function that depends on both inputs. The players follow a predefined protocol
and exchange communication bits until they are ready to make a decision.

In the quantum communication complexity model [20], Alice and Bob hold qubits.
When the game starts, Alice holds x and Bob holds y, and so the initial superposition
is simply |x, y〉. The players take turns. Suppose it is Alice’s turn to play. Alice
can make an arbitrary unitary transformation on her qubits and then send one or
more qubits to Bob. Sending qubits does not change the overall superposition but
rather changes the ownership of the qubits, allowing Bob to apply his next unitary
transformation on the newly received qubits. Each player can also (partially) measure
his/her qubits. By the end of the protocol, the two players have to decide on a value.
If during the protocol the two players are in the system φ, then φAlice denotes the
state of the subsystem of Alice’s qubits, and φBob is the state of the subsystem of
Bob’s qubits. φAlice and φBob are usually mixed states.

The complexity of a classical (quantum) protocol is the number of bits (qubits)
exchanged between the two players. We say a (quantum) protocol computes f :
X × Y �→ {0, 1} with ε ≥ 0 error if for any input x, y the probability that the two
players compute f(x, y) is at least 1−ε. We denote by Rε(f) (Qε(f)) the complexity of
the best (quantum) protocol that computes f with at most ε error. The deterministic
complexity D(f) is simply R0(f).

2.1. Sampling complexity. In the previous definitions the two players had to
compute the right answer for a given input (x, y). A sampling protocol, however, starts
with no input to the two players. Instead, by the end of the protocol, Alice holds
some x ∈ X, Bob holds some y ∈ Y , and they also hold some “answer” z ∈ {0, 1}.
We say that the protocol induces a distribution P on (x, y, z), where P(x, y, z) is the
probability that x and y are sampled along with the answer z.

Definition 2.1. A classical distribution over X is a function D : X �→ [0, 1] such
that (s.t.)

∑
x∈X D(x) = 1. Given two distributions D1,D2 over X, the variational

distance between them is |D1 −D2|1 def
=
∑

x |D1(x)−D2(x)|.
Definition 2.2 (sampling). Let f : X×Y �→ {0, 1}, and let D be any distribution

on X × Y . We say that the protocol samples f according to D with ε error if the
distribution the protocol induces on {(x, y, z)} is ε close, in the total variation distance,
to the distribution (D, f(D)) obtained by first picking (x, y) according to D and then

evaluating f(x, y). We denote by
◦
Rε (f,D) (

◦
Qε (f,D)) the number of communication

bits (qubits) needed for a randomized (quantum) protocol P to sample f according to
D with ε error. When D is the uniform distribution, we sometimes omit it.
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2.2. q–generating. In the quantum model it makes sense not only to sample the
right classical distribution, but also to approximate the right quantum superposition.
For example, we can ask how many communication qubits are needed for two players
to generate (or approximate) the superposition ψ =

∑
x,y(−1)

∑
i xiyi |x, y〉. We need

to specify what is a good approximation of a superposition, and a natural choice is
the so called “fidelity” measure: φ approximates ψ to within ε if |〈φ|ψ〉| ≥ 1− ε. We
also allow the players to use ancillary bits.

Definition 2.3 (q–generating). We say that a quantum protocol q–generates a
superposition ψ =

∑
x∈X,y∈Y ax,y|x, y〉 to within ε error if it starts with no inputs to

the two players and by the end of the protocol the two players compute a superposition
φ, where φAlice has support in X ⊗ AncilaX , φBob has support in Y ⊗ AncilaY , and
|〈φ|ψ〉| ≥ 1− ε.

Definition 2.4. Let f : X × Y �→ {0, 1} be any Boolean function and µ :
X × Y �→ C an l2 distribution (i.e.,

∑
x,y |µx,y|2 = 1). We say that a quantum

protocol q–generates f according to the distribution µ with ε error if it q–generates
the superposition

∑
x,y µx,y(−1)f(x,y)|x, y〉 to within ε error. We denote the number

of communication qubits needed for this by
•
Qε (f, µ).

3. Preliminaries. Two superpositions that are close to each other in the fidelity
norm (i.e., |〈φ1|φ2〉| ≥ 1 − ε) cannot be effectively distinguished. More precisely, for
a superposition φ and a complete measurement O over it, let us denote by φO the
classical distribution (over all possible results) obtained by applying the measurement
O over φ. By, e.g., Aharonov, Kitaev, and Nisan [2, Lemma 11], we have the following.

Fact 3.1 (see [2]). For any two superpositions φ1, φ2 and any complete measure-
ment O,

|φO1 − φO2 |1 ≤ 2
√

1− |〈φ1|φ2〉|2.
3.1. Some matrix algebra. Any normal matrix N can be diagonalized by

an appropriate unitary basis change; that is, there is some unitary transformation U
s.t. UNU† is diagonal with the eigenvalues λ1, . . . , λN on the diagonal. Singular values
and the singular value decomposition theorem generalize this to arbitrary matrices.
Given any (possibly nonsquare) matrix M , MM† is a nonnegative matrix and hence
has a complete set of nonnegative eigenvalues λ1 ≥ · · · ≥ λN ≥ 0. The ith singular
value, σi(M), is

√
λi. The SVD theorem says the following.

Theorem 3.1 (see [11, Lemma 7.3.1]). For any matrix M there are unitary trans-
formations U1, U2 s.t. U1MU2 is diagonal with the singular values σ1(M), . . . , σN (M)
on the diagonal.

Given a matrix A = (ai,j), we define its norm ||A||2 def
= (

∑
i,j |a2

i,j |)1/2, i.e.,

||A||22 = Trace(AA†). The Hoffman–Wielandt theorem states the next result.
Theorem 3.2 (see [11, Corollary 7.3.8]). Let A and B be two matrices of the

same dimensions. Then,

N∑
i=1

[σi(A)− σi(B)]2 ≤ ||B −A||22.

Let B be an arbitrary norm one matrix, ||B||22 = 1. It follows that
∑

i σ
2
i (B) =

Tr(BB†) = 1. Let Kε(B) denote the number of singular values we need to take to

collect 1− ε weight; i.e., it is the first integer k such that
∑k

i=1 σ2
i (B) ≥ 1− ε.

Claim 3.1. Kε(B) = minA:||A−B||22≤ε rank(A).



THE QUANTUM COMMUNICATION COMPLEXITY OF SAMPLING 1575

Proof. Let us define K ′ε(B) = minA:||A−B||22≤ε rank(A).
On the one hand, say Kε(B) = k and B = U1DU2, where D is a diagonal matrix

with the singular values on the diagonal. Let D̄ be the matrix containing only the
first k singular values, and A = U1D̄U2. Then A has low rank and approximates B
to within ε. It follows that K ′ε(B) ≤ k = Kε(B).

On the other hand, say K ′ε(B) = k and A has rank k and ||A−B||22 ≤ ε. It then

follows by the Hoffman–Wielandt theorem that
∑N

i=1[σi(A)−σi(B)]2 ≤ ||B−A||22 ≤ ε.
As A has rank k, for at least N − k values i, σi(A) = 0. It then must follow that the
squares of the N − k smallest singular values of B must sum up to no more than ε,
i.e., Kε(B) ≤ K ′ε(B).

4. A tight bound on q–generating. We completely characterize the complex-
ity of q–generating. With each superposition ψ =

∑
x∈X,y∈Y ax,y|x, y〉 we associate a

|X| × |Y | matrix Mψ = (ax,y). We characterize the complexity of q–generating ψ in
terms of the spectrum of Mψ. We prove the following result.

Theorem 4.1. For any pure state ψ and 0 ≤ ε ≤ 1
2

�log K2ε� ≤
•
Qε (ψ)≤ �log Kε�,

where Kε = minA:||Mψ−A||22≤εrank(A). Equivalently, Kε is the first integer K s.t.∑K
i=1 σ2

i (Mψ) ≥ 1− ε.

4.1. The upper bound. Suppose that Alice and Bob are in a superposition
φ =

∑
x,y Mx,y|x, y〉 represented by the matrix M = Mφ (i.e., M [x, y] = Mx,y).

Let us check how the matrix representation changes as Alice applies a local unitary
transformation T on her qubits. The resulting superposition is

(T ⊗ I)φ =
∑
x,y

Mx,y|Tx, y〉

=
∑
x,y

Mx,y

∑
z

Tz,x|z, y〉

=
∑
z,y

(∑
x

Tz,xMx,y

)
|z, y〉

=
∑
z,y

(TM)z,y|z, y〉,

and so the resulting superposition is represented by TM . Similarly if Bob applies a
local transformation T on M , the resulting superposition is represented by MT t.

Suppose that the parties want to generate a superposition ψ represented by M =
Mψ. By the singular decomposition theorem (Theorem 3.1) there are unitary trans-
formations U1, U2 s.t. U−1

1 MU−1
2 is the diagonal matrix D with σ1(M), . . . , σN (M)

on the diagonal. Let Λ = {wi|i = 1, . . . ,K} be the set of the first K = Kε (“heavy”)
eigenvectors. Let Π be the projection operator onto Λ, i.e., Π[x, y] is 1 if x = y and
1 ≤ x ≤ K, and zero otherwise. The protocol is the following:

• Alice prepares the superposition DΠ (which is simply the superposition c ·∑K
i=1 σi(M)|i, i〉, where c = 1/

√∑K
i=1 σ2

i (M), and notice that 1 ≤ c ≤
1/
√

1− ε) and sends the Y qubits to Bob.
• Alice applies the transformation U1 on her qubits, and Bob applies the trans-

formation U t
2 on his qubits.
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Say that the resulting superposition is φ and its matrix is Mφ. We know that
Mφ = cU1DΠU2. We have

||Mφ −Mψ||22 = ||cU1DΠU2 − U1DU2||22
= ||U1(cDΠ−D)U2||22
= ||cDΠ−D||22

=
∑
i>K

σ2
i (M) + (c− 1)2

K∑
i=1

σ2
i (M)

≤ ε +
(c− 1)2

c2
≤ ε + ε2 ≤ 2ε.

The third equality is due to the fact that for every matrix X and unitary matrix
U , ||UX||22 = 〈UX|UX〉 = 〈X|X〉 = ||X||22. To see the last inequality, remember that

c ≤ 1√
1−ε , and therefore c−1

c ≤ 1/
√

1−ε−1

1/
√

1−ε = 1−√1− ε ≤ ε.

To finish the proof of the upper bound of Theorem 4.1, we claim the following.
Claim 4.1. |〈φ|ψ〉| ≥ 1− ε.
Proof. We treat the matrices Mφ,Mψ as vectors of length |X| · |Y | and notice

that 〈Mφ|Mψ〉 = 〈φ|ψ〉 by the way the matrices Mφ,Mψ were defined.
Also, since (U−1

1 ⊗ U−1
2 )ψ =

∑
i σi|i, i〉 and (U−1

1 ⊗ U−1
2 )φ = c

∑
i∈Λ σi|i, i〉, it

follows that 〈φ|ψ〉 is real. We then see that

||Mφ −Mψ||22 = 〈Mφ −Mψ|Mφ −Mψ〉
= 〈Mφ|Mφ〉+ 〈Mψ|Mψ〉 − 2〈Mφ|Mψ〉.

However, ||Mφ||2 = ||Mψ||2 = 1, and so

||Mφ −Mψ||22 = 2(1− 〈φ|ψ〉).
Plugging ||Mφ −Mψ||22 ≤ 2ε into this, we get 〈φ|ψ〉 ≥ 1− ε as desired.

4.2. The lower bound. The lower bound idea is an extension of an idea from
Kremer’s thesis [12], where it is attributed to Yao. We first show that the outcome
of any quantum protocol that uses only l communication qubits can be described as
a linear combination of up to 2l product superpositions (we give a precise statement
soon). We use this to show that a quantum sampling protocol is actually a low rank
approximation of Mψ. We then use the Hoffman–Wielandt inequality to derive a
lower bound on l.

Claim 4.2 (see [12]). Suppose that P is a quantum protocol that uses l communi-
cation qubits, starts with no input, and computes the superposition φ. Further assume
that the last qubit communicated is wl. Then φ =

∑
w∈{0,1}l |A(w), wl, B(w)〉, where

A and B depend only on w.
Proof. The proof is by induction on l. The case l = 0 is immediate. Suppose it

is true for l; let us prove it for l + 1. Assume after l steps that the two parties are
in the superposition

∑
w∈{0,1}l |A(w), wl, B(w)〉 and w.l.o.g. it is now Alice’s turn

to play. Alice first does some unitary transformation on her qubits, which results in∑
w∈{0,1}l |A′(w1, . . . , wl), B(w1, . . . , wl)〉. Then she sends the qubit z to Bob. For

every w1, . . . , wl we can represent |A′(w1, . . . , wl)〉 as a superposition of the possible
values of z, which completes the induction.

Now suppose that P q–generates ψ (represented by Mψ) with ε error and l com-
munication qubits. Let us denote by φ =

∑
x,y ax,y|x, y〉 the final superposition that



THE QUANTUM COMMUNICATION COMPLEXITY OF SAMPLING 1577

the two parties compute (which is, again, represented by Mφ). By Claim 4.2 we know
that we can represent φ as φ =

∑
w∈{0,1}l |A(w), B(w)〉. Because φAlice has support

in X, and φBob in Y , this is actually φ =
∑

w∈{0,1}l
∑

x,y ax(w) · by(w)|x, y〉, where

ax(w) and by(w) are complex numbers. Thus

Mφ[x, y] =
∑

w∈{0,1}l
ax(w)by(w).

Let us define an |X|×2l matrix A by A[x,w] = ax(w), and a 2l×|Y | matrix B[w, y] =
by(w). We see that Mφ = A · B, where the · operation is matrix multiplication. In
particular,

rank(Mφ) ≤ rank(A) ≤ 2l.

Since φ ε-approximates ψ, we know that ||Mφ−Mψ||22 = 〈Mφ−Mψ|Mφ−Mψ〉 =
2(1 − 〈φ|ψ〉) ≤ 2ε. It follows that K2ε = minM :||M−Mψ||22≤2ε rank(M) ≤ rank(Mφ) ≤
2l, as desired.

5. Relationships between sampling and computing. We say that a func-
tion g : X×Y �→M is a “product” function if g(x, y) = g1(x)g2(y) for some functions
g1 and g2. For product distributions µ we show that sampling is not harder than
q–generating, which in turn is not harder than worst-case solving the problem.

5.1. Sampling vs. q–generating.
Lemma 5.1. Suppose that f : X×Y �→ {0, 1}, and µ is an l2 product distribution.

Let D : X×Y �→ [0, 1] be the classical distribution associated with µ, D(x, y) = |µx,y|2.
Then

◦
Q4
√
ε (f,D) ≤

•
Qε (f, µ) + O(1).

Proof. Suppose that the approximation protocol computes φ s.t. |〈φ|ψ〉| ≥ 1− ε,
where ψ is the ideal superposition ψ =

∑
x,y µx,y(−1)f(x,y)|x, y〉. We give a sampling

protocol:
1. Alice computes the superposition |00〉 + |11〉 in qubits z1, z2. She sends the

second qubit z2 to Bob.
2. If they both have a |0〉 (i.e., z1 = z2 = 0), they compute in the qubits X,Y the

superposition
∑

x,y µx,y|x, y〉 (this can be done at no cost, as µ is a product
distribution), and if they have a 1, they compute φ (using �log(Kε)� qubits).

3. Now Bob returns the qubit z2 to Alice. Alice does a unitary transformation
over z1, z2 that sends |00〉 to 1√

2
(|00〉+ |01〉) and |11〉 to 1√

2
(|00〉 − |01〉).

4. Finally, both players measure all their qubits.
Now, suppose for the moment that the protocol was run with φ = ψ. In that case

after step 2 the two players are in the superposition

∑
x,y

µx,y[|00, x, y〉+ (−1)f(x,y)|11, x, y〉].

It can then be easily verified that after step 3 the resulting superposition is

∑
x,y

µx,y|0, f(x, y), x, y〉,

and thus when Alice and Bob measure their qubits, they actually sample f according
to D with no error.
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Now, in the actual protocol the two players compute φ, which is not quite ψ but
close to it, namely, |〈φ|ψ〉| ≥ 1−ε. By Fact 3.1 we know that the resulting distribution
is 2
√

1− |〈φ|ψ〉|2 ≤ 2
√

1− (1− ε)2 ≤ 2
√

2ε close (in the l1 norm) to the right one,
and the lemma follows.

5.2. q–generating vs. computing. Suppose that we can compute f , and that
we want to q–generate it according to a product distribution µ. Since µ is product,
we can enter the superposition

∑
x,y µx,y|x, y〉. Then we can compute f . However,

this does not give a q–generating protocol because we might use some auxiliary qubits
for the computation and thus have garbage entangled with the result. The following
proof follows ideas from Cleve et al. [7], who showed how to remove such garbage.
The proof is given here for completeness.

Lemma 5.2. For any function f and any l2 product distribution µ,
•
Q2ε(f, µ) ≤

2Qε(f).
Proof. Let T be a small error protocol for computing f . We use the safe

storage principle, and each time the protocol wants to measure a qubit we sim-
ply copy it to a new qubit that is left untouched. Now, say that T |x, 0, y, 0〉 =
|x, y〉 ⊗ [α0

x,y|f(x, y), g0
x,y〉 + α1

x,y|1 − f(x, y), g1
x,y〉], where g0

x,y (and g1
x,y) is the cor-

related garbage that is produced during the computation and is divided between the
two players; i.e., the right answer f(x, y) is computed with amplitude α0

x,y and is
accompanied by g0

x,y in the garbage qubits.
The two players get into the superposition

∑
x,y µx,y|x, y〉. Since µ is a product

distribution, this is done at no cost. We run the following three-step protocol:
Compute f . This results in

φ1 =
∑
x,y

µx,y |x, y〉 ⊗ [α0
x,y|f(x, y), g0

x,y〉+ α1
x,y|1− f(x, y), g1

x,y〉].

As T has only ε error on average, we know that
∑

x,y |µx,y|2 |α0
x,y|2 ≥ 1− ε.

Lift the result. Next, we lift the result f(x, y) to the amplitude; i.e., the player
with the result qubit R changes the amplitude by (−1)R. The resulting superposition
is

φ2 =
∑
x,y

µx,y(−1)f(x,y)|x, y〉 ⊗ [α0
x,y|f(x, y), g0

x,y〉 − α1
x,y|1− f(x, y), g1

x,y〉].

Notice the sign change in the garbage belonging to the wrong answer. We do not
like this sign change, and we notice that this sign change is immaterial. Namely, if
we define

ψ2 =
∑
x,y

µx,y(−1)f(x,y)|x, y〉 ⊗ [α0
x,y|f(x, y), g0

x,y〉+ α1
x,y|1− f(x, y), g1

x,y〉],

then |〈φ2|ψ2〉| ≥
∑

x,y |µx,y|2(|α0
x,y|2 − |α1

x,y|2), which is at least 1− 2ε.
Reverse the computation. Finally, we would like to get rid of the garbage, and so

we reverse T ; this at most doubles the number of communication qubits transferred.
Because of the sign change in φ2, the resulting superposition is ugly and depends
on the actual computation. However, had the reversing step been applied to ψ2,
we would have received the ideal superposition ψ =

∑
x,y µx,y(−1)f(x,y)|x, y〉. Now

|〈φ2|ψ2〉| ≥ 1−2ε, and reversing T is just a unitary transformation. We conclude that
|〈φ3|ψ〉| ≥ 1− 2ε.
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6. The DISJk function. The DISJk(x, y) function gets as input two subsets
S, T ⊆ {1, . . . , n}, each of cardinality k, and outputs 1 iff S ∩ T = ∅. We bound
the quantum sampling complexity of the function under the l2 uniform distribution
µx,y = 1/N . We then prove the following result.

Theorem 6.1. For k = Θ(
√
n),

◦
Qε (DISJk) = O(log(n) log(1

ε )). The result is
true even when Alice has an input S and Bob wants to sample a subset T disjoint
from S.

By Theorem 4.1 we need to analyze the spectrum of M = MDISJk,µ. Indeed,
notice that M [x, y] depends only on the intersection size of x and y. It is not too
difficult to see that all matrices that are indexed by k-subsets and depend only on the
intersection size commute. In particular, they share the same eigenspaces. Lovasz [13]
analyzed the spectrum of these matrices, and we give a slightly different description
of the eigenspaces of M than he obtains.

Lemma 6.2 (a different presentation of [13]). M has k+1 eigenspaces E0, . . . , Ek.
E0 is of dimension 1 and contains the all 1’s vector. Ei has dimension

(
n
i

)− ( n
i−1

)
.

The typical eigenvector in Ei is indexed by x1, x2, . . . , x2i−1, x2i ∈ {1, . . . , n}. The
corresponding eigenvector e (unnormalized) is given by eS = 0 if there is an index
j : |S ∩ {x2j−1, x2j}| �= 1, and otherwise by eS = Πj(−1)|S∩{x2j}|. The corresponding
eigenvalues are

λ0 =
2
(
n−k
k

)− (nk)(
n
k

) and λi =
2
(
n−k−i
k−i

)
(
n
k

)

for i > 0.
The eigenvalues in the spectrum of M decay rapidly. Let qi =

∑
wi∈Ei |λi|2 so

that
∑k

i=0 qi = 1. Then the following holds.
Claim 6.1. For k = Θ(

√
n), qi+1

qi
= O( 1

i+1 ).

Proof. To calculate qi+1/qi, we first bound λi+1/λi. We get that −λi+1

λi
= k−i

n−k−i ≤
2k
n . The number of eigenvalues is

(
n
i

)− ( n
i−1

)
for Ei and

(
n

i+1

)− (ni) for Ei+1, and

(
n

i+1

)− (ni)(
n
i

)− ( n
i−1

) ≤ 2n

i + 1
.

Hence

qi+1

qi
=

(
(

n
i+1

)− (ni))λ2
i+1

(
(
n
i

)− ( n
i−1

)
)λ2

i

≤ 2n

i + 1
· 4k2

n2
= Ω

(
1

i + 1

)
.

Therefore qt ≤ ct

t! . Now we are set to prove the following.

Lemma 6.3. log Kε ≤ O(log(n) log 1/ε
log log 1/ε ).

Proof. We set t = O( log 1/ε
log log 1/ε ) and take Λ = E0 ∪ E1 ∪ · · · ∪Et. We have

∑
i∈Λ

|λi|2 = 1−
∑
i �∈Λ

|λi|2 = 1−
k∑

i=t+1

qi

≥ 1−
k∑

i=t+1

ci

i!
≥ 1−O

(
ct

t!

)
≥ 1− ε.
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Hence Kε ≤ |E0 ∪ · · · ∪ Et| ≤ t · (nt) ≤ nt+1, and log Kε ≤ (t + 1) log(n), as
required.

By Theorem 4.1,
•
Qε(ψ) ≤ �log Kε� ≤ O(t log(n)) = O(log(n) log 1/ε), and a

similar upper bound on
◦
Qε (DISJk) follows from Lemma 5.1. This gives the first

part of Theorem 6.1. This, in particular, shows that it is easy for Alice and Bob to
sample a uniform pair of subsets x and y, along with the knowledge as to whether x
and y intersect.

In the next two subsections we prove the second part of the theorem. We want
to show two things. One is that the result holds even when Alice and Bob want to
sample only disjoint subsets, and second that the result holds even when Alice is given
an input x and Bob is asked to sample a subset y disjoint with x.

6.1. Generating disjoint subsets. Alice and Bob want to ε-approximate a
sample of disjoint k-subsets x and y. This amounts to sampling the disjointness
function according to the distribution D that is uniform over all pairs of disjoint
subsets. (Notice that D is not a product distribution.) Clearly, it is enough for Alice
and Bob to approximate the normalized superposition ψ =

∑
x,y:x∩y=∅

1√
∆0N
|x, y〉,

for once they do that they can measure x and y and get the desired sample. The
normalizing factor ∆0 is the number of values y in a row x s.t. x∩ y = ∅ and does not
depend on x.

Denote by Mf0 the normalized matrix

Mf0 [x, y] =
1√

∆0N

{
1, x ∩ y = ∅,
0, otherwise.

Mf0
is symmetric and has full spectrum ζ1, . . . , ζN , |ζ1|2 ≥ · · · |ζN |2. We say K0

ε is the
first K s.t.

∑
i≤K |ζi|2 ≥ 1− ε. By Theorem 4.1 (which applies to any superposition),

Alice and Bob can ε-approximate ψ using only O(log(K0
ε )) communication qubits.

Since k = Θ(
√
N), ∆0 ≥ N

c for some constant c. It is left to show that
O(log(K0

ε )) = O(log(n) log(1/ε)). One way to show this is to compute the eigen-
values of Mf0 . However, there is an easier way. We show that K0

ε ≤ Kε/c + 1 and
then Lemma 6.3 implies the bound. We are left with the following.

Claim 6.2. K0
ε ≤ Kε/c + 1.

Proof. Denote Mf [x, y] = 1
N (−1f(x,y))). Mf and Mf0 share the same eigenspaces

(as they commute). We now express Mf and Mf0 in terms of each other. Let us
define B =

√
N∆0Mf0

, so that B is a 0, 1 matrix. It can easily be verified that

NMf = B − (J −B) = 2B − J,

where J is the all 1’s matrix. Hence, Mf0 = N/2
√
N∆0Mf + dJ for some value d. In

particular, for any eigenvector wi �= (1, . . . , 1), Jwi = 0 and ζi = 1
2

√
N/∆0λi. Thus,

|ζi| = 1

2

√
N

∆0
|λi| ≤

√
c|λi|, i > 1.

Therefore, suppose
∑

i∈S |λi|2 ≥ 1 − ε/c. Denote S′ = S ∪ {(1, . . . , 1)}. Clearly,∑
i �∈S′ |ζi|2 ≤

∑
i �∈S′ c|λi|2 ≤ ε. Hence K0

ε ≤ Kε/c + 1.

6.2. Sampling for a given input x. Alice is given an input z ∈ X, and the
goal is that Bob samples y ∈ Y s.t. z ∩ y = ∅. We follow a protocol similar to that
in the upper bound of Theorem 4.1. Given an input z ∈ X and an ε > 0, define
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M = Mf0
as in the previous subsection. Let W be the eigenvector basis of M (which

is symmetric). Let Λ = Λε be the union of the first eigenspaces Ei (defined in Lemma
6.2) that contain the first Kε heavy eigenvectors of M . Let Π be the projection
operator over Λ.

We now describe the protocol. Alice gets into the normalized superposition vz =
1√
∆0

∑
y:y∩z=∅ |y〉. In the eigenvector basis W , vz =

∑
i γi|wi〉. Alice then projects vz

onto Λ to get vz =
∑

i∈Λ γi|wi〉 and sends vz to Bob. Bob returns vz to the original
basis and measures to get some y. To prove correctness we show the following.

Lemma 6.4. |〈vz|vz〉| ≥ 1− ε.
Proof. 〈vz|vz〉 =

∑
i∈Λ |γi|2, i.e., it is the length of the projection of vz onto Λ.

We show that this quantity is the same for all z. If we know that, we can define
ψ = 1√

N

∑
z |z, vz〉 and ψ = 1√

N

∑
z |z, vz〉 (so ψ and ψ are normalized). Then, from

the proof of Theorem 4.1 we know that

|〈ψ|ψ〉| ≥ 1− ε.

However,

〈ψ|ψ〉 =
1

N

∑
z

〈vz|vz〉 = 〈vz|vz〉,

which together implies that 〈vz|vz〉 = 〈ψ|ψ〉 ≥ 1−ε, as required. Indeed, the following
claim holds.

Claim 6.3. For any eigenspace Ej, |〈vz|Ej〉|2, which is the length of the projec-
tion of vz on Ej, does not depend on z.

Proof. Let z1, z2 ∈ X be two k-subsets; i.e., z1, z2 ⊂ [1, . . . , n] and |z1| = |z2| = k.
There is a permutation π ∈ Sn s.t. π(z1) = z2, where for a set A, π(A) = {π(a)|a ∈ A}.

The operation of the permutation π can be thought of as a unitary transforma-
tion permuting the basis vectors |x〉 for x ∈ X. In other words, given a superposition
φ =

∑
i∈X ai|i〉, π(φ) is defined to be

∑
i∈X ai|π(i)〉. In particular, for any two su-

perpositions φ1, φ2, 〈π(φ1)|π(φ2〉) = 〈φ1|φ2〉. As a result, 〈vz1 |Ej〉 = 〈π(vz1)|π(Ej)〉,
where π(Ej) = Span{π(w)|w ∈ Ej}. However, we observe that

π(vz1) =
∑

y:y∩z1=∅
|π(y)〉

=
∑

w:π−1(w)∩z1=∅
|w〉

=
∑

w:w∩π(z1)=∅
|w〉 = vz2 .

Finally, because of the symmetries of the eigenspaces Ej , π(Ej) = Ej . The lemma
follows.

7. A lower bound on classical sampling. In contrast we prove that classically
sampling DISJk is hard. We begin with the observation that classical sampling
protocols can always be made to have just one message at no cost. We then prove
the following result.

Lemma 7.1. Given any sampling protocol P with k communication bits and
ε error, there is an optimal one message sampling protocol that samples from the
desired distribution with the same complexity.

Proof. The protocol goes as follows:
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• Alice simulates the protocol P, playing the role of both players. She then
announces the resulting sequence of messages M to Bob.1

• Alice and Bob pick inputs S and T according to the respective conditional
distributions for the protocol P given the messages M .

The crucial observation is that, conditioned on the sequence of messages ex-
changed, the distribution from which Alice and Bob sample is a product distribu-
tion.

We are now ready to prove the next result.

Theorem 7.2. Let k =
√
n. There is a constant ε > 0 s.t.

◦
Rε (DISJk) =

Ω(
√
n).
Proof. Let P be the distribution on X × Y that Alice and Bob sample from (X

and Y is the set of all k-sets). By Lemma 7.1, P is a convex combination of L product
distributions DM , P =

∑
piDi, where L is the size of the message space from which

Alice chooses her message to Bob (i.e., log L is the number of bits transmitted during
the protocol). We say that a distribution D on rectangle R is smooth if for any pair

of elements u, v ∈ R, D(u)
D(v) ≤ 4. We soon show that any product distribution can

be very closely approximated by a convex combination of a small number of smooth
distributions on rectangles; namely, we have the following.

Claim 7.1. Let D be a product distribution on X × Y . Then there are rectan-
gles R1, . . . , R9n2 , and smooth distributions Di on Ri, such that D is within (total
variation distance) 2−2n+1 of a convex combination of Di.

In particular, P is 2−n+1 close to a convex combination
∑9n2L

i=1 piPi, where Pi is
some smooth distribution over some rectangle Ri. Intuitively, the proof shows that
large rectangles Ri introduce large error, while small rectangles provide very slow
progress. For that we use the following combinatorial lemma of Babai, Frankl, and
Simon.

Lemma 7.3 (see [4]). There exist a constant ε0 > 0 and δ = 2−Ω(
√
n) such that,

for any rectangle R = U×V with |R|
|X||Y | ≥ δ, at least ε0 fraction of the pairs of subsets

in R intersect (are not disjoint).

Let us call a rectangle Ri large if |Ri|
|X||Y | ≥ δ. By the lemma, any large rectangle

must contain at least ε0 fraction of intersecting pairs. Thus, any smooth distribution
Pi on a large rectangle Ri must have at least ε0

4 weight on intersecting pairs. Let
h denote the total weight of heavy rectangles in the convex combination (i.e., h =∑

i:Ri is heavy pi). We see that intersecting pairs get at least weight hε0
4 . We conclude

that hε0
4 ≤ ε and h ≤ 4ε

ε0
= O(ε).

We now concentrate on the nonheavy rectangles Pi. We say we touch a pair (x, y)
if some nonheavy rectangle Ri contains it. Let I be the set of all disjoint pairs. We
see that we must touch at least (1− (ε + h))|I| pairs in I, or else there are (ε + h)|I|
elements that get weight ε+h in the uniform distribution over disjoint pairs and only
weight h in P . As every nonheavy rectangle Ri can touch at most |Ri| ≤ δ|X| · |Y |
elements, we must have that 9n2Lδ|X| · |Y | ≥ (1− ε− h)|I| ≥ (1−O(ε))|I|.

For k =
√
n the number of disjoint pairs is some c0|X| · |Y | for some constant c0.

Thus, L ≥ (1−O(ε))c0/9n2 · 2Ω(
√
n). It follows that for some small enough constant

ε > 0 we must have L ≥ 2Ω(
√
n), as desired.

We are left with the proof of Claim 7.1, which we give now.

1We assume that all messages belonging to the same round have the same length. If this is not
the case, Alice has to send a special sign at the end of each message, which may, at most, increase
the number of communication bits by a constant factor.
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Proof of Claim 7.1. We partition X to sets X0, . . . , X3n−1 and XBad, where
Xi = {x| 1

2i+1 ≤ D(x) ≤ 1
2i } and XBad is all other strings. We similarly partition Y .

We define the distribution Di,j to be the distribution that D induces on the rectangle
Xi×Yj (0 ≤ i, j ≤ 3n−1). It is clear that Di,j is almost uniform. Let us denote by D
the appropriate linear combination of the distributions Di,j , D =

∑
i,j pi,jDi,j (where

pi,j is the weight of the rectangle Xi× Yj under D). It is clear that D(a, b) = D(a, b)
for any (a, b) that belongs to some rectangle Xi ×Xj . Thus, |D−D|1 is bounded by
the total weight (under D) of entries in XBad×Y and X×YBad, and so it is bounded
by 2 · 2n · 2−3n = 2−2n+1. The lemma follows.

8. Zero error sampling and the log-rank conjecture. Theorem 4.1 char-

acterizes the q–generating complexity
•
Q. However, it is still possible that sampling

is much easier (even in the quantum world) than q–generating. For the special case
of zero error sampling, we supply a lower bound even for the easier task of sampling,
using a method similar to that used in Theorem 4.1.

Theorem 8.1. For every function f and any distribution D,
◦
Q0(f,D) ≥

log(rank(Mf,D))
2 − 1.

Proof. Given a protocol P for sampling f , we define the |X| × |Y | matrix M0
P

by letting M0
P [x, y] be the probability that P samples (x, y) with the answer 0. We

similarly define M1
P . We let MP = M0

P −M1
P . Note that MP does not necessarily

correspond to the probability that the protocol will answer with a yes or no to an
instance (x, y).

Lemma 8.2 (see [12]). Suppose that P uses only l communication qubits. Then
rank(M0

P ), rank(M1
P ) ≤ 22l.

Proof. Let P be a quantum protocol for sampling f using l qubits. Suppose by the
end of the protocol that the superposition is φ, and wl, the last qubit communicated,
contains the answer (0 or 1). By Claim 4.2,

φ =
∑

w∈{0,1}l

∑
x∈X,y∈Y

|x, Ux(w), wl, y, Vy(w)〉.

Define Y0 = {w ∈ {0, 1}l|wl = 0} and φ0
x,y =

∑
w∈Y0

|x, Ux(w), wl, y, Vy(w)〉. Then

M0
P [x, y] = 〈φ0

x,y|φ0
x,y〉

=
∑

w,z∈Y0

〈Ux(w)|Ux(z)〉〈Vy(w)|Vy(z)〉.

If we define a matrix A of dimension |X| × |Y0|2 by A[x, (w, z)] = 〈Ux(w)|Ux(z)〉,
and a matrix B of dimension |Y0|2 × |Y | by B[(w, z), y] = 〈Vy(w)|Vy(z)〉, then we
see that M0

P [x, y] = (AB)[x, y]. That is, M0
P = AB. In particular, rank(M0

P ) =
rank(AB) ≤ rank(A) ≤ |Y0|2 ≤ 22l. A similar argument shows that rank(M1

P ) ≤
22l.

We remind the reader that for f : X×Y �→ {0, 1} the matrix Mf,D has dimensions
|X| × |Y | and is defined by Mf,D[x, y] = (−1)f(x,y)Dx,y. (Mf,D is not normalized,
i.e., ||Mf,D||2 is not necessarily 1.) We notice that if P samples f with zero error
using l qubits, then MP = Mf,D. Moreover, rank(Mf,D) = rank(MP ) ≤ rank(M0

P ) +
rank(M1

P ) ≤ 22l + 22l = 22l+1. In particular, 2l + 1 ≥ log(rank(Mf,D)). Hence
◦
Q0 (f,D) ≥ log(rank(Mf,D))/2− 1, and Theorem 8.1 follows.

We see in particular that for the uniform distribution (D(x, y) = 1/N2 and
µ(x, y) = 1/N), Mf,D and Mf,µ differ only by a constant factor and so have the same
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rank. By Theorem 4.1,
◦
Q0 (f) ≤ �log rank(MfM

†
f )�+O(1) = �log rank(Mf )�+O(1).

Theorem 8.1 gives a matching lower bound. Together we get the following tight
characterization for zero error sampling.

Corollary 8.3. For any f : X × Y �→ {0, 1},
◦
Q0(f) = Θ(log rank(Mf )).

8.1. Zero error classical computing is almost as easy as sampling.

Theorem 8.4.
√

D(f) ≤ ◦R0 (f) ≤ D(f).
Proof. Given the matrix Mf , a monochromatic cover is a set of monochromatic

rectangles in Mf that together cover the whole matrix. Define C(f) as the small-
est number of monochromatic rectangles needed to cover Mf . Define CD(f) as the
smallest number of disjoint monochromatic rectangles needed to cover Mf . It is well
known (see [16, Chapter 2]) that

√
D(f) ≤ N(f) = log2 C(f) ≤ log2 CD(f) ≤ D(f),

where N(f) is the nondeterministic communication complexity. We show that

log2 C(f) ≤ ◦R0 (f) ≤ log2 CD(f),

and in particular we get that
√

D(f) ≤ N(f) ≤ ◦R0 (f) ≤ D(f), as required.

We first show that log2 C(f) ≤ ◦
R0 (f). Indeed, by Lemma 7.1 there is a one

message zero error sampling protocol whose complexity is k =
◦
R0 (f). In the one

message protocol a message M is chosen (out of the 2k possible messages) according
to some probability distribution, and, given the message M , Alice (Bob) chooses a
message x ∈ X (y ∈ Y ) according to some probability distribution that depends on
M . Let us say that XM (YM ) is the set of elements in X that have nonzero probability
of being selected by Alice (Bob), given the message M . As the protocol has zero error,
the rectangle XM × YM must be monochromatic. As Alice and Bob sample inputs
according to the uniform distribution, every (x, y) ∈ X × Y must be covered. Hence
the protocol gives rise to a monochromatic cover of Mf with only 2k rectangles, and
hence C(f) ≤ 2k.

Next we show that
◦
R0(f) ≤ log2 CD(f). Suppose that a disjoint monochromatic

cover of Mf with 2k rectangles exists. Say that the cover contains the rectangles
R1, . . . , R2k and Ri = Xi × Yi. We build a sampling protocol. A message i ∈
{1, . . . , 2k} is picked with probability proportional to the area of Ri. Given the
message i, Alice picks a random element x ∈ Xi, and Bob picks a random element
y ∈ Yi. It is easy to verify that, as the cover is disjoint, this results in the uniform

distribution over X × Y along with the value of f(x, y). Hence
◦
R0 (f) ≤ k.
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Abstract. In this paper, we show that, amongst n uniformly distributed unit balls in R
3, the

expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our
techniques we show a linear bound on the expected size of the visibility complex, a data structure
encoding the visibility information of a scene, providing evidence that the storage requirement for this
data structure is not necessarily prohibitive. These results significantly improve the best previously
known bounds of O(n8/3) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics,
21 (2002), pp. 176–206].

Our results generalize in various directions. We show that the linear bound on the expected
number of maximal nonoccluded line segments that are not too close to the boundary of the scene
and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded
aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio.
We also prove that our results extend to other distributions such as the Poisson distribution. Finally,
we indicate how our probabilistic analysis provides new insight on the expected size of other global
visibility data structures, notably the aspect graph.
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1. Introduction. Visibility computations are central in computer graphics ap-
plications. Computing the limits of the umbra and penumbra cast by an area light
source, identifying the set of blockers between any two polygons, and determining
the view from a given point are examples of visibility queries that are essential for
the realistic rendering of three-dimensional (3D) scenes. In global illumination al-
gorithms, where the flow of light in a scene is simulated according to the laws of
geometrical optics, visibility computations are excessively costly. In fact, more than
half of the overall computation time can routinely be spent on visibility queries in
radiosity simulations [11].

One approach to speeding up rendering is to store global visibility information
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rendering purposes [9]. Other related data structures include Pellegrini’s ray-shooting
structure [18], the aspect graph [20], and the visual hull [12]; see [7] for a recent survey.

One problem with these types of data structures which may prevent their appli-
cation in practice is their potentially enormous size; the size of the visibility complex
of a set of n triangles in R

3 is Θ(n4) in the worst case [9], which is prohibitive even
for scenes of relatively modest size. Worst-case examples are somewhat artificial, and
indeed Durand, Drettakis, and Puech [8] provide empirical evidence indicating that
these worst-case upper bounds are largely pessimistic in practical situations; they
observe a quadratic growth rate, albeit for rather small scenes. In two dimensions,
while the worst-case complexity of the visibility complex is quadratic, experimental
results strongly suggest that the size of the visibility complex of a scene consisting of
scattered triangles is linear [4].

Our goal is to provide theoretical evidence to support these observations. To
this end we investigate the expected size of the visibility complex or, equivalently, the
expected number of visibility events occurring in scenes in R

3. A visibility event is
a combinatorial change in the view of a moving observer; such an event occurs when
the viewing direction becomes tangent to some objects. For sets of convex objects in
general position in R

3, the viewing direction can be tangent to at most four objects.
Visibility events thus correspond to maximal nonoccluded line segments tangent to at
most four objects; combinatorially different visibility events correspond to the faces
of the visibility complex.

In this paper we prove that the expected number of maximal nonoccluded line
segments tangent to four balls, amongst n uniformly distributed unit balls in R

3, is
linear. This improves the previously known upper bound of O(n8/3) by Durand et al.,
who proved the more general result that the expected number of (possibly occluded)
lines tangent to four balls is O(n8/3) for the same model [9]. The intuition behind
our proof is that, given a line segment tangent to four balls, the probability that
this segment is not occluded by any other ball is the probability that a cylinder-like
volume of radius 1 about the segment is free from the centers of the other balls.
This probability decays roughly exponentially fast with the length of the segment,
yielding the result. Using our techniques we then show a linear bound on the expected
size of the visibility complex of n uniformly distributed unit balls in R

3. A simple
computation then provides us with the same result for the Poisson distribution.

Our results generalize in the following ways. We show that, for certain types
of visibility events, the linear bound also applies to balls of various but bounded
radii, to polyhedral objects enclosed between two concentric balls of fixed radius, and
even to nonfat objects such as polygons, enclosed between two concentric circles of
fixed radius, whose centers and normals are uniformly distributed. For the remaining
types of visibility events (namely those occurring close to the boundary of the scene;
see section 7.3 for the details), we prove only an O(n2) bound, which is still an
improvement over the bound by Durand, Drettakis, and Puech [9].

Of course, objects in graphics scenes are seldom distributed uniformly or according
to a Poisson point process. We chose this model because it allows tractable proofs
of theoretical results. This is important in a context where there are few rigorous
results, either theoretical or experimental. The same model, albeit with significant
simplifying assumptions, has also been used to study the average complexity of ray
shooting [23, 24] and occlusion culling for two-dimensional urban scenes [16]. It
is interesting to note that Szirmay-Kalos et al. [23], after establishing bounds on
the average complexity of ray shooting in scenes consisting of unit balls distributed
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Table 1.1
Known bounds on the complexity of the set of lines, free lines, or maximal-free line segments

tangent to 4 amongst n objects. The expected complexities are calculated for the uniform distribution.
The results referenced by � are established in this paper.

Worst-case Expected

Possibly occluded lines amongst unit balls Θ(n4) O(n
8
3 ) [9]

Free lines amongst unit balls Ω(n2) [�], O(n3+ε) [1] Θ(n) [�]
Free lines amongst disjoint homothetic polytopes Ω(n3) [3] ?

Free segments amongst unit balls Ω(n2) [�], O(n4) Θ(n)[�]
Free segments amongst arbitrary sized balls Ω(n3) [6], O(n4) ?

Visibility complex of unit balls Ω(n2) [�], O(n4) Θ(n) [�]

according to a Poisson point process, tested their algorithms on a small number of
realistic scenes. The results they obtain are consistent with those predicted by the
theoretical results, thus providing some evidence that the model is helpful. No other
model has been widely accepted by the graphics community, and, in fact, generating
meaningful random scenes usable for testing algorithms is a major problem. (Note
that rather than attempting to generate random scenes, an alternative approach,
which has been used to study the average complexity of ray shooting, is to fix the
scene and randomly distribute the rays; see, for example, [2].)

Previous results on this topic include those that bound the number of lines and
the number of free (i.e., nonoccluded) lines amongst different sets of objects. They are
summarized in Table 1.1. Agarwal, Aronov, and Sharir [1] showed an upper bound of
O(n3+ε) on the complexity of the space of line transversals of n balls by studying the
lower envelope of a set of functions. A study of the upper envelope of the same set
of functions yields the same upper bound on the number of free lines tangent to four
balls [6]. Agarwal, Aronov, and Sharir [1] also showed a lower bound on the complexity
of the space of line transversals of n balls of Ω(n3) for arbitrarily sized balls and Ω(n2)
for unit sized balls. De Berg, Everett, and Guibas [3] showed a Ω(n3) lower bound
on the number of free lines (and thus free segments) tangent to 4 amongst n disjoint
homothetic convex polyhedra. Recently, Devillers and Ramos [6] presented a simple
Ω(n3) lower bound on the number of free segments tangent to 4 amongst n arbitrarily
sized balls, which also holds for nonintersecting balls. We also present a simple Ω(n2)
lower bound on the number of free segments tangent to 4 amongst n unit balls.

In the next section we carefully define the problem and state our main results. In
section 3 and section 4 we prove the expected upper and lower linear bounds on the
number of free segments tangent to four balls. In section 5 we extend this result to
the visibility complex. We present in section 6 a Ω(n2) worst-case lower bound. In
section 7 we discuss extensions of our results to some other models. We conclude in
section 8.

2. Our model and results. We first describe our objects and their distribution.
Let n ∈ N and µ be a positive constant. A sample scene consists of n unit radius
balls B1, . . . , Bn whose centers p1, . . . , pn are independently chosen from the uniform
distribution over a universal ball U of radius R centered at O. Since we distribute
the centers pi over U , the balls Bi may intersect each other and are contained in the
ball, denoted U+, whose radius is R+ 1 and whose center is that of U .

We define the radius R of the universal ball U to be a function of n satisfying

R3 = n/µ.(2.1)
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The constant µ reflects the density of the balls in the sense that the expected number
of centers lying in any given solid of volume V in the universe is 3

4πµV . (The model
is interesting only if n is asymptotically proportional to R3. Indeed, if n

R3 tends to
infinity when n tends to infinity, then the universe gets entirely filled up with balls,
and visibility events occur only in U+ \ U . Conversely, if n

R3 tends to zero when n
tends to infinity, then the balls get scattered so far apart that the probability that
any four (or three) balls have a common tangent goes to zero.)

We now define the visibility complex of a set of objects [21]. A free or nonoccluded
segment is a line segment that does not intersect the interior of any object. A free
segment is maximal if it is not properly contained in another one. Thus, the endpoints
of a maximal-free segment are either on an object or at infinity. We say that two
maximal-free segments are similar if their endpoints lie on the same objects (possibly
at infinity). The visibility complex of a collection of objects is roughly defined as
the partition of the space of maximal-free segments into connected components of
similar segments.1 Its faces have dimension between 0 and 4; when the objects are
in adequate general position, a k-dimensional face corresponds to a connected set of
similar maximal nonoccluded line segments tangent to 4− k objects.

In order to bound the total number of faces of the visibility complex, we first
bound the number of 0-faces. To do this, we count the T4-segments, which are the
free segments tangent to four balls with endpoints on two of those balls. Since there is
a one-to-one correspondence between 0-faces and T4-segments when the objects are in
adequate general position, this yields a bound on the expected number of vertices of
the visibility complex. Note that since the balls are contained in U+, the T4-segments
are also contained in U+.

Our main result is the following.

Theorem 2.1. The expected number of T4-segments amongst n uniformly dis-
tributed unit balls is Θ(n).

We extend this result to the higher-dimensional faces of the complex.

Theorem 2.2. The expected size of the visibility complex of n uniformly dis-
tributed unit balls is Θ(n).

We also present an Ω(n2) worst-case lower bound on the number of T4-segments
amongst n unit balls in R

3 (see Proposition 6.1). In fact the lower bound holds for
the number of k-faces of the visibility complex for all k between 0 and 4.

3. The expected number of T4-segments is at most linear. The general
idea behind the proof of the upper bound of Theorem 2.1 is the following. For any
ordered choice of four balls, we bound from above the probability that a line is tangent
to these balls in the given order and is not occluded in between its contact points with
the balls. Then we sum these probabilities over all ordered quadruples of balls and
all potential tangent lines to these balls.

For any two points p and q, and positive real number α, let H(p, q, α) denote the
union of all the balls of radius α centered on the line segment pq (see Figure 3.1). We
first show that a line is tangent to four balls Bi, Bj , Bk, and Bl in that order only
if pj and pk are in H (pi, pl, 2). Thus the volume of H (pi, pl, 2) ∩ U gives an upper
bound on the probability that a line tangent to the four balls in the given order exists.

1Formally, we consider the space of free segments quotiented by the equivalence relation that is
the transitive and reflexive closure of the inclusion. In other words, two free segments are identified
if they are both contained in the same maximal-free segment. This allows the cells of the partition
to be connected.
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We next show that a segment tangent to four balls Bi, Bj , Bk, and Bl in that
order at points ti, tj , tk, and tl, respectively, is not occluded if and only if the centers
of all remaining balls are outside or on the boundary of H (ti, tl, 1). The volume of
U \ H (ti, tl, 1) gives an upper bound on the probability that the tangent segment
is not occluded. Thus, to get an upper bound on that probability, we need a lower
bound on the volume of H (ti, tl, 1) ∩ U .

To bound the probability that a T4-segment exists, we integrate over the distance
between pi and pl, and over the distance from pi to the boundary of the universe U .
This integral is split into three parts covering the cases where

(i) Bi and Bl are close to one another,
(ii) at least one of Bi and Bl is entirely inside the universe,
(iii) Bi and Bl are not close to one another and both are partially outside the
universe.

In each case we overestimate the volume of H (pi, pl, 2) ∩ U and underestimate the
volume of H (ti, tl, 1) ∩ U . We apply the same general proof technique in each of the
three cases. While case (ii) illustrates the main idea behind the proof (case (i) being a
simplified version), extending this idea to case (iii) is technically challenging because
of the difficulties caused by the boundary of the universe.

3.1. Definitions. Let N be the set of ordered 4-tuples (i, j, k, l) chosen from
{1, 2, . . . , n} such that i, j, k, l are pairwise distinct. In our model, the probability
that four centers are collinear is zero, so we may assume that any set of four balls
admits at most 12 real common tangent lines [5, 13]. Moreover, the real common
tangent lines correspond to the real solutions of a degree 12 system of equations. For
any set of four balls we order arbitrarily the 12 solutions of the associated system.

Given four balls Bi, Bj , Bk, and Bl, we denote by Lωi,j,k,l, for ω in {1, . . . , 12}, the
event that the ωth solution of the system is real, that the corresponding real tangent
line is tangent to the four balls Bi, Bj , Bk, and Bl in that order, and that pi is not
closer than pl to the boundary of U . Whenever Lωi,j,k,l occurs, we denote the points
of tangency of that line on Bi, Bj , Bk, Bl by ti, tj , tk, tl, respectively. Let δ

ω
i,j,k,l be

the event that Lωi,j,k,l occurs and the line segment titl is not occluded. Notice that
if δωi,j,k,l occurs, the balls Bi, Bj , Bk, Bl define a T4-segment, and that a T4-segment
corresponds to a unique δωi,j,k,l.

Let xi,l be the random variable representing the distance from pi to pl, and let
yi (resp., yl) be the random variable denoting the distance from pi (resp., pl) to the
boundary of the universe.

In what follows, a random point p denotes a point chosen from the uniform
distribution over U .

3.2. The proof. There is a one-to-one correspondence between the T4-segments
and the events δωi,j,k,l that occur. We thus have the following straightforward lemma.

Lemma 3.1. The expected number of T4-segments amongst n uniformly dis-
tributed unit balls is

∑
(i,j,k,l)∈N

12∑
ω=1

Pr(δωi,j,k,l).

We bound the probability Pr(δωi,j,k,l) by integrating over the distance x between
pi and pl and over the distance y from pi to the boundary of the universe U . The
integral is split into three parts, covering the cases where (i) the balls Bi and Bl are
close to one another, (ii) pi is at distance at least 1 from the boundary of U , and
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(iii) the balls Bi and Bl are not close to one another and pi is at distance less than
1 from the boundary of U . Note that in the last case, if δωi,j,k,l occurs, then both
ball centers pi and pl are within distance 1 from the boundary of U . Two balls are
considered close to one another if their centers are closer than some sufficiently large
constant; for technical reasons which are embedded in the proof of Proposition A.1,
we actually define close to mean distance at most 6.

Lemma 3.2. Pr(δωi,j,k,l) � Ix�6 + Iy�1 + Ix>6,y<1, where

Ix�6 =

∫ 6

x=0

Pr(δωi,j,k,l | xi,l = x) · Pr(x � xi,l < x+ dx),

Iy�1 =

∫ 2R

x=0

Pr(δωi,j,k,l | xi,l = x, yi � 1) · Pr(x � xi,l < x+ dx | yi � 1),

Ix>6,y<1 =

∫ 2R

x=6

∫ 1

y=0

Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi)

· Pr((x � xi,l < x+ dx) ∩ (yl � yi) | yi = y)

· Pr(y � yi < y + dy).

Proof. By the total probability theorem (see [17]),

Pr(δωi,j,k,l) =

∫ 2R

x=0

Pr(δωi,j,k,l | xi,l = x) · Pr(x � xi,l < x+ dx).

The integral can be split at x = 6, giving Ix�6. Then applying the total probability
theorem on what remains, we get

∫ 2R

x=6

∫ R
y=0

Pr(δωi,j,k,l | xi,l = x, yi = y) · Pr((x � xi,l < x+ dx) | yi = y)(3.1)

· Pr(y � yi < y + dy),

which can be split at y = 1. The part corresponding to y between 1 and R is equal to

∫ 2R

x=6

∫ R
y=1

Pr(δωi,j,k,l | xi,l = x, yi = y, yi � 1)

· Pr((x � xi,l < x+ dx) | yi = y, yi � 1) · Pr(y � yi < y + dy)

�
∫ 2R

x=6

∫ R
y=0

Pr(δωi,j,k,l ∩ (x � xi,l < x+ dx) | yi = y, yi � 1) · Pr(y � yi < y + dy).

Applying the total probability theorem again, we get

∫ 2R

x=6

Pr(δωi,j,k,l ∩ (x � xi,l < x+ dx) | yi � 1),

which is less than Iy�1. Consider now the part of (3.1) for y between 0 and 1. If
yl > yi, then δωi,j,k,l does not occur (by definition of Lωi,j,k,l); thus we have

Pr(δωi,j,k,l | xi,l = x, yi = y) · Pr((x � xi,l < x+ dx) | yi = y)

= Pr(δωi,j,k,l ∩ (x � xi,l < x+ dx) | yi = y)

= Pr(δωi,j,k,l ∩ (x � xi,l < x+ dx) ∩ (yl � yi) | yi = y)

= Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi)

· Pr((x � xi,l < x+ dx) ∩ (yl � yi) | yi = y).
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(a) H(pi, pl, 2)

1

Fig. 3.1. H (pi, pl, 2) and H (ti, tl, 1) are shown shaded.

Thus, the part of (3.1) for y between 0 and 1 is equal to Ix>6,y<1.
Let Ξ denote any of the following events: (xi,l = x), (xi,l = x, yi � 1), (xi,l = x,

yi = y, yl � yi). The next three lemmas are used to bound Pr(δ
ω
i,j,k,l | Ξ) appearing

in the three integrals Ix�6, Iy�1, and Ix>6,y<1.
Lemma 3.3. If a line is tangent to four balls Bi, Bj , Bk, Bl in that order at

ti, tj , tk, tl, respectively, then pj , pk ∈ H (pi, pl, 2). Also, the segment titl is not oc-
cluded if and only if the interior of H (ti, tl, 1) does not contain the center of any
other ball.

Proof. Segment titl is contained in H (pi, pl, 1). Since tj and tk belong to that
segment, tj and tk are also in H (pi, pl, 1). Thus pj , pk are both in H (pi, pl, 2). See
Figure 3.1(a).

The segment titl is occluded if and only if some ball Bγ , γ = i, j, k, l, properly
intersects it; that is, the center of Bγ lies in the interior of H (ti, tl, 1). See Fig-
ure 3.1(b).

Lemma 3.4. Pr(p ∈ H(pi, pl, 2) | Ξ) � (3x+8)
R3 .

Proof.

Pr(p ∈ H(pi, pl, 2) | Ξ) = Volume of H(pi, pl, 2) ∩ U
Volume of U |Ξ � Volume of H(pi, pl, 2)

Volume of U |Ξ .

When Ξ occurs, xi,l = x and the volumes of H (pi, pl, 2) and U are 4π
3 (3x+ 8) and

4π
3 R3, respectively. Thus

Pr (p ∈ H(pi, pl, 2) | Ξ) � 3x+ 8

R3
.
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Lemma 3.5. Pr(δωi,j,k,l | Ξ) � (3x+8)2

R6 · Pr(p /∈ H(ti, tl, 1) | Lωi,j,k,l, Ξ)n−4.
Proof. If δωi,j,k,l occurs, then Lωi,j,k,l necessarily occurs; thus
Pr(δωi,j,k,l | Ξ) = Pr(δωi,j,k,l ∩ Lωi,j,k,l | Ξ) = Pr(Lωi,j,k,l | Ξ) · Pr(δωi,j,k,l | Lωi,j,k,l, Ξ).

By Lemma 3.3, Pr(Lωi,j,k,l | Ξ) is bounded by the probability that pj and pk belong
to H(pi, pl, 2), given Ξ, and Pr(δωi,j,k,l | Lωi,j,k,l) is equal to the probability that for
all γ = i, j, k, l, point pγ is outside H(ti, tl, 1), given Ξ. Since all the points are
independently and identically drawn from the uniform distribution over U , Lemma 3.4
yields the result.

We consider the three integrals Ix�6, Iy�1, and Ix>6,y<1 in the following subsec-
tions and prove that each is bounded by O

(
1
n3

)
. This will complete the proof of the

upper bound of Theorem 2.1 since, by Lemmas 3.1 and 3.2, the expected number of
T4-segments is less than 12

(
n
4

)
(Ix�6 + Iy�1 + Ix>6,y<1).

3.2.1. Bi and Bl are close to one another. We prove here that Ix�6 is
O
(

1
n3

)
. When Bi and Bl are close to one another, the probability that there exist

two other balls, Bj and Bk, defining a line tangent to Bi, Bj , Bk, Bl in that order is
small enough that we do not need to consider occlusions in order to get the bound we
want.

We first bound the term Pr(x � xi,l < x+ dx) appearing in the integral Ix�6.

Lemma 3.6. Pr(x � xi,l < x+ dx) � 3x2

R3 dx.
Proof. When pi is given, pl must belong to a spherical shell between two spheres

of center pi and radii x and x + dx. The probability Pr(x � xi,l < x + dx), if pi is
known, is exactly the volume of the part of the spherical shell inside U divided by the
volume of U . The volume of the part of the spherical shell inside U is bounded from
above by the volume of the spherical shell, which is 4πx2dx. Since the volume of U is
4
3πR

3 we get the claimed bound. (The exact value of Pr(x � xi,l < x+dx) is actually
given in [15, 22], but the above approximate bound is enough for our purposes.)

Proposition 3.7. Ix�6 is O
(

1
n3

)
.

Proof. Recall that (see Lemma 3.2)

Ix�6 =

∫ 6

x=0

Pr(δωi,j,k,l | xi,l = x) · Pr(x � xi,l < x+ dx).

By Lemma 3.5,

Pr(δωi,j,k,l | xi,l = x) � (3x+ 8)2

R6
· Pr(p /∈ H(ti, tl, 1) | xi,l = x, Lωi,j,k,l)n−4

� (3x+ 8)2

R6
.

It thus follows from Lemma 3.6 that

Ix�6 �
∫ 6

x=0

(3x+ 8)2

R6
· 3x

2

R3
dx =

µ3

n3

∫ 6

x=0

3x2(3x+ 8)2dx = O

(
1

n3

)
.

3.2.2. Bi is entirely inside U . For the integral Iy�1, occlusions must be taken
into account. To this aim, we bound from below the volume of H(ti, tl, 1) ∩ U in the
following lemma.

Lemma 3.8. When Lωi,j,k,l occurs and yi � 1, the volume of H(ti, tl, 1) ∩ U is
greater than π

12xi,l.



1594 DEVILLERS ET AL.

Proof. Let K be the ball having diameter piti. Note that K and pl are both
contained in U and in H(ti, tl, 1). The convex hull of pl and K is thus contained
in H(ti, tl, 1) ∩ U , and its volume is larger than half the volume of the ball K, π12 ,
plus the volume of a cone of apex pl, of base a disk whose boundary is a great
circle of K, and of height greater than xi,l − 1. The volume of that cone is at least
1
3
π
22 (xi,l − 1) = π

12xi,l − π
12 .

We now bound the probability that a tangent line segment titl is not occluded by
any of the other n− 4 balls, given that the line segment titl exists and the ball Bi is
entirely contained in U .

Lemma 3.9. Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi � 1, Lωi,j,k,l

)n−4
< 55 exp

(−µx16

)
.

Proof. First notice that

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi � 1, Lωi,j,k,l

)

= 1− Volume of H (ti, tl, 1) ∩ U
Volume of U |xi,l=x, yi�1, Lωi,j,k,l .

By Lemma 3.8, the volume of H (ti, tl, 1) ∩ U is bounded from below by π
12 x. Since

the volume of U is 4
3πR

3, we get

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x,yi � 1, Lωi,j,k,l

)n−4
<
(
1− x

16R3

)n−4

.

For any 0 � t � 1, we have (1− t) � e−t; thus

(1− t)n−4 � e−t(n−4) = e−tne4t � e4e−tn < 55 e−tn.

Now 0 � x � 2R and R � 1 since Bi is entirely inside U . Thus 0 � x
16R3 � 1

8R2 � 1
and

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi � 1, Lωi,j,k,l

)n−4
< 55 exp

(
− nx

16R3

)

= 55 exp
(
−µx

16

)
.

The following proposition now bounds the integral Iy�1.
Proposition 3.10. Iy�1 is O

(
1
n3

)
.

Proof. Recall that

Iy�1 =

∫ 2R

x=0

Pr(δωi,j,k,l | xi,l = x, yi � 1) · Pr(x � xi,l < x+ dx | yi � 1).

By Lemmas 3.5 and 3.9 we have

Pr(δωi,j,k,l | xi,l = x, yi � 1) � (3x+ 8)2

R6
· 55 exp

(
−µx

16

)
.

Similarly as in Lemma 3.6 we have

Pr(x � xi,l < x+ dx | yi � 1) � 3x2

R3
dx.

Thus we get

Iy�1 �
∫ 2R

x=0

(3x+ 8)2

R6
· 55 exp

(
−µx

16

)
· 3x

2

R3
dx

� µ3

n3

∫ +∞

x=0

3x2(3x+ 8)2 · 55 exp
(
−µx

16

)
dx.
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Changing µx16 by z we get integrals of the kind

∫ ∞
0

zr exp(−z)dz,

which is bounded by a constant, and thus Iy�1 is O
(

1
n3

)
.

3.2.3. Bi and Bl are not close to one another and Bi is partially out-
side U . The only remaining task is to bound the integral Ix>6,y<1. As in the previous
case, we need to bound from below the volume of H(ti, tl, 1) ∩ U . Here, however, the
tangent titl can be entirely outside U , so the bound of Lemma 3.8 does not apply,
and a more intricate proof is needed. We need to distinguish two cases depending on
the distance of segment titl from O, the center of U .

To this aim, we introduce two new types of events. For any s ∈ R, let Fωi,j,k,l(s)
(resp., Nωi,j,k,l(s)) be the event that Lωi,j,k,l occurs and the line segment titl is at
distance greater (resp., less) than R + 1 − s from O. For reasons that will become

clear in the proof of Lemma 3.13, we consider s = y
2
3 .

The next five lemmas are used to bound the first term of the integral Ix>6,y<1.
Lemma 3.11. For any random point p in U , Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi)

is equal to

Pr
(
Fωi,j,k,l(y

2
3 ) | xi,l = x, yi = y, yl � yi

)

· Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y

2
3 )
)n−4

+ Pr
(
Nωi,j,k,l(y

2
3 ) | xi,l = x, yi = y, yl � yi

)

· Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

.

Proof. δωi,j,k,l implies Lωi,j,k,l, which can be split into Fωi,j,k,l(y
2
3 ), Nωi,j,k,l(y

2
3 ), and

the event that Lωi,j,k,l occurs and the line segment titl is at distance exactly R+1−y
2
3

from O. This later event occurs with probability 0; thus

Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi)

= Pr(δωi,j,k,l ∩ Fωi,j,k,l(y
2
3 ) | xi,l = x, yi = y, yl � yi)

+ Pr(δωi,j,k,l ∩Nωi,j,k,l(y
2
3 ) | xi,l = x, yi = y, yl � yi),

which can be expanded into

Pr(Fωi,j,k,l(y
2
3 ) | xi,l = x, yi = y, yl � yi)

· Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y
2
3 ))

+ Pr(Nωi,j,k,l(y
2
3 ) | xi,l = x, yi = y, yl � yi)

· Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y
2
3 )).

When Fωi,j,k,l(y
2
3 ) occurs, the probability

Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y
2
3 ))

is the probability that the tangent is not occluded; that is, pγ does not belong to
H(ti, tl, 1) for all the n − 4 values of γ = i, j, k, l. The same argument holds for

Nωi,j,k,l(y
2
3 ). Since the pγ are independent, we get the result.
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In order to bound the two terms in Lemma 3.11,

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y

2
3 )
)n−4

and

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

,

we need to bound the volume of H(ti, tl, 1) ∩ U from below.
Lemma 3.12. When xi,l � 6, yl � yi � 1, Lωi,j,k,l occurs and segment titl is at

distance less than R + 1 − s, 0 � s � 1, from the center of U , then the volume of
H(ti, tl, 1) ∩ U is larger than 1

6
√

2
(xi,l − 5) s

√
s.

Proof. We give here the idea of the proof; full details can be found in Appendix A.
Let t be the closest point on segment titl from O, and let D be a unit radius disk
centered at t in a plane containing O, the center of U . We define a quadrilateral
with vertices a, b, a′, b′ such that a and a′ are the closest and the farthest points,
respectively, in D ∩ U from O, and b and b′ are the points of intersection of ∂D
and the perpendicular bisector of segment aa′ (see Figure 3.2). Let v be equal to
R + 1 minus the distance from O to segment titl. We prove that the convex hull
of a, b, a′, b′, and pl, which is included in H(ti, tl, 1) ∩ U , has volume greater than

1
6
√

2
(xi,l − 5) min(2

√
2, v
√
v). It follows that, for any 0 � s � 1, if segment titl is at

distance less than R+ 1− s from O, then v � s, and the volume of H(ti, tl, 1) ∩ U is
greater than 1

6
√

2
(xi,l − 5) s

√
s.

∂U

t

b b′

a

D

a′

O

v

R + 1− v
R

R− v

Fig. 3.2. For the sketch of the proof of Lemma 3.12 (v ∈ (0, 1)).

Lemma 3.13. For any random point p in U , x � 6 and 0 � y � 1,

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y

2
3 )
)n−4

< 55 exp

(
−µ (x− 5) y2

8
√
2π

)

and

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

< 55 exp

(
−µ (x− 5) y

8
√
2π

)
.
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Furthermore, if x � 6
√
R, then

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

< 55 exp

(
−µ (x− 5)
8
√
2π

)
.

Proof. Let xi,l = x, yi = y, and suppose first that event Fωi,j,k,l(y
2
3 ) occurs. Since

pi is at distance R − y from O, the segment titl is at distance less than R + 1 − y
from O, and thus, by Lemma 3.12, the volume of H (ti, tl, 1) ∩ U is greater than

1
6
√

2
(x− 5) y√y, which is bigger than 1

6
√

2
(x− 5) y2 since 0 � y � 1 (we bound y

√
y

from below by y2 only so that we can actually compute the integral I1 in the proof of
Proposition 3.18). We now follow the proof of Lemma 3.9, except that the volume of
H (ti, tl, 1) ∩ U is now bounded from below by 1

6
√

2
(x− 5) y2 instead of π12 x. We get

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y

2
3 )
)n−4

< 55 exp

(
−µ (x− 5) y2

8
√
2π

)
.

When Nωi,j,k,l(y
2
3 ) occurs, the segment titl is at distance less than R+1−y

2
3 from

O, and thus, by Lemma 3.12, the volume of H (ti, tl, 1)∩U is bounded from below by
1

6
√

2
(x− 5) y 2

3

√
y

2
3 = 1

6
√

2
(x− 5) y. Then, as before, we get

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

< 55 exp

(
−µ (x− 5) y

8
√
2π

)
.

Now, if x � 6
√
R, the length of the tangent titl is at least 6

√
R − 2. Since

x � 6, R > 3 and a simple computation show that 6
√
R− 2 is bigger than 2√2R+ 1,

which is the length of the longest line segment that may entirely lie inside U+ \ U .
Thus dist(O, titl) � R = R + 1 − s with s = 1, and, by Lemma 3.12, the volume of
H(ti, tl, 1) ∩ U is greater than 1

6
√

2
(x− 5). Then, as before, we get

Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

< 55 exp

(
−µ (x− 5)
8
√
2π

)
.

Lemma 3.14. Pr(Nωi,j,k,l(y
2
3 ) | xi,l = x, yi = y, yl � yi) � (3x+8)2

R6 .

Proof. The event Nωi,j,k,l(y
2
3 ) occurs only if Lωi,j,k,l occurs. The result thus follows

since, by Lemmas 3.3 and 3.4, Pr(Lωi,j,k,l | xi,l = x, yi = y, yl � yi) � (3x+8)2

R6 .
Lemma 3.15. If y < 1, then

Pr
(
Fωi,j,k,l(y

2
3 ) | xi,l = x, yi = y

)
� 81π2 (x+ 6)

2y2

R6
.
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pi, pl

E

R− y 2
3

Ky
2
3

y
1
3

x+ 2

pi
pl

E R+ 1− y 2
3

R

R− y
(a)

(b)

R+ 1− y 2
3

R

R− y

K

Fig. 3.3. For the sketch of the proof of Lemma 3.15.

Proof. A “far” tangent titl is at distance at least R + 1 − y
2
3 from the center O

of U . Such a segment also lies in H(pi, pl, 1). Let E be the part of H(pi, pl, 1) lying
outside of the sphere of radius R+1−y

2
3 and center O. See Figure 3.3(a). Now, both

pj and pk must be in the region inside U and within distance 1 from E. Denote this
region by K. Then

Pr
(
Fωi,j,k,l(y

2
3 ) | xi,l = x, yi = y, yl � yi

)
�
(
Volume of K

Volume of U
)2

.

By Proposition B.1, which we prove in Appendix B, the volume of K is bounded
from above by 12π2 (x+6) y, which yields the result. Here we give the intuition of the
proof. Refer to Figure 3.3. First notice that the “length” of K is at most x+4. Since
K is enclosed in between a sphere of radius R and one of radius R− y

2
3 , its “height”

is at most y
2
3 . For the “width,” consider Figure 3.3(b), which shows a cross-section

of K taken with a plane through O and perpendicular to pipl. The “width” of K is
no more than two times the “width” of E. The “height” of E can be bounded by
some constant times y

2
3 ; thus its “width” can be bounded by some constant times√

y
2
3 = y

1
3 . Thus, intuitively, the volume of K is smaller than (x+4)y

2
3 y

1
3 = (x+4)y,

up to a constant, and the result follows.
We now bound the two last terms of the integral Ix>6,y<1.

Lemma 3.16. Pr(y � yi < y + dy) � 3 dy
R .

Proof. The event (y � yi < y + dy) occurs only if pi lies in the spherical shell
delimited by the two spheres centered at O of radii R−y and R−y−dy whose volume
is smaller than 4π R2 dy. Dividing by the volume of U proves the result.

Lemma 3.17. For 6 � x � 2R and y � 1, we have

Pr((x � xi,l < x+ dx) ∩ (yl � yi) | yi = y) � 6x y dx

R3
.

Proof. The probability Pr((x � xi,l < x+ dx)∩ (yl � yi) | yi = y) is equal to the
volume of the region (shown in grey in Figure 3.4), which is the intersection of the
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R

y

x

x+ dx

pi

O

Fig. 3.4. For the proof of Lemma 3.17.

region in between the two spheres centered at pi and of radii x and x + dx, and the
region in between the two spheres centered at O and of radii R and R − y, divided
by the volume of U . We prove in Proposition C.1 in Appendix C that the volume of
that region is at most 8π x y dx. Roughly speaking, the volume bounded by the four
spheres is at most 8π x y dx because its “thickness” is dx, its “height” is y, and its
“radius” is x. Dividing by the volume of U proves the result.

We can now bound the integral Ix>6,y<1 of Lemma 3.2.
Proposition 3.18. Ix>6,y<1 is O

(
1
n3

)
.

Proof. Recall that

Ix>6,y<1 =

∫ 2R

x=6

∫ 1

y=0

Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi)

· Pr((x � xi,l < x+ dx) ∩ (yl � yi) | yi = y)

· Pr(y � yi < y + dy).

By Lemmas 3.16 and 3.17, we get

Ix>6,y<1 �
∫ 2R

x=6

∫ 1

y=0

Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi) · 6x y dx

R3
· 3 dy

R
.

By Lemma 3.11, Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi) is equal to

Pr
(
Fωi,j,k,l(y

2
3 ) | xi,l = x, yi = y, yl � yi

)

· Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Fωi,j,k,l(y

2
3 )
)n−4

+ Pr
(
Nωi,j,k,l(y

2
3 ) | xi,l = x, yi = y, yl � yi

)

· Pr
(
p /∈ H(ti, tl, 1) | xi,l = x, yi = y, yl � yi, Nωi,j,k,l(y

2
3 )
)n−4

.

We split the integral at x = 6
√
R. When x � 6

√
R, the distance from O to

the tangent titl is less than R (see the proof of Lemma 3.13), which is less than

R+ 1− y
2
3 for any y in (0, 1). Thus, for any x � 6

√
R and y ∈ (0, 1), the probability

Pr
(Fωi,j,k,l(y 2

3 ) | xi,l = x, yi = y, yl � yi
)
is equal to 0. It then follows from Lemmas
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3.13, 3.14, and 3.15 that Ix>6,y<1 � I1 + I2 + I3 with

I1 =

∫ 6
√
R

x=6

∫ 1

y=0

81π2 (x+ 6)
2y2

R6
· 55 exp

(
−µ (x− 5) y2

8
√
2π

)
· 6x y dx

R3
· 3 dy

R
,

I2 =

∫ 6
√
R

x=6

∫ 1

y=0

(3x+ 8)2

R6
· 55 exp

(
−µ (x− 5) y

8
√
2π

)
· 6x y dx

R3
· 3 dy

R
,

I3 =

∫ 2R

x=6
√
R

∫ 1

y=0

(3x+ 8)2

R6
· 55 exp

(
−µ (x− 5)
8
√
2π

)
· 6x y dx

R3
· 3 dy

R
.

Changing µ (x−5)

8
√

2π
by z in the three integrals and y2 by y′ in I1, we get

I1 � K

R10

u=3∑
u=0

∫ c√R
z=0

∫ 1

y′=0

zu y′ exp(−z y′) dz dy′,

I2 � K

R10

u=3∑
u=0

∫ c√R
z=0

∫ 1

y=0

zu y exp(−z y) dz dy,

I3 � K

R10

u=3∑
u=0

∫ ∞
z=0

∫ 1

y=0

zu y exp(−z) dz dy,

where K and c are some positive constants.

Note first that I3 is bounded from above by
K
R10

∑u=3
u=0

∫∞
z=0

zu exp(−z) dz. These
integrals are bounded by a constant; thus I3 is O

(
1
R10

)
.

To bound the integrals I1 and I2, we now compute the integral

∫ A
z=0

∫ 1

y=0

zu y exp(−z y) dz dy(3.2)

for u ∈ {0, . . . , 3} and A > 0, for example with Maple [14]. For u = 0 it is equal to

exp(−A) +A− 1
A

.(3.3)

For u = 1, the integral (3.2) is equal to

exp(−A) + lnA+ Ei(1, A) + γ − 1,(3.4)

where Ei(1, A) denotes the exponential integral
∫∞
t=1

exp(−A t)
t dt and γ denotes Euler’s

constant. Finally, for u = 2 or 3, the integral (3.2) is equal to

exp(−A)P1(A, u− 1) + P2(A, u− 1),(3.5)

where Pi(A, u− 1) denotes a polynomial of degree u− 1 in A.

When A tends to ∞, (3.3) tends to 1, (3.4) is equivalent to lnA (since Ei(1, A)
tends to 0), and (3.5) is equivalent to the leading monomial of P2(A, u − 1), which
is of degree u − 1 � 2. This guarantees that for A = c

√
R and u ∈ {0, . . . , 3}, the

integral (3.2) is O(R). It follows that I1 and I2 are O
(

1
R9

)
.

Since R3 = n/µ, we get that Ix>6,y<1 � I1 + I2 + I3 = O
(

1
R9

)
= O

(
1
n3

)
.
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We can now conclude the proof that the expected number of T4-segments is O(n),
because, by Lemmas 3.1 and 3.2, and Propositions 3.7, 3.10, and 3.18, the expected
number of T4-segments is smaller than

∑
(i,j,k,l)∈N

12∑
ω=1

(
O

(
1

n3

)
+O

(
1

n3

)
+O

(
1

n3

))
= O (n) .

4. The expected number of T4-segments is at least linear. In this section,
we prove that the expected number of T4-segments amongst n uniformly distributed
unit balls is Ω(n). To do this, we bound from below the probability that four given
balls have a given T4-segment. The key step is to give a condition on the relative
positions of four unit balls that guarantees that they have exactly 12 common tangent
lines. We use here the notation as defined in section 3.1.

Lemma 4.1. Let e be a real number satisfying 4
√

2
3 < e < 2, and let the radius R

of U be strictly greater than e. There exists an ε > 0 such that for any point p ∈ U ,
there exist three balls Γ1(p), Γ2(p), Γ3(p) of radius ε contained in U and satisfying
the following conditions:

• p and the centers of the Γi(p) form a regular tetrahedron with edges of length e,
and
• for any triple of points (p1, p2, p3), pi taken from Γi(p), the four unit balls
centered at p, p1, p2, and p3 have exactly 12 distinct tangent lines.

Proof. Macdonald, Pach, and Theobald proved [13, Lemma 3] that four unit balls

centered on the vertices of a regular tetrahedron with edges of length e, 4
√

2
3 < e < 2,

have exactly 12 distinct real common tangent lines. Moreover, these 12 tangent lines
correspond to the 12 real roots of a system of equations of degree 12; thus each tangent
line corresponds to a simple root of that system of equations. It thus follows that for
any sufficiently small perturbation of the four ball centers, the four perturbed balls
still have 12 real common tangent lines. Let ε > 0 be such that the four ball centers
can move distance ε in any direction while keeping 12 distinct common tangents.

Now, for any point p ∈ U , consider a regular tetrahedron with edge length e
having p as a vertex and such that the other vertices are at distance at least ε from
the boundary of U ; for example, we can choose the other three vertices on a plane
perpendicular to the segment Op. Let Γ1(p), Γ2(p), and Γ3(p) be the balls of radius
ε centered at the vertices, distinct from p, of that tetrahedron. By the previous
reasoning, for any q ∈ Γ1(p), r ∈ Γ2(p), and s ∈ Γ3(p), the four unit balls centered at
p, q, r, and s have exactly 12 tangents.

Now, by Lemma 3.1, the expected number of T4-segments is

∑
(i,j,k,l)∈N

12∑
ω=1

Pr(δωi,j,k,l).

Thus we need only to bound from below the probability that the event δωi,j,k,l occurs.

Lemma 4.2. Pr(δωi,j,k,l) is Ω
(

1
n3

)
.

Proof. Assume that n > 8µ so that the radius R = 3
√

n/µ of U is larger than 2,
and let T (p) be the set Γ1(p) × Γ2(p) × Γ3(p), where Γi(p) and e are defined as in
Lemma 4.1. First, note that

Pr(δωi,j,k,l) � Pr(δωi,j,k,l ∩ (pi, pj , pk) ∈ T (pl))

= Pr((pi, pj , pk) ∈ T (pl)) · Pr(δωi,j,k,l | (pi, pj , pk) ∈ T (pl)).
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Since Γ1(pl), Γ2(pl), and Γ3(pl) are three balls of radius ε entirely contained in U , we
have

Pr((pi, pj , pk) ∈ T (pl)) =

( 4
3πε

3

4
3πR

3

)3

=
µ3ε9

n3
.

By Lemmas 3.3 and 4.1, the event (δωi,j,k,l | (pi, pj , pk) ∈ T (pl)) occurs if and only
if the interior of H (ti, tl, 1) ∩ U does not contain the center of any ball. Note that
the volume of H (ti, tl, 1) ∩ U is at most the volume of H (ti, tl, 1), which is at most
4
3π + π(2 + e+ 2ε) since the length of titl is at most e+ 2 + 2ε. It follows that

Pr(δωi,j,k,l | (pi, pj , pk) ∈ T (pl)) �
(
1− π( 4

3 + 2 + e+ 2ε)

Volume(U)
)n−4

.

Since e < 2, we get, after some elementary calculations, that

Pr(δωi,j,k,l | (pi, pj , pk) ∈ T (pl)) �
(
1− (6 + 2ε)µ

n

)n−4

.(4.1)

We thus have

Pr(δωi,j,k,l) � µ3ε9

n3

(
1− (6 + 2ε)µ

n

)n−4

.

Since
(
1− (6+2ε)µ

n

)n−4
tends to e−(6+2ε)µ when n tends to infinity, we get

Pr(δωi,j,k,l) = Ω

(
1

n3

)
.

This completes the proof of the lower bound of Theorem 2.1 since the expected
number of T4-segments amongst n uniformly distributed unit balls is, by Lemmas 3.1
and 4.2,

∑
(i,j,k,l)∈N

12∑
ω=1

Pr(δωi,j,k,l) =
∑

(i,j,k,l)∈N

12∑
ω=1

Ω

(
1

n3

)
= Ω(n).

5. The expected size of the visibility complex is linear. In this section
we prove Theorem 2.2, that the expected size of the visibility complex of a set of n
uniformly distributed unit balls is linear.

We say that the balls are in general position if any k-dimensional face of the
visibility complex is a connected set of maximal-free segments tangent to exactly
4−k balls. We can assume that the balls are in general position since this occurs with
probability 1. We give a bound on the expected number of k-faces for k = 0, . . . , 4.

Lemma 5.1. The expected number of 0-faces is Θ(n).
Proof. A 0-face of the visibility complex is a maximal-free line segment tangent

to four balls. Each maximal-free line segment tangent to four balls contains a T4-
segment, and each T4-segment is contained in one maximal-free line segment. Thus,
by Theorem 2.1, the expected number of 0-faces is linear.

To deal with the faces of dimension k � 1, we divide them into two classes. A
k-face is open if it is incident to at least one (k − 1)-face; otherwise, it is closed.
When the balls are in general position, the number of k-faces incident to a particular
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(k − 1)-face is constant. In the proof of the following lemmas, any constant can be
used. However, for completeness, we will use the exact values but without justifying
them.

Lemma 5.2. The expected number of 1-faces is Θ(n).
Proof. Note that a 0-face corresponds to a maximal-free segment tangent to four

balls, and it is incident to those 1-faces corresponding to free segments tangent to
three amongst those four balls. So a 0-face is incident to exactly six 1-faces, which
implies that the number of open 1-faces is six times the number of 0-faces, and is thus
Θ(n) by the previous lemma.

Proving that the expected number of closed 1-faces is O(n) can be done in a way
very similar to the proof of the upper bound in Theorem 2.1. The difference is that
we consider now only three balls, and thus in all proofs we forget ball Bk. We have
to consider only

(
n
3

)
triples of balls instead of

(
n
4

)
quadruples, but we remove from

the integral the probability Pr(pk ∈ H(pi, pl, 2)|xi,l = x) � 3x+8
R3 . Since

n
R3 = µ, this

amounts to dividing the terms over which we integrate by µ(3x+ 8), which does not
change the general shape of the integrals (a polynomial multiplied by an exponential)
which are convergent. Notice that Bi, Bj , Bl, and ω now define a set of segments
titl, rather than just a single segment. However, those segments define a closed 1-face
only if none of them is occluded by one of the n− 3 remaining balls. Any particular
choice of a tangent titl in the 1-face will give a relevant cylinder H(ti, tl, 1) to use in
the proofs.

Lemma 5.3. The expected number of 2-faces is Θ(n).
Proof. Since a 1-face has five incident 2-faces, the tight linear bound on the

number of 1-faces gives a tight linear bound on the number of open 2-faces. The
closed case is solved similarly to the proof of the upper bound in Theorem 2.1. We
now consider

(
n
2

)
pairs of balls Bi, Bl, and we remove from the integrals the probability

Pr(pj , pk ∈ H(pi, pl, 2)|xi,l = x) �
(

3x+8
R3

)2
, which gives an O(n) bound on the number

of closed 2-faces.
Lemma 5.4. The expected numbers of 3-faces and 4-faces are Θ(n).
Proof. A 3-face, corresponding to lines tangent to a ball, can be closed only if

n = 1. The number of open 3-faces is linear by the fact that in general position a
2-face is incident to four 3-faces. The number of 4-faces is linear since a 3-face is
incident to three 4-faces.

6. Worst-case lower bound. We provide here a Ω(n2) lower bound on the
number of k-faces in the visibility complex. Recall that for the case of n arbitrarily
sized balls, Devillers and Ramos [6] presented a simple Ω(n3) lower bound on the
number of free segments tangent to four balls, which is also the number of vertices
in the visibility complex. Their lower bound (see Figure 6.1) consists of (i) n3 balls
such that the view from the origin consists of n3 disjoint disks centered on a circle,
(ii) n3 balls such that the view from the origin consists of n3 disks whose boundaries
are concentric circles intersecting (in projection) all the disks of (i), and (iii) n3 tiny
balls centered around the origin such that from any point on these n3 tiny balls the
view of the balls in (i) and (ii) is topologically invariant. Note that finding a Ω(n3)
lower bound on the number of free segments tangent to four balls, amongst n balls of
bounded radii, is to the best of our knowledge open.

Proposition 6.1. The number of k-faces in the visibility complex of n disjoint
unit balls in R

3 is Ω(n2) for all k between 0 and 4.
Proof. We first observe that the size of the visibility complex of n unit balls can

trivially be quadratic by having the balls sparsely distributed in the space such that
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Fig. 6.1. Quadratic view from the origin [6].

any pair of balls defines a closed 2-face.

Getting a quadratic number of free lines tangent to four balls amongst a set of n
unit balls can be done by taking balls Bi centered at (2i, 0, 0) for 1 � i � n

2 and balls
B′j centered at (2j, 10, 0) for 1 � j � n

2 . Then, for any i and j, the line through the
points (2i+1, 0, 1) and (2j+1, 10, 1) is free and can be moved down so that it comes
into contact with the four balls Bi, Bi+1, B

′
j , and B′j+1. This argument proves that

the number of k-faces, for 0 � k � 2, can be quadratic.

The free segment (2i, 1, 0)(2j, 9, 0) belongs to the 4-face consisting of maximal-free
segments with endpoints on Bi and B′j . Thus there is a quadratic number of 4-faces.
The bound also applies to 3-faces by considering lines tangent to Bi and stabbing B′j .

In the above construction, the balls can be pushed together (they will intersect) so
that they fit inside a spherical universe of radius 3

√
n/µ without changing the result.

Note also that the above construction can be slightly perturbed to obtain the same
result for a set of n unit balls, disjoint or not, with no four centers coplanar.

7. Generalizations. In this section we provide several generalizations of our
results.

7.1. Poisson distribution. Consider a set of unit balls whose centers are drawn
by a 3D Poisson point process of parameter µ in the universe U . By a Poisson point
process of parameter µ in U [10], we mean that we generate X random points inside
U so that

Pr(X = k) =
(µ ·Volume(U))k · exp(−µ ·Volume(U))

k!
(7.1)

and for any disjoint subsets M and M ′ of U , the number of the points inside M and
the number of points inside M ′ are independent random variables. Note that (7.1)
yields that the expected number of points inside U is µ ·Volume(U) = 4π

3 n.

The following simple argument shows that our results extend to this distribution.
Let X be the random variable representing the number of centers of unit balls gen-
erated by a Poisson point process with parameter µ in U , and let Y be the random
variable representing the number of T4-segments amongst those balls. The expected
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number of T4-segments is

E(Y ) =
∞∑
k=0

E(Y |X = k) · Pr(X = k).

Theorem 2.1 gives E(Y |X = k) = Θ(k) and

Pr(X = k) =
( 4

3π n)k · exp(− 4
3π n)

k!
.

Thus

E(Y ) = Θ

(
4
3π n exp(− 4

3π n)
∑∞
k=1

(
4
3π n)k−1

(k − 1)!
)

= Θ(n exp(− 4
3π n) exp( 4

3π n)) = Θ(n).

Therefore the expected number of T4-segments amongst n balls whose centers are
generated by a Poisson point process with parameter µ in U is Θ(n). Similarly, this
bound extends to the expected size of the visibility complex.

We now investigate various models in which we change the shape of the universe
or the nature of the objects.

7.2. Smooth convex universe. Our results can be generalized to the case
where the universe is no longer a ball but a homothet of a smooth convex set with
homothety factor proportional to 3

√
n. This can be achieved by considering the radius

of curvature of the boundary of the universe, instead of R, in the proofs of the lemmas
dealing with tangents outside the universe.

7.3. Other objects. Let rmin and rmax be two strictly positive real constants.
In the following, we bound the expected number of T4-segments amongst balls whose
radii vary in the interval [rmin, rmax], amongst polyhedra each enclosed between two
concentric balls of radii rmin and rmax, and amongst polygons each enclosed between
two concentric circles of radii rmin and rmax. The centers of the concentric balls or
circles are called the centers of the polyhedra or polygons, respectively. In each case
a T4-segment is called outer if the centers of the two extremal objects it is tangent
to are farther apart than 6rmax and are both at distance less than 2rmax from the
boundary of U . Otherwise, the T4-segment is called inner.

For these models, the proof of the Ω(n) lower bound on the expected number
of T4-segments (section 4) generalizes directly because, for the kind of objects we
consider, there always exist placements of four of them such that they admit at least
one common tangent line with multiplicity one.

7.3.1. Balls of various radii. We have considered a model where all the balls
have the same radius. If we allow the radii to vary in the interval [rmin, rmax], then the
proof of the linear upper bound on the expected number of inner T4-segments general-
izes almost immediately by considering the volumesH(pi, pl, 2rmax) andH(ti, tl, rmin)
instead of H(pi, pl, 2) and H(ti, tl, 1).

Section 3.2.1 generalizes immediately to prove that the expected number of T4-
segments tangent to four balls Bi, Bj , Bk, and Bl in that order such that pi and pl
are closer to one another than 6rmax is O(n). The only difficult task for extending
section 3.2.2 is the proof of the following analogue of Lemma 3.8.

Lemma 7.1. When xi,l � 6rmax, yi � 2rmax, and Lωi,j,k,l occurs, the volume of
H(ti, tl, rmin) ∩ U is greater than π

24r
2
min(xi,l − 6rmax).
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Proof. The proof is similar to the proof of Lemma 3.8. Refer to Figure 7.1. Let
m be the midpoint of segment titl and K be the sphere of diameter rmin centered on
the point c lying on segment tipi at distance

1
2rmin from ti. The sphere K is entirely

inside H(ti, tl, rmin) ∩ U , m lies in H(ti, tl, rmin), and a straightforward computation
shows that m is in U since ti is in U at distance at least rmax from its boundary and
tl is at distance at most rmax from U . Thus H(ti, tl, rmin) ∩ U contains the convex
hull of K and m, which contains the cone of apex m, of base a disk whose boundary
is a great circle of K, and of height the distance from m to the center c of K. Now

xi,l = |pipl| � |pic|+ |cm|+ |mtl|+ |tlpl|
� rmax + |cm|+ 1

2
|titl|+ rmax

� 2rmax + |cm|+ 1
2
(xi,l + 2rmax).

Thus |cm| � 1
2xi,l − 3rmax, and the volume of the cone is at least 1

3π(
rmin

2 )2( 1
2xi,l −

3rmax) =
π
24r

2
min(xi,l − 6rmax).

ti

pi

mc

tl

pl

K

Fig. 7.1. For the proof of Lemma 7.1.

The rest of section 3.2.2 generalizes easily for proving that the expected number
of T4-segments tangent to four balls Bi, Bj , Bk, and Bl in that order such that pi
and pl are farther apart than 6rmax and pi is farther than 2rmax from the boundary
of U is O(n). Hence the expected number of inner T4-segments is O(n).

Our proof cannot be extended to provide a linear upper bound on the expected
number of outer T4-segments. This is because, if balls Bi and Bl are of radius rmax,
then a line segment titl tangent to Bi and Bl might be outside U and at distance
greater than rmin from its boundary. Then H(ti, tl, rmin) does not intersect U , and we
cannot bound H(ti, tl, rmin)∩U from below by a positive constant as in Lemma 3.12,
which is crucial for the proof of Lemma 3.13 and thus for Proposition 3.18.

However, by not taking into account the occlusion in the proof of Proposition 3.18,
we get that the expected number of outer T4-segments is O(n2). Refer to the proof
of Proposition 3.18, and consider Ix>6rmax,y<2rmax , the analogue of Ix>6,y<1 for this
case. The analogues of Lemmas 3.4 and 3.5 yield that

Pr(δωi,j,k,l | xi,l = x, yi = y, yl � yi) � (3x r2
max + 8 r

3
max)

2

R6
.

Lemma 3.16 still holds, and we can easily prove the analogue of Lemma 3.17. Both
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results imply that

Ix>6rmax,y<2rmax �
∫ 2R

x=6rmax

∫ 2rmax

y=0

(3x r2
max + 8 r

3
max)

2

R6
· 6x y dx

R3
· 3 dy

R

∈ O

(
1

R6

)
= O

(
1

n2

)
.

Hence the expected number of inner T4-segments is O(n), and the expected num-
ber of outer T4-segments is O(n2). This still improves the result of Durand, Drettakis,
and Puech [9], who proved a bound of O(n8/3) for the same model.

In this section we have assumed that the sphere centers are uniformly distributed,
but we have made no assumption on the distribution of the radii of the spheres in the
interval [rmin, rmax], which are thus assumed to be worst-case. The addition of some
hypothesis on the radii distribution may yield better results on the number of outer
T4-segments.

7.3.2. Polyhedra of bounded aspect ratio. Consider polyhedra of constant
complexity, each enclosed between two concentric balls of radii rmin and rmax whose
centers are uniformly distributed in U . In such a case, as for balls of various radii,
the O(n) bound on the expected number of inner T4-segments immediately applies,
as well as the O(n2) bound on the expected number of outer T4-segments.

7.3.3. Polygons of bounded aspect ratio. Our proof technique can also be
generalized to nonfat 3D objects such as polygons. Consider polygons of constant
complexity enclosed between two coplanar concentric circles of radii rmin and rmax
and whose centers and normals are independently chosen from the uniform distri-
butions over R

3 and S
2. Let T1, . . . , Tn be such polygons with respective normals

n1, . . . ,nn and centers p1, . . . , pn.
Four polygons Ti, Tj , Tk, and Tl have a common tangent line that meet them in

that order only if pj and pk lie in H(pi, pl, 2rmax). This implies, as in section 3.2.1,
that the expected number of T4-segments tangent to four polygons Ti, Tj , Tk, and Tl
in that order such that pi and pl are closer to one another than some constant, say
6rmax, is O(n).

When such a tangent, denoted titl, exists, it is not occluded only if, for any
γ = i, j, k, l, point pγ does not lie in the interior of H(ti, tl, rmin cos θγ), where θγ
denotes the angle between nγ and the supporting line of titl (see Figure 7.2(a) and
Lemma 3.3). Let γ be an integer distinct from i, j, k, and l. By the total probability
theorem, the probability that Tγ does not occlude the tangent line segment titl is
bounded from above by

∫ π/2
θ=0

Pr (pγ /∈ H(ti, tl, rmin cos θγ) | θγ = θ) · Pr(θ � θγ < θ + dθ).

Similarly as in Lemma 7.1, when the tangent titl exists, xi,l � 6rmax and yi � 2rmax,
and the volume of H(ti, tl, rmin) ∩ U is greater than π

24 (rmin cos θγ)
2(xi,l − 6rmax).

Thus

Pr (pγ /∈ H(ti, tl, rmin cos θγ) | θγ = θ) � 1− (rmin cos θγ)
2(xi,l − 6rmax)
32R3

.

The probability that θγ is in between θ and θ + dθ is sin θ dθ, which corresponds to
twice the area of the spherical shell between the latitudes θ and θ + dθ on the unit
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(ti tl

rmin

θγ

rmin cos θγ

(a)

1

θ

θ

Supporting line of titl

(b)

Fig. 7.2. Illustration for the case of polygons of bounded aspect ratio.

sphere, divided by the area of the unit sphere (see Figure 7.2(b)). Thus when pi is
at distance greater than 6rmax from pl and at distance greater than 2rmax from the
boundary of U , the probability that Tγ does not occlude the tangent line segment titl
is bounded from above by

∫ π/2
θ=0

(
1− (rmin cos θγ)

2(xi,l − 6rmax)
32R3

)
sin θ dθ = 1− r2

min (xi,l − 6rmax)
96R3

.

Then, similarly as in Lemma 3.9, the probability that the tangent line segment titl
is not occluded, when pi is at distance greater than 6rmax from pl and at distance
greater than 2rmax from the boundary of U , is at most

55 exp

(
−µ r2

min (xi,l − 6rmax)
96

)
.

We thus get the analogue of Proposition 3.10 for the model considered here, which
implies that the expected number of T4-segments tangent to four polygons Ti, Tj , Tk,
and Tl in that order such that pi and pl are farther apart than 6rmax and pi is farther
than 2rmax from the boundary of U is O(n).

We thus get that the expected number of inner T4-segments is O(n). Moreover,
as for balls of various radii, the expected number of outer T4-segments is O(n2).

8. Conclusion. In this paper, we proved that the expected number of T4-
segments amongst n uniformly distributed unit balls in R

3 is Θ(n). We also proved
that the expected size of the visibility complex of n uniformly distributed unit balls is
Θ(n). Equivalently, the expected number of combinatorially different visibility events
amongst n uniformly distributed unit balls is Θ(n). We then proved that Θ(n) also
bounds the expected number of T4-segments occurring not too close to the boundary
of the universe for various other models such as n uniformly distributed polyhedra,
or polygons, of bounded aspect ratio and constant complexity. For these models, we
also provided a O(n2) bound on the expected number of all the T4-segments.

This paper is an attempt to analyze the average-case behavior of the size of
visibility structures. The distribution models of scene objects investigated here are
theoretical in nature since objects in graphics scenes are seldom distributed uniformly
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or by a Poisson process. However, our results are important in a context where there
are few rigorous results, either theoretical or experimental. They provide theoret-
ical ground to support the empirical evidence indicating that the worst-case upper
bound on the number of visibility events is largely pessimistic in practical situations.
As a consequence, there is reason to believe that an output-sensitive algorithm for
computing all visibility events may work in practice.

Practitioners will be concerned about the size of the constant hidden in the Θ
notation. We have calculated (in the proofs of section 3) this constant to be no larger
than 216 µ3 + 231 µ + 237 e−µ/3 (µ2 + 1/µ2). Of course this is shocking. We suppose
that the constant is actually much smaller. However, estimating it in practice is a
difficult problem which is still to be solved. After solving this problem, an interesting
experiment will be to compare the number of visibility events occurring in a realistic
graphic scene with the theoretical bound for uniformly distributed objects.

The results proved here also provide new insight on the complexity of other vis-
ibility structures. Consider, for instance, the aspect graph, a partition of viewpoint
space into maximal connected regions by surfaces along which visibility events are
observed. As explained in [19], the complexity of the aspect graph is dominated by
δm, where δ is the degree of the surface corresponding to lines “tangent” to three ob-
jects and m the dimension of the viewpoint space. For a scene composed of n disjoint
spheres, δ is trivially O(n3), so the aspect graph has O(n6) orthographic views and
O(n9) perspective views. However, the results of this paper show that the expected
value of δ is Θ(n) since the expected number of families of lines tangent to three ob-
jects (related to the 1-faces of the visibility complex) is linear and the degree of each
family is bounded. It would thus be interesting to get a good bound on the expected
value of δ2 and δ3, which is related to bounding the expected value of the square
and the cube of the number of combinatorially different visibility events. Note that
the former would also give the standard deviation of the expected number of com-
binatorially different visibility events. Similar observations hold for the polyhedral
case.

Appendix A. Volume of the intersection of a 3D hippodrome with a
ball. Recall that U is a ball of radius R centered at O. Let Bi and Bl be two unit balls
whose centers pi and pl are in U , within distance 1 from its boundary, and distance
x � 6 apart. Let titl be a line segment tangent to Bi and Bl at its endpoints. The
section is devoted to the proof of the following proposition, which leads directly to
Lemma 3.12.

Proposition A.1. For any 0 � s � 1 such that segment titl is at distance less
than R+1− s from O, the volume of H(ti, tl, 1)∩U is larger than 1

6
√

2
(x− 5) s√s.

We proceed as follows. Let v be such that the distance from O to the segment
titl is R+ 1− v, and let t be the point on segment titl closest to O (see Figure A.1).
Assume without loss of generality that t is closer to ti than to tl. Let C (resp., D) be
the unit radius circle (resp., disk) centered at t in the plane, denoted P, containing
the vectors

−→
Ot and the cross-product of

−→
Ot and

−→
titl. Let θ be the angle between the

plane orthogonal to titl and P. We first prove the following lemma.
Lemma A.2. The volume of H(ti, tl, 1) ∩ U is greater than

1

3
min

(
2,

v
√
v√
2

)
·min

(
x− 2
2

, (x− 2) cos θ − 1
)
.

Proof. Let a denote the closest point on C from O, a′ the farthest point in D∩U
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C

pi

pl
Bl

Bi

tl

H(ti, tl, 1)

U

C

pi
pl Bl

Bi

ti

tl

H(ti, tl, 1)

t

U

ti = t

OO

θ

(a) t is not equal to ti or tl; θ = 0. (b) t is equal to ti.

Fig. A.1. For the definition of t and C (C is shown from the side view).

∂U

∂U
t

t

b b′

a b

a

b′

C

C
a′

OO

a′

R + 1− v

R
v

R + 1− v
R

R− v

(c) v > 2(a) v ∈ [0, 1]

∂U
t

b

a

b′

C

O

a′

R + 1− v

R

R− v

v

(b) v ∈ [1, 2]

Fig. A.2. For the definition of a, a′, b, b′.

from O, and b and b′ the two points of intersection of C and the perpendicular bisector
of segment aa′ (see Figure A.2).

The volume of H(ti, tl, 1) ∩ U is greater than the volume of the convex hull of
a, b, a′, b′, and pl because H(ti, tl, 1)∩U is convex and contains these five points. The
volume of this polyhedron is equal to one third of the area of its base, the quadrilateral
with vertices a, b, a′, b′ times its height, the distance from pl to the plane P containing
a, b, a′, b′.

We first compute a lower bound on the area of the quadrilateral with vertices
a, b, a′, b′. If v � 2 (see Figure A.2(a) and (b)), then the length of aa′ is equal to v,

and a simple calculation gives that the length of bb′ is equal to 2
√

v − v2

4 �
√
2v. Thus

the area of the quadrilateral a, b, a′, b′ is greater than v
√
v√
2
. If v > 2 (see Figure A.2(c)),

then C is entirely contained in U , and the area of the quadrilateral a, b, a′, b′ is equal
to 2. Thus, the area of the quadrilateral is at least min(2, v

√
v√
2
).

The volume of the polyhedron is thus greater than 1
3 min(2,

v
√
v√
2
) times the dis-

tance from pl to the plane P. We consider two cases.
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C

pl

tl

ti = t

θ

P

O

θ

A
B

pi

Fig. A.3. The height from pl to P is greater than |titl| cos θ − 1.

First, suppose that t belongs to the interior of the segment titl (see Figure A.1(a)).
Then the height is equal to the distance from tl to t since pl and a, b, a′, b′ belong,
respectively, to the two planes, orthogonal to titl and passing through tl and t, re-
spectively. Since ti and tl belong to Bi and Bl, they are at least distance x− 2 apart;
thus t and tl are at least distance

x−2
2 apart. Thus, the height from pl to P is at

least x−2
2 .

Second, suppose that t = ti (see Figure A.1(b)); t = tl since we assumed that
t is closer to ti than to tl. Refer to Figure A.3. Let A and B be the orthogonal
projections of pl and tl onto P, respectively. Note that the lengths of Apl and Btl are
the distances from pl and tl to the plane P, respectively.

Considering the triangle �Apltl and that the distance between tl and pl is 1, we
obtain that |Apl| � |Atl| − |tlpl| = |Atl| − 1, where |ab| denotes the length of segment
ab. Since A ∈ P and the length of Btl is the distance from tl to the plane P, the
length of Atl is greater than that of Btl; thus |Apl| � |Btl| − 1.

To bound the length of Btl, we now consider the triangle �Btlt. The angle ∠Btlt
is the angle between the normal of the plane P and titl, that is, by definition, θ. So
the length of Btl is the length of titl times cos θ, and, since |titl| is at least x−2, |Btl|
is greater than (x− 2) cos θ. Thus the length of Apl is greater than (x− 2) cos θ − 1.

Hence the distance from pl to the plane P is greater than min(x−2
2 , (x−2) cos θ−1),

and thus the volume of H(ti, tl, 1) ∩ U is greater than 1
3 min(2,

v
√
v√
2
) · min(x−2

2 ,

(x− 2) cos θ − 1).
The following lemma bounds cos θ.

Lemma A.3. The angle θ is such that cos θ �
√

7
4 .

Proof. Note first that this lemma is intuitively obvious. Indeed (see Figure
A.1(b)), if x is sufficiently large and if ti is the closest point on segment titl to O,
then the angle between the plane supporting C and the segment titl is necessarily
close to π/2, which implies that θ is close to 0. We now prove the lemma.

Refer to Figure A.3, and consider the triangle �Otitl. Let |ab| denote the length
of segment ab. Then the law of cosines yields

|Otl|2 = |Oti|2 + |titl|2 − 2 · |Oti| · |titl| · cos(π2 + θ)

= |Oti|2 + |titl|2 + 2 · |Oti| · |titl| · sin θ,
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which gives that

sin θ =
|Otl|2 − |Oti|2 − |titl|2

2 · |Oti| · |titl| .

The centers pi and pl of balls Bi and Bl are distance x � 6 apart and at distance less
than 1 from the boundary of U , so |titl| � 4, |Oti| � R− 2 and |Otl| � R+ 1. Hence

sin θ � (R+ 1)2 − (R− 2)2 − 42

2 · (R− 2) · 4 � 6(R− 2)
8(R− 2) =

3

4
.

Using cos θ =
√
1− (sin θ)2 proves that cos θ �

√
7

4 .
We can now conclude the proof of Proposition A.1. For any 0 � s � 1, if segment

titl is at distance R + 1 − v � R + 1 − s from the center of U , then v � s. By
Lemma A.3, (x− 2) cos θ − 1 � x−5

2 , which means that min(x−2
2 , (x− 2) cos θ − 1) �

x−5
2 . Thus Lemma A.2 gives that the volume of H(ti, tl, 1) ∩ U is greater than
1

6
√

2
(x − 5) min(2√2, v√v) � 1

6
√

2
(x − 5) min(2√2, s√s) = 1

6
√

2
s
√
s (x − 5) since

s � 1. Hence the volume of H(ti, tl, 1) ∩ U is greater than 1
6
√

2
s
√
s (x− 5).

Appendix B. Volume of K. Recall that U is a ball of radius R centered at O,
and let pi and pl be two points in U within distance 1 of its boundary and distance
x apart. Let y be a real number such that 0 � y < 1. Let F be the open ball with
center O and radius R+ 1− y

2
3 and ∂F its frontier. Let E be the part of H(pi, pl, 1)

that is outside F , and let K be the intersection of U with the union of all unit balls
centered on points in E (see Figure B.1). This section is devoted to the proof of the
following proposition used in the proof of Lemma 3.15.

Proposition B.1. The volume of K is bounded from above by 12π2 (x+ 6) y.
Lemma B.2. If z ∈ U is at distance less than 1 from E, then z is at distance less

than 1 from E ∩ ∂F .
Proof. Let z ∈ U and w ∈ E be two points at distance less than 1, and refer to

Figure B.1. Let w′ be the point of intersection of ∂F and the ray from O through w.
For any ball B centered in U , B \ F lies in the cone of center O and base B ∩ ∂F .
Thus E = H(pi, pl, 1) \F lies in the cone of center O and base E ∩∂F . Hence the ray
from O through w lies in this cone and w′ ∈ E ∩∂F . On the other hand, |zw′| � |zw|
since z ∈ F , w′ ∈ ∂F , and w lies outside F on the ray from O through w′. Thus,
since w′ ∈ E ∩ ∂F and |zw| < 1 by hypothesis, the distance from z to E ∩ ∂F is less
than 1.

The above lemma implies that K is the intersection of U with the union of all
unit balls centered on E ∩ ∂F . To bound the volume of K, we enclose E ∩ ∂F in a
subset of ∂F that will be easier to deal with.

Let B(p) denote the ball of unit radius centered at p. Let π(p) be the point that
maximizes (under inclusion) the intersection ∂F ∩ B(q) for all q on the ray from O
through p. A simple computation yields that the distance between π(p) and O is

Ry =

√
(R+ 1− y

2
3 )2 − 1.

Thus π is the orthogonal projection onto the sphere centered at O of radius Ry. Now
let π′(p) be the point that maximizes (under inclusion) the intersection ∂F ∩B(q) for
all q on the radius of U through p (that is the part inside U of the ray from O through
p). Similarly, π′ is the orthogonal projection onto the sphere centered at O of radius

R′ = min(R,Ry).
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pi pl

E

∂F

∂U
R+ 1− y

2
3

R− y

R

z

O

w
w′

E ∩ ∂F

Fig. B.1. The part E of H(pi, pl, 1) outside F .

pi pl

π′(pi)

π′(pl)

G E

R+ 1− y
2
3

R− y
R′

∂F

Fig. B.2. G, a part of ∂F enclosing E ∩ ∂F .

π′(pi)
π′(pl)

G

H

R+ 1− y
2
3

′ R

∂F

∂U

O R

A plane Π

X̃
Ỹ

Z̃

Fig. B.3. The region H and a plane Π.

Let G be the union of the spherical caps ∂F ∩ B(π′(p)) for all p on the segment
from pi to pl (see Figure B.2). Let H denote the points of U at distance less than or
equal to 1 from G (see Figure B.3).

Lemma B.3. K ⊆ H.

Proof. E∩∂F is the union of ∂F∩B(p) for all p on the segment pipl. Furthermore,
for any such p, ∂F ∩ B(p) ⊆ ∂F ∩ B(π′(p)) by definition of π′ since p ∈ U . Thus
E ∩ ∂F is contained in G.

By Lemma B.2, K is the intersection of U with the union of all unit balls centered
on E ∩ ∂F . Thus K is contained in H, with the union of all unit balls centered
in G.

To bound the volume of H from above, we first bound the area of its section
by planes Π that contain O and are orthogonal to the plane, denoted (O, pi, pl),
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π′(p)

a bG

H

R
R′

R− y
2
3

R+ 1− y
2
3

∂F

∂U

X

Y

Fig. B.4. Section of H by a plane Π intersecting segment pipl at p.

containing O, pi, and pl (see Figures B.3 and B.4).
Lemma B.4. The area of Π ∩H is less than 12π y.
Proof. The section of G by a plane Π is a circular arc on ∂F . If Π intersects

the segment pipl, let p denote the point of intersection; then the circular arc is the
intersection of ∂F and the disk B(π′(p))∩Π (refer to Figures B.2 and B.4). Otherwise,
the circular arc is the intersection of ∂F and the disk B(π′(pi)) ∩Π or B(π′(pl)) ∩Π
(see Figure B.2). The disk has radius 1 in the former case and radius less than one in
the latter case. In both cases the center of the disk is at distance R′ from O. Thus the
length of the circular arc G∩Π is maximal if and only if Π intersects the segment pipl.
Thus the area of Π∩H is maximal if and only if Π intersects the segment pipl. Hence
we can assume that Π is such a plane. Let p denote its intersection with segment pipl.

Let a and b denote the endpoints of G∩Π, and refer to Figure B.4. Points a and
b are the intersection of ∂F and the circle in Π of radius 1 centered at π′(p). The
lines (Oa) and (Ob) split Π ∩H into three parts: a left, a central, and a right part.
Symmetries with respect to the lines (Oa) and (Ob) send the left and right parts into
the central one. Hence, the area of Π ∩H is bounded by three times the area of its
central part. This part is delimited by the two rays from O through a and b, and the
two circles in Π with center O and radii R and R− y

2
3 . So, if α denotes the length of

the circular arc ab, the area A of the central part is

A =
α

2π(R+ 1− y
2
3 )
· π(R2 − (R− y

2
3 )2) = α

2Ry
2
3 − y

4
3

2(R+ 1− y
2
3 )

� α y
2
3 .

We now bound the length α of the arc ab. We choose an orthonormal frame
(π′(p), X, Y ) in Π such that O has coordinates (0,−R′) (see Figure B.4). Recall that
a is one of the intersection points of the circle centered at π′(p) of radius 1 and the
circle centered at O of radius R + 1 − y

2
3 . A simple computation yields that the

coordinates (Xa, Ya) of a are equal to

Ya =
(R+ 1− y

2
3 )2 − 1−R′2

2R′
, |Xa| =

√
1− Y 2

a .

If R′ = R, then

Ya =
y

4
3 + 2R− 2Ry

2
3 − 2y 2

3

2R
= 1− y

2
3

(
1 +

2− y
2
3

2R

)
� 1− 2y 2

3 ,

which implies that

|Xa| �
√
1− (1− 2y 2

3 )2 =

√
4y

2
3 − 4y 4

3 � 2y
1
3 .
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a b

∂F

O

R+ 1− y
2
3

|Xa|

arcsin

(
|Xa|

R+1−y 2
3

)
X

Y

Fig. B.5. The length of the circular arcs ab.

Now, if R′ = R, then (R+ 1− y
2
3 )2 − 1 � R2 by definition. Expanding this inequality

yields

y
4
3 + 2R− 2Ry

2
3 − 2y 2

3 � 0,

y
2
3 � y

4
3 + 2R

2(R+ 1)
� R

R+ 1
� 1

2
.

Thus

√
2y

2
3 � 1, and since |Xa| =

√
1− Y 2

a � 1 we get |Xa| �
√
2y

1
3 . Hence, in both

cases,

|Xa| � 2y
1
3 .

Thus the length of the circular arc ab is (see Figure B.5)

α = (R+ 1− y
2
3 ) · 2 arcsin

( |Xa|
R+ 1− y

2
3

)
� (R+ 1− y

2
3 ) · 2 arcsin

(
2y

1
3

R+ 1− y
2
3

)
.

A straightforward computation shows that arcsin(x)−π x � 0 for any x ∈ [0, 1]. Thus

α � (R+ 1− y
2
3 ) · 2π 2y

1
3

R+ 1− y
2
3

= 4π y
1
3 .

Since the area A of the middle part is less than or equal to α y
2
3 ,

A � 4π y
1
3 y

2
3 = 4π y.

This implies that the area of Π ∩H is less than or equal to 12π y.
Lemma B.5. The volume of H is bounded from above by 12π2 (x+ 6) y.
Proof. We express the volume of H by an integral using spherical coordinates

(r, θ, φ) in an orthogonal frame (O, X̃, Ỹ , Z̃) such that the plane (O, X̃, Ỹ ) contains
pi and pl (see Figure B.3). A plane θ = constant contains the Z̃-axis and thus is a
plane Π. Let 1H(r, θ, φ) denote the indicator function of H; 1H(r, θ, φ) is equal to 1
if the point of coordinates (r, θ, φ) belongs to H and to 0 otherwise. Then

Volume of H =

∫
φ

∫
r

∫
θ

1H(r, θ, φ) · r2 sinφdr dθ dφ.
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pi
pl

oi

olui

ul

π′(pi) π′(pl)

G

H

R+ 1− y
2
3

R− y
R′
R

∂F

∂U

O
O

Πθi

Πθl

Fig. B.6. For computing a bound on ∆θ.

Since H is inside U , r · 1H(r, θ, φ) � R · 1H(r, θ, φ). Moreover, sinφ � 1; thus

Volume of H � R

∫
θ

(∫
φ

∫
r

1H(r, θ, φ) · r dr dφ
)

dθ.

The double integral in parentheses is equal to the area of the section of H by a plane
Πθ : θ = constant. By Lemma B.4, this area is less than 12π y, which is independent
of θ. Moreover, the area is equal to 0 when Πθ does not intersect H. Let ∆θ denote
the angle between the two extreme planes Πθ that intersect H. Thus we have

Volume of H � R · 12π y ·∆θ.

We now bound ∆θ. Refer to Figure B.6. Let Πθi and Πθl be the two extreme
planes that intersect H. Let ui and ul be the two points of intersection of H with
Πθi and Πθl , respectively; ui and ul lie on ∂U . Let oi and ol be the two points in G
at distance 1 from ui and ul, respectively. π

′(pi) and π′(pl) are at distance 1 from oi
and ol, respectively.

The angle between the two extreme planes Πθi and Πθl is, as before,

∆θ = 2arcsin
|uiul|/2

R
� 2π

|uiul|/2
R

= π
|uiul|
R

.

Now we bound |uiul| by the length of the polygonal line shown in Figure B.6.
|uiul| � |uioi|+ |oiπ′(pi)|+ |π′(pi)pi|+ |pipl|+ |plπ′(pl)|+ |π′(pl)ol|+ |olul|

= 1 + 1 + |π′(pi)pi|+ x+ |plπ′(pl)|+ 1 + 1.
We show that |π′(pi)pi| and |plπ′(pl)| are less than 1. π′(pi) is inside U at distance
less than 1 from ∂F , which lies outside U . Thus π′(pi) is inside U at distance less than
1 from its frontier. Point pi is also inside U at distance less than 1 from its frontier.
Since pi and π′(pi) are on the same ray starting from O, they are at distance less than
1 apart and similarly for π′(pl) and pl. Hence

∆θ � π
|uiul|
R

� π
x+ 6

R
.

Therefore

Volume of H � R · 12π y ·∆θ � 12π2 y (x+ 6).

Proposition B.1 follows from Lemmas B.3 and B.5.
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Appendix C. Volume of the intersection of two spherical shells.

We prove in this section the following proposition used in the proof of Lemma 3.17.

Proposition C.1. Let R > 0, x ∈ [6, 2R], y ∈ [0, 1], and let p be a point at
distance R − y from O. The volume of the intersection of the region in between the
two spheres centered at p and of radii x and x + dx, and the region in between the
two spheres centered at O and of radii R and R− y (see Figure C.1), is bounded from
above by 8π x y dx.

R

y
x

x+ dx

p

X

X2

X1

Y

B4

B3

B1

B2

O

O

p

X

x

x+ dx

B4

B3

B1B2

Y

(a) (b)

A V

V

A

Fig. C.1. For the proof of Proposition C.1.

Proof. Define the balls B1 with center O and radius R, B2 with center O and
radius R− y, B3 with center p and radius x, and, finally, B4 with center p and radius
x+ dx. Let V denote the intersection of (B1 \B2) and (B4 \B3). We prove that the
volume of V is less than 8π x y dx.

Since dx is infinitesimally small, the volume of V is Adx, where A is the area of
the intersection of the sphere ∂B3 with B1 \B2.

Let (p,X, Y, Z) be an orthogonal reference frame whose center is p and whose X-

axis is oriented along
−→
Op (see Figure C.1). Notice that all spheres are centered on that

axis. Let C1 (resp., C2, C3) denote the circle that is the boundary of the intersection
of B1 (resp., B2, B3) and the plane (p,X, Y ) in which Figure C.1 is drawn. The
equations of these circles are, in the frame (p,X, Y ),

C1 : (X +R− y)2 + Y 2 = R2,
C2 : (X +R− y)2 + Y 2 = (R− y)2,
C3 : X2 + Y 2 = x2.

Since C3 is centered at a point on C2 and has radius x � 6 > 1 � y, C3 intersects
or encloses C1 and C2. In fact, C3 intersects or encloses C1 and C2 in one of the three
following ways.

Case 1. If 6 � x � 2R−2y, then C3 intersects both C1 and C2 (see Figure C.1(a)).

Case 2. If 2R − 2y < x � 2R − y, then C3 intersects C1 and encloses C2 (see
Figure C.1(b)).

Case 3. If 2R−y < x, then C3 encloses both C1 and C2. In that case, V is empty
and the volume is 0.
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X2
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Y
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B1

B2

O

Annulus of outer radius x

and inner radius
√
x2 −X2

2

Annulus of outer radius x and

inner radius
√
x2 −X2

1

Cylinder of radius x

and height X1 −X2

R

y

x

p

X

X2

X1

Y

B3

B1

B2

O Annulus of outer

radius
√
x2 −X2

1

and inner radius√
x2 −X2

2

Cylinder of radius√
x2 −X2

1 and

height X1 −X2

(b)(a)

Fig. C.2. For the proof of Proposition C.1, Case 1.

In the first case, let X1 (resp., X2) be the abscissa of the points of intersection of
circles C1 (resp., C2) and C3. Note that X1 � X2, and their values can be computed
directly from the equations of the circles C1, C2, and C3:

X1 =
R2 − x2 − (R− y)2

2R− 2y , X2 =
−x2

2R− 2y .

Using the fact that y � x � 2R− 2y we get

X1 −X2 =
y(2R− y)

2R− 2y = y

(
1 +

y

2R− 2y
)

� 2y,

−X1 −X2 =
2x2 − y(2R− y)

2R− 2y � 2x
x

2R− 2y � 2x.

We now bound from above the area A of the surface ∂B3 ∩ (B1 \ B2) by the
area of a larger surface which depends on the sign of X1. If X1 � 0, the surface
consists of a cylinder of axis, the X-axis, of radius x and height X1 −X2, and of two
annuli in the planes X = X1 and X = X2, of inner radius

√
x2 −X2

1 and
√

x2 −X2
2 ,

respectively, and outer radius x (see Figure C.2(a)). If X1 � 0, the surface consists
of a cylinder of axis, the X-axis, of radius

√
x2 −X2

1 and height X1 −X2, and of an

annulus in the plane X = X2, of inner radius
√

x2 −X2
2 and outer radius

√
x2 −X2

1

(see Figure C.2(b)). In both cases that surface is larger than ∂B3 ∩ (B1 \ B2) by
convexity.

If X1 � 0, the area of the cylinder is 2πx(X1 −X2) � 4πxy, and the area of the
annuli are πx2 − π(x2 −X2

i ) = πX2
i , i = 1, 2. Since X1 � 0, X1 � y � x, and thus

πX2
1 � πxy. We also have from the expression of X1 that R

2 − x2 − (R − y)2 � 0,
and thus x2 � y(2R− y). Thus
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πX2
2 = π

x2

2R− 2y
x2

2R− 2y � πx
x

2R− 2y y
2R− y

2R− 2y = πxy
x

2R− 2y
(
1 +

y

2R− 2y
)
.

It thus follows from y � x � 2R− 2y that πX2
2 � 2πxy. Hence A � 7πxy.

If X1 � 0, the area of the cylinder is 2π
√

x2 −X2
1 (X1 −X2) � 2πx(2y), and the

area of the annulus is π(x2 −X2
1 ) − π(x2 −X2

2 ) = π(X1 −X2)(−X2 −X1) � 4πxy.
Thus A � 8πxy.

Consider now the second case 2R − 2y < x � 2R − y (see Figure C.1(b)). For
a fixed value of y, A is the area of a spherical cap whose perimeter and curvature
decreases as x increases. Thus A is a decreasing function of x. Since the bound
A � 8πxy is valid for x = 2R− 2y and 8πxy is an increasing function of x, A � 8πxy
for any x � 2R− 2y.
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1. Introduction. In geometric data processing, structures that partition the
geometric input, as well as connectivity structures for geometric objects, play an
important role. A versatile tool in this context is triangular meshes, often called
triangulations; see, e.g., the survey articles [14, 26, 11]. A triangulation of a finite
set S of points in the plane is a maximal planar straight-line graph that uses exactly
the points in S as its vertices. Each face in a triangulation is a triangle spanned by S.

In recent years, a relaxation of triangulations, called pseudotriangulation (or
geodesic triangulation), has received considerable attention. Here, faces bounded by
three concave chains, rather than by three line segments, are allowed. Interest in these
structures originates from applications to ray shooting [18, 29] and visibility [42, 43].
Meanwhile, their usefulness as an efficient data structure in many other areas has
been discovered, including kinetic collision detection [1, 36, 37], rigidity [51, 47, 30],
and guarding [44, 49].

Concerning the combinatorial and geometric properties of pseudotriangulations,
knowledge is comparatively sparse. Beside the structural rigidity results mentioned
above, certain results on the vertex and face degree [35], on the number of possible
pseudotriangulations [45, 5], and on edge flipping operations in pseudotriangulations
[16, 47] have been obtained recently. An interesting geometric result, in [47] and
generalized in [41], addresses polytope representations of pseudotriangulations.

The present paper intends to show that pseudotriangulations possess rich geomet-
ric properties. This provides a deeper understanding of their combinatorial properties
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and of the interrelation of pseudotriangulations of different levels of edge rank. One
of our main results asserts that pseudotriangulations have realizations as polyhedral
surfaces in three-space. This insight leads to a novel edge flip operation, which has a
three-dimensional interpretation in the surface, as well as a consistent geodesics inter-
pretation in the plane. Inclusion of the new flip type allows us to transform arbitrary
pseudotriangulations into each other without changing the underlying set of vertices.
A tool for rapidly adapting pseudotriangulations (in particular, triangulations) and
their realizing surfaces becomes possible, using a near-linear number of constant-size
combinatorial changes. Pseudotriangulations that are realizable as locally convex
surfaces project to unique constrained regular complexes, a concept which has not
been rigorously defined before. We further solve the optimization problem of finding
maximal locally convex surfaces over polygonal domains, by bounding the length of
(improving) flip sequences that reach the global optimum of local convexity. Finally,
we provide a polytope representation of constrained regular pseudotriangulations.

Subsection 1.1 gives a more detailed overview of our results. We expect various
applications in areas where (pseudo)triangulations and polyhedral surfaces play a role,
such as surface modeling and terrain fitting. Related concepts, which may be affected
by our results, are power diagrams [8] (a generalization of Voronoi diagrams, dual
to regular triangulations), weighted alpha shapes [24] and dual complexes [23] (cer-
tain subcomplexes of regular triangulations), reflex-free hulls [2] (polyhedral surfaces
avoiding cavities), and roofs [3] (surface representations of straight skeletons). The
focus of the present paper, though, is on providing new and fundamental properties
of pseudotriangulations, rather than on a particular application.

1.1. Overview of results. We start by revisiting edge flipping operations in
pseudotriangulations, in section 2. A new type, the edge-removing flip, is introduced,
and its relationship to existing flip types is discussed. Section 3 shows that, when
using the edge-removing flip, the flip distance between any two pseudotriangulations
(and especially, triangulations) of a set of n points is reduced to O(n log n). This
is a substantial improvement over the situation without the new flip type, where an
Ω(n2) lower bound holds for triangulations [31, 34]. We further derive an O(n log2 n)
bound for minimum pseudotriangulations, without using edge-removing flips. This
improves the previous bounds of O(n2) in [16, 47] and shows that the diameter of the
high-dimensional polytope in [47] is O(n log2 n). For special settings, even some linear
flip distance bounds are achieved. The results above partially rely on new partitioning
results for pseudotriangulations in section 4, which may be of separate interest.

Section 5 describes realizations of pseudotriangulations as polyhedral surfaces.
We introduce the concept of complete vertices, to distinguish among the vertices
those whose heights in the surface can be predetermined. We characterize the class
of pseudotriangulations which are projective, in the sense that their internal edges
exactly correspond to the set of nonlinearity of a polyhedral surface. This generalizes
the situation for triangulations, which are trivially projective. Section 6 gives a surface
interpretation of all the admissible flip types from section 2. Surface flips, while being
constant-size combinatorial changes, are geometrically nonlocal; a single flip may
change the surface heights for Θ(n) vertices. Special cases are tetrahedral surface
flips, which are well known from flipping in convex hulls; see, e.g., [38, 25].

Section 7 puts the above results to use, by solving the optimization problem of
finding maximal locally convex functions on polygonal domains (with n vertices, some
possibly internal). We prove that every triangular surface can be made locally convex,
by performing surface flips which are convexifying or planarizing. The resulting pro-
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jection is a pseudotriangulation. If the underlying domain is convex, or if this domain
contains no internal vertices, then O(n2) flips suffice. The former result strengthens
a result in [25], which shows that incrementally inserting the vertices, and flipping
away all reflex edges in the special (triangular) surface that arises from each inser-
tion, is capable of generating the optimum. For convex domains, the optimum is a
lower convex hull, and a regular triangulation in the projection. It is well known [25]
that the optimum cannot be reached within the class of triangulations, in general.
This explains the need for edge-removing (i.e., planarizing) flips and substantiates
the usefulness of pseudotriangulations. Our results can also be viewed as a general-
ization of a well-known fact, namely, that every triangulation of a planar point set
can be transformed into the Delaunay triangulation, using so-called Delaunay flips;
see, e.g., [26].

Extending the scenario, by fixing a set of edges which are not to be flipped,
we arrive at the concept of constrained regular complexes, in subsection 8.2. These
are projections of unique maximal surfaces that are locally convex with respect to a
constraining planar straight-line graph. If this graph is connected, then pseudotrian-
gulations are obtained. In contrast, constrained regular triangulations do not always
exist [13, 50] (or are ambiguous structures, depending on the definition), apart from
special cases like the constrained Delaunay triangulation [40, 19]. The algorithmic
results from section 7 carry over to the constrained setting. In section 9, we show the
existence of a convex polytope in n dimensions, whose vertices correspond to all the
regular pseudotriangulations constrained by a given graph. The edges of this polytope
represent flips of the admissible types. This implies that the set of constrained regu-
lar pseudotriangulations is connected under admissible flip operations, and generalizes
the polytope constructions in [39, 28, 15] (the so-called associahedron, or secondary
polytope) for regular triangulations. As a consequence, locally convex surfaces can
be deformed into each other in a controlled way using surface flips.

1.2. Basic properties of pseudotriangulations. We first review some basic
notions concerning and properties of pseudotriangulations. For more details, we refer
to, e.g., [35, 16, 47]. A (simple) polygon is a subset of the plane, homeomorphic to a
disk and with piecewise-linear boundary. We denote with vert(P ) the set of vertices
of a polygon P . A corner of P is a vertex with internal angle less than π. The other
vertices of P are called noncorners. A side chain of P is the chain of edges between
two consecutive corners of P . The geodesic between two points x, y ∈ P is the shortest
curve that connects x and y and lies inside P . A pseudotriangle ∇ is a polygon with
exactly three corners. Note that the corners of ∇ are the vertices of the convex hull
conv(∇) of ∇. Moreover, for each pair of corners of ∇, the geodesic between them
entirely lies on ∇’s boundary and defines a side chain of ∇.

Let S be a finite set of points in the plane. We will assume throughout this
paper that S is in general position (i.e., no three points in S are collinear). A pseu-
dotriangulation of S is a partition of conv(S) into pseudotriangles whose vertex set is
exactly S. A pseudotriangulation is a face-to-face two-dimensional cell complex; see
Figure 1.1 for an illustration. Two faces (pseudotriangles) may be adjacent at one or
two edges. In case of such double-adjacencies, the union of the two pseudotriangles is
a pseudotriangle itself.

Let PT be some pseudotriangulation of S. A vertex of PT is called pointed if its
incident edges lie in an angle smaller than π. Note that all vertices of conv(S) are
pointed. The more pointed vertices there are in PT , the less edges and faces it has.
More precisely, PT contains exactly 3n− p− 3 edges and 2n− p− 2 pseudotriangles
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Fig. 1.1. A pseudotriangulation for 18 points.

if |S| = n and there are p ≤ n pointed vertices in PT .
We define the edge rank of PT as n− p. The minimum edge rank is zero, where

PT is commonly called a minimum (or a pointed) pseudotriangulation. PT then is a
maximal planar straight-line graph on S where all vertices are pointed; see, e.g., [51].
It contains exactly 2n− 3 edges and n− 2 pseudotriangles. The edge rank expresses
the excess in edges, compared to a minimum pseudotriangulation. Its value is at most
n−|vert(conv(S))|, which is attained if and only if PT is a triangulation. The reader
may verify that the pseudotriangulation in Figure 1.1 has edge rank 1.

2. Flips in pseudotriangulations revisited. So-called flips are operations of
constant combinatorial complexity which are commonly used to modify triangulations
[4, 25, 26, 31, 34, 38] and, as of late, pseudotriangulations [43, 36, 16, 47]. The purpose
of the present section is to introduce a novel flip operation and to show its natural
relationship to existing flip types.

2.1. Classical flips. The standard edge flip, also called the Lawson flip [38],
takes two triangles ∆1 and ∆2 whose union is a convex quadrilateral and exchanges
the diagonals e and e′ of this quadrilateral. To generalize to pseudotriangulations,
a different view of this edge flip is advantageous: Take the vertex of ∆1 and ∆2,
respectively, that lies opposite to e, and replace e by the geodesic between these two
vertices. The geodesic is just a line segment e′ in this case.

The geodesics interpretation above has been used in [42, 51] to define flips in
minimum pseudotriangulations. Let ∇1 and ∇2 be two adjacent pseudotriangles, and
let e be an edge they have in common. A flip replaces e by the part of the geodesic
interior to ∇1 ∪ ∇2 that connects the two corners of ∇1 and ∇2 opposite to e. In a
minimum pseudotriangulation each vertex is pointed, and thus the geodesic indeed
contributes a line segment e′ which is no edge of ∇1 or ∇2.

See Figure 2.1(a) and (b), where the edge e to be flipped is shown in bold and
the obtained geodesic is drawn dashed. Note that the flipping partners e and e′ may
cross or not. In either case, the flip creates two valid pseudotriangles. We refer
to such flips as exchanging flips. In a minimum pseudotriangulation, each internal
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(c)(b)(a)

Fig. 2.1. Exchanging flips and nonflippable edge.

edge can be flipped to a unique different edge. In a pseudotriangulation of nonzero
edge rank, however, edges incident to nonpointed vertices may be nonflippable in this
sense. In particular, in a full triangulation, an internal edge is nonflippable if and
only if its two incident triangles form a nonconvex quadrilateral; see Figure 2.1(c).
Nonflippable edges have been the source for the theoretically poor behavior of certain
flipping algorithms, concerning the flip distance [31, 34] as well as the nonexistence
of flip sequences [25].

2.2. A novel flip type. We wish to generalize the edge flip so as to cover the
situation in Figure 2.1(c) as well. In fact, when being consistent with the geodesics
rule above, flipping a nonflippable edge e = ∇1 ∩ ∇2 means removing e because its
substitute does not exist. A pseudotriangle ∇1∪∇2 is obtained. We include this edge-
removing flip (and its inverse, the edge-inserting flip) into the repertoire of admissible
flips. By definition, an edge-removing flip is applicable only if a valid pseudotriangle
is created. That is, a single nonpointed vertex of the pseudotriangulation is made
pointed by the flip.

This simple modification makes each internal edge in every pseudotriangulation
(and, in particular, in every triangulation) flippable. Note that each edge-removing
flip decreases the edge rank by one, whereas each edge-inserting flip increases it by
one. This allows for “surfing” between pseudotriangulations of different edge ranks.
Various interesting consequences will be discussed, including a reduction of flip dis-
tances, in section 3, and a three-dimensional interpretation of the new flip type, in
section 6.

2.3. Relation to other types. The new flip type can be used to simulate
certain other flip types. For instance, the exchanging flip in Figure 2.1(b) can be
simulated by an edge-inserting flip followed by an edge-removing flip. Of particular
relevance is a type of flip that arises in the context of Delaunay and regular triangu-
lations; see [46, 25]. This flip inserts a new vertex v into the interior of a triangle ∆
and connects v by edges to the three vertices of ∆. Vertex insertion is meaningful for
pseudotriangulations as well [51, 5]. Connect v by geodesics to (at least two) corners
of the pseudotriangle ∇ in which v lies. Each geodesic contributes one edge incident
to v, and ∇ is partitioned into (two or three) pseudotriangles.

Let us simulate the inverse operation, the removal of a degree-3 vertex v, using the
new flip type; see Figure 2.2. Apply an edge-removing flip to one of v’s edges first,
which leaves a partition of ∇ into two pseudotriangles in double-adjacency. Then,
carry out two edge-removing flips simultaneously. This deletes v and leaves ∇ empty,
because no edges are created by the geodesics rule. We consider the simultaneous
operation as a single flip—the vertex-removing flip. By definition, vertex-removing
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v v

Fig. 2.2. Edge-removing and vertex-removing flips.

(b)

(a)

Fig. 2.3. Ambiguous geodesics interpretation.

flips can be applied to vertices of degree 2 only.
In summary, the repertoire of flip operations we are going to use contains the

(classical) exchanging flips, the edge-removing and the vertex-removing flip, and their
inverses, the inserting flips.

Remarks. Edge-removing flips arise implicitly in a greedy flip algorithm for pseu-
dotriangulations of convex objects, in [43]. Certain flips that exchange bitangents of
such objects cause an edge removal (or insertion) in the corresponding pseudotrian-
gulation for the object centers.1

Instead of the vertex-removing flip, a different version—namely, the exchanging
flip in Figure 2.3(a)—has been commonly used. It also leads to a valid pseudotri-
angulation (which now does contain the vertex v). However, care has to be taken
not to misinterpret this version as in Figure 2.3(b), where the geodesic still lies in-
side the union of the two pseudotriangles involved. Also, this version conflicts with
a three-dimensional interpretation of flips in surfaces, in section 6. When change in
edge rank is conceded, we may circumvent the flip in Figure 2.3(a) by performing
two consecutive flips of the new type, namely, an edge-inserting flip followed by an
edge-removing flip.

The vertex-inserting flip together with the exchanging flips are the constituting
operations of the so-called Henneberg construction, which is capable of generating
every minimum pseudotriangulation of a point set S; see, e.g., [51]. With our reper-

1We recently learned that edge-removing flips have been introduced independently (and at about
the same time) in [41], to generalize the polytope representation in [47] to pseudotriangulations of
arbitrary edge rank. In fact, Theorem 3.4 in section 3 implies a bound of O(n logn) on the diameter
of their polytope.
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toire, arbitrary pseudotriangulations of S can be derived from each other without ever
changing S. We will elaborate on this issue in detail in section 3.

3. Reducing the flip distance. Let S be a set of n points in the plane. It
is well known that Θ(n2) Lawson flips may be necessary, and are also sufficient, to
transform two given triangulations of S into each other; see, e.g., [31, 34]. The upper
bound also applies to exchanging flips in minimum pseudotriangulations (see [16, 47]),
but no nontrivial lower bounds are known in this case. This section presents a series
of improved upper bounds on flip distances, partially even without using the new flip
type.

3.1. Simple polygons. We start with proving that flip distances become linear
between pseudotriangulations of (simple) polygons when edge-removing flips and their
inverses are allowed. Consider a polygon P in the plane. The shortest-path tree of P
with root v ∈ vert(P ) is the union of all geodesics in P from vert(P ) to v. Let πv(P )
denote this structure. It is well known [32] that πv(P ) is a tree that partitions P into
pseudotriangles in a unique way.

Lemma 3.1. Let P be a polygon with n vertices, and let v ∈ vert(P ). The
shortest-path tree πv(P ) can be constructed by triangulating P arbitrarily and applying
at most n− 3 exchanging or edge-removing flips.

Proof. Fix some triangulation T of P . We prove the assertion by induction on
the number of triangles of T . As an induction base, let Q be the union of all triangles
of T incident to the vertex v. Clearly, the restriction of T to Q just gives πv(Q). We
show that this invariant can be maintained by flipping, when an adjacent triangle ∆
of T is added to Q.

Let u be the vertex of ∆ that does not belong to Q. Consider the unique edge
e = Q ∩∆ (which is a diagonal of P ). If e belongs to πv(Q ∪∆), then an edge of ∆
connects u to πv(Q), and πv(Q ∪∆) is already complete. No flip is performed. Else
let ∇ denote the unique pseudotriangle in πv(Q) that is adjacent to ∆ at e. There are
two cases. If ∇ ∪∆ is a pseudotriangle, then, again, u is connected to πv(Q) by ∆.
Perform a flip that removes e, which restores πv(Q ∪ ∆). Otherwise, let w be the
corner of ∇ opposite to e. Apply an exchanging flip to e. The new edge e′ lies on the
geodesic between u and w. Thus e′ connects u to πv(Q), which constructs πv(Q∪∆)
in this case.

The total number of flips is at most n − 3, because each flip can be charged to
the triangle of T that is added.

Corollary 3.2. Any two triangulations of a polygon P with n vertices can be
flipped into each other by at most 2n−6 exchanging, edge-removing, or edge-inserting
flips.

Proof. Let T1 and T2 be two triangulations of P . Choose some vertex v ∈ vert(P )
and flip T1 to πv(P ). Then flip πv(P ) to T2 by reversing the sequence of flips that
transforms T2 to πv(P ). This is possible and takes at most 2n − 6 flips of the types
above, by Lemma 3.1.

Corollary 3.2 implies a flip distance of O(n) between any two pseudotriangulations
PT 1 and PT 2 of a polygon P , because PT 1 and PT 2 can be completed to form a
triangulation of P with O(n) edge-inserting flips.

3.2. Planar point sets. We continue with pseudotriangulations of planar point
sets. In fact, we choose a slightly more general scenario, namely, a point set enclosed
by an arbitrary simple polygon (a so-called augmented polygon). This setting will
turn out to be more appropriate for our developments, as it arises naturally from
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constraining the pseudotriangulated domain. We will show how to flip any given
pseudotriangulation into a canonical one by splitting the underlying augmented poly-
gon in a balanced way until empty polygons are obtained and Corollary 3.2 applies.

Let P be a polygon, and consider a finite point set S ⊂ P with vert(P ) ⊆ S. We
call the pair (P, S) an augmented polygon. A pseudotriangulation PT of (P, S) is a
partition of P into pseudotriangles whose vertex set is exactly S. It contains exactly
3n −m + k − p − 3 edges and 2n −m + k − p − 2 pseudotriangles if |S| = n, P is
an m-gon with k corners, and p counts the pointed vertices of PT . The maximum
edge rank of PT is n − k, in which case PT is a triangulation. In the special case
P = conv(S), we have m = k and deal with pseudotriangulations of the point set S.
Below is another corollary of Lemma 3.1.

Corollary 3.3. Let T be a (full) triangulation of an augmented polygon (P, S).
Let e be some line segment spanned by S, which lies inside P and crosses T at
j ≥ 1 edges. Then T can be modified to a triangulation that contains e by applying
O(j) exchanging, edge-removing, or edge-inserting flips.

Proof. Let Q be the union of the triangles of T that are crossed by e. Note
that Q may contain points of S in its interior or even may contain holes, namely if
Q contains internal edges which do not cross e. In this case, we cut Q along these
edges and move Q apart infinitesimally at the cuts, to obtain a simple polygon empty
of points in S. This is possible because a general position is assumed for S. Now
choose any triangulation Te of Q which includes the edge e to be integrated. By
Corollary 3.2, the part of T inside Q can be flipped to Te by O(j) flips.

We are now prepared to prove the following general assertion on flip distances.

Theorem 3.4. Any two pseudotriangulations of a given planar point set S (or
more generally, of a given augmented polygon (P, S)) can be transformed into each
other by applying O(n log n) flips of the types exchanging, edge-removing, and edge-
inserting, for n = |S|. No vertex-removing flips are used.

Proof. The two pseudotriangulations of the augmented polygon (P, S) in question
can be completed to form a triangulation by applying O(n) edge-inserting flips. We
show how to transform two arbitrary triangulations T1 and T2 of (P, S) into the
same, using O(n log n) flips. Let P be an m-gon. If m = n, then O(n) flips suffice,
by Corollary 3.2. Else we partition P into subpolygons, each containing at most
2
3 (n −m) points of S \ vert(P ). A constant number of line segments spanned by S
suffice for this purpose, by Theorem 4.4(1) below. Incorporate these segments into
T1 and T2, respectively, in O(n) flips, which is possible by Corollary 3.3. Treat the
obtained O(1) augmented polygons recursively. This yields a polygonal partition of P
whose vertex set is exactly S, and two triangulations thereof, in O(n log n) flips. By
Corollary 3.2, another O(n) flips let these two triangulations coincide.

Remarks. Theorem 3.4 demonstrates that flip distances are substantially reduced
when using the new flip type. “Shortcuts” via pseudotriangulations with varying edge
rank become possible. The interested reader may check that the constant involved
in the O(n log n) term is small (less than 6). We conjecture that Theorem 3.4 can
be improved to O(n) flips, because the Ω(n2) worst-case examples for Lawson flips
in triangulations are based on (nonconvex) polygons without internal points [34], an
instance covered by Corollary 3.2 in O(n) flips.

All flips used in Theorem 3.4 are constant-size combinatorial operations, which
can be carried out in O(logm) time each if the size of the two pseudotriangles involved
is at most m; see, e.g., [27]. This implies that any two (pseudo)triangulations of a
given set of n points can be adapted by local operations in O(n log2 n) time—a result
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we expect to have various applications.

3.3. Two linear bounds. For the sake of completeness, we include here two
more implications that come from using our extended repertoire of flips.

Recall that vertex-removing and vertex-inserting flips have been excluded in The-
orem 3.4. Dropping this restriction makes things easy, because every pseudotriangu-
lation contains some vertex of constant degree, which can be removed with O(1) flips.
A flip distance of O(n) is obvious in this setting. However, removing a vertex not only
changes the vertex set S, but also changes the underlying domain (the polygon P ) if
removal was for a boundary vertex. In contrast, in the setting in Theorem 3.4, both
S and P remain unchanged. The situation where S but not P is allowed to change
is of some interest, because no internal vertex of constant degree might exist in a
pseudotriangulation.

Lemma 3.5. Let S be a planar n-point set. Any two pseudotriangulations of S
can be flipped into each other in O(n) flips, without changing the underlying domain
conv(S), if the entire repertoire of flips from section 2 is used.

It suffices to prove Lemma 3.5 for full triangulations. Let T ∗ be the star trian-
gulation of conv(S) with respect to a fixed boundary vertex v. In T ∗, each vertex of
conv(S) different from v is connected to v by an edge. We show that any triangula-
tion T of S can be flipped into T ∗ with O(n) flips. To this end, consider a particular
order for the triangles of T .

Lemma 3.6. Let v be some boundary vertex of T . There exists an order
∆1, . . . ,∆t for T ’s triangles such that

⋃
i≤j ∆j is star-shaped as seen from v, for

j = 1, . . . , t.
Proof. Set Qj =

⋃
i≤j ∆j . To apply induction, assume that Qj is star-shaped as

seen from v, for some j; this assumption is obviously true for Qt = conv(S). Let ∆ be
a triangle of T in Qj that is not incident to v. The part of ∆ on the boundary of Qj

(if existent) defines a visibility angle α(∆) at v. Because Qj is star-shaped and v is
a boundary vertex of Qj , there exists some triangle ∆ which lies within α(e). Thus
Qj \∆ = Qj−1 is star-shaped too.

We now visit ∆1, . . . ,∆t in the order given by Lemma 3.6, and maintain the
star triangulation T ∗j of Qj with respect to v by flipping. If the current triangle ∆j

is incident to v, then no flip is performed. Otherwise, ∆j shares either one or two
edges with Qj−1. Let e be such an edge. In the former case, the exchanging flip
for e restores T ∗j . To obtain T ∗j in the latter case, the flip removing e is applied first,
followed by a flip that removes the unique vertex w internal to Qj . (Note that the
degree of w has been lowered to 2 by the removal of e.) This yields T ∗t = T ∗ after
less than 2t = O(n) flips and proves Lemma 3.5.

The next linear bound concerns minimum pseudotriangulations. It is well known
that not every pseudotriangulation can be made minimum by removing edges. It can
only be made minimal in edge rank, and is termed accordingly in [1, 35, 48]. In
particular, a minimal pseudotriangulation may be a full triangulation, even when its
vertices are not in convex position [48]. We can show the following result.

Lemma 3.7. Let PT be any pseudotriangulation of a planar n-point set S. Then
PT can be transformed into a minimum pseudotriangulation of S with O(n) exchang-
ing, edge-removing, or edge-inserting flips. No vertex-removing flips are used.

Proof. Consider some spanning tree B of PT . We construct a connected graph Z
with vertex set S, which does not cross B and where each vertex is pointed. Let
v1, . . . , vn be the vertices of S in some depth-first order for B such that, for each vi,
the edges of B incident to vi are visited in clockwise order. To obtain Z, connect vi
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and vi+1 for i = 1, . . . , n and vn+1 = v1, as follows. If vivi+1 is an edge of B, then use
this edge. Otherwise, use the geodesic that comes from “stretching” the unique path
in B between vi and vi+1 to the shortest path in the plane that does not cross B. By
construction, each vertex vi either has degree 2 in Z or some geodesics run via vi, in
which case vi is pointed in Z as well.

In general, PT will not contain Z as a subgraph. We flip PT into a pseudotrian-
gulation PT ′ that contains Z (and B) as follows. Imagine cutting conv(S) along B
and moving it apart at the cuts infinitesimally. This yields a partition of conv(S)
into simple polygons. Within each such polygon, PT can be flipped to contain the
relevant part of Z, in a total of O(n) flips for all polygons; see subsection 3.1. Fi-
nally, we flip PT ′ to a minimum pseudotriangulation that contains Z, by cutting
conv(S) along Z and adapting the pseudotriangulations within these polygons, using
O(n) additional flips.

Remarks. The order in Lemma 3.6 is called a shelling order (or a translation order)
for T with respect to v. It is well known that such an order does not exist for every
triangulation if v is an internal vertex. Exceptions are Delaunay triangulations [21]
and regular triangulations [22].

Lemma 3.7 does not imply a linear flip distance between any two pseudotriangu-
lations of S, because which minimum pseudotriangulations can be reached depends
on PT . The pointed graph Z arises in a classical factor-2 approximation for the trav-
elling salesman tour for S. We raise the question of whether every triangulation of a
point set S contains a pointed spanning tree.

3.4. Minimum pseudotriangulations. Our next aim is to provide a stronger
version of Theorem 3.4, namely for minimum pseudotriangulations and when using
the exchanging flip type exclusively. That is, we restrict ourselves to staying within
the class of minimum pseudotriangulations. We apply arguments similar to those of
subsections 3.1 and 3.2.

Let P be a polygon with k corners. The minimum shortest-path tree µc(P ), for
a fixed corner c of P , is the union of all geodesics inside P that lead from c to the
corners of P . Observe that µc(P ) defines a minimum pseudotriangulation for P ,
which is a subset of the shortest-path tree πc(P ) defined in subsection 3.1. The proof
of Lemma 3.1 now can be adapted to show that every minimum pseudotriangulation
of P can be transformed into µc(P ) by at most k − 3 exchanging flips. The new flip
type is not used here, because each internal edge is flippable in the classical sense.
We obtain the following.

Lemma 3.8. Let P be a polygon with k corners. Any two minimum pseudotrian-
gulations of P are transformable into each other by applying at most 2k−6 exchanging
flips.

The next lemma is a variant of Corollary 3.3 for minimum pseudotriangulations.
Lemma 3.9. Let MPT be a minimum pseudotriangulation of an augmented

polygon (P, S), and let G be some pointed planar straight-line graph on S and in P .
ThenMPT can be modified to contain G by applying O(nj) exchanging flips if S has
n vertices and G \ P has j edges.

Proof. Let uv be some edge of G \ P . We prove that uv can be incorporated
intoMPT using O(n) exchanging flips, and without altering previously incorporated
edges of G.

If vertex u is not pointed inMPT ∪ {uv}, we flip edges ofMPT incident to u
to restore the pointedness of u, as follows. Let m(u) denote the angle formed by
u’s edges in the current minimum pseudotriangulation, and let g(u) be the angle
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formed by those edges among them which also belong to G (if there are any). We
have g(u) < m(u) < π. Rotate m(u), by flipping the unique edge e that bounds m(u)
but not g(u) and such that e and g(u) lie on different sides of uv, until uv ∈ m(u).
The condition is necessarily met as soon as e does not exist. This process does not
alter any edge of G inMPT , takes O(n) exchanging flips, and transformsMPT into
a minimum pseudotriangulationMPT ′. Note that the vertex v may be nonpointed
inMPT ′ ∪ {uv}.

We next flip the edges of MPT ′ which cross uv (if there are any), in the order
from u to v. For the current edge e to be flipped, the following invariants hold. Edge e
bounds a face ∇ incident to u. Denote with c the corner of ∇ opposite to e. (c = u
is possible.) The edge f obtained by flipping e lies on some geodesic to c. Thus
f leaves u pointed. Moreover, as the line segment uv also lies on a geodesic to c,
edge f does not cross uv. After O(n) flips, a minimum pseudotriangulationMPT ′′
results, where no edge crosses uv and such that u is still pointed inMPT ′′ ∪ {uv}.

Now either uv ∈MPT ′′ (and we are done) or v is not pointed inMPT ′′ ∪{uv}.
In the latter case, there is a unique face∇′′ ofMPT ′′ which contains uv in its interior,
and v is a noncorner of ∇′′. Consider the side chain of ∇′′ that contains v, and let c′′

be the corner of ∇′′ opposite to this side chain. Flip an edge of ∇′′ which is incident
to v and which does not lie in the pointed angle of v in G. The obtained edge f ′′

lies on a geodesic to the corner c′′. Therefore, f ′′ neither crosses uv nor destroys the
pointedness of u. If f ′′ = uv, the construction is complete. Otherwise, the degree of v
has been decremented in the flip, and we repeat the step above for the face that now
contains uv in its interior, until uv becomes part of the current pseudotriangulation.
This takes another O(n) flips.

Lemma 3.9 directly implies an O(n2) bound on the (exchanging) flip distance in
minimum pseudotriangulations: Take for G the minimum pseudotriangulation into
which MPT is to be transformed. The proof of the theorem below shows that
Lemma 3.9 can be used in a more sophisticated way.

Theorem 3.10. Let S be a set of n points in the plane, and let MPT 1 and
MPT 2 be two minimum pseudotriangulations of S. ThenMPT 1 can be transformed
into MPT 2 by applying O(n log2 n) exchanging flips. No other flip types are used.
The same result holds for augmented polygons (P, S).

Proof. Consider an augmented polygon (P, S). We recursively split (P, S) in a
balanced way, by applying Theorem 4.4(2) from section 4. This constructs a polygonal
partition Π of P , whose vertex set is S and where all vertices are pointed. Π is obtained
by introducing O(log n) line segments spanned by S in each recursive step, and the
number of recursive steps is O(log n).

By Lemma 3.9, O(n log2 n) exchanging flips are sufficient to make MPT 1 and
MPT 2 contain all the edges of Π. Finally, Lemma 3.8 allows for adapting pseudotri-
angles within the polygons of Π in O(n) such flips.

Remarks. Theorem 3.10 improves the recent bound of O(n2) in [16] for minimum
pseudotriangulations of point sets. Again, we conjecture that the truth is O(n) flips.2

In [47], the polytopeM(S) of minimum pseudotriangulations of a point set S was
introduced. M(S) is a high-dimensional convex polytope. Its vertices correspond
to all the minimum pseudotriangulations of S, and its edges represent all possible
exchanging flips. By Theorem 3.10, the diameter ofM(S) is bounded by O(n log2 n).

2By a very recent result in [12], a flip distance of O(n logn) for minimum pseudotriangulations
of point sets is obtainable, using a different divide-and-conquer approach. However, this approach
does not carry over to the more general case of augmented polygons.
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As a somewhat counterintuitive fact, the transformation between two given min-
imum pseudotriangulations may be speeded up by using edge-inserting and edge-
removing flips intermediately. There exist examples where n− 3 exchanging flips are
necessary, a third of which are saved when performing a single edge-inserting and
edge-removing flip, respectively, in the beginning and at the end; see [33]. This indi-
cates that flexibility of pseudotriangulations not only comes from low edge rank, but
also stems from the ability to change this parameter, using the new flip type.

A constrained pseudotriangulation of a point set S is one that is required to
contain a given planar straight-line graph G on S. It is well known that, for any
choice of G, the set of constrained triangulations of S is connected by Lawson flips:
Every triangulation constrained by G can be flipped into the constrained Delaunay
triangulation for G and S; see [40]. The following related result holds, by arguments
in the proof of Lemma 3.9.

Corollary 3.11. Any two minimum pseudotriangulations of a point set S con-
strained by a given (pointed) planar straight-line graph G on S can be flipped into each
other using O(n2) exchanging flips.

In caseG partitions conv(S) into augmented polygons (as in Figure 8.1 below), the
O(n log2 n) exchanging flip distance bound from Theorem 3.10 applies. Moreover, for
such graphs G, the flip distance between constrained pseudotriangulations of arbitrary
edge rank is O(n log n) when edge-inserting flips and their reverses are admitted, by
Theorem 3.4. The concept of constrained pseudotriangulations plays an important
role in the context of regularity; see sections 8 and 9.

4. Partitioning results. This section presents some partitioning results con-
cerning pseudotriangulations that were referred to in section 3. Subsections 4.1 and 4.3
give two technical lemmas. The assertions in subsections 4.2 and 4.4 might be of sep-
arate interest.

4.1. Pseudoconvex polygons. Let P be a simple polygon. Consider a pseu-
dotriangle ∇ ⊂ P with vertices from vert(P ). ∇ is called nice if its three corners are
corners of P . We define the cut of ∇ as the number of diagonals of P on ∇’s boundary.

A polygon P is pseudoconvex if every geodesic inside P is a convex chain. A
corner tangent is an inner tangent of P incident to at least one corner of P . A
pseudoconvex polygon P is strongly pseudoconvex if no corner tangent exists for P .

Lemma 4.1. Let P be a strongly pseudoconvex polygon with k corners. There
exists a nice pseudotriangle for P with cut O(log k).

Proof. Observe first that there always exists some nice pseudotriangle ∇ for P .
Select a corner w of P . Since P is strongly pseudoconvex, w “sees” a unique side
chain of P . Together with w, the two corners that define this side chain span a nice
pseudotriangle ∇. If ∇ has cut O(log k), then we are done. Otherwise, we apply
induction by constructing a pseudotriangle whose cut is strictly smaller, as follows.

We will prove the following:

(*) at each edge d of ∇ which is a diagonal of P there exists an adjacent
pseudotriangle ∇′, spanned by d and some corner c of P , such that
∇′ has cut at most 1 + log2 k.

Property (*) is used as follows. Set x = log2 k, and assume that some side chain
of ∇ contains at least 2x + 5 diagonals of P . Choose a middlemost diagonal d, and
generate an adjacent pseudotriangle ∇′ as above. Flip edge d, which creates two
pseudotriangles. Each of them avoids at least x + 2 diagonals that bound ∇ and
contains at most x + 1 diagonals that bound ∇′. So for both, the cut is strictly
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Fig. 4.1. Constructing ∇′.

smaller than the cut of ∇. Moreover, because P is strongly pseudoconvex, exactly
one created pseudotriangle is nice.

It remains to prove (*). We construct the desired pseudotriangle ∇′ as follows;
see Figure 4.1. Let d = uv, and denote with Q the part of P cut off by d and not
containing ∇. Note that u and v are corners of Q. Consider the minimum shortest-
path tree of Q with root u, as defined in subsection 3.4. Let ∇u be the unique face
of this tree incident to uv. (Here and below, define things for v analogously.)

Case 1. Q contains only one corner c �= u, v. Then ∇u = ∇v, and we take this
face for the pseudotriangle ∇′ in question. No diagonals of P lie on the side chains
uc and vc of ∇′.

Case 2. Q contains at least two corners �= u, v. Then ∇u and ∇v differ in their
third corner, call it cu and cv, respectively, and thus have diagonals of P on their
boundaries. Let du be the first diagonal on the side chain ucu of ∇u, and let du
end at the vertex nu. P is strongly pseudoconvex, and thus nu is a noncorner of Q,
because du would be a corner tangent, otherwise. Also, nu does not lie on the side
chain of Q that starts at v and is different from uv, because nonconvex geodesics
inside P and via u and nu would exist otherwise. Therefore, the geodesic from nu
to v starts with a diagonal D of P . Observe next that, by ∇u �= ∇v, their side chains
ucu and vcv cross. Hence the two diagonals du and dv cross unless nu = nv. In
both cases at least one diagonal, say du, cuts off from Q at least half of its corners.
Therefore the diagonal D above, which is adjacent to du at vertex nu, cuts off k′ ≤ k

2
corners. Clearly, k′ ≥ 1, and we treat the polygon cut off by D (shaded in Figure 4.1)
recursively. The diagonal du lies on the boundary of the pseudotriangle ∇′ being
constructed.

Each occurrence of Case 2 increments the cut of ∇′, which initially is 1 because
of the diagonal d = uv. By the choice of D, Case 2 occurs at most log2 k times. This
proves (*) and completes the argumentation.

4.2. Pseudotriangulations with small cut. We are now ready to prove the
following structural result for minimum pseudotriangulations of simple polygons.

Theorem 4.2. For every polygon P with n vertices there exists a minimum
pseudotriangulation of P in which each face has cut O(log n).

Proof. We first partition P into strongly pseudoconvex polygons. Diagonals on
nonconvex geodesics and corner tangents are used, such that each introduced diagonal
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is incident to some corner in both polygons that it bounds. (These diagonals will
contribute to the cut of the final faces in the minimum pseudotriangulation to be
constructed, but their number is at most six per face.) Each strongly pseudoconvex
polygon Q with more than three corners is partitioned further as follows.

Integrate a nice pseudotriangle ∇ with small cut for Q, whose existence is guar-
anteed by Lemma 4.1. Because ∇ is nice, it does not violate the pointedness of any
vertex. Moreover, each diagonal of Q on ∇’s boundary is incident to two corners of
the polygon it cuts off from Q. These polygons are partitioned recursively.

A minimum pseudotriangulation MPT of P results. Each face f of MPT has
cut O(log n): A diagonal on f ’s boundary comes from Lemma 4.1 or is among the at
most six edges incident to some corner of f .

Remarks. Theorem 4.2 is asymptotically optimal. There exist polygons with
n vertices where every possible minimum pseudotriangulation contains some face with
cut Ω(log n); see [6]. The theorem is related to a result in [35] which shows, for
every point set S, the existence of a minimum pseudotriangulation with constant
face complexity. Another related result, in [18], shows that every n-gon P admits a
minimum pseudotriangulationMPT such that each line segment internal to P crosses
only O(log n) edges ofMPT .

4.3. Splitting pseudotriangles. We continue with a ham-sandwich-type result
for pseudotriangles.

Lemma 4.3. Let ∇ be a pseudotriangle that contains a set M of i points in its
interior. There exists a point p ∈ M whose geodesics to two corners of ∇ divide M
into two subsets of cardinality 2 i

3 or less.
Proof. For each point p ∈ M , the geodesics from p to the three corners of ∇

partition ∇ into three pseudotriangles (faces). Such a face f is called sparse if f en-
closes at most 2 i

3 points of M . We claim that, for each pair c, c′ of corners of ∇, there
exist at least 2 i

3 + 1 sparse faces: Consider the sorted order of M , as given by the
shortest-path tree with root c for M . The jth point of M in this order spans a face
that contains strictly fewer than j points.

We conclude that there are at least 2 i + 3 sparse faces in total. Thus the mean
number of sparse faces per point in M exceeds two, which implies that there exists
a point p ∈ M incident to three sparse faces. Among them, let f be the face that
contains the most points, which are at least i

3 . We take the two geodesics that span f

to partition ∇. This yields two parts with at most 2 i
3 points each.

Remarks. The fraction 2
3 in Lemma 4.3 is optimal, even when ∇ is a triangle. The

set M may consist of three groups of i
3 points such that, for each choice of p ∈ M ,

the two groups not containing p end up in the same subset.

4.4. Partition theorem. The results in the preceding subsections combine into
the following partition theorem for augmented polygons.

Theorem 4.4. Let (P, S) be an augmented polygon, and let I = S \ vert(P ).
There exist polygonal partitions Π1 and Π2 of (P, S) such that

(1) Π1 uses O(1) line segments spanned by S and assigns at most 2
3 · |I| points

of I to each polygon;
(2) Π2 uses O(log n) line segments spanned by S, assigns at most 2

3 · |I| points
of I to each polygon, and guarantees the pointedness of each vertex of S.

Proof. To construct Π1, let T be some triangulation of the polygon P . Call a
polygon Q ⊂ P sparse if Q contains at most 2

3 · |I| points of I. Let ∇ be any face
of T . If each part of P \ ∇ is sparse, then we are done, because we can partition P
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with ∇, and ∇ with two line segments as in Lemma 4.3 if ∇ is nonsparse. Otherwise,
we continue with the face of T adjacent to ∇ in the (unique) nonsparse part of P \∇
until the first condition is met.

To construct Π2 we proceed analogously but use a minimum pseudotriangulation
MPT of P with face cuts bounded by O(log n). The existence ofMPT is given by
Theorem 4.2. The O(log n) edges of ∇ that are used to partition (P, S) retain the
pointedness of all vertices, as do the two segments from Lemma 4.3 that may have to
be used to split ∇.

Remarks. Theorem 4.4 is similar in flavor to a result in [17], which asserts that any
simple n-gon can be split by a diagonal into two subpolygons with at most 2

3n vertices.

5. Surfaces for pseudotriangulations. A polyhedral surface is the graph of a
continuous and piecewise-linear function whose domain is the plane, or a polygonal
subset thereof. Polyhedral surfaces are also known as polyhedral terrains. A two-
dimensional cell complex C is called projective if there exists some polyhedral surface
whose set of nonlinearity projects exactly to the set of all (internal) edges of C. A
subclass consists of the regular complexes, which are the projections of convex sur-
faces, i.e., whose defining function is convex. Examples of regular two-dimensional
complexes are line arrangements, Voronoi diagrams and power diagrams (even their
generalizations to higher order), and Delaunay triangulations; see, e.g., [9] and ref-
erences therein. Not every triangulation, however, is regular (as Figure 7.3 below
shows), but it is trivial that triangulations are projective.

We intend to show, in subsection 5.2, that pseudotriangulations have natural
realizations as polyhedral surfaces. We characterize the class of projective pseudo-
triangulations in subsection 5.3 and discuss regular pseudotriangulations and their
constrained variants in later sections.

The underlying domain is—as in previous sections—an augmented polygon, not
only to gain generality compared to the point set case, but also because certain ques-
tions concerning a three-dimensional realization become more natural and interesting
in this setting.

5.1. Complete vertices. We start with introducing a status for vertices, which
will allow us to determine which vertices can be fixed in height when lifting a given
pseudotriangulation to three dimensions.

Consider an augmented polygon (P, S), and let PT be a pseudotriangulation
of (P, S). The status of a vertex v of PT is complete if v is a corner in each of its
incident pseudotriangles. The status of v is incomplete otherwise. Note that each
incomplete vertex uniquely corresponds to a pseudotriangle of PT where this vertex
is a noncorner. Incomplete vertices have to be pointed, whereas complete vertices
are pointed if and only if they are corners of P . In a (full) triangulation, all vertices
are complete. On the other end of the spectrum, every minimum pseudotriangulation
of (P, S) realizes the minimum number of complete vertices.

Observe that no vertex status is affected by an exchanging flip, whereas an edge-
removing flip alters the status of exactly one vertex from complete to incomplete. A
vertex-removing flip does not alter the status of any remaining vertex. Making all
vertices complete by edge-inserting flips always results in a triangulation.

Remarks. We believe that the completeness of a vertex is a concept more natural
than pointedness. For example, the vertices of conv(S), though being pointed, behave
like nonpointed vertices in the flipping process, because no geodesic ever runs via them.
This effect becomes even more apparent when the underlying domain (P, S) is not
convex. Corners as well as noncorners of the boundary polygon P may be pointed
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in a pseudotriangulation PT of (P, S), but the (forced) pointedness of P ’s corners
seems artificial. What actually counts is “(non)pointedness with boundary effects
eliminated,” that is, the completeness status of a vertex.

The number of incomplete vertices is i = p − k if P has k corners and PT has
p pointed vertices. This relation saves one of the four parameters in the formulas for
the number of edges and faces in a pseudotriangulation of (P, S) (see subsection 3.2),
another fact in favor of the new concept.

Complete vertices can be distinguished from incomplete ones in any polygonal
partition, as they are defined via corners of polygonal faces. In fact, all the results in
sections 2, 3, and 4 could have been derived using this terminology. We refrained from
doing so only to keep to existing notation in related work. In the three-dimensional
setting below, the notion of complete vertices is indispensable, however.

5.2. Surface theorem. In this subsection, we state and prove a main geometric
result of this paper.

Theorem 5.1 (surface theorem). Let (P, S) be an augmented polygon, and let
PT be any pseudotriangulation thereof. Let h be a vector assigning a height to each
complete vertex of PT . For each choice of h there exists a unique polyhedral surface F
above the domain P , which respects h and whose edges project vertically to (a subset
of) the edges of PT .

Proof. Let v1, . . . , vr denote the complete vertices of PT , and let vr+1, . . . , vn be
the incomplete ones. We set up a system of linear equations for the vertex heights
z1, . . . , zn that determines a polygonal surface F and has a unique solution.

If vi is a complete vertex, the system contains the equation zi = hi. Otherwise,
its height zi is constrained as follows. There is a unique pseudotriangle ∇ in PT
where vi is no corner; an internal angle larger than π occurs in ∇ at vi. Let vj , vk, v�
be the corners of ∇. We have vi ∈ conv(vj , vk, v�) = conv(∇) by definition of a
pseudotriangle. Requiring coplanarity of the lifted vertices vi, vj , vk, v� leads to an
equation of the form

α(vjvkv�) · zi − α(vivkv�) · zj − α(vivjv�) · zk − α(vivjvk) · z� = 0,

where α(abc) denotes the (unsigned) area of a triangle abc. This expresses zi as a
convex combination of zj , zk, and z�.

A linear system A · z = b is obtained, where A is an n× n matrix whose ith row
corresponds to the equation for zi, and where b is a vector that coincides with h in
the first r entries and contains zero entries otherwise. Any solution z defines a valid
surface F , because triangular facets of F are trivially fixed by three heights, and for
each pseudotriangular facet of F its vertices are forced to be coplanar. Thus F is
piecewise-linear and continuous, and each edge of F projects to an edge of PT .

We now prove that a unique solution z exists, by showing det(A) �= 0. Call an
n×n matrix M affirmative if (a) M is positive exactly at its diagonal entries, (b) no
row sum in M is negative, and (c) at least one row sum is positive. M is called strictly
affirmative if each allowable submatrix of M (i.e., which comes from deleting the ith
row and the ith column of M for t < n indices i) is affirmative. It is easy to prove
det(M) > 0 for any strictly affirmative matrix M ; see [10].

It remains to show thatA is strictly affirmative. Observe first thatA is affirmative:
The first r ≥ 1 rows of A are unit rows, and the remaining n−r rows represent convex
combinations for the diagonal elements. Let A′ be an allowable submatrix of A. Then
properties (a) and (b) clearly hold for A′. Property (c) is obvious while unit rows (that
correspond to complete vertices) are present in A′, and is retained because heights
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for complete vertices participate with negative coefficients in remaining rows. We
conclude that A is strictly affirmative.

Remarks. The set of edges of the surface F in Theorem 5.1 may project to a
proper subset of edges of the pseudotriangulation PT of (P, S). We will discuss this
phenomenon in detail in subsection 5.3.

The existence of some projection surface is obvious when (P, S) contains no in-
ternal vertices, that is, if S = vert(P ). Then all internal edges of PT are diagonals
of P . For each pseudotriangle of PT , its three corners define a plane, which can be
placed appropriately in space. Note that these planes can be chosen such that the re-
sulting surface is convex at each internal edge; this observation leads to Corollary 9.2
in section 9.

Theorem 5.1 holds for arbitrary (augmented) polygonal domains, including poly-
gons with holes. We will use this generalization in subsections 6.3 and 8.2. Note that
the noncorners of holes are corners of the domain and thus are complete vertices.

The vector b is an eigenvector of the transpose AT with eigenvalue 1, that is,
AT · b = b. In fact, AT (and thus A) has r eigenvalues of 1.

Interestingly, a matrix of a form similar to A arises in the context of power
diagrams and Gale transforms [10]. Moreover, the polytope representation of pseu-
dotriangulations, which we are going to describe in section 9, could alternatively be
obtained using Gale transform techniques; cf. [15]. A systematic use of Gale trans-
forms may shed additional light on the geometric properties of pseudotriangulations.

By applying allowable row operations to A, it can be shown that its inverse A−1

contains only nonnegative entries. This implies a monotonicity property which will
be important later.

Lemma 5.2. The solution z of the system A · z = b is a monotone (linear)
function of b and thus of the height vector h.

The Maxwell–Cremona theorem [20] asserts that, for a given planar straight-line
graph G, there exists a (certain) projection surface if and only if G admits a so-called
stress, i.e., an assignment of a real-valued tension to each edge of G such that all
vertices of G are in equilibrium state. In this projection surface, the outer facet is
required to be planar (unlike in the surface in Theorem 5.1). For convex augmented
polygons (P, S), the Maxwell–Cremona theorem combines with Theorem 5.1, namely,
when height zero is chosen for each (necessarily complete) boundary vertex of the
convex polygon P . This gives the corollary below, which also follows from recent
results in [41].

Corollary 5.3. Let PT be a pseudotriangulation of a planar point set S. There
exists a nontrivial stress for the edges of PT , provided that PT is not minimum.
More generally, the dimension of the space of stresses for PT equals the number of
its complete internal vertices.

We mention that Theorem 5.1 also implies a variant of Corollary 5.3 for arbi-
trary augmented polygons (P, S), asserting that every pseudotriangulation of (P, S)
admits a nontrivial stress for the set S \ vert(P ) of internal vertices unless P is a
pseudotriangle.

5.3. Projective pseudotriangulations. The surface F in Theorem 5.1 may
fail to be strictly convex or reflex for some edges of PT . In this case, F yields a
proper subset of edges of PT in the projection. One reason for this is that the height
vector h is degenerate. For instance, if h = 0, then F contains a single facet that
projects to the polygon P in the plane, regardless of the shape of PT . On the other
hand, pseudotriangles in double-adjacency give rise to a single pseudotriangular facet
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Fig. 5.1. A stable though nonprojective pseudotriangulation.

of F for every choice of h.
Let us call a pseudotriangulation PT of (P, S) stable if no subset of incomplete

vertices in S \ vert(P ) can be eliminated (along with their incident edges) such that
both a valid pseudotriangulation PT ′ remains, and the status of each vertex of PT ′
is the same as in PT . In particular, double-adjacencies are ruled out in a stable
pseudotriangulation. Trivial stable instances are full triangulations, and pseudotrian-
gulations of (P, S) for S = vert(P ). To see an example of a pseudotriangulation which
is not stable, omit the three bold edges in Figure 7.3 (below) which do not belong to
the internal triangle. Interestingly, no double-adjacencies occur in this example.

Theorem 5.4. A pseudotriangulation PT of (P, S) is projective only if PT is
stable. If PT is stable, then the point set S can be perturbed (by some arbitrarily
small ε) such that PT becomes projective.

Proof. Assume first that PT is not stable. Eliminate some set of incomplete
vertices from S \ vert(P ) such that a pseudotriangulation PT ′ of (P, S) is obtained
where all vertices agree in status with their counterparts in PT . Fix an arbitrary
height vector h for S. By Theorem 5.1, there exist unique surfaces F for PT and
F ′ for PT ′. Since only incomplete vertices have been eliminated, and the status of no
remaining vertex has been changed, we have F ′ = F . Now let ∇ be a pseudotriangle
of PT ′ but not of PT . The restriction of F ′ to ∇ is a pseudotriangular facet. Because
F ′ = F , the restriction of F to ∇ is planar, too. This implies that PT is not
projective.

Now let PT be a stable pseudotriangulation. Let h be a height vector for S with
pairwise different entries. Assume that the surface F for PT and h is planar at some
edge uv. Let c and c′ be the two corners opposite to uv in the two pseudotriangular
facets of F adjacent at uv. By assumption, the vertex v lies in the plane through
u, c, and c′. Suppose first that v is a complete vertex. As the heights of u, c, and c′

also depend on vertices different from v, we can displace v by some arbitrarily small ε
in an appropriate direction, such that F becomes nonplanar at uv. Now suppose
that v is incomplete. Because PT is stable, the height of v does not depend on the
same set of (three) vertices as do the heights of u, c, and c′. Otherwise, v could be
eliminated (possibly jointly with other vertices) without changing F , a contradiction
to the assumed stability of PT . So, again, v can be displaced to make F nonplanar
at uv. This implies that S can be perturbed such that PT becomes projective.

Figure 5.1 illustrates a stable pseudotriangulation which fails to be projective.
Neither of the two incomplete vertices can be eliminated without changing the status
of the upmost internal vertex from complete to incomplete. On the other hand, as
the prolongations (shown dotted) of two edges meet at a third edge, the edge drawn
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in bold flattens out in all possible surface realizations. Note that a slight movement
of any single vertex restores the projectivity in this example.

By Theorem 5.4, we restrict our attention—in the remainder of this paper—to
vertex sets where every stable pseudotriangulation is also projective. For such a
vertex set S and a pseudotriangulation PT thereof, a height vector h is called generic
if h witnesses the projectivity of PT .

Remarks. Note the difference between the concepts of stable and minimum pseu-
dotriangulation. In the latter, no single edge (but possibly some vertices) can be
eliminated such that a valid pseudotriangulation remains. There is no obvious re-
lation between stable and minimum pseudotriangulations, but the following can be
observed. If conv(S) is a triangle and S contains vertices internal to P , then no
minimum pseudotriangulationMPT of (P, S) is stable. All internal vertices are in-
complete, and their elimination leaves a valid pseudotriangle P without changing the
status of any vertex of P . By Theorem 5.4, this implies thatMPT is not projective.

6. Surface interpretation of flips. We next provide a surface interpretation
for all the admissible flip operations in section 2. To this end, consider some projective
pseudotriangulation PT of an augmented polygon (P, S). (Recall from subsection 5.3
that “projective” is equivalent to “stable,” by our convention on the vertex set S.)
Let PT ′ be the unique pseudotriangulation obtained from PT by applying a single
admissible flip. Assign height vectors h and h′ to PT and PT ′ such that h is generic
for PT and coincides with h′ for all vertices being complete in both structures. By
Theorem 5.1, there exist two unique projection surfaces F and F ′ for PT and PT ′.
We call the operation that transforms F into F ′ a surface flip.

In a combinatorial sense, surface flips cause local and constant-size changes. Geo-
metrically, however, these operations are by no means local. A single flip may change
the surface heights for many vertices, even “far away” from the region where the com-
binatorial change takes place. The change in height depends on the structure of the
entire surface. Thus general surface flips are context-sensitive operations.

For expository reasons, we will first study surface flips in their context-free ver-
sion in the next two subsections. The following notation will be used. Consider an
exchanging or an edge-removing flip. ∇1 and ∇2 are the two adjacent pseudotriangles
involved in the flip, and R denotes their union. We restrict the corresponding surface
flip to R such that PT and PT ′ are the two (projective) pseudotriangulations of R
before and after the flip, and F and F ′ are the corresponding unique surfaces. The
operation that takes F into F ′ constitutes the context-free surface flip. We come back
to its context-sensitive version in subsection 6.3.

6.1. Convexifying flips. Suppose the flip in question is an exchanging flip.
The following combinatorial change is caused. The flip replaces the edge e = ∇1 ∩∇2

by the edge e′ that is the intersection of the two pseudotriangles that comprise PT ′.
Note that ∇1 and ∇2 are in no double-adjacency, by our assumption that PT is
projective. R has exactly four corners, which are the vertices vi, complete in both
PT and PT ′. Their heights have been fixed as zi = hi, in a noncoplanar manner.
The noncorners of R are incomplete in both of PT and PT ′. If they change incidence
to pseudotriangles during the flip, then the planarity conditions for their heights are
affected. For such a vertex vj the change is from zj = γj to zj = γ′j , where γj and γ′j
are convex combinations of the heights of the corners in the respective pseudotriangles.

To view the change geometrically, see Figure 6.1. Consider the two facets f1

and f2 of the surface F before the flip, and assume that F is reflex at edge e. Then
exactly one corner of f1 lies below the plane through f2, and vice versa. As corners
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Fig. 6.1. Two convexifying flips.

do not change height in the flip, this implies that the obtained surface F ′ is convex
at edge e′. We will therefore use the term convexifying flip. F and F ′ bound a
polyhedron from above and below, respectively. This polyhedron is a tetrahedron if
f1 and f2 are triangles, and the flip degenerates to the Lawson flip for triangulations.
In this case, we will also talk of a tetrahedral flip—a special case well known from
flipping in triangular surfaces; see, e.g., [38].

6.2. Planarizing flips. We discuss the edge-removing flip next. Combinatori-
ally, the following change takes place. PT consists of two pseudotriangles ∇1 and ∇2

in single adjacency. The flip removes their common edge e and joins ∇1 and ∇2 to the
pseudotriangle R, which thus represents PT ′. The three corners of R are complete in
both PT and PT ′. Thus their heights are given explicitly. One vertex ve incident to e
changes its status from complete in PT to incomplete in PT ′. The condition for its
height changes from ze = he to ze = γ′e, where γ

′
e expresses coplanarity with the lifted

corners of R. All other vertices vj of R are incomplete in both PT and PT ′. Their
height constraints change from zj = γj to zj = γ′j , where γj expresses coplanarity
with the lifted corners of ∇1 or ∇2.

Geometrically, the surface F (which we assume to be reflex at edge e again) is
flipped to F ′, as is depicted in Figure 6.2. F ′ is a single pseudotriangular facet and
thus is planar. We call such a flip a planarizing flip. Again, F and F ′ bound a
polyhedron from above and below, respectively.

6.3. Context-sensitive view. The context-free flips described in the previous
two subsections leave the heights of the complete vertices of PT ′ unchanged. The
incomplete vertices of PT ′ are lowered. Complete vertices may, however, be incom-
plete when being embedded in a larger pseudotriangulation. A surface flip—in its
general context-sensitive form—may alter their heights as well. This alteration is
uniquely described by the corresponding two linear systems. No alteration occurs in
a convexifying flip that is tetrahedral, because the system remains unchanged.



PSEUDOTRIANGULATIONS, SURFACES, AND FLIPS 1641

e ve

Fig. 6.2. Planarizing flip.

Lemma 6.1. Let F ′ be obtained from the surface F by applying a (context-
sensitive) convexifying or planarizing surface flip ϕ. Then F ′ nowhere lies strictly
above F .

Proof. We show that ϕ can be simulated by a sequence of flips, each lowering
certain parts of the surface. Let (P, S) and PT , respectively, be the augmented
polygon and the pseudotriangulation in question. Thus F is the surface for PT
before flipping. Consider the polygon R ⊆ P to which the context-free version of ϕ is
restricted, and denote this flip by ϕR.

Introduce new edges to PT such that a pseudotriangulation PT 1 is obtained in
which all corners of R are complete vertices. Assign heights as determined by F to the
complete vertices of PT 1. The surface that corresponds to PT 1 and these heights is
still F . Now perform the flip ϕR and denote the obtained pseudotriangulation by PT 2

and its surface by F2. This lowers the noncorners of R (which are incomplete in PT 2)
but leaves the heights of R’s corners fixed. To see that no other incomplete vertex
of PT 2 can gain height, let us cut out the region R from P and consider it as a hole.
The restrictions of PT 1 and PT 2, respectively, to P \R have the same set of complete
vertices, which now includes all vertices of R. Let h1 and h2 be their height vectors
in the linear systems for F and F2. We know that h2 ≤ h1 (element-wise) because
a subset of R’s vertices has been lowered, which implies z2 ≤ z1 by Lemma 5.2. We
conclude that F2 nowhere lies strictly above F .

Observe that pseudotriangles in PT 1 may be incident to R only with their corners.
Thus F2 may be reflex at edges of PT 1 which are not in PT . However, no reflex edge
is changed to being convex. If all reflex edges of F2 have been present as reflex
edges in F already, then the surface flip is complete. That is, ϕR = ϕ. Otherwise,
appropriate context-free flips (convexifying or planarizing) are applied to the new
reflex edges in F2, in the way described above and until all such edges disappear.
Note that reflex edges flipped away earlier can reappear, so that the process may
oscillate. It converges, though, because each reflex edge is flippable at all times, and
there is an obvious lower bound on the heights, as certain vertices (the corners of P ,
for instance) never change height. This implies that the limit is the unique surface F ′
that F is flipped into by the context-sensitive surface flip ϕ.
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Fig. 6.3. Oscillating flips.

Figure 6.3 illustrates two oscillating flips. The edges e1 and e2 are both reflex
at the beginning. They alternately disappear when context-free planarizing flips are
applied. Their endpoints v1 and v2 are lowered alternately until the limit is reached,
the pseudotriangulation that contains the shaded and the blank pseudotriangles.

6.4. Trivial flips. In a convexifying or a planarizing surface flip, a pseudotri-
angulation of (P, S) may be created which is not stable. This happens if a subset
B ∈ S \vert(P ) of incomplete vertices is generated, such that the removal of B leaves
a valid pseudotriangle ∇ without changing the status of vertices. As a special case,
a double-adjacency occurs. The obtained pseudotriangulation is not projective, by
Theorem 5.4. In fact, the surface flip changes the part of the surface above ∇ to
planar. That is, a trivial flip takes place implicitly, which eliminates from the surface
the edges and vertices that stem from B.

In the pseudotriangulation of (P, S), the removal of B can be realized by a finite
sequence of admissible flips (including vertex-removing flips, of course). This restores
a projective pseudotriangulation. Surface flips that cause trivial flips are a natural
generalization of the degree-3 vertex removal in triangular surfaces, where a single
tetrahedron is split off; see, e.g., [38].

Remarks. Each (nontetrahedral) surface flip requires that a system of linear
equations be solved; see subsection 5.2. The corresponding matrix has a special
structure, however. The first n−i rows are unit rows if i of the n vertices in the current
pseudotriangulation are incomplete. Thus the system can be solved in O(n+ i3) time,
which covers the geometrical part of the surface flip. The combinatorial part obviously
can be done within this complexity.

7. Locally convex functions. Let P be a polygon in the plane. A real-valued
function f with domain P is called locally convex if f is convex on each line seg-
ment internal to P . For convex polygons P , every locally convex function is convex
continuable on the exterior of P , but this is not true for arbitrary polygons in general.

Let (P, S) be an augmented polygon, and let h be a vector assigning some real
value to each of the n vertices in S. We are interested in the following optimization
problem.

Given (P, S) and h, find the maximal locally convex function f∗ on the domain P
which fulfills f∗(vi) ≤ hi for each vi ∈ S.

The function f∗ is unique, because it is the pointwise maximum of all locally con-
vex functions on P that satisfy the constraints given by h. Moreover, f∗ is piecewise
linear, and nonlinearity occurs only at line segments spanned by the set S. We prove
that the graph F∗ of f∗ projects to a pseudotriangulation of (P, S′) for some S′ ⊆ S.
We further show that F∗ can be constructed by a finite sequence of convexifying or
planarizing surface flips.
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If (P, S) is convex, then a well-known special case is obtained: F∗ is the lower
convex hull of the point set S when being lifted to the heights in h. In this case, we
succeed in generating the (convex) surface F∗ with O(n2) surface flips of the kind
above. The bound O(n2) can further be achieved when (P, S) is an arbitrary polygon
without internal vertices. Both flip distance results are asymptotically optimal, by
known lower bounds; see, e.g., [26].

7.1. Flipping to optimality. Consider some full triangulation T of the aug-
mented polygon (P, S). All the n vertices of T are complete vertices, and we assign
to T the height vector h used above to specify the maximal locally convex surface F∗.
This defines a unique triangular surface F(T ,h). We state another core result of this
paper.

Theorem 7.1 (optimality theorem). Let F∗(T ,h) be a surface obtained from
F(T ,h) by applying convexifying and planarizing surface flips (in any order) as long
as reflex edges do exist. Then F∗(T ,h) = F∗ for any choice of the initial triangula-
tion T . The optimum F∗ is reached after a finite number of surface flips.

Proof. By Lemma 6.1, convexifying and planarizing surface flips always generate
a sequence of surfaces that is (strictly) totally ordered by decreasing height. As, by
the uniqueness result in Theorem 5.1, these surfaces are pairwise different, so are the
corresponding pseudotriangulations. An exponential upper bound on the sequence
length results, because the number of possible planar straight-line graphs on the
vertex set S is exponentially bounded in n; see [7]. The obtained surface F∗(T ,h)
contains no reflex edge, as each such edge can be flipped at any time. This implies that
F∗(T ,h) is locally convex. Moreover, F∗(T ,h) is maximal, because it fulfills h with
equality for all complete vertices. Thus F∗(T ,h) = F∗ follows from the uniqueness
of F∗.

If the vector h constraining the vertex heights is generic, then all facets in the
surfaces generated above are pseudotriangles. That is, only (projective) pseudotrian-
gulations are generated. In particular, F∗ projects to a pseudotriangulation.
F∗ can be alternatively computed by solving a linear program with at most(

n
4

)
constraints. Each constraint stems from a quadrilateral Q ⊂ P with vertices

from S and postulates convex position for the vertex heights.
Theorem 3.4 implies the existence of a sequence of O(n log n) surface flips that

transforms any given triangular surface F(T ,h) for (P, S) into F∗. This sequence
includes convexifying and planarizing flips and, in general, their inverses. Trivial flips
may be implicated if vertices of F(T ,h) are missing in F∗. The sequence contains
no inverse trivial flips, however. This rules out the reinsertion of vertices and makes
the bound substantial. Note that the sequence need not be improving, i.e., exclu-
sively consisting of convexifying and planarizing (and trivial) surface flips such as in
Theorem 7.1. We summarize in the following.

Theorem 7.2. Let (P, S) be an augmented polygon with |S| = n, and let h be a
height vector for S. Let f∗ be the unique maximal locally convex function on P that
is bounded from above by h.

(1) The graph F∗ of f∗ projects to a pseudotriangulation in the generic case.
(2) F∗ can be constructed from any triangular surface F for (P, S) and h, by

applying any improving flip sequence of sufficient length.
(3) There exists a sequence of O(n log n) flips (excluding the inverse trivial type)

which transforms F into F∗ and can be computed in polynomial time if F∗ is known.
A principal problem, which complicates the construction of improving sequences

of polynomial length (as in [26]), is that edges flipped away may reappear. Figure 7.1
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Fig. 7.2. Local and global optima.

illustrates this phenomenon. Numbers denote vertex heights, and reflex edges are
shown in bold. Edge e is flipped first, and a planarizing flip for the other reflex edge
follows. This makes the edge between the two remaining triangles reflex. Flipping
this edge next lets e reappear, though as a convex edge. However, an appropriate flip
in the neighborhood of e (not shown in the figure) makes e reflex again. Interestingly,
a different improving sequence—that does not start with e—avoids this undesirable
effect. We show in subsections 7.2 and 7.3 that the reappearance of edges can always
be avoided for less general domains (P, S).

Remarks. Flipping to local convexity is not always possible within the class of
triangulations. Different flip sequences may terminate at different triangular surfaces
that contain reflex edges, as Figure 7.2 shows. (Numbers at vertices denote surface
heights.) The initial surface contains two reflex edges, connecting vertices of height 1.
Flipping either edge yields one of the two triangular surfaces shown in the upper part.
Each contains only one reflex edge (shown in bold), which cannot be flipped away
without destroying the triangulation. The global optimum F∗ is a pseudotriangular
surface, shown in the lower part.

7.2. Convex domains. Suppose that the underlying domain (P, S) is convex.
Then F∗ bounds from below the convex hull of a three-dimensional point set. Let
us show that reappearance of edges does not take place if improving surface flips are
performed in a carefully chosen order. In particular, the following holds.

Lemma 7.3. Let (P, S) be an augmented convex polygon, and let h be a height
vector for S. Then F∗ can be generated, from any given triangular surface for
(P, S) and h, by O(n2) improving surface flips, for n = |S|.

Proof. To avoid the discussion of special cases, assume that h is generic. Let F
be the current surface for (P, S), which is triangular at the beginning. For a vertex v
of F , denote with I(v) the set of all vertices of F that share a facet with v. Note that
v ∈ I(v). Let low(I(v)) be the lower part of the boundary of conv(I(v)). We use the
following algorithm to flip F into F∗.
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Fig. 7.3. Local optimum for convex P ; adapted from [25].

Step 1. While there exists a vertex v of F that lies strictly above low(I(v)) do:
Case 1.1. Vertex v is complete. As v lies strictly above low(I(v)), there exist

reflex edges incident to v. While v is complete, we flip away such edges, using
convexifying and planarizing surface flips. We know, from Lemma 6.1, that
low(I(v)) is lowered in this process, whereas v keeps its height. Thus there
always exists some reflex edge incident to v, which can be flipped. Each flip
decrements the degree of v. Note that pseudotriangular facets with many
vertices may be created, but only if v is a corner there. Obviously, the last
flip is planarizing. It either changes the status of v to incomplete, and we
continue with Case 1.2, or it implicates a trivial flip that removes v (possibly
together with some other vertices in v’s neighborhood). In particular, v gets
removed if its degree before the flip has been three.

Case 1.2. Vertex v is incomplete. Let f be the unique pseudotriangular facet
of F where v is a noncorner. While v has more than two edges, we flip away
reflex edges, according to the following rule. As v lies strictly above low(I(v)),
either both edges of f incident to v are reflex, or another reflex edge is incident
to v. In the latter case, we flip this edge. The former case needs more care.
Consider the projections, e1 and e2, of these two reflex edges of f in the
pseudotriangulation. Between them, there is another edge incident to the
projection v′ of v. Therefore, for at least one of e1 and e2, say e1, the geodesic
between the two corners opposite to e1 (in the two pseudotriangles adjacent
at e1) does not run via v′. We select e1 for the edge to be flipped. This flip
creates no edge incident to v. Thus either the degree of v is decremented, or
v is removed in a trivial flip.

Step 2. Now all vertices v of F lie on low(I(v)). The surface F therefore is
triangular, and all vertices in the corresponding triangulation are complete.
While F is not convex, we apply convexifying (in fact, tetrahedral) flips. No
vertex heights change. This yields the convex and triangular surface F∗.

The total number of flips in Cases 1.1 and 1.2 is bounded by n−1, the maximum
possible degree of the vertex v. Step 1 runs through these cases at most n− 3 times,
because each time one internal vertex is removed. The number of flips needed in
Step 2 is at most

(
n
2

)
, by well-known arguments [26].

Remarks. Even though P is convex such that F∗ is triangular, only a local
optimummay be reached when tetrahedral flips are applied exclusively. See Figure 7.3,
which is taken from [25]. P has height zero, and the three vertices in S \ vert(P ) lie
in some plane above P . No reflex edge (bold) can be flipped, and no single vertex can
be removed, to obtain a valid triangulation. Planarizing (and trivial) flips are needed
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to reach the optimum F∗, which is a single triangle P .

It remains unclear whether the algorithm above can be modified to run efficiently
for nonconvex augmented polygons (P, S). Step 1 may leave noncorners of P incom-
plete, such that Step 2 is not guaranteed to take O(n2) flips.

7.3. Vertex-empty domains. Improving flip sequences of (at most) quadratic
length also exist for any polygonal domain (P, S) without internal vertices, that is, in
the case vert(P ) = S. Let ∆ be an ear of the polygon P , that is, a triangle that can
be cut off from P by some diagonal. It is well known that every triangulation of P
contains at least two ears.

Lemma 7.4. Let ∆ be an ear of P , and let h be a height vector for vert(P ).
Denote with F∗ and F∗(P \ ∆), respectively, the optimal surfaces for P and P \ ∆
with respect to h. Then F∗(P \ ∆) can be transformed into F∗ by attaching the
triangular facet for ∆ and applying O(n) improving flips.

Proof. Consider the following sequence of flips. Imagine that a triangular facet f
with the following properties is attached to F∗(P \∆): The projection of f is ∆, and
the corner c of f that does not belong to F∗(P \∆) has some height hc large enough
to make the resulting surface convex at the respective diagonal d of P . This surface
is optimum for P and the vector h with c’s height replaced by hc. Now, continuously
lower hc, and maintain the optimum surface by flips as below, until hc attains the
original value as given by h and the surface becomes F∗.

If the diagonal d stays convex throughout, then no flips are performed. Otherwise,
right after the surface becomes reflex at d, we flip d. This flip is either planarizing or
convexifying. It does not change the convexity of any other edge, though, and thus
restores optimality. To describe the generic step, let Fc be the part of the surface
modified by flips so far. Fc is separated by diagonals d1, . . . , dk from its complement
in the surface. Therefore, when decreasing hc, all edges of the surface except possibly
d1, . . . , dk stay convex. As soon as one of d1, . . . , dk becomes reflex, the next flip is
performed. This restores optimality and extends Fc by one facet.

The number of flips isO(n) because each flip extends Fc. It remains to be observed
that exactly the same sequence of flips can be applied if the facet f is attached to
F∗(P \∆) with c’s original height: Each diagonal d flipped above now becomes reflex
as soon as d bounds the current locally convex part incident to c. Thus flipping d
indeed constitutes an improving flip.

We remark that each edge constructed above corresponds to an edge of the
shortest-path tree πc(P ) for P and c, defined in subsection 3.1.

Lemma 7.5. Let P be a simple polygon with n vertices, and let h be some height
vector for vert(P ). The optimum F∗ can be constructed by an improving flip sequence
of length O(n2), from any given triangular surface for P and h.

Proof. We construct F∗ by simulating an incremental algorithm. Let T be the
triangulation to which the initial surface projects. Traverse the triangles of T in some
adjacency order. Let Q be the union of the triangles visited so far. We maintain the
following invariant for the current surface F . The restriction of F to the polygon Q
is optimum for Q (i.e., maximal and locally convex), and the restriction of F to P \Q
coincides with the initial triangular surface.

The generic step processed a triangle ∆ of T by constructing the optimum surface
for the polygon Q ∪∆. As ∆ is an ear of Q ∪∆, this takes O(n) improving flips by
Lemma 7.4. These flips leave the triangular surface for P \(Q∪∆) unaffected, because
all its vertices are complete. The number of steps (triangles) is n− 3.
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8. (Constrained) regular complexes. The concept of local convexity of poly-
hedral surfaces is closely related to the concept of constrained regularity of polygonal
partitions. Let us elaborate on the consequences of the results in section 7 in terms
of constrained regularity.

8.1. Regular triangulations. A triangulation T of a point set S is called regu-
lar if there exists some convex function on conv(S) whose set of nonlinearity coincides
with the set of internal edges of T . Regular triangulations arise as duals of power dia-
grams [8] (a generalization of Voronoi diagrams) and have several applications [24, 23].
Figure 7.3 shows a well-known example of a nonregular triangulation.

We discuss the implications of section 7 for regular triangulations, that is, for the
case P = conv(S). For each height vector h, the surface F∗ is convex in this case
and is the lower part, low(Sh), of the boundary of the convex hull of the lifted point
set Sh. A unique regular triangulation T (S)h for S and h is obtained by projecting
low(Sh). Lemma 7.3 implies the following result.

Theorem 8.1. Let T and h be a given triangulation and a height vector, respec-
tively, for a planar set S of n points. Then T can be flipped to the regular triangula-
tion T (S)h using O(n2) flips, which are improving in the corresponding surfaces.

Note that the upper part of the boundary of the convex hull of Sh can be obtained
as well, by reflecting Sh at the plane z = 0 first. This yields another interesting result.

Corollary 8.2. The convex hull of a three-dimensional n-point set M can be
constructed by taking an arbitrary triangular surface for M and performing O(n2) im-
proving surface flips.

Observe that vertices of S may be absent in T (S)h, namely, if some points of Sh

lie strictly above low(Sh). We call h a convex height vector (for S) if no point
of Sh lies strictly above low(Sh). If h is convex, then no (proper) pseudotriangle is
ever created when flipping to regularity: Pseudotriangles stem from planarizing flips,
which are never performed because the respective edges are convex already. Therefore
all convexifying flips are tetrahedral flips, and all vertices show up in T (S)h. In
particular, if Sh happens to lie on a paraboloid with a vertical axis of rotation (say,
z = x2), then T (S)h is the Delaunay triangulation DT (S) of S; see, e.g., [26].

Remarks. It is well known that each triangulation of S can be transformed into
DT (S) by flips that are convexifying and tetrahedral in the respective surface (so-
called Delaunay flips), but not every regular triangulation can be constructed in this
way. Theorem 8.1 tells us that pseudotriangulations—rather than triangulations—are
the right framework for flipping to regularity.

O(n2) convexifying flips always suffice for generating DT (S). On the other hand,
Ω(n2) is a lower bound, even if S is in convex position; see, e.g., [26]. This implies
that Theorem 8.1 is optimal in the worst case. Theorem 8.1 is a stronger version of
a result in [25], which asserts that incremental insertion of points, and application of
tetrahedral flips to the special triangular surface that arises from each insertion, is
capable of generating the regular triangulation in O(n2) flips.

Recently, the quest for a Delaunay pseudotriangulation of a point set S has been
formulated [47]. If “Delaunay” is interpreted as “convex at each edge of the projection
surface,” and if the entire class of pseudotriangulations for S is taken as the under-
lying setting (rather than some class of fixed edge rank), then our results imply that
T (S)h (or DT (S), respectively) is the solution. The Delaunay minimum pseudotri-
angulation does not exist in this setting unless S is in convex position: No minimum
pseudotriangulation of S is regular if S contains some internal vertex v, because the
incompleteness of v forces every surface to be nonconvex in the neighborhood of v.
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Fig. 8.1. Cutting conv(S) along G.

8.2. Constrained regular pseudotriangulations. Let us return to general
augmented polygons (P, S). Here the maximal locally convex surface F∗ is not con-
vex continuable on the exterior of P in general. Thus F∗ disagrees with the lower
convex hull of the lifted point set Sh and contains pseudotriangular facets. The
pseudotriangulation that F∗ projects to always contains the edges of P . It can be
interpreted as the regular pseudotriangulation for S constrained by P . Constrained
triangulations, and especially, constrained Delaunay triangulations are well-known
and versatile concepts; see, e.g., [40, 19, 4]. Very recently, constrained regular tri-
angulations have been considered [13, 50]. This structure is not guaranteed to exist
for general height vectors h, however. We intend to show that our framework allows
for a definition of constrained regular pseudotriangulations that always exist and are
unique.

To exploit our concepts more generally, let G be a planar straight-line graph with
vertex set S. Local convexity of a function f generalizes naturally, by requiring f to be
convex on each line segment in conv(S) that does not cross G. We call G admissible
if, apart from the isolated vertices of G, each component of G is connected to the
boundary of conv(S). An admissible graph G defines a partition of conv(S) as follows;
see Figure 8.1. Cut conv(S) along G, and move it apart at the cuts infinitesimally.
This gives a collection of augmented polygons (Qi, Si) with

⋃
i Si = S.

Theorems 7.1 and 7.2 directly apply to this setting. Let T be a triangulation
of S that includes all the edges of G. For a given height vector h for S, consider the
unique triangular surface for T and h. Let Fi denote the restriction of this surface
to the polygon Qi. Then Fi can be made locally convex by flipping away all reflex
edges that do not belong to G. This gives a unique pseudotriangulation PT i for each
augmented polygon (Qi, Si). Altogether, a unique constrained regular pseudotrian-
gulation PT (G)h for G and h is obtained.

The corresponding maximal locally convex function fG,h on the domain conv(S)
is piecewise linear but, in general, not continuous. Its set of discontinuity is a subset
of G and occurs at certain pseudotriangular faces of PT (G)h, namely, where local
convexity (with respect to G) and maximality (with respect to h) contradict. The
graph of fG,h thus is no surface in our sense. We summarize as follows.

Theorem 8.3. Let S be a set of n points in the plane, and let G and h, respec-
tively, be an admissible straight-line graph and a height vector for S. There exists a
unique constrained regular pseudotriangulation PT (G)h for G and h. PT (G)h can
be constructed by improving surface flips, starting from any triangulation of S that
conforms with G. Moreover, the O(n log n) bound in Theorem 7.2 applies.
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Remarks. If G partitions conv(S) into augmented convex polygons, then no
incomplete vertices occur in PT (G)h, which thus is a triangulation for every h. The
graph FG,h of fG,h then is a surface, namely, the continuous concatenation of lower
convex hulls on top of these convex polygons.

There are other interesting instances of admissible constraining graphs G. For
example, Gmay define a minimum pseudotriangulationM of S. In this case, PT (G)h
gives ways of canonically refining M. Alternatively, G may define a spanning tree
of S, a choice used in [4] to transform crossing-free spanning trees into each other.

If the height vector h is convex, then all vertices of S show up in PT (G)h. More-
over, only triangles are generated in the flipping process. PT (G)h is a triangulation,
and fG,h is continuous. The surface FG,h is reflex only at edges of G, namely, at those
that are absent in the regular triangulation T (S)h. In the special case where the lifted
point set Sh lies on the paraboloid z = x2, the constrained Delaunay triangulation [40]
of S and G is obtained.

If the graph G is not admissible, then G splits conv(S) into augmented poly-
gons with possible holes. PT (G)h is still uniquely defined, because Theorem 5.1
generalizes to augmented polygons with holes in a straightforward way. However,
the constrained regular complex PT (G)h fails to be a pseudotriangulation in general
because pseudotriangular facets with holes may arise. It is worth mentioning that the
polytope constructed in section 9 generalizes to representing arbitrary constrained
regular complexes.

An attempt to define constrained regular complexes as full triangulations results
in one of two phenomena: If convexity on all edges different from G is required, then
the complex does not always exist; on the other hand, ambiguity occurs if reflex edges
not belonging to G are admitted, even if they are all nonflippable (in the classical
sense). Their structure depends on the flip sequence rather than on G and h alone.
That is, several solutions (local optima) do exist in general. See Figure 7.2, where
G delineates a nonconvex polygon.

9. Polytope representation. Let S be a set of n points in the plane. Let G de-
note an admissible straight-line graph on S, as defined in subsection 8.2. We establish
the existence of a convex polytope that represents all the regular pseudotriangulations
on S and constrained by G. This generalizes the polytope constructions in [39] (the
associahedron) and in [28] (the secondary polytope, see also [15]), which concern the
(unconstrained) regular triangulations of a point set S.

Let S′ be a subset of S, which includes all the vertices of the (unique) connected
component formed by G and the boundary of conv(S). We consider the set Π(G) of
all pseudotriangulations PT that live on such subsets S′ and conform with G. Clearly,
for each height vector h for S, the constrained regular pseudotriangulation PT (G)h
is a member of Π(G).

We construct, for each PT ∈ Π(G) and each h, a unique piecewise linear func-
tion fPT ,h on the domain conv(S). Recall from subsection 8.2 that the admissible
graph G defines a partition of conv(S) into polygons Qi. Let PT i denote the part
of PT inside Qi. Then h assigns a height to each complete vertex of the pseudotri-
angulation PT i. Thus, by the surface theorem (Theorem 5.1), there exists a unique
polyhedral surface Fi for PT i and h. The concatenation of the surfaces Fi is the
graph of the function fPT ,h to be constructed. Note that fPT ,h is discontinuous in
general.

Recall further that fPT ,h is locally convex with respect to G exactly if PT =
PT (G)h. The optimality theorem (Theorem 7.1) thus implies fPT ,h ≤ fPT ′,h for all
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PT ′ ∈ Π(G). Integrating both sides yields
∫
x∈conv(S)

fPT ,h(x) dx ≤
∫
x∈conv(S)

fPT ′,h(x) dx.(9.1)

Consider the left-hand-side integral in (9.1). The expressed volume is a linear (and
homogenous) function of h, because fPT ,h is piecewise linear and, by Lemma 5.2,
the value of fPT ,h at each vertex of PT linearly depends on h. Let q(PT ) be the
coefficient vector of this linear function. As analogous observations hold for the right-
hand side in (9.1), we obtain

q(PT ) · h ≤ q(PT ′) · h for all PT ′ ∈ Π(G).(9.2)

We now interpret q(PT ) as a point in Rn and consider the convex polytope

Q(G) = conv{q(PT ) | PT ∈ Π(G)}.
Further, we define the following set of height vectors:

V(G,PT ) = {h | PT = PT (G)h}.
Inequality (9.2) implies that, for each h ∈ V(G,PT ), the set {q(PT ) | PT ∈ Π(G)}
lies in a half-space whose boundary contains q(PT ). Thus q(PT ) is a vertex of the
polytope Q(G) if and only if PT = PT (G)h for some height vector h. Note that
q(PT ) lies in the interior of Q(G) if PT is not constrained regular.

The collection of all sets V(G,PT ), for PT ∈ Π(G), defines a cell complex C(G)
in Rn because PT (G)h exists and is unique for each h, by Theorem 8.3. V(G,PT )
contains, for each member h, the vector λ ·h for λ ≥ 0. Moreover, h1,h2 ∈ V(G,PT )
implies λ ·h1 + (1− λ) ·h2 ∈ V(G,PT ) for 0 < λ < 1. That is, V(G,PT ) is a convex
polyhedral cone with apex 0.

Consider a facet g = V(G,PT 1)∩V(G,PT 2) of the complex C(G). For h ∈ g we
have h ·(q(PT 1)−q(PT 2)) = 0 by inequality (9.2). Thus the line segment connecting
q(PT 1) and q(PT 2) is normal to g. This implies that the edges ofQ(G) are dual to the
facets of C(G). For h lying in the relative interior of such a facet, there are exactly two
constrained regular pseudotriangulations PT 1 and PT 2 that yield the same function
fPT 1,h = fPT 2,h. Therefore, the graphs of fPT 1,h1 and fPT 2,h2 , for h1 ∈ V(G,PT 1)
and h2 ∈ V(G,PT 2), differ by a minimum combinatorial change, which corresponds
to a flip that transforms PT 1 and PT 2 into each other. We conclude the following.

Theorem 9.1. Let S be a finite set of points in the plane, and let G be an ad-
missible straight-line graph spanned by S. There exists a convex polytope Q(G) for G,
whose vertices are in one-to-one correspondence with the regular pseudotriangulations
of S constrained by G. Moreover, the edges of this polytope correspond to flips as in
section 2.

Remarks. The existence of Q(G) implies that any two constrained regular pseu-
dotriangulations PT (G)h,PT (G)h′ ∈ Π(G) are connected by a sequence of flips that
retain constrained regularity. That is, there exists a sequence h = h1,h2, . . . ,hk = h′

of height vectors such that the functions fG,hi are all locally convex with respect to G.
If G is chosen such that fG,hi is continuous (which, for instance, is the case if G de-
fines a convex partition of conv(S)), then a tool for morphing locally convex surfaces
is obtained. We raise the question for the maximal length k of the sequence above,
that is, for the diameter of Q(G). The diameter obviously depends on both n = |S|
and G.
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It is not hard to see that every pseudotriangulation of a simple polygon P (without
internal vertices) is constrained regular. The corresponding polytope Q(P ) therefore
represents all possible pseudotriangulations of P . Moreover, any two pseudotriangu-
lations of P can be transformed into each other with O(n) flips; see subsection 3.1.
We obtain the following result.

Corollary 9.2. Let P be a simple polygon with n vertices. There exists a
polytope Q(P ) whose vertices and edges, respectively, represent all possible pseudotri-
angulations of P and the flips between them. The diameter of Q(P ) is O(n).

Corollary 9.2 shows that, when generalizing from convex to nonconvex polygons,
the diameter of the associahedron [39] remains linear.

Is there a polytope representation of all possible pseudotriangulations of an aug-
mented polygon? One does exist for the subclass of all minimum pseudotriangulations
of a point set S, by results in [47]. In view of our extended repertoire of flips, the
general question arises naturally. We recently learned that an affirmative answer for
the point set case has been given in [41], by generalizing the construction in [47].
Our results on flip distances in section 3 imply that the diameters of the polytopes
in [47] and [41] are O(n log2 n) and O(n log n), respectively. What is the relation of
these polytopes to the polytopes in Theorem 9.1 and Corollary 9.2?

10. Conclusion. We have demonstrated that pseudotriangulations enjoy rich
geometric and combinatorial properties, a new contribution to the theory of pseu-
dotriangulations. Several key concepts for triangulations have been generalized to
pseudotriangulations. A series of algorithmic implications have been described, which
we believe to be of value in practical applications. The three main ingredients have
been (1) the derivation of a new type of flip, (2) a proof of the realizability of pseu-
dotriangulations as polyhedral surfaces, and (3) the establishment of a link to locally
convex functions. For a better understanding of pseudotriangulations, several notions
have been revitalized or introduced for the first time, like the edge rank, the com-
pleteness status of vertices, and the stability of pseudotriangulations. Let us conclude
this paper with an extension of our results which seems most interesting to us.

The relationship between pseudotriangulations and locally convex functions, ex-
pressed in Theorem 7.2, opens a way to define pseudocomplexes in higher dimensions
and flips therein. Also, the techniques used to prove the surface theorem (Theo-
rem 5.1) do not depend on the underlying dimension. These tools may finally resolve
the “3D pseudotriangulation mystery.” We are exploring the consequences of this
approach in a separate paper.
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on the presented topic with Günter Rote and Francisco Santos.
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[24] H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes, ACM Trans. Graph.,
13 (1994), pp. 43–72.

[25] H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for regular trian-
gulations, Algorithmica, 15 (1996), pp. 223–241.

[26] S. Fortune, Voronoi diagrams and Delaunay triangulations, in Computing in Euclidean Ge-
ometry, D.-Z. Du and F. Hwang, eds., Lecture Notes Ser. Comput. 4, World Scientific,
River Edge, NJ, 1995, pp. 225–265.

[27] J. Friedman, J. Hershberger, and J. Snoeyink, Efficiently planning compliant motion in
the plane, SIAM J. Comput., 25 (1996), pp. 562–599.

[28] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Newton polyhedra of principal
A-determinants, Soviet Math. Dokl., 308 (1989), pp. 20–23.

[29] M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths in planar sub-
divisions via balanced geodesic triangulations, J. Algorithms, 23 (1997), pp. 51–73.

[30] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. Souvaine,
I. Streinu, and W. Whiteley, Planar minimally rigid graphs and pseudo-triangulations,



PSEUDOTRIANGULATIONS, SURFACES, AND FLIPS 1653

Comput. Geom., (2003), pp. 154–163.
[31] S. Hanke, T. Ottmann, and S. Schuierer, The edge-flipping distance of triangulations, J.

Univ. Comput. Sci., 2 (1996), pp. 570–579.
[32] J. Hershberger, An optimal visibility graph algorithm for triangulated simple polygons,

Algorithmica, 4 (1989), pp. 141–155.
[33] C. Huemer, Flip Operations for Combinatorial and Geometric Objects, Masters thesis, In-

stitute for Theoretical Computer Science, Graz University of Technology, Graz, Austria,
2003.

[34] F. Hurtado, M. Noy, and J. Urrutia, Flipping edges in triangulations, Discrete Comput.
Geom., 22 (1999), pp. 333–346.

[35] L. Kettner, D. Kirkpatrick, A. Mantler, J. Snoeyink, B. Speckmann, and F. Takeuchi,
Tight degree bounds for pseudo-triangulations of points, Comput. Geom., 25 (2003), pp.
3–12.

[36] D. Kirkpatrick, J. Snoeyink, and B. Speckmann, Kinetic collision detection for simple
polygons, Internat. J. Comput. Geom. Appl., 12 (2002), pp. 3–27.

[37] D. Kirkpatrick and B. Speckmann, Kinetic maintenance of context-sensitive hierarchical
representations for disjoint simple polygons, in Proceedings of the 18th Annual ACM Sym-
posium on Computational Geometry, Barcelona, Spain, 2002, pp. 179–188.

[38] C. L. Lawson, Properties of n-dimensional triangulations, Comput. Aided Geom. Design, 3
(1986), pp. 231–246.

[39] C. W. Lee, The associahedron and triangulations of the n-gon, European J. Combin., 10
(1989), pp. 173–181.

[40] D. T. Lee and A. K. Lin, Generalized Delaunay triangulation for planar graphs, Discrete
Comput. Geom., 1 (1986), pp. 201–217.

[41] D. Orden and F. Santos, The Polyhedron of Non-crossing Graphs on a Planar Point Set,
manuscript, Universidad de Cantabria, Santander, Spain, 2002.

[42] M. Pocchiola and G. Vegter, Minimal tangent visibility graphs, Comput. Geom., 6 (1996),
pp. 303–314.

[43] M. Pocchiola and G. Vegter, Topologically sweeping visibility complexes via pseudo-
triangulations, Discrete Comput. Geom., 16 (1996), pp. 419–453.

[44] M. Pocchiola and G. Vegter, On polygon covers, in Advances in Discrete and Computational
Geometry, B. Chezeck, D. E. Goodman, and R. Pollack, eds., Contemp. Math. 223, AMS,
Providence, RI, 1999, pp. 257–258.

[45] D. Randall, G. Rote, F. Santos, and J. Snoeyink, Counting triangulations and pseudo-
triangulations of wheels, in Proceedings of the 13th Canadian Conference on Computational
Geometry, Waterloo, Canada, 2001, pp. 117–120.

[46] V. T. Rajan, Optimality of the Delaunay triangulation in Rd, Discrete Comput. Geom., 12
(1994), pp. 189–202.

[47] G. Rote, F. Santos, and I. Streinu, Expansive motions and the polytope of pointed
pseudo-triangulations, in Discrete and Computational Geometry—The Goodman–Pollack
Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir, eds., Algorithms and Combina-
torics, Springer, Berlin, 2003, pp. 699–736.

[48] G. Rote, C. A. Wang, L. Wang, and Y. Xu, On Constrained Minimum Pseudo-Triangula-
tions, manuscript, Institut für Informatik, FU-Berlin, 2002.
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Abstract. Given two strings of size n over a constant alphabet, the classical algorithm for
computing the similarity between two sequences [D. Sankoff and J. B. Kruskal, eds., Time Warps,
String Edits, and Macromolecules; Addison–Wesley, Reading, MA, 1983; T. F. Smith and M. S.
Waterman, J. Molec. Biol., 147 (1981), pp. 195–197] uses a dynamic programming matrix and
compares the two strings in O(n2) time. We address the challenge of computing the similarity of
two strings in subquadratic time for metrics which use a scoring matrix of unrestricted weights.
Our algorithm applies to both local and global similarity computations. The speed-up is achieved
by dividing the dynamic programming matrix into variable sized blocks, as induced by Lempel–Ziv
parsing of both strings, and utilizing the inherent periodic nature of both strings. This leads to an
O(n2/ logn), algorithm for an input of constant alphabet size. For most texts, the time complexity
is actually O(hn2/ logn), where h ≤ 1 is the entropy of the text. We also present an algorithm
for comparing two run-length encoded strings of length m and n, compressed into m′ and n′ runs,
respectively, in O(m′n + n′m) complexity. This result extends to all distance or similarity scoring
schemes that use an additive gap penalty.
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1. Introduction. Rapid progress in large-scale DNA sequencing has opened a
new level of computational challenges in storing, organizing, and analyzing the wealth
of resulting biological information. One of the most interesting new fields created by
the availability of complete genomes is that of genome comparison. (The genome is all
of the DNA sequence passed from one generation to the next.) Comparing complete
genomes can give deep insights about the relationship between organisms, as well as
shedding light on the function of specific genes in each single genome. The challenge
of comparing complete genomes necessitates the creation of additional, more efficient
computational tools.

One of the most common problems in biological comparative analysis is that of
aligning two long bio-sequences in order to measure their similarity. The alignment is
classically based on the transformation of one sequence into the other via operations
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of substitutions, insertions, and deletions (indels). The costs of these transformations
are given by a scoring matrix.

Definition 1.1 (see Gusfield [25]). The global alignment problem. Given a
pairwise scoring matrix δ over the alphabet Σ, the similarity of two strings A and B
is defined as the value maxV of the alignment of A and B that maximizes the total
alignment value.

• The score value maxV is called the optimal global alignment value of A and
B.
• A description of a maxV -scoring transformation of A into B is called a global
alignment trace.

In many applications, two strings may not be highly similar in their entirety but
may contain regions that are highly similar. The task is to find and extract a pair of
regions, one from each of the two given strings, that exhibit high similarity. This is
called the local alignment or local similarity and is defined formally below.

Definition 1.2 (see Gusfield [25]). The local alignment problem. Given two
strings A and B, find substrings α and β of A and B, respectively, whose similarity
(optimal global alignment value) is maximum over all pairs of substrings from A and
B.

• The score value maxL of the most similar pair of substrings α and β is called
the optimal local alignment value.

• The description of a maxL-scoring transformation of substring α into sub-
string β is called a local alignment trace.

Given two strings of size n, both global and local similarity problems can be solved
in O(n2) time by dynamic programming [25], [36], [50]. After the optimal similarity
scores have been computed, both global alignment and local alignment traces can be
reported in time linear with their size [10], [26], [28].

1.1. Results. In this paper data compression techniques are employed to speed
up the alignment of two strings. The compression mechanism enables the algorithm
to adapt to the data and to utilize its repetitions. The periodic nature of the sequence
is quantified via its entropy, denoted by the real number h, 0 < h ≤ 1. Entropy is a
measure of how “compressible” a sequence is (see [7], [13]), and is small when there
is a lot of order (i.e, the sequence is repetitive and therefore more compressible) and
large when there is a lot of disorder (see section 2.2).

Our results include the following algorithms.

1.1.1. Global alignment.
• We present an O(n2/ log n) algorithm for computing the optimal global align-
ment value of two strings, each of size n, over a constant alphabet (see section
3). The algorithm is even faster when the sequence is compressible. In fact,
for most texts, the complexity of our algorithm is actually O(hn2/ log n).
• After the optimal score is computed, a single alignment trace corresponding
to the optimal score can be recovered in time complexity that is linear with
the size of the trace (see section 4).
• For global alignment over “discrete” scoring matrices, we explain how the
space complexity can be reduced to O(h2n2/(log n)2) without impairing the
O(hn2/ log n) time complexity (see section 5).

1.1.2. Local alignment.
• We describe a subquadratic O(hn2/ log n) algorithm for the computation of
the optimal local alignment value of two strings over a constant alphabet (see
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section 6.1).
• Given an index on A where substring α ends and an index on B where sub-
string β ends, an optimal local alignment trace can be reported in time linear
with its size (see section 6.2).

1.1.3. Comparing two run-length encoded strings.
• We give an algorithm for comparing two run-length encoded strings of length
m and n, compressed to m′ and n′ runs, respectively, using any distance or
similarity scoring scheme with additive gaps, in O(m′n + n′m) complexity
(see section 7).

The algorithms described in this paper are the first to approach fully LZ com-
pressed string alignment (both source and target strings are compressed). The meth-
ods given in this paper can also be used by applications where both input strings are
stored or transmitted in the form of an LZ78 or LZW compressed sequence, thus
providing an efficient solution to the problem of how to compare two strings without
having to decompress them first.

Remark. For the sake of simplicity we assume, throughout the description of the
global alignment and the local alignment solutions, that both input strings A and B
are of the same size n, and that both sequences share the same entropy h. For the
case of comparing string A of size m and entropy 0 < hA ≤ 1 with string B of size n
and entropy 0 < hB ≤ 1, the results of subsections 1.1.1 and 1.1.2 are as follows:

• O(mn(hA/ logm + hB/ log n)) time and space complexity for both global
alignment and local alignment replaces the O(hn2/ log n) result.
• O(hAhBmn/ logm log n) space complexity for global alignment over “dis-
crete” scoring matrices replaces the O(h2n2/(log n)2) result.

1.2. Previous results. The only previously known subquadratic global align-
ment string comparison algorithm, by Masek and Paterson [40], is based on the “Four
Russians” paradigm. The Four Russians algorithm divides the dynamic program-
ming table into uniform-sized (logn by logn) blocks and uses table lookup to obtain
an O(n2/ log n) time complexity string comparison algorithm, based on two assump-
tions. One assumption is that the sequence elements come from a constant alphabet.
The other, which they denote the “discreteness” condition, is that the weights (of
substitutions and indels) are all rational numbers.

Our algorithms present a new approach and are better than the above algorithm
in two respects. First, the algorithms presented here are faster for compressible se-
quences. For such sequences, the complexity of our algorithms is O(hn2/ log n), where
h ≤ 1 is the entropy of the sequence.

Second, our algorithms are general enough to support scoring schemes with real
number weights. For many scoring schemes, the rational number weights supported
by Masek and Paterson’s algorithm do not suffice. For example, the entries of PAM
similarity matrices [25], as well as BLOSUM evolutionary distance matrices [25], are
defined to be real numbers, computed as log-odds ratios, and therefore could be
irrational.

The paper by Masek and Paterson concludes with the following statement: “The
most important problem remaining is finding a better algorithm for the finite (in our
terms constant) alphabet case without the discreteness condition.” Here, more than
twenty years later, this important open question will finally be answered!

The advantages of our approach are based on the following facts. First, our
algorithm does not require any precomputation of lookup tables and therefore can
afford more flexible weight values. Also, instead of dividing the dynamic programming
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matrix into uniform-sized blocks as did Masek and Paterson, we employ a variable-
sized block partition, as induced by Lempel–Ziv factorization of both source and
target. The common denominator between blocks, maximized by the compression
technique, is then recycled and used for computing the relevant information for each
block, in time which is linear with the length of its sides. In this sense, the approach
described in this paper can be viewed as another example of speeding up dynamic
programming by keeping and computing only a relevant subset of important values,
as demonstrated in [17], [18], [34], and [48]. A similar unbalanced strategy has been
successfully used for square detection in strings [12] to speed up the original algorithm
based on a divide-and-conquer approach [37].

2. Preliminaries.

2.1. The alignment graph. The dynamic programming solution to the string
comparison computation problem can be represented in terms of a weighted alignment
graph [25]; see Figure 2.1.

The weight of a given edge can be specified directly on the grid graph or, as is
frequently the case in biological applications, is given by a scoring matrix, denoted
δ, which specifies the substitution score for each pair of characters and the inser-
tion/deletion scores for each character from the alphabet.

The two widely used classes of scoring schemes are distance scoring, in which the
objective is to minimize the total alignment score, and similarity scoring, in which
the objective is to maximize the total alignment score. Within these classes, scoring
schemes are further characterized by the treatment of gap scores. A gap is the result
of the deletion of one or more consecutive characters in one of the sequences. Additive
gap scores assign a constant weight to each of the consecutive characters. For other
gap functions which have been found useful for biological sequences, see [25]. The
solutions in this paper assume a scoring scheme with additive gap scores.

Global alignment via dynamic programming. The classical dynamic programming
algorithm for the global comparison of two strings will set the value at each vertex
(i, j) of the alignment graph, row by row in a left to right order, to the score between
the first i characters of A and the first j characters of B, using the following recurrence:

V (i, j) = max[V (i, j − 1) + δ(ε, Bj),

V (i− 1, j) + δ(Ai, ε),

V (i− 1, j − 1) + δ(Ai, Bj)].

Computing and setting the values of all vertices in the alignment graph, using
the above recurrence, takes O(n2) time and space. After the values at each vertex of
the alignment graph have been computed and set, the optimal global alignment value
maxV is found at vertex (n, n) of the graph.

If each vertex in the alignment graph stores the operation (insertion, deletion,
substitution) selected when its value was set, then a global alignment trace, corre-
sponding to an optimal path in the alignment graph, can be recovered in time linear
with its size, starting from vertex (n, n), which contains the maximal score, and trac-
ing the edges back up to vertex (0, 0) in the graph.

Local alignment via dynamic programming. Smith and Waterman [50] (see also
[25]) showed that essentially the same O(|A||B|) dynamic programming solution can
be used for computing local similarity, provided that the score of the alignment of two
empty strings is defined as 0, and only pairs whose alignment scores are above 0 are
of interest. The Smith–Waterman algorithm for computing local similarity computes
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Fig. 2.1. The alignment graph for comparing strings A = “ctacgaga” and B =
“aacgacga.” The scoring scheme matrix δ is shown in the lower left corner of the figure.
The highest scoring global alignment paths originate in vertex (0,0), end in vertex (8,8), and
have a total weight of 3. The highest scoring local alignment path has a total weight of 5 and
corresponds to the alignment of substrings a = “acgaga” and b = “acgacga.” A subgraph G
corresponding to the block for comparing substrings a = “ag” and b = “acg” is shown in the
lower-right corner of the figure. Also specified are the values I for the entries of the input
border for G (in white-shaded rectangles), and the values O of the output border of G (in
grey-shaded rectangles), as set during a local alignment computation.

the following recurrence, which includes 0 as an additional option, and thus restricts
the scores to nonnegative values:

L(i, j) = max[0 , L(i, j − 1) + δ(ε, Bj),

L(i− 1, j) + δ(Ai, ε),

L(i− 1, j − 1) + δ(Ai, Bj)].

The method for computing the optimal local alignment valuemaxL is to compute
all alignment graph vertex values L(i, j) in O(n2) time and space, and then find the
largest value at any vertex on the table, say at vertex (iend, jend).

Given the vertex (iend, jend), which carries the score maxL, the corresponding
substrings α and β giving the optimal local alignment of A and B are obtained in time
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linear with their size, by using the stored operations (insertion, deletion, substitution)
to trace back the edges from vertex (iend, jend) until a vertex (istart, jstart) is reached
that has value zero. Then the optimal local alignment substrings for vertex (iend, jend)
are α = A[istart . . . iend] and β = B[jstart . . . jend] (see [25]).

2.2. A block partition of the alignment graph based on LZ78 factor-
ization. The traditional aim of text compression is the efficient use of resources such
as storage and bandwidth. Here, we will compress the sequences in order to speed
up the alignment process. Note that this approach, denoted “acceleration by text
compression,” has been recently applied to a related problem—that of exact string
matching [31], [39], [49].

It should also be mentioned that another related problem, that of exact string
matching in compressed text without decoding it, which is often referred to as “com-
pressed pattern matching,” has been studied extensively [4], [19], [45]. Along these
lines, string search in compressed text was developed for the compression paradigm
of LZ78 [54] and its subsequent variant LZW [52], as described in [32], [46]. A more
challenging problem is that of “fully compressed” pattern matching, when both the
pattern and text strings are compressed [22], [23].

For the LZ78-LZW paradigm, compressed matching has been extended and gen-
eralized to approximate pattern matching (finding all occurrences of a short sequence
within a long one, allowing up to k changes) in [30], [44].

The LZ compression methods are based on the idea of self–reference: while the
text file is scanned, substrings or phrases are identified and stored in a dictionary, and
whenever, later in the process, a phrase or concatenation of phrases is encountered
again, this is compactly encoded by suitable pointers [35], [53], [54].

Of the several existing versions of the method, we will use those called the LZ78
family [52], [54]. The main feature which distinguishes LZ78 factorization from pre-
vious LZ compression algorithms is the choice of codewords. Instead of allowing
pointers to reference any string that has appeared previously, the text seen so far
is parsed into phrases, where each phrase is the longest matching phrase seen previ-
ously plus one character. For example, the string “S = aacgacg” is divided into fours
phrases: a, ac, g, acg. Each phrase is encoded as an index to its prefix, plus the extra
character. The new phrase is then added to the list of phrases that may be referenced.

Since each phrase is distinct from others, the following upper bound applies to
the possible number of phrases obtained by LZ78 factorization.

Theorem 2.1 (see Lempel and Ziv [35]). Given a sequence S of size n over a
constant alphabet, the maximal number of distinct phrases in S is O( n

log n ).
Even though the upper bound above applies to any possible sequence over a

constant alphabet, it has been shown that in many cases we can do better than that.
Intuitively, the LZ78 algorithm compresses the sequence because it is able to

discover some repeated patterns. Therefore, in order to compute a tighter upper
bound on the number of phrases obtained by LZ78 factorization for “compressible”
sequences, the repetitive nature of the sequence needs to be quantified. One of the
fundamental ideas in information theory is that of entropy, denoted by the real num-
ber h, 0 < h ≤ 1, which measures the amount of disorder or randomness, or inversely,
the amount of order or redundancy in a sequence. Entropy is small when there is a lot
of order (i.e, the sequence is repetitive) and large when there is a lot of disorder. The
entropy of a sequence should ideally reflect the ratio between the size of the sequence
after it has been compressed and the length of the uncompressed sequence.

The number of distinct phrases obtained by LZ78 factorization has been shown
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to be O(hn/ log n) for most texts [7], [13], [35], [51], [54]. Note that, for any text over
a constant alphabet, the upper bound above still applies by setting h to 1.

3. Computing the optimal global similarity value.

3.1. Definitions and basic observations. The alignment graph will be par-
titioned as follows. Strings A and B will be parsed using LZ78 factorization. This
induces a partition of the alignment graph, for comparing A with B, into variable-
sized blocks (see Figure 3.1). Each block will correspond to a comparison of an LZ
phrase of A with an LZ phrase of B.

Let xa denote a phrase in A obtained by extending a previous phrase x of A with
character a, and yb denote a phrase in B obtained by extending a previous phrase of
B with character b.

From now on we will focus on the computations necessary for a single block of
the alignment graph.

Consider the block G which corresponds to the comparison of xa and yb. We
define input border I as the left and top borders of G, and output border O as the
bottom and right borders of G. (The node entries on the input border are numbered
in a clockwise direction, and the node entries on the output border are numbered in
a counterclockwise direction.)

Rather than filling in the values of each vertex in G, as does the classical dynamic
programming algorithm, the only values computed for each block will be those on
its I/O borders (see Figures 2.1 and 6.1A). Intuitively, this is the reason behind the
efficiency gain.

Let "r denote the number of rows in G, "r = |xa|. Let "c denote the number of
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Fig. 3.1. The block partition of the alignment graph, and the tries corresponding to LZ78
parsing of strings A = “ctacgaga” and B = “aacgacga.” Note that for the block G in this
example, α = “ag,” β = “acg,” 
r = 2, 
c = 3, i = 5, and j = 4. (The new cell of G, which
does not appear in any of the prefix blocks, is the rightmost cell at the bottom row of G and
can be distinguished by its white color.) This figure continues Figure 2.1.
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columns in G, "c = |yb|. Let t = "r + "c. Clearly, |I| = |O| = t.
We define the following three prefix blocks of G:
1. The left prefix of G denotes the block comparing phrase xa of A and phrase
y of B.

2. The diagonal prefix of G denotes the block comparing phrase x of A and
phrase y of B.

3. The top prefix of G denotes the block comparing phrase x of A and phrase
yb of B.

Observation 1. When traversing the blocks of an LZ78 parsed alignment graph
in a left-to-right, top-to-bottom order, the blocks for the left prefix, diagonal prefix,
and top prefix of G are encountered prior to block G.

Note that the graph for the left prefix of G is identical to the subgraph of G
containing all columns but the last one. More specifically, both the structure and the
weights of edges of these two graphs are identical, but the weights to be assigned to
vertices during the similarity computation may vary according to the input border
values. Similarly, the graph for the top prefix block is identical in structure to a
subgraph of G containing all rows but the last one, and the graph for the diagonal
prefix block is similar in structure to the last subgraph of G which is obtained by
removing both the last column and the last row of G. The only new cell in G, which
does not appear in any of its prefix block graphs, is the cell for comparing a and b.
This new cell consists of one new vertex and three new edges.

3.2. I/O propagation across G. The work for each block consists of two
stages (a similar approach is shown in [8], [29], [34]):

1. Encoding : study the structure of G and represent it in an efficient way.
2. Propagation: given I and the encoding of G, constructed in the previous

stage, compute O for G.
The structure of G is encoded by computing weights of optimal paths connecting

each entry of its input border with each entry of its output border. The following
DIST matrix is used (see Figure 3.2).

Definition 3.1. DIST [i, j] stores the weight of the optimal path from entry i of
the input border of G to entry j of its output border.

DIST matrices have also been used in [5], [8], [29], [34], and [48].
Given input row I and the DIST for G, the weight of output row vertex Oj can

be computed as the maximum among the sums Ir + DIST [r, j] if there is indeed a
path connecting input border entry r with output border entry j.

Vertex Oj is the maximum of column j of the following OUTmatrix, which merges
the information from input row I and DIST. (See Figure 3.2.)

Definition 3.2. OUT [i, j] = Ii +DIST [i, j].
Aggarwal and Park [3] and Schmidt [48] observed that DIST matrices are Monge

arrays [43].
Definition 3.3. A matrix M [0 . . .m, 0 . . . n] is Monge if either condition 1 or 2

below holds for all a, b = 0 . . .m; c, d = 0 . . . n:
1. convex condition: M [a, c] +M [b, d] ≤ M [b, c] +M [a, d] for all a < b and
c < d;

2. concave condition: M [a, c] +M [b, d] ≥ M [b, c] +M [a, d] for all a < b and
c < d.

Since DIST is Monge, so is OUT, which is a DIST with constants added to its
rows.

An important property of Monge arrays is that of being totally monotone.
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DIST matrix

I0 = 1 0 −1 −2 −3 � �
I1 = 2 −1 −1 −2 −1 −3 �
I2 = 3 −2 0 0 1 −1 −3

I3 = 2 � −2 −2 0 −2 −2

I4 = 1 � � −2 0 −1 −1

I5 = 3 � � � −2 −1 0

OUT matrix

1 0 −1 −2 −∞ −∞
1 1 0 1 −1 −∞
1 3 3 4 2 0

−12 0 0 2 0 0

−13 −13 −1 1 0 0

−14 −14 −14 1 2 3

O0 O1 O2 O3 O4 O5

1 3 3 4 2 3

column numbers

0 1 2 3 4 5

Fig. 3.2. The DIST matrix which corresponds to the subsequences “acg” and “ag”; the
OUT matrix obtained by adding the values of I to the rows of DIST; and the O containing
the row maxima of OUT. This figure continues Figures 2.1 and 3.1.

Definition 3.4. A matrix M [0 . . .m, 0 . . . n] is totally monotone if either condi-
tion 1 or 2 below holds for all a, b = 0 . . .m; c, d = 0 . . . n:

1. convex condition: M [a, c] ≥ M [b, c] =⇒ M [a, d] ≥ M [b, d] for all a < b and
c < d;

2. concave condition: M [a, c] ≤ M [b, c] =⇒ M [a, d] ≤ M [b, d] for all a < b and
c < d.

Note that the Monge property implies total monotonicity, but the converse is not
true. Therefore, both DIST and OUT are totally monotone by the concave condition.

Aggarwal et al. [2] gave a recursive algorithm, nicknamed SMAWK in the lit-
erature, which can compute in O(n) time all row and column maxima of an n × n
totally monotone matrix, by querying only O(n) elements of the array. Hence, one
can use SMAWK to compute the output row O by querying only O(n) elements of
OUT. Clearly, if both the full DIST and all entries of I are available, then computing
an element of OUT is O(1) work.

For various solutions to related problems that also utilize Monge and total mono-
tonicity properties, we refer the interested reader to [15], [16], [20], [21], [24], [33],
[34], and [41]. In order to efficiently utilize these properties here, we need to address
the following two problems:

1. How to efficiently compute DIST and represent it in a format which allows
direct access to its entries. This will be done in section 3.4.

2. SMAWK is intended for a full, rectangular matrix. However, neither DIST
nor its corresponding OUT is rectangular. Since paths in an alignment graph
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can assume only a left-to-right, top-to-bottom direction, connections between
some input border vertices and some output border vertices are impossible.
Therefore, the matrices are missing both a lower-left triangle and upper-right
triangle (see Figure 3.2). This problem is addressed in section 3.3.

3.3. Addressing the rectangle problem. The undefined entries of OUT can
be complemented in constant time each, as follows:

(a) The missing upper-right triangle entries can be completed by setting the value
of any entry OUT [i, j] in this triangle to −∞.

(b) Let k denote the maximal absolute value of a score in δ. The missing lower-
left triangle entries can be completed by setting the value of any OUT [i, j]
in this triangle to −(n+ i+ 1) ∗ k.

Lemma 3.5. Complementing the undefined entries as described above preserves
the concave total monotonicity condition of OUT and does not introduce new row-
maxima.

Proof. (a) Upper right triangle. All similarity scores in the alignment graph are
finite. Therefore, no new column maxima are introduced. Suppose OUT [a, c] ≤
OUT [b, c], a < b, and OUT [a, c] have been set to −∞. Due to the shape of the
redefined upper-right triangle, once a −∞ value in row a is encountered, all future
values in row a are also −∞. The future values of row b could either be finite or −∞.
Therefore, OUT [a, d] ≤ OUT [b, d] for all d > c.

(b) Lower left triangle. The worst score appearing in the alignment graph is lower-
bounded by −nk. Since i is always greater than or equal to zero, the complemented
values in the lower-left triangle are upper-bounded by −(n+1)∗k, and no new column
maxima are introduced. Also, for any complemented entry OUT [b, c] in the lower-
left triangle, OUT [b, c] < OUT [a, c] for all a < b, and therefore the concave total
monotonicity condition holds.

3.4. Incremental update of the new DIST information for G. In this
section we show how to efficiently compute the new DIST information for G, using the
DIST representations previously computed for its prefix blocks plus the information
of its new cell.

When processing a new block G, we compute the scores of t new optimal paths,
leading from the input border to the new vertex ("r, "c) in the new cell of G in its
lowest, rightmost corner. These values correspond to column "c of the DIST matrix
for G and can be computed as follows.

Entry [i] in column "c of the DIST for G contains the weight of the optimal path
from entry i in the input border of G to vertex ("r, "c). This path must go through
one of the three vertices ("r − 1, "c), ("r − 1, "c − 1), or ("r, "c − 1). Therefore, the
weight of the optimal path from entry i in the input border of G to ("r, "c) is equal
to the maximum among the following three values:

1. Entry [i] of column "c−1 of the DIST for the left prefix of G, plus the weight
of the horizontal edge leading into ("r, "c);

2. Entry [i] of column "c − 1 of the DIST for the diagonal prefix of G, plus the
weight of the diagonal edge leading into ("r, "c);

3. Entry [i] of column "c of the DIST for the top prefix of G, plus the weight of
the vertical edge leading into ("r, "c).

3.4.1. Maintaining direct access to DIST columns. In order to compute
an entry of OUT in constant time during the execution of SMAWK, direct access to
DIST entries is necessary. This is not straightforward, since, as shown in the previous
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Fig. 3.3. A table containing an entry for each block of the alignment graph. Entry (i, j)
of the table represents the block which corresponds to node i in the trie for A and node j
in the trie for B. The entry for each block in the table points to the start of its new DIST
column. Also shown is the vector which contains pointers to all columns of the DIST for
block (5, 4), as obtained from its ancestor prefix blocks. This figure continues Figures 2.1,
3.1, and 3.2.

section, for each block only one new DIST column has been computed and stored.
All other columns besides column "c of the DIST for G need to be obtained from G’s
prefix ancestor blocks.

Therefore, before the execution of SMAWK begins, a vector with pointers to all
t + 1 columns of the DIST for G is constructed (see Figure 3.3). This vector is no
longer needed after the computations for G have been completed, and its space can
be freed.

The pointers to all columns of the DIST for G are assembled as follows. Column
"c is set to the newly constructed vector for G. All columns of indices smaller than
"c are obtained via "c recursive calls to left prefix blocks of G. All columns of indices
greater than "c are obtained via "r recursive calls to top prefix blocks of G.

3.4.2. Querying a prefix block and obtaining its DIST column in con-
stant time. The LZ78 phrases form a trie (see Figure 3.1), and the string to be
compressed is encoded as a sequence of names of prefixes of the trie. Each node in
the trie contains the serial number of the phrase it represents. Since each block corre-
sponds to a comparison of a phrase from A with a phrase from B, each block will be
identified by a pair of numbers, composed of the serial numbers for its corresponding
phrases in the tries for A and B.

Another data structure to be constructed is a block table (see Figure 3.3), con-
taining an entry for each partitioned block of the alignment graph. The entry for
each block in the table points to the start of its new DIST column and can be directly
accessed via the block’s phrase number index pair.

The left prefix of G can be identified in constant time as a pair of phrase numbers,



A SUBQUADRATIC SEQUENCE ALIGNMENT ALGORITHM 1665

the first identical to the serial number of xa, and the second corresponding to the serial
number of y, which is the direct ancestor of yb in the trie for B. Similarly, the top
prefix of G can be identified in constant time. Given the pair of identification numbers
for a block, a pointer to the corresponding DIST column can then be obtained directly
from the block table.

Time and space analysis. Assuming sequence size n and sequence entropy h ≤ 1,
the LZ78 factorization algorithm parses the strings and constructs the tries for A and
B in O(n) time. The resulting number of phrases in both A and B is O(hn/ log n).
The number of resulting blocks in the alignment graph is equal to the number of
phrases in A times number of phrases in B, and is therefore O(h2n2/(log n)2). For
each block G, the following information is computed, in time and space complexity
linear with the size of its I/O borders:

1. Updating the encoding structure for G. The prefix blocks of G can be accessed
in constant time. The vectors of DIST column pointers for the prefix blocks
have already been freed. However, since each prefix block directly points to
its newly computed DIST column, all values needed for the computations are
still available. Since each entry of the new DIST column for G is set to the
maximum among up to three sums of pairs, the new DIST column for G can
be constructed in O(t) time and space.

2. Maintaining direct access to DIST columns. Since prefix blocks and their
DIST columns can be accessed in constant time, the vector with pointers to
columns of the DIST for G can be set in O(t) time.

3. Propagating I/O values across the block. Using the information computed
for G, and given the I for G obtained from the O vectors for the block above
G and the block to its left, the values of O for G are computed via SMAWK
matrix searching in O(t) time.

Total complexity. Since the work and space for each block is linear with the size
of its I/O borders, the total time and space complexity is linear with the total size of
the borders of the blocks. The block borders form O(hn/ log n) rows of size |B| each
and O(hn/ log n) columns of size |A| each in the alignment graph (see Figure 3.1).
Therefore, the total time and space complexity is O(hn2/ log n).

4. Global similarity optimal alignment trace recovery. The recovery of an
optimal global alignment trace between A and B starts at vertex (n, n). The series of
block crossing paths is then traced back until vertex (0, 0) is reached. For each block
crossed, the internal alignment trace is reported, starting from the output border sink
and back to the optimal origin source vertex in the corresponding input border. In
order to support the recovery of block-crossing paths in time linear with their size,
the computation and storage of the following additional information for a given block
G is required:

1. During the propagation stage, for each entry j in the output border of G, the
index of the input border entry i, which is the source of the highest scoring
path to output border entry j, is saved.

2. During encoding, an additional O(t)-sized vector of pointers, the ancestors
vector, is computed for G. For any output border entry O[j = 0 . . . t],
ancestors[j] points to the ancestor block of G for which this entry is the new
vertex in its new cell. (The value of ancestors["c] is set to G. All columns of
indices smaller than "c are obtained via "c recursive calls to left prefix blocks
of G. All columns of indices greater than "c are obtained via "r recursive calls
to top prefix blocks of G.)
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3. During encoding, G’s new vertex ("r, "c) is annotated with an additional O(t)-
sized vector of pointers, denoted direction. These pointers are set during the
DIST column computation described in section 3.4, as follows. The value of
direction[i] is set according to the direction of the last edge in the optimal
path originating at entry i of G’s input border and ending at vertex ("r, "c).

Given that the optimal path enters through entry j of the output border of G, the
trace-back of the part of the path going through G proceeds in two stages. The first
stage is a destination and origin initialization stage. This stage includes the fetching
of the input row source entry i, which was stored as the origin for the highest scoring
path to G’s output border entry j (see 1 above). Entry i serves as the destination for
the alignment trace-back. In addition, the ancestor prefix block P of G, pointed to
by ancestors[j] is fetched (see 2 above). The edge recovery begins in block P .

During the second stage, the origin and destination information computed in the
first stage is used to trace back the part of the path contained in P , from entry j on
P ’s output border (the new vertex of P ) to entry i on its input border. This is done
by backtracking through a dynasty of prefix ancestor blocks internal to P , using the
direction vector computed for each of the traversed blocks (see 3 above). If direction[i]
of the traversed block specifies a horizontal edge, then the trace-back retreats to the
left prefix of P , and an “insertion” operation is reported in the alignment trace.
Correspondingly, “substitution” and “deletion” are reported when backtracking to
diagonal and top prefix blocks. The recovery continues through a series of prefix
blocks of P until the full optimal alignment trace is recovered.

Time and space analysis. The two additional vectors forG, direction and ancestors,
and the input border source entry i, can be computed and stored during the encoding
and propagation stages in O(t) time and space.

The work for the first stage in the trace-back can be done in constant time. In
the second stage, each edge in the recovered alignment path results in a traversal to a
single prefix block. Since prefix blocks and their corresponding direction vectors can
be accessed in constant time, a highest scoring global alignment between strings A
and B can be recovered in additional time linear in its size, using the O(hn2/ log n)
storage which was allocated during the encoding and propagation stages.

5. Reducing the space complexity. When computing the optimal global
alignment value with scoring matrices which follow the “discreteness” condition (see
section 1), the efficient alignment stage algorithm described in [34] can be extended
to support full propagation from the leftmost and upper boundaries to the bottom
and rightmost boundaries of G.

This extended propagation algorithm can then be used to compute the values of
the global alignment O for G, given the I for G and a minimal encoding of the DIST
for G. The advantage of this minimal encoding of DIST is that, rather than saving an
O(t) sized DIST column per block, we need to save only a constant number of values
per block. The encoding for the new DIST column of each block can be computed and
stored in constant time and space from the information stored for the left, diagonal,
and top prefix blocks of G, using the technique described in section 6 of [48]. This
reduces the space complexity to O(h2n2/(log n)2) while preserving the O(hn2/ log n)
time complexity.

6. The local alignment algorithm.

6.1. Computing the optimal local similarity value. When computing the
optimal local similarity value, an optimal path could either be contained entirely in
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Fig. 6.1. A. The I/O path weight vectors computed for each block in the global alignment
solution. DIST [i, j] will be set to the highest scoring path connecting vertex i in the input
border with vertex j in the output border. B,C. The vectors of optimal path weights considered
for the local alignment computation.

one block (type C) or be a block-crossing path (see Figure 6.1). A block-crossing
path consists of a (possibly empty) S-path, followed by any number of paths leading
from the input border of a block to its output border, and ending in an E-path with
a highest scoring last vertex. Since an optimal path could begin inside any block,
vector O needs to be updated to consider the additional paths originating inside G.
Also, since an optimal path could end inside any block, extra bookkeeping is needed
in order to keep track of the highest scoring paths ending in each block.

Therefore, in addition to the DIST described in section 3, we compute for each
block G the following data structures (see Figures 6.1B and 6.1C):

1. E is a vector of size t. E[i] contains the value of the highest scoring path
which starts at vertex i of the input border of G and ends inside G. E[i] is
computed as the maximum between E[i] for the left prefix of G, E[i] for the
top prefix of G, and DIST [i, "c].

2. S is a vector of size t. S[i] contains the value of the highest scoring path
which starts inside G and ends at vertex i of the output border of G.
The only new values computed for S are the local alignment scores for the
new vertex of G, S["c]. Given the scores S["c− 1] obtained from the diagonal
prefix, S["c − 1] obtained from the left prefix, and S["c] obtained from the
top prefix of G, as well as the weights of the three edges leading into vertex
("r, "c), S["c] can be computed in O(1) time complexity using the recursion
given in section 2.1.
The values of all other entries of S are then set as follows. The first "c values
of S are copied from the first "c values of the S computed for the left prefix
of G. The last "r values are copied from the last "r values of the S vector for
the top prefix of G.
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3. C is the value of the highest scoring path contained in G, that is, the highest
scoring path which originates inside G and ends inside G. C is computed as
the maximum between the C value for the left prefix of G, the C value for
the top prefix of G, and the newly computed S["c] as described above.

The S vector computed for G is used to update the values of the output border
O, while E and C will be used to compute the weight of the highest scoring path
ending in G.

Vector O is first computed from the I and DIST for G as described in section
3.2. At this point, entry O[i] reflects the weight of the optimal path starting anywhere
outside G and ending at entry i of the output border. It needs to be updated with the
weights of the highest scoring paths starting inside G. This is achieved by resetting
O[i] to the maximum between O[i] and S[i].

The weight of the highest scoring path ending inG is computed asmax(Maxti=0{I[i]+
E[i]}, C).

After the computations for each block have been completed, the overall highest
local alignment score for comparing A and B can be computed as the maximum
among the values of the highest scoring path ending in each block.

Time and space analysis. Since, as shown in section 3.4.1, each prefix block of
G can be accessed in constant time, the values of the S and E vectors for G can be
computed and stored in O(t) time and space, and the C value for G can be computed
in constant time and space.

Given the S, E, and C vectors for G, the values of O and the weight of the highest
scoring path ending in G can be computed in O(t) time each as described above.

The weight of the highest scoring path in the alignment graph can then be com-
puted in an additional O(h2n2/(log n)2) time as the maximum value among the best
values computed for each block.

Since the work and space for each block is linear with the size of its I/O borders,
the total time and space complexity of computing the optimal local alignment value
is O(hn2/ log n).

6.2. Optimal alignment trace recovery for the local alignment solution.
Similarly to the alignment trace defined in section 4, given a maxL vertex (iend, jend)
which was obtained in the previous section, we show how to recover the optimal path
ending in this vertex by reporting a trace-back of the edges from vertex (iend, jend)
until a start-point vertex (istart, jstart) is reached that has value zero.

A block-crossing optimal path consists of a (possibly empty) S-path, followed by
any number of paths leading from the input border of a block to its output border
and ending in an E-path whose last vertex is (iend, jend).

The recovery starts at vertex (iend, jend) and continues back to the optimal path
origin in three stages, as follows:

1. Recovering the E-path part. During encoding, whenever the E[i] value of a
block is updated by its new vertex, a pointer to the updating block is saved
together with the new E[i] value.
During alignment recovery, given that vertex (iend, jend) ends an E[i] path in
G, the corresponding block can be fetched and the path from its new vertex
to entry i on its input border recovered, as described in section 4.

2. Recovering all paths leading from the input border of a block to its output
border. The part of the path contained in each one of these blocks can be
recovered as described in section 4.

3. Recovering the S-path part. During encoding, when computing the S-score of
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the new vertex of each block, the direction of the edge optimizing the score
S["c] of the new vertex of G, denoted sdirection, is saved with the score.
During the termination of the propagation stage, when setting the score values
for each entry in O, a field is set, indicating whether the newly set score value
for this entry corresponds to a path originating inside G (an S-path) or a path
crossing G. If the score corresponds to an S-path, the recovery of the S-path
part utilizes the technique described in section 4, with a slight modification.
Instead of the direction vector, the sdirection field is used for the edge trace-
back. The recovery halts when an ancestor block is reached whose S["c] value
is zero.

A special case occurs when vertex (iend, jend) is the end point of a C-path. A
C-path is, in essence, a halted S-path. During encoding, whenever the C value of a
block is updated by its new vertex, a pointer to the updating block is saved together
with the new C value. The recovery of the C path in G starts at the new vertex of
its corresponding block and continues similarly to the S-path recovery, as described
in 3 above.

Time and space analysis. In addition to the values described in section 4, an addi-
tional O(t) information (pointers to the E[i] updating blocks) is computed and stored
for E-paths, and an additional O(1) information per block is computed and stored
for C and S paths. During propagation termination, an additional O(t) information
is stored with the O vector.

During recovery, each edge in the recovered alignment path results in a traversal
to a single prefix block, for each of the three path parts. Both prefix blocks and
their corresponding direction vectors can be accessed in constant time. Therefore, in
addition to the basic O(hn2/ log n) time and space needed for computing the optimal
local alignment scoremaxL, an alignment trace ending at a givenmaxL-scoring vertex
can be reported in time linear with the size of the trace.

7. Applications to the problem of comparing two run-length encoded
strings. A string S is run-length encoded if it is described as an ordered sequence
of pairs (σ, i), often denoted “σi,” each consisting of an alphabet symbol σ and an
integer i. Each pair corresponds to a run in S, consisting of i consecutive occurrences
of σ. For example, the string aabbbbbccc can be encoded as a2b5c3. Such a run-length
encoded string can be significantly shorter than the expanded string representation
after efficiently encoding the integers (see [14], for example).

Run-length encoding serves as a popular image compression technique, since many
classes of images (e.g., binary images in facsimile transmission or for use in optical
character recognition) typically contain large patches of identically valued pixels.

Let m and n be the lengths of two run-length encoded strings X and Y , of
encoded lengths m′ and n′, respectively. Previous algorithms for the problem com-
pared two run-length encoded strings using the Levenshtein edit distance [36] and the
LCS similarity measure [26]. For the LCS metric, Bunke and Csirik [9] presented an
O(mn′ + nm′) time algorithm, while Apostolico, Landau, and Skiena [6] described
an O(m′n′ log(m′n′)) time algorithm. Mitchell [42] has obtained an O((d + m′ +
n′) log(d +m′ + n′)) time algorithm for a more general string matching problem in
run-length encoded strings, where d is the number of matches of compressed char-
acters. Both Arbell, Landau, and Mitchell [1] and Mäkinen, Navarro, and Ukkonen
[38] independently obtained an O(m′n+ n′m) time algorithm for computing the edit
distance between two run-length encoded strings for the Levenshtein distance metric.

Mäkinen, Navarro, and Ukkonen [38] posed as an open problem the challenge of



1670 M. CROCHEMORE, G. M. LANDAU, AND M. ZIV-UKELSON

extending these results to more general scoring schemes, since in those applications
which are related to image compression, the change from a pixel value to the next is
smooth. Here, we will show how to extend the results to apply them to any distance
or similarity scoring scheme with additive gap scores.

In this solution, the alignment graph is also partitioned into blocks. But rather
than using the LZ78 partition described in section 3.1, each block here consists of two
runs—one of X and one of Y . This results in the partition of the alignment graph
into m′n′ blocks. The algorithm suggested also propagates accumulated scores from
the left and upper boundaries of each block to its bottom and right boundaries.

Consider the block R for comparing the run αi of X with the run βj of Y .
An edge in R could be assigned one of three possible weight values: D(diagonal),
H(horizontal), or V (vertical).

Let ∆h and ∆w denote the difference in row index values and column index
values, respectively, between entry i on the input border of R and entry j on the
output border of R.

We show how to compute DIST [i, j] (which is the cost of the best scoring path
from entry i in the input border of the block to entry j in the output border of the
block) in constant time, given ∆h and ∆w for the input and output entries, and the
values D, H, and V .

• H + V ≤ D. Clearly, an optimal path from i to j can use all possible
diagonal edges and only then the minimal number of remaining H and V
edges necessary to reach j.
Therefore, DIST [i, j] obtains one of three values:
1. If ∆w = ∆h, then DIST [i, j] = D ×∆h.
2. If ∆w > ∆h, then DIST [i, j] = D ×∆h +H × (∆w −∆h).
3. If ∆w < ∆h, then DIST [i, j] = D ×∆w + V × (∆h −∆w).

• H + V > D. In this case, an optimal path never uses any diagonal edge.
The path includes only the minimal number of H edges, and the minimal
number of V edges necessary to reach j from i. In this case, DIST [i, j] =
H ×∆w + V ×∆h.

Therefore, DIST [i, j] can be easily computed in constant time when using the
general scoring scheme described in section 2.1.

Time and space analysis. The O vector for each block is computed using SMAWK.
Vector I for block R can easily be obtained from the O vectors for the block above R
and the block to its left, in time linear with the sides of R. The “rectangle” problem
can be solved as in section 3.2. Therefore, any value OUT [i, j] = I[i] + DIST [i, j]
can be computed in constant time.

Since the work for each block is linear with the size of its I/O borders, the total
time complexity is linear with the total size of the borders of the blocks, which is
O(m′n+ n′m).

Note that alternative methods for achieving linear-time propagation across run-
length compressed blocks can be obtained by adapting any of the queue algorithms
described in [16], [20], [27], and [34].

Since all relevant DIST entry values are computed “on the fly” and do not need
to be stored, Hirschberg’s method [26] can be applied to achieve an algorithm with a
space complexity that is linear with the size of the uncompressed strings.

Open problems. The subquadratic sequence comparison algorithms presented
in this paper are perhaps close to optimal in time complexity. However, an impor-
tant concern is the space complexity of the algorithms. If only the similarity score
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value is required, the classical, quadratic time sequence alignment algorithm can eas-
ily be implemented to run in linear space by keeping only two rows of the dynamic
programming table alive at each step. If the recovery of either global or local op-
timal alignment traces is required, quadratic-time and linear-space algorithms can
be obtained by applying Hirschberg’s refinement to the classical sequence alignment
algorithms [10], [26], [28]. We post as an open problem the challenge of further reduc-
ing the space requirement of the algorithms described in this paper without impairing
their subquadratic time complexity.

Acknowledgment. We are grateful to Dan Gusfield for a helpful discussion.
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